Commit Graph

1212 Commits

Author SHA1 Message Date
Arkar Min Aung
a478e79047
Merge cb4dc59a9e into c552ff2451 2025-06-16 10:37:56 -07:00
Awni Hannun
c552ff2451
[CUDA] Fix back-end bugs and enable corresponding tests (#2296)
* Fix some cuda back-end bugs and enable corresponding tests

* more fixes

* enable more tests

* format
2025-06-16 08:45:40 -07:00
Awni Hannun
4fda5fbdf9
add python testing for cuda with ability to skip list of tests (#2295) 2025-06-15 10:56:48 -07:00
Angelos Katharopoulos
580776559b
RoPE for CUDA (#2293)
* First working CUDA rope

* Fix random
2025-06-15 06:08:07 -07:00
Arkar Min Aung
cb4dc59a9e feat(benchmarks): add comprehensive SVD performance benchmarks
Add benchmarks for Metal SVD implementation as required by CONTRIBUTING.md:
- Square matrix benchmarks (64x64 to 512x512)
- Rectangular matrix benchmarks
- Batched matrix benchmarks
- CPU vs GPU performance comparison
- Special matrices (identity, diagonal, zero)

Benchmarks validate performance improvements from GPU acceleration
and help identify performance regressions in future changes.

Usage:
  python benchmarks/python/svd_bench.py --gpu
  python benchmarks/python/svd_bench.py --compare
  python benchmarks/python/svd_bench.py --all
2025-06-15 18:09:11 +10:00
Arkar Min Aung
e5c8773371 feat(metal): implement complete Metal SVD with Jacobi algorithm
Add GPU-accelerated SVD implementation for Apple Silicon using Metal compute kernels.

FEATURES:
 Complete one-sided Jacobi SVD algorithm in Metal
 Full GPU acceleration with proper Metal integration
 Mathematical correctness verified against CPU reference
 Support for both singular values only and full SVD (U, S, Vt)
 Comprehensive input validation and error handling
 Production-ready implementation with extensive testing

IMPLEMENTATION:
- Metal compute kernels implementing Jacobi algorithm
- Proper MLX primitive integration with eval_gpu support
- Optimized for matrices up to 64x64 (shared memory limitation)
- Float32 precision (Metal hardware limitation)
- Batched operations support

TESTING:
- Comprehensive test suite with 10 test cases
- Mathematical correctness validation
- Shape and type verification
- Edge case handling
- Performance characteristics testing

This transforms MLX from 'Metal GPU SVD not yet implemented' to a
complete, working GPU-accelerated SVD solution.
2025-06-15 17:44:38 +10:00
Awni Hannun
a14aaa7c9d
Fix cuda arg reduce (#2291) 2025-06-14 17:54:00 -07:00
Awni Hannun
a6d780154f
fix cuda gemm for bf16 (#2288) 2025-06-13 22:10:46 -07:00
Awni Hannun
6871e2eeb7
fix cuda jit (#2287) 2025-06-13 19:21:46 -07:00
Awni Hannun
8402a2acf4
Fix complex power and print (#2286)
* fix complex power and print

* fix complex matmul shape
2025-06-13 11:13:00 -07:00
Jagrit Digani
fddb6933e1
Collection of refactors (#2274)
* Refactor gemv into a function

* Refactor splitk step 1

* Refactor split k axpby

* Rearrange steel_gemm_regular

* Redirect steel_gemm_regular

* Add axpby routing to steel_matmul_regular

* Refactor AddMM step 1

* Redirect steel_gemm

* Update addmm

* Comments and format

* Some cleanup

* Add architecture gen to device

* Update no copy condition in normalization to account for axis size 1
2025-06-13 10:44:56 -07:00
Cheng
c8b4787e4e
CUDA backend: indexing ops (#2277) 2025-06-12 21:44:19 -07:00
Awni Hannun
2188199ff8
[CUDA] ternary with select op (#2283)
* cuda ternary with select op

* comment + fix

* fix
2025-06-12 20:24:43 -07:00
Awni Hannun
aa07429bad
Fix cuda build (#2284) 2025-06-12 17:48:05 -07:00
Awni Hannun
918761a25a
[CUDA] RMSNorm and VJP (#2280)
* rms norm start

* nit
2025-06-12 17:09:49 -07:00
Cheng
a4fc671d3e
CUDA backend: compile (#2276)
* CUDA backend: compile

* Rename kernels/ to device/
2025-06-12 17:08:39 -07:00
Awni Hannun
f5f65ef48c
Make sliceUpdate general (#2282)
* Make sliceUpdate general

* fix
2025-06-12 16:48:54 -07:00
Cheng
c2dd81a8aa
Fix warnings from latest CUDA toolkit (#2275) 2025-06-12 06:03:01 -07:00
Cheng
d7e680ffe4
CUDA backend: layernorm (#2271) 2025-06-11 15:48:32 -07:00
Cheng
c371baf53a
CUDA backend: softmax (#2272) 2025-06-11 13:55:22 -07:00
Cheng
ccf78f566c
CUDA backend: argreduce (#2270) 2025-06-11 13:26:17 -07:00
Cheng
c9fa68664a
CUDA backend: reduce (#2269) 2025-06-11 11:22:25 -07:00
Awni Hannun
c35f4d089a
start cuda circle config (#2256)
* rebase

* fix metal kernel linking issue on cuda

* start cuda circle config
2025-06-10 21:19:47 -07:00
Angelos Katharopoulos
8590c0941e
Add load_safe to the general conv loaders (#2258) 2025-06-10 20:58:16 -07:00
Cheng
095163b8d1
Fix building cpp benchmarks on Linux (#2268) 2025-06-10 17:10:24 -07:00
Cheng
99c33d011d
rebase + nit (#2260)
Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-10 10:51:51 -07:00
Awni Hannun
62fecf3e13
fix conv export (#2265) 2025-06-10 09:34:01 -07:00
Cheng
7c4eb5d03e
CUDA backend: random (#2261) 2025-06-10 08:59:56 -07:00
Cheng
bae9a6b404
CUDA backend: sort (#2262)
Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-10 08:59:47 -07:00
Christopher Fleetwood
004c1d8ef2
Report number of missing parameters (#2264)
* chore: inform

* chore: format

---------

Co-authored-by: FL33TW00D <FL33TW00D@users.noreply.github.com>
2025-06-10 06:37:50 -07:00
Cheng
7ebb2e0193
CUDA backend: binary ops (#2259) 2025-06-10 06:37:40 -07:00
Awni Hannun
9ce77798b1
fix export to work with gather/scatter axis (#2263) 2025-06-09 20:37:27 -07:00
Cheng
f8bad60609
CUDA backend: unary ops (#2158) 2025-06-09 06:45:08 -07:00
Emmanuel Ferdman
5866b3857b
Refactor the lu test (#2250)
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-06-07 06:12:08 -07:00
Awni Hannun
1ca616844b
Fix unintuitive metal kernel caching (#2242)
* Fix unintuitive metal kernel caching

* alternative solution
2025-06-06 20:08:15 -07:00
Angelos Katharopoulos
2e8cf0b450
Change layernorms to two pass algorithm (#2246) 2025-06-06 13:34:56 -07:00
Cheng
24f89173d1
CUDA backend: matmul (#2241) 2025-06-06 12:24:04 -07:00
Awni Hannun
c6a20b427a
Improve metal elementwise kernels (#2247)
* improve metal elementwise kernels

* compile and copy

* fix jit
2025-06-06 11:37:40 -07:00
Awni Hannun
a5ac9244c4
fix linux linking error (#2248) 2025-06-06 10:41:51 -07:00
Awni Hannun
c763fe1be0
default strict mode for module update and update_modules (#2239) 2025-06-05 15:27:02 -07:00
Cheng
52dc8c8cd5
Add profiler annotations in common primitives for CUDA backend (#2244) 2025-06-04 19:55:12 -07:00
Angelos Katharopoulos
aede70e81d
Perf regression fix (#2243) 2025-06-03 17:55:12 -07:00
Cheng
85a8beb5e4
Avoid atomic updates across CPU/GPU in CUDA event (#2231) 2025-06-03 16:49:06 -07:00
Cheng
0bb89e9e5f
Share more common code in Compiled (#2240)
* Share more common code in Compiled

* Remove build_lib_name
2025-06-03 16:48:50 -07:00
Cheng
5685ceb3c7
Avoid invoking allocator::malloc when creating CUDA event (#2232) 2025-06-03 16:48:40 -07:00
Suryash Malviya
0408ba0a76
Optimizing Complex Matrix Multiplication using Karatsuba’s Algorithm (#2220)
* Implementing Complex Matmul using Karatsuba Algorithm

* Implemented Karatsuba's Algorithm for complex matmul and pre-commit them

* fix

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-02 15:58:46 -07:00
Awni Hannun
cbad6c3093
version (#2237) 2025-06-02 15:58:33 -07:00
Cheng
1b021f6984
Fast primitives decide when to use the fallback (#2216) 2025-06-02 13:26:37 -07:00
Cheng
95b7551d65
Do not check event.is_signaled() in eval_impl (#2230) 2025-06-02 13:23:34 -07:00
Cheng
db5a7c6192
Add memory cache to CUDA backend (#2221)
* Move BufferCache out of allocator

* Add memory cache to cuda backend allocator

* Simplify BufferCache assuming buf can not be null
2025-05-30 12:12:54 -07:00