Support bias correction in Adam and AdamW optimizers (#1640)

This commit is contained in:
mt_caret 2024-12-07 05:13:34 +09:00 committed by GitHub
parent d0b6cb0425
commit fd3377dd1f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 78 additions and 11 deletions

View File

@ -395,10 +395,7 @@ class AdaDelta(Optimizer):
class Adam(Optimizer):
r"""The Adam optimizer [1].
Our Adam implementation follows the original paper and omits the bias
correction in the first and second moment estimates. In detail,
r"""The Adam optimizer [1]. In detail,
[1]: Kingma, D.P. and Ba, J., 2015. Adam: A method for stochastic
optimization. ICLR 2015.
@ -416,6 +413,8 @@ class Adam(Optimizer):
gradient and its square. Default: ``(0.9, 0.999)``
eps (float, optional): The term :math:`\epsilon` added to the
denominator to improve numerical stability. Default: ``1e-8``
bias_correction (bool, optional): If set to ``True``, bias correction
is applied. Default: ``False``
"""
def __init__(
@ -423,12 +422,14 @@ class Adam(Optimizer):
learning_rate: Union[float, Callable[[mx.array], mx.array]],
betas: List[float] = [0.9, 0.999],
eps: float = 1e-8,
bias_correction: bool = False,
):
super().__init__()
self._maybe_schedule("learning_rate", learning_rate)
self.betas = betas
self.eps = eps
self.bias_correction = bias_correction
def init_single(self, parameter: mx.array, state: dict):
"""Initialize optimizer state"""
@ -441,6 +442,8 @@ class Adam(Optimizer):
lr = self.learning_rate.astype(gradient.dtype)
b1, b2 = self.betas
eps = self.eps
bias_correction = self.bias_correction
step = self.step
m = state["m"]
v = state["v"]
@ -449,15 +452,17 @@ class Adam(Optimizer):
state["m"] = m
state["v"] = v
if bias_correction:
numerator = lr / (1 - b1**step) * m
denominator = mx.sqrt(v) / mx.sqrt(1 - b2**step) + eps
return parameter - numerator / denominator
else:
return parameter - lr * m / (mx.sqrt(v) + eps)
class AdamW(Adam):
r"""The AdamW optimizer [1].
Following the above convention, in contrast with [1], we do not use bias
correction in the first and second moments for AdamW. We update the weights
with a weight_decay (:math:`\lambda`) value:
r"""The AdamW optimizer [1]. We update the weights with a weight_decay
(:math:`\lambda`) value:
[1]: Loshchilov, I. and Hutter, F., 2019. Decoupled weight decay
regularization. ICLR 2019.
@ -477,6 +482,8 @@ class AdamW(Adam):
denominator to improve numerical stability. Default: ``1e-8``
weight_decay (float, optional): The weight decay :math:`\lambda`.
Default: ``0``.
bias_correction (bool, optional): If set to ``True``, bias correction
is applied. Default: ``False``
"""
def __init__(
@ -485,8 +492,14 @@ class AdamW(Adam):
betas: List[float] = [0.9, 0.999],
eps: float = 1e-8,
weight_decay: float = 0.01,
bias_correction: bool = False,
):
super().__init__(learning_rate=learning_rate, betas=betas, eps=eps)
super().__init__(
learning_rate=learning_rate,
betas=betas,
eps=eps,
bias_correction=bias_correction,
)
self.weight_decay = weight_decay
def apply_single(self, gradient: mx.array, parameter: mx.array, state: dict):

View File

@ -10,8 +10,17 @@ import mlx.nn as nn
import mlx.optimizers as opt
import mlx.utils
import mlx_tests
import numpy as np
from mlx.utils import tree_flatten, tree_map, tree_unflatten
try:
import torch
import torch.nn.functional as F
has_torch = True
except ImportError as e:
has_torch = False
def get_all_optimizers():
classes = dict()
@ -186,6 +195,51 @@ class TestOptimizers(mlx_tests.MLXTestCase):
)
)
@unittest.skipIf(not has_torch, "requires Torch")
def test_adamw_matches_pytorch(self):
mx.random.seed(0)
np.random.seed(0)
model = nn.Linear(3, 1)
init_weight = np.array(model.weight.tolist())
init_bias = np.array(model.bias.tolist())
def loss_fn(model, x, y):
pred = model(x)
return nn.losses.mse_loss(pred, y)
x = np.random.rand(3, 3)
y = np.random.rand(3, 1)
optimizer = opt.AdamW(learning_rate=3e-4, bias_correction=True)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, mx.array(x), mx.array(y))
optimizer.update(model, grads)
# Equivalent torch code
torch_model = torch.nn.Linear(3, 1)
# copy over the parameters
torch_model.weight.data = torch.tensor(init_weight, dtype=torch.float32)
torch_model.bias.data = torch.tensor(init_bias, dtype=torch.float32)
torch_optimizer = torch.optim.AdamW(torch_model.parameters(), lr=3e-4)
torch_optimizer.zero_grad()
pred = torch_model(torch.tensor(x, dtype=torch.float32))
loss = torch.nn.MSELoss()(pred, torch.tensor(y, dtype=torch.float32))
loss.backward()
torch_optimizer.step()
for name, param in torch_model.named_parameters():
mlx_grad = np.array(grads[name])
torch_grad = param.grad.detach().numpy()
self.assertTrue(np.allclose(torch_grad, mlx_grad))
for name, param in torch_model.named_parameters():
mlx_param = np.array(model[name])
torch_param = param.data.detach().numpy()
self.assertTrue(np.allclose(torch_param, mlx_param))
def test_lion(self):
params = {
"first": [mx.zeros((10,)), mx.zeros((1,))],