mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-11 19:56:40 +08:00
Add scatter_min VJP (#462)
This commit is contained in:
parent
92a2fdd577
commit
f44c132f4a
@ -2130,10 +2130,11 @@ std::vector<array> Scatter::vjp(
|
||||
case Scatter::None:
|
||||
case Scatter::Sum:
|
||||
case Scatter::Max:
|
||||
case Scatter::Min:
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[scatter] VJP implemented only for scatter and scatter_add");
|
||||
"[scatter] VJP not implemented for scatter_prod");
|
||||
}
|
||||
|
||||
const array& values = primals[0];
|
||||
@ -2145,6 +2146,8 @@ std::vector<array> Scatter::vjp(
|
||||
switch (reduce_type_) {
|
||||
case Scatter::Max:
|
||||
return scatter_max(values, indices, updates, axes_, stream());
|
||||
case Scatter::Min:
|
||||
return scatter_min(values, indices, updates, axes_, stream());
|
||||
default:
|
||||
return array({});
|
||||
}
|
||||
@ -2169,7 +2172,8 @@ std::vector<array> Scatter::vjp(
|
||||
// The input array values are kept so they all get gradients
|
||||
vjps.push_back(cotangents[0]);
|
||||
break;
|
||||
case Scatter::Max: {
|
||||
case Scatter::Max:
|
||||
case Scatter::Min: {
|
||||
auto mask = where(result == values, array({1}), array({0}));
|
||||
vjps.push_back(multiply(cotangents[0], mask));
|
||||
break;
|
||||
@ -2191,7 +2195,8 @@ std::vector<array> Scatter::vjp(
|
||||
gather(cotangents[0], indices, axes_, slice_sizes, stream()));
|
||||
break;
|
||||
}
|
||||
case Scatter::Max: {
|
||||
case Scatter::Max:
|
||||
case Scatter::Min: {
|
||||
auto slice_sizes = cotangents[0].shape();
|
||||
for (auto ax : axes_) {
|
||||
slice_sizes[ax] = 1;
|
||||
|
@ -316,6 +316,29 @@ class TestAutograd(mlx_tests.MLXTestCase):
|
||||
self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
|
||||
self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
|
||||
|
||||
def test_scatter_min_vjp(self):
|
||||
def fun(src, updates):
|
||||
x = src.at[1].minimum(updates)
|
||||
return x
|
||||
|
||||
cotan = mx.array([4.0, 5.0, 6.0])
|
||||
_, vjps = mx.vjp(fun, [mx.array([1.0, 2.0, 3.0]), mx.array([[3.0]])], [cotan])
|
||||
mx.eval(vjps)
|
||||
|
||||
# Update larger than value
|
||||
self.assertTrue(mx.allclose(vjps[0], mx.array([4.0, 5.0, 6.0])))
|
||||
self.assertTrue(mx.allclose(vjps[1], mx.array([0.0])))
|
||||
|
||||
cotan = mx.array([[4.0], [5.0], [6.0]])
|
||||
_, vjps = mx.vjp(
|
||||
fun, [mx.array([[1.0], [2.0], [3.0]]), mx.array([[[2.0]]])], [cotan]
|
||||
)
|
||||
mx.eval(vjps)
|
||||
|
||||
# Update and value are equal
|
||||
self.assertTrue(mx.allclose(vjps[0], mx.array([[4.0], [5.0], [6.0]])))
|
||||
self.assertTrue(mx.allclose(vjps[1], mx.array([[[5.0]]])))
|
||||
|
||||
def test_vjp_types(self):
|
||||
def fun(x):
|
||||
return x
|
||||
|
Loading…
Reference in New Issue
Block a user