mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 07:58:14 +08:00 
			
		
		
		
	Add Binary Cross Entropy loss (#122)
* update BCE added tests for it ... * added binary cross entropy loss to docs * resolving conflicts for merge
This commit is contained in:
		| @@ -1,6 +1,17 @@ | ||||
| # Copyright © 2023 Apple Inc. | ||||
|  | ||||
| import mlx.core as mx | ||||
| from mlx.nn.layers.base import Module | ||||
|  | ||||
|  | ||||
| def _make_loss_module(f): | ||||
|     def decorator(klass): | ||||
|         klass.__call__ = lambda self, inputs, targets: f( | ||||
|             inputs, targets, self.reduction | ||||
|         ) | ||||
|         return klass | ||||
|  | ||||
|     return decorator | ||||
|  | ||||
|  | ||||
| def cross_entropy( | ||||
| @@ -25,6 +36,76 @@ def cross_entropy( | ||||
|     return _reduce(loss, reduction) | ||||
|  | ||||
|  | ||||
| def binary_cross_entropy( | ||||
|     inputs: mx.array, targets: mx.array, reduction: str = "none" | ||||
| ) -> mx.array: | ||||
|     """ | ||||
|     Computes the binary cross entropy loss between inputs and targets. | ||||
|  | ||||
|     Args: | ||||
|         inputs (mx.array): The predicted inputs (post-sigmoid probabilities). | ||||
|         targets (mx.array): The target values (binary labels). | ||||
|         reduction (str, optional): Specifies the reduction to apply to the output: | ||||
|           ``'none'`` | ``'mean'`` | ``'sum'``. Default: ``'none'``. | ||||
|  | ||||
|     Returns: | ||||
|         mx.array: The computed binary cross entropy loss. | ||||
|     Examples: | ||||
|         >>> import mlx.core as mx | ||||
|         >>> import mlx.nn as nn | ||||
|         >>> inputs = mx.array([0.1, 0.2, 0.3, 0.4]) | ||||
|         >>> targets = mx.array([0, 0, 1, 1]) | ||||
|         >>> loss = nn.losses.binary_cross_entropy(inputs, targets) | ||||
|         >>> loss | ||||
|         array([0.612192]) | ||||
|     """ | ||||
|     loss = -targets * mx.log(inputs) - (1 - targets) * mx.log(1 - inputs) | ||||
|     return _reduce(loss, reduction) | ||||
|  | ||||
|  | ||||
| @_make_loss_module(binary_cross_entropy) | ||||
| class BCELoss(Module): | ||||
|     """ | ||||
|     Binary Cross Entropy Loss module. | ||||
|     It computes the binary cross entropy loss between predicted probabilities (post-sigmoid inputs) and target binary labels. | ||||
|  | ||||
|     Args: | ||||
|         reduction (str, optional): Specifies the reduction to apply to the output: | ||||
|             - 'none': no reduction (default) | ||||
|             - 'mean': compute the mean loss | ||||
|             - 'sum': compute the sum of the loss | ||||
|  | ||||
|     Examples: | ||||
|         >>> import mlx.core as mx | ||||
|         >>> from mlx.nn.losses import BCELoss | ||||
|         >>> | ||||
|         >>> # Create BCELoss module with default reduction ('none') | ||||
|         >>> loss_module_none = BCELoss() | ||||
|         >>> inputs = mx.array([0.5, 0.7, 0.3]) | ||||
|         >>> targets = mx.array([1, 0, 1]) | ||||
|         >>> loss_none = loss_module_none(inputs, targets) | ||||
|         >>> print(loss_none) | ||||
|         array([0.693147, 1.20397, 1.20397], dtype=float32) | ||||
|  | ||||
|         >>> # Create BCELoss module with reduction 'mean' | ||||
|         >>> loss_module_mean = BCELoss(reduction='mean') | ||||
|         >>> loss_mean = loss_module_mean(inputs, targets) | ||||
|         >>> print(loss_mean) | ||||
|         array(1.0337, dtype=float32) | ||||
|  | ||||
|         >>> # Create BCELoss module with reduction 'sum' | ||||
|         >>> loss_module_sum = BCELoss(reduction='sum') | ||||
|         >>> loss_sum = loss_module_sum(inputs, targets) | ||||
|         >>> print(loss_sum) | ||||
|         array(3.10109, dtype=float32) | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, reduction: str = "none"): | ||||
|         super().__init__() | ||||
|  | ||||
|         self.reduction = reduction | ||||
|  | ||||
|  | ||||
| def l1_loss( | ||||
|     predictions: mx.array, targets: mx.array, reduction: str = "none" | ||||
| ) -> mx.array: | ||||
| @@ -122,4 +203,4 @@ def _reduce(loss: mx.array, reduction: str = "none"): | ||||
|     elif reduction == "none": | ||||
|         return loss | ||||
|     else: | ||||
|         raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.") | ||||
|         raise ValueError("Invalid reduction. Must be 'none', 'mean', or 'sum'.") | ||||
| @@ -100,6 +100,25 @@ class TestNN(mlx_tests.MLXTestCase): | ||||
|         expected_sum = mx.sum(expected_none) | ||||
|         self.assertTrue(mx.allclose(losses_sum, expected_sum)) | ||||
|  | ||||
|     def test_binary_cross_entropy(self): | ||||
|         inputs = mx.array([[0.5, 0.5], [0.5, 0.5]]) | ||||
|         targets = mx.array([[0.0, 1.0], [1.0, 0.0]]) | ||||
|  | ||||
|         # Test with reduction 'none' | ||||
|         losses_none = nn.losses.binary_cross_entropy(inputs, targets, reduction="none") | ||||
|         expected_none = mx.array([[0.693147, 0.693147], [0.693147, 0.693147]]) | ||||
|         self.assertTrue(mx.array_equal(losses_none, expected_none)) | ||||
|  | ||||
|         # Test with reduction 'mean' | ||||
|         losses_mean = nn.losses.binary_cross_entropy(inputs, targets, reduction="mean") | ||||
|         expected_mean = mx.mean(expected_none) | ||||
|         self.assertEqual(losses_mean, expected_mean) | ||||
|  | ||||
|         # Test with reduction 'sum' | ||||
|         losses_sum = nn.losses.binary_cross_entropy(inputs, targets, reduction="sum") | ||||
|         expected_sum = mx.sum(expected_none) | ||||
|         self.assertEqual(losses_sum, expected_sum) | ||||
|  | ||||
|     def test_gelu(self): | ||||
|         inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414] | ||||
|  | ||||
|   | ||||
		Reference in New Issue
	
	Block a user
	 __mo_san__
					__mo_san__