Compare commits

..

1 Commits

Author SHA1 Message Date
Jagrit Digani
400f8457ea Experimenting with a gemm based on the cuda steel utils 2025-08-14 11:27:50 -07:00
332 changed files with 4613 additions and 15265 deletions

View File

@@ -18,17 +18,16 @@ jobs:
type: boolean
default: false
macos:
xcode: "26.0.0"
resource_class: m4pro.medium
xcode: "16.2.0"
resource_class: m2pro.medium
steps:
- checkout
- run:
name: Install
command: |
xcodebuild -downloadComponent MetalToolchain
brew install python@3.10
brew install python@3.9
brew install doxygen
python3.10 -m venv env
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
@@ -90,8 +89,7 @@ jobs:
command: |
uv venv
uv pip install cmake
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
uv pip install -e ".[dev]" -v
uv pip install -e ".[dev]" -v
- run:
name: Generate package stubs
command: |
@@ -120,7 +118,7 @@ jobs:
parameters:
xcode_version:
type: string
default: "26.0.0"
default: "16.2.0"
macosx_deployment_target:
type: string
default: ""
@@ -128,19 +126,18 @@ jobs:
xcode: << parameters.xcode_version >>
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
resource_class: m4pro.medium
resource_class: m2pro.medium
steps:
- checkout
- run:
name: Install dependencies
command: |
xcodebuild -downloadComponent MetalToolchain
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
brew install openmpi uv
- run:
name: Install Python package
command: |
uv venv --python 3.10
uv venv --python 3.9
uv pip install \
nanobind==2.4.0 \
cmake \
@@ -199,7 +196,7 @@ jobs:
name: Run Python tests with JIT
command: |
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e . -v
uv pip install -e .
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
uv run --no-project python -m xmlrunner discover \
@@ -225,20 +222,15 @@ jobs:
sudo apt-get update
sudo apt-get install libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install libnccl2 libnccl-dev
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
rm -rf ccache-4.11.3-linux-x86_64
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Set CCache size
command: ccache --max-size 1G
- run:
name: Install Python package
command: |
uv venv
uv pip install cmake
DEBUG=1 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
uv pip install -e ".[dev]" -v
- run:
name: Run Python tests
@@ -246,23 +238,12 @@ jobs:
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
- run:
name: Build CPP only
command: |
source .venv/bin/activate
cmake . -B build \
-DMLX_BUILD_CUDA=ON \
-DCMAKE_CUDA_COMPILER=`which nvcc` \
-DCMAKE_BUILD_TYPE=DEBUG
cmake --build build -j `nproc`
- run:
name: Run CPP tests
command: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
- run:
name: CCache report
command: |
ccache --show-stats
ccache --zero-stats
ccache --max-size 400MB
ccache --cleanup
- save_cache:
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
@@ -273,10 +254,10 @@ jobs:
parameters:
python_version:
type: string
default: "3.10"
default: "3.9"
xcode_version:
type: string
default: "26.0.0"
default: "16.2.0"
build_env:
type: string
default: ""
@@ -285,7 +266,7 @@ jobs:
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: m4pro.medium
resource_class: m2pro.medium
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
steps:
@@ -293,15 +274,11 @@ jobs:
- run:
name: Install dependencies
command: |
xcodebuild -downloadComponent MetalToolchain
mkdir -p ~/miniconda3
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
rm ~/miniconda3/miniconda.sh
source ~/miniconda3/bin/activate
conda init --all
conda create -n env python=<< parameters.python_version >> -y
conda activate env
brew install python@<< parameters.python_version >>
brew install openmpi
python<< parameters.python_version >> -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
@@ -311,29 +288,29 @@ jobs:
- run:
name: Install Python package
command: |
conda activate env
source env/bin/activate
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
pip install . -v
- run:
name: Generate package stubs
command: |
conda activate env
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Build Python package
command: |
conda activate env
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.10", << parameters.python_version >>]
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
conda activate env
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
- when:
@@ -342,7 +319,7 @@ jobs:
- run:
name: Upload package
command: |
conda activate env
source env/bin/activate
twine upload dist/*
- store_artifacts:
path: dist/
@@ -351,7 +328,7 @@ jobs:
parameters:
python_version:
type: string
default: "3.10"
default: "3.9"
build_env:
type: string
default: ""
@@ -387,7 +364,7 @@ jobs:
bash python/scripts/repair_linux.sh
- when:
condition:
equal: ["3.10", << parameters.python_version >>]
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
@@ -415,7 +392,7 @@ jobs:
default: ""
machine:
image: ubuntu-2204:current
resource_class: xlarge
resource_class: large
steps:
- checkout
- run:
@@ -462,7 +439,7 @@ workflows:
- mac_build_and_test:
matrix:
parameters:
macosx_deployment_target: ["13.5", "15.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- cuda_build_and_test:
matrix:
@@ -484,10 +461,71 @@ workflows:
ignore: /.*/
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["PYPI_RELEASE=1"]
xcode_version: ["26.0.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- build_documentation:
filters:
tags:
@@ -503,7 +541,7 @@ workflows:
ignore: /.*/
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
@@ -529,7 +567,7 @@ workflows:
requires: [ hold ]
matrix:
parameters:
macosx_deployment_target: ["13.5", "15.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
- cuda_build_and_test:
@@ -546,13 +584,59 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
xcode_version: ["26.0.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
- build_linux_release:
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
@@ -564,14 +648,75 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
xcode_version: ["26.0.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- build_linux_release:
matrix:
parameters:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:

View File

@@ -1,24 +0,0 @@
name: 'Build CUDA wheel'
description: 'Build CUDA wheel'
inputs:
nvcc-location:
description: 'Location of nvcc compiler'
required: true
runs:
using: "composite"
steps:
- name: Build package
shell: bash
env:
MLX_BUILD_STAGE: 2
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
run: |
pip install auditwheel build patchelf setuptools
python setup.py clean --all
python -m build -w
if [ -f "python/scripts/repair_cuda.sh" ]; then
bash python/scripts/repair_cuda.sh
fi

View File

@@ -1,68 +0,0 @@
name: 'Build and Test with CUDA'
description: 'Build and test MLX with CUDA'
inputs:
build-type:
description: 'Build type (debug, release)'
required: false
default: 'debug'
run-tests:
description: 'Whether to run tests'
required: false
default: 'true'
nvcc-location:
description: 'Location of nvcc compiler'
required: true
default: '/usr/local/cuda-12.9/bin/nvcc'
# this value is dependent on the CUDA tools installed in the setup-linux workflow
runs:
using: "composite"
steps:
- name: Install Python package
shell: bash
env:
DEBUG: 1
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
run: pip install -e ".[dev]" -v
- name: Check if build actually worked
shell: bash
run: python -c "import mlx.core"
- name: Run Python tests - CPU
if: inputs.run-tests == 'true'
shell: bash
env:
LOW_MEMORY: 1
DEVICE: cpu
run: python -m unittest discover python/tests -v
- name: Run Python tests - GPU
if: inputs.run-tests == 'true'
shell: bash
env:
LOW_MEMORY: 1
DEVICE: gpu
run: python -m tests discover python/tests -v
- name: Build CPP only
if: inputs.build-type == 'debug'
shell: bash
run: |
cmake . -B build \
-DMLX_BUILD_CUDA=ON \
-DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }} \
-DCMAKE_BUILD_TYPE=DEBUG
cmake --build build -j $(nproc)
- name: Run CPP tests
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
shell: bash
run: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
- name: Build Python package
if: inputs.build-type == 'release'
uses: ./.github/actions/build-cuda-release
with:
nvcc-location: ${{ inputs.nvcc-location }}

View File

@@ -1,38 +0,0 @@
name: 'Build Documentation'
description: 'Build documentation on a mac'
runs:
using: "composite"
steps:
- name: Setup machine
uses: ./.github/actions/setup-macos
- name: Install dependencies
shell: sh
run: |
brew install doxygen
uv pip install --upgrade pip cmake
uv pip install -r docs/requirements.txt
uv pip install . -v
- name: Build documentation
shell: bash
run: |
source .venv/bin/activate
cd docs
doxygen
make html O=-W
- name: Create artifact tar
shell: sh
run: tar -cf artifact.tar --cd docs --dereference build/html index.html
# Do it manually because upload-pages-artifact requires gtar
- name: Upload artifact
id: upload-artifact
uses: actions/upload-artifact@v5
with:
name: github-pages
path: artifact.tar
retention-days: 1
if-no-files-found: error

View File

@@ -1,78 +0,0 @@
name: 'Build and Test on Linux'
description: 'Build and test MLX on Linux'
inputs:
build-type:
description: 'Build type'
required: false
default: 'debug'
type: choice
options:
- debug
- release
run-tests:
description: 'Whether to run tests'
required: false
default: 'true'
type: boolean
runs:
using: "composite"
steps:
- name: Set DEBUG
shell: sh
if: inputs.build-type == 'debug'
run: echo "DEBUG=1" >> $GITHUB_ENV
- name: Install Python package
shell: sh
env:
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
run: pip install -e ".[dev]" -v
- name: Generate package stubs
shell: sh
run: |
pip install typing_extensions
python setup.py generate_stubs
- name: Run Python tests
if: inputs.run-tests == 'true'
shell: bash
run: |
python -m unittest discover python/tests -v
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if grep -Fq '[WARN]' stderr.log ; then
grep -F '[WARN]' stderr.log
echo "Distributed ring test failed";
exit 1;
fi
- name: Build CPP only
if: inputs.build-type == 'debug'
shell: bash
run: |
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j $(nproc)
- name: Run CPP tests
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
shell: sh
run: ./build/tests/tests
- name: Build Python package
if: inputs.build-type == 'release'
shell: bash
run: |
pip install auditwheel patchelf build
python setup.py clean --all
MLX_BUILD_STAGE=1 python -m build -w
if [ -f "python/scripts/repair_linux.sh" ]; then
bash python/scripts/repair_linux.sh
fi
python setup.py clean --all
MLX_BUILD_STAGE=2 python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64

View File

@@ -1,22 +0,0 @@
name: 'Build macOS release'
description: 'Build MLX releases macOS'
inputs:
macos-target:
description: 'macOS build target'
required: false
default: '15.0'
runs:
using: "composite"
steps:
- name: Build Python package(s)
shell: bash
env:
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
run: |
uv pip install build
uv run --no-project setup.py clean --all
MLX_BUILD_STAGE=1 uv run -m build -w
uv run --no-project setup.py clean --all
MLX_BUILD_STAGE=2 uv run -m build -w

View File

@@ -1,124 +0,0 @@
name: 'Build and Test on macOS'
description: 'Build and test MLX on macOS'
inputs:
build-type:
description: 'Build type (debug, release)'
required: false
default: 'debug'
type: choice
options:
- debug
- release
run-tests:
description: 'Whether to run tests'
required: false
default: 'true'
build-jit:
description: 'Whether to build with JIT'
required: false
default: 'true'
runs:
using: "composite"
steps:
- name: Install dependencies
shell: sh
env:
DEBUG: 1
DEV_RELEASE: 1
run: |
uv pip install --upgrade pip cmake setuptools
uv pip install nanobind==2.4.0 \
numpy torch tensorflow unittest-xml-reporting
uv pip install -e . -v
- name: Generate package stubs
shell: bash
run: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
- name: Run Python tests
if: inputs.run-tests == 'true'
shell: bash
env:
LOW_MEMORY: 1
run: |
DEVICE=cpu uv run -m xmlrunner discover -v python/tests -o test-results/cpu
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 uv run -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- name: Build example extension
if: inputs.run-tests == 'true'
shell: bash
run: |
cd examples/extensions
uv pip install -r requirements.txt
uv run --no-project setup.py build_ext --inplace
uv run --no-project test.py
- name: Build CPP only
if: inputs.build-type == 'debug'
shell: bash
run: |
mkdir -p build
cd build
cmake ..
make -j $(sysctl -n hw.ncpu)
- name: Run CPP tests
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
shell: bash
env:
DEVICE: gpu
METAL_DEVICE_WRAPPER_TYPE: 1
METAL_DEBUG_ERROR_MODE: 0
run: ./build/tests/tests
- name: Build small binary with JIT
if: inputs.build-jit == 'true'
shell: bash
run: |
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
make -j $(sysctl -n hw.ncpu)
- name: Run Python tests with JIT
if: ${{ inputs.build-jit == 'true' && inputs.run-tests == 'true' }}
shell: bash
env:
LOW_MEMORY: 1
DEVICE: gpu
METAL_DEVICE_WRAPPER_TYPE: 1
METAL_DEBUG_ERROR_MODE: 0
run: |
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e . -v
uv run -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit
- name: Build macOS 13 package
if: inputs.build-type == 'release'
uses: ./.github/actions/build-macos-release
with:
macos-target: 13.0
- name: Build macOS 14 package
if: inputs.build-type == 'release'
uses: ./.github/actions/build-macos-release
with:
macos-target: 14.0
- name: Build macOS 15 package
if: inputs.build-type == 'release'
uses: ./.github/actions/build-macos-release
with:
macos-target: 15.0

View File

@@ -1,83 +0,0 @@
name: 'Setup Linux Environment'
description: 'Install dependencies for Linux builds'
inputs:
runner-type:
description: 'Whether to set this up as a linux or CUDA runner'
required: false
default: 'linux'
type: choice
options:
- linux
- cuda
python-version:
description: 'Version of python to set up'
required: false
default: '3.10'
runs:
using: "composite"
steps:
- name: Free disk space
shell: sh
if: inputs.runner-type == 'linux'
run: sudo rm -rf "$AGENT_TOOLSDIRECTORY"
- name: Install common dependencies
env:
TZ: Etc/UTC
shell: bash
run: |
sudo apt-get update
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev tzdata zip
sudo apt autoremove -y
- uses: actions/setup-python@v6
with:
python-version: ${{ inputs.python-version }}
cache: 'pip'
- name: setup python venv
shell: bash
run: |
python -m venv .venv
source .venv/bin/activate
echo PATH=$PATH >> $GITHUB_ENV
pip install --upgrade pip cmake
- name: Install MPI
if: inputs.runner-type == 'linux'
shell: bash
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
- name: Network CUDA installation from packages
id: install-cuda
if: inputs.runner-type == 'cuda'
env:
TZ: Etc/UTC
shell: bash ## Specific to Ubuntu 22.04 & Architecture x86_64
run: |
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y libcudnn9-dev-cuda-12 libnccl2 libnccl-dev cuda-toolkit-12-9
# Note: This installs CUDA 12.9, which is the latest supported by cuDNN 9.x and works with the NVidia 570 drivers
# cuda-toolkit by itself installs version 13 (+) and requires updated drives (580+), which require a reboot to function properly.
# Compatibility matrix: https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
# This also drops `nvcc` into `/usr/local/cuda-12.9/bin/nvcc` - but it's *not* on the default PATH
- name: Package and Driver Report
if: inputs.runner-type == 'cuda'
shell: bash
run: |
sudo apt-get install -y ubuntu-drivers-common dkms
echo "NVIDIA Driver Packages Available:"
sudo ubuntu-drivers list --gpgpu
echo "NVIDIA Driver Version:"
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
echo "Installed NVIDIA and CUDA packages:"
dpkg -l | egrep "cuda|nvidia" -i
echo "DKMS Status:"
dkms status || echo "dkms not found"
echo "NVIDIA-SMI Status:"
nvidia-smi || echo "nvidia-smi not found"

View File

@@ -1,31 +0,0 @@
name: 'Setup macOS Environment'
description: 'Install dependencies for macOS builds'
inputs:
install-mpi:
description: 'Whether to install MPI'
required: false
default: 'true'
type: boolean
python-version:
description: 'Python version to use'
required: false
default: '3.10'
runs:
using: "composite"
steps:
- name: Install Homebrew packages
shell: sh
if: inputs.install-mpi == 'true'
run: /opt/homebrew/bin/brew install openmpi
- name: Verify MetalToolchain installed
shell: bash
run: xcodebuild -showComponent MetalToolchain
- name: Setup uv
uses: astral-sh/setup-uv@v6
with:
python-version: ${{ inputs.python-version }}
activate-environment: true

View File

@@ -1,6 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@@ -1,27 +0,0 @@
#!/bin/bash
set -ex
# [Setup] Install dependencies inside the container.
dnf update -y
dnf install -y \
blas-devel \
lapack-devel \
openblas-devel \
make \
cmake \
clang \
git
dnf clean all
# [C++] CI Build Sanity Check: Verifies code compilation, not for release.
export CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
export DEBUG=1
export CMAKE_C_COMPILER=/usr/bin/clang
export CMAKE_CXX_COMPILER=/usr/bin/clang++
mkdir -p build
pushd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j $(nproc)
./tests/tests
popd

View File

@@ -1,28 +0,0 @@
name: Documentation
on:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: [self-hosted, macos]
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
deploy:
needs: build
permissions:
pages: write
id-token: write
runs-on: ubuntu-latest
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4

View File

@@ -1,114 +0,0 @@
name: Nightly Build
on:
schedule:
- cron: 33 6 * * 1-5
workflow_dispatch:
permissions:
contents: read
jobs:
build_linux_release:
strategy:
fail-fast: false
matrix:
python_version: ["3.10", "3.14"]
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: ./.github/actions/build-linux
with:
build-type: release
run-tests: false
- name: Upload mlx artifacts
uses: actions/upload-artifact@v5
with:
name: linux-wheels-${{ matrix.python_version }}
path: wheelhouse/mlx-*.whl
retention-days: 7
- name: Upload mlx-cpu artifacts
if: matrix.python_version == '3.10'
uses: actions/upload-artifact@v5
with:
name: mlx-cpu
path: wheelhouse/mlx_cpu-*.whl
retention-days: 7
build_linux_with_tests:
strategy:
fail-fast: false
matrix:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
python-version: ${{ matrix.python_version }}
- uses: ./.github/actions/build-linux
build_mac_release:
strategy:
matrix:
python-version: ["3.10", "3.13"]
# TODO: 3.14 had issues finding a compatible tensorflow
env:
MACOSX_DEPLOYMENT_TARGET: "15.0"
runs-on: [self-hosted, macos]
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
with:
python-version: ${{ matrix.python-version }}
- uses: ./.github/actions/build-macos
build_cuda_with_tests:
runs-on: gpu-t4-4-core
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
runner-type: 'cuda'
- uses: ./.github/actions/build-cuda
build_cuda_release:
runs-on: ubuntu-22-large
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
runner-type: 'cuda'
- name: Build Python package
uses: ./.github/actions/build-cuda-release
with:
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
- name: Upload artifacts
uses: actions/upload-artifact@v5
with:
name: mlx-cuda
path: wheelhouse/mlx_cuda-*.whl
retention-days: 7
linux_fedora_build_cpp:
name: Linux Fedora CPP Build (${{ matrix.arch }})
strategy:
fail-fast: false
matrix:
include:
- host: ubuntu-22.04
arch: x86_64
- host: ubuntu-22.04-arm
arch: aarch64
runs-on: ${{ matrix.host }}
container:
image: fedora:42
steps:
- name: Checkout code
uses: actions/checkout@v5
- name: CPP Build Test - No Release
run: |
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh

View File

@@ -1,68 +1,20 @@
name: Build and Test
on: pull_request
permissions:
contents: read
on:
pull_request:
branches:
- main
jobs:
check_lint:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: pre-commit/action@v3.0.1
linux_build_and_test:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: ./.github/actions/build-linux
mac_build_and_test:
runs-on: [self-hosted, macos]
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
- uses: ./.github/actions/build-macos
cuda_build_and_test:
runs-on: gpu-t4-4-core
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
runner-type: 'cuda'
- uses: ./.github/actions/build-cuda
build_documentation:
runs-on: [self-hosted, macos]
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
linux_fedora_build_cpp:
name: Linux Fedora CPP Build (${{ matrix.arch }})
strategy:
fail-fast: false
matrix:
include:
- host: ubuntu-22.04
arch: x86_64
- host: ubuntu-22.04-arm
arch: aarch64
runs-on: ${{ matrix.host }}
container:
image: fedora:42
steps:
- name: Checkout code
uses: actions/checkout@v5
- name: CPP Build Test - No Release
python-version: 3.8
- name: Install dependencies
run: |
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
python -m pip install --upgrade pip
pip install pre-commit black isort clang-format
- name: Run lint
run: |
pre-commit run --all-files

View File

@@ -1,206 +0,0 @@
name: PyPI Release
on:
push:
tags:
- 'v*'
workflow_dispatch:
permissions:
contents: read
jobs:
setup:
runs-on: ubuntu-latest
outputs:
pypi_env: ${{ github.event_name == 'push' && 'pypi' || 'test-pypi' }}
pypi_url: ${{ github.event_name == 'push' && 'https://upload.pypi.org/legacy/' || 'https://test.pypi.org/legacy/' }}
steps:
- name: Set publishing variables
run: echo "Publishing setup complete"
build_documentation:
runs-on: [self-hosted, macos]
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
deploy_documentation:
needs: build_documentation
permissions:
pages: write
id-token: write
runs-on: ubuntu-latest
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4
build_linux_release:
strategy:
matrix:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
runs-on: ubuntu-22.04
env:
PYPI_RELEASE: 1
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
python-version: ${{ matrix.python_version }}
- uses: ./.github/actions/build-linux
with:
build-type: release
run-tests: false
- name: Upload MLX artifacts
uses: actions/upload-artifact@v5
with:
name: linux-wheels-${{ matrix.python_version }}
path: wheelhouse/mlx-*.whl
- name: Upload CPU artifacts
if: matrix.python_version == '3.10'
uses: actions/upload-artifact@v5
with:
name: mlx-cpu
path: wheelhouse/mlx_cpu-*.whl
build_mac_release:
strategy:
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13"]
# TODO: 3.14 had issues finding a compatible tensorflow
runs-on: [self-hosted, macos]
env:
PYPI_RELEASE: 1
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
with:
python-version: ${{ matrix.python-version }}
- uses: ./.github/actions/build-macos
with:
build-type: release
- name: Upload MLX artifacts
uses: actions/upload-artifact@v5
with:
name: mac-wheels-${{ matrix.python-version }}
path: dist/mlx-*.whl
- name: Upload Metal artifacts
if: matrix.python-version == '3.10'
uses: actions/upload-artifact@v5
with:
name: mlx-metal
path: dist/mlx_metal-*.whl
build_cuda_release:
runs-on: ubuntu-22-large
env:
PYPI_RELEASE: 1
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
runner-type: 'cuda'
- name: Build Python package
uses: ./.github/actions/build-cuda-release
with:
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
- name: Upload artifacts
uses: actions/upload-artifact@v5
with:
name: mlx-cuda
path: wheelhouse/mlx_cuda-*.whl
pypi-publish:
name: Upload release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_linux_release, build_mac_release]
permissions:
id-token: write
environment:
name: ${{ needs.setup.outputs.pypi_env }}
url: https://pypi.org/p/mlx
steps:
- uses: actions/download-artifact@v6
with:
pattern: linux-wheels-*
merge-multiples: true
path: dist
- uses: actions/download-artifact@v6
with:
pattern: mac-wheels-*
merge-multiples: true
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: ${{ needs.setup.outputs.pypi_url }}
pypi-publish-cuda:
name: Upload CUDA release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_cuda_release]
permissions:
id-token: write
environment:
name: ${{ needs.setup.outputs.pypi_env }}
url: https://pypi.org/p/mlx-cuda
steps:
- uses: actions/download-artifact@v6
with:
name: mlx-cuda
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: ${{ needs.setup.outputs.pypi_url }}
pypi-publish-cpu:
name: Upload CPU release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_linux_release]
permissions:
id-token: write
environment:
name: ${{ needs.setup.outputs.pypi_env }}
url: https://pypi.org/p/mlx-cpu
steps:
- uses: actions/download-artifact@v6
with:
name: mlx-cpu
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: ${{ needs.setup.outputs.pypi_url }}
pypi-publish-metal:
name: Upload Metal release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_mac_release]
permissions:
id-token: write
environment:
name: ${{ needs.setup.outputs.pypi_env }}
url: https://pypi.org/p/mlx-metal
steps:
- uses: actions/download-artifact@v6
with:
name: mlx-metal
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: ${{ needs.setup.outputs.pypi_url }}

View File

@@ -1,10 +1,4 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v6.0.0
hooks:
- id: check-yaml
# - id: end-of-file-fixer
# - id: trailing-whitespace
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
hooks:

View File

@@ -19,17 +19,12 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
</a>
# Organizations
MLX has received contributions from the following companies:
- NVIDIA Corporation & Affiliates
# Third-Party Software
MLX leverages several third-party software, listed here together with

View File

@@ -26,7 +26,6 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_INSTALL_MESSAGE NEVER)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
# ----------------------------- Configuration -----------------------------
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
@@ -88,26 +87,22 @@ cmake_policy(SET CMP0135 NEW)
add_library(mlx)
# Supress warnings: note: parameter passing for argument of type
# std::pair<float, float> when C++17 is enabled changed to match C++14 in GCC
# 10.1
target_compile_options(mlx PRIVATE -Wno-psabi)
if(MLX_BUILD_METAL)
set(METAL_LIB "-framework Metal")
set(FOUNDATION_LIB "-framework Foundation")
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL)
find_library(METAL_LIB Metal)
find_library(FOUNDATION_LIB Foundation)
find_library(QUARTZ_LIB QuartzCore)
if(METAL_LIB)
message(STATUS "Metal found ${METAL_LIB}")
else()
message(
FATAL_ERROR
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
set(MLX_METAL_DEBUG OFF)
elseif(MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
if(MLX_METAL_DEBUG)
add_compile_definitions(MLX_METAL_DEBUG)
@@ -116,8 +111,7 @@ if(MLX_BUILD_METAL)
# Throw an error if xcrun not found
execute_process(
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_SDK_VERSION
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
if(${MACOS_SDK_VERSION} LESS 14.0)
message(
@@ -146,12 +140,6 @@ if(MLX_BUILD_METAL)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
endif()
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# With newer clang/gcc versions following libs are implicitly linked, but when
# building on old distributions they need to be explicitly listed.
target_link_libraries(mlx PRIVATE dl pthread)
endif()
if(WIN32)
if(MSVC)
# GGUF does not build with MSVC.
@@ -179,7 +167,7 @@ if(MLX_BUILD_CPU)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
else()
message(STATUS "Accelerate not found, using default backend.")
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
endif()

View File

@@ -2,7 +2,7 @@
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
[**Examples**](#examples)
[**Examples**](#examples)
[![CircleCI](https://circleci.com/gh/ml-explore/mlx.svg?style=svg)](https://circleci.com/gh/ml-explore/mlx)
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,
and computation graph optimization.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,
and computation graph optimization.
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
materialized when needed.
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
materialized when needed.
- **Dynamic graph construction**: Computation graphs in MLX are constructed
dynamically. Changing the shapes of function arguments does not trigger
slow compilations, and debugging is simple and intuitive.
- **Dynamic graph construction**: Computation graphs in MLX are constructed
dynamically. Changing the shapes of function arguments does not trigger
slow compilations, and debugging is simple and intuitive.
- **Multi-device**: Operations can run on any of the supported devices
(currently the CPU and the GPU).
- **Multi-device**: Operations can run on any of the supported devices
(currently the CPU and the GPU).
- **Unified memory**: A notable difference from MLX and other frameworks
is the *unified memory model*. Arrays in MLX live in shared memory.
Operations on MLX arrays can be performed on any of the supported
device types without transferring data.
- **Unified memory**: A notable difference from MLX and other frameworks
is the *unified memory model*. Arrays in MLX live in shared memory.
Operations on MLX arrays can be performed on any of the supported
device types without transferring data.
MLX is designed by machine learning researchers for machine learning
researchers. The framework is intended to be user-friendly, but still efficient
to train and deploy models. The design of the framework itself is also
conceptually simple. We intend to make it easy for researchers to extend and
improve MLX with the goal of quickly exploring new ideas.
improve MLX with the goal of quickly exploring new ideas.
The design of MLX is inspired by frameworks like
[NumPy](https://numpy.org/doc/stable/index.html),
@@ -91,7 +91,7 @@ Checkout the
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
for more information on building the C++ and Python APIs from source.
## Contributing
## Contributing
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
on contributing to MLX. See the
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
MLX useful in your research and wish to cite it, please use the following
BibTex entry:
```text
```
@software{mlx2023,
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},

View File

@@ -142,7 +142,9 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
np.float32
)
atol = 1e-5 if np_dtype == np.float32 else 1e-4
@@ -161,7 +163,7 @@ def get_gflop_count(B, M, N, K):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
dtypes = ("float32", "float16", "complex64")
dtypes = ("float32", "float16")
transposes = ("nn", "nt", "tn")
shapes = (
(16, 234, 768, 3072),
@@ -185,7 +187,7 @@ if __name__ == "__main__":
diff = gflops_mx / gflops_pt - 1.0
print(
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
)
if gflops_pt >= 2.0 * gflops_mx:
print("ATTENTION ^^^^^^^")

View File

@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
for transpose in (False, True):
for dtype in ("float32", "float16", "complex64"):
for dtype in ("float32", "float16"):
fig, axs = plt.subplots(
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
)
@@ -215,7 +215,7 @@ for transpose in (False, True):
fig.suptitle(f"{device_name}: {dtype} {op_name}")
fig.savefig(
os.path.join(
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
)
)
plt.close(fig)

View File

@@ -1,54 +0,0 @@
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
# directories.
set(NCCL_ROOT_DIR
$ENV{NCCL_ROOT_DIR}
CACHE PATH "Folder contains NVIDIA NCCL")
find_path(
NCCL_INCLUDE_DIRS
NAMES nccl.h
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
${CUDA_TOOLKIT_ROOT_DIR}/include)
if($ENV{USE_STATIC_NCCL})
message(
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
set(NCCL_LIBNAME "libnccl_static.a")
else()
set(NCCL_LIBNAME "nccl")
endif()
find_library(
NCCL_LIBRARIES
NAMES ${NCCL_LIBNAME}
HINTS ${NCCL_LIB_DIR}
${NCCL_ROOT_DIR}
${NCCL_ROOT_DIR}/lib
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
${NCCL_ROOT_DIR}/lib64
${CUDA_TOOLKIT_ROOT_DIR}/lib
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
NCCL_LIBRARIES)
if(NCCL_FOUND)
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
message(
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
file(
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
LIMIT_COUNT 1)
if(NCCL_MAJOR_VERSION_DEFINED)
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
endif()
message(
STATUS
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
endif()

View File

@@ -127,8 +127,7 @@ relying on a copy from ``ensure_row_contiguous``:
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source,
ensure_row_contiguous=False,
source=source
)
def exp_elementwise(a: mx.array):
@@ -139,6 +138,7 @@ relying on a copy from ``ensure_row_contiguous``:
threadgroup=(256, 1, 1),
output_shapes=[a.shape],
output_dtypes=[a.dtype],
ensure_row_contiguous=False,
)
return outputs[0]

View File

@@ -70,7 +70,6 @@ are the CPU and GPU.
python/fft
python/linalg
python/metal
python/cuda
python/memory_management
python/nn
python/optimizers

View File

@@ -16,7 +16,7 @@ silicon computer is
To install from PyPI your system must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.10
- Using a native Python >= 3.9
- macOS >= 13.5
.. note::
@@ -39,7 +39,7 @@ requirements:
- Nvidia driver >= 550.54.14
- CUDA toolkit >= 12.0
- Linux distribution with glibc >= 2.35
- Python >= 3.10
- Python >= 3.9
CPU-only (Linux)
@@ -55,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
requirements:
- Linux distribution with glibc >= 2.35
- Python >= 3.10
- Python >= 3.9
Troubleshooting
@@ -271,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag

View File

@@ -1,9 +0,0 @@
CUDA
=====
.. currentmodule:: mlx.core.cuda
.. autosummary::
:toctree: _autosummary
is_available

View File

@@ -13,4 +13,3 @@ Fast
rope
scaled_dot_product_attention
metal_kernel
cuda_kernel

View File

@@ -27,7 +27,6 @@ simple functions.
mish
prelu
relu
relu2
relu6
selu
sigmoid

View File

@@ -50,7 +50,6 @@ Layers
QuantizedLinear
RMSNorm
ReLU
ReLU2
ReLU6
RNN
RoPE

View File

@@ -112,7 +112,6 @@ Operations
max
maximum
mean
median
meshgrid
min
minimum

View File

@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
.. code-block:: python
x = mx.random.uniform(shape=(32, 1000, 4096))
timeit(gelu, x)
timeit(mx.compile(gelu), x)
timeit(nn.gelu, x)
timeit(mx.compile(nn.gelu), x)
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z)
return mx.exp(z), state
fun(mx.array(1.0), mx.array(2.0))
# Prints [array(3, dtype=float32)]

View File

@@ -184,7 +184,7 @@ almost identical to the example above:
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)
grads = mx.nn.average_gradients(grads) # <---- This line was added
grads = mlx.nn.average_gradients(grads) # <---- This line was added
optimizer.update(model, grads)
return loss

View File

@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
.. code-block:: python
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
imported_abs = mx.import_function("fun.mlxfn")
# Ok
out, = imported_abs(mx.array([-1.0]))
out, = imported_abs(mx.array(-1.0))
# Also ok
out, = imported_abs(mx.array([-1.0, -2.0]))

View File

@@ -107,20 +107,8 @@ same array:
>>> a
array([1, 2, 0], dtype=int32)
Note that unlike NumPy, slicing an array creates a copy, not a view. So
mutating it does not mutate the original array:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> b = a[:]
>>> b[2] = 0
>>> b
array([1, 2, 0], dtype=int32)
>>> a
array([1, 2, 3], dtype=int32)
Also unlike NumPy, updates to the same location are nondeterministic:
Note, unlike NumPy, updates to the same location are nondeterministic:
.. code-block:: shell

View File

@@ -241,8 +241,8 @@ array::ArrayDesc::ArrayDesc(
std::vector<array> inputs)
: shape(std::move(shape)),
dtype(dtype),
primitive(std::move(primitive)),
status(Status::unscheduled),
primitive(std::move(primitive)),
inputs(std::move(inputs)) {
init();
}

View File

@@ -294,11 +294,6 @@ class array {
return array_desc_->siblings;
}
/** The array's position in the sibling list. */
int sibling_position() const {
return array_desc_->position;
}
void set_siblings(std::vector<array> siblings, uint16_t position) {
array_desc_->siblings = std::move(siblings);
array_desc_->position = position;

View File

@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
const array& a,
const array& b) {
if (a.ndim() == 2) {
return {Shape{1}, Strides{0}, Strides{0}};
return {{1}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
inline std::tuple<Shape, Strides, Strides, Strides>
collapse_batches(const array& a, const array& b, const array& c) {
if (a.ndim() == 2) {
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
return {{1}, {0}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};

View File

@@ -11,8 +11,6 @@ namespace mlx::core {
enum class TernaryOpType {
ScalarScalarScalar,
VectorVectorVector,
VectorVectorScalar,
VectorScalarVector,
General,
};
@@ -27,14 +25,6 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
(a.flags().col_contiguous && b.flags().col_contiguous &&
c.flags().col_contiguous)) {
topt = TernaryOpType::VectorVectorVector;
} else if (
b.data_size() == 1 && a.flags().row_contiguous &&
c.flags().row_contiguous) {
topt = TernaryOpType::VectorScalarVector;
} else if (
c.data_size() == 1 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
topt = TernaryOpType::VectorVectorScalar;
} else {
topt = TernaryOpType::General;
}
@@ -69,8 +59,6 @@ inline void set_ternary_op_output_data(
b.flags());
}
break;
case TernaryOpType::VectorVectorScalar:
case TernaryOpType::VectorScalarVector:
case TernaryOpType::General:
// Try to donate an input which is row_contiguous
if (!((a.flags().row_contiguous && maybe_donate(a)) ||

View File

@@ -228,4 +228,31 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
}
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
int ndim = x.ndim();
if (axis1 < 0) {
axis1 += ndim;
}
if (axis2 < 0) {
axis2 += ndim;
}
auto shape = x.shape();
std::swap(shape[axis1], shape[axis2]);
auto strides = x.strides();
std::swap(strides[axis1], strides[axis2]);
auto [data_size, row_contiguous, col_contiguous] =
check_contiguity(shape, strides);
bool contiguous = data_size == x.data_size();
array out(std::move(shape), x.dtype(), nullptr, {});
out.copy_shared_buffer(
x,
std::move(strides),
{contiguous, row_contiguous, col_contiguous},
x.data_size());
return out;
}
} // namespace mlx::core

View File

@@ -196,6 +196,9 @@ void shared_buffer_reshape(
const Strides& out_strides,
array& out);
// Like the swapaxes op but safe to call in eval_gpu.
array swapaxes_in_eval(const array& x, int axis1, int axis2);
template <typename T>
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
vec.erase(std::next(vec.begin(), index));

View File

@@ -15,7 +15,6 @@
#include "mlx/backend/cpu/jit_compiler.h"
#include "mlx/device.h"
#include "mlx/graph_utils.h"
#include "mlx/version.h"
namespace mlx::core {
@@ -95,11 +94,7 @@ void* compile(
kernel_file_name = kernel_name;
}
auto output_dir =
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
if (!std::filesystem::exists(output_dir)) {
std::filesystem::create_directories(output_dir);
}
auto output_dir = std::filesystem::temp_directory_path();
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
auto shared_lib_path = (output_dir / shared_lib_name).string();
@@ -162,12 +157,10 @@ inline void build_kernel(
#endif
// Start the kernel
os << "void " << kernel_name
<< "(int* shape, int64_t** strides, void** args) {" << std::endl;
os << "void " << kernel_name << "(void** args) {" << std::endl;
// Add the input arguments
int cnt = 0;
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
// Skip constants from the input list
if (is_constant(i)) {
@@ -182,8 +175,8 @@ inline void build_kernel(
<< "];" << std::endl;
// Scalars and contiguous need no strides
if (!is_scalar(x) && !contiguous) {
os << " const int64_t* " << xname << "_strides = strides["
<< strides_index++ << "];" << std::endl;
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
<< "];" << std::endl;
}
}
@@ -193,8 +186,10 @@ inline void build_kernel(
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
<< "*)args[" << cnt++ << "];" << std::endl;
}
// Add output size
if (contiguous) {
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
} else {
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
}
@@ -293,8 +288,17 @@ void Compiled::eval_cpu(
auto [contiguous, shape, strides] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Force allocating shape/strides on heap so we can take their data() first
// and then std::move them.
// TODO: Refactor code to avoid heap allocation.
shape.grow();
for (auto& s : strides) {
s.grow();
}
// Collect function input arguments.
std::vector<void*> args;
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant_(i)) {
continue;
@@ -302,6 +306,9 @@ void Compiled::eval_cpu(
const auto& x = inputs[i];
encoder.set_input_array(x);
args.push_back((void*)x.data<void>());
if (!contiguous && !is_scalar(x)) {
args.push_back(strides[strides_index++].data());
}
}
// Get the kernel name from the lib
@@ -336,20 +343,16 @@ void Compiled::eval_cpu(
args.push_back(x.data<void>());
encoder.set_output_array(x);
}
if (contiguous) {
if (!contiguous) {
args.push_back((void*)shape.data());
} else {
args.push_back((void*)outputs[0].data_size());
}
auto fun = reinterpret_cast<void (*)(int*, int64_t**, void**)>(fn_ptr);
auto fun = (void (*)(void**))fn_ptr;
encoder.dispatch([fun,
args = std::move(args),
strides = std::move(strides),
shape = std::move(shape)]() mutable {
SmallVector<int64_t*> strides_ptrs;
for (auto& s : strides) {
strides_ptrs.push_back(s.data());
}
fun(shape.data(), strides_ptrs.data(), args.data());
});
shape = std::move(shape)]() mutable { fun(args.data()); });
}
} // namespace mlx::core

View File

@@ -996,6 +996,131 @@ void explicit_gemm_conv_1D_cpu(
encoder.add_temporaries(std::move(temps));
}
void explicit_gemm_conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iW = in.shape(2); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int oW = out.shape(2); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(3); // In channels
const int wH = wt.shape(1); // Weight spatial dim
const int wW = wt.shape(2); // Weight spatial dim
auto conv_dtype = out.dtype();
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {
N,
iH + padding_lo[0] + padding_hi[0],
iW + padding_lo[1] + padding_hi[1],
C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
padding_lo[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
temps.push_back(in_padded_slice);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C};
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[2] * wt_strides[1],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]};
auto flags = in_padded.flags();
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
auto gemm_wt = wt;
auto gemm_out = out;
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
temps.push_back(gemm_out);
}
encoder.set_input_array(in_strided);
encoder.set_input_array(gemm_wt);
encoder.set_output_array(gemm_out);
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
gemm_wt_ptr = gemm_wt.data<float>(),
gemm_out_ptr = gemm_out.data<float>(),
strided_reshape = std::move(strided_reshape),
O]() {
// Perform gemm
cblas_sgemm(
CblasRowMajor,
CblasNoTrans, // no trans A
CblasTrans, // transB
strided_reshape[0], // M
O, // N
strided_reshape[1], // K
1.0f, // alpha
in_strided_ptr,
strided_reshape[1], // lda
gemm_wt_ptr,
strided_reshape[1], // ldb
0.0f, // beta
gemm_out_ptr,
O // ldc
);
});
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
void explicit_gemm_conv_ND_cpu(
const array& in,
const array& wt,

View File

@@ -46,6 +46,7 @@ void eig_impl(
int info;
{
T work;
int iwork;
geev<T>(
&jobl,
&jobr,

View File

@@ -1,4 +1,5 @@
// Copyright © 2023-2024 Apple Inc.
#include <Accelerate/Accelerate.h>
#include "mlx/array.h"
@@ -48,15 +49,9 @@ void matmul_bnns(
size_t K = a_shape[ndim - 1];
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
if (beta != 1.0 && beta != 0.0) {
// scale the output
for (auto i = 0; i < batch_size * M * N; ++i) {
out[i] *= beta;
}
beta = 1.0;
}
const BNNSLayerParametersBroadcastMatMul gemm_params{
/* float alpha = */ alpha,
/* float beta = */ beta,

View File

@@ -88,47 +88,4 @@ void matmul<double>(
}
}
template <>
void matmul<complex64_t>(
const complex64_t* a,
const complex64_t* b,
complex64_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
auto calpha = static_cast<complex64_t>(alpha);
auto cbeta = static_cast<complex64_t>(beta);
for (int i = 0; i < batch_size; ++i) {
cblas_cgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
&calpha,
a + elem_to_loc(M * K * i, a_shape, a_strides),
lda,
b + elem_to_loc(K * N * i, b_shape, b_strides),
ldb,
&cbeta,
out + M * N * i,
ldc);
}
}
} // namespace mlx::core

View File

@@ -47,7 +47,7 @@ INSTANTIATE_LAPACK_REAL(orgqr)
INSTANTIATE_LAPACK_REAL(syevd)
INSTANTIATE_LAPACK_REAL(geev)
INSTANTIATE_LAPACK_REAL(potrf)
INSTANTIATE_LAPACK_REAL(gesdd)
INSTANTIATE_LAPACK_REAL(gesvdx)
INSTANTIATE_LAPACK_REAL(getrf)
INSTANTIATE_LAPACK_REAL(getri)
INSTANTIATE_LAPACK_REAL(trtri)

View File

@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(a);
encoder.set_input_array(b);
const void* a_mask_ptr = nullptr;
const void* b_mask_ptr = nullptr;
const void* out_mask_ptr = nullptr;
const void* a_mask_ptr;
const void* b_mask_ptr;
const void* out_mask_ptr;
Shape a_mask_shape;
Shape b_mask_shape;
Shape out_mask_shape;
Strides a_mask_strides;
Strides b_mask_strides;
Strides out_mask_strides;
bool a_mask_bool = false;
bool b_mask_bool = false;
bool out_mask_bool = false;
bool a_mask_bool;
bool b_mask_bool;
bool out_mask_bool;
if (has_op_mask) {
auto& a_mask = inputs[inputs.size() - 2];
auto& b_mask = inputs[inputs.size() - 1];
@@ -423,6 +423,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& rhs_indices = inputs[3];
auto batch_shape = get_batch_dims(out.shape());
int batch_ndim = batch_shape.size();
auto batch_shape_A = get_batch_dims(a.shape());
auto batch_strides_A = get_batch_dims(a.strides());

View File

@@ -91,6 +91,7 @@ void matmul_general(
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
@@ -107,9 +108,6 @@ void matmul_general(
} else if (out.dtype() == float64) {
matmul_dispatch<double>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else if (out.dtype() == complex64) {
matmul_dispatch<complex64_t>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else {
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
}
@@ -130,6 +128,10 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
if (out.size() == 0) {
out.set_data(allocator::malloc(out.nbytes()));
return;

View File

@@ -1,11 +1,10 @@
// Copyright © 2023 Apple Inc.
#include "mlx/backend/common/unary.h"
#include <cassert>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/backend/cpu/unary.h"
#include "mlx/backend/cpu/unary_ops.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -14,35 +13,6 @@ namespace mlx::core {
namespace {
const static float MXFP4_LUT[16] = {
+0.0f,
+0.5f,
+1.0f,
+1.5f,
+2.0f,
+3.0f,
+4.0f,
+6.0f,
-0.0f,
-0.5f,
-1.0f,
-1.5f,
-2.0f,
-3.0f,
-4.0f,
-6.0f};
template <typename T>
static inline T dequantize_scale(uint8_t s) {
using FOrI = union {
bfloat16_t f;
uint16_t i;
};
FOrI out;
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
return static_cast<T>(out.f);
}
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
@@ -437,229 +407,6 @@ void _qmm_dispatch(
}
}
template <typename T>
void mxfp4_qmm(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = get_pack_factor(4, 8);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
const uint8_t* w_local = (const uint8_t*)w;
const uint8_t* scales_local = scales;
std::fill(result, result + N, 0);
for (int k = 0; k < K; k++) {
T* result_local = result;
T xi = *x++;
for (int n = 0; n < N; n += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
for (int ng = 0; ng < packs_in_group; ng++) {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
(*result_local++) +=
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
wi >>= 4;
}
}
}
}
result += N;
}
}
template <typename T>
void mxfp4_qmm_t(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = get_pack_factor(4, 8);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
const uint8_t* w_local = (const uint8_t*)w;
const uint8_t* scales_local = scales;
for (int n = 0; n < N; n++) {
const T* x_local = x;
T sum = 0;
for (int k = 0; k < K; k += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
T gsum = 0;
for (int kw = 0; kw < packs_in_group; kw++) {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
wi >>= 4;
}
}
sum += scale * gsum;
}
*result = sum;
result++;
}
x += K;
}
}
template <int S>
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
if constexpr (S == 8) {
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
auto wi = simd::Simd<uint32_t, S>(*w);
wi = wi >> shifts;
wi = wi & 0xf;
simd::Simd<float, S> w_out;
for (int i = 0; i < S; ++i) {
w_out[i] = MXFP4_LUT[wi[i]];
}
return w_out;
} else {
// Appease compiler.. but should never get here
throw std::runtime_error("Unsupported combination for simd qmm.");
}
}
template <typename T>
void mxfp4_qmm_t_simd(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = 32 / 4;
constexpr int packs_in_group = group_size / pack_factor;
constexpr int S = simd::max_size<T>;
static_assert(
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
constexpr int packs_per_simd = S / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const uint8_t* scales_local = scales;
for (int n = 0; n < N; n++) {
simd::Simd<float, S> acc(0);
auto x_local = x;
for (int k = 0; k < K; k += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
simd::Simd<float, S> g_acc(0);
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
// Extract bits
auto wf = mxfp4_extract_bits_simd<S>(w_local);
w_local += packs_per_simd;
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
g_acc = g_acc + x_simd * wf;
x_local += S;
}
acc = acc + scale * g_acc;
}
*result = T(simd::sum(acc));
result++;
}
x += K;
}
}
template <typename T>
void mxfp4_qmm_dispatch_transpose(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K,
bool transposed_w) {
if (transposed_w) {
// the simd size must be a multiple of the number of elements per word
if constexpr (simd::max_size<T> % 8 == 0) {
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
} else {
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
}
} else {
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
}
}
template <typename T>
void mxfp4_qmm_dispatch_typed(
array& out,
const array& x,
const array& w,
const array& scales,
bool transposed_w) {
int K = x.shape(-1);
int M = x.ndim() > 1 ? x.shape(-2) : 1;
int N = out.shape(-1);
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
int batch_size = x.size() / (K * M);
auto out_ptr = out.data<T>();
auto x_ptr = x.data<T>();
auto w_ptr = w.data<uint32_t>();
auto scales_ptr = scales.data<uint8_t>();
for (int i = 0; i < batch_size; i++) {
mxfp4_qmm_dispatch_transpose<T>(
out_ptr + i * M * N,
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
M,
N,
K,
transposed_w);
}
}
void mxfp4_qmm_dispatch(
array& out,
const array& x,
const array& w,
const array& scales,
bool transposed_w) {
switch (x.dtype()) {
case bfloat16:
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
break;
case float16:
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
break;
case float32:
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}
template <typename T>
void _bs_qmm_dispatch_typed(
array& out,
@@ -766,198 +513,115 @@ void _bs_qmm_dispatch(
}
}
template <typename T>
void mxfp4_bs_qmm_dispatch_typed(
array& out,
const array& x,
const array& w,
const array& scales,
const array& lhs_indices,
const array& rhs_indices,
bool transposed_w) {
int K = x.shape(-1);
int M = x.shape(-2);
int N = out.shape(-1);
int w_els = w.shape(-1) * w.shape(-2);
int g_els = scales.shape(-1) * scales.shape(-2);
auto out_ptr = out.data<T>();
auto x_ptr = x.data<T>();
auto w_ptr = w.data<uint32_t>();
auto scales_ptr = scales.data<uint8_t>();
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
for (int i = 0; i < lhs_indices.size(); i++) {
int x_idx = lhs_indices_ptr[elem_to_loc(
i, lhs_indices.shape(), lhs_indices.strides())];
int w_idx = rhs_indices_ptr[elem_to_loc(
i, rhs_indices.shape(), rhs_indices.strides())];
mxfp4_qmm_dispatch_transpose<T>(
out_ptr + i * M * N,
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
scales_ptr +
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
M,
N,
K,
transposed_w);
}
}
void mxfp4_bs_qmm_dispatch(
array& out,
const array& x,
const array& w,
const array& scales,
const array& lhs_indices,
const array& rhs_indices,
bool transposed_w) {
switch (x.dtype()) {
case float32:
mxfp4_bs_qmm_dispatch_typed<float>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
case float16:
mxfp4_bs_qmm_dispatch_typed<float16_t>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
case bfloat16:
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}
} // namespace
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 4);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
auto& encoder = cpu::get_command_encoder(stream());
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
std::vector<array> temps;
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
if (arr.flags().row_contiguous) {
return arr;
} else {
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_cpy, CopyType::General, s);
encoder.add_temporary(arr_cpy);
return arr_cpy;
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
auto x = ensure_row_contiguous(x_pre);
auto w = ensure_row_contiguous(w_pre);
auto scales = ensure_row_contiguous(scales_pre);
auto biases = ensure_row_contiguous(biases_pre);
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(scales);
encoder.set_input_array(biases);
encoder.set_output_array(out);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous(inputs[3]);
encoder.set_input_array(biases);
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
});
} else {
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
transpose_ = transpose_]() mutable {
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
});
}
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
});
}
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& lhs_indices = inputs[inputs.size() - 2];
auto& rhs_indices = inputs[inputs.size() - 1];
auto& biases_pre = inputs[3];
auto& lhs_indices = inputs[4];
auto& rhs_indices = inputs[5];
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> temps;
auto ensure_row_contiguous_last_dims = [s = stream(),
&encoder](const array& arr) {
&temps](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_cpy, CopyType::General, s);
encoder.add_temporary(arr_cpy);
return arr_cpy;
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(scales);
encoder.set_input_array(biases);
encoder.set_input_array(lhs_indices);
encoder.set_input_array(rhs_indices);
encoder.set_output_array(out);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
encoder.set_input_array(biases);
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_bs_qmm_dispatch(
out,
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
group_size_,
bits_,
transpose_);
});
} else {
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
transpose_ = transpose_]() mutable {
mxfp4_bs_qmm_dispatch(
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
});
}
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_bs_qmm_dispatch(
out,
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
group_size_,
bits_,
transpose_);
});
}
template <typename T, typename U>
@@ -1041,7 +705,7 @@ void dispatch_quantize(
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
}
void fast::Quantize::eval_cpu(
void fast::AffineQuantize::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto ensure_row_contiguous = [s = stream()](const array& arr) {
@@ -1100,47 +764,7 @@ void fast::Quantize::eval_cpu(
}
} else {
throw std::runtime_error(
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
}
});
}
void fast::ConvertFP8::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& in = inputs[0];
auto& out = outputs[0];
set_unary_output_data(in, out);
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);
encoder.set_output_array(out);
encoder.dispatch([in = array::unsafe_weak_copy(in),
out = array::unsafe_weak_copy(out),
to_fp8 = to_fp8_]() mutable {
if (to_fp8) {
switch (in.dtype()) {
case float16:
unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
break;
case bfloat16:
unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
break;
default:
unary_op<float, uint8_t>(in, out, detail::ToFP8());
break;
}
} else {
switch (out.dtype()) {
case float16:
unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
break;
case bfloat16:
unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
break;
default:
unary_op<uint8_t, float>(in, out, detail::FromFP8());
break;
}
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
}
});
}

View File

@@ -1,6 +1,5 @@
#pragma once
#include <arm_neon.h>
#include <simd/math.h>
#include <simd/vector.h>
@@ -10,7 +9,7 @@
#include "mlx/backend/cpu/simd/base_simd.h"
// There seems to be a bug in simd/base_simd.h
// There seems to be a bug in sims/base.h
// __XROS_2_0 is not defined, the expression evaluates
// to true instead of false setting the SIMD library
// higher than it should be even on macOS < 15
@@ -201,15 +200,6 @@ SIMD_DEFAULT_COMPARISONS(<=)
SIMD_DEFAULT_COMPARISONS(==)
SIMD_DEFAULT_COMPARISONS(!=)
template <typename T, int N>
Simd<T, N> clz(Simd<T, N> x) {
auto a = *(uint32x4_t*)(&x);
auto b = *((uint32x4_t*)(&x) + 1);
a = vclzq_u32(a);
b = vclzq_u32(b);
return asd::make_uint8(a, b);
}
template <typename T, int N>
Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
return asd::atan2(a.value, b.value);
@@ -217,20 +207,14 @@ Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
template <typename T, int N>
Simd<T, N> maximum(Simd<T, N> a, Simd<T, N> b) {
auto out = Simd<T, N>(asd::max(a.value, b.value));
if constexpr (!std::is_integral_v<T>) {
out = select(isnan(b), b, select(isnan(a), a, out));
}
return out;
// TODO add isnan
return asd::max(a.value, b.value);
}
template <typename T, int N>
Simd<T, N> minimum(Simd<T, N> a, Simd<T, N> b) {
auto out = Simd<T, N>(asd::min(a.value, b.value));
if constexpr (!std::is_integral_v<T>) {
out = select(isnan(b), b, select(isnan(a), a, out));
}
return out;
// TODO add isnan
return asd::min(a.value, b.value);
}
template <typename T, int N>
@@ -250,7 +234,6 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
template <typename MaskT, typename T1, typename T2, int N>
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
static_assert(std::is_same_v<MaskT, bool>);
if constexpr (sizeof(T1) == 1) {
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
} else if constexpr (sizeof(T1) == 2) {
@@ -268,13 +251,9 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
return asd::pow(base.value, exp.value);
} else {
Simd<T, N> res = 1;
// Raising an integer to a negative power is undefined
if (any(exp < 0)) {
return 0;
}
while (any(exp > 0)) {
res = select((exp & 1) != 0, res * base, res);
base = select(exp > 0, base * base, base);
while (any(exp)) {
res = select(exp & 1, res * base, res);
base = select(exp, base * base, base);
exp = exp >> 1;
}
return res;

View File

@@ -171,11 +171,6 @@ DEFAULT_BINARY(&)
DEFAULT_BINARY(&&)
DEFAULT_BINARY(||)
template <typename T>
Simd<T, 1> clz(Simd<T, 1> x_) {
return __builtin_clz(x_.value);
}
template <typename T>
Simd<T, 1> remainder(Simd<T, 1> a_, Simd<T, 1> b_) {
T a = a_.value;

View File

@@ -15,18 +15,6 @@ namespace mlx::core {
namespace {
// NaN-aware comparator that places NaNs at the end
template <typename T>
bool nan_aware_less(T a, T b) {
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
if (std::isnan(a))
return false;
if (std::isnan(b))
return true;
}
return a < b;
}
template <typename T>
struct StridedIterator {
using iterator_category = std::random_access_iterator_tag;
@@ -39,7 +27,7 @@ struct StridedIterator {
StridedIterator() = default;
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
: stride_(stride), ptr_(ptr + offset * stride) {}
: ptr_(ptr + offset * stride), stride_(stride) {}
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
@@ -142,7 +130,7 @@ void sort(array& out, int axis) {
StridedIterator st(data_ptr, axis_stride, 0);
StridedIterator ed(data_ptr, axis_stride, axis_size);
std::stable_sort(st, ed, nan_aware_less<T>);
std::stable_sort(st, ed);
src_it.step();
}
}
@@ -196,15 +184,6 @@ void argsort(const array& in, array& out, int axis) {
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * in_stride];
auto v2 = data_ptr[b * in_stride];
// Handle NaNs (place them at the end)
if (std::is_floating_point<T>::value) {
if (std::isnan(v1))
return false;
if (std::isnan(v2))
return true;
}
return v1 < v2 || (v1 == v2 && a < b);
});
}
@@ -240,7 +219,7 @@ void partition(array& out, int axis, int kth) {
StridedIterator md(data_ptr, axis_stride, kth);
StridedIterator ed(data_ptr, axis_stride, axis_size);
std::nth_element(st, md, ed, nan_aware_less<T>);
std::nth_element(st, md, ed);
}
}
@@ -297,15 +276,6 @@ void argpartition(const array& in, array& out, int axis, int kth) {
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * in_stride];
auto v2 = data_ptr[b * in_stride];
// Handle NaNs (place them at the end)
if (std::is_floating_point<T>::value) {
if (std::isnan(v1))
return false;
if (std::isnan(v2))
return true;
}
return v1 < v2 || (v1 == v2 && a < b);
});
}

View File

@@ -81,26 +81,40 @@ void svd_impl(
// Vᵀ of shape N x N. (M x M in lapack).
const int ldvt = M;
auto jobz = (u_ptr) ? "A" : "N";
auto job_u = (u_ptr) ? "V" : "N";
auto job_vt = (u_ptr) ? "V" : "N";
static constexpr auto range = "A";
// Will contain the number of singular values after the call has returned.
int ns = 0;
T workspace_dimension = 0;
// Will contain the indices of eigenvectors that failed to converge (not
// used here but required by lapack).
auto iwork = array::Data{allocator::malloc(sizeof(int) * 8 * K)};
auto iwork = array::Data{allocator::malloc(sizeof(int) * 12 * K)};
static const int lwork_query = -1;
static const int ignored_int = 0;
static const T ignored_float = 0;
int info;
// Compute workspace size.
gesdd<T>(
/* jobz = */ jobz,
gesvdx<T>(
/* jobu = */ job_u,
/* jobvt = */ job_vt,
/* range = */ range,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ nullptr,
/* lda = */ &lda,
/* vl = */ &ignored_float,
/* vu = */ &ignored_float,
/* il = */ &ignored_int,
/* iu = */ &ignored_int,
/* ns = */ &ns,
/* s = */ nullptr,
/* u = */ nullptr,
/* ldu = */ &ldu,
@@ -122,13 +136,20 @@ void svd_impl(
// Loop over matrices.
for (int i = 0; i < num_matrices; i++) {
gesdd<T>(
/* jobz = */ jobz,
gesvdx<T>(
/* jobu = */ job_u,
/* jobvt = */ job_vt,
/* range = */ range,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ in_ptr + M * N * i,
/* lda = */ &lda,
/* vl = */ &ignored_float,
/* vu = */ &ignored_float,
/* il = */ &ignored_int,
/* iu = */ &ignored_int,
/* ns = */ &ns,
/* s = */ s_ptr + K * i,
// According to the identity above, lapack will write Vᵀᵀ as U.
/* u = */ vt_ptr ? vt_ptr + N * N * i : nullptr,
@@ -146,6 +167,13 @@ void svd_impl(
ss << "svd_impl: sgesvdx_ failed with code " << info;
throw std::runtime_error(ss.str());
}
if (ns != K) {
std::stringstream ss;
ss << "svd_impl: expected " << K << " singular values, but " << ns
<< " were computed.";
throw std::runtime_error(ss.str());
}
}
});
encoder.add_temporary(in);

View File

@@ -24,9 +24,9 @@ void unary_op(const array& a, array& out, Op) {
auto ndim = a.ndim();
if (a.flags().contiguous) {
auto size = a.data_size();
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, simd::Simd<U, N>(Op{}(simd::load<T, N>(src))));
simd::store(dst, Op{}(simd::load<T, N>(src)));
size -= N;
src += N;
dst += N;

View File

@@ -77,8 +77,7 @@ struct Real {
struct Sigmoid {
template <int N, typename T>
Simd<T, N> operator()(Simd<T, N> x) {
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
return 1.0f / (1.0f + simd::exp(-x));
}
SINGLE()
};
@@ -108,73 +107,4 @@ struct Square {
SINGLE()
};
template <int N>
Simd<float, N> fp32_from_bits(Simd<uint32_t, N> x) {
return *(Simd<float, N>*)(&x);
}
template <int N>
Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
return *(Simd<uint32_t, N>*)(&x);
}
struct ToFP8 {
template <typename T, int N>
Simd<uint8_t, N> operator()(Simd<T, N> f) {
uint32_t fp8_max = 543 << 21;
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
Simd<uint32_t, N> f_bits;
Simd<float, N> f32 = f;
f_bits = fp32_to_bits(f32);
Simd<uint8_t, N> result = 0u;
auto sign = f_bits & 0x80000000;
f_bits = f_bits ^ sign;
auto f_bits_low =
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
auto result_low = Simd<uint8_t, N>(f_bits_low - denorm_mask);
auto mant_odd = Simd<uint8_t, N>((f_bits >> 20) & 1);
auto f_bits_high = f_bits + (((uint32_t)(7 - 127) << 23) + 0x7FFFF);
f_bits_high = f_bits_high + Simd<uint32_t, N>(mant_odd);
auto result_high = Simd<uint8_t, N>(f_bits_high >> 20);
result = select(f_bits < (121 << 23), result_low, result_high);
auto result_sat = Simd<uint8_t, N>(0x7E);
result = select(f_bits >= fp8_max, result_sat, result);
return result | Simd<uint8_t, N>(sign >> 24);
}
template <typename T>
uint8_t operator()(T x) {
return (*this)(Simd<T, 1>(x)).value;
}
};
struct FromFP8 {
template <int N>
Simd<float, N> operator()(Simd<uint8_t, N> x) {
auto w = Simd<uint32_t, N>(x) << 24;
auto sign = w & 0x80000000;
auto nonsign = w & 0x7FFFFFFF;
auto renorm_shift = clz(nonsign);
renorm_shift = simd::select(
renorm_shift > Simd<uint32_t, N>{4},
renorm_shift - Simd<uint32_t, N>{4},
Simd<uint32_t, N>{0});
Simd<int32_t, N> inf_nan_mask =
(Simd<int32_t, N>(nonsign + 0x01000000) >> 8) & 0x7F800000;
auto zero_mask = Simd<int32_t, N>(nonsign - 1) >> 31;
auto result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
return fp32_from_bits(result);
}
float operator()(uint8_t x) {
return (*this)(Simd<uint8_t, 1>(x)).value;
}
};
} // namespace mlx::core::detail

View File

@@ -8,6 +8,7 @@ target_sources(
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
@@ -16,18 +17,14 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_conv.cu
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_grouped_conv.cu
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@@ -49,21 +46,12 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
# fp4 is not available on < 12.8
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
endif()
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
@@ -161,7 +149,7 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
FetchContent_Declare(
cudnn
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
GIT_TAG v1.14.0
GIT_TAG v1.12.1
GIT_SHALLOW TRUE
EXCLUDE_FROM_ALL)
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
@@ -177,6 +165,7 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)

View File

@@ -30,20 +30,8 @@ SmallSizePool::SmallSizePool() {
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
int device_count = 0;
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
for (int i = 0; i < device_count; ++i) {
#if CUDART_VERSION >= 13000
cudaMemLocation loc;
loc.type = cudaMemLocationTypeDevice;
loc.id = i;
#else
int loc = i;
#endif // CUDART_VERSION >= 13000
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
}
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
@@ -91,12 +79,13 @@ CudaAllocator::CudaAllocator()
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.95;
memory_limit_ = total * 0.8;
max_pool_size_ = memory_limit_;
}
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size <= small_block_size) {
size = 8;
@@ -130,7 +119,7 @@ Buffer CudaAllocator::malloc(size_t size) {
}
lock.lock();
}
active_memory_ += buf->size;
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
// Maintain the cache below the requested limit.

View File

@@ -6,33 +6,23 @@
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T>
struct Arange {
const T start;
const T step;
template <typename T, typename IdxT, int N_WRITES>
__global__ void arange(T* out, IdxT size, T start, T step) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_WRITES > size) {
for (IdxT i = index * N_WRITES; i < size; ++i) {
out[i] = start + i * step;
}
} else {
AlignedVector<T, N_WRITES> out_vec;
#pragma unroll
for (int i = 0; i < N_WRITES; ++i) {
out_vec[i] = start + (index * N_WRITES + i) * step;
}
store_vector<N_WRITES>(out, index, out_vec);
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
}
};
} // namespace cu
@@ -46,23 +36,19 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& encoder = cu::get_command_encoder(stream());
encoder.set_output_array(out);
auto capture = encoder.capture_context();
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
using OutType = cuda_type_t<CTYPE>;
constexpr int N_WRITES = 16 / sizeof(OutType);
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
encoder.add_kernel_node(
cu::arange<OutType, IdxT, N_WRITES>,
num_blocks,
block_dims,
0,
out.data<OutType>(),
out.data_size(),
static_cast<CTYPE>(start_),
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
});
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(encoder.stream()),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
}

View File

@@ -99,89 +99,39 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
}
}
template <
typename Op,
typename In,
typename Out,
typename IdxT,
int NDIM,
int N_READS>
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_g_nd(
const In* a,
const In* b,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
out[index] = Op{}(a[a_idx], b[b_idx]);
}
auto shape_x = shape[NDIM - 1];
auto a_stride_x = a_strides[NDIM - 1];
auto b_stride_x = b_strides[NDIM - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
auto a_vec =
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
auto b_vec =
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_g(
const In* a,
const In* b,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]);
}
auto shape_x = shape[ndim - 1];
auto a_stride_x = a_strides[ndim - 1];
auto b_stride_x = b_strides[ndim - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [a_idx, b_idx] = elem_to_loc(
index_rest * shape_x,
shape.data(),
a_strides.data(),
b_strides.data(),
ndim);
auto a_vec =
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
auto b_vec =
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
template <typename Op, typename In, typename Out>
@@ -259,61 +209,39 @@ void binary_op_gpu_inplace(
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;
auto rest = out.size() / dim0;
if (dim0 >= 4) {
work_per_thread = 4;
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto block_dims = get_block_dims(dim0, rest, 1);
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto kernel = cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant(),
1>;
if (work_per_thread == 4) {
kernel = cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant(),
4>;
}
auto [num_blocks, block_dims] =
get_launch_args(out, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
rest,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
if (work_per_thread == 4) {
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
}
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::binary_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
rest,
out.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
@@ -376,4 +304,54 @@ void binary_op_gpu(
binary_op_gpu<cu::func>(inputs, out, name(), s); \
}
BINARY_GPU(Add)
BINARY_GPU(ArcTan2)
BINARY_GPU(Divide)
BINARY_GPU(Remainder)
BINARY_GPU(Greater)
BINARY_GPU(GreaterEqual)
BINARY_GPU(Less)
BINARY_GPU(LessEqual)
BINARY_GPU(LogicalAnd)
BINARY_GPU(LogicalOr)
BINARY_GPU(LogAddExp)
BINARY_GPU(Maximum)
BINARY_GPU(Minimum)
BINARY_GPU(Multiply)
BINARY_GPU(NotEqual)
BINARY_GPU(Power)
BINARY_GPU(Subtract)
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream();
if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
} else {
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
}
}
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream();
switch (op_) {
case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
break;
case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
break;
case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
break;
case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
break;
case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
break;
}
}
} // namespace mlx::core

View File

@@ -1,21 +0,0 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/add.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan2.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_binary.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/divide.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/equal.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater_equal.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less_equal.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_and.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_or.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log_add_exp.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/minimum.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/maximum.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/multiply.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/power.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/remainder.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/not_equal.cu
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/subtract.cu)

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Add)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(ArcTan2)
} // namespace mlx::core

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream();
switch (op_) {
case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
break;
case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
break;
case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
break;
case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
break;
case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
break;
}
}
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Divide)
} // namespace mlx::core

View File

@@ -1,15 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream();
if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
} else {
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
}
}
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Greater)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(GreaterEqual)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Less)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(LessEqual)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(LogAddExp)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(LogicalAnd)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(LogicalOr)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Maximum)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Minimum)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Multiply)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(NotEqual)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Power)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Remainder)
} // namespace mlx::core

View File

@@ -1,7 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/binary/binary.cuh"
namespace mlx::core {
BINARY_GPU(Subtract)
} // namespace mlx::core

View File

@@ -127,99 +127,45 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
}
}
template <
typename Op,
typename In,
typename Out,
typename IdxT,
int NDIM,
int N_READS>
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_two_g_nd(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size_rest,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
auto shape_x = shape[NDIM - 1];
auto a_stride_x = a_strides[NDIM - 1];
auto b_stride_x = b_strides[NDIM - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
auto a_vec =
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
auto b_vec =
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec_a;
AlignedVector<Out, N_READS> out_vec_b;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b_vec[i]);
out_vec_a[i] = out[0];
out_vec_b[i] = out[1];
}
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_two_g(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size_rest,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
auto shape_x = shape[ndim - 1];
auto a_stride_x = a_strides[ndim - 1];
auto b_stride_x = b_strides[ndim - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [a_idx, b_idx] = elem_to_loc(
index_rest * shape_x,
shape.data(),
a_strides.data(),
b_strides.data(),
ndim);
auto a_vec =
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
auto b_vec =
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec_a;
AlignedVector<Out, N_READS> out_vec_b;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b_vec[i]);
out_vec_a[i] = out[0];
out_vec_b[i] = out[1];
}
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
}
template <typename Op, typename In, typename Out>
@@ -279,64 +225,42 @@ void binary_two_op_gpu_inplace(
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;
auto rest = out_a.size() / dim0;
if (dim0 >= 4) {
work_per_thread = 4;
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto block_dims = get_block_dims(dim0, rest, 1);
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto kernel = cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant(),
1>;
if (work_per_thread == 4) {
kernel = cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant(),
4>;
}
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
rest,
out_a.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 1>;
if (work_per_thread == 4) {
kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 4>;
}
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::binary_two_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
rest,
out_a.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),

View File

@@ -267,8 +267,7 @@ void Compiled::eval_gpu(
}
}
return std::make_tuple(
false, std::move(builder.os), std::move(kernel_names));
return std::make_pair(std::move(builder.os), std::move(kernel_names));
});
// Collapse contiguous dims to route to a faster kernel if possible. Also
@@ -332,9 +331,9 @@ void Compiled::eval_gpu(
encoder.set_output_array(out);
}
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
get_launch_args(outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}

View File

@@ -1,12 +1,18 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/conv/conv.h"
#include "mlx/backend/cuda/cudnn_utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <cudnn_frontend_find_plan.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
@@ -15,6 +21,9 @@ namespace mlx::core {
namespace {
// Not all engines support it so can not use this API now.
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
// Alias for better readability.
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
#define CONV_BACKWARD_INPUT \
@@ -22,9 +31,6 @@ namespace {
#define CONV_BACKWARD_WEIGHT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
// Custom placeholder representing fallback kernel.
#define CONV_FALLBACK static_cast<cudnnBackendDescriptorType_t>(-1)
struct ConvCacheKey {
int device_id;
cudnnDataType_t cudnn_dtype;
@@ -44,13 +50,203 @@ struct ConvCacheKey {
auto& conv_cache() {
static LRUBytesKeyCache<
ConvCacheKey,
std::pair<
cudnnBackendDescriptorType_t,
std::optional<cudnn_frontend::ExecutionPlan>>>
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
cache(/* capacity */ 128);
return cache;
}
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
auto nhwc_to_nchw(const array& x) {
auto shape = convert_vector<int64_t>(x.shape());
shape.insert(shape.begin() + 1, shape.back());
shape.erase(shape.end() - 1);
auto strides = convert_vector<int64_t>(x.strides());
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return CUDNN_DATA_INT8;
case int32:
return CUDNN_DATA_INT32;
case uint8:
return CUDNN_DATA_UINT8;
case float16:
return CUDNN_DATA_HALF;
case bfloat16:
return CUDNN_DATA_BFLOAT16;
case float32:
return CUDNN_DATA_FLOAT;
case float64:
return CUDNN_DATA_DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
}
}
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
auto [shape, strides] = nhwc_to_nchw(x);
return cudnn_frontend::TensorBuilder()
.setDim(shape.size(), shape.data())
.setStrides(strides.size(), strides.data())
.setId(id)
.setAlignment(get_alignment(x))
.setDataType(dtype_to_cudnn_type(x.dtype()))
.build();
}
cudnn_frontend::EngineConfigList get_engine_configs(
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph,
bool use_fallback = false) {
cudnn_frontend::GeneratorSource source;
if (use_fallback) {
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
.setOperationGraph(op_graph)
.setOperation(backend_type)
.build();
return fallback.getFallbackList();
};
} else {
source = [](cudnn_frontend::OperationGraph& op_graph) {
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
.setOperationGraph(op_graph)
.setHeurMode(CUDNN_HEUR_MODE_A)
.build();
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
};
}
cudnn_frontend::EngineConfigGenerator generator(1, &source);
auto configs = generator.generate_engine_config(op_graph);
cudnn_frontend::EngineConfigList filtered_configs;
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
if (cudnn_frontend::hasNumericalNote<
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
return true;
}
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
dtype == float32 && !env::enable_tf32()) {
return true;
}
return false;
});
return filtered_configs;
}
bool execute_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
array& x,
array& w,
array& y) {
int workspace_size = plan.getWorkspaceSize();
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
int64_t uids[3] = {'x', 'w', 'y'};
void* data_ptrs[3] = {
x.data<void>(),
w.data<void>(),
y.data<void>(),
};
auto variantPack = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(3, data_ptrs)
.setUids(3, uids)
.build();
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
cudaGraph_t graph;
cudaGraphCreate(&graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
if (cudnnBackendPopulateCudaGraph(
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
encoder.add_graph_node(graph);
#else
auto capture = encoder.capture_context();
if (cudnnBackendExecute(
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
CUDNN_STATUS_SUCCESS) {
// Discard the captured graph when failed.
capture.discard = true;
return false;
}
#endif
encoder.add_temporary(workspace);
return true;
}
bool try_engines(
cu::CommandEncoder& encoder,
const ConvCacheKey& cache_key,
cudnnBackendDescriptorType_t backend_type,
cudnn_frontend::EngineConfigList& configs,
const std::string& op_graph_tag,
array& x,
array& w,
array& y) {
for (auto& config : configs) {
try {
auto plan = cudnn_frontend::ExecutionPlanBuilder()
.setHandle(encoder.device().cudnn_handle())
.setEngineConfig(config, op_graph_tag)
.build();
if (execute_plan(encoder, plan, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(plan)));
return true;
}
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
throw;
}
}
}
return false;
}
auto get_conv_op_settings(
cudnnBackendDescriptorType_t backend_type,
array& x,
@@ -95,7 +291,7 @@ auto get_conv_op_settings(
}
}
std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
@@ -121,9 +317,9 @@ std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
.build();
auto op = cudnn_frontend::OperationBuilder(backend_type)
.setxDesc(build_cudnn_tensor_nchw('x', x))
.setwDesc(build_cudnn_tensor_nchw('w', w))
.setyDesc(build_cudnn_tensor_nchw('y', y))
.setxDesc(build_tensor('x', x))
.setwDesc(build_tensor('w', w))
.setyDesc(build_tensor('y', y))
.setcDesc(conv_desc)
.build();
@@ -140,42 +336,6 @@ std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
}
}
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
array group_transpose(
const array& x,
int groups,
int group_dim,
int axis1,
int axis2,
Stream s) {
if (groups == 1) {
return swapaxes_in_eval(x, axis1, axis2);
}
int ndim = x.ndim();
if (group_dim < 0) {
group_dim += ndim;
}
if (axis1 < 0) {
axis1 += ndim;
}
if (axis2 < 0) {
axis2 += ndim;
}
if (group_dim <= axis1) {
axis1 += 1;
}
if (group_dim <= axis2) {
axis2 += 1;
}
auto shape = x.shape();
shape.insert(shape.begin() + group_dim, groups);
shape[group_dim + 1] = shape[group_dim + 1] / groups;
array x_trans = reshape_in_eval(x, std::move(shape), s);
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
return x_trans;
}
// Do necessary transposes and copies to prepare the inputs and outputs for
// building the cuDNN conv op. It is safe to be called multiple times in one
// eval_gpu, with cost of possible redundant copies.
@@ -185,14 +345,13 @@ std::tuple<array, array, array> prepare_args(
array in,
array wt,
array out,
int groups,
Stream s) {
// Transpose the args depending on the backend type.
// TODO: Handle groups.
if (backend_type == CONV_BACKWARD_INPUT) {
wt = group_transpose(wt, groups, 0, 0, -1, s);
wt = swapaxes_in_eval(wt, 0, -1);
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
in = group_transpose(in, groups, -1, 0, -1, s);
in = swapaxes_in_eval(in, 0, -1);
wt = swapaxes_in_eval(wt, 0, -1);
// Create a contiguous array that shares the data with |out|, but with dim
// C_in and C_out swapped.
@@ -285,12 +444,12 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
ConvCacheKey cache_key{
encoder.device().cuda_device(),
dtype_to_cudnn_type(dtype),
vector_key(in.shape()),
vector_key(wt.shape()),
vector_key(kernel_strides_),
vector_key(padding_lo_),
vector_key(padding_hi_),
vector_key(kernel_dilation_),
fixed_vector(in.shape()),
fixed_vector(wt.shape()),
fixed_vector(kernel_strides_),
fixed_vector(padding_lo_),
fixed_vector(padding_hi_),
fixed_vector(kernel_dilation_),
groups_,
flip_,
get_alignment(in),
@@ -298,29 +457,11 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
get_alignment(out)};
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
auto& [backend_type, plan] = it->second;
if (plan) {
// Run cached plan.
std::tie(in, wt, out) =
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (!encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
throw std::runtime_error("[conv] Cached plan failed to execute.");
}
} else {
// Run fallback kernel.
gemm_conv(
encoder,
in,
wt,
out,
kernel_strides_,
padding_lo_,
kernel_dilation_,
input_dilation_,
groups_,
flip_,
s);
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (!execute_plan(encoder, plan, x, w, y)) {
throw std::runtime_error("[conv] Cached plan failed to execute.");
}
return;
}
@@ -349,7 +490,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
std::optional<cudnn_frontend::OperationGraph> op_graph;
for (auto try_backend : try_backends) {
auto [in_copy, wt_copy, out_copy] =
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
prepare_args(encoder, try_backend, in, wt, out, s);
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
try_backend,
@@ -361,7 +502,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
padding_hi_,
kernel_dilation_,
input_dilation_);
op_graph = build_conv_op_graph(
op_graph = build_op_graph(
encoder,
try_backend,
dtype,
@@ -380,38 +521,26 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
break;
}
}
if (op_graph) {
// Find a plan for the graph and execute it.
auto plan = find_cudnn_plan_from_op_graph(
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
if (plan) {
// Setup inputs and outputs.
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(*plan)));
return;
}
}
if (!op_graph) {
throw std::runtime_error("[conv] Can not build op graph.");
}
// Use fallback kernel for settings not supported by cuDNN.
gemm_conv(
encoder,
in,
wt,
out,
kernel_strides_,
padding_lo_,
kernel_dilation_,
input_dilation_,
groups_,
flip_,
s);
conv_cache().emplace(cache_key, std::make_pair(CONV_FALLBACK, std::nullopt));
// Get ready to execute the graph.
register_args(encoder, backend_type, in, wt, out, out_);
// Try to run plans based on heuristics.
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
auto tag = op_graph->getTag();
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
// Then try fallback plans.
configs = get_engine_configs(backend_type, dtype, *op_graph);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
throw std::runtime_error("[conv] Unable to find a working engine.");
}
} // namespace mlx::core

View File

@@ -1,126 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/copy.h"
namespace mlx::core {
template <int NDIM>
struct ConvParams {
int N; // Batch size
int C; // In channels
int O; // Out channels
int strides[NDIM];
int padding[NDIM];
int kernel_dilation[NDIM];
int input_dilation[NDIM];
int groups;
bool flip;
int in_spatial_dims[NDIM];
int wt_spatial_dims[NDIM];
int out_spatial_dims[NDIM];
int64_t in_strides[NDIM + 2];
ConvParams(
const array& in,
const array& wt,
const array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
int groups,
bool flip)
: N(in.shape(0)),
C(in.shape(-1)),
O(wt.shape(0)),
groups(groups),
flip(flip) {
std::copy_n(strides.begin(), NDIM, this->strides);
std::copy_n(padding.begin(), NDIM, this->padding);
std::copy_n(kernel_dilation.begin(), NDIM, this->kernel_dilation);
std::copy_n(input_dilation.begin(), NDIM, this->input_dilation);
std::copy_n(in.shape().begin() + 1, NDIM, this->in_spatial_dims);
std::copy_n(wt.shape().begin() + 1, NDIM, this->wt_spatial_dims);
std::copy_n(out.shape().begin() + 1, NDIM, this->out_spatial_dims);
std::copy_n(in.strides().begin(), NDIM + 2, this->in_strides);
}
};
void gemm_grouped_conv(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
int groups,
bool flip,
Stream s);
void gemm_conv(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
bool flip,
Stream s);
inline void gemm_conv(
cu::CommandEncoder& encoder,
array in,
array wt,
array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
int groups,
bool flip,
Stream s) {
if (!in.flags().row_contiguous) {
in = contiguous_copy_gpu(in, s);
encoder.add_temporary(in);
}
if (!wt.flags().row_contiguous) {
wt = contiguous_copy_gpu(wt, s);
encoder.add_temporary(wt);
}
if (groups == 1) {
gemm_conv(
encoder,
in,
wt,
out,
strides,
padding,
kernel_dilation,
input_dilation,
flip,
s);
} else {
gemm_grouped_conv(
encoder,
in,
wt,
out,
strides,
padding,
kernel_dilation,
input_dilation,
groups,
flip,
s);
}
}
} // namespace mlx::core

View File

@@ -1,217 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/conv/conv.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T, int NDIM>
__global__ void naive_unfold_nd(
const T* in,
T* out,
int filter_size,
int out_pixels,
const __grid_constant__ ConvParams<NDIM> params) {
auto block = cg::this_thread_block();
auto tid = block.group_index();
auto lid = block.thread_index();
int index_batch = tid.z / out_pixels; // [0, N)
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
int index_wt_spatial =
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
if (index_wt_spatial >= filter_size / params.C) {
return;
}
in += tid.y; // [0, C)
out += tid.z * filter_size + index_wt_spatial * params.C + tid.y;
bool valid = index_batch < params.N;
// Get the coordinates in input.
int index_in[NDIM] = {};
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int index_out = index_out_spatial % params.out_spatial_dims[i];
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
if (params.flip) {
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
}
int index = index_out * params.strides[i] - params.padding[i] +
index_wt * params.kernel_dilation[i];
int index_max =
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
valid &= (index >= 0) && (index < index_max) &&
(index % params.input_dilation[i] == 0);
index_in[i] = index / params.input_dilation[i];
index_out_spatial /= params.out_spatial_dims[i];
index_wt_spatial /= params.wt_spatial_dims[i];
}
if (valid) {
int in_offset = index_batch * params.in_strides[0];
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
in_offset += index_in[i] * params.in_strides[i + 1];
}
*out = in[in_offset];
} else {
*out = T{0};
}
}
} // namespace cu
template <int NDIM>
array unfold_inputs_nd(
cu::CommandEncoder& encoder,
const array& in,
int mat_M,
int mat_K,
int mat_N,
ConvParams<NDIM>& params) {
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
encoder.add_temporary(unfolded);
int filter_size = params.C;
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
filter_size *= params.wt_spatial_dims[i];
}
int out_pixels = 1;
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
out_pixels *= params.out_spatial_dims[i];
}
int wt_spatial_size = mat_K / params.C;
dim3 block_dims;
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
dim3 num_blocks;
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
num_blocks.y = params.C;
num_blocks.z = mat_M;
encoder.set_input_array(in);
encoder.set_output_array(unfolded);
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
encoder.add_kernel_node(
cu::naive_unfold_nd<DataType, NDIM>,
num_blocks,
block_dims,
0,
in.data<DataType>(),
unfolded.data<DataType>(),
filter_size,
out_pixels,
params);
});
return unfolded;
}
template <int NDIM>
void gemm_conv_nd(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
ConvParams<NDIM>& params,
Stream s) {
// Get gemm shapes.
int mat_M = out.size() / params.O; // N * H_out * W_out
int mat_K = wt.size() / params.O; // C * H_wt * W_wt
int mat_N = params.O; // O
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
array in_unfolded =
unfold_inputs_nd<NDIM>(encoder, in, mat_M, mat_K, mat_N, params);
// Reshape weight to (C * H_wt * W_wt, O) for gemm.
array wt_reshaped({mat_K, mat_N}, wt.dtype(), nullptr, {});
wt_reshaped.copy_shared_buffer(
wt,
{1, mat_K},
{false, false, /* col_contiguous */ true},
wt.data_size());
// Single batch.
Shape batch_shape{1};
Strides a_batch_strides{0};
Strides b_batch_strides{0};
// Run matmul.
CublasGemm gemm(
encoder.device(),
in.dtype(),
false, // a_transposed
mat_M, // a_rows
mat_K, // a_cols
mat_K, // lda
true, // b_transposed
mat_K, // b_rows
mat_N, // b_cols
mat_K, // ldb
batch_shape.back(),
a_batch_strides.back(),
b_batch_strides.back());
gemm.run(
encoder,
out,
in_unfolded,
wt_reshaped,
batch_shape,
a_batch_strides,
b_batch_strides);
}
void gemm_conv(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
bool flip,
Stream s) {
int conv_ndim = in.ndim() - 2;
if (conv_ndim < 1 || conv_ndim > 3) {
throw std::runtime_error(
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
}
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
ConvParams<ndim_constant()> params(
in,
wt,
out,
strides,
padding,
kernel_dilation,
input_dilation,
1, // groups
flip);
gemm_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
});
}
} // namespace mlx::core

View File

@@ -1,231 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/conv/conv.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T, int NDIM>
__global__ void naive_grouped_unfold_transpose_nd(
const T* in,
T* out,
int filter_size,
int out_pixels,
const __grid_constant__ ConvParams<NDIM> params) {
auto block = cg::this_thread_block();
auto tid = block.group_index();
auto lid = block.thread_index();
int index_batch = tid.z / out_pixels; // [0, N)
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
int index_wt_spatial =
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
if (index_wt_spatial >= filter_size / params.C) {
return;
}
in += tid.y; // [0, C)
out += tid.z * filter_size + tid.y * (filter_size / params.C);
bool valid = index_batch < params.N;
// Get the coordinates in input.
int index_in[NDIM] = {};
int wt_stride = 1;
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int index_out = index_out_spatial % params.out_spatial_dims[i];
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
out += index_wt * wt_stride;
if (params.flip) {
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
}
int index = index_out * params.strides[i] - params.padding[i] +
index_wt * params.kernel_dilation[i];
int index_max =
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
valid &= (index >= 0) && (index < index_max) &&
(index % params.input_dilation[i] == 0);
index_in[i] = index / params.input_dilation[i];
index_out_spatial /= params.out_spatial_dims[i];
index_wt_spatial /= params.wt_spatial_dims[i];
wt_stride *= params.wt_spatial_dims[i];
}
if (valid) {
int in_offset = index_batch * params.in_strides[0];
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
in_offset += index_in[i] * params.in_strides[i + 1];
}
*out = in[in_offset];
} else {
*out = T{0};
}
}
} // namespace cu
template <int NDIM>
array grouped_unfold_transpose_inputs_nd(
cu::CommandEncoder& encoder,
const array& in,
int mat_M,
int mat_K,
int mat_N,
ConvParams<NDIM>& params) {
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
encoder.add_temporary(unfolded);
int filter_size = params.C;
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
filter_size *= params.wt_spatial_dims[i];
}
int out_pixels = 1;
#pragma unroll
for (int i = 0; i < NDIM; ++i) {
out_pixels *= params.out_spatial_dims[i];
}
int wt_spatial_size = (mat_K * params.groups) / params.C;
dim3 block_dims;
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
dim3 num_blocks;
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
num_blocks.y = params.C;
num_blocks.z = mat_M;
encoder.set_input_array(in);
encoder.set_output_array(unfolded);
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
encoder.add_kernel_node(
cu::naive_grouped_unfold_transpose_nd<DataType, NDIM>,
num_blocks,
block_dims,
0,
in.data<DataType>(),
unfolded.data<DataType>(),
filter_size,
out_pixels,
params);
});
return unfolded;
}
template <int NDIM>
void gemm_grouped_conv_nd(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
ConvParams<NDIM>& params,
Stream s) {
// Get gemm shapes.
int C_per_group = params.C / params.groups;
int O_per_group = params.O / params.groups;
int mat_M = out.size() / params.O; // N * H_out * W_out
int mat_K = wt.size() / params.O; // C_per_group * H_wt * W_wt
int mat_N = O_per_group; // O_per_group
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
array in_unfolded = grouped_unfold_transpose_inputs_nd<NDIM>(
encoder, in, mat_M, mat_K, mat_N, params);
// Reshape weight to (O, C_per_group, H_wt * W_wt) for gemm.
int wt_spatial_size = (wt.size() / wt.shape(0)) / wt.shape(-1);
array wt_view(
{params.O, C_per_group, wt_spatial_size}, wt.dtype(), nullptr, {});
wt_view.copy_shared_buffer(
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
array wt_reshaped = contiguous_copy_gpu(wt_view, s);
// Batch with size of groups.
Shape batch_shape{params.groups};
Strides a_batch_strides{mat_K};
Strides b_batch_strides{mat_N * mat_K};
// Run matmul.
CublasGemm gemm(
encoder.device(),
in.dtype(),
false, // a_transposed
mat_M, // a_rows
mat_K, // a_cols
mat_K * params.groups, // lda
true, // b_transposed
mat_K, // b_rows
mat_N, // b_cols
mat_K, // ldb
batch_shape.back(),
a_batch_strides.back(),
b_batch_strides.back());
gemm.set_out(
out.dtype(),
false, // out_transposed
mat_M, // out_rows
mat_N, // out_cols
mat_N * params.groups, // out_ld
params.groups, // batch_count
mat_N); // batch_stride
gemm.run(
encoder,
out,
in_unfolded,
wt_reshaped,
batch_shape,
a_batch_strides,
b_batch_strides);
}
void gemm_grouped_conv(
cu::CommandEncoder& encoder,
const array& in,
const array& wt,
array& out,
const std::vector<int>& strides,
const std::vector<int>& padding,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation,
int groups,
bool flip,
Stream s) {
int conv_ndim = in.ndim() - 2;
if (conv_ndim < 1 || conv_ndim > 3) {
throw std::runtime_error(
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
}
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
ConvParams<ndim_constant()> params(
in,
wt,
out,
strides,
padding,
kernel_dilation,
input_dilation,
groups,
flip);
gemm_grouped_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
});
}
} // namespace mlx::core

View File

@@ -15,8 +15,8 @@ void copy_gpu_inplace(
int64_t offset_out,
CopyType ctype,
const Stream& s,
std::optional<array> dynamic_offset_in,
std::optional<array> dynamic_offset_out) {
const std::optional<array>& dynamic_offset_in,
const std::optional<array>& dynamic_offset_out) {
if (out.size() == 0) {
return;
}
@@ -44,16 +44,6 @@ void copy_gpu_inplace(
strides_vec[0]);
} else {
if (dynamic_offset_in || dynamic_offset_out) {
if (!dynamic_offset_in) {
dynamic_offset_in = array(0, int64);
encoder.add_temporary(*dynamic_offset_in);
}
if (!dynamic_offset_out) {
dynamic_offset_out = array(0, int64);
encoder.add_temporary(*dynamic_offset_out);
}
encoder.set_input_array(*dynamic_offset_in);
encoder.set_input_array(*dynamic_offset_out);
copy_general_dynamic(
encoder,
ctype,
@@ -64,8 +54,8 @@ void copy_gpu_inplace(
shape_collapsed,
strides_vec[0],
strides_vec[1],
*dynamic_offset_in,
*dynamic_offset_out);
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
} else {
copy_general(
encoder,

View File

@@ -10,80 +10,37 @@ namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
template <typename In, typename Out, typename IdxT, int NDIM>
__global__ void copy_gg_nd(
const In* in,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
index, shape.data(), strides_in.data(), strides_out.data());
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
auto shape_x = shape[NDIM - 1];
auto in_stride_x = strides_in[NDIM - 1];
auto out_stride_x = strides_out[NDIM - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
index_rest * shape_x,
shape.data(),
strides_in.data(),
strides_out.data());
auto in_vec =
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
}
template <typename In, typename Out, typename IdxT, int N_READS>
template <typename In, typename Out, typename IdxT>
__global__ void copy_gg(
const In* in,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides_in,
const __grid_constant__ Strides strides_out,
int ndim) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
auto shape_x = shape[ndim - 1];
auto in_stride_x = strides_in[ndim - 1];
auto out_stride_x = strides_out[ndim - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto [idx_in, idx_out] = elem_to_loc(
index_rest * shape_x,
shape.data(),
strides_in.data(),
strides_out.data(),
ndim);
auto in_vec =
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
}
} // namespace cu
@@ -112,52 +69,33 @@ void copy_general(
size_t data_size = 1;
for (auto& s : shape)
data_size *= s;
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;
auto rest = data_size / dim0;
if (dim0 >= 4) {
work_per_thread = 4;
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto block_dims = get_block_dims(dim0, rest, 1);
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
auto kernel =
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 1>;
if (work_per_thread == 4) {
kernel =
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 4>;
}
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
rest,
data_size,
const_param<ndim_constant()>(shape),
const_param<ndim_constant()>(strides_in),
const_param<ndim_constant()>(strides_out));
});
} else { // ndim >= 4
auto kernel = cu::copy_gg<InType, OutType, IdxT, 1>;
if (work_per_thread == 4) {
kernel = cu::copy_gg<InType, OutType, IdxT, 4>;
}
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::copy_gg<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
rest,
data_size,
const_param(shape),
const_param(strides_in),
const_param(strides_out),

View File

@@ -10,67 +10,33 @@ namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
template <typename In, typename Out, typename IdxT, int NDIM>
__global__ void copy_g_nd(
const In* in,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
auto shape_x = shape[NDIM - 1];
auto stride_x = strides[NDIM - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto idx =
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
auto in_vec =
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
template <typename In, typename Out, typename IdxT, int N_READS>
template <typename In, typename Out, typename IdxT>
__global__ void copy_g(
const In* in,
Out* out,
IdxT size_rest,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides,
const __grid_constant__ Strides strides_in,
int ndim) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
auto shape_x = shape[ndim - 1];
auto stride_x = strides[ndim - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto idx =
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
auto in_vec =
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
} // namespace cu
@@ -95,49 +61,30 @@ void copy_general_input(
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;
auto rest = out.size() / dim0;
if (dim0 >= 4) {
work_per_thread = 4;
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto block_dims = get_block_dims(dim0, rest, 1);
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto kernel =
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
if (work_per_thread == 4) {
kernel =
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
}
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
rest,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in));
});
} else { // ndim >= 4
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
if (work_per_thread == 4) {
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
}
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
cu::copy_g<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
rest,
out.size(),
const_param(shape),
const_param(strides_in),
ndim);

View File

@@ -1,275 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/cudnn_utils.h"
#include "mlx/backend/cuda/device.h"
namespace mlx::core {
namespace {
// Create a cudnn tensor descriptor.
template <typename Vec>
inline cudnn_frontend::Tensor build_cudnn_tensor(
int64_t id,
const array& x,
const Vec& shape,
const Vec& strides) {
return cudnn_frontend::TensorBuilder()
.setDim(shape.size(), shape.data())
.setStrides(strides.size(), strides.data())
.setId(id)
.setAlignment(get_alignment(x))
.setDataType(dtype_to_cudnn_type(x.dtype()))
.build();
}
// In MLX a singleton dim (shape[dim] == 1) can have any stride, but in cuDNN
// whether a tensor is contiguous is determined with:
// shape[dim] == shape[dim + 1] * strides[dim + 1]
// So a contiguous array with singleton dims in MLX may be mistakenly treated
// as strided in cuDNN, and we work around it by normalizing the strides.
Strides normalized_strides(const array& x) {
if (!x.flags().row_contiguous || x.ndim() < 2) {
return x.strides();
}
Strides strides = x.strides();
for (int i = x.ndim() - 2; i >= 0; --i) {
if (x.shape(i) == 1) {
strides[i] = x.shape(i + 1) * strides[i + 1];
}
}
return strides;
}
// Return the shape and strides after transposing from NHWC to NCHW.
auto nhwc_to_nchw(SmallVector<int64_t> shape, SmallVector<int64_t> strides) {
assert(shape.size() >= 3);
shape.insert(shape.begin() + 1, shape.back());
shape.erase(shape.end() - 1);
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline auto nhwc_to_nchw(const array& x) {
return nhwc_to_nchw(
convert_vector<int64_t>(x.shape()), normalized_strides(x));
}
// Return available engines for a |op_graph|.
cudnn_frontend::EngineConfigList get_cudnn_engine_configs(
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph,
bool use_fallback = true) {
SmallVector<cudnn_frontend::GeneratorSource, 2> sources;
sources.push_back([](auto& op_graph) {
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
.setOperationGraph(op_graph)
.setHeurMode(CUDNN_HEUR_MODE_A)
.build();
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
});
if (use_fallback) {
sources.push_back([&backend_type](auto& op_graph) {
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
.setOperationGraph(op_graph)
.setOperation(backend_type)
.build();
return fallback.getFallbackList();
});
}
auto configs =
cudnn_frontend::EngineConfigGenerator(sources.size(), sources.data())
.generate_engine_config(op_graph);
cudnn_frontend::EngineConfigList filtered_configs;
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
if (cudnn_frontend::hasNumericalNote<
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
return true;
}
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
dtype == float32 && !env::enable_tf32()) {
return true;
}
return false;
});
return filtered_configs;
}
// Take |engine_configs| and |op_graph| and find a working execution plans
// from them.
std::optional<cudnn_frontend::ExecutionPlan>
find_cudnn_plan_from_engine_configs(
cudnnHandle_t handle,
const cudnn_frontend::EngineConfigList& engine_configs,
const cudnn_frontend::OperationGraph& op_graph) {
auto op_graph_tag = op_graph.getTag();
for (const auto& config : engine_configs) {
try {
return cudnn_frontend::ExecutionPlanBuilder()
.setHandle(handle)
.setEngineConfig(config, op_graph_tag)
.build();
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
throw;
}
}
}
return std::nullopt;
}
// Prepare workspace and args to execute plan.
template <typename F>
bool prepare_cudnn_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
int num_args,
const int64_t* uids,
void** data_ptrs,
F&& execute) {
int workspace_size = plan.getWorkspaceSize();
array workspace(
workspace_size > 0 ? allocator::malloc(workspace_size)
: allocator::Buffer(nullptr),
{workspace_size},
uint8);
auto args = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(num_args, data_ptrs)
.setUids(num_args, uids)
.build();
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
if (!execute(handle, plan.get_raw_desc(), args.get_raw_desc())) {
return false;
}
encoder.add_temporary(workspace);
return true;
}
} // namespace
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x) {
auto shape = convert_vector<int64_t>(x.shape());
return build_cudnn_tensor(id, x, shape, normalized_strides(x));
}
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x) {
auto [shape, strides] = nhwc_to_nchw(x);
return build_cudnn_tensor(id, x, shape, strides);
}
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x) {
if (x.ndim() == 0) {
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
return build_cudnn_tensor(id, x, scalar_dims, scalar_dims);
}
if (x.ndim() == 1) {
int64_t s = x.shape(0);
SmallVector<int64_t, 4> shape = {1, x.shape(0), 1, 1};
SmallVector<int64_t, 4> strides = {s, 1, s, s};
return build_cudnn_tensor(id, x, shape, strides);
}
if (x.ndim() == 2) {
int64_t s =
x.flags().row_contiguous ? x.shape(1) * x.strides(1) : x.strides(0);
SmallVector<int64_t, 4> shape = {x.shape(0), x.shape(1), 1, 1};
SmallVector<int64_t, 4> strides = {s, x.strides(1), s, s};
return build_cudnn_tensor(id, x, shape, strides);
}
if (x.ndim() == 3 || x.ndim() == 4) {
return build_cudnn_tensor_nchw(id, x);
}
throw std::runtime_error(
fmt::format("Unsupported array with {} dims.", x.ndim()));
}
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype) {
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
return cudnn_frontend::TensorBuilder()
.setDim(scalar_dims.size(), scalar_dims.data())
.setStrides(scalar_dims.size(), scalar_dims.data())
.setId(id)
.setAlignment(16)
.setDataType(dtype_to_cudnn_type(dtype))
.setByValue(true)
.build();
}
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
cudnnHandle_t handle,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph) {
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
if (engine_configs.empty()) {
return std::nullopt;
}
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
}
bool encode_cudnn_plan_with_capturing(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
int num_args,
const int64_t* uids,
void** data_ptrs) {
return prepare_cudnn_plan(
encoder,
plan,
num_args,
uids,
data_ptrs,
[&](auto handle, auto plan, auto args) {
auto capture = encoder.capture_context();
if (cudnnBackendExecute(handle, plan, args) != CUDNN_STATUS_SUCCESS) {
// Discard the captured graph when failed.
capture.discard = true;
return false;
}
return true;
});
}
#if CUDNN_VERSION >= 90500
bool encode_cudnn_plan_with_graph_api(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
CudaGraph& graph,
int num_args,
const int64_t* uids,
void** data_ptrs) {
return prepare_cudnn_plan(
encoder,
plan,
num_args,
uids,
data_ptrs,
[&](auto handle, auto plan, auto args) {
if (!graph) {
graph = CudaGraph(encoder.device());
if (cudnnBackendPopulateCudaGraph(handle, plan, args, graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
} else {
if (cudnnBackendUpdateCudaGraph(handle, plan, args, graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
}
encoder.add_graph_node(graph);
return true;
});
}
#endif
} // namespace mlx::core

View File

@@ -1,164 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/dtype_utils.h"
#include <cudnn_frontend.h>
#include <cudnn_frontend_find_plan.h>
#include <fmt/format.h>
#include <algorithm>
#include <array>
namespace mlx::core {
namespace cu {
class CommandEncoder;
}
// Return pointer alignment of |x|'s data.
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
// Convert the type of elements in |vec| to |T|.
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
// Return an array that can be used as map key for |vec| with size <= MAX_NDIM.
//
// There are 2 differences from the const_param util from kernel_utils.cuh:
// 1. The rest of array is filled with 0.
// 2. This util can be used in .cpp files.
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
// Helpers used by get_data_ptrs to get pointers.
inline void* get_data_ptr(const array& arr) {
return const_cast<void*>(arr.data<void>());
}
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>
inline void* get_data_ptr(T& scalar) {
return &scalar;
}
// Return an array filled with data pointers of args.
template <typename... Args>
inline std::array<void*, sizeof...(Args)> get_data_ptrs(Args&... args) {
return {get_data_ptr(args)...};
}
// Map dtype to cudnn data type.
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return CUDNN_DATA_INT8;
case int32:
return CUDNN_DATA_INT32;
case uint8:
return CUDNN_DATA_UINT8;
case float16:
return CUDNN_DATA_HALF;
case bfloat16:
return CUDNN_DATA_BFLOAT16;
case float32:
return CUDNN_DATA_FLOAT;
case float64:
return CUDNN_DATA_DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
}
}
// Create a tensor descriptor from |x|.
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x);
// Create a tensor descriptor from |x|, and transpose from NHWC to NCHW.
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x);
// Create a tensor descriptor from |x|, make sure it is 4D, and transpose it
// from NHWC to NCHW.
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x);
// Create a 4D scalar tensor descriptor, which is passed by value.
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype);
// Find a working plan for |op_graph|.
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
cudnnHandle_t handle,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph);
// Encode the plan to command buffer by capturing.
bool encode_cudnn_plan_with_capturing(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
int num_args,
const int64_t* uids,
void** data_ptrs);
#if CUDNN_VERSION >= 90500
// Encode the plan to command buffer by using native graph api of cudnn. If the
// |graph| is empty it will be populated, otherwise it will be updated.
bool encode_cudnn_plan_with_graph_api(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
CudaGraph& graph,
int num_args,
const int64_t* uids,
void** data_ptrs);
#endif
// Helpers to make calls like encode_cudnn_plan(..., {'x', 'y', 'z'}, x, y, z).
template <typename... Args>
bool encode_cudnn_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
std::initializer_list<int64_t> uids,
Args&... args) {
assert(uids.size() == sizeof...(args));
auto data_ptrs = get_data_ptrs(args...);
return encode_cudnn_plan_with_capturing(
encoder, plan, uids.size(), uids.begin(), data_ptrs.data());
}
#if CUDNN_VERSION >= 90500
template <typename... Args>
bool encode_cudnn_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
CudaGraph& graph,
std::initializer_list<int64_t> uids,
Args&... args) {
assert(uids.size() == sizeof...(args));
auto data_ptrs = get_data_ptrs(args...);
return encode_cudnn_plan_with_graph_api(
encoder, plan, graph, uids.size(), uids.begin(), data_ptrs.data());
}
#endif
} // namespace mlx::core

View File

@@ -1,379 +0,0 @@
// Copyright © 2025 Apple Inc.
#include <iostream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/fast.h"
#include "mlx/fast_primitives.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core::fast {
namespace {
constexpr const char* default_header = R"(
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
#define inf cuda::std::numeric_limits<float>::infinity()
)";
std::string template_arguments_hash(
const std::vector<std::pair<std::string, TemplateArg>>& template_args) {
if (template_args.empty()) {
return "";
}
std::string hash;
hash.reserve(512);
for (const auto& [name, arg] : template_args) {
if (std::holds_alternative<int>(arg)) {
hash += fmt::format("_{}", std::get<int>(arg));
} else if (std::holds_alternative<bool>(arg)) {
hash += (std::get<bool>(arg)) ? "_t" : "_f";
} else if (std::holds_alternative<Dtype>(arg)) {
hash += "_";
hash += get_type_string(std::get<Dtype>(arg));
}
}
return hash;
}
std::string build_kernel(
const std::string& func_name,
const std::string& header,
const std::string& source,
const std::vector<std::string>& input_names,
const std::vector<array>& inputs,
const std::vector<std::string>& output_names,
const std::vector<Dtype>& output_dtypes,
const std::vector<std::pair<std::string, TemplateArg>>& template_args,
const std::vector<CustomKernelShapeInfo>& shape_infos) {
std::string kernel_source;
kernel_source.reserve(header.size() + source.size() + 8192);
kernel_source += default_header;
kernel_source += header;
kernel_source +=
"namespace mlx::core::cu {\n\n"
"namespace cg = cooperative_groups;\n\n";
kernel_source += "__global__ void ";
kernel_source += func_name;
kernel_source += "(\n";
// Add inputs
for (int i = 0; i < inputs.size(); ++i) {
const auto& name = input_names[i];
const auto& arr = inputs[i];
kernel_source += " const ";
kernel_source += dtype_to_cuda_type(arr.dtype());
kernel_source += "* ";
kernel_source += name;
kernel_source += ",\n";
// Add input shape, strides and ndim if present in the source
if (arr.ndim() > 0) {
if (shape_infos[i].shape) {
kernel_source += " const __grid_constant__ Shape ";
kernel_source += name;
kernel_source += "_shape,\n";
}
if (shape_infos[i].strides) {
kernel_source += " const __grid_constant__ Strides ";
kernel_source += name;
kernel_source += "_strides,\n";
}
if (shape_infos[i].ndim) {
kernel_source += " const __grid_constant__ int ";
kernel_source += name;
kernel_source += "_ndim,\n";
}
}
}
// Add outputs
for (int i = 0; i < output_names.size(); ++i) {
const auto& name = output_names[i];
const auto& dtype = output_dtypes[i];
kernel_source += " ";
kernel_source += dtype_to_cuda_type(dtype);
kernel_source += "* ";
kernel_source += name;
if (i < output_names.size() - 1) {
kernel_source += ",\n";
} else {
kernel_source += ") {\n";
}
}
// Set compile time constants
if (!template_args.empty()) {
for (const auto& [name, arg] : template_args) {
if (std::holds_alternative<int>(arg)) {
kernel_source +=
fmt::format(" constexpr int {} = {};\n", name, std::get<int>(arg));
} else if (std::holds_alternative<bool>(arg)) {
kernel_source += fmt::format(
" constexpr bool {} = {};\n", name, std::get<bool>(arg));
} else {
kernel_source += fmt::format(
" using {} = {};\n",
name,
dtype_to_cuda_type(std::get<Dtype>(arg)));
}
}
kernel_source += "\n";
}
kernel_source += source;
kernel_source += "\n}\n\n} // namespace mlx::core::cu\n";
return kernel_source;
}
} // namespace
CustomKernelFunction cuda_kernel(
const std::string& name,
const std::vector<std::string>& input_names,
const std::vector<std::string>& output_names,
const std::string& source,
const std::string& header,
bool ensure_row_contiguous,
int shared_memory) {
if (output_names.empty()) {
throw std::invalid_argument(
"[custom_kernel] Must specify at least one output.");
}
std::vector<CustomKernelShapeInfo> shape_infos;
for (auto& n : input_names) {
CustomKernelShapeInfo shape_info;
shape_info.shape = source.find(n + "_shape") != std::string::npos;
shape_info.strides = source.find(n + "_strides") != std::string::npos;
shape_info.ndim = source.find(n + "_ndim") != std::string::npos;
shape_infos.push_back(shape_info);
}
return [=, shape_infos = std::move(shape_infos)](
const std::vector<array>& inputs,
const std::vector<Shape>& output_shapes,
const std::vector<Dtype>& output_dtypes,
std::tuple<int, int, int> grid,
std::tuple<int, int, int> threadgroup,
const std::vector<std::pair<std::string, TemplateArg>>&
template_args = {},
std::optional<float> init_value = std::nullopt,
bool verbose = false,
StreamOrDevice s_ = {}) {
if (inputs.size() != input_names.size()) {
std::ostringstream msg;
msg << "[custom_kernel] Expected `inputs` to have size "
<< input_names.size() << " but got size " << inputs.size() << "."
<< std::endl;
throw std::invalid_argument(msg.str());
}
if (output_shapes.size() != output_names.size()) {
std::ostringstream msg;
msg << "[custom_kernel] Expected `output_shapes` to have size "
<< output_names.size() << " but got size " << output_shapes.size()
<< "." << std::endl;
throw std::invalid_argument(msg.str());
}
if (output_dtypes.size() != output_names.size()) {
std::ostringstream msg;
msg << "[custom_kernel] Expected `output_dtypes` to have size "
<< output_names.size() << " but got size " << output_dtypes.size()
<< "." << std::endl;
throw std::invalid_argument(msg.str());
}
auto s = to_stream(s_);
if (s.device != Device::gpu) {
throw std::invalid_argument("[custom_kernel] Only supports the GPU.");
}
std::string kernel_name =
"custom_kernel_" + name + template_arguments_hash(template_args);
std::string kernel_source = build_kernel(
kernel_name,
header,
source,
input_names,
inputs,
output_names,
output_dtypes,
template_args,
shape_infos);
if (verbose) {
std::cout << "Generated source code for `" << kernel_name
<< "`:" << std::endl
<< "```" << std::endl
<< kernel_source << std::endl
<< "```" << std::endl;
}
return array::make_arrays(
std::move(output_shapes),
std::move(output_dtypes),
std::make_shared<CustomKernel>(
s,
std::move(kernel_name),
std::move(kernel_source),
grid,
threadgroup,
shape_infos,
ensure_row_contiguous,
init_value,
std::vector<ScalarArg>{},
false,
shared_memory),
std::move(inputs));
};
}
std::vector<array> precompiled_cuda_kernel(
const std::string& name,
const std::string& compiled_source,
const std::vector<array>& inputs,
const std::vector<Shape>& output_shapes,
const std::vector<Dtype>& output_dtypes,
const std::vector<ScalarArg>& scalars,
std::tuple<int, int, int> grid,
std::tuple<int, int, int> threadgroup,
int shared_memory,
std::optional<float> init_value,
bool ensure_row_contiguous,
StreamOrDevice s) {
std::vector<CustomKernelShapeInfo> shape_infos(
inputs.size(), CustomKernelShapeInfo{false, false, false});
return array::make_arrays(
output_shapes,
output_dtypes,
std::make_shared<CustomKernel>(
to_stream(s),
name,
compiled_source,
grid,
threadgroup,
shape_infos,
ensure_row_contiguous,
init_value,
scalars,
true,
shared_memory),
inputs);
}
void CustomKernel::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("CustomKernel::eval_gpu");
auto& s = stream();
std::vector<array> copies;
// Allocate and initialize the output arrays
for (auto& out : outputs) {
if (init_value_) {
copies.emplace_back(init_value_.value(), out.dtype());
fill_gpu(copies.back(), out, s);
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
}
// Create the input arrays and copy if needed
auto check_input = [&copies, &s, this](const array& x) -> const array {
bool no_copy = x.flags().row_contiguous;
if (!ensure_row_contiguous_ || no_copy) {
return x;
} else {
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
copy_gpu(x, copies.back(), CopyType::General, s);
return copies.back();
}
};
std::vector<array> checked_inputs;
for (const array& in : inputs) {
checked_inputs.push_back(check_input(in));
}
// Compile the custom kernel
std::string kernel_name =
(is_precompiled_) ? name_ : "mlx::core::cu::" + name_;
cu::JitModule& mod = cu::get_jit_module(
s.device,
name_,
[&]() {
return std::make_tuple(
is_precompiled_, source_, std::vector{kernel_name});
},
false);
// Make the arguments
cu::KernelArgs args;
for (int i = 0; i < checked_inputs.size(); i++) {
const array& in = checked_inputs[i];
auto& shape_info = shape_infos_[i];
args.append(in);
if (shape_info.shape) {
args.append_ndim(in.shape());
}
if (shape_info.strides) {
args.append_ndim(in.strides());
}
if (shape_info.ndim) {
args.append<int32_t>(in.ndim());
}
}
for (auto& out : outputs) {
args.append(out);
}
for (auto& s : scalar_arguments_) {
if (std::holds_alternative<bool>(s)) {
args.append(std::get<bool>(s));
} else if (std::holds_alternative<int>(s)) {
args.append(std::get<int>(s));
} else if (std::holds_alternative<float>(s)) {
args.append(std::get<float>(s));
}
}
// Make the grid
const auto [tx, ty, tz] = threadgroup_;
const auto [gx, gy, gz] = grid_;
dim3 block(std::min(tx, gx), std::min(ty, gy), std::min(tz, gz));
dim3 grid((gx + tx - 1) / tx, (gy + ty - 1) / ty, (gz + tz - 1) / tz);
// Call the kernel
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : checked_inputs) {
encoder.set_input_array(in);
}
for (const auto& out : outputs) {
encoder.set_output_array(out);
}
for (const auto& t : copies) {
encoder.add_temporary(t);
}
auto kernel =
mod.get_kernel(kernel_name, [smem = shared_memory_](CUfunction kernel) {
if (smem > 0 && smem > 48000) {
cuFuncSetAttribute(
kernel, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem);
}
});
encoder.add_kernel_node(kernel, grid, block, shared_memory_, args.args());
}
} // namespace mlx::core::fast

View File

@@ -14,6 +14,10 @@ namespace mlx::core::cu {
namespace {
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
// This should be less than 255
constexpr int default_max_nodes_per_graph = 20;
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
void check_cudnn_error(const char* name, cudnnStatus_t err) {
@@ -23,11 +27,11 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
}
}
bool use_cuda_graphs() {
static bool use_graphs = []() {
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
int cuda_graph_cache_size() {
static int cache_size = []() {
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
}();
return use_graphs;
return cache_size;
}
} // namespace
@@ -64,8 +68,8 @@ Device::~Device() {
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs.
static thread_local int current = 0;
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
@@ -82,20 +86,14 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
enc.device().make_current();
if (!use_cuda_graphs()) {
return;
}
CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
}
CommandEncoder::CaptureContext::~CaptureContext() {
if (!use_cuda_graphs()) {
enc.node_count_++;
return;
}
graph.end_capture(enc.stream());
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
if (discard) {
return;
}
@@ -109,9 +107,6 @@ CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
enc.in_concurrent_ = false;
if (!use_cuda_graphs()) {
return;
}
// Use an empty graph node for synchronization
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
@@ -190,46 +185,37 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
}
CommandEncoder::CommandEncoder(Device& d)
: device_(d),
stream_(d),
graph_(d),
worker_(d),
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {}
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::set_input_array(const array& arr) {
if (!use_cuda_graphs()) {
return;
}
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
}
void CommandEncoder::set_output_array(const array& arr) {
if (!use_cuda_graphs()) {
return;
}
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
active_outputs_.push_back(id);
}
void CommandEncoder::maybe_commit() {
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
commit();
}
}
void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
if (!use_cuda_graphs()) {
node_count_++;
CHECK_CUDA_ERROR(cudaLaunchKernel(
func, grid_dim, block_dim, params, smem_bytes, stream()));
return;
}
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
@@ -245,23 +231,6 @@ void CommandEncoder::add_kernel_node(
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
if (!use_cuda_graphs()) {
node_count_++;
CHECK_CUDA_ERROR(cuLaunchKernel(
func,
grid_dim.x,
grid_dim.y,
grid_dim.z,
block_dim.x,
block_dim.y,
block_dim.z,
smem_bytes,
stream(),
params,
nullptr));
return;
}
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDimX = grid_dim.x;
@@ -288,38 +257,20 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
}
void CommandEncoder::add_graph_node(cudaGraph_t child) {
if (!use_cuda_graphs()) {
node_count_++;
CudaGraphExec graph_exec;
graph_exec.instantiate(child);
device_.make_current();
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
return;
}
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
insert_graph_dependencies(GraphNode{node, 'G'});
}
int CommandEncoder::get_num_ops() {
return node_count_;
}
void CommandEncoder::commit() {
nvtx3::scoped_range r("CommandEncoder::commit");
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
if (use_cuda_graphs() && node_count_ > 0) {
if (node_count_ > 0) {
if (!from_nodes_.empty()) {
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
graph_,
from_nodes_.data(),
to_nodes_.data(),
#if CUDART_VERSION >= 13000
nullptr, // edgeData
#endif // CUDART_VERSION >= 13000
from_nodes_.size()));
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
}
graph_key_ += ".";
@@ -353,18 +304,19 @@ void CommandEncoder::commit() {
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
// Reset state
node_count_ = 0;
graph_node_count_ = 0;
empty_node_count_ = 0;
from_nodes_.clear();
to_nodes_.clear();
graph_key_.clear();
node_map_.clear();
graph_ = CudaGraph(device_);
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
}
// Put completion handlers in a batch.
worker_.commit(stream_);
node_count_ = 0;
}
void CommandEncoder::synchronize() {

View File

@@ -21,7 +21,7 @@ class CommandEncoder {
struct CaptureContext {
CaptureContext(CommandEncoder& enc);
~CaptureContext();
CudaGraph graph;
cudaGraph_t graph;
CommandEncoder& enc;
bool discard{false};
};
@@ -76,6 +76,9 @@ class CommandEncoder {
uint32_t smem_bytes,
void** params);
// Low-level graph helpers.
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
void add_graph_node(cudaGraph_t child);
void add_temporary(const array& arr) {
@@ -83,7 +86,7 @@ class CommandEncoder {
}
void add_completed_handler(std::function<void()> task);
int get_num_ops();
void maybe_commit();
void commit();
Device& device() {
@@ -98,9 +101,6 @@ class CommandEncoder {
void synchronize();
private:
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
struct GraphNode {
cudaGraphNode_t node;
// K = kernel
@@ -115,7 +115,7 @@ class CommandEncoder {
Device& device_;
CudaStream stream_;
CudaGraph graph_;
cudaGraph_t graph_;
Worker worker_;
char node_count_{0};
char graph_node_count_{0};
@@ -140,7 +140,7 @@ class Device {
Device(const Device&) = delete;
Device& operator=(const Device&) = delete;
// Make this device the current cuda device, this method is thread-safe.
// Make this device the current cuda device, required by some cuda calls.
void make_current();
CommandEncoder& get_command_encoder(Stream s);

View File

@@ -204,12 +204,6 @@ struct Power {
__device__ T operator()(T base, T exp) {
if constexpr (cuda::std::is_integral_v<T>) {
T res = 1;
// Raising an integer to a negative power is undefined
if constexpr (cuda::std::is_signed_v<T>) {
if (exp < 0) {
return 0;
}
}
while (exp) {
if (exp & 1) {
res *= base;

View File

@@ -6,6 +6,7 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <thrust/iterator/transform_iterator.h>
namespace mlx::core::cu {
@@ -115,4 +116,15 @@ inline __host__ __device__ auto cast_to(SrcT x) {
return CastOp<SrcT, DstT>{}(x);
}
// Return an iterator that cast the value to DstT using CastOp.
template <typename DstT, typename Iterator>
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
if constexpr (std::is_same_v<SrcT, DstT>) {
return it;
} else {
return thrust::make_transform_iterator(it, CastOp<SrcT, DstT>{});
}
}
} // namespace mlx::core::cu

View File

@@ -2,8 +2,6 @@
#pragma once
#include <cuda_fp8.h>
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
@@ -259,8 +257,8 @@ struct Round {
struct Sigmoid {
template <typename T>
__device__ T operator()(T x) {
T y = 1 / (1 + exp(abs(x)));
return (x < 0) ? y : 1 - y;
T y = 1 / (1 + exp(-abs(x)));
return (x < 0) ? 1 - y : y;
}
};
@@ -336,17 +334,4 @@ struct Tanh {
}
};
struct ToFP8 {
template <typename T>
__device__ uint8_t operator()(T x) {
return __nv_fp8_e4m3(x).__x;
}
};
struct FromFP8 {
__device__ float operator()(uint8_t x) {
return float(*(__nv_fp8_e4m3*)(&x));
}
};
} // namespace mlx::core::cu

View File

@@ -1,6 +1,6 @@
// Copyright © 2025 Apple Inc.
// This file must not include any host-only code, utilities that work under both
// This file must not include any host-only code, utilies that work under both
// host and device can be put here.
//
// See more about the requirements at:
@@ -146,23 +146,6 @@ inline __device__ void store_vector(
}
}
template <int N, typename T, typename SizeT>
inline __device__ void store_vector(
T* ptr,
uint32_t offset,
const AlignedVector<T, N>& vec,
SizeT size,
int64_t stride) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size && stride == 1) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
ptr[stride * (offset * N + i)] = vec[i];
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Type limits utils
///////////////////////////////////////////////////////////////////////////////
@@ -202,7 +185,7 @@ struct Limits<
}
};
// CUDA 11 does not have host side arithmetic operators for half types.
// CUDA 11 does not have host side arithmatic operators for half types.
template <typename T>
struct Limits<
T,

View File

@@ -1,56 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/distributed/primitives.h"
#include "mlx/primitives.h"
#include <cassert>
namespace mlx::core::distributed {
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto set_input_output =
[s = stream()](const array& in, array& out) -> std::pair<array, array> {
if (!in.flags().row_contiguous) {
copy_gpu(in, out, CopyType::General, s);
return {out, out};
} else if (in.is_donatable()) {
out.copy_shared_buffer(in);
return {in, out};
} else {
out.set_data(allocator::malloc(out.nbytes()));
return {in, out};
}
};
auto [input, output] = set_input_output(inputs[0], outputs[0]);
auto& encoder = cu::get_command_encoder(stream());
encoder.set_input_array(input);
encoder.set_output_array(output);
auto capture = encoder.capture_context();
auto& s = stream();
switch (reduce_type_) {
case Sum:
distributed::detail::all_sum(group(), input, output, s);
break;
case Max:
distributed::detail::all_max(group(), input, output, s);
break;
case Min:
distributed::detail::all_min(group(), input, output, s);
break;
default:
throw std::runtime_error(
"Only all reduce sum, max, and min are supported.");
}
}
} // namespace mlx::core::distributed

View File

@@ -5,24 +5,18 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/available.h"
#include "mlx/primitives.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core::gpu {
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
constexpr int default_max_nodes_per_graph = 20;
bool is_available() {
return true;
}
void new_stream(Stream s) {
// Force initalization of CUDA, so CUDA runtime get destroyed at last.
// Force initalization of cuda, so cuda runtime get destroyed at last.
cudaFree(nullptr);
// Make sure CUDA event pool get destroyed after device and stream.
cu::CudaEvent::init_pool();
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
}
@@ -40,8 +34,7 @@ void eval(array& arr) {
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
auto& stream = arr.primitive().stream();
auto& encoder = cu::get_command_encoder(stream);
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
// Keep used buffers alive until kernel finishes running.
for (auto& in : arr.inputs()) {
// Except for the donated one.
@@ -52,14 +45,7 @@ void eval(array& arr) {
for (auto& s : arr.siblings()) {
encoder.add_temporary(s);
}
if (encoder.get_num_ops() >=
env::max_ops_per_buffer(default_max_nodes_per_graph)) {
scheduler::notify_new_task(stream);
encoder.add_completed_handler(
[stream]() { scheduler::notify_task_completion(stream); });
encoder.commit();
}
encoder.maybe_commit();
}
void finalize(Stream s) {

View File

@@ -3,12 +3,10 @@
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/event.h"
#include "mlx/scheduler.h"
#include <map>
#include <vector>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
@@ -19,180 +17,104 @@ namespace cu {
// CudaEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
// Manage cached cudaEvent_t objects.
class CudaEventPool {
// Cuda event managed with RAII.
class CudaEventHandle {
public:
CudaEventHandle create(Device& d, int flags) {
if (!on_creation_thread()) {
return CudaEventHandle(d, flags);
}
auto& cache = cache_for(d, flags);
if (cache.empty()) {
return CudaEventHandle(d, flags);
} else {
CudaEventHandle ret = std::move(cache.back());
cache.pop_back();
return ret;
}
CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
}
void release(CudaEventHandle event) {
if (!on_creation_thread()) {
// Event will be destroyed directly instead of getting moved to cache.
return;
}
cache_for(event.device, event.flags).push_back(std::move(event));
~CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
}
CudaEventHandle(const CudaEventHandle&) = delete;
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
operator cudaEvent_t() const {
return event_;
}
private:
std::vector<CudaEventHandle>& cache_for(Device& d, int flags) {
return cache_[d.cuda_device()][flags];
}
bool on_creation_thread() {
return std::this_thread::get_id() == thread_id_;
}
// The CudaEvent may be created and destroyed on different threads (for
// example when waiting on GPU work in CPU stream), we don't want to make
// the cache thread-safe as it adds overhead, so we just skip cache when
// using events in worker threads.
std::thread::id thread_id_{std::this_thread::get_id()};
// {device: {flags: [events]}}
std::map<int, std::map<int, std::vector<CudaEventHandle>>> cache_;
cudaEvent_t event_;
};
CudaEventPool& cuda_event_pool() {
static CudaEventPool pool;
return pool;
}
} // namespace
CudaEventHandle::CudaEventHandle(Device& d, int flags)
: device(d), flags(flags) {
device.make_current();
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(&handle_, flags));
assert(handle_ != nullptr);
}
CudaEvent::CudaEvent(Device& d, int flags)
: event_(cuda_event_pool().create(d, flags)) {}
CudaEvent::~CudaEvent() {
cuda_event_pool().release(std::move(event_));
}
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
void CudaEvent::wait() {
nvtx3::scoped_range r("cu::CudaEvent::wait");
event_.device.make_current();
cudaEventSynchronize(event_);
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaEventSynchronize(*event_);
}
void CudaEvent::wait(cudaStream_t stream) {
event_.device.make_current();
cudaStreamWaitEvent(stream, event_);
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaStreamWaitEvent(stream, *event_);
}
void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
wait(enc.stream());
}
}
void CudaEvent::record(cudaStream_t stream) {
event_.device.make_current();
cudaEventRecord(event_, stream);
cudaEventRecord(*event_, stream);
recorded_ = true;
}
void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
record(enc.stream());
}
}
bool CudaEvent::completed() const {
// Note: cudaEventQuery can be safely called from any device.
return cudaEventQuery(event_) == cudaSuccess;
return cudaEventQuery(*event_) == cudaSuccess;
}
// static
void CudaEvent::init_pool() {
cuda_event_pool();
}
// Wraps CudaEvent with a few features:
// 1. The class can be copied.
// 2. Make wait/record work with CPU streams.
// 3. Add checks for waiting on un-recorded event.
class CopyableCudaEvent {
public:
explicit CopyableCudaEvent(Device& d)
: event_(std::make_shared<CudaEvent>(
d,
cudaEventDisableTiming | cudaEventBlockingSync)) {}
void wait() {
event_->wait();
}
void wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable {
check_recorded();
event_->wait();
});
} else {
check_recorded();
auto& encoder = cu::get_command_encoder(s);
encoder.commit();
event_->wait(encoder.stream());
}
}
void record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on CPU stream.");
} else {
auto& encoder = cu::get_command_encoder(s);
encoder.commit();
event_->record(encoder.stream());
recorded_ = true;
}
}
bool is_signaled() const {
return recorded_ && event_->completed();
}
private:
void check_recorded() const {
if (!recorded_) {
throw std::runtime_error(
"Should not wait on a CudaEvent before recording.");
}
}
std::shared_ptr<CudaEvent> event_;
bool recorded_{false};
};
///////////////////////////////////////////////////////////////////////////////
// AtomicEvent implementations
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
__host__ __device__ void event_wait(AtomicEvent::Atomic* ac, uint64_t value) {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
ac->wait(current);
}
}
__host__ __device__ void event_signal(AtomicEvent::Atomic* ac, uint64_t value) {
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
ac->store(value);
ac->notify_all();
}
__global__ void event_wait_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_wait(ac, value);
}
__global__ void event_signal_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
AtomicEvent::AtomicEvent() {
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
SharedEvent::SharedEvent() {
buf_ = std::shared_ptr<Buffer>(
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
allocator().free(*ptr);
@@ -201,17 +123,17 @@ AtomicEvent::AtomicEvent() {
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
}
void AtomicEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::wait");
event_wait(atomic(), value);
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(to_atomic(buf_), value);
}
void AtomicEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(atomic(), value);
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
}
void AtomicEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::wait(s)");
void SharedEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
@@ -222,17 +144,17 @@ void AtomicEvent::wait(Stream s, uint64_t value) {
}
}
void AtomicEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::signal");
event_signal(atomic(), value);
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(to_atomic(buf_), value);
}
void AtomicEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(atomic(), value);
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
}
void AtomicEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::signal(s)");
void SharedEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
if (s.device == mlx::core::Device::cpu) {
// Signal through a GPU stream so the atomic is updated in GPU - updating
// the atomic in CPU sometimes does not get GPU notified.
@@ -246,14 +168,14 @@ void AtomicEvent::signal(Stream s, uint64_t value) {
}
}
bool AtomicEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::AtomicEvent::is_signaled");
return atomic()->load() >= value;
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return to_atomic(buf_)->load() >= value;
}
uint64_t AtomicEvent::value() const {
nvtx3::scoped_range r("cu::AtomicEvent::value");
return atomic()->load();
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return to_atomic(buf_)->load();
}
} // namespace cu
@@ -266,14 +188,14 @@ namespace {
struct EventImpl {
// CudaEvent is preferred when possible because it is fast, however we have
// to fallback to AtomicEvent in following cases:
// to fallback to SharedEvent in following cases:
// 1. the event is used to wait/signal a cpu stream;
// 2. signal value other than 1 has been specified.
std::unique_ptr<cu::CopyableCudaEvent> cuda;
std::unique_ptr<cu::AtomicEvent> atomic;
std::unique_ptr<cu::CudaEvent> cuda;
std::unique_ptr<cu::SharedEvent> shared;
bool is_created() const {
return cuda || atomic;
return cuda || shared;
}
void ensure_created(Stream s, uint64_t signal_value) {
@@ -281,10 +203,10 @@ struct EventImpl {
return;
}
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
nvtx3::mark("Using slow AtomicEvent");
atomic = std::make_unique<cu::AtomicEvent>();
nvtx3::mark("Using slow SharedEvent");
shared = std::make_unique<cu::SharedEvent>();
} else {
cuda = std::make_unique<cu::CopyableCudaEvent>(cu::device(s.device));
cuda = std::make_unique<cu::CudaEvent>();
}
}
};
@@ -303,7 +225,7 @@ void Event::wait() {
assert(value() == 1);
event->cuda->wait();
} else {
event->atomic->wait(value());
event->shared->wait(value());
}
}
@@ -314,7 +236,7 @@ void Event::wait(Stream s) {
assert(value() == 1);
event->cuda->wait(s);
} else {
event->atomic->wait(s, value());
event->shared->wait(s, value());
}
}
@@ -325,7 +247,7 @@ void Event::signal(Stream s) {
assert(value() == 1);
event->cuda->record(s);
} else {
event->atomic->signal(s, value());
event->shared->signal(s, value());
}
}
@@ -336,9 +258,9 @@ bool Event::is_signaled() const {
}
if (event->cuda) {
assert(value() == 1);
return event->cuda->is_signaled();
return event->cuda->recorded() && event->cuda->completed();
} else {
return event->atomic->is_signaled(value());
return event->shared->is_signaled(value());
}
}

Some files were not shown because too many files have changed in this diff Show More