mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
more bug fixes
This commit is contained in:
@@ -1,23 +1,13 @@
|
||||
cuda_skip = {
|
||||
"TestArray.test_api",
|
||||
"TestAutograd.test_slice_grads",
|
||||
"TestAutograd.test_split_against_slice",
|
||||
"TestAutograd.test_stop_gradient",
|
||||
"TestAutograd.test_update_state",
|
||||
"TestAutograd.test_vjp",
|
||||
"TestBF16.test_arg_reduction_ops",
|
||||
"TestBF16.test_binary_ops",
|
||||
"TestBF16.test_reduction_ops",
|
||||
"TestBlas.test_complex_gemm",
|
||||
"TestBlas.test_matmul_batched",
|
||||
"TestBlas.test_matrix_vector_attn",
|
||||
"TestCompile.test_compile_dynamic_dims",
|
||||
"TestEinsum.test_attention",
|
||||
"TestEinsum.test_ellipses",
|
||||
"TestEinsum.test_opt_einsum_test_cases",
|
||||
"TestEval.test_multi_output_eval_during_transform",
|
||||
"TestLoad.test_load_f8_e4m3",
|
||||
"TestLosses.test_binary_cross_entropy",
|
||||
"TestMemory.test_memory_info",
|
||||
"TestLayers.test_group_norm",
|
||||
"TestLayers.test_pooling",
|
||||
@@ -26,14 +16,9 @@ cuda_skip = {
|
||||
"TestLayers.test_upsample",
|
||||
"TestOps.test_array_equal",
|
||||
"TestOps.test_complex_ops",
|
||||
"TestOps.test_divmod",
|
||||
"TestOps.test_dynamic_slicing",
|
||||
"TestOps.test_irregular_binary_ops",
|
||||
"TestOps.test_kron",
|
||||
"TestOps.test_logaddexp",
|
||||
"TestOps.test_softmax",
|
||||
"TestOps.test_sort",
|
||||
"TestOps.test_tensordot",
|
||||
"TestOps.test_tile",
|
||||
"TestReduce.test_axis_permutation_sums",
|
||||
"TestReduce.test_dtypes",
|
||||
@@ -41,6 +26,10 @@ cuda_skip = {
|
||||
"TestReduce.test_many_reduction_axes",
|
||||
"TestUpsample.test_torch_upsample",
|
||||
|
||||
# DivMod NYI
|
||||
"TestOps.test_divmod",
|
||||
"TestEval.test_multi_output_eval_during_transform",
|
||||
|
||||
# Partition NYI
|
||||
"TestAutograd.test_topk_grad",
|
||||
"TestOps.test_argpartition",
|
||||
|
||||
@@ -83,14 +83,14 @@ class TestLosses(mlx_tests.MLXTestCase):
|
||||
logits, targets, reduction="mean"
|
||||
)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.binary_cross_entropy(
|
||||
logits, targets, reduction="sum"
|
||||
)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
# With weights, no label smoothing
|
||||
weights = mx.array([1.0, 2.0, 1.0, 2.0])
|
||||
|
||||
Reference in New Issue
Block a user