Add Binary Cross Entropy loss (#122)

* update BCE added tests for it ...

* added binary cross entropy loss to docs

* resolving conflicts for merge
This commit is contained in:
__mo_san__ 2023-12-11 16:55:18 +01:00 committed by GitHub
parent b0cd092b7f
commit f4ddd7dc44
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 102 additions and 1 deletions

View File

@ -179,6 +179,7 @@ Loss Functions
:template: nn-module-template.rst
losses.cross_entropy
losses.binary_cross_entropy
losses.l1_loss
losses.mse_loss
losses.nll_loss

View File

@ -1,6 +1,17 @@
# Copyright © 2023 Apple Inc.
import mlx.core as mx
from mlx.nn.layers.base import Module
def _make_loss_module(f):
def decorator(klass):
klass.__call__ = lambda self, inputs, targets: f(
inputs, targets, self.reduction
)
return klass
return decorator
def cross_entropy(
@ -25,6 +36,76 @@ def cross_entropy(
return _reduce(loss, reduction)
def binary_cross_entropy(
inputs: mx.array, targets: mx.array, reduction: str = "none"
) -> mx.array:
"""
Computes the binary cross entropy loss between inputs and targets.
Args:
inputs (mx.array): The predicted inputs (post-sigmoid probabilities).
targets (mx.array): The target values (binary labels).
reduction (str, optional): Specifies the reduction to apply to the output:
``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``.
Returns:
mx.array: The computed binary cross entropy loss.
Examples:
>>> import mlx.core as mx
>>> import mlx.nn as nn
>>> inputs = mx.array([0.1, 0.2, 0.3, 0.4])
>>> targets = mx.array([0, 0, 1, 1])
>>> loss = nn.losses.binary_cross_entropy(inputs, targets)
>>> loss
array([0.612192])
"""
loss = -targets * mx.log(inputs) - (1 - targets) * mx.log(1 - inputs)
return _reduce(loss, reduction)
@_make_loss_module(binary_cross_entropy)
class BCELoss(Module):
"""
Binary Cross Entropy Loss module.
It computes the binary cross entropy loss between predicted probabilities (post-sigmoid inputs) and target binary labels.
Args:
reduction (str, optional): Specifies the reduction to apply to the output:
- 'none': no reduction (default)
- 'mean': compute the mean loss
- 'sum': compute the sum of the loss
Examples:
>>> import mlx.core as mx
>>> from mlx.nn.losses import BCELoss
>>>
>>> # Create BCELoss module with default reduction ('none')
>>> loss_module_none = BCELoss()
>>> inputs = mx.array([0.5, 0.7, 0.3])
>>> targets = mx.array([1, 0, 1])
>>> loss_none = loss_module_none(inputs, targets)
>>> print(loss_none)
array([0.693147, 1.20397, 1.20397], dtype=float32)
>>> # Create BCELoss module with reduction 'mean'
>>> loss_module_mean = BCELoss(reduction='mean')
>>> loss_mean = loss_module_mean(inputs, targets)
>>> print(loss_mean)
array(1.0337, dtype=float32)
>>> # Create BCELoss module with reduction 'sum'
>>> loss_module_sum = BCELoss(reduction='sum')
>>> loss_sum = loss_module_sum(inputs, targets)
>>> print(loss_sum)
array(3.10109, dtype=float32)
"""
def __init__(self, reduction: str = "none"):
super().__init__()
self.reduction = reduction
def l1_loss(
predictions: mx.array, targets: mx.array, reduction: str = "none"
) -> mx.array:
@ -122,4 +203,4 @@ def _reduce(loss: mx.array, reduction: str = "none"):
elif reduction == "none":
return loss
else:
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")
raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.")

View File

@ -100,6 +100,25 @@ class TestNN(mlx_tests.MLXTestCase):
expected_sum = mx.sum(expected_none)
self.assertTrue(mx.allclose(losses_sum, expected_sum))
def test_binary_cross_entropy(self):
inputs = mx.array([[0.5, 0.5], [0.5, 0.5]])
targets = mx.array([[0.0, 1.0], [1.0, 0.0]])
# Test with reduction 'none'
losses_none = nn.losses.binary_cross_entropy(inputs, targets, reduction="none")
expected_none = mx.array([[0.693147, 0.693147], [0.693147, 0.693147]])
self.assertTrue(mx.array_equal(losses_none, expected_none))
# Test with reduction 'mean'
losses_mean = nn.losses.binary_cross_entropy(inputs, targets, reduction="mean")
expected_mean = mx.mean(expected_none)
self.assertEqual(losses_mean, expected_mean)
# Test with reduction 'sum'
losses_sum = nn.losses.binary_cross_entropy(inputs, targets, reduction="sum")
expected_sum = mx.sum(expected_none)
self.assertEqual(losses_sum, expected_sum)
def test_gelu(self):
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]