* added conv3d

added conv3d

implemented explicit_gemm_conv_ND_cpu and bounds checks for slow_conv_3D

* incorporated reviewer comments

* fixed test

* reduced tensor shapes in test for conv3d

* Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion
This commit is contained in:
Max-Heinrich Laves
2024-05-11 15:15:02 +02:00
committed by GitHub
parent a9f80d60f6
commit ff4223904d
10 changed files with 951 additions and 13 deletions

View File

@@ -3230,6 +3230,78 @@ void init_ops(nb::module_& m) {
array: The convolved array.
)pbdoc");
m.def(
"conv3d",
[](const array& input,
const array& weight,
const std::variant<int, std::tuple<int, int, int>>& stride,
const std::variant<int, std::tuple<int, int, int>>& padding,
const std::variant<int, std::tuple<int, int, int>>& dilation,
int groups,
StreamOrDevice s) {
std::tuple<int, int, int> stride_tuple{1, 1, 1};
std::tuple<int, int, int> padding_tuple{0, 0, 0};
std::tuple<int, int, int> dilation_tuple{1, 1, 1};
if (auto pv = std::get_if<int>(&stride); pv) {
stride_tuple = std::tuple<int, int, int>{*pv, *pv, *pv};
} else {
stride_tuple = std::get<std::tuple<int, int, int>>(stride);
}
if (auto pv = std::get_if<int>(&padding); pv) {
padding_tuple = std::tuple<int, int, int>{*pv, *pv, *pv};
} else {
padding_tuple = std::get<std::tuple<int, int, int>>(padding);
}
if (auto pv = std::get_if<int>(&dilation); pv) {
dilation_tuple = std::tuple<int, int, int>{*pv, *pv, *pv};
} else {
dilation_tuple = std::get<std::tuple<int, int, int>>(dilation);
}
return conv3d(
input,
weight,
stride_tuple,
padding_tuple,
dilation_tuple,
groups,
s);
},
nb::arg(),
nb::arg(),
"stride"_a = 1,
"padding"_a = 0,
"dilation"_a = 1,
"groups"_a = 1,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def conv3d(input: array, weight: array, /, stride: Union[int, Tuple[int, int, int]] = 1, padding: Union[int, Tuple[int, int, int]] = 0, dilation: Union[int, Tuple[int, int, int]] = 1, groups: int = 1, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
3D convolution over an input with several channels
Note: Only the default ``groups=1`` is currently supported.
Args:
input (array): input array of shape ``(N, D, H, W, C_in)``
weight (array): weight array of shape ``(C_out, D, H, W, C_in)``
stride (int or tuple(int), optional): :obj:`tuple` of size 3 with
kernel strides. All spatial dimensions get the same stride if
only one number is specified. Default: ``1``.
padding (int or tuple(int), optional): :obj:`tuple` of size 3 with
symmetric input padding. All spatial dimensions get the same
padding if only one number is specified. Default: ``0``.
dilation (int or tuple(int), optional): :obj:`tuple` of size 3 with
kernel dilation. All spatial dimensions get the same dilation
if only one number is specified. Default: ``1``
groups (int, optional): input feature groups. Default: ``1``.
Returns:
array: The convolved array.
)pbdoc");
m.def(
"conv_general",
[](const array& input,
const array& weight,