mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Move all type switching to templates
This commit is contained in:
@@ -155,25 +155,33 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims{BLOCK_DIM, 1, 1};
|
||||
auto kernel =
|
||||
cu::arg_reduce_general<T, cu::ArgMax<T>, BLOCK_DIM, N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, BLOCK_DIM, N_READS>;
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
});
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim_constant) {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims{block_dim_constant(), 1, 1};
|
||||
auto kernel = cu::arg_reduce_general<
|
||||
T,
|
||||
cu::ArgMax<T>,
|
||||
block_dim_constant(),
|
||||
N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = cu::arg_reduce_general<
|
||||
T,
|
||||
cu::ArgMin<T>,
|
||||
block_dim_constant(),
|
||||
N_READS>;
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -149,47 +149,55 @@ void binary_op_gpu_inplace(
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel =
|
||||
&cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides));
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) =
|
||||
collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||
@@ -199,7 +207,7 @@ void binary_op_gpu_inplace(
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
|
||||
@@ -148,49 +148,54 @@ void binary_op_gpu_inplace(
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out_a);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out_a.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel =
|
||||
cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides));
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out_a.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out_a);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out_a.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
dispatch_bool(out_a.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||
@@ -204,7 +209,7 @@ void binary_op_gpu_inplace(
|
||||
out_a.data_size(),
|
||||
out_a.shape(),
|
||||
out_a.strides(),
|
||||
LARGE);
|
||||
large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
|
||||
@@ -38,16 +38,16 @@ void copy_contiguous(
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT>;
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
|
||||
@@ -58,44 +58,46 @@ void copy_general(
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out));
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, data_size, shape, out.strides(), large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -64,44 +64,50 @@ void copy_general_dynamic(
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_dynamic_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::copy_gg_dynamic_nd<
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in),
|
||||
const_param<dims_constant()>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -53,38 +53,41 @@ void copy_general_input(
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_g_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in));
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -6,6 +6,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -17,60 +19,46 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Convert a number between 1~3 to constexpr.
|
||||
#define MLX_SWITCH_1_2_3(N, NDIM, ...) \
|
||||
switch (N) { \
|
||||
case 1: { \
|
||||
constexpr int NDIM = 1; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case 2: { \
|
||||
constexpr int NDIM = 2; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case 3: { \
|
||||
constexpr int NDIM = 3; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
template <typename F>
|
||||
void dispatch_1_2_3(int n, F&& f) {
|
||||
switch (n) {
|
||||
case 1:
|
||||
f(std::integral_constant<int, 1>{});
|
||||
break;
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Like MLX_SWITCH_ALL_TYPES but for booleans.
|
||||
#define MLX_SWITCH_BOOL(BOOL, BOOL_ALIAS, ...) \
|
||||
if (BOOL) { \
|
||||
constexpr bool BOOL_ALIAS = true; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr bool BOOL_ALIAS = false; \
|
||||
__VA_ARGS__; \
|
||||
template <typename F>
|
||||
void dispatch_bool(bool v, F&& f) {
|
||||
if (v) {
|
||||
f(std::true_type{});
|
||||
} else {
|
||||
f(std::false_type{});
|
||||
}
|
||||
}
|
||||
|
||||
// Convert a block_dim to constexpr between WARP_SIZE and WARP_SIZE ^ 2.
|
||||
#define MLX_SWITCH_BLOCK_DIM(NUM_THREADS, BLOCK_DIM, ...) \
|
||||
{ \
|
||||
uint32_t _num_threads = NUM_THREADS; \
|
||||
if (_num_threads <= WARP_SIZE) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 2) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 2; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 4) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 4; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 8) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 8; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 16) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 16; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * WARP_SIZE; \
|
||||
__VA_ARGS__; \
|
||||
} \
|
||||
template <typename F>
|
||||
void dispatch_block_dim(int threads, F&& f) {
|
||||
if (threads <= WARP_SIZE) {
|
||||
f(std::integral_constant<int, WARP_SIZE>{});
|
||||
} else if (threads <= WARP_SIZE * 2) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 2>{});
|
||||
} else if (threads <= WARP_SIZE * 4) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 4>{});
|
||||
} else if (threads <= WARP_SIZE * 8) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 8>{});
|
||||
} else if (threads <= WARP_SIZE * 16) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 16>{});
|
||||
} else {
|
||||
f(std::integral_constant<int, WARP_SIZE * 32>{});
|
||||
}
|
||||
}
|
||||
|
||||
// Maps CPU types to CUDA types.
|
||||
template <typename T>
|
||||
|
||||
@@ -260,20 +260,21 @@ void LayerNorm::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::layer_norm<DataType, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride,
|
||||
b_stride);
|
||||
});
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride,
|
||||
b_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -358,21 +359,26 @@ void LayerNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
|
||||
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BOOL(has_w, HAS_W, {
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::layer_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant(),
|
||||
block_dim(),
|
||||
N_READS>;
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -145,13 +145,14 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_float_types(out.dtype(), "logsumexp", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::logsumexp<DataType, float, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::logsumexp<DataType, float, block_dim(), N_READS>;
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -112,7 +112,8 @@ void all_reduce(
|
||||
encoder.set_output_array(intermediate);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(dt, [&](auto type_tag) {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::all_reduce<T, U, OP, N_READS>;
|
||||
@@ -136,7 +137,8 @@ void all_reduce(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(dt, [&](auto type_tag) {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::all_reduce<T, U, OP, N_READS>;
|
||||
|
||||
@@ -216,10 +216,10 @@ void col_reduce_looped(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
MLX_SWITCH_REDUCE_NDIM(args.reduce_ndim, NDIM, {
|
||||
using T = cuda_type_t<CTYPE>;
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
@@ -230,7 +230,8 @@ void col_reduce_looped(
|
||||
constexpr int BN = 32;
|
||||
dim3 grid = output_grid_for_col_reduce(out, args, BN);
|
||||
int blocks = BM * BN / N_READS;
|
||||
auto kernel = cu::col_reduce_looped<T, U, OP, NDIM, BM, BN, N_READS>;
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
kernel<<<grid, blocks, 0, stream>>>(indata, out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -34,7 +34,8 @@ void init_reduce(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::init_reduce<T, U, OP>;
|
||||
|
||||
@@ -1,5 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
@@ -9,43 +11,35 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Dispatch dynamic ndim to constexpr.
|
||||
// The behavior follows get_kernel_reduce_ndim in metal/reduce.cpp file.
|
||||
#define MLX_SWITCH_REDUCE_NDIM(ndim, NDIM, ...) \
|
||||
if (ndim == 1) { \
|
||||
constexpr uint32_t NDIM = 1; \
|
||||
__VA_ARGS__; \
|
||||
} else if (ndim == 2) { \
|
||||
constexpr uint32_t NDIM = 2; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr uint32_t NDIM = 5; \
|
||||
__VA_ARGS__; \
|
||||
template <typename F>
|
||||
void dispatch_reduce_ndim(int ndim, F&& f) {
|
||||
if (ndim == 1) {
|
||||
f(std::integral_constant<int, 1>{});
|
||||
} else if (ndim == 2) {
|
||||
f(std::integral_constant<int, 2>{});
|
||||
} else {
|
||||
f(std::integral_constant<int, 5>{});
|
||||
}
|
||||
}
|
||||
|
||||
// Dispatch reduce ops to constexpr.
|
||||
#define MLX_SWITCH_REDUCE_OPS(REDUCE, OP, ...) \
|
||||
if (REDUCE == Reduce::ReduceType::And) { \
|
||||
using OP = cu::And; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Or) { \
|
||||
using OP = cu::Or; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Sum) { \
|
||||
using OP = cu::Sum; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Prod) { \
|
||||
using OP = cu::Prod; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Max) { \
|
||||
using OP = cu::Max; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Min) { \
|
||||
using OP = cu::Min; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
throw std::invalid_argument("Unknown reduce type."); \
|
||||
template <typename F>
|
||||
void dispatch_reduce_ops(Reduce::ReduceType reduce_type, F&& f) {
|
||||
if (reduce_type == Reduce::ReduceType::And) {
|
||||
f(type_identity<cu::And>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Or) {
|
||||
f(type_identity<cu::Or>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Sum) {
|
||||
f(type_identity<cu::Sum>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Prod) {
|
||||
f(type_identity<cu::Prod>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Max) {
|
||||
f(type_identity<cu::Max>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Min) {
|
||||
f(type_identity<cu::Min>{});
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown reduce type.");
|
||||
}
|
||||
}
|
||||
|
||||
void all_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
|
||||
@@ -247,9 +247,9 @@ void row_reduce_simple(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using T = cuda_type_t<CTYPE>;
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
@@ -295,9 +295,9 @@ void row_reduce_looped(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using T = cuda_type_t<CTYPE>;
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
@@ -313,10 +313,16 @@ void row_reduce_looped(
|
||||
|
||||
// Pick the kernel
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, 32, N_READS>;
|
||||
MLX_SWITCH_REDUCE_NDIM(args.reduce_ndim, NDIM, {
|
||||
MLX_SWITCH_BLOCK_DIM(threads, THREADS, {
|
||||
kernel = cu::row_reduce_looped<T, U, OP, NDIM, THREADS, N_READS>;
|
||||
block.x = THREADS;
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
dispatch_block_dim(threads, [&](auto threads_constant) {
|
||||
kernel = cu::row_reduce_looped<
|
||||
T,
|
||||
U,
|
||||
OP,
|
||||
reduce_ndim(),
|
||||
threads_constant(),
|
||||
N_READS>;
|
||||
block.x = threads_constant();
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
@@ -226,18 +226,19 @@ void RMSNorm::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::rms_norm<DataType, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::rms_norm<DataType, block_dim(), N_READS>;
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -312,21 +313,27 @@ void RMSNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
|
||||
dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BOOL(has_w, HAS_W, {
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::rms_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::rms_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant(),
|
||||
block_dim(),
|
||||
N_READS>;
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -311,11 +311,11 @@ void RoPE::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_float_types(out.dtype(), "rope", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
MLX_SWITCH_BOOL(traditional_, TRADITIONAL, {
|
||||
MLX_SWITCH_BOOL(forward_, FORWARD, {
|
||||
dispatch_bool(traditional_, [&](auto traditional) {
|
||||
dispatch_bool(forward_, [&](auto forward) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if (single && !with_freqs) {
|
||||
auto kernel = cu::rope_single<DataType, TRADITIONAL, FORWARD>;
|
||||
auto kernel = cu::rope_single<DataType, traditional(), forward()>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
@@ -327,7 +327,8 @@ void RoPE::eval_gpu(
|
||||
mat_size,
|
||||
dims);
|
||||
} else if (single) {
|
||||
auto kernel = cu::rope_single_freqs<DataType, TRADITIONAL, FORWARD>;
|
||||
auto kernel =
|
||||
cu::rope_single_freqs<DataType, traditional(), forward()>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
@@ -340,7 +341,7 @@ void RoPE::eval_gpu(
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else if (with_freqs) {
|
||||
auto kernel = cu::rope_freqs<DataType, TRADITIONAL, FORWARD>;
|
||||
auto kernel = cu::rope_freqs<DataType, traditional(), forward()>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
@@ -358,7 +359,7 @@ void RoPE::eval_gpu(
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else {
|
||||
auto kernel = cu::rope<DataType, TRADITIONAL, FORWARD>;
|
||||
auto kernel = cu::rope<DataType, traditional(), forward()>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
|
||||
@@ -143,16 +143,17 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dispatch_float_types(out.dtype(), "softmax", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::softmax<DataType, DataType, BLOCK_DIM, N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, BLOCK_DIM, N_READS>;
|
||||
}
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::softmax<DataType, DataType, block_dim(), N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, block_dim(), N_READS>;
|
||||
}
|
||||
kernel<<<n_rows, block_dim(), 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -97,53 +97,56 @@ void ternary_op_gpu_inplace(
|
||||
|
||||
auto topt = get_ternary_op_type(a, b, c);
|
||||
if (topt == TernaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
bool large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::ternary_g_nd<Op, DType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides),
|
||||
const_param<NDIM>(c_strides));
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides),
|
||||
const_param<dims_constant()>(c_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
const_param(c_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
const_param(c_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
auto kernel = cu::ternary_v<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel, out.data_size(), out.shape(), out.strides(), large());
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
|
||||
Reference in New Issue
Block a user