faster rms norm (#2433)

This commit is contained in:
Awni Hannun 2025-07-29 13:12:00 -07:00 committed by GitHub
parent 970dbe8e25
commit ef631d63af
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
11 changed files with 210 additions and 112 deletions

View File

@ -28,7 +28,7 @@ __global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a[0], b[0]);
out_vec[i] = Op{}(a[0], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
@ -49,7 +49,7 @@ __global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
out_vec[i] = Op{}(a[0], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
@ -70,7 +70,7 @@ __global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
out_vec[i] = Op{}(a_vec[i], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
@ -92,7 +92,7 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
@ -248,8 +248,7 @@ void binary_op_gpu_inplace(
} else {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;

View File

@ -33,8 +33,8 @@ binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b[0]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
@ -60,9 +60,9 @@ binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b_vec.val[i]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
auto out = Op{}(a[0], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
@ -88,9 +88,9 @@ binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec.val[i], b[0]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
auto out = Op{}(a_vec[i], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
@ -117,9 +117,9 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
out_a_vec.val[i] = out[0];
out_b_vec.val[i] = out[1];
auto out = Op{}(a_vec[i], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
@ -270,8 +270,7 @@ void binary_two_op_gpu_inplace(
} else {
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;

View File

@ -22,7 +22,7 @@ __global__ void copy_s(const In* in, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = cast_to<Out>(in[0]);
out_vec[i] = cast_to<Out>(in[0]);
}
store_vector<N_READS>(out, index, out_vec);
@ -43,7 +43,7 @@ __global__ void copy_v(const In* in, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
out_vec[i] = cast_to<Out>(in_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
@ -65,8 +65,7 @@ void copy_contiguous(
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
if (ctype == CopyType::Vector) {
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;

View File

@ -32,21 +32,103 @@ using Strides = cuda::std::array<int64_t, MAX_NDIM>;
template <typename T, int N>
struct alignas(sizeof(T) * N) AlignedVector {
T val[N];
__device__ T& operator[](int i) {
return val[i];
}
__device__ T operator[](int i) const {
return val[i];
}
};
template <int N, typename T>
inline __device__ bool is_aligned(T* x) {
return (reinterpret_cast<uintptr_t>(x) % (N * sizeof(T))) == 0;
}
template <int N, typename T>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
if (is_aligned<N>(ptr)) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = ptr[offset * N + i];
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N>
load_vector(const T* ptr, uint32_t offset, SizeT size, T fallback) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = (N * offset + i) < size ? ptr[offset * N + i] : fallback;
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset,
SizeT size,
int64_t stride,
T fallback) {
if (is_aligned<N>(ptr) && stride == 1 && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] =
(N * offset + i) < size ? ptr[stride * (offset * N + i)] : fallback;
}
return v;
}
}
template <int N, typename T>
inline __device__ void
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
if (is_aligned<N>(ptr)) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
#pragma unroll
for (int i = 0; i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
template <int N, typename T, typename SizeT>
inline __device__ void store_vector(
T* ptr,
uint32_t offset,
const AlignedVector<T, N>& vec,
SizeT size) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
// Helper for accessing strided data.

View File

@ -31,8 +31,8 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
auto local_vec = load_vector<n_per_thread>(vec + col, 0);
#pragma unroll
for (int j = 0; j < n_per_thread; ++j) {
sum += static_cast<float>(local_mat.val[j]) *
static_cast<float>(local_vec.val[j]);
sum +=
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
}
}
@ -73,8 +73,7 @@ __global__ void gemv_batched(
}
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
bool is_multiple = K % 32 == 0 || K % 64 == 0 || K % 128 == 0;
return is_multiple && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
return K % 32 == 0 && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
}
template <typename F>

View File

@ -10,8 +10,6 @@
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
namespace mlx::core {
@ -74,9 +72,11 @@ __global__ void layer_norm(
float sum = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS] = {};
cub::LoadDirectBlocked(index, x, xn, axis_size);
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
sum += static_cast<float>(xn[i]);
}
}
sum = BlockReduceT{block, temp}.Sum(sum);
@ -87,11 +87,18 @@ __global__ void layer_norm(
float normalizer = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]) - mean;
normalizer += t * t;
if ((index + 1) * N_READS <= axis_size) {
auto xn = load_vector<N_READS>(x, index);
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]) - mean;
normalizer += t * t;
}
} else {
for (int i = index * N_READS; i < axis_size; ++i) {
float t = static_cast<float>(x[i]) - mean;
normalizer += t * t;
}
}
}
normalizer = BlockReduceT{block, temp}.Sum(normalizer);
@ -100,17 +107,15 @@ __global__ void layer_norm(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
T bn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(b, b_stride), bn, axis_size);
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
auto bn = load_vector<N_READS>(b, index, axis_size, b_stride, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
}
cub::StoreDirectBlocked(index, out, xn, axis_size);
store_vector<N_READS>(out, index, xn, axis_size);
}
}
@ -143,9 +148,11 @@ __global__ void layer_norm_vjp(
float sum = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS] = {};
cub::LoadDirectBlocked(index, x, xn, axis_size);
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
sum += static_cast<float>(xn[i]);
}
}
sum = BlockReduceF{block, temp.f}.Sum(sum);
@ -155,19 +162,28 @@ __global__ void layer_norm_vjp(
// Normalizer.
float3 factors = {};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
T xn[N_READS];
T wn[N_READS] = {};
T gn[N_READS] = {};
auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]) - mean;
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f3(factors, {wg, wg * t, t * t});
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
if ((index + 1) * N_READS <= axis_size) {
auto xn = load_vector<N_READS>(x, index);
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]) - mean;
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f3(factors, {wg, wg * t, t * t});
}
} else {
for (int i = index * N_READS; i < axis_size; ++i) {
float t = static_cast<float>(x[i]) - mean;
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f3(factors, {wg, wg * t, t * t});
}
}
}
factors = BlockReduceF3{block, temp.f3}.Reduce(factors, plus_f3, {});
@ -179,12 +195,10 @@ __global__ void layer_norm_vjp(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
for (int i = 0; i < N_READS; i++) {
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
float wi = wn[i];
@ -194,9 +208,9 @@ __global__ void layer_norm_vjp(
wn[i] = gi * xi;
}
}
cub::StoreDirectBlocked(index, gx, xn, axis_size);
store_vector<N_READS>(gx, index, xn, axis_size);
if constexpr (HAS_W) {
cub::StoreDirectBlocked(index, gw, wn, axis_size);
store_vector<N_READS>(gw, index, wn, axis_size);
}
}
}
@ -257,9 +271,9 @@ void LayerNorm::eval_gpu(
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
constexpr uint32_t N_READS = 4;
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
encoder.add_kernel_node(
kernel,
@ -364,10 +378,10 @@ void LayerNormVJP::eval_gpu(
encoder.set_output_array(gw_temp);
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
dispatch_bool(has_w, [&](auto has_w_constant) {
constexpr int N_READS = 4;
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::layer_norm_vjp<
DataType,
has_w_constant.value,

View File

@ -5,8 +5,6 @@
#include "mlx/backend/gpu/copy.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/fill.h>
#include <cassert>

View File

@ -10,8 +10,6 @@
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
namespace mlx::core {
@ -57,7 +55,7 @@ __global__ void rms_norm(
const T* w,
T* out,
float eps,
int32_t axis_size,
uint32_t axis_size,
int64_t w_stride) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
@ -72,8 +70,8 @@ __global__ void rms_norm(
float normalizer = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]);
normalizer += t * t;
@ -85,15 +83,14 @@ __global__ void rms_norm(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
float norm = static_cast<float>(xn[i]) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm);
float y = static_cast<float>(xn[i]) * normalizer;
xn[i] = wn[i] * static_cast<T>(y);
}
cub::StoreDirectBlocked(index, out, xn, axis_size);
store_vector<N_READS>(out, index, xn, axis_size);
}
}
@ -125,13 +122,10 @@ __global__ void rms_norm_vjp(
// Normalizer.
float2 factors = {};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
T xn[N_READS];
T wn[N_READS] = {};
T gn[N_READS] = {};
auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]);
float wi = wn[i];
@ -148,12 +142,9 @@ __global__ void rms_norm_vjp(
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
for (int i = 0; i < N_READS; i++) {
float xi = xn[i];
float wi = wn[i];
@ -163,9 +154,9 @@ __global__ void rms_norm_vjp(
wn[i] = static_cast<T>(gi * xi * normalizer);
}
}
cub::StoreDirectBlocked(index, gx, xn, axis_size);
store_vector<N_READS>(gx, index, xn, axis_size);
if constexpr (HAS_W) {
cub::StoreDirectBlocked(index, gw, wn, axis_size);
store_vector<N_READS>(gw, index, wn, axis_size);
}
}
}
@ -223,9 +214,9 @@ void RMSNorm::eval_gpu(
encoder.set_input_array(w);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
constexpr uint32_t N_READS = 4;
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::rms_norm<DataType, block_dim(), N_READS>;
encoder.add_kernel_node(
kernel,
@ -312,11 +303,10 @@ void RMSNormVJP::eval_gpu(
encoder.set_output_array(gw_temp);
dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
dispatch_bool(has_w, [&](auto has_w_constant) {
constexpr int N_READS = 4;
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 16 / sizeof(DataType);
dispatch_block_dim(
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int N_READS = 4;
auto kernel = cu::rms_norm_vjp<
DataType,
has_w_constant.value,

View File

@ -32,7 +32,7 @@ ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
AlignedVector<T, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i], c_vec.val[i]);
out_vec[i] = Op{}(a_vec[i], b_vec[i], c_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
@ -166,8 +166,7 @@ void ternary_op_gpu_inplace(
} else {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
// TODO: Choose optimized value based on type size.
constexpr int N_READS = 4;
constexpr int N_READS = 16 / sizeof(DType);
auto kernel = cu::ternary_v<Op, DType, IdxT, N_READS>;
auto [num_blocks, block_dims] = get_launch_args(
kernel,

View File

@ -30,7 +30,7 @@ __global__ void unary_v(const In* in, Out* out, IdxT size) {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec.val[i] = Op{}(in_vec.val[i]);
out_vec[i] = Op{}(in_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);

View File

@ -3049,6 +3049,25 @@ class TestOps(mlx_tests.MLXTestCase):
out = mx.power(mx.array(0j), float("nan"))
self.assertTrue(mx.isnan(out))
def test_irregular_alignments(self):
# Unaligned unary op
a = mx.ones((64, 1))
b = -a[1:]
self.assertTrue(mx.all(b == -1.0))
# Unaligned binary op
a = mx.ones((64, 1))
b = a[1:]
c = b + b
self.assertTrue(mx.all(c == 2.0))
# Unaligned ternary op
a = mx.ones((64, 1))
b = mx.zeros((63, 1))
c = mx.ones((63, 1)).astype(mx.bool_)
d = mx.where(c, a[1:], b)
self.assertTrue(mx.all(d == 1.0))
class TestBroadcast(mlx_tests.MLXTestCase):
def test_broadcast_shapes(self):