Block sparse mm (#1058)

This commit is contained in:
Jagrit Digani
2024-05-02 14:03:58 -07:00
committed by GitHub
parent 17f57df797
commit f390957685
15 changed files with 1323 additions and 75 deletions

View File

@@ -810,6 +810,199 @@ class TestBlas(mlx_tests.MLXTestCase):
self.assertTrue(np.allclose(c_mx, c_np, atol=1e-5))
def test_block_sparse_matmul(self):
def np_block_sparse_mm(a, b, lhs_indices=None, rhs_indices=None):
a = a.reshape((-1, a.shape[-2], a.shape[-1]))
b = b.reshape((-1, b.shape[-2], b.shape[-1]))
lhs_indices = lhs_indices or np.arange(a.shape[0])
rhs_indices = rhs_indices or np.arange(b.shape[0])
a = a[lhs_indices, :, :]
b = b[rhs_indices, :, :]
out = a @ b
return out
def test_shape(
M,
N,
K,
np_dtype=np.float32,
batch_A=(),
batch_B=(),
lhs_indices=None,
rhs_indices=None,
):
with self.subTest(
M=M,
N=N,
K=K,
np_dtype=np_dtype,
batch_A=batch_A,
batch_B=batch_B,
lhs_indices=lhs_indices,
rhs_indices=rhs_indices,
):
a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
out_np = np_block_sparse_mm(a_np, b_np, lhs_indices, rhs_indices)
lhs_indices_mx = None if lhs_indices is None else mx.array(lhs_indices)
rhs_indices_mx = None if rhs_indices is None else mx.array(rhs_indices)
out_mx = mx.block_sparse_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
inputs = (
{
"batch_A": (1,),
"lhs_indices": (0,),
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (1,),
"lhs_indices": None,
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (2,),
"lhs_indices": None,
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (3,),
"lhs_indices": (0, 2),
"batch_B": (1,),
"rhs_indices": (0,),
},
{
"batch_A": (5,),
"lhs_indices": (0, 2),
"batch_B": (3,),
"rhs_indices": (2, 1),
},
{
"batch_A": (4, 2),
"lhs_indices": (
(7, 6),
(5, 4),
(1, 2),
),
"batch_B": (4, 1),
"rhs_indices": ((2,), (0,), (1,)),
},
)
for kwargs in inputs:
test_shape(32, 32, 32, **kwargs)
test_shape(16, 1, 16, **kwargs)
# Add tests for broadcasting
a_np = np.random.normal(size=(5, 32, 32)).astype(np.float32)
b_np = np.random.normal(size=(3, 32, 32)).astype(np.float32)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
# Numpy
a_np = a_np.reshape((5, 1, 32, 32))
b_np = b_np.reshape((1, 3, 32, 32))
a_np = np.broadcast_to(a_np, (5, 4, 32, 32))
b_np = np.broadcast_to(b_np, (2, 3, 32, 32)).swapaxes(1, 0)
lhs_indices = [0, 13, 12]
rhs_indices = [0, 3, 5]
out_np = np_block_sparse_mm(a_np, b_np, lhs_indices, rhs_indices)
# MLX
a_mx = a_mx.reshape((5, 1, 32, 32))
b_mx = b_mx.reshape((1, 3, 32, 32))
a_mx = mx.broadcast_to(a_mx, (5, 4, 32, 32))
b_mx = mx.broadcast_to(b_mx, (2, 3, 32, 32)).swapaxes(1, 0)
lhs_indices_mx = mx.array(lhs_indices)
rhs_indices_mx = mx.array(rhs_indices)
out_mx = mx.block_sparse_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
# Gemv test
a_np = np.random.normal(size=(5, 1, 32)).astype(np.float32)
b_np = np.random.normal(size=(3, 16, 32)).astype(np.float32)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
lhs_indices = [3, 1]
rhs_indices = [0, 2]
b_np_t = np.swapaxes(b_np, -1, -2)
out_np = np_block_sparse_mm(a_np, b_np_t, lhs_indices, rhs_indices)
lhs_indices_mx = mx.array(lhs_indices)
rhs_indices_mx = mx.array(rhs_indices)
b_mx_t = mx.swapaxes(b_mx, -1, -2)
out_mx = mx.block_sparse_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
def test_block_sparse_matmul_grad(self):
lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
def f_ref(a, b):
lhs_indices_ = mx.broadcast_to(lhs_indices, (3, 2))
rhs_indices_ = mx.broadcast_to(rhs_indices, (3, 2))
M = a.shape[-2]
N = b.shape[-2]
K = a.shape[-1]
a = a.reshape((-1, M, K))
b = b.reshape((-1, K, N))
a = mx.take(a, lhs_indices_, 0)
b = mx.take(b, rhs_indices_, 0)
return a @ b
def f_test(a, b):
return mx.block_sparse_mm(a, b, lhs_indices, rhs_indices)
a_mx = mx.random.normal((4, 2, 32, 32))
b_mx = mx.random.normal((4, 1, 32, 32))
out_test = f_test(a_mx, b_mx)
out_ref = f_ref(a_mx, b_mx)
self.assertTrue(mx.allclose(out_test, out_ref, atol=1e-5))
cotan = mx.ones_like(out_test)
out_ref, dout_ref = mx.vjp(
f_ref,
[a_mx, b_mx],
[cotan],
)
out_test, dout_test = mx.vjp(
f_test,
[a_mx, b_mx],
[cotan],
)
for r, t in zip(dout_ref, dout_test):
self.assertEqual(r.shape, t.shape)
self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
if __name__ == "__main__":
unittest.main()