Support bias correction in Adam and AdamW optimizers (#1640)

This commit is contained in:
mt_caret
2024-12-07 05:13:34 +09:00
committed by GitHub
parent d0b6cb0425
commit fd3377dd1f
2 changed files with 78 additions and 11 deletions

View File

@@ -395,10 +395,7 @@ class AdaDelta(Optimizer):
class Adam(Optimizer):
r"""The Adam optimizer [1].
Our Adam implementation follows the original paper and omits the bias
correction in the first and second moment estimates. In detail,
r"""The Adam optimizer [1]. In detail,
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
optimization. ICLR 2015.
@@ -416,6 +413,8 @@ class Adam(Optimizer):
gradient and its square. Default: ``(0.9, 0.999)``
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
bias_correction (bool, optional): If set to ``True``, bias correction
is applied. Default: ``False``
"""
def __init__(
@@ -423,12 +422,14 @@ class Adam(Optimizer):
learning_rate: Union[float, Callable[[mx.array], mx.array]],
betas: List[float] = [0.9, 0.999],
eps: float = 1e-8,
bias_correction: bool = False,
):
super().__init__()
self._maybe_schedule("learning_rate", learning_rate)
self.betas = betas
self.eps = eps
self.bias_correction = bias_correction
def init_single(self, parameter: mx.array, state: dict):
"""Initialize optimizer state"""
@@ -441,6 +442,8 @@ class Adam(Optimizer):
lr = self.learning_rate.astype(gradient.dtype)
b1, b2 = self.betas
eps = self.eps
bias_correction = self.bias_correction
step = self.step
m = state["m"]
v = state["v"]
@@ -449,15 +452,17 @@ class Adam(Optimizer):
state["m"] = m
state["v"] = v
return parameter - lr * m / (mx.sqrt(v) + eps)
if bias_correction:
numerator = lr / (1 - b1**step) * m
denominator = mx.sqrt(v) / mx.sqrt(1 - b2**step) + eps
return parameter - numerator / denominator
else:
return parameter - lr * m / (mx.sqrt(v) + eps)
class AdamW(Adam):
r"""The AdamW optimizer [1].
Following the above convention, in contrast with [1], we do not use bias
correction in the first and second moments for AdamW. We update the weights
with a weight_decay (:math:`\lambda`) value:
r"""The AdamW optimizer [1]. We update the weights with a weight_decay
(:math:`\lambda`) value:
[1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay
regularization. ICLR 2019.
@@ -477,6 +482,8 @@ class AdamW(Adam):
denominator to improve numerical stability. Default: ``1e-8``
weight_decay (float, optional): The weight decay :math:`\lambda`.
Default: ``0``.
bias_correction (bool, optional): If set to ``True``, bias correction
is applied. Default: ``False``
"""
def __init__(
@@ -485,8 +492,14 @@ class AdamW(Adam):
betas: List[float] = [0.9, 0.999],
eps: float = 1e-8,
weight_decay: float = 0.01,
bias_correction: bool = False,
):
super().__init__(learning_rate=learning_rate, betas=betas, eps=eps)
super().__init__(
learning_rate=learning_rate,
betas=betas,
eps=eps,
bias_correction=bias_correction,
)
self.weight_decay = weight_decay
def apply_single(self, gradient: mx.array, parameter: mx.array, state: dict):