mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-05 00:31:15 +08:00
Update sdpa_benchmarks
This commit is contained in:
parent
83c4f6bde6
commit
f1d87a2d3e
@ -1,62 +1,173 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
import numpy as np
|
||||
|
||||
MAX_SEQ = 300
|
||||
START_SEQ = 100
|
||||
SEQ_INCREMENT = 50
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 5
|
||||
N_iter_bench = 40
|
||||
N_iter_func = 8
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
def bench(f, *args):
|
||||
for i in range(N_warmup):
|
||||
f(*args)
|
||||
|
||||
def sdpa_primitives(qs, ks, vs, alpha):
|
||||
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ vs
|
||||
return o
|
||||
|
||||
time_fn(sdpa_primitives, q, k, v, scale)
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(*args)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
def mlx_sdpa_fused_inner(q, k, v, scale):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
|
||||
|
||||
def sdpa_fused(qs, ks, vs, alpha):
|
||||
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
|
||||
return o
|
||||
|
||||
time_fn(sdpa_fused, q, k, v, scale)
|
||||
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
q_dtype = q.dtype
|
||||
q = q * mx.array(scale, q_dtype)
|
||||
n_q_heads = q.shape[-3]
|
||||
n_kv_heads = k.shape[-3]
|
||||
n_repeats = n_q_heads // n_kv_heads
|
||||
|
||||
B = q.shape[0]
|
||||
L = q.shape[2]
|
||||
|
||||
if n_repeats > 1:
|
||||
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
||||
k = mx.expand_dims(k, 2)
|
||||
v = mx.expand_dims(v, 2)
|
||||
|
||||
scores = q @ mx.swapaxes(k, -1, -2)
|
||||
if f32softmax:
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
|
||||
else:
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
|
||||
out = scores @ v
|
||||
if n_repeats > 1:
|
||||
out = mx.reshape(out, [B, n_q_heads, L, -1])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def mlx_spda_unfused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def mlx_spda_fused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
|
||||
shape_q = (
|
||||
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
|
||||
)
|
||||
shape_kv = (
|
||||
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
|
||||
)
|
||||
|
||||
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
|
||||
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
|
||||
scale = math.sqrt(1.0 / head_dim)
|
||||
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
|
||||
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
|
||||
if transpose:
|
||||
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
|
||||
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
|
||||
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
|
||||
|
||||
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
|
||||
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
|
||||
print(
|
||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||
)
|
||||
|
||||
return time_mlx_fused, time_mlx_unfused
|
||||
|
||||
|
||||
def get_gflop_count(B, M, N, K):
|
||||
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("MLX benchmarks.")
|
||||
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||||
args = parser.parse_args()
|
||||
if args.gpu:
|
||||
mx.set_default_device(mx.gpu)
|
||||
else:
|
||||
mx.set_default_device(mx.cpu)
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
||||
dtypes = (
|
||||
"float16",
|
||||
"float32",
|
||||
)
|
||||
transposes = (False,)
|
||||
shapes = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
(1, 32, 32, 64, 32, 32),
|
||||
(1, 64, 64, 64, 32, 32),
|
||||
(1, 128, 128, 64, 32, 32),
|
||||
(1, 256, 256, 64, 32, 32),
|
||||
(1, 512, 512, 64, 32, 32),
|
||||
(1, 1024, 1024, 64, 32, 32),
|
||||
(1, 2048, 2048, 64, 32, 32),
|
||||
(1, 4096, 4096, 64, 32, 32),
|
||||
)
|
||||
|
||||
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
|
||||
|
||||
for dtype in dtypes:
|
||||
for transpose in transposes:
|
||||
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
|
||||
)
|
||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||
t_str = 1 if transpose else 0
|
||||
print(
|
||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user