smaller CPU binary (#1203)

* smaller CPU binary

* fix no cpu build
This commit is contained in:
Awni Hannun
2024-06-14 09:46:55 -07:00
committed by GitHub
parent 31e134be35
commit fe3167d7ea
7 changed files with 168 additions and 187 deletions

View File

@@ -104,48 +104,14 @@ void reduce_dispatch_out(
}
case Reduce::Sum: {
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
switch (out.dtype()) {
case bool_:
reduction_op<InT, bool>(in, out, axes, false, op);
break;
case uint8:
reduction_op<InT, uint8_t>(in, out, axes, 0, op);
break;
case uint16:
reduction_op<InT, uint16_t>(in, out, axes, 0, op);
break;
case uint32:
reduction_op<InT, uint32_t>(in, out, axes, 0, op);
break;
case uint64:
reduction_op<InT, uint64_t>(in, out, axes, 0, op);
break;
case int8:
reduction_op<InT, int8_t>(in, out, axes, 0, op);
break;
case int16:
reduction_op<InT, int16_t>(in, out, axes, 0, op);
break;
case int32:
reduction_op<InT, int32_t>(in, out, axes, 0, op);
break;
case int64:
reduction_op<InT, int64_t>(in, out, axes, 0, op);
break;
case float16:
reduction_op<InT, float16_t>(in, out, axes, 0.0f, op);
break;
case float32:
reduction_op<InT, float>(in, out, axes, 0.0f, op);
break;
case bfloat16:
reduction_op<InT, bfloat16_t>(in, out, axes, 0.0f, op);
break;
case complex64:
reduction_op<InT, complex64_t>(in, out, axes, complex64_t{0.0f}, op);
break;
if (out.dtype() == int32) {
// special case since the input type can be bool
reduction_op<InT, int32_t>(in, out, axes, 0, op);
} else {
reduction_op<InT, InT>(in, out, axes, 0, op);
}
} break;
break;
}
case Reduce::Prod: {
auto op = [](auto y, auto x) { (*y) *= x; };
reduction_op<InT, InT>(in, out, axes, 1, op);
@@ -168,6 +134,29 @@ void reduce_dispatch_out(
} // namespace
void nd_loop(
std::function<void(int)> callback,
const std::vector<int>& shape,
const std::vector<size_t>& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
int size = shape[dim];
size_t stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
}
} else {
int size = shape[dim];
size_t stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}
}
};
loop_inner(0, 0);
}
void Reduce::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];