mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Transposed Convolution (#1245)
* initial implementation for conv_transpose ran pre-commit implemented conv_transpose updated conv_general docstring updated conv_general docstring updated code comments removed commented run_conv_checks updated acknowledgments added missing entry to ops.rst added op to nn.layers resolved merge conflicts * removed ConvolutionTranspose primitive as suggested by reviewer removed ConvolutionTranspose primitive as suggested by reviewer * remove transpose flag, add another test --------- Co-authored-by: Awni Hannun <awni@apple.com>
This commit is contained in:
committed by
GitHub
parent
ba3e913c7a
commit
efeb9c0f02
@@ -952,8 +952,8 @@ std::vector<array> Convolution::vjp(
|
||||
/* const array& input = */ cotan,
|
||||
/* const array& weight = */ wt_trans,
|
||||
/* std::vector<int> stride = */ input_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo_,
|
||||
/* std::vector<int> padding_hi = */ padding_hi_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo,
|
||||
/* std::vector<int> padding_hi = */ padding_hi,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_dilation_,
|
||||
/* std::vector<int> input_dilation = */ kernel_strides_,
|
||||
/* int groups = */ 1,
|
||||
@@ -990,36 +990,61 @@ std::vector<array> Convolution::vjp(
|
||||
no_dilation &= (input_dilation_[i] == 1) && (kernel_dilation_[i] == 1);
|
||||
}
|
||||
|
||||
if (no_dilation) {
|
||||
if (no_dilation && !flip_) {
|
||||
auto grad = conv_weight_backward_patches(
|
||||
in, wt, cotan, kernel_strides_, padding_, stream());
|
||||
grads.push_back(grad);
|
||||
} else {
|
||||
std::vector<int> padding_lo = padding_;
|
||||
std::vector<int> padding_hi = padding_;
|
||||
|
||||
for (int i = 0; i < padding_hi.size(); ++i) {
|
||||
int in_size = 1 + input_dilation_[i] * (in.shape(1 + i) - 1);
|
||||
int out_size = 1 + kernel_strides_[i] * (cotan.shape(1 + i) - 1);
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + wt_size - padding_[i] - 1;
|
||||
}
|
||||
|
||||
auto in_trans = swapaxes(in, 0, -1, stream());
|
||||
auto cotan_trans = swapaxes(cotan, 0, -1, stream());
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ in_trans,
|
||||
/* const array& weight = */ cotan_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo,
|
||||
/* std::vector<int> padding_hi = */ padding_hi,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_strides_,
|
||||
/* std::vector<int> input_dilation = */ input_dilation_,
|
||||
/* int groups = */ 1,
|
||||
/* bool flip = */ flip_,
|
||||
stream());
|
||||
auto grad = swapaxes(grad_trans, 0, -1, stream());
|
||||
grads.push_back(grad);
|
||||
auto in_trans = swapaxes(in, 0, -1, stream());
|
||||
|
||||
if (flip_) {
|
||||
auto padding = padding_;
|
||||
for (int i = 0; i < padding.size(); i++) {
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding[i] = wt_size - padding_[i] - 1;
|
||||
}
|
||||
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ cotan_trans,
|
||||
/* const array& weight = */ in_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding,
|
||||
/* std::vector<int> padding_hi = */ padding,
|
||||
/* std::vector<int> kernel_dilation = */ input_dilation_,
|
||||
/* std::vector<int> input_dilation = */ kernel_strides_,
|
||||
/* int groups = */ 1,
|
||||
/* bool flip = */ false,
|
||||
stream());
|
||||
auto grad = swapaxes(grad_trans, 0, -1, stream());
|
||||
grads.push_back(grad_trans);
|
||||
} else {
|
||||
std::vector<int> padding_lo = padding_;
|
||||
std::vector<int> padding_hi = padding_;
|
||||
|
||||
for (int i = 0; i < padding_hi.size(); ++i) {
|
||||
int in_size = 1 + input_dilation_[i] * (in.shape(1 + i) - 1);
|
||||
int out_size = 1 + kernel_strides_[i] * (cotan.shape(1 + i) - 1);
|
||||
int wt_size = 1 + kernel_dilation_[i] * (wt.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + wt_size - padding_[i] - 1;
|
||||
}
|
||||
|
||||
auto in_trans = swapaxes(in, 0, -1, stream());
|
||||
auto cotan_trans = swapaxes(cotan, 0, -1, stream());
|
||||
auto grad_trans = conv_general(
|
||||
/* const array& input = */ in_trans,
|
||||
/* const array& weight = */ cotan_trans,
|
||||
/* std::vector<int> stride = */ kernel_dilation_,
|
||||
/* std::vector<int> padding_lo = */ padding_lo,
|
||||
/* std::vector<int> padding_hi = */ padding_hi,
|
||||
/* std::vector<int> kernel_dilation = */ kernel_strides_,
|
||||
/* std::vector<int> input_dilation = */ input_dilation_,
|
||||
/* int groups = */ 1,
|
||||
/* bool flip = */ false,
|
||||
stream());
|
||||
auto grad = swapaxes(grad_trans, 0, -1, stream());
|
||||
grads.push_back(grad);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user