add fast::quantized_kv_update

This commit is contained in:
Alex Barron 2024-10-26 00:24:49 -07:00
parent b509c2ad76
commit f5b0f11968
10 changed files with 266 additions and 7 deletions

View File

@ -1,5 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include <iostream>
#include <sstream>
#include "mlx/backend/metal/copy.h"

View File

@ -15,6 +15,7 @@ void CustomKernel::eval_gpu(
std::vector<array> copies;
for (auto& out : outputs) {
// Copy from previous kernel
out.set_data(allocator::malloc_or_wait(out.nbytes()));
if (init_value_) {
copies.emplace_back(init_value_.value(), out.dtype());

View File

@ -1737,13 +1737,13 @@ template <
}
template <typename T, const int group_size, const int bits>
[[kernel]] void affine_quantize(
const device T* w [[buffer(0)]],
device uint8_t* out [[buffer(1)]],
device T* scales [[buffer(2)]],
device T* biases [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
METAL_FUNC void affine_quantize_impl(
const device T* w,
device uint8_t* out,
device T* scales,
device T* biases,
uint2 index,
uint2 grid_dim) {
constexpr T eps = T(1e-7);
constexpr int simd_size = 32;
constexpr int uint8_bits = 8;
@ -1820,6 +1820,18 @@ template <typename T, const int group_size, const int bits>
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void affine_quantize(
const device T* w [[buffer(0)]],
device uint8_t* out [[buffer(1)]],
device T* scales [[buffer(2)]],
device T* biases [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
affine_quantize_impl<T, group_size, bits>(
w, out, scales, biases, index, grid_dim);
}
template <typename T, const int group_size, const int bits>
[[kernel]] void affine_quantize_scales_biases(
const device T* w [[buffer(0)]],
@ -1883,3 +1895,41 @@ template <typename T, const int group_size, const int bits>
out[oindex + i] = scale * d + bias;
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void kv_update(
const device T* new_keys [[buffer(0)]],
const device T* new_values [[buffer(1)]],
device uint8_t* keys [[buffer(2)]],
device T* key_scales [[buffer(3)]],
device T* key_biases [[buffer(4)]],
device uint8_t* values [[buffer(5)]],
device T* value_scales [[buffer(6)]],
device T* value_biases [[buffer(7)]],
const constant int& offset,
const constant int& batch_stride,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
// Get the right offset in the thing
// Need to use the head dim too
constexpr int pack_factor = 8 / bits;
uint batch_idx = index.y * batch_stride * 4 + offset;
new_keys += index.y * 128;
new_values += index.y * 128;
// uint batch_idx = offset;
// // Index to correct slice
uint group_idx = batch_idx * pack_factor / group_size;
keys += batch_idx;
key_scales += group_idx;
key_biases += group_idx;
values += batch_idx;
value_scales += group_idx;
value_biases += group_idx;
uint2 new_index = {index.x, 0};
affine_quantize_impl<T, group_size, bits>(
new_keys, keys, key_scales, key_biases, new_index, grid_dim);
affine_quantize_impl<T, group_size, bits>(
new_values, values, value_scales, value_biases, new_index, grid_dim);
}

View File

@ -14,6 +14,8 @@
#include "mlx/scheduler.h"
#include "mlx/utils.h"
#include <iostream>
namespace mlx::core {
template <typename T>

View File

@ -1,6 +1,7 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <iostream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/copy.h"
@ -354,4 +355,80 @@ void fast::AffineQuantize::eval_gpu(
d.add_temporaries(std::move(copies), s.index);
}
void fast::KVUpdate::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = metal::device(s.device);
std::vector<array> copies;
auto ensure_row_contiguous = [&copies, &s](const array& arr) {
if (arr.flags().row_contiguous) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return arr_copy;
}
};
// Copy from the inputs into the outputs
const auto& new_keys = ensure_row_contiguous(inputs[0]);
const auto& new_values = ensure_row_contiguous(inputs[1]);
// Copy the input KV cache to the output.
// If the inputs are contiguous, this will be zero-copy.
for (int i = 0; i < 6; i++) {
auto in = ensure_row_contiguous(inputs[i + 2]);
auto out = outputs[i];
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_gpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, s);
}
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_input_array(new_keys, 0);
compute_encoder.set_input_array(new_values, 1);
int enc_offset = 2;
for (auto& out : outputs) {
compute_encoder.set_output_array(out, enc_offset);
enc_offset++;
}
int offset = offset_ * inputs[2].strides(-2) * 4;
// std::cout << "offset " << offset << std::endl;
int batch_stride = inputs[2].shape(-1) * inputs[2].shape(-2);
// std::cout << "batch stride " << batch_stride << std::endl;
compute_encoder->setBytes(&offset, sizeof(int), enc_offset);
compute_encoder->setBytes(&batch_stride, sizeof(int), enc_offset + 1);
auto type_string = get_type_string(new_keys.dtype());
// Now launch the kernel
std::ostringstream kname;
kname << "kv_update" << "_" << type_string << "_gs_" << group_size_ << "_b_"
<< bits_;
auto template_def = get_template_definition(
kname.str(), "kv_update", type_string, group_size_, bits_);
auto kernel = get_quantized_kernel(d, kname.str(), template_def);
compute_encoder->setComputePipelineState(kernel);
int per_thread = 8 / bits_;
size_t nrows = new_keys.size() / new_keys.shape(-1);
size_t ncols = new_keys.shape(-1) / per_thread;
size_t nthreads = nrows * ncols;
// std::cout << "nthreads " << nthreads << std::endl;
// std::cout << "nrows " << nrows << std::endl;
// std::cout << "ncols " << ncols << std::endl;
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = ncols;
}
auto group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = MTL::Size(ncols, nrows, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
}
} // namespace mlx::core

View File

@ -123,6 +123,7 @@ NO_GPU_MULTI(RMSNormVJP)
NO_GPU_MULTI(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(KVUpdate)
NO_GPU_MULTI(CustomKernel)
} // namespace fast

View File

@ -1030,6 +1030,51 @@ array affine_dequantize(
return fallback({w, scales, biases})[0];
}
std::vector<array> kv_update(
const array& new_keys,
const array& new_values,
const array& keys,
const array& key_scales,
const array& key_biases,
const array& values,
const array& value_scales,
const array& value_biases,
int offset,
int group_size,
int bits,
StreamOrDevice s_) {
auto s = to_stream(s_);
int el_per_int = 32 / bits;
auto out_shape = keys.shape();
out_shape.back() = keys.shape(-1) / el_per_int;
auto fallback = [](const std::vector<array>& inputs) -> std::vector<array> {
return {inputs[0], inputs[1]};
};
return array::make_arrays(
{keys.shape(),
key_scales.shape(),
key_biases.shape(),
values.shape(),
value_scales.shape(),
value_biases.shape()},
{keys.dtype(),
key_scales.dtype(),
key_biases.dtype(),
values.dtype(),
value_scales.dtype(),
value_biases.dtype()},
std::make_shared<KVUpdate>(s, fallback, offset, group_size, bits),
{new_keys,
new_values,
keys,
key_scales,
key_biases,
values,
value_scales,
value_biases});
}
std::string write_signature(
std::string func_name,
const std::string& header,

View File

@ -78,6 +78,20 @@ array affine_dequantize(
int bits = 4,
StreamOrDevice s = {});
std::vector<array> kv_update(
const array& new_keys,
const array& new_values,
const array& keys,
const array& key_scales,
const array& key_biases,
const array& values,
const array& value_scales,
const array& value_biases,
int offset,
int group_size = 64,
int bits = 4,
StreamOrDevice s = {});
typedef std::variant<int, bool, Dtype> TemplateArg;
typedef std::function<std::vector<array>(

View File

@ -255,6 +255,36 @@ class AffineQuantize : public Custom {
bool dequantize_;
};
class KVUpdate : public Custom {
public:
explicit KVUpdate(
Stream stream,
std::function<std::vector<array>(std::vector<array>)> fallback,
int offset,
int group_size,
int bits)
: Custom(stream, fallback),
offset_(offset),
group_size_(group_size),
bits_(bits) {}
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override {
throw std::runtime_error("NYI");
}
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
override;
DEFINE_PRINT(KVUpdate);
private:
std::function<std::vector<array>(std::vector<array>)> fallback_;
int offset_;
int group_size_;
int bits_;
};
struct CustomKernelShapeInfo {
bool shape = false;
bool strides = false;

View File

@ -232,6 +232,44 @@ void init_fast(nb::module_& parent_module) {
array: The quantized version of ``w``
)pbdoc");
m.def(
"quantized_kv_update",
&fast::kv_update,
"new_keys"_a,
"new_values"_a,
"keys"_a,
"key_scales"_a,
"key_biases"_a,
"values"_a,
"value_scales"_a,
"value_biases"_a,
"offset"_a = 64,
"group_size"_a = 64,
"bits"_a = 4,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def quantized_kv_update(new_keys: array, new_values: array, key_scales: array, key_biases: array, values: array, value_scales: array, value_biases: array, group_size: int = 64, bits: int = 4, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Fused update for a quantized KV cache.
.. math::
w_i = s (\hat{w_i} + \beta)
Args:
w (array): Matrix to be quantize
scales (array): The scales to use per ``group_size`` elements of ``w``
biases (array): The biases to use per ``group_size`` elements of ``w``
group_size (int, optional): The size of the group in ``w`` that shares a
scale and bias. (default: ``64``)
bits (int, optional): The number of bits occupied by each element in
``w``. (default: ``4``)
Returns:
array: The quantized version of ``w``
)pbdoc");
m.def(
"metal_kernel",
[](const std::string& name,