mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-19 23:51:14 +08:00
4 bit working
This commit is contained in:
parent
5824626c0b
commit
ef14b1e9c3
@ -2,7 +2,7 @@ import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import time_fn
|
||||
|
||||
L = 30000
|
||||
L = 16
|
||||
H = 32
|
||||
H_k = 32 // 4
|
||||
D = 128
|
||||
@ -29,13 +29,15 @@ def sdpa(q, k, v):
|
||||
v = mx.quantize(v)
|
||||
k = mx.dequantize(*k)
|
||||
v = mx.dequantize(*v)
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=0.08, mask=None)
|
||||
|
||||
|
||||
def quant_sdpa(q, k, v):
|
||||
k = mx.quantize(k)
|
||||
v = mx.quantize(v)
|
||||
return mx.fast.quantized_scaled_dot_product_attention(q, *k, *v, scale=1.0)
|
||||
return mx.fast.quantized_scaled_dot_product_attention(
|
||||
q, *k, *v, scale=0.08, mask=None
|
||||
)
|
||||
|
||||
|
||||
def time_self_attention_primitives(q, k, v):
|
||||
@ -52,9 +54,14 @@ def time_self_attention_quant_sdpa(q, k, v):
|
||||
|
||||
if __name__ == "__main__":
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 10, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
# q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
# k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
# v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
q = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/queries.npy"))
|
||||
k = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/keys.npy"))
|
||||
v = mx.array(np.load("/Users/alexbarron/mlx-examples/llms/values.npy"))
|
||||
print(q.dtype)
|
||||
print(q.shape, k.shape, v.shape)
|
||||
mx.eval(q, k, v)
|
||||
|
||||
k_quant = mx.quantize(k)
|
||||
@ -66,12 +73,12 @@ if __name__ == "__main__":
|
||||
# time_self_attention_primitives(q, k, v)
|
||||
q_sdpa = quant_sdpa(q, k, v)
|
||||
print(q_sdpa)
|
||||
o_attention = attention(q, k, v)
|
||||
print(o_attention)
|
||||
np.testing.assert_allclose(q_sdpa, o_attention, atol=1e-5)
|
||||
# o_sdpa = sdpa(q, k, v)
|
||||
# print(o_sdpa)
|
||||
# np.testing.assert_allclose(q_sdpa, o_sdpa, atol=1e-5)
|
||||
# o_attention = attention(q, k, v)
|
||||
# print(o_attention)
|
||||
# np.testing.assert_allclose(q_sdpa, o_attention, atol=1e-5)
|
||||
o_sdpa = sdpa(q, k, v)
|
||||
print(o_sdpa)
|
||||
np.testing.assert_allclose(q_sdpa, o_sdpa, atol=1e-5)
|
||||
# print(o_sdpa[..., :64])
|
||||
# print()
|
||||
# print(o_attention[..., :64])
|
||||
|
@ -178,9 +178,10 @@ template <typename T, int D, int group_size, int bits>
|
||||
U shifts[4] = {1, 16, 256, 4096};
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
// Shift by the appropriate amount here
|
||||
query_sum += queries[i];
|
||||
U shift = shifts[i % 4];
|
||||
q[i] = static_cast<U>(scale) * queries[i] / shift;
|
||||
q[i] = static_cast<U>(scale) * queries[i];
|
||||
query_sum += q[i];
|
||||
q[i] /= shift;
|
||||
}
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = 0;
|
||||
|
@ -687,7 +687,6 @@ array quantized_scaled_dot_product_attention(
|
||||
auto n_q_heads = queries.shape(-3);
|
||||
auto n_kv_heads = keys.shape(-3);
|
||||
|
||||
std::cout << "group bits " << group_size << " " << bits << std::endl;
|
||||
auto out_shape = std::vector<int>(
|
||||
{queries.shape(0), queries.shape(1), queries.shape(2), out_dim});
|
||||
auto stream = to_stream(s);
|
||||
@ -747,7 +746,8 @@ array quantized_scaled_dot_product_attention(
|
||||
return std::vector<array>{out};
|
||||
};
|
||||
|
||||
if (true) {
|
||||
int L = queries.shape(2);
|
||||
if (L > 1) {
|
||||
if (needs_mask) {
|
||||
return fallback(
|
||||
{queries,
|
||||
|
Loading…
Reference in New Issue
Block a user