mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
9 Commits
2b95d0c270
...
cpp20
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4515866024 | ||
|
|
6fe2b82926 | ||
|
|
c75b5e9d19 | ||
|
|
6f12eda549 | ||
|
|
a541fe9312 | ||
|
|
2bdd20f257 | ||
|
|
aa7b9688ce | ||
|
|
0a41393dba | ||
|
|
e300a01f4a |
436
.circleci/config.yml
Normal file
436
.circleci/config.yml
Normal file
@@ -0,0 +1,436 @@
|
|||||||
|
version: 2.1
|
||||||
|
|
||||||
|
orbs:
|
||||||
|
apple: ml-explore/pr-approval@0.1.0
|
||||||
|
|
||||||
|
parameters:
|
||||||
|
nightly_build:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
weekly_build:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
test_release:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
linux_release:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build_documentation:
|
||||||
|
parameters:
|
||||||
|
upload-docs:
|
||||||
|
type: boolean
|
||||||
|
default: false
|
||||||
|
macos:
|
||||||
|
xcode: "16.0.0"
|
||||||
|
resource_class: macos.m1.medium.gen1
|
||||||
|
steps:
|
||||||
|
- checkout
|
||||||
|
- run:
|
||||||
|
name: Install
|
||||||
|
command: |
|
||||||
|
brew install python@3.9
|
||||||
|
brew install doxygen
|
||||||
|
python3.9 -m venv env
|
||||||
|
source env/bin/activate
|
||||||
|
pip install --upgrade pip
|
||||||
|
pip install --upgrade cmake
|
||||||
|
pip install -r docs/requirements.txt
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||||
|
- when:
|
||||||
|
condition:
|
||||||
|
not: << parameters.upload-docs >>
|
||||||
|
steps:
|
||||||
|
- run:
|
||||||
|
name: Build documentation
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
cd docs && doxygen && make html O=-W
|
||||||
|
- when:
|
||||||
|
condition: << parameters.upload-docs >>
|
||||||
|
steps:
|
||||||
|
- add_ssh_keys:
|
||||||
|
fingerprints:
|
||||||
|
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
|
||||||
|
- run:
|
||||||
|
name: Upload documentation
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
git config user.email "mlx@group.apple.com"
|
||||||
|
git config user.name "CircleCI Docs"
|
||||||
|
git checkout gh-pages
|
||||||
|
git rebase main
|
||||||
|
cd docs
|
||||||
|
git rm -rf build/html
|
||||||
|
doxygen && make html O=-W
|
||||||
|
git add -f build/html
|
||||||
|
git commit -m "rebase"
|
||||||
|
git push -f origin gh-pages
|
||||||
|
|
||||||
|
linux_build_and_test:
|
||||||
|
machine:
|
||||||
|
image: ubuntu-2404:2024.11.1
|
||||||
|
|
||||||
|
steps:
|
||||||
|
- checkout
|
||||||
|
- run:
|
||||||
|
name: Run style checks
|
||||||
|
command: |
|
||||||
|
pip install pre-commit
|
||||||
|
pre-commit run --all
|
||||||
|
if ! git diff --quiet; then echo 'Style checks failed, please install pre-commit and run pre-commit run --all and push the change'; exit 1; fi
|
||||||
|
- run:
|
||||||
|
name: Install dependencies
|
||||||
|
command: |
|
||||||
|
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||||
|
sudo apt-get update -y
|
||||||
|
sudo apt-get install -y python3.9 python3.9-distutils python3.9-dev
|
||||||
|
python3.9 -m pip install --upgrade cmake
|
||||||
|
python3.9 -m pip install nanobind==2.4.0
|
||||||
|
python3.9 -m pip install numpy
|
||||||
|
sudo apt-get update
|
||||||
|
sudo apt-get install libopenblas-dev liblapacke-dev openmpi-bin libopenmpi-dev
|
||||||
|
- run:
|
||||||
|
name: Install Python package
|
||||||
|
command: |
|
||||||
|
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF -DPython_EXECUTABLE=/usr/bin/python3.9" \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
python3.9 setup.py build_ext --inplace
|
||||||
|
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF -DPython_EXECUTABLE=/usr/bin/python3.9" \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
python3.9 setup.py develop
|
||||||
|
- run:
|
||||||
|
name: Generate package stubs
|
||||||
|
command: |
|
||||||
|
echo "stubs"
|
||||||
|
python3.9 -m pip install typing_extensions
|
||||||
|
python3.9 setup.py generate_stubs
|
||||||
|
- run:
|
||||||
|
name: Run Python tests
|
||||||
|
command: |
|
||||||
|
python3.9 -m unittest discover python/tests -v
|
||||||
|
- run:
|
||||||
|
name: Build CPP only
|
||||||
|
command: |
|
||||||
|
mkdir -p build && cd build
|
||||||
|
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||||
|
make -j `nproc`
|
||||||
|
- run:
|
||||||
|
name: Run CPP tests
|
||||||
|
command: ./build/tests/tests
|
||||||
|
|
||||||
|
mac_build_and_test:
|
||||||
|
parameters:
|
||||||
|
xcode_version:
|
||||||
|
type: string
|
||||||
|
default: "16.0.0"
|
||||||
|
deployment_target:
|
||||||
|
type: string
|
||||||
|
default: ""
|
||||||
|
macos:
|
||||||
|
xcode: << parameters.xcode_version >>
|
||||||
|
resource_class: macos.m1.medium.gen1
|
||||||
|
steps:
|
||||||
|
- checkout
|
||||||
|
- run:
|
||||||
|
name: Install dependencies
|
||||||
|
command: |
|
||||||
|
brew install python@3.9
|
||||||
|
brew install openmpi
|
||||||
|
python3.9 -m venv env
|
||||||
|
source env/bin/activate
|
||||||
|
pip install --upgrade pip
|
||||||
|
pip install --upgrade cmake
|
||||||
|
pip install nanobind==2.4.0
|
||||||
|
pip install numpy
|
||||||
|
pip install torch
|
||||||
|
pip install tensorflow
|
||||||
|
pip install unittest-xml-reporting
|
||||||
|
- run:
|
||||||
|
name: Install Python package
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS=-DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >> \
|
||||||
|
pip install -e . -v
|
||||||
|
- run:
|
||||||
|
name: Generate package stubs
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
pip install typing_extensions
|
||||||
|
python setup.py generate_stubs
|
||||||
|
- run:
|
||||||
|
name: Run Python tests
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||||
|
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||||
|
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||||
|
- run:
|
||||||
|
name: Build example extension
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
cd examples/extensions
|
||||||
|
pip install -r requirements.txt
|
||||||
|
python setup.py build_ext -j8
|
||||||
|
- store_test_results:
|
||||||
|
path: test-results
|
||||||
|
- run:
|
||||||
|
name: Build CPP only
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
mkdir -p build
|
||||||
|
cd build/
|
||||||
|
cmake .. \
|
||||||
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >>
|
||||||
|
make -j `sysctl -n hw.ncpu`
|
||||||
|
- run:
|
||||||
|
name: Run CPP tests
|
||||||
|
command: |
|
||||||
|
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
|
||||||
|
- run:
|
||||||
|
name: Build small binary
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
cd build/
|
||||||
|
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||||
|
-DBUILD_SHARED_LIBS=ON \
|
||||||
|
-DMLX_BUILD_CPU=OFF \
|
||||||
|
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||||
|
-DMLX_BUILD_GGUF=OFF \
|
||||||
|
-DMLX_METAL_JIT=ON \
|
||||||
|
-DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >>
|
||||||
|
make -j `sysctl -n hw.ncpu`
|
||||||
|
- run:
|
||||||
|
name: Run Python tests with JIT
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS="-DMLX_METAL_JIT=ON -DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >>" \
|
||||||
|
pip install -e . -v
|
||||||
|
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||||
|
METAL_DEBUG_ERROR_MODE=0 \
|
||||||
|
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||||
|
|
||||||
|
build_release:
|
||||||
|
parameters:
|
||||||
|
python_version:
|
||||||
|
type: string
|
||||||
|
default: "3.9"
|
||||||
|
xcode_version:
|
||||||
|
type: string
|
||||||
|
default: "16.0.0"
|
||||||
|
deployment_target:
|
||||||
|
type: string
|
||||||
|
default: ""
|
||||||
|
build_env:
|
||||||
|
type: string
|
||||||
|
default: ""
|
||||||
|
macos:
|
||||||
|
xcode: << parameters.xcode_version >>
|
||||||
|
resource_class: macos.m1.medium.gen1
|
||||||
|
steps:
|
||||||
|
- checkout
|
||||||
|
- run:
|
||||||
|
name: Install dependencies
|
||||||
|
command: |
|
||||||
|
brew install python@<< parameters.python_version >>
|
||||||
|
brew install openmpi
|
||||||
|
python<< parameters.python_version >> -m venv env
|
||||||
|
source env/bin/activate
|
||||||
|
pip install --upgrade pip
|
||||||
|
pip install --upgrade cmake
|
||||||
|
pip install nanobind==2.4.0
|
||||||
|
pip install --upgrade setuptools
|
||||||
|
pip install numpy
|
||||||
|
pip install twine
|
||||||
|
pip install build
|
||||||
|
- run:
|
||||||
|
name: Install Python package
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
DEV_RELEASE=1 \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS=-DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >> \
|
||||||
|
pip install . -v
|
||||||
|
- run:
|
||||||
|
name: Generate package stubs
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
pip install typing_extensions
|
||||||
|
python setup.py generate_stubs
|
||||||
|
- run:
|
||||||
|
name: Build Python package
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
<< parameters.build_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||||
|
CMAKE_ARGS=-DCMAKE_OSX_DEPLOYMENT_TARGET=<< parameters.deployment_target >> \
|
||||||
|
python -m build -w
|
||||||
|
- when:
|
||||||
|
condition: << parameters.build_env >>
|
||||||
|
steps:
|
||||||
|
- run:
|
||||||
|
name: Upload package
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
twine upload dist/*
|
||||||
|
- store_artifacts:
|
||||||
|
path: dist/
|
||||||
|
|
||||||
|
build_linux_release:
|
||||||
|
parameters:
|
||||||
|
python_version:
|
||||||
|
type: string
|
||||||
|
default: "3.9"
|
||||||
|
extra_env:
|
||||||
|
type: string
|
||||||
|
default: "DEV_RELEASE=1"
|
||||||
|
docker:
|
||||||
|
- image: ubuntu:20.04
|
||||||
|
steps:
|
||||||
|
- checkout
|
||||||
|
- run:
|
||||||
|
name: Build wheel
|
||||||
|
command: |
|
||||||
|
PYTHON=python<< parameters.python_version >>
|
||||||
|
apt-get update
|
||||||
|
apt-get upgrade -y
|
||||||
|
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||||
|
apt-get install -y apt-utils
|
||||||
|
apt-get install -y software-properties-common
|
||||||
|
add-apt-repository -y ppa:deadsnakes/ppa
|
||||||
|
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||||
|
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||||
|
apt-get install -y build-essential git
|
||||||
|
$PYTHON -m venv env
|
||||||
|
source env/bin/activate
|
||||||
|
pip install --upgrade pip
|
||||||
|
pip install --upgrade cmake
|
||||||
|
pip install nanobind==2.4.0
|
||||||
|
pip install --upgrade setuptools
|
||||||
|
pip install numpy
|
||||||
|
pip install auditwheel
|
||||||
|
pip install patchelf
|
||||||
|
pip install build
|
||||||
|
pip install twine
|
||||||
|
<< parameters.extra_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
pip install . -v
|
||||||
|
pip install typing_extensions
|
||||||
|
python setup.py generate_stubs
|
||||||
|
<< parameters.extra_env >> \
|
||||||
|
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||||
|
python -m build --wheel
|
||||||
|
auditwheel show dist/*
|
||||||
|
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||||
|
- run:
|
||||||
|
name: Upload package
|
||||||
|
command: |
|
||||||
|
source env/bin/activate
|
||||||
|
twine upload wheelhouse/*
|
||||||
|
- store_artifacts:
|
||||||
|
path: wheelhouse/
|
||||||
|
|
||||||
|
workflows:
|
||||||
|
build_and_test:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- matches:
|
||||||
|
pattern: "^(?!pull/)[-\\w]+$"
|
||||||
|
value: << pipeline.git.branch >>
|
||||||
|
- not: << pipeline.parameters.nightly_build >>
|
||||||
|
- not: << pipeline.parameters.weekly_build >>
|
||||||
|
- not: << pipeline.parameters.test_release >>
|
||||||
|
jobs:
|
||||||
|
- mac_build_and_test:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
xcode_version: ["16.0.0"]
|
||||||
|
deployment_target: ["", "13.5"]
|
||||||
|
- linux_build_and_test
|
||||||
|
- build_documentation
|
||||||
|
|
||||||
|
build_pypi_release:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- not: << pipeline.parameters.nightly_build >>
|
||||||
|
- not: << pipeline.parameters.weekly_build >>
|
||||||
|
- not: << pipeline.parameters.test_release >>
|
||||||
|
jobs:
|
||||||
|
- build_release:
|
||||||
|
filters:
|
||||||
|
tags:
|
||||||
|
only: /^v.*/
|
||||||
|
branches:
|
||||||
|
ignore: /.*/
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
xcode_version: ["16.0.0"]
|
||||||
|
deployment_target: ["", "13.5"]
|
||||||
|
build_env: ["PYPI_RELEASE=1"]
|
||||||
|
- build_documentation:
|
||||||
|
filters:
|
||||||
|
tags:
|
||||||
|
only: /^v.*/
|
||||||
|
branches:
|
||||||
|
ignore: /.*/
|
||||||
|
upload-docs: true
|
||||||
|
|
||||||
|
prb:
|
||||||
|
when:
|
||||||
|
matches:
|
||||||
|
pattern: "^pull/\\d+(/head)?$"
|
||||||
|
value: << pipeline.git.branch >>
|
||||||
|
jobs:
|
||||||
|
- hold:
|
||||||
|
type: approval
|
||||||
|
- apple/authenticate:
|
||||||
|
context: pr-approval
|
||||||
|
- mac_build_and_test:
|
||||||
|
requires: [ hold ]
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
xcode_version: ["16.0.0"]
|
||||||
|
deployment_target: ["", "13.5"]
|
||||||
|
- linux_build_and_test:
|
||||||
|
requires: [ hold ]
|
||||||
|
nightly_build:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.nightly_build >>
|
||||||
|
jobs:
|
||||||
|
- build_release:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
xcode_version: ["16.0.0"]
|
||||||
|
deployment_target: ["", "13.5"]
|
||||||
|
weekly_build:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.weekly_build >>
|
||||||
|
jobs:
|
||||||
|
- build_release:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
xcode_version: ["16.0.0"]
|
||||||
|
deployment_target: ["", "13.5"]
|
||||||
|
build_env: ["DEV_RELEASE=1"]
|
||||||
|
linux_test_release:
|
||||||
|
when:
|
||||||
|
and:
|
||||||
|
- equal: [ main, << pipeline.git.branch >> ]
|
||||||
|
- << pipeline.parameters.linux_release >>
|
||||||
|
jobs:
|
||||||
|
- build_linux_release:
|
||||||
|
matrix:
|
||||||
|
parameters:
|
||||||
|
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||||
|
extra_env: ["PYPI_RELEASE=1"]
|
||||||
15
.github/actions/build-cuda-release/action.yml
vendored
15
.github/actions/build-cuda-release/action.yml
vendored
@@ -1,15 +0,0 @@
|
|||||||
name: 'Build CUDA wheel'
|
|
||||||
description: 'Build CUDA wheel'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Build package
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON
|
|
||||||
run: |
|
|
||||||
pip install auditwheel build patchelf setuptools
|
|
||||||
python setup.py clean --all
|
|
||||||
MLX_BUILD_STAGE=2 python -m build -w
|
|
||||||
bash python/scripts/repair_cuda.sh
|
|
||||||
38
.github/actions/build-docs/action.yml
vendored
38
.github/actions/build-docs/action.yml
vendored
@@ -1,38 +0,0 @@
|
|||||||
name: 'Build Documentation'
|
|
||||||
description: 'Build documentation'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Setup machine
|
|
||||||
uses: ./.github/actions/setup-linux
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
sudo apt-get install -y doxygen
|
|
||||||
source .venv/bin/activate
|
|
||||||
pip install -r docs/requirements.txt
|
|
||||||
pip install . -v
|
|
||||||
|
|
||||||
- name: Build documentation
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
source .venv/bin/activate
|
|
||||||
cd docs
|
|
||||||
doxygen
|
|
||||||
make html O=-W
|
|
||||||
|
|
||||||
- name: Create artifact tar
|
|
||||||
shell: bash
|
|
||||||
run: tar -cf artifact.tar -C docs --dereference build/html index.html
|
|
||||||
|
|
||||||
# Do it manually because upload-pages-artifact requires gtar
|
|
||||||
- name: Upload artifact
|
|
||||||
id: upload-artifact
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
name: github-pages
|
|
||||||
path: artifact.tar
|
|
||||||
retention-days: 1
|
|
||||||
if-no-files-found: error
|
|
||||||
40
.github/actions/build-linux-release/action.yml
vendored
40
.github/actions/build-linux-release/action.yml
vendored
@@ -1,40 +0,0 @@
|
|||||||
name: 'Build Linux wheel'
|
|
||||||
description: 'Build Linux wheel'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
build-backend:
|
|
||||||
description: 'Build the backend mlx-cpu package'
|
|
||||||
type: boolean
|
|
||||||
required: false
|
|
||||||
default: false
|
|
||||||
arch:
|
|
||||||
description: 'Platform architecture tag'
|
|
||||||
required: true
|
|
||||||
type: choice
|
|
||||||
options:
|
|
||||||
- x86_64
|
|
||||||
- aarch64
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Generate package stubs
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
pip install -e ".[dev]" -v
|
|
||||||
pip install typing_extensions
|
|
||||||
python setup.py generate_stubs
|
|
||||||
- name: Build Python package
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
pip install auditwheel patchelf build
|
|
||||||
python setup.py clean --all
|
|
||||||
MLX_BUILD_STAGE=1 python -m build -w
|
|
||||||
bash python/scripts/repair_linux.sh ${{ inputs.arch }}
|
|
||||||
- name: Build backend package
|
|
||||||
if: ${{ inputs.build-backend }}
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
python setup.py clean --all
|
|
||||||
MLX_BUILD_STAGE=2 python -m build -w
|
|
||||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_${{ inputs.arch }}
|
|
||||||
41
.github/actions/build-linux/action.yml
vendored
41
.github/actions/build-linux/action.yml
vendored
@@ -1,41 +0,0 @@
|
|||||||
name: 'Build and Test on Linux'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
toolkit:
|
|
||||||
description: 'The toolkit to build with'
|
|
||||||
required: false
|
|
||||||
default: 'cpu'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Install Python package
|
|
||||||
id: python_build
|
|
||||||
shell: sh
|
|
||||||
env:
|
|
||||||
DEBUG: 1
|
|
||||||
CMAKE_ARGS: >-
|
|
||||||
-DCMAKE_COMPILE_WARNING_AS_ERROR=ON
|
|
||||||
-DMLX_BUILD_CUDA=${{ startsWith(inputs.toolkit, 'cuda') && 'ON' || 'OFF' }}
|
|
||||||
run: |
|
|
||||||
if ${{ startsWith(inputs.toolkit, 'cuda') && runner.arch == 'arm64' }} ; then
|
|
||||||
# There is no GPU in arm64 runner, use a common arch.
|
|
||||||
CMAKE_ARGS="$CMAKE_ARGS -DMLX_CUDA_ARCHITECTURES=90a"
|
|
||||||
# Can not build tests when the built executables can not run.
|
|
||||||
CMAKE_ARGS="$CMAKE_ARGS -DMLX_BUILD_TESTS=OFF"
|
|
||||||
fi
|
|
||||||
pip install --no-build-isolation -e ".[dev]" -v
|
|
||||||
# Pass the CMAKE_ARGS to following steps.
|
|
||||||
echo CMAKE_ARGS="$CMAKE_ARGS" >> $GITHUB_OUTPUT
|
|
||||||
|
|
||||||
- name: Generate package stubs
|
|
||||||
shell: sh
|
|
||||||
run: |
|
|
||||||
pip install typing_extensions
|
|
||||||
python setup.py generate_stubs
|
|
||||||
|
|
||||||
- name: Build CPP only
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
cmake . -B build -DCMAKE_BUILD_TYPE=Debug ${{ steps.python_build.outputs.CMAKE_ARGS }}
|
|
||||||
cmake --build build -j $(nproc)
|
|
||||||
34
.github/actions/build-macos-release/action.yml
vendored
34
.github/actions/build-macos-release/action.yml
vendored
@@ -1,34 +0,0 @@
|
|||||||
name: 'Build macOS release'
|
|
||||||
description: 'Build MLX releases macOS'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
macos-target:
|
|
||||||
description: 'macOS build target'
|
|
||||||
required: false
|
|
||||||
default: '15.0'
|
|
||||||
build-backend:
|
|
||||||
description: 'Build the backend mlx-metal package'
|
|
||||||
type: boolean
|
|
||||||
required: false
|
|
||||||
default: false
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Build Python package
|
|
||||||
shell: bash -l {0}
|
|
||||||
env:
|
|
||||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
|
||||||
run: |
|
|
||||||
pip install build
|
|
||||||
python setup.py clean --all
|
|
||||||
MLX_BUILD_STAGE=1 python -m build -w
|
|
||||||
|
|
||||||
- name: Build backend package
|
|
||||||
if: ${{ inputs.build-backend }}
|
|
||||||
shell: bash -l {0}
|
|
||||||
env:
|
|
||||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
|
||||||
run: |
|
|
||||||
python setup.py clean --all
|
|
||||||
MLX_BUILD_STAGE=2 python -m build -w
|
|
||||||
88
.github/actions/build-macos/action.yml
vendored
88
.github/actions/build-macos/action.yml
vendored
@@ -1,88 +0,0 @@
|
|||||||
name: 'Build and Test on macOS'
|
|
||||||
description: 'Build and test MLX on macOS'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Install dependencies
|
|
||||||
env:
|
|
||||||
DEBUG: 1
|
|
||||||
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
pip install --upgrade pip
|
|
||||||
pip install cmake setuptools nanobind==2.4.0
|
|
||||||
pip install -e . -v
|
|
||||||
|
|
||||||
- name: Generate package stubs
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
pip install typing_extensions
|
|
||||||
python setup.py generate_stubs
|
|
||||||
|
|
||||||
- name: Install tests dependencies
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
pip install numpy torch tensorflow unittest-xml-reporting
|
|
||||||
|
|
||||||
- name: Run Python tests
|
|
||||||
shell: bash -l {0}
|
|
||||||
env:
|
|
||||||
LOW_MEMORY: 1
|
|
||||||
run: |
|
|
||||||
DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
|
||||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
|
||||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
|
||||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
|
||||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
|
||||||
|
|
||||||
- name: Build example extension
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
cd examples/extensions
|
|
||||||
pip install -r requirements.txt
|
|
||||||
python setup.py build_ext --inplace
|
|
||||||
python test.py
|
|
||||||
|
|
||||||
- name: Build CPP only
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
mkdir -p build
|
|
||||||
cd build
|
|
||||||
cmake ..
|
|
||||||
make -j $(sysctl -n hw.ncpu)
|
|
||||||
|
|
||||||
- name: Run CPP tests
|
|
||||||
shell: bash -l {0}
|
|
||||||
env:
|
|
||||||
DEVICE: gpu
|
|
||||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
|
||||||
METAL_DEBUG_ERROR_MODE: 0
|
|
||||||
run: ./build/tests/tests
|
|
||||||
|
|
||||||
- name: Build small binary with JIT
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
mkdir -p build
|
|
||||||
cd build
|
|
||||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
|
||||||
-DBUILD_SHARED_LIBS=ON \
|
|
||||||
-DMLX_BUILD_CPU=OFF \
|
|
||||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
|
||||||
-DMLX_BUILD_GGUF=OFF \
|
|
||||||
-DMLX_METAL_JIT=ON
|
|
||||||
make -j $(sysctl -n hw.ncpu)
|
|
||||||
|
|
||||||
- name: Run Python tests with JIT
|
|
||||||
shell: bash -l {0}
|
|
||||||
env:
|
|
||||||
LOW_MEMORY: 1
|
|
||||||
DEVICE: gpu
|
|
||||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
|
||||||
METAL_DEBUG_ERROR_MODE: 0
|
|
||||||
run: |
|
|
||||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
|
||||||
pip install -e . -v
|
|
||||||
python -m xmlrunner discover \
|
|
||||||
-v python/tests \
|
|
||||||
-o test-results/gpu_jit
|
|
||||||
86
.github/actions/setup-linux/action.yml
vendored
86
.github/actions/setup-linux/action.yml
vendored
@@ -1,86 +0,0 @@
|
|||||||
name: 'Setup Linux Environment'
|
|
||||||
description: 'Install dependencies for Linux builds'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
toolkit:
|
|
||||||
description: 'Which toolkit to install'
|
|
||||||
required: false
|
|
||||||
default: 'cpu'
|
|
||||||
python-version:
|
|
||||||
description: 'Version of python to set up'
|
|
||||||
required: false
|
|
||||||
default: '3.10'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Use ccache
|
|
||||||
uses: hendrikmuhs/ccache-action@v1.2
|
|
||||||
with:
|
|
||||||
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ inputs.toolkit }}-py${{ inputs.python-version }}
|
|
||||||
max-size: 1GB
|
|
||||||
|
|
||||||
- name: Install common dependencies
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
sudo apt-get update
|
|
||||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev zip
|
|
||||||
|
|
||||||
- uses: actions/setup-python@v6
|
|
||||||
with:
|
|
||||||
python-version: ${{ inputs.python-version }}
|
|
||||||
|
|
||||||
- name: Setup Python venv
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
python -m venv .venv
|
|
||||||
source .venv/bin/activate
|
|
||||||
pip install setuptools cmake nanobind==2.4.0
|
|
||||||
echo PATH=$PATH >> $GITHUB_ENV
|
|
||||||
# Make cmake search .venv for nanobind
|
|
||||||
echo PYTHONPATH=`python -c 'import sys; print(sys.path[-1])'` >> $GITHUB_ENV
|
|
||||||
|
|
||||||
- name: Install MPI
|
|
||||||
shell: bash
|
|
||||||
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
|
|
||||||
|
|
||||||
- name: Install CUDA toolkit
|
|
||||||
if: ${{ startsWith(inputs.toolkit, 'cuda') }}
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
# Note: the CI machine does not meet CUDA 13's driver requirement.
|
|
||||||
# Compatibility matrix:
|
|
||||||
# https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
|
|
||||||
PACKAGES: |
|
|
||||||
{
|
|
||||||
"cuda-12.6": "libcudnn9-dev-cuda-12 cuda-toolkit-12-6",
|
|
||||||
"cuda-12.9": "libcudnn9-dev-cuda-12 cuda-toolkit-12-9",
|
|
||||||
"cuda-13.0": "libcudnn9-dev-cuda-13 cuda-toolkit-13-0"
|
|
||||||
}
|
|
||||||
run: |
|
|
||||||
# The CUDA binaries are hosted in the "sbsa" repo, the "arm64" repo is
|
|
||||||
# Jetson specific. SBSA means Arm Server Base System Architecture.
|
|
||||||
ARCH=${{ runner.arch == 'arm64' && 'sbsa' || 'x86_64' }}
|
|
||||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/$ARCH/cuda-keyring_1.1-1_all.deb
|
|
||||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
|
||||||
sudo apt-get update
|
|
||||||
sudo apt-get install -y \
|
|
||||||
libnccl2 libnccl-dev \
|
|
||||||
${{ fromJson(env.PACKAGES)[inputs.toolkit] }}
|
|
||||||
echo "/usr/local/${{ inputs.toolkit }}/bin" >> $GITHUB_PATH
|
|
||||||
|
|
||||||
- name: CUDA packages and driver report
|
|
||||||
if: ${{ startsWith(inputs.toolkit, 'cuda') }}
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
sudo apt-get install -y ubuntu-drivers-common dkms
|
|
||||||
echo "NVIDIA Driver Packages Available:"
|
|
||||||
sudo ubuntu-drivers list --gpgpu
|
|
||||||
echo "NVIDIA Driver Version:"
|
|
||||||
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
|
|
||||||
echo "Installed NVIDIA and CUDA packages:"
|
|
||||||
dpkg -l | egrep "cuda|nvidia" -i
|
|
||||||
echo "DKMS Status:"
|
|
||||||
dkms status || echo "dkms not found"
|
|
||||||
echo "NVIDIA-SMI Status:"
|
|
||||||
nvidia-smi || echo "nvidia-smi not found"
|
|
||||||
24
.github/actions/setup-macos/action.yml
vendored
24
.github/actions/setup-macos/action.yml
vendored
@@ -1,24 +0,0 @@
|
|||||||
name: 'Setup macOS Environment'
|
|
||||||
description: 'Install dependencies for macOS builds'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
python-version:
|
|
||||||
description: 'Python version to use'
|
|
||||||
required: false
|
|
||||||
default: '3.10'
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Install Homebrew packages
|
|
||||||
shell: sh
|
|
||||||
run: /opt/homebrew/bin/brew install openmpi
|
|
||||||
|
|
||||||
- name: Verify MetalToolchain installed
|
|
||||||
shell: bash
|
|
||||||
run: xcodebuild -showComponent MetalToolchain
|
|
||||||
|
|
||||||
- uses: conda-incubator/setup-miniconda@v3
|
|
||||||
with:
|
|
||||||
miniconda-version: "latest"
|
|
||||||
python-version: ${{ inputs.python-version }}
|
|
||||||
69
.github/actions/test-linux/action.yml
vendored
69
.github/actions/test-linux/action.yml
vendored
@@ -1,69 +0,0 @@
|
|||||||
name: 'Run Linux tests'
|
|
||||||
|
|
||||||
inputs:
|
|
||||||
has-gpu:
|
|
||||||
description: 'Run GPU tests'
|
|
||||||
required: false
|
|
||||||
default: false
|
|
||||||
|
|
||||||
runs:
|
|
||||||
using: "composite"
|
|
||||||
steps:
|
|
||||||
- name: Run MPI tests
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
echo "::group::MPI tests"
|
|
||||||
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
|
||||||
echo "::endgroup::"
|
|
||||||
|
|
||||||
- name: Run distributed tests
|
|
||||||
if: ${{ inputs.has-gpu == 'false' }}
|
|
||||||
shell: bash
|
|
||||||
run: |
|
|
||||||
echo "::group::Distributed tests"
|
|
||||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
|
||||||
if grep -Fq '[WARN]' stderr.log ; then
|
|
||||||
grep -F '[WARN]' stderr.log
|
|
||||||
echo "Distributed ring test failed";
|
|
||||||
exit 1;
|
|
||||||
fi
|
|
||||||
echo "::endgroup::"
|
|
||||||
|
|
||||||
- name: Run Python tests - CPU
|
|
||||||
if: ${{ inputs.has-gpu == 'false' }}
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
DEVICE: cpu
|
|
||||||
run: |
|
|
||||||
echo "::group::Python tests - CPU"
|
|
||||||
python -m unittest discover python/tests -v
|
|
||||||
echo "::endgroup::"
|
|
||||||
|
|
||||||
- name: Run Python tests - GPU
|
|
||||||
if: ${{ inputs.has-gpu == 'true' }}
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
DEVICE: gpu
|
|
||||||
run: |
|
|
||||||
echo "::group::Python tests - GPU"
|
|
||||||
python -m tests discover python/tests -v
|
|
||||||
echo "::endgroup::"
|
|
||||||
|
|
||||||
- name: Run CPP tests - CPU
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
DEVICE: cpu
|
|
||||||
run: |
|
|
||||||
echo "::group::CPP tests - CPU"
|
|
||||||
./build/tests/tests
|
|
||||||
echo "::endgroup::"
|
|
||||||
|
|
||||||
- name: Run CPP tests - GPU
|
|
||||||
if: ${{ inputs.has-gpu == 'true' }}
|
|
||||||
shell: bash
|
|
||||||
env:
|
|
||||||
DEVICE: gpu
|
|
||||||
run: |
|
|
||||||
echo "::group::CPP tests - GPU"
|
|
||||||
./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
|
||||||
echo "::endgroup::"
|
|
||||||
6
.github/dependabot.yml
vendored
6
.github/dependabot.yml
vendored
@@ -1,6 +0,0 @@
|
|||||||
version: 2
|
|
||||||
updates:
|
|
||||||
- package-ecosystem: "github-actions"
|
|
||||||
directory: "/"
|
|
||||||
schedule:
|
|
||||||
interval: "weekly"
|
|
||||||
@@ -1,27 +0,0 @@
|
|||||||
#!/bin/bash
|
|
||||||
set -ex
|
|
||||||
|
|
||||||
# [Setup] Install dependencies inside the container.
|
|
||||||
dnf update -y
|
|
||||||
dnf install -y \
|
|
||||||
blas-devel \
|
|
||||||
lapack-devel \
|
|
||||||
openblas-devel \
|
|
||||||
make \
|
|
||||||
cmake \
|
|
||||||
clang \
|
|
||||||
git
|
|
||||||
dnf clean all
|
|
||||||
|
|
||||||
# [C++] CI Build Sanity Check: Verifies code compilation, not for release.
|
|
||||||
export CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
|
||||||
export DEBUG=1
|
|
||||||
export CMAKE_C_COMPILER=/usr/bin/clang
|
|
||||||
export CMAKE_CXX_COMPILER=/usr/bin/clang++
|
|
||||||
|
|
||||||
mkdir -p build
|
|
||||||
pushd build
|
|
||||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
|
||||||
make -j $(nproc)
|
|
||||||
./tests/tests
|
|
||||||
popd
|
|
||||||
108
.github/workflows/build_and_test.yml
vendored
108
.github/workflows/build_and_test.yml
vendored
@@ -1,108 +0,0 @@
|
|||||||
name: Build and Test
|
|
||||||
|
|
||||||
on:
|
|
||||||
pull_request:
|
|
||||||
push:
|
|
||||||
branches:
|
|
||||||
- main
|
|
||||||
# For testing CI without starting a pull request:
|
|
||||||
- test/*
|
|
||||||
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
|
|
||||||
concurrency:
|
|
||||||
group: ${{ github.workflow }}-${{ github.ref }}
|
|
||||||
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
check_lint:
|
|
||||||
name: Check Lint
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: pre-commit/action@v3.0.1
|
|
||||||
|
|
||||||
linux_build_and_test:
|
|
||||||
name: Linux (cpu, ${{ matrix.arch }})
|
|
||||||
needs: check_lint
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
arch: ['x86_64', 'aarch64']
|
|
||||||
runs-on: ${{ matrix.arch == 'x86_64' && 'ubuntu-22.04' || 'ubuntu-22.04-arm' }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
- uses: ./.github/actions/build-linux
|
|
||||||
- uses: ./.github/actions/test-linux
|
|
||||||
|
|
||||||
cuda_build_and_test:
|
|
||||||
name: Linux (${{ matrix.toolkit }}, ${{ matrix.arch }})
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
needs: check_lint
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
arch: ['x86_64', 'aarch64']
|
|
||||||
toolkit: ['cuda-12.6', 'cuda-12.9']
|
|
||||||
runs-on: ${{ matrix.arch == 'x86_64' && 'gpu-t4-4-core' || 'ubuntu-22.04-arm' }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
with:
|
|
||||||
toolkit: ${{ matrix.toolkit }}
|
|
||||||
- uses: ./.github/actions/build-linux
|
|
||||||
with:
|
|
||||||
toolkit: ${{ matrix.toolkit }}
|
|
||||||
- uses: ./.github/actions/test-linux
|
|
||||||
if: matrix.arch == 'x86_64'
|
|
||||||
with:
|
|
||||||
has-gpu: true
|
|
||||||
|
|
||||||
mac_build_and_test:
|
|
||||||
name: macOS (${{ matrix.macos-target }})
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
macos-target: ["14.0", "15.0"]
|
|
||||||
runs-on: [self-hosted, macos]
|
|
||||||
env:
|
|
||||||
MACOSX_DEPLOYMENT_TARGET: ${{ matrix.macos-target }}
|
|
||||||
needs: check_lint
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-macos
|
|
||||||
- uses: ./.github/actions/build-macos
|
|
||||||
|
|
||||||
build_documentation:
|
|
||||||
name: Build Documentation
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
needs: check_lint
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/build-docs
|
|
||||||
|
|
||||||
linux_fedora_build_cpp:
|
|
||||||
name: Linux Fedora (${{ matrix.arch }})
|
|
||||||
needs: check_lint
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
include:
|
|
||||||
- host: ubuntu-22.04
|
|
||||||
arch: x86_64
|
|
||||||
- host: ubuntu-22.04-arm
|
|
||||||
arch: aarch64
|
|
||||||
|
|
||||||
runs-on: ${{ matrix.host }}
|
|
||||||
container:
|
|
||||||
image: fedora:42
|
|
||||||
steps:
|
|
||||||
- name: Checkout code
|
|
||||||
uses: actions/checkout@v6
|
|
||||||
|
|
||||||
- name: CPP Build Test - No Release
|
|
||||||
run: |
|
|
||||||
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
|
|
||||||
28
.github/workflows/documentation.yml
vendored
28
.github/workflows/documentation.yml
vendored
@@ -1,28 +0,0 @@
|
|||||||
name: Documentation
|
|
||||||
|
|
||||||
on:
|
|
||||||
workflow_dispatch:
|
|
||||||
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build:
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/build-docs
|
|
||||||
|
|
||||||
deploy:
|
|
||||||
needs: build
|
|
||||||
permissions:
|
|
||||||
pages: write
|
|
||||||
id-token: write
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
environment:
|
|
||||||
name: github-pages
|
|
||||||
url: ${{ steps.deployment.outputs.page_url }}
|
|
||||||
steps:
|
|
||||||
- name: Deploy to GitHub Pages
|
|
||||||
id: deployment
|
|
||||||
uses: actions/deploy-pages@v4
|
|
||||||
96
.github/workflows/nightly.yml
vendored
96
.github/workflows/nightly.yml
vendored
@@ -1,96 +0,0 @@
|
|||||||
name: Nightly Build
|
|
||||||
|
|
||||||
on:
|
|
||||||
schedule:
|
|
||||||
- cron: 33 6 * * 1-5
|
|
||||||
workflow_dispatch:
|
|
||||||
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
build_linux_release:
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
python_version: ["3.10", "3.14"]
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
- uses: ./.github/actions/build-linux-release
|
|
||||||
with:
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
arch: "x86_64"
|
|
||||||
- name: Upload mlx artifacts
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
name: linux-wheels-${{ matrix.python_version }}
|
|
||||||
path: wheelhouse/mlx-*.whl
|
|
||||||
retention-days: 7
|
|
||||||
- name: Upload mlx-cpu artifacts
|
|
||||||
if: matrix.python_version == '3.10'
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
name: mlx-cpu
|
|
||||||
path: wheelhouse/mlx_cpu-*.whl
|
|
||||||
retention-days: 7
|
|
||||||
|
|
||||||
build_linux_with_tests:
|
|
||||||
strategy:
|
|
||||||
fail-fast: false
|
|
||||||
matrix:
|
|
||||||
python_version: ["3.11", "3.12", "3.13", "3.14"]
|
|
||||||
runner:
|
|
||||||
- ubuntu-22.04
|
|
||||||
- ubuntu-22.04-arm
|
|
||||||
runs-on: ${{ matrix.runner }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python_version }}
|
|
||||||
- uses: ./.github/actions/build-linux
|
|
||||||
- uses: ./.github/actions/test-linux
|
|
||||||
|
|
||||||
build_mac_release:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
python-version: ["3.10", "3.13"]
|
|
||||||
runs-on: [self-hosted, macos]
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-macos
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python-version }}
|
|
||||||
- uses: ./.github/actions/build-macos
|
|
||||||
- name: Build macOS 15 package
|
|
||||||
uses: ./.github/actions/build-macos-release
|
|
||||||
with:
|
|
||||||
macos-target: 15.0
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
- name: Build macOS 14 package
|
|
||||||
uses: ./.github/actions/build-macos-release
|
|
||||||
with:
|
|
||||||
macos-target: 14.0
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
|
|
||||||
build_cuda_release:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
runs-on: ubuntu-22-large
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
with:
|
|
||||||
toolkit: 'cuda-12.9'
|
|
||||||
- name: Build Python package
|
|
||||||
uses: ./.github/actions/build-cuda-release
|
|
||||||
with:
|
|
||||||
toolkit: 'cuda-12.9'
|
|
||||||
- name: Upload artifacts
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
name: mlx-cuda
|
|
||||||
path: wheelhouse/mlx_cuda-*.whl
|
|
||||||
retention-days: 7
|
|
||||||
20
.github/workflows/pull_request.yml
vendored
Normal file
20
.github/workflows/pull_request.yml
vendored
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
on:
|
||||||
|
pull_request:
|
||||||
|
branches:
|
||||||
|
- main
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
check_lint:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v4
|
||||||
|
- uses: actions/setup-python@v4
|
||||||
|
with:
|
||||||
|
python-version: 3.8
|
||||||
|
- name: Install dependencies
|
||||||
|
run: |
|
||||||
|
python -m pip install --upgrade pip
|
||||||
|
pip install pre-commit black isort clang-format
|
||||||
|
- name: Run lint
|
||||||
|
run: |
|
||||||
|
pre-commit run --all-files
|
||||||
238
.github/workflows/release.yml
vendored
238
.github/workflows/release.yml
vendored
@@ -1,238 +0,0 @@
|
|||||||
name: PyPI Release
|
|
||||||
|
|
||||||
on:
|
|
||||||
push:
|
|
||||||
tags:
|
|
||||||
- 'v*'
|
|
||||||
workflow_dispatch:
|
|
||||||
inputs:
|
|
||||||
dev_release:
|
|
||||||
description: "Do a dev release or regular release"
|
|
||||||
required: true
|
|
||||||
default: "false"
|
|
||||||
|
|
||||||
permissions:
|
|
||||||
contents: read
|
|
||||||
|
|
||||||
jobs:
|
|
||||||
setup:
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
steps:
|
|
||||||
- name: Set publishing variables
|
|
||||||
run: echo "Publishing setup complete"
|
|
||||||
|
|
||||||
build_documentation:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
runs-on: ubuntu-22.04
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/build-docs
|
|
||||||
|
|
||||||
deploy_documentation:
|
|
||||||
needs: build_documentation
|
|
||||||
permissions:
|
|
||||||
pages: write
|
|
||||||
id-token: write
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
environment:
|
|
||||||
name: github-pages
|
|
||||||
url: ${{ steps.deployment.outputs.page_url }}
|
|
||||||
steps:
|
|
||||||
- name: Deploy to GitHub Pages
|
|
||||||
id: deployment
|
|
||||||
uses: actions/deploy-pages@v4
|
|
||||||
|
|
||||||
build_linux_release:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
|
||||||
arch: ['x86_64', 'aarch64']
|
|
||||||
runs-on: ${{ matrix.arch == 'x86_64' && 'ubuntu-22.04' || 'ubuntu-22.04-arm' }}
|
|
||||||
env:
|
|
||||||
PYPI_RELEASE: 1
|
|
||||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python_version }}
|
|
||||||
- uses: ./.github/actions/build-linux-release
|
|
||||||
with:
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
arch: ${{ matrix.arch }}
|
|
||||||
- name: Upload MLX artifacts
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
overwrite: true
|
|
||||||
name: linux-wheels-${{ matrix.python_version }}-${{ matrix.arch }}
|
|
||||||
path: wheelhouse/mlx-*.whl
|
|
||||||
- name: Upload CPU artifacts
|
|
||||||
if: matrix.python_version == '3.10'
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
overwrite: true
|
|
||||||
name: mlx-cpu-${{ matrix.arch }}
|
|
||||||
path: wheelhouse/mlx_cpu-*.whl
|
|
||||||
|
|
||||||
build_mac_release:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
strategy:
|
|
||||||
matrix:
|
|
||||||
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
|
||||||
runs-on: [self-hosted, macos]
|
|
||||||
env:
|
|
||||||
PYPI_RELEASE: 1
|
|
||||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
|
||||||
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-macos
|
|
||||||
with:
|
|
||||||
python-version: ${{ matrix.python-version }}
|
|
||||||
|
|
||||||
- name: Install dependencies
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
pip install --upgrade pip
|
|
||||||
pip install cmake setuptools nanobind==2.4.0
|
|
||||||
pip install -e . -v
|
|
||||||
- name: Generate package stubs
|
|
||||||
shell: bash -l {0}
|
|
||||||
run: |
|
|
||||||
pip install typing_extensions
|
|
||||||
python setup.py generate_stubs
|
|
||||||
- name: Build macOS 14 package
|
|
||||||
uses: ./.github/actions/build-macos-release
|
|
||||||
with:
|
|
||||||
macos-target: 14.0
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
- name: Build macOS 15 package
|
|
||||||
uses: ./.github/actions/build-macos-release
|
|
||||||
with:
|
|
||||||
macos-target: 15.0
|
|
||||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
|
||||||
- name: Upload MLX artifacts
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
overwrite: true
|
|
||||||
name: mac-wheels-${{ matrix.python-version }}
|
|
||||||
path: dist/mlx-*.whl
|
|
||||||
- name: Upload Metal artifacts
|
|
||||||
if: matrix.python-version == '3.10'
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
overwrite: true
|
|
||||||
name: mlx-metal
|
|
||||||
path: dist/mlx_metal-*.whl
|
|
||||||
|
|
||||||
build_cuda_release:
|
|
||||||
if: github.repository == 'ml-explore/mlx'
|
|
||||||
runs-on: ubuntu-22-large
|
|
||||||
env:
|
|
||||||
PYPI_RELEASE: 1
|
|
||||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
|
||||||
steps:
|
|
||||||
- uses: actions/checkout@v6
|
|
||||||
- uses: ./.github/actions/setup-linux
|
|
||||||
with:
|
|
||||||
toolkit: 'cuda-12.9'
|
|
||||||
- name: Build Python package
|
|
||||||
uses: ./.github/actions/build-cuda-release
|
|
||||||
- name: Upload artifacts
|
|
||||||
uses: actions/upload-artifact@v5
|
|
||||||
with:
|
|
||||||
overwrite: true
|
|
||||||
name: mlx-cuda
|
|
||||||
path: wheelhouse/mlx_cuda-*.whl
|
|
||||||
|
|
||||||
pypi-publish:
|
|
||||||
name: Upload release to PyPI
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
needs: [setup, build_linux_release, build_mac_release]
|
|
||||||
permissions:
|
|
||||||
id-token: write
|
|
||||||
environment:
|
|
||||||
name: pypi
|
|
||||||
url: https://pypi.org/p/mlx
|
|
||||||
steps:
|
|
||||||
- uses: actions/download-artifact@v6
|
|
||||||
with:
|
|
||||||
pattern: linux-wheels-*
|
|
||||||
merge-multiple: true
|
|
||||||
path: dist
|
|
||||||
- uses: actions/download-artifact@v6
|
|
||||||
with:
|
|
||||||
pattern: mac-wheels-*
|
|
||||||
merge-multiple: true
|
|
||||||
path: dist
|
|
||||||
- name: Display structure of downloaded files
|
|
||||||
run: ls -R dist
|
|
||||||
- name: Publish package distributions to PyPI
|
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
|
||||||
with:
|
|
||||||
repository-url: https://upload.pypi.org/legacy/
|
|
||||||
|
|
||||||
pypi-publish-cuda:
|
|
||||||
name: Upload CUDA release to PyPI
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
needs: [setup, build_cuda_release]
|
|
||||||
permissions:
|
|
||||||
id-token: write
|
|
||||||
environment:
|
|
||||||
name: pypi
|
|
||||||
url: https://pypi.org/p/mlx-cuda
|
|
||||||
steps:
|
|
||||||
- uses: actions/download-artifact@v6
|
|
||||||
with:
|
|
||||||
name: mlx-cuda
|
|
||||||
path: dist
|
|
||||||
- name: Display structure of downloaded files
|
|
||||||
run: ls -R dist
|
|
||||||
- name: Publish package distributions to PyPI
|
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
|
||||||
with:
|
|
||||||
repository-url: https://upload.pypi.org/legacy/
|
|
||||||
|
|
||||||
pypi-publish-cpu:
|
|
||||||
name: Upload CPU release to PyPI
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
needs: [setup, build_linux_release]
|
|
||||||
permissions:
|
|
||||||
id-token: write
|
|
||||||
environment:
|
|
||||||
name: pypi
|
|
||||||
url: https://pypi.org/p/mlx-cpu
|
|
||||||
steps:
|
|
||||||
- uses: actions/download-artifact@v6
|
|
||||||
with:
|
|
||||||
pattern: mlx-cpu-*
|
|
||||||
merge-multiple: true
|
|
||||||
path: dist
|
|
||||||
- name: Display structure of downloaded files
|
|
||||||
run: ls -R dist
|
|
||||||
- name: Publish package distributions to PyPI
|
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
|
||||||
with:
|
|
||||||
repository-url: https://upload.pypi.org/legacy/
|
|
||||||
|
|
||||||
pypi-publish-metal:
|
|
||||||
name: Upload Metal release to PyPI
|
|
||||||
runs-on: ubuntu-latest
|
|
||||||
needs: [setup, build_mac_release]
|
|
||||||
permissions:
|
|
||||||
id-token: write
|
|
||||||
environment:
|
|
||||||
name: pypi
|
|
||||||
url: https://pypi.org/p/mlx-metal
|
|
||||||
steps:
|
|
||||||
- uses: actions/download-artifact@v6
|
|
||||||
with:
|
|
||||||
name: mlx-metal
|
|
||||||
path: dist
|
|
||||||
- name: Display structure of downloaded files
|
|
||||||
run: ls -R dist
|
|
||||||
- name: Publish package distributions to PyPI
|
|
||||||
uses: pypa/gh-action-pypi-publish@release/v1
|
|
||||||
with:
|
|
||||||
repository-url: https://upload.pypi.org/legacy/
|
|
||||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -36,7 +36,6 @@ share/python-wheels/
|
|||||||
.installed.cfg
|
.installed.cfg
|
||||||
*.egg
|
*.egg
|
||||||
MANIFEST
|
MANIFEST
|
||||||
uv.lock
|
|
||||||
|
|
||||||
# vim
|
# vim
|
||||||
*.swp
|
*.swp
|
||||||
|
|||||||
@@ -1,22 +1,16 @@
|
|||||||
repos:
|
repos:
|
||||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
|
||||||
rev: v6.0.0
|
|
||||||
hooks:
|
|
||||||
- id: check-yaml
|
|
||||||
# - id: end-of-file-fixer
|
|
||||||
# - id: trailing-whitespace
|
|
||||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||||
rev: v19.1.7
|
rev: v19.1.4
|
||||||
hooks:
|
hooks:
|
||||||
- id: clang-format
|
- id: clang-format
|
||||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||||
rev: 25.1.0
|
rev: 24.10.0
|
||||||
hooks:
|
hooks:
|
||||||
- id: black
|
- id: black
|
||||||
|
|
||||||
- repo: https://github.com/pycqa/isort
|
- repo: https://github.com/pycqa/isort
|
||||||
rev: 6.0.0
|
rev: 5.13.2
|
||||||
hooks:
|
hooks:
|
||||||
- id: isort
|
- id: isort
|
||||||
args:
|
args:
|
||||||
|
|||||||
@@ -19,17 +19,11 @@ MLX was developed with contributions from the following individuals:
|
|||||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
|
||||||
|
|
||||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||||
</a>
|
</a>
|
||||||
|
|
||||||
# Organizations
|
|
||||||
|
|
||||||
MLX has received contributions from the following companies:
|
|
||||||
- NVIDIA Corporation & Affiliates
|
|
||||||
|
|
||||||
# Third-Party Software
|
# Third-Party Software
|
||||||
|
|
||||||
MLX leverages several third-party software, listed here together with
|
MLX leverages several third-party software, listed here together with
|
||||||
|
|||||||
129
CMakeLists.txt
129
CMakeLists.txt
@@ -1,32 +1,13 @@
|
|||||||
cmake_minimum_required(VERSION 3.25)
|
cmake_minimum_required(VERSION 3.25)
|
||||||
|
|
||||||
if(NOT MLX_VERSION)
|
project(mlx LANGUAGES C CXX)
|
||||||
file(STRINGS "mlx/version.h" _mlx_h_version REGEX "^#define MLX_VERSION_.*$")
|
|
||||||
string(REGEX MATCH "#define MLX_VERSION_MAJOR ([0-9]+)" _ "${_mlx_h_version}")
|
|
||||||
set(_major ${CMAKE_MATCH_1})
|
|
||||||
string(REGEX MATCH "#define MLX_VERSION_MINOR ([0-9]+)" _ "${_mlx_h_version}")
|
|
||||||
set(_minor ${CMAKE_MATCH_1})
|
|
||||||
string(REGEX MATCH "#define MLX_VERSION_PATCH ([0-9]+)" _ "${_mlx_h_version}")
|
|
||||||
set(_patch ${CMAKE_MATCH_1})
|
|
||||||
set(MLX_PROJECT_VERSION "${_major}.${_minor}.${_patch}")
|
|
||||||
set(MLX_VERSION ${MLX_PROJECT_VERSION})
|
|
||||||
else()
|
|
||||||
string(REGEX REPLACE "^([0-9]+\.[0-9]+\.[0-9]+).*" "\\1" MLX_PROJECT_VERSION
|
|
||||||
${MLX_VERSION})
|
|
||||||
endif()
|
|
||||||
|
|
||||||
project(
|
|
||||||
mlx
|
|
||||||
LANGUAGES C CXX
|
|
||||||
VERSION ${MLX_PROJECT_VERSION})
|
|
||||||
|
|
||||||
# ----------------------------- Setup -----------------------------
|
# ----------------------------- Setup -----------------------------
|
||||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||||
set(CMAKE_CXX_STANDARD 17)
|
set(CMAKE_CXX_STANDARD 20)
|
||||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
|
||||||
|
|
||||||
# ----------------------------- Configuration -----------------------------
|
# ----------------------------- Configuration -----------------------------
|
||||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||||
@@ -35,18 +16,21 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
|
|||||||
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||||
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
||||||
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
|
|
||||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||||
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||||
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
||||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||||
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
|
|
||||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||||
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
|
|
||||||
|
if(NOT MLX_VERSION)
|
||||||
|
set(MLX_VERSION 0.22.0)
|
||||||
|
endif()
|
||||||
|
add_compile_definitions("MLX_VERSION=${MLX_VERSION}")
|
||||||
|
|
||||||
# --------------------- Processor tests -------------------------
|
# --------------------- Processor tests -------------------------
|
||||||
|
|
||||||
message(
|
message(
|
||||||
STATUS
|
STATUS
|
||||||
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
|
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
|
||||||
@@ -67,18 +51,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
|||||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
else()
|
else()
|
||||||
set(MLX_BUILD_METAL OFF)
|
set(MLX_BUILD_METAL OFF)
|
||||||
endif()
|
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||||
|
|
||||||
if(MLX_USE_CCACHE)
|
|
||||||
find_program(CCACHE_PROGRAM ccache)
|
|
||||||
if(CCACHE_PROGRAM)
|
|
||||||
message(STATUS "Found CCache: ${CCACHE_PROGRAM}")
|
|
||||||
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
|
||||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
|
||||||
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
|
||||||
endif()
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
# ----------------------------- Lib -----------------------------
|
# ----------------------------- Lib -----------------------------
|
||||||
@@ -89,27 +65,19 @@ cmake_policy(SET CMP0135 NEW)
|
|||||||
|
|
||||||
add_library(mlx)
|
add_library(mlx)
|
||||||
|
|
||||||
# Supress warnings: note: parameter passing for argument of type
|
|
||||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
|
||||||
# 10.1
|
|
||||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
|
||||||
|
|
||||||
if(MLX_BUILD_CUDA)
|
|
||||||
enable_language(CUDA)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(MLX_BUILD_METAL)
|
if(MLX_BUILD_METAL)
|
||||||
find_library(METAL_LIB Metal)
|
set(METAL_LIB "-framework Metal")
|
||||||
find_library(FOUNDATION_LIB Foundation)
|
set(FOUNDATION_LIB "-framework Foundation")
|
||||||
find_library(QUARTZ_LIB QuartzCore)
|
set(QUARTZ_LIB "-framework QuartzCore")
|
||||||
if(METAL_LIB)
|
|
||||||
message(STATUS "Metal found ${METAL_LIB}")
|
|
||||||
else()
|
|
||||||
message(
|
|
||||||
FATAL_ERROR
|
|
||||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||||
|
message(STATUS "Metal not found. Unable to build GPU")
|
||||||
|
set(MLX_BUILD_METAL OFF)
|
||||||
|
set(MLX_METAL_DEBUG OFF)
|
||||||
|
elseif(MLX_BUILD_METAL)
|
||||||
|
message(STATUS "Building METAL sources")
|
||||||
|
|
||||||
if(MLX_METAL_DEBUG)
|
if(MLX_METAL_DEBUG)
|
||||||
add_compile_definitions(MLX_METAL_DEBUG)
|
add_compile_definitions(MLX_METAL_DEBUG)
|
||||||
endif()
|
endif()
|
||||||
@@ -117,8 +85,7 @@ if(MLX_BUILD_METAL)
|
|||||||
# Throw an error if xcrun not found
|
# Throw an error if xcrun not found
|
||||||
execute_process(
|
execute_process(
|
||||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
|
||||||
|
|
||||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||||
message(
|
message(
|
||||||
@@ -128,12 +95,9 @@ if(MLX_BUILD_METAL)
|
|||||||
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
||||||
|
|
||||||
set(METAL_CPP_URL
|
set(METAL_CPP_URL
|
||||||
https://developer.apple.com/metal/cpp/files/metal-cpp_26.zip)
|
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
|
||||||
|
|
||||||
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
||||||
if(${CMAKE_OSX_DEPLOYMENT_TARGET} LESS 14.0)
|
|
||||||
message(FATAL_ERROR "MLX requires macOS >= 14.0")
|
|
||||||
endif()
|
|
||||||
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
||||||
endif()
|
endif()
|
||||||
execute_process(
|
execute_process(
|
||||||
@@ -142,6 +106,7 @@ if(MLX_BUILD_METAL)
|
|||||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||||
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||||
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
||||||
|
|
||||||
FetchContent_MakeAvailable(metal_cpp)
|
FetchContent_MakeAvailable(metal_cpp)
|
||||||
target_include_directories(
|
target_include_directories(
|
||||||
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||||
@@ -149,12 +114,6 @@ if(MLX_BUILD_METAL)
|
|||||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
|
||||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
|
||||||
# building on old distributions they need to be explicitly listed.
|
|
||||||
target_link_libraries(mlx PRIVATE dl pthread)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(WIN32)
|
if(WIN32)
|
||||||
if(MSVC)
|
if(MSVC)
|
||||||
# GGUF does not build with MSVC.
|
# GGUF does not build with MSVC.
|
||||||
@@ -182,13 +141,12 @@ if(MLX_BUILD_CPU)
|
|||||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||||
set(MLX_BUILD_ACCELERATE ON)
|
set(MLX_BUILD_ACCELERATE ON)
|
||||||
else()
|
else()
|
||||||
message(STATUS "Accelerate not found, using default backend.")
|
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||||
set(MLX_BUILD_ACCELERATE OFF)
|
set(MLX_BUILD_ACCELERATE OFF)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
if(MLX_BUILD_ACCELERATE)
|
if(MLX_BUILD_ACCELERATE)
|
||||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||||
add_compile_definitions(MLX_USE_ACCELERATE)
|
|
||||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||||
elseif(MLX_BUILD_BLAS_FROM_SOURCE)
|
elseif(MLX_BUILD_BLAS_FROM_SOURCE)
|
||||||
# Download and build OpenBLAS from source code.
|
# Download and build OpenBLAS from source code.
|
||||||
@@ -241,13 +199,23 @@ else()
|
|||||||
set(MLX_BUILD_ACCELERATE OFF)
|
set(MLX_BUILD_ACCELERATE OFF)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
message(STATUS "Downloading json")
|
find_package(MPI)
|
||||||
FetchContent_Declare(
|
if(MPI_FOUND)
|
||||||
json
|
execute_process(
|
||||||
URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
|
COMMAND zsh "-c" "mpirun --version"
|
||||||
FetchContent_MakeAvailable(json)
|
OUTPUT_VARIABLE MPI_VERSION
|
||||||
target_include_directories(
|
ERROR_QUIET)
|
||||||
mlx PRIVATE $<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>)
|
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||||
|
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||||
|
elseif(MPI_VERSION STREQUAL "")
|
||||||
|
set(MPI_FOUND FALSE)
|
||||||
|
message(
|
||||||
|
WARNING "MPI found but mpirun is not available. Building without MPI.")
|
||||||
|
else()
|
||||||
|
set(MPI_FOUND FALSE)
|
||||||
|
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
|
||||||
|
endif()
|
||||||
|
endif()
|
||||||
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||||
|
|
||||||
@@ -255,21 +223,6 @@ target_include_directories(
|
|||||||
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
||||||
$<INSTALL_INTERFACE:include>)
|
$<INSTALL_INTERFACE:include>)
|
||||||
|
|
||||||
# Do not add mlx_EXPORTS define for shared library.
|
|
||||||
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
|
|
||||||
|
|
||||||
if(USE_SYSTEM_FMT)
|
|
||||||
find_package(fmt REQUIRED)
|
|
||||||
else()
|
|
||||||
FetchContent_Declare(
|
|
||||||
fmt
|
|
||||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
|
||||||
GIT_TAG 10.2.1
|
|
||||||
EXCLUDE_FROM_ALL)
|
|
||||||
FetchContent_MakeAvailable(fmt)
|
|
||||||
endif()
|
|
||||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
|
||||||
|
|
||||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||||
message(STATUS "Building Python bindings.")
|
message(STATUS "Building Python bindings.")
|
||||||
find_package(
|
find_package(
|
||||||
|
|||||||
@@ -17,11 +17,11 @@ possible.
|
|||||||
|
|
||||||
You can also run the formatters manually as follows:
|
You can also run the formatters manually as follows:
|
||||||
|
|
||||||
```shell
|
```
|
||||||
clang-format -i file.cpp
|
clang-format -i file.cpp
|
||||||
```
|
```
|
||||||
|
|
||||||
```shell
|
```
|
||||||
black file.py
|
black file.py
|
||||||
```
|
```
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,4 @@
|
|||||||
include CMakeLists.txt
|
include CMakeLists.txt
|
||||||
include mlx.pc.in
|
|
||||||
recursive-include mlx/ *
|
recursive-include mlx/ *
|
||||||
include cmake/*
|
|
||||||
include python/src/*
|
include python/src/*
|
||||||
include python/mlx/py.typed # support type hinting as in PEP-561
|
include python/mlx/py.typed # support type hinting as in PEP-561
|
||||||
|
|||||||
19
README.md
19
README.md
@@ -68,23 +68,18 @@ in the documentation.
|
|||||||
|
|
||||||
## Installation
|
## Installation
|
||||||
|
|
||||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||||
macOS, run:
|
|
||||||
|
|
||||||
```bash
|
**With `pip`**:
|
||||||
|
|
||||||
|
```
|
||||||
pip install mlx
|
pip install mlx
|
||||||
```
|
```
|
||||||
|
|
||||||
To install the CUDA backend on Linux, run:
|
**With `conda`**:
|
||||||
|
|
||||||
```bash
|
|
||||||
pip install mlx[cuda]
|
|
||||||
```
|
```
|
||||||
|
conda install -c conda-forge mlx
|
||||||
To install a CPU-only Linux package, run:
|
|
||||||
|
|
||||||
```bash
|
|
||||||
pip install mlx[cpu]
|
|
||||||
```
|
```
|
||||||
|
|
||||||
Checkout the
|
Checkout the
|
||||||
@@ -110,7 +105,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
|||||||
MLX useful in your research and wish to cite it, please use the following
|
MLX useful in your research and wish to cite it, please use the following
|
||||||
BibTex entry:
|
BibTex entry:
|
||||||
|
|
||||||
```text
|
```
|
||||||
@software{mlx2023,
|
@software{mlx2023,
|
||||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||||
|
|||||||
@@ -1,6 +1,5 @@
|
|||||||
// Copyright © 2023 Apple Inc.
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
#include <cstring>
|
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
@@ -75,7 +74,7 @@ void time_irregular_binary_ops_3D() {
|
|||||||
|
|
||||||
void time_irregular_binary_ops_4D() {
|
void time_irregular_binary_ops_4D() {
|
||||||
auto device = mx::default_device();
|
auto device = mx::default_device();
|
||||||
mx::Shape shape = {8, 8, 512, 512};
|
std::vector<int> shape = {8, 8, 512, 512};
|
||||||
auto a = mx::random::uniform(shape);
|
auto a = mx::random::uniform(shape);
|
||||||
auto b = mx::random::uniform(shape);
|
auto b = mx::random::uniform(shape);
|
||||||
|
|
||||||
@@ -115,7 +114,7 @@ void time_irregular_binary_ops_4D() {
|
|||||||
|
|
||||||
void time_irregular_reshape() {
|
void time_irregular_reshape() {
|
||||||
auto device = mx::default_device();
|
auto device = mx::default_device();
|
||||||
mx::Shape shape;
|
std::vector<int> shape;
|
||||||
auto reshape_fn = [&shape, device](const mx::array& a) {
|
auto reshape_fn = [&shape, device](const mx::array& a) {
|
||||||
return mx::reshape(a, shape, device);
|
return mx::reshape(a, shape, device);
|
||||||
};
|
};
|
||||||
@@ -170,7 +169,7 @@ void time_irregular_astype_1D() {
|
|||||||
void time_irregular_astype_2D() {
|
void time_irregular_astype_2D() {
|
||||||
auto device = mx::default_device();
|
auto device = mx::default_device();
|
||||||
int size = 2048;
|
int size = 2048;
|
||||||
mx::Shape shape = {size, size};
|
std::vector<int> shape = {size, size};
|
||||||
|
|
||||||
auto a = mx::random::uniform(shape);
|
auto a = mx::random::uniform(shape);
|
||||||
TIMEM("2D regular", mx::astype, a, mx::int32, device);
|
TIMEM("2D regular", mx::astype, a, mx::int32, device);
|
||||||
|
|||||||
@@ -192,22 +192,6 @@ void time_reductions() {
|
|||||||
|
|
||||||
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
|
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
|
||||||
TIME(argmin_along_1);
|
TIME(argmin_along_1);
|
||||||
|
|
||||||
auto indices = mx::array({1});
|
|
||||||
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
|
|
||||||
std::vector<int> axes{0};
|
|
||||||
auto b = scatter(a, {indices}, updates, axes);
|
|
||||||
mx::eval(b);
|
|
||||||
|
|
||||||
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
|
|
||||||
TIME(max_along_0);
|
|
||||||
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
|
||||||
TIME(max_along_1);
|
|
||||||
|
|
||||||
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
|
|
||||||
TIME(min_along_0);
|
|
||||||
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
|
|
||||||
TIME(min_along_1);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void time_gather_scatter() {
|
void time_gather_scatter() {
|
||||||
|
|||||||
@@ -142,7 +142,9 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
|||||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||||
|
|
||||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||||
|
np.float32
|
||||||
|
)
|
||||||
|
|
||||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||||
|
|
||||||
@@ -161,7 +163,7 @@ def get_gflop_count(B, M, N, K):
|
|||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||||
|
|
||||||
dtypes = ("float32", "float16", "complex64")
|
dtypes = ("float32", "float16")
|
||||||
transposes = ("nn", "nt", "tn")
|
transposes = ("nn", "nt", "tn")
|
||||||
shapes = (
|
shapes = (
|
||||||
(16, 234, 768, 3072),
|
(16, 234, 768, 3072),
|
||||||
@@ -185,7 +187,7 @@ if __name__ == "__main__":
|
|||||||
diff = gflops_mx / gflops_pt - 1.0
|
diff = gflops_mx / gflops_pt - 1.0
|
||||||
|
|
||||||
print(
|
print(
|
||||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||||
)
|
)
|
||||||
if gflops_pt >= 2.0 * gflops_mx:
|
if gflops_pt >= 2.0 * gflops_mx:
|
||||||
print("ATTENTION ^^^^^^^")
|
print("ATTENTION ^^^^^^^")
|
||||||
|
|||||||
@@ -1,5 +1,6 @@
|
|||||||
# Copyright © 2023 Apple Inc.
|
# Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
import argparse
|
||||||
import os
|
import os
|
||||||
import subprocess
|
import subprocess
|
||||||
import time
|
import time
|
||||||
@@ -195,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
|||||||
|
|
||||||
|
|
||||||
for transpose in (False, True):
|
for transpose in (False, True):
|
||||||
for dtype in ("float32", "float16", "complex64"):
|
for dtype in ("float32", "float16"):
|
||||||
fig, axs = plt.subplots(
|
fig, axs = plt.subplots(
|
||||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||||
)
|
)
|
||||||
@@ -214,7 +215,7 @@ for transpose in (False, True):
|
|||||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||||
fig.savefig(
|
fig.savefig(
|
||||||
os.path.join(
|
os.path.join(
|
||||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ import os
|
|||||||
import time
|
import time
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.cuda
|
|
||||||
import torch.mps
|
import torch.mps
|
||||||
|
|
||||||
|
|
||||||
@@ -45,10 +44,8 @@ def bench(f, *args):
|
|||||||
|
|
||||||
|
|
||||||
def sync_if_needed(x):
|
def sync_if_needed(x):
|
||||||
if x.device == torch.device("mps"):
|
if x.device != torch.device("cpu"):
|
||||||
torch.mps.synchronize()
|
torch.mps.synchronize()
|
||||||
elif x.device == torch.device("cuda"):
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
@@ -102,14 +99,6 @@ def reduction(op, axis, x):
|
|||||||
sync_if_needed(x)
|
sync_if_needed(x)
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def sum_and_add(axis, x, y):
|
|
||||||
z = x.sum(axis=axis, keepdims=True)
|
|
||||||
for i in range(50):
|
|
||||||
z = (z + y).sum(axis=axis, keepdims=True)
|
|
||||||
sync_if_needed(x)
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def softmax(axis, x):
|
def softmax(axis, x):
|
||||||
ys = []
|
ys = []
|
||||||
@@ -351,11 +340,7 @@ if __name__ == "__main__":
|
|||||||
args.axis.pop(0)
|
args.axis.pop(0)
|
||||||
|
|
||||||
torch.set_num_threads(1)
|
torch.set_num_threads(1)
|
||||||
device = "mps"
|
device = "cpu" if args.cpu else "mps"
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = "cuda"
|
|
||||||
if args.cpu:
|
|
||||||
device = "cpu"
|
|
||||||
|
|
||||||
types = args.dtype
|
types = args.dtype
|
||||||
if not types:
|
if not types:
|
||||||
@@ -475,8 +460,5 @@ if __name__ == "__main__":
|
|||||||
elif args.benchmark == "selu":
|
elif args.benchmark == "selu":
|
||||||
print(bench(selu, x))
|
print(bench(selu, x))
|
||||||
|
|
||||||
elif args.benchmark == "sum_and_add":
|
|
||||||
print(bench(sum_and_add, axis, *xs))
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
||||||
|
|||||||
@@ -1,107 +0,0 @@
|
|||||||
import math
|
|
||||||
import time
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
|
|
||||||
N_warmup = 10
|
|
||||||
N_iter_bench = 100
|
|
||||||
N_iter_func = 5
|
|
||||||
|
|
||||||
|
|
||||||
def bench(f, a, b):
|
|
||||||
for i in range(N_warmup):
|
|
||||||
f(a, b)
|
|
||||||
torch.mps.synchronize()
|
|
||||||
|
|
||||||
s = time.perf_counter_ns()
|
|
||||||
for i in range(N_iter_bench):
|
|
||||||
f(a, b)
|
|
||||||
e = time.perf_counter_ns()
|
|
||||||
return (e - s) * 1e-9
|
|
||||||
|
|
||||||
|
|
||||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
|
||||||
def mx_conv_2D(a, b):
|
|
||||||
ys = []
|
|
||||||
for i in range(N_iter_func):
|
|
||||||
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
|
||||||
ys.append(y)
|
|
||||||
mx.eval(ys)
|
|
||||||
return ys
|
|
||||||
|
|
||||||
return mx_conv_2D
|
|
||||||
|
|
||||||
|
|
||||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
|
||||||
@torch.no_grad()
|
|
||||||
def pt_conv_2D(a, b):
|
|
||||||
ys = []
|
|
||||||
for i in range(N_iter_func):
|
|
||||||
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
|
||||||
ys.append(y)
|
|
||||||
torch.mps.synchronize()
|
|
||||||
return ys
|
|
||||||
|
|
||||||
return pt_conv_2D
|
|
||||||
|
|
||||||
|
|
||||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
|
||||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
|
||||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
|
||||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
|
||||||
np_dtype
|
|
||||||
)
|
|
||||||
|
|
||||||
a_mx = mx.array(a_np)
|
|
||||||
b_mx = mx.array(b_np)
|
|
||||||
|
|
||||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
|
|
||||||
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
|
|
||||||
|
|
||||||
torch.mps.synchronize()
|
|
||||||
|
|
||||||
f_mx = make_mx_conv_2D(strides, padding, groups)
|
|
||||||
f_pt = make_pt_conv_2D(strides, padding, groups)
|
|
||||||
|
|
||||||
time_torch = bench(f_pt, a_pt, b_pt)
|
|
||||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
|
||||||
|
|
||||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
|
||||||
out_pt = torch.conv2d(
|
|
||||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
|
||||||
)
|
|
||||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
|
||||||
out_pt = out_pt.numpy(force=True)
|
|
||||||
|
|
||||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
|
||||||
|
|
||||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
|
||||||
print(
|
|
||||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
|
||||||
)
|
|
||||||
|
|
||||||
return time_mlx, time_torch
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
dtype = "float32"
|
|
||||||
shapes = (
|
|
||||||
(4, 32, 32, 21, 3, 3, 128),
|
|
||||||
(4, 32, 32, 21, 3, 3, 37),
|
|
||||||
(4, 32, 32, 370, 3, 3, 370),
|
|
||||||
(4, 32, 32, 370, 7, 7, 128),
|
|
||||||
(2, 320, 640, 21, 7, 7, 21),
|
|
||||||
)
|
|
||||||
for N, H, W, C, kh, kw, O in shapes:
|
|
||||||
time_mlx, time_torch = bench_shape(
|
|
||||||
N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype
|
|
||||||
)
|
|
||||||
diff = time_torch / time_mlx - 1.0
|
|
||||||
|
|
||||||
print(
|
|
||||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%"
|
|
||||||
)
|
|
||||||
if time_mlx >= 2.0 * time_torch:
|
|
||||||
print("ATTENTION ^^^^^^^")
|
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
# Copyright © 2023-2024 Apple Inc.
|
# Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
import argparse
|
import argparse
|
||||||
|
from time import time
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
@@ -1,74 +0,0 @@
|
|||||||
# Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
from time_utils import time_fn
|
|
||||||
|
|
||||||
N = 1024
|
|
||||||
D = 1024
|
|
||||||
M = 1024
|
|
||||||
E = 32
|
|
||||||
I = 4
|
|
||||||
|
|
||||||
|
|
||||||
def gather_sort(x, indices):
|
|
||||||
N, M = indices.shape
|
|
||||||
indices = indices.flatten()
|
|
||||||
order = mx.argsort(indices)
|
|
||||||
inv_order = mx.argsort(order)
|
|
||||||
return x.flatten(0, -3)[order // M], indices[order], inv_order
|
|
||||||
|
|
||||||
|
|
||||||
def scatter_unsort(x, inv_order, shape=None):
|
|
||||||
x = x[inv_order]
|
|
||||||
if shape is not None:
|
|
||||||
x = mx.unflatten(x, 0, shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def gather_mm_simulate(x, w, indices):
|
|
||||||
x, idx, inv_order = gather_sort(x, indices)
|
|
||||||
for i in range(2):
|
|
||||||
y = mx.concatenate([x[i] @ w[j].T for i, j in enumerate(idx.tolist())], axis=0)
|
|
||||||
x = y[:, None]
|
|
||||||
x = scatter_unsort(x, inv_order, indices.shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def time_gather_mm():
|
|
||||||
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
|
|
||||||
w1 = mx.random.normal((E, M, D)) / 1024**0.5
|
|
||||||
w2 = mx.random.normal((E, D, M)) / 1024**0.5
|
|
||||||
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
|
|
||||||
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
|
|
||||||
mx.eval(x, w1, w2, indices, sorted_indices)
|
|
||||||
|
|
||||||
def gather_mm(x, w1, w2, indices, sort):
|
|
||||||
idx = indices
|
|
||||||
inv_order = None
|
|
||||||
if sort:
|
|
||||||
x, idx, inv_order = gather_sort(x, indices)
|
|
||||||
x = mx.gather_mm(x, w1.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
|
|
||||||
x = mx.gather_mm(x, w2.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
|
|
||||||
if sort:
|
|
||||||
x = scatter_unsort(x, inv_order, indices.shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
time_fn(gather_mm, x, w1, w2, indices, False)
|
|
||||||
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
|
|
||||||
time_fn(gather_mm, x, w1, w2, indices, True)
|
|
||||||
|
|
||||||
x = mx.random.normal((N * I, D)) / 1024**0.5
|
|
||||||
w1 = mx.random.normal((M, D)) / 1024**0.5
|
|
||||||
w2 = mx.random.normal((D, M)) / 1024**0.5
|
|
||||||
mx.eval(x, w1, w2)
|
|
||||||
|
|
||||||
def equivalent_matmul(x, w1, w2):
|
|
||||||
x = x @ w1.T
|
|
||||||
x = x @ w2.T
|
|
||||||
return x
|
|
||||||
|
|
||||||
time_fn(equivalent_matmul, x, w1, w2)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
time_gather_mm()
|
|
||||||
@@ -1,84 +0,0 @@
|
|||||||
# Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
from time_utils import time_fn
|
|
||||||
|
|
||||||
N = 1024
|
|
||||||
D = 1024
|
|
||||||
M = 1024
|
|
||||||
E = 32
|
|
||||||
I = 4
|
|
||||||
|
|
||||||
|
|
||||||
def gather_sort(x, indices):
|
|
||||||
N, M = indices.shape
|
|
||||||
indices = indices.flatten()
|
|
||||||
order = mx.argsort(indices)
|
|
||||||
inv_order = mx.argsort(order)
|
|
||||||
return x.flatten(0, -3)[order // M], indices[order], inv_order
|
|
||||||
|
|
||||||
|
|
||||||
def scatter_unsort(x, inv_order, shape=None):
|
|
||||||
x = x[inv_order]
|
|
||||||
if shape is not None:
|
|
||||||
x = mx.unflatten(x, 0, shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def gather_mm_simulate(x, w, indices):
|
|
||||||
x, idx, inv_order = gather_sort(x, indices)
|
|
||||||
for i in range(2):
|
|
||||||
y = mx.concatenate(
|
|
||||||
[
|
|
||||||
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
|
|
||||||
for i, j in enumerate(idx.tolist())
|
|
||||||
],
|
|
||||||
axis=0,
|
|
||||||
)
|
|
||||||
x = y[:, None]
|
|
||||||
x = scatter_unsort(x, inv_order, indices.shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
|
|
||||||
def time_gather_qmm():
|
|
||||||
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
|
|
||||||
w1 = mx.random.normal((E, M, D)) / 1024**0.5
|
|
||||||
w2 = mx.random.normal((E, D, M)) / 1024**0.5
|
|
||||||
w1 = mx.quantize(w1)
|
|
||||||
w2 = mx.quantize(w2)
|
|
||||||
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
|
|
||||||
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
|
|
||||||
mx.eval(x, w1, w2, indices, sorted_indices)
|
|
||||||
|
|
||||||
def gather_mm(x, w1, w2, indices, sort):
|
|
||||||
idx = indices
|
|
||||||
inv_order = None
|
|
||||||
if sort:
|
|
||||||
x, idx, inv_order = gather_sort(x, indices)
|
|
||||||
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
|
||||||
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
|
||||||
if sort:
|
|
||||||
x = scatter_unsort(x, inv_order, indices.shape)
|
|
||||||
return x
|
|
||||||
|
|
||||||
time_fn(gather_mm, x, w1, w2, indices, False)
|
|
||||||
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
|
|
||||||
time_fn(gather_mm, x, w1, w2, indices, True)
|
|
||||||
|
|
||||||
x = mx.random.normal((N * I, D)) / 1024**0.5
|
|
||||||
w1 = mx.random.normal((M, D)) / 1024**0.5
|
|
||||||
w2 = mx.random.normal((D, M)) / 1024**0.5
|
|
||||||
w1 = mx.quantize(w1)
|
|
||||||
w2 = mx.quantize(w2)
|
|
||||||
mx.eval(x, w1, w2)
|
|
||||||
|
|
||||||
def equivalent_matmul(x, w1, w2):
|
|
||||||
x = mx.quantized_matmul(x, *w1, transpose=True)
|
|
||||||
x = mx.quantized_matmul(x, *w2, transpose=True)
|
|
||||||
return x
|
|
||||||
|
|
||||||
time_fn(equivalent_matmul, x, w1, w2)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
time_gather_qmm()
|
|
||||||
@@ -1,7 +1,5 @@
|
|||||||
# Copyright © 2023-2024 Apple Inc.
|
# Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
import mlx.core as mx
|
import mlx.core as mx
|
||||||
import mlx.nn as nn
|
import mlx.nn as nn
|
||||||
from time_utils import time_fn
|
from time_utils import time_fn
|
||||||
@@ -12,71 +10,32 @@ def layer_norm(x, w, b, eps):
|
|||||||
x = x.astype(mx.float32)
|
x = x.astype(mx.float32)
|
||||||
mu = mx.mean(x, -1, keepdims=True)
|
mu = mx.mean(x, -1, keepdims=True)
|
||||||
v = mx.var(x, -1, keepdims=True)
|
v = mx.var(x, -1, keepdims=True)
|
||||||
y = (x - mu) * mx.rsqrt(v + eps)
|
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||||||
if w is not None:
|
|
||||||
y = y * w
|
|
||||||
if b is not None:
|
|
||||||
y = y + b
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def time_layer_norm(N, dt):
|
def time_layer_norm():
|
||||||
L = 1024
|
|
||||||
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||||||
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||||||
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||||||
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||||||
|
|
||||||
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||||
w = mx.random.uniform(shape=(N,)).astype(dt)
|
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||||
b = mx.random.uniform(shape=(N,)).astype(dt)
|
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||||
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||||
mx.eval(x, w, b, y)
|
mx.eval(x, w, b, y)
|
||||||
|
|
||||||
def layer_norm_loop(f, x, w, b):
|
def layer_norm_loop(g, x, w, b):
|
||||||
for _ in range(32):
|
|
||||||
x = f(x, w, b)
|
|
||||||
return x
|
|
||||||
|
|
||||||
time_fn(layer_norm_loop, partial(layer_norm, eps=1e-5), x, w, b)
|
|
||||||
time_fn(layer_norm_loop, partial(mx.fast.layer_norm, eps=1e-5), x, w, b)
|
|
||||||
|
|
||||||
def layer_norm_grad_loop(g, x, w, b):
|
|
||||||
gx, gw, gb = x, w, b
|
gx, gw, gb = x, w, b
|
||||||
for _ in range(32):
|
for _ in range(32):
|
||||||
gx, gw, gb = g(gx, gw, gb, y)
|
gx, gw, gb = g(gx, gw, gb, y)
|
||||||
return gx, gw, gb
|
return gx, gw, gb
|
||||||
|
|
||||||
time_fn(layer_norm_grad_loop, g1, x, w, b)
|
time_fn(layer_norm_loop, g1, x, w, b)
|
||||||
time_fn(layer_norm_grad_loop, g2, x, w, b)
|
time_fn(layer_norm_loop, g2, x, w, b)
|
||||||
time_fn(layer_norm_grad_loop, mx.compile(g1), x, w, b)
|
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||||||
time_fn(layer_norm_grad_loop, mx.compile(g2), x, w, b)
|
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||||||
|
|
||||||
f1 = lambda x, y: (layer_norm(x, None, None, 1e-5) * y).sum()
|
|
||||||
f2 = lambda x, y: (mx.fast.layer_norm(x, None, None, 1e-5) * y).sum()
|
|
||||||
g1 = mx.grad(f1, argnums=(0,))
|
|
||||||
g2 = mx.grad(f2, argnums=(0,))
|
|
||||||
|
|
||||||
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
|
||||||
w = mx.random.uniform(shape=(N,)).astype(dt)
|
|
||||||
b = mx.random.uniform(shape=(N,)).astype(dt)
|
|
||||||
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
|
||||||
mx.eval(x, w, b, y)
|
|
||||||
|
|
||||||
def layer_norm_grad_x_loop(g, x):
|
|
||||||
gx = x
|
|
||||||
for _ in range(32):
|
|
||||||
gx = g(gx, y)
|
|
||||||
return gx
|
|
||||||
|
|
||||||
time_fn(layer_norm_grad_x_loop, g1, x)
|
|
||||||
time_fn(layer_norm_grad_x_loop, g2, x)
|
|
||||||
time_fn(layer_norm_grad_x_loop, mx.compile(g1), x)
|
|
||||||
time_fn(layer_norm_grad_x_loop, mx.compile(g2), x)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
for dt in [mx.float32, mx.float16, mx.bfloat16]:
|
time_layer_norm()
|
||||||
for n in [1024, 2048, 4096, 8192, 8192 + 1024]:
|
|
||||||
print(dt, n)
|
|
||||||
time_layer_norm(n, dt)
|
|
||||||
|
|||||||
@@ -1,212 +0,0 @@
|
|||||||
import math
|
|
||||||
import os
|
|
||||||
import subprocess
|
|
||||||
import time
|
|
||||||
from copy import copy
|
|
||||||
from functools import partial
|
|
||||||
|
|
||||||
import matplotlib.pyplot as plt
|
|
||||||
import mlx.core as mx
|
|
||||||
import numpy as np
|
|
||||||
import torch
|
|
||||||
from matplotlib.ticker import FuncFormatter
|
|
||||||
|
|
||||||
RESULTS_DIR = "./results"
|
|
||||||
|
|
||||||
|
|
||||||
if not os.path.isdir(RESULTS_DIR):
|
|
||||||
os.mkdir(RESULTS_DIR)
|
|
||||||
|
|
||||||
DEVICE_NAME = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
|
||||||
DEVICE_NAME = DEVICE_NAME.decode("utf-8").strip("\n")
|
|
||||||
|
|
||||||
TORCH_DEVICE = torch.device(
|
|
||||||
"mps"
|
|
||||||
if torch.backends.mps.is_available()
|
|
||||||
else ("cuda" if torch.cuda.is_available() else "cpu")
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
N_WARMUP = 5
|
|
||||||
N_ITER_BENCH = 50
|
|
||||||
N_ITER_FUNC = 20
|
|
||||||
|
|
||||||
VECTOR_LENGTHS = [4096 * (2**i) for i in range(10)]
|
|
||||||
MASK_DENSITIES = [0.01, 0.1, 0.25, 0.5]
|
|
||||||
D_TYPES = ("float32", "float16")
|
|
||||||
|
|
||||||
|
|
||||||
def _power_of_two_formatter(value, _position):
|
|
||||||
if value <= 0:
|
|
||||||
return ""
|
|
||||||
exponent = int(round(math.log2(value)))
|
|
||||||
if abs(value - (1 << exponent)) / value > 1e-6:
|
|
||||||
return f"{value:g}"
|
|
||||||
return f"$2^{{{exponent}}}$"
|
|
||||||
|
|
||||||
|
|
||||||
def torch_sync():
|
|
||||||
if TORCH_DEVICE.type == "cuda":
|
|
||||||
torch.cuda.synchronize()
|
|
||||||
elif TORCH_DEVICE.type == "mps":
|
|
||||||
torch.mps.synchronize()
|
|
||||||
|
|
||||||
|
|
||||||
def masked_scatter_mlx(self_arr, mask_arr, src_arr):
|
|
||||||
outs = []
|
|
||||||
for _ in range(N_ITER_FUNC):
|
|
||||||
out = copy(self_arr)
|
|
||||||
out[mask_arr] = src_arr
|
|
||||||
outs.append(out)
|
|
||||||
mx.eval(outs)
|
|
||||||
return outs
|
|
||||||
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def masked_scatter_torch(self_tensor, mask_tensor, src_tensor):
|
|
||||||
outs = []
|
|
||||||
for _ in range(N_ITER_FUNC):
|
|
||||||
out = self_tensor.clone()
|
|
||||||
out.masked_scatter_(mask_tensor, src_tensor)
|
|
||||||
outs.append(out)
|
|
||||||
torch_sync()
|
|
||||||
return outs
|
|
||||||
|
|
||||||
|
|
||||||
def measure(fn):
|
|
||||||
for _ in range(N_WARMUP):
|
|
||||||
fn()
|
|
||||||
start = time.perf_counter_ns()
|
|
||||||
for _ in range(N_ITER_BENCH):
|
|
||||||
fn()
|
|
||||||
end = time.perf_counter_ns()
|
|
||||||
return (end - start) * 1e-9
|
|
||||||
|
|
||||||
|
|
||||||
def bytes_touched(length, true_count, item_size):
|
|
||||||
mask_bytes = length
|
|
||||||
self_bytes = length * item_size * 2 # read + write
|
|
||||||
src_bytes = true_count * item_size
|
|
||||||
return (mask_bytes + self_bytes + src_bytes) * N_ITER_FUNC * N_ITER_BENCH
|
|
||||||
|
|
||||||
|
|
||||||
def build_case(length, density, np_dtype, torch_dtype):
|
|
||||||
true_count = max(1, int(round(length * density)))
|
|
||||||
|
|
||||||
rng = np.random.default_rng()
|
|
||||||
self_np = rng.normal(0.0, 1.0, length).astype(np_dtype)
|
|
||||||
mask_np = np.zeros(length, dtype=bool)
|
|
||||||
mask_np[:true_count] = True
|
|
||||||
rng.shuffle(mask_np)
|
|
||||||
src_np = rng.normal(0.0, 1.0, true_count).astype(np_dtype)
|
|
||||||
|
|
||||||
self_mlx = mx.array(self_np)
|
|
||||||
mask_mlx = mx.array(mask_np)
|
|
||||||
src_mlx = mx.array(src_np)
|
|
||||||
|
|
||||||
self_torch = torch.from_numpy(self_np).to(device=TORCH_DEVICE, dtype=torch_dtype)
|
|
||||||
mask_torch = torch.from_numpy(mask_np).to(device=TORCH_DEVICE)
|
|
||||||
src_torch = torch.from_numpy(src_np).to(device=TORCH_DEVICE, dtype=torch_dtype)
|
|
||||||
|
|
||||||
# Correctness check once per configuration
|
|
||||||
mx_out = mx.array(self_np)
|
|
||||||
mx_out[mask_mlx] = src_mlx
|
|
||||||
mx.eval(mx_out)
|
|
||||||
torch_out = self_torch.clone()
|
|
||||||
torch_out.masked_scatter_(mask_torch, src_torch)
|
|
||||||
|
|
||||||
atol = 5e-3 if np_dtype == np.float16 else 1e-5
|
|
||||||
if not np.allclose(np.array(mx_out), torch_out.cpu().numpy(), atol=atol):
|
|
||||||
raise AssertionError("masked_scatter results diverged between MLX and Torch")
|
|
||||||
|
|
||||||
return (self_mlx, mask_mlx, src_mlx, self_torch, mask_torch, src_torch, true_count)
|
|
||||||
|
|
||||||
|
|
||||||
def bench_case(length, density, dtype):
|
|
||||||
np_dtype = getattr(np, dtype)
|
|
||||||
torch_dtype = getattr(torch, dtype)
|
|
||||||
(
|
|
||||||
self_mlx,
|
|
||||||
mask_mlx,
|
|
||||||
src_mlx,
|
|
||||||
self_torch,
|
|
||||||
mask_torch,
|
|
||||||
src_torch,
|
|
||||||
true_count,
|
|
||||||
) = build_case(length, density, np_dtype, torch_dtype)
|
|
||||||
|
|
||||||
time_mlx = measure(partial(masked_scatter_mlx, self_mlx, mask_mlx, src_mlx))
|
|
||||||
time_torch = measure(
|
|
||||||
partial(masked_scatter_torch, self_torch, mask_torch, src_torch)
|
|
||||||
)
|
|
||||||
|
|
||||||
total_bytes = bytes_touched(length, true_count, np_dtype().itemsize)
|
|
||||||
bytes_per_gb = float(1024**3)
|
|
||||||
mlx_gbps = (total_bytes / bytes_per_gb) / time_mlx
|
|
||||||
torch_gbps = (total_bytes / bytes_per_gb) / time_torch
|
|
||||||
|
|
||||||
return time_mlx, time_torch, mlx_gbps, torch_gbps
|
|
||||||
|
|
||||||
|
|
||||||
def plot_density(ax_perf, ax_speedup, density, dtype):
|
|
||||||
mlx_gbps = []
|
|
||||||
torch_gbps = []
|
|
||||||
mlx_times = []
|
|
||||||
torch_times = []
|
|
||||||
|
|
||||||
for length in VECTOR_LENGTHS:
|
|
||||||
t_mlx, t_torch, gbps_mlx, gbps_torch = bench_case(length, density, dtype)
|
|
||||||
mlx_gbps.append(gbps_mlx)
|
|
||||||
torch_gbps.append(gbps_torch)
|
|
||||||
mlx_times.append(t_mlx)
|
|
||||||
torch_times.append(t_torch)
|
|
||||||
|
|
||||||
ax_perf.plot(VECTOR_LENGTHS, mlx_gbps, "tab:blue", label="MLX")
|
|
||||||
ax_perf.plot(VECTOR_LENGTHS, torch_gbps, "tab:red", label="Torch")
|
|
||||||
ax_perf.set_xscale("log", base=2)
|
|
||||||
ax_perf.set_xticks(VECTOR_LENGTHS)
|
|
||||||
formatter = FuncFormatter(_power_of_two_formatter)
|
|
||||||
ax_perf.xaxis.set_major_formatter(formatter)
|
|
||||||
ax_perf.set_title(f"density={density:.2f}")
|
|
||||||
ax_perf.set_ylabel("GB/s")
|
|
||||||
ax_perf.grid(True, which="both", linestyle=":", alpha=0.4)
|
|
||||||
ax_perf.legend()
|
|
||||||
|
|
||||||
speedup = np.array(torch_times) / np.array(mlx_times)
|
|
||||||
ax_speedup.plot(VECTOR_LENGTHS, speedup, "tab:green")
|
|
||||||
ax_speedup.axhline(1.0, color="tab:gray", linestyle="--")
|
|
||||||
ax_speedup.set_xscale("log", base=2)
|
|
||||||
ax_speedup.set_xticks(VECTOR_LENGTHS)
|
|
||||||
ax_speedup.xaxis.set_major_formatter(formatter)
|
|
||||||
ax_speedup.set_ylabel("Speedup (Torch_t / MLX_t)")
|
|
||||||
ax_speedup.grid(True, which="both", linestyle=":", alpha=0.4)
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
for dtype in D_TYPES:
|
|
||||||
fig, axs = plt.subplots(
|
|
||||||
len(MASK_DENSITIES),
|
|
||||||
2,
|
|
||||||
figsize=(10, 12),
|
|
||||||
layout="constrained",
|
|
||||||
sharex=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
for i, density in enumerate(MASK_DENSITIES):
|
|
||||||
plot_density(axs[i][0], axs[i][1], density, dtype)
|
|
||||||
axs[i][0].set_xlabel("vector length")
|
|
||||||
axs[i][1].set_xlabel("vector length")
|
|
||||||
|
|
||||||
fig.suptitle(
|
|
||||||
f"{DEVICE_NAME.replace('Apple ', '')} ({TORCH_DEVICE.type}) | dtype={dtype}"
|
|
||||||
)
|
|
||||||
output_path = os.path.join(
|
|
||||||
RESULTS_DIR,
|
|
||||||
f"{DEVICE_NAME.replace(' ', '_')}_masked_scatter_{dtype}.pdf",
|
|
||||||
)
|
|
||||||
fig.savefig(output_path)
|
|
||||||
plt.close(fig)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
main()
|
|
||||||
@@ -9,10 +9,7 @@ def rms_norm(x, w, eps):
|
|||||||
ot = x.dtype
|
ot = x.dtype
|
||||||
x = x.astype(mx.float32)
|
x = x.astype(mx.float32)
|
||||||
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
||||||
y = (x * n).astype(ot)
|
return (x * n).astype(ot) * w
|
||||||
if w is not None:
|
|
||||||
y = y * w
|
|
||||||
return y
|
|
||||||
|
|
||||||
|
|
||||||
def time_rms_norm():
|
def time_rms_norm():
|
||||||
@@ -37,27 +34,6 @@ def time_rms_norm():
|
|||||||
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
||||||
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
||||||
|
|
||||||
f1 = lambda x, y: (rms_norm(x, None, 1e-5) * y).sum()
|
|
||||||
f2 = lambda x, y: (mx.fast.rms_norm(x, None, 1e-5) * y).sum()
|
|
||||||
g1 = mx.grad(f1, argnums=(0,))
|
|
||||||
g2 = mx.grad(f2, argnums=(0,))
|
|
||||||
|
|
||||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
|
||||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
|
||||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
|
||||||
mx.eval(x, w, y)
|
|
||||||
|
|
||||||
def rms_norm_loop(g, x):
|
|
||||||
gx = x
|
|
||||||
for _ in range(32):
|
|
||||||
gx = g(gx, y)
|
|
||||||
return gx
|
|
||||||
|
|
||||||
time_fn(rms_norm_loop, g1, x)
|
|
||||||
time_fn(rms_norm_loop, g2, x)
|
|
||||||
time_fn(rms_norm_loop, mx.compile(g1), x)
|
|
||||||
time_fn(rms_norm_loop, mx.compile(g2), x)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
time_rms_norm()
|
time_rms_norm()
|
||||||
|
|||||||
@@ -28,34 +28,11 @@ def bench(f, *args):
|
|||||||
return (e - s) * 1e-9
|
return (e - s) * 1e-9
|
||||||
|
|
||||||
|
|
||||||
def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
|
def mlx_sdpa_fused_inner(q, k, v, scale):
|
||||||
np_dtype = getattr(np, dtype)
|
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
|
||||||
|
|
||||||
shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
|
|
||||||
shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
|
|
||||||
|
|
||||||
scale = 1.0 / math.sqrt(D)
|
|
||||||
|
|
||||||
q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype)
|
|
||||||
k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
|
||||||
v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
|
||||||
|
|
||||||
q_mx = mx.array(q_np)
|
|
||||||
k_mx = mx.array(k_np)
|
|
||||||
v_mx = mx.array(v_np)
|
|
||||||
|
|
||||||
if mask is not None:
|
|
||||||
if mask == "additive":
|
|
||||||
mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype)
|
|
||||||
mask = mx.array(mask_np)
|
|
||||||
elif mask == "bool":
|
|
||||||
mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
|
|
||||||
mask = mx.array(mask_np)
|
|
||||||
|
|
||||||
return q_mx, k_mx, v_mx, scale, mask
|
|
||||||
|
|
||||||
|
|
||||||
def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||||
q_dtype = q.dtype
|
q_dtype = q.dtype
|
||||||
q = q * mx.array(scale, q_dtype)
|
q = q * mx.array(scale, q_dtype)
|
||||||
n_q_heads = q.shape[-3]
|
n_q_heads = q.shape[-3]
|
||||||
@@ -64,7 +41,6 @@ def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
|||||||
|
|
||||||
B = q.shape[0]
|
B = q.shape[0]
|
||||||
L = q.shape[2]
|
L = q.shape[2]
|
||||||
kL = k.shape[2]
|
|
||||||
|
|
||||||
if n_repeats > 1:
|
if n_repeats > 1:
|
||||||
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
||||||
@@ -72,27 +48,10 @@ def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
|||||||
v = mx.expand_dims(v, 2)
|
v = mx.expand_dims(v, 2)
|
||||||
|
|
||||||
scores = q @ mx.swapaxes(k, -1, -2)
|
scores = q @ mx.swapaxes(k, -1, -2)
|
||||||
|
if f32softmax:
|
||||||
if mask is not None:
|
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
|
||||||
|
|
||||||
if mask == "causal":
|
|
||||||
q_offset = max(0, kL - L)
|
|
||||||
q_indices = mx.arange(q_offset, q_offset + L)
|
|
||||||
k_indices = mx.arange(kL)
|
|
||||||
mask = q_indices[:, None] >= k_indices[None]
|
|
||||||
|
|
||||||
if n_repeats > 1 and mask.ndim >= 3:
|
|
||||||
if mask.shape[-3] == 1:
|
|
||||||
mask = mx.expand_dims(mask, -3)
|
|
||||||
else:
|
else:
|
||||||
mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
|
scores = mx.softmax(scores, axis=-1)
|
||||||
|
|
||||||
if mask.dtype == mx.bool_:
|
|
||||||
scores = mx.where(mask, scores, -np.float32(np.inf))
|
|
||||||
else:
|
|
||||||
scores += mask
|
|
||||||
|
|
||||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
|
||||||
|
|
||||||
out = scores @ v
|
out = scores @ v
|
||||||
if n_repeats > 1:
|
if n_repeats > 1:
|
||||||
@@ -101,55 +60,74 @@ def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
|||||||
return out
|
return out
|
||||||
|
|
||||||
|
|
||||||
def mlx_fused_attn(q, k, v, scale, mask):
|
def mlx_spda_unfused(q, k, v, scale, transpose):
|
||||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
|
||||||
|
|
||||||
|
|
||||||
def do_attention(f, q, k, v, scale, mask=None, transpose=False):
|
|
||||||
if transpose:
|
|
||||||
q_t = mx.transpose(q, (0, 2, 1, 3))
|
|
||||||
k_t = mx.transpose(k, (0, 2, 1, 3))
|
|
||||||
v_t = mx.transpose(v, (0, 2, 1, 3))
|
|
||||||
o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
|
|
||||||
return mx.transpose(o_t, (0, 2, 1, 3))
|
|
||||||
else:
|
|
||||||
return f(q, k, v, scale=scale, mask=mask)
|
|
||||||
|
|
||||||
|
|
||||||
def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False):
|
|
||||||
q_out = q
|
q_out = q
|
||||||
|
if transpose:
|
||||||
|
k = mx.transpose(k, (0, 2, 1, 3))
|
||||||
|
v = mx.transpose(v, (0, 2, 1, 3))
|
||||||
|
|
||||||
for i in range(N_iter_func):
|
for i in range(N_iter_func):
|
||||||
q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose)
|
if transpose:
|
||||||
|
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||||
|
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
|
||||||
|
if transpose:
|
||||||
|
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||||
|
|
||||||
mx.eval(q_out)
|
mx.eval(q_out)
|
||||||
return q_out
|
return q_out
|
||||||
|
|
||||||
|
|
||||||
def bench_shape(
|
def mlx_spda_fused(q, k, v, scale, transpose):
|
||||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None
|
q_out = q
|
||||||
):
|
if transpose:
|
||||||
q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
|
k = mx.transpose(k, (0, 2, 1, 3))
|
||||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype
|
v = mx.transpose(v, (0, 2, 1, 3))
|
||||||
|
|
||||||
|
for i in range(N_iter_func):
|
||||||
|
if transpose:
|
||||||
|
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||||
|
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
|
||||||
|
if transpose:
|
||||||
|
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||||
|
|
||||||
|
mx.eval(q_out)
|
||||||
|
return q_out
|
||||||
|
|
||||||
|
|
||||||
|
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
|
||||||
|
shape_q = (
|
||||||
|
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
|
||||||
|
)
|
||||||
|
shape_kv = (
|
||||||
|
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
|
||||||
)
|
)
|
||||||
|
|
||||||
time_mlx_unfused = bench(
|
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
|
||||||
do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||||
)
|
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||||
time_mlx_fused = bench(
|
|
||||||
do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
|
||||||
)
|
|
||||||
|
|
||||||
o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose)
|
scale = math.sqrt(1.0 / head_dim)
|
||||||
o_mlx_unfused = do_attention(
|
|
||||||
mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
|
||||||
)
|
|
||||||
|
|
||||||
atol = 1e-5 if dtype == "float32" else 2e-4
|
q_mx = mx.array(q_np)
|
||||||
|
k_mx = mx.array(k_np)
|
||||||
|
v_mx = mx.array(v_np)
|
||||||
|
|
||||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol):
|
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
|
||||||
|
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
|
||||||
|
|
||||||
|
if transpose:
|
||||||
|
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
|
||||||
|
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
|
||||||
|
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
|
||||||
|
|
||||||
|
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
|
||||||
|
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
|
||||||
|
|
||||||
|
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||||
|
|
||||||
|
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
|
||||||
print(
|
print(
|
||||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||||
)
|
)
|
||||||
|
|
||||||
return time_mlx_fused, time_mlx_unfused
|
return time_mlx_fused, time_mlx_unfused
|
||||||
@@ -173,51 +151,39 @@ if __name__ == "__main__":
|
|||||||
( 1, 128, 128, 64, 32, 32),
|
( 1, 128, 128, 64, 32, 32),
|
||||||
( 1, 256, 256, 64, 32, 32),
|
( 1, 256, 256, 64, 32, 32),
|
||||||
( 1, 512, 512, 64, 32, 32),
|
( 1, 512, 512, 64, 32, 32),
|
||||||
( 1, 1024, 1024, 64, 32, 8),
|
( 1, 1024, 1024, 64, 32, 32),
|
||||||
( 1, 2048, 2048, 64, 32, 8),
|
( 1, 2048, 2048, 64, 32, 32),
|
||||||
( 1, 4096, 4096, 64, 32, 8),
|
( 1, 4096, 4096, 64, 32, 32),
|
||||||
)
|
)
|
||||||
|
|
||||||
shapes_80 = (
|
shapes_80 = (
|
||||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||||
( 1, 1024, 1024, 80, 32, 8),
|
( 1, 1024, 1024, 80, 32, 32),
|
||||||
( 1, 2048, 2048, 80, 32, 8),
|
( 1, 2048, 2048, 80, 32, 32),
|
||||||
( 1, 4096, 4096, 80, 32, 8),
|
( 1, 4096, 4096, 80, 32, 32),
|
||||||
)
|
)
|
||||||
|
|
||||||
shapes_128 = (
|
shapes_128 = (
|
||||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||||
( 1, 1024, 1024, 128, 32, 8),
|
( 1, 1024, 1024, 128, 32, 32),
|
||||||
( 1, 2048, 2048, 128, 32, 8),
|
( 1, 2048, 2048, 128, 32, 32),
|
||||||
( 1, 4096, 4096, 128, 32, 8),
|
( 1, 4096, 4096, 128, 32, 32),
|
||||||
)
|
)
|
||||||
# fmt: on
|
# fmt: on
|
||||||
|
|
||||||
shapes = shapes_64 + shapes_80 + shapes_128
|
shapes = shapes_64 + shapes_80 + shapes_128
|
||||||
|
|
||||||
masks = [None, "bool", "causal"]
|
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
|
||||||
|
|
||||||
print(
|
|
||||||
" B, qsl, ksl, hdim, n_qh, n_kvh, t, dtype, mask, t_unfs, t_fuse, diff%"
|
|
||||||
)
|
|
||||||
|
|
||||||
for dtype in dtypes:
|
for dtype in dtypes:
|
||||||
for transpose in transposes:
|
for transpose in transposes:
|
||||||
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
||||||
for mask_in in masks:
|
np_dtype = getattr(np, dtype)
|
||||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||||
B,
|
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
|
||||||
qsl,
|
|
||||||
ksl,
|
|
||||||
head_dim,
|
|
||||||
n_q_heads,
|
|
||||||
n_kv_heads,
|
|
||||||
dtype,
|
|
||||||
transpose,
|
|
||||||
mask_in,
|
|
||||||
)
|
)
|
||||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||||
t_str = 1 if transpose else 0
|
t_str = 1 if transpose else 0
|
||||||
print(
|
print(
|
||||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||||
)
|
)
|
||||||
|
|||||||
@@ -8,23 +8,14 @@ L = 16384
|
|||||||
H = 32
|
H = 32
|
||||||
H_k = H // 4
|
H_k = H // 4
|
||||||
D = 128
|
D = 128
|
||||||
V = 128
|
|
||||||
dtype = mx.float16
|
dtype = mx.float16
|
||||||
loops = 10
|
loops = 10
|
||||||
|
|
||||||
|
|
||||||
def upproject(x, w):
|
def attention(q, k, v, mask=None):
|
||||||
if w is None:
|
|
||||||
return x
|
|
||||||
else:
|
|
||||||
return x @ w.T
|
|
||||||
|
|
||||||
|
|
||||||
def attention(q, k, v, mask=None, w=None):
|
|
||||||
def _sdpa(q, k, v):
|
def _sdpa(q, k, v):
|
||||||
B, Hq, L, D = q.shape
|
B, Hq, L, D = q.shape
|
||||||
_, Hk, S, _ = k.shape
|
_, Hk, S, _ = k.shape
|
||||||
_, _, _, V = v.shape
|
|
||||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||||
k = k[:, :, None, :, :]
|
k = k[:, :, None, :, :]
|
||||||
v = v[:, :, None, :, :]
|
v = v[:, :, None, :, :]
|
||||||
@@ -34,18 +25,16 @@ def attention(q, k, v, mask=None, w=None):
|
|||||||
s = mx.where(m, s, mx.finfo(s.dtype).min)
|
s = mx.where(m, s, mx.finfo(s.dtype).min)
|
||||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||||
o = p @ v
|
o = p @ v
|
||||||
return o.reshape(B, Hq, L, V)
|
return o.reshape(B, Hq, L, D)
|
||||||
|
|
||||||
for i in range(loops):
|
for i in range(loops):
|
||||||
q = _sdpa(q, k, v)
|
q = _sdpa(q, k, v)
|
||||||
q = upproject(q, w)
|
|
||||||
return q
|
return q
|
||||||
|
|
||||||
|
|
||||||
def sdpa(q, k, v, mask=None, w=None):
|
def sdpa(q, k, v, mask=None):
|
||||||
for i in range(loops):
|
for i in range(loops):
|
||||||
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
|
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
|
||||||
q = upproject(q, w)
|
|
||||||
return q
|
return q
|
||||||
|
|
||||||
|
|
||||||
@@ -53,37 +42,34 @@ def time_self_attention_primitives():
|
|||||||
mx.random.seed(3)
|
mx.random.seed(3)
|
||||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
mx.eval(q, k, v)
|
||||||
mx.eval(q, k, v, w)
|
time_fn(attention, q, k, v)
|
||||||
time_fn(attention, q, k, v, w=w)
|
|
||||||
|
|
||||||
|
|
||||||
def time_self_attention_sdpa():
|
def time_self_attention_sdpa():
|
||||||
mx.random.seed(3)
|
mx.random.seed(3)
|
||||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
mx.eval(q, k, v)
|
||||||
mx.eval(q, k, v, w)
|
time_fn(sdpa, q, k, v)
|
||||||
time_fn(sdpa, q, k, v, w=w)
|
|
||||||
|
|
||||||
|
|
||||||
def time_self_attention_sdpa_with_mask():
|
def time_self_attention_sdpa_with_mask():
|
||||||
mx.random.seed(3)
|
mx.random.seed(3)
|
||||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
|
||||||
mask = mx.full((L,), True)
|
mask = mx.full((L,), True)
|
||||||
mask[L // 2 :] = False
|
mask[L // 2 :] = False
|
||||||
mx.eval(q, k, v, mask, w)
|
mx.eval(q, k, v, mask)
|
||||||
|
|
||||||
def sdpa_mask(*args):
|
def sdpa_mask(*args):
|
||||||
return sdpa(*args, mask=mask, w=w)
|
return sdpa(*args, mask=mask)
|
||||||
|
|
||||||
def attention_mask(*args):
|
def attention_mask(*args):
|
||||||
return attention(*args, mask=mask, w=w)
|
return attention(*args, mask=mask)
|
||||||
|
|
||||||
time_fn(attention_mask, q, k, v)
|
time_fn(attention_mask, q, k, v)
|
||||||
time_fn(sdpa_mask, q, k, v)
|
time_fn(sdpa_mask, q, k, v)
|
||||||
|
|||||||
@@ -51,20 +51,6 @@ def time_maximum():
|
|||||||
time_fn(mx.maximum, a, b)
|
time_fn(mx.maximum, a, b)
|
||||||
|
|
||||||
|
|
||||||
def time_max():
|
|
||||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
|
||||||
a[1, 1] = mx.nan
|
|
||||||
mx.eval(a)
|
|
||||||
time_fn(mx.max, a, 0)
|
|
||||||
|
|
||||||
|
|
||||||
def time_min():
|
|
||||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
|
||||||
a[1, 1] = mx.nan
|
|
||||||
mx.eval(a)
|
|
||||||
time_fn(mx.min, a, 0)
|
|
||||||
|
|
||||||
|
|
||||||
def time_negative():
|
def time_negative():
|
||||||
a = mx.random.uniform(shape=(10000, 1000))
|
a = mx.random.uniform(shape=(10000, 1000))
|
||||||
mx.eval(a)
|
mx.eval(a)
|
||||||
@@ -122,8 +108,6 @@ if __name__ == "__main__":
|
|||||||
|
|
||||||
time_add()
|
time_add()
|
||||||
time_matmul()
|
time_matmul()
|
||||||
time_min()
|
|
||||||
time_max()
|
|
||||||
time_maximum()
|
time_maximum()
|
||||||
time_exp()
|
time_exp()
|
||||||
time_negative()
|
time_negative()
|
||||||
|
|||||||
@@ -1,55 +0,0 @@
|
|||||||
import time
|
|
||||||
|
|
||||||
import mlx.core as mx
|
|
||||||
|
|
||||||
rank = mx.distributed.init().rank()
|
|
||||||
|
|
||||||
|
|
||||||
def timeit(fn, a):
|
|
||||||
|
|
||||||
# warmup
|
|
||||||
for _ in range(5):
|
|
||||||
mx.eval(fn(a))
|
|
||||||
|
|
||||||
its = 10
|
|
||||||
tic = time.perf_counter()
|
|
||||||
for _ in range(its):
|
|
||||||
mx.eval(fn(a))
|
|
||||||
toc = time.perf_counter()
|
|
||||||
ms = 1000 * (toc - tic) / its
|
|
||||||
return ms
|
|
||||||
|
|
||||||
|
|
||||||
def all_reduce_benchmark():
|
|
||||||
a = mx.ones((5, 5), mx.int32)
|
|
||||||
|
|
||||||
its_per_eval = 100
|
|
||||||
|
|
||||||
def fn(x):
|
|
||||||
for _ in range(its_per_eval):
|
|
||||||
x = mx.distributed.all_sum(x)
|
|
||||||
x = x - 1
|
|
||||||
return x
|
|
||||||
|
|
||||||
ms = timeit(fn, a) / its_per_eval
|
|
||||||
if rank == 0:
|
|
||||||
print(f"All Reduce: time per iteration {ms:.6f} (ms)")
|
|
||||||
|
|
||||||
|
|
||||||
def all_gather_benchmark():
|
|
||||||
a = mx.ones((5, 5), mx.int32)
|
|
||||||
its_per_eval = 100
|
|
||||||
|
|
||||||
def fn(x):
|
|
||||||
for _ in range(its_per_eval):
|
|
||||||
x = mx.distributed.all_gather(x)[0]
|
|
||||||
return x
|
|
||||||
|
|
||||||
ms = timeit(fn, a) / its_per_eval
|
|
||||||
if rank == 0:
|
|
||||||
print(f"All gather: time per iteration {ms:.6f} (ms)")
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
all_reduce_benchmark()
|
|
||||||
all_gather_benchmark()
|
|
||||||
@@ -1,54 +0,0 @@
|
|||||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
|
||||||
# directories.
|
|
||||||
|
|
||||||
set(NCCL_ROOT_DIR
|
|
||||||
$ENV{NCCL_ROOT_DIR}
|
|
||||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
|
||||||
|
|
||||||
find_path(
|
|
||||||
NCCL_INCLUDE_DIRS
|
|
||||||
NAMES nccl.h
|
|
||||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
|
||||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
|
||||||
|
|
||||||
if($ENV{USE_STATIC_NCCL})
|
|
||||||
message(
|
|
||||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
|
||||||
set(NCCL_LIBNAME "libnccl_static.a")
|
|
||||||
else()
|
|
||||||
set(NCCL_LIBNAME "nccl")
|
|
||||||
endif()
|
|
||||||
|
|
||||||
find_library(
|
|
||||||
NCCL_LIBRARIES
|
|
||||||
NAMES ${NCCL_LIBNAME}
|
|
||||||
HINTS ${NCCL_LIB_DIR}
|
|
||||||
${NCCL_ROOT_DIR}
|
|
||||||
${NCCL_ROOT_DIR}/lib
|
|
||||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
|
||||||
${NCCL_ROOT_DIR}/lib64
|
|
||||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
|
||||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
|
||||||
|
|
||||||
include(FindPackageHandleStandardArgs)
|
|
||||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
|
||||||
NCCL_LIBRARIES)
|
|
||||||
|
|
||||||
if(NCCL_FOUND)
|
|
||||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
|
||||||
message(
|
|
||||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
|
||||||
file(
|
|
||||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
|
||||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
|
||||||
LIMIT_COUNT 1)
|
|
||||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
|
||||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
|
||||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
|
||||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
|
||||||
endif()
|
|
||||||
message(
|
|
||||||
STATUS
|
|
||||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
|
||||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
|
||||||
endif()
|
|
||||||
@@ -1,3 +0,0 @@
|
|||||||
# This file does nothing but to suppress the cmake warning: "By not providing
|
|
||||||
# Findnvpl.cmake in CMAKE_MODULE_PATH...", which is caused by the
|
|
||||||
# find_package(nvpl) from cmake's builtin FindLAPACK.cmake module.
|
|
||||||
@@ -1,7 +1,5 @@
|
|||||||
include(CMakeParseArguments)
|
include(CMakeParseArguments)
|
||||||
|
|
||||||
# clang format off
|
|
||||||
#
|
|
||||||
# ##############################################################################
|
# ##############################################################################
|
||||||
# Build metal library
|
# Build metal library
|
||||||
#
|
#
|
||||||
@@ -11,14 +9,11 @@ include(CMakeParseArguments)
|
|||||||
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
|
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
|
||||||
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
|
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
|
||||||
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
|
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
|
||||||
# files (like headers) DEBUG: Boolean, if true, enables debug compile options
|
# files (like headers)
|
||||||
# for this specific library. If not provided, uses global MLX_METAL_DEBUG.
|
|
||||||
#
|
#
|
||||||
# clang format on
|
|
||||||
|
|
||||||
macro(mlx_build_metallib)
|
macro(mlx_build_metallib)
|
||||||
# Parse args
|
# Parse args
|
||||||
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY DEBUG)
|
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
|
||||||
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
|
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
|
||||||
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||||
|
|
||||||
@@ -26,11 +21,7 @@ macro(mlx_build_metallib)
|
|||||||
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
|
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
|
||||||
|
|
||||||
# Collect compile options
|
# Collect compile options
|
||||||
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math -Wno-c++17-extensions)
|
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
|
||||||
if(MLX_METAL_DEBUG OR MTLLIB_DEBUG)
|
|
||||||
set(MTLLIB_COMPILE_OPTIONS ${MTLLIB_COMPILE_OPTIONS} -gline-tables-only
|
|
||||||
-frecord-sources)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
# Prepare metallib build command
|
# Prepare metallib build command
|
||||||
add_custom_command(
|
add_custom_command(
|
||||||
|
|||||||
@@ -13,7 +13,7 @@ EXCLUDE_PATTERNS = */private/*
|
|||||||
CREATE_SUBDIRS = NO
|
CREATE_SUBDIRS = NO
|
||||||
FULL_PATH_NAMES = YES
|
FULL_PATH_NAMES = YES
|
||||||
RECURSIVE = YES
|
RECURSIVE = YES
|
||||||
GENERATE_HTML = NO
|
GENERATE_HTML = YES
|
||||||
GENERATE_LATEX = NO
|
GENERATE_LATEX = NO
|
||||||
GENERATE_XML = YES
|
GENERATE_XML = YES
|
||||||
XML_PROGRAMLISTING = YES
|
XML_PROGRAMLISTING = YES
|
||||||
|
|||||||
@@ -1,5 +1,4 @@
|
|||||||
sphinx
|
sphinx
|
||||||
breathe
|
breathe
|
||||||
sphinx-book-theme
|
sphinx-book-theme
|
||||||
sphinx-copybutton
|
|
||||||
mlx
|
mlx
|
||||||
|
|||||||
@@ -10,7 +10,7 @@ import mlx.core as mx
|
|||||||
# -- Project information -----------------------------------------------------
|
# -- Project information -----------------------------------------------------
|
||||||
|
|
||||||
project = "MLX"
|
project = "MLX"
|
||||||
copyright = "2023, Apple"
|
copyright = "2023, MLX Contributors"
|
||||||
author = "MLX Contributors"
|
author = "MLX Contributors"
|
||||||
version = ".".join(mx.__version__.split(".")[:3])
|
version = ".".join(mx.__version__.split(".")[:3])
|
||||||
release = version
|
release = version
|
||||||
@@ -18,7 +18,6 @@ release = version
|
|||||||
# -- General configuration ---------------------------------------------------
|
# -- General configuration ---------------------------------------------------
|
||||||
|
|
||||||
extensions = [
|
extensions = [
|
||||||
"sphinx_copybutton",
|
|
||||||
"sphinx.ext.autodoc",
|
"sphinx.ext.autodoc",
|
||||||
"sphinx.ext.autosummary",
|
"sphinx.ext.autosummary",
|
||||||
"sphinx.ext.intersphinx",
|
"sphinx.ext.intersphinx",
|
||||||
|
|||||||
@@ -8,12 +8,11 @@ MLX supports writing custom Metal kernels through the Python and C++ APIs.
|
|||||||
Simple Example
|
Simple Example
|
||||||
--------------
|
--------------
|
||||||
|
|
||||||
.. currentmodule:: mlx.core
|
|
||||||
|
|
||||||
Let's write a custom kernel that computes ``exp`` elementwise:
|
Let's write a custom kernel that computes ``exp`` elementwise:
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
|
def exp_elementwise(a: mx.array):
|
||||||
source = """
|
source = """
|
||||||
uint elem = thread_position_in_grid.x;
|
uint elem = thread_position_in_grid.x;
|
||||||
T tmp = inp[elem];
|
T tmp = inp[elem];
|
||||||
@@ -26,8 +25,6 @@ Let's write a custom kernel that computes ``exp`` elementwise:
|
|||||||
output_names=["out"],
|
output_names=["out"],
|
||||||
source=source,
|
source=source,
|
||||||
)
|
)
|
||||||
|
|
||||||
def exp_elementwise(a: mx.array):
|
|
||||||
outputs = kernel(
|
outputs = kernel(
|
||||||
inputs=[a],
|
inputs=[a],
|
||||||
template=[("T", mx.float32)],
|
template=[("T", mx.float32)],
|
||||||
@@ -42,13 +39,8 @@ Let's write a custom kernel that computes ``exp`` elementwise:
|
|||||||
b = exp_elementwise(a)
|
b = exp_elementwise(a)
|
||||||
assert mx.allclose(b, mx.exp(a))
|
assert mx.allclose(b, mx.exp(a))
|
||||||
|
|
||||||
Every time you make a kernel, a new Metal library is created and possibly
|
|
||||||
JIT compiled. To reduce the overhead from that, build the kernel once with
|
|
||||||
:func:`fast.metal_kernel` and then use it many times.
|
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
Only pass the body of the Metal kernel in ``source``. The function
|
We are only required to pass the body of the Metal kernel in ``source``.
|
||||||
signature is generated automatically.
|
|
||||||
|
|
||||||
The full function signature will be generated using:
|
The full function signature will be generated using:
|
||||||
|
|
||||||
@@ -86,34 +78,29 @@ Putting this all together, the generated function signature for ``myexp`` is as
|
|||||||
|
|
||||||
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
|
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
|
||||||
|
|
||||||
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads
|
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
|
||||||
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_
|
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
|
||||||
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into
|
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
|
||||||
``threadgroup`` size threadgroups. For optimal performance, each thread group
|
|
||||||
dimension should be less than or equal to the corresponding grid dimension.
|
|
||||||
|
|
||||||
Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the
|
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
|
||||||
generated code for debugging purposes.
|
|
||||||
|
|
||||||
Using Shape/Strides
|
Using Shape/Strides
|
||||||
-------------------
|
-------------------
|
||||||
|
|
||||||
:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which
|
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
|
||||||
is ``True`` by default. This will copy the array inputs if needed
|
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
|
||||||
before the kernel is launched to ensure that the memory layout is row
|
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
|
||||||
contiguous. Generally this makes writing the kernel easier, since we don't
|
when indexing.
|
||||||
have to worry about gaps or the ordering of the dims when indexing.
|
|
||||||
|
|
||||||
If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes
|
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
|
||||||
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are
|
input array ``a`` if any are present in ``source``.
|
||||||
present in ``source``. We can then use MLX's built in indexing utils to fetch
|
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
|
||||||
the right elements for each thread.
|
|
||||||
|
|
||||||
Let's convert ``myexp`` above to support arbitrarily strided arrays without
|
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
|
||||||
relying on a copy from ``ensure_row_contiguous``:
|
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
|
def exp_elementwise(a: mx.array):
|
||||||
source = """
|
source = """
|
||||||
uint elem = thread_position_in_grid.x;
|
uint elem = thread_position_in_grid.x;
|
||||||
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
||||||
@@ -127,11 +114,8 @@ relying on a copy from ``ensure_row_contiguous``:
|
|||||||
name="myexp_strided",
|
name="myexp_strided",
|
||||||
input_names=["inp"],
|
input_names=["inp"],
|
||||||
output_names=["out"],
|
output_names=["out"],
|
||||||
source=source,
|
source=source
|
||||||
ensure_row_contiguous=False,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
def exp_elementwise(a: mx.array):
|
|
||||||
outputs = kernel(
|
outputs = kernel(
|
||||||
inputs=[a],
|
inputs=[a],
|
||||||
template=[("T", mx.float32)],
|
template=[("T", mx.float32)],
|
||||||
@@ -139,6 +123,7 @@ relying on a copy from ``ensure_row_contiguous``:
|
|||||||
threadgroup=(256, 1, 1),
|
threadgroup=(256, 1, 1),
|
||||||
output_shapes=[a.shape],
|
output_shapes=[a.shape],
|
||||||
output_dtypes=[a.dtype],
|
output_dtypes=[a.dtype],
|
||||||
|
ensure_row_contiguous=False,
|
||||||
)
|
)
|
||||||
return outputs[0]
|
return outputs[0]
|
||||||
|
|
||||||
@@ -198,13 +183,25 @@ We'll start with the following MLX implementation using standard ops:
|
|||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
Now let's use :func:`custom_function` together with :func:`fast.metal_kernel`
|
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
|
||||||
to write a fast GPU kernel for both the forward and backward passes.
|
to write a fast GPU kernel for both the forward and backward passes.
|
||||||
|
|
||||||
First we'll implement the forward pass as a fused kernel:
|
First we'll implement the forward pass as a fused kernel:
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
|
@mx.custom_function
|
||||||
|
def grid_sample(x, grid):
|
||||||
|
|
||||||
|
assert x.ndim == 4, "`x` must be 4D."
|
||||||
|
assert grid.ndim == 4, "`grid` must be 4D."
|
||||||
|
|
||||||
|
B, _, _, C = x.shape
|
||||||
|
_, gN, gM, D = grid.shape
|
||||||
|
out_shape = (B, gN, gM, C)
|
||||||
|
|
||||||
|
assert D == 2, "Last dim of `grid` must be size 2."
|
||||||
|
|
||||||
source = """
|
source = """
|
||||||
uint elem = thread_position_in_grid.x;
|
uint elem = thread_position_in_grid.x;
|
||||||
int H = x_shape[1];
|
int H = x_shape[1];
|
||||||
@@ -254,26 +251,12 @@ First we'll implement the forward pass as a fused kernel:
|
|||||||
|
|
||||||
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
||||||
"""
|
"""
|
||||||
|
|
||||||
kernel = mx.fast.metal_kernel(
|
kernel = mx.fast.metal_kernel(
|
||||||
name="grid_sample",
|
name="grid_sample",
|
||||||
input_names=["x", "grid"],
|
input_names=["x", "grid"],
|
||||||
output_names=["out"],
|
output_names=["out"],
|
||||||
source=source,
|
source=source,
|
||||||
)
|
)
|
||||||
|
|
||||||
@mx.custom_function
|
|
||||||
def grid_sample(x, grid):
|
|
||||||
|
|
||||||
assert x.ndim == 4, "`x` must be 4D."
|
|
||||||
assert grid.ndim == 4, "`grid` must be 4D."
|
|
||||||
|
|
||||||
B, _, _, C = x.shape
|
|
||||||
_, gN, gM, D = grid.shape
|
|
||||||
out_shape = (B, gN, gM, C)
|
|
||||||
|
|
||||||
assert D == 2, "Last dim of `grid` must be size 2."
|
|
||||||
|
|
||||||
outputs = kernel(
|
outputs = kernel(
|
||||||
inputs=[x, grid],
|
inputs=[x, grid],
|
||||||
template=[("T", x.dtype)],
|
template=[("T", x.dtype)],
|
||||||
@@ -298,11 +281,11 @@ On an M1 Max, we see a big performance improvement:
|
|||||||
Grid Sample VJP
|
Grid Sample VJP
|
||||||
---------------
|
---------------
|
||||||
|
|
||||||
Since we decorated ``grid_sample`` with :func:`custom_function`, we can now
|
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
|
||||||
define its custom vjp transform so MLX can differentiate it.
|
its custom vjp transform so MLX can differentiate it.
|
||||||
|
|
||||||
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
|
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
|
||||||
requires a few extra :func:`fast.metal_kernel` features:
|
requires a few extra ``mx.fast.metal_kernel`` features:
|
||||||
|
|
||||||
* ``init_value=0``
|
* ``init_value=0``
|
||||||
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
|
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
|
||||||
@@ -316,6 +299,14 @@ We can then implement the backwards pass as follows:
|
|||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
|
@grid_sample.vjp
|
||||||
|
def grid_sample_vjp(primals, cotangent, _):
|
||||||
|
x, grid = primals
|
||||||
|
B, _, _, C = x.shape
|
||||||
|
_, gN, gM, D = grid.shape
|
||||||
|
|
||||||
|
assert D == 2, "Last dim of `grid` must be size 2."
|
||||||
|
|
||||||
source = """
|
source = """
|
||||||
uint elem = thread_position_in_grid.x;
|
uint elem = thread_position_in_grid.x;
|
||||||
int H = x_shape[1];
|
int H = x_shape[1];
|
||||||
@@ -415,15 +406,6 @@ We can then implement the backwards pass as follows:
|
|||||||
source=source,
|
source=source,
|
||||||
atomic_outputs=True,
|
atomic_outputs=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
@grid_sample.vjp
|
|
||||||
def grid_sample_vjp(primals, cotangent, _):
|
|
||||||
x, grid = primals
|
|
||||||
B, _, _, C = x.shape
|
|
||||||
_, gN, gM, D = grid.shape
|
|
||||||
|
|
||||||
assert D == 2, "Last dim of `grid` must be size 2."
|
|
||||||
|
|
||||||
# pad the output channels to simd group size
|
# pad the output channels to simd group size
|
||||||
# so that our `simd_sum`s don't overlap.
|
# so that our `simd_sum`s don't overlap.
|
||||||
simdgroup_size = 32
|
simdgroup_size = 32
|
||||||
|
|||||||
@@ -22,12 +22,12 @@ You can do that in MLX directly:
|
|||||||
This function performs that operation while leaving the implementation and
|
This function performs that operation while leaving the implementation and
|
||||||
function transformations to MLX.
|
function transformations to MLX.
|
||||||
|
|
||||||
However, you may want to customize the underlying implementation, perhaps to
|
However you may need to customize the underlying implementation, perhaps to
|
||||||
make it faster. In this tutorial we will go through adding custom extensions.
|
make it faster or for custom differentiation. In this tutorial we will go
|
||||||
It will cover:
|
through adding custom extensions. It will cover:
|
||||||
|
|
||||||
* The structure of the MLX library.
|
* The structure of the MLX library.
|
||||||
* Implementing a CPU operation.
|
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||||
* Implementing a GPU operation using metal.
|
* Implementing a GPU operation using metal.
|
||||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||||
* Building a custom extension and binding it to python.
|
* Building a custom extension and binding it to python.
|
||||||
@@ -45,7 +45,7 @@ Operations
|
|||||||
Operations are the front-end functions that operate on arrays. They are defined
|
Operations are the front-end functions that operate on arrays. They are defined
|
||||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||||
|
|
||||||
We would like an operation :meth:`axpby` that takes in two arrays, ``x`` and
|
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||||
C++:
|
C++:
|
||||||
|
|
||||||
@@ -55,7 +55,7 @@ C++:
|
|||||||
* Scale and sum two vectors element-wise
|
* Scale and sum two vectors element-wise
|
||||||
* z = alpha * x + beta * y
|
* z = alpha * x + beta * y
|
||||||
*
|
*
|
||||||
* Use NumPy-style broadcasting between x and y
|
* Follow numpy style broadcasting between x and y
|
||||||
* Inputs are upcasted to floats if needed
|
* Inputs are upcasted to floats if needed
|
||||||
**/
|
**/
|
||||||
array axpby(
|
array axpby(
|
||||||
@@ -66,7 +66,7 @@ C++:
|
|||||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||||
);
|
);
|
||||||
|
|
||||||
The simplest way to implement this is with existing operations:
|
The simplest way to this operation is in terms of existing operations:
|
||||||
|
|
||||||
.. code-block:: C++
|
.. code-block:: C++
|
||||||
|
|
||||||
@@ -93,9 +93,9 @@ Primitives
|
|||||||
^^^^^^^^^^^
|
^^^^^^^^^^^
|
||||||
|
|
||||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||||
defines how to create output arrays given input arrays. Further, a
|
defines how to create outputs arrays given a input arrays. Further, a
|
||||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||||
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
|
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||||
more concrete:
|
more concrete:
|
||||||
|
|
||||||
.. code-block:: C++
|
.. code-block:: C++
|
||||||
@@ -128,7 +128,7 @@ more concrete:
|
|||||||
/** The vector-Jacobian product. */
|
/** The vector-Jacobian product. */
|
||||||
std::vector<array> vjp(
|
std::vector<array> vjp(
|
||||||
const std::vector<array>& primals,
|
const std::vector<array>& primals,
|
||||||
const std::vector<array>& cotangents,
|
const array& cotan,
|
||||||
const std::vector<int>& argnums,
|
const std::vector<int>& argnums,
|
||||||
const std::vector<array>& outputs) override;
|
const std::vector<array>& outputs) override;
|
||||||
|
|
||||||
@@ -138,13 +138,13 @@ more concrete:
|
|||||||
* representing the vectorized computation and the axis which
|
* representing the vectorized computation and the axis which
|
||||||
* corresponds to the output vectorized dimension.
|
* corresponds to the output vectorized dimension.
|
||||||
*/
|
*/
|
||||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||||
const std::vector<array>& inputs,
|
const std::vector<array>& inputs,
|
||||||
const std::vector<int>& axes) override;
|
const std::vector<int>& axes) override;
|
||||||
|
|
||||||
/** The name of primitive. */
|
/** Print the primitive. */
|
||||||
const char* name() const override {
|
void print(std::ostream& os) override {
|
||||||
return "Axpby";
|
os << "Axpby";
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Equivalence check **/
|
/** Equivalence check **/
|
||||||
@@ -153,6 +153,9 @@ more concrete:
|
|||||||
private:
|
private:
|
||||||
float alpha_;
|
float alpha_;
|
||||||
float beta_;
|
float beta_;
|
||||||
|
|
||||||
|
/** Fall back implementation for evaluation on CPU */
|
||||||
|
void eval(const std::vector<array>& inputs, array& out);
|
||||||
};
|
};
|
||||||
|
|
||||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||||
@@ -185,7 +188,7 @@ Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
|||||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||||
|
|
||||||
// Upcast to float32 for non-floating point inputs x and y
|
// Upcast to float32 for non-floating point inputs x and y
|
||||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
auto out_dtype = is_floating_point(promoted_dtype)
|
||||||
? promoted_dtype
|
? promoted_dtype
|
||||||
: promote_types(promoted_dtype, float32);
|
: promote_types(promoted_dtype, float32);
|
||||||
|
|
||||||
@@ -231,9 +234,11 @@ the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
|||||||
Implementing the CPU Back-end
|
Implementing the CPU Back-end
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
Let's start by implementing :meth:`Axpby::eval_cpu`.
|
Let's start by implementing a naive and generic version of
|
||||||
|
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||||
|
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||||
|
|
||||||
The method will go over each element of the output array, find the
|
Our naive method will go over each element of the output array, find the
|
||||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||||
|
|
||||||
@@ -241,46 +246,36 @@ point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
|||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
void axpby_impl(
|
void axpby_impl(
|
||||||
const mx::array& x,
|
const array& x,
|
||||||
const mx::array& y,
|
const array& y,
|
||||||
mx::array& out,
|
array& out,
|
||||||
float alpha_,
|
float alpha_,
|
||||||
float beta_,
|
float beta_) {
|
||||||
mx::Stream stream) {
|
// We only allocate memory when we are ready to fill the output
|
||||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
// malloc_or_wait synchronously allocates available memory
|
||||||
|
// There may be a wait executed here if the allocation is requested
|
||||||
|
// under memory-pressured conditions
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
// Get the CPU command encoder and register input and output arrays
|
// Collect input and output data pointers
|
||||||
auto& encoder = mx::cpu::get_command_encoder(stream);
|
const T* x_ptr = x.data<T>();
|
||||||
encoder.set_input_array(x);
|
const T* y_ptr = y.data<T>();
|
||||||
encoder.set_input_array(y);
|
T* out_ptr = out.data<T>();
|
||||||
encoder.set_output_array(out);
|
|
||||||
|
|
||||||
// Launch the CPU kernel
|
|
||||||
encoder.dispatch([x_ptr = x.data<T>(),
|
|
||||||
y_ptr = y.data<T>(),
|
|
||||||
out_ptr = out.data<T>(),
|
|
||||||
size = out.size(),
|
|
||||||
shape = out.shape(),
|
|
||||||
x_strides = x.strides(),
|
|
||||||
y_strides = y.strides(),
|
|
||||||
alpha_,
|
|
||||||
beta_]() {
|
|
||||||
|
|
||||||
// Cast alpha and beta to the relevant types
|
// Cast alpha and beta to the relevant types
|
||||||
T alpha = static_cast<T>(alpha_);
|
T alpha = static_cast<T>(alpha_);
|
||||||
T beta = static_cast<T>(beta_);
|
T beta = static_cast<T>(beta_);
|
||||||
|
|
||||||
// Do the element-wise operation for each output
|
// Do the element-wise operation for each output
|
||||||
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||||
// Map linear indices to offsets in x and y
|
// Map linear indices to offsets in x and y
|
||||||
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
|
||||||
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
|
||||||
|
|
||||||
// We allocate the output to be contiguous and regularly strided
|
// We allocate the output to be contiguous and regularly strided
|
||||||
// (defaults to row major) and hence it doesn't need additional mapping
|
// (defaults to row major) and hence it doesn't need additional mapping
|
||||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||||
}
|
}
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Our implementation should work for all incoming floating point arrays.
|
Our implementation should work for all incoming floating point arrays.
|
||||||
@@ -289,32 +284,112 @@ Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
|||||||
|
|
||||||
.. code-block:: C++
|
.. code-block:: C++
|
||||||
|
|
||||||
void Axpby::eval_cpu(
|
/** Fall back implementation for evaluation on CPU */
|
||||||
const std::vector<mx::array>& inputs,
|
void Axpby::eval(
|
||||||
std::vector<mx::array>& outputs) {
|
const std::vector<array>& inputs,
|
||||||
|
const std::vector<array>& outputs) {
|
||||||
auto& x = inputs[0];
|
auto& x = inputs[0];
|
||||||
auto& y = inputs[1];
|
auto& y = inputs[1];
|
||||||
auto& out = outputs[0];
|
auto& out = outputs[0];
|
||||||
|
|
||||||
// Dispatch to the correct dtype
|
// Dispatch to the correct dtype
|
||||||
if (out.dtype() == mx::float32) {
|
if (out.dtype() == float32) {
|
||||||
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<float>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::float16) {
|
} else if (out.dtype() == float16) {
|
||||||
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::bfloat16) {
|
} else if (out.dtype() == bfloat16) {
|
||||||
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::complex64) {
|
} else if (out.dtype() == complex64) {
|
||||||
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error(
|
throw std::runtime_error(
|
||||||
"Axpby is only supported for floating point types.");
|
"[Axpby] Only supports floating point types.");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||||
|
provided by the Accelerate_ framework for a faster implementation in certain
|
||||||
|
cases:
|
||||||
|
|
||||||
|
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||||
|
floats. We can only use it for ``float32`` types.
|
||||||
|
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||||
|
elements have fixed strides between them. We only direct to Accelerate
|
||||||
|
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||||
|
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||||
|
MLX expects to write the output to a new array. We must copy the elements
|
||||||
|
of ``y`` into the output and use that as an input to ``axpby``.
|
||||||
|
|
||||||
|
Let's write an implementation that uses Accelerate in the right conditions.
|
||||||
|
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||||
|
:func:`catlas_saxpby` from accelerate.
|
||||||
|
|
||||||
|
.. code-block:: C++
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void axpby_impl_accelerate(
|
||||||
|
const array& x,
|
||||||
|
const array& y,
|
||||||
|
array& out,
|
||||||
|
float alpha_,
|
||||||
|
float beta_) {
|
||||||
|
// Accelerate library provides catlas_saxpby which does
|
||||||
|
// Y = (alpha * X) + (beta * Y) in place
|
||||||
|
// To use it, we first copy the data in y over to the output array
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
|
// We then copy over the elements using the contiguous vector specialization
|
||||||
|
copy_inplace(y, out, CopyType::Vector);
|
||||||
|
|
||||||
|
// Get x and y pointers for catlas_saxpby
|
||||||
|
const T* x_ptr = x.data<T>();
|
||||||
|
T* y_ptr = out.data<T>();
|
||||||
|
|
||||||
|
T alpha = static_cast<T>(alpha_);
|
||||||
|
T beta = static_cast<T>(beta_);
|
||||||
|
|
||||||
|
// Call the inplace accelerate operator
|
||||||
|
catlas_saxpby(
|
||||||
|
/* N = */ out.size(),
|
||||||
|
/* ALPHA = */ alpha,
|
||||||
|
/* X = */ x_ptr,
|
||||||
|
/* INCX = */ 1,
|
||||||
|
/* BETA = */ beta,
|
||||||
|
/* Y = */ y_ptr,
|
||||||
|
/* INCY = */ 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||||
|
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||||
|
:meth:`Axpby::eval_cpu`.
|
||||||
|
|
||||||
|
.. code-block:: C++
|
||||||
|
|
||||||
|
/** Evaluate primitive on CPU using accelerate specializations */
|
||||||
|
void Axpby::eval_cpu(
|
||||||
|
const std::vector<array>& inputs,
|
||||||
|
const std::vector<array>& outputs) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& x = inputs[0];
|
||||||
|
auto& y = inputs[1];
|
||||||
|
auto& out = outputs[0];
|
||||||
|
|
||||||
|
// Accelerate specialization for contiguous single precision float arrays
|
||||||
|
if (out.dtype() == float32 &&
|
||||||
|
((x.flags().row_contiguous && y.flags().row_contiguous) ||
|
||||||
|
(x.flags().col_contiguous && y.flags().col_contiguous))) {
|
||||||
|
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Fall back to common back-end if specializations are not available
|
||||||
|
eval(inputs, outputs);
|
||||||
|
}
|
||||||
|
|
||||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||||
you do not plan on running the operation on the GPU or using transforms on
|
you do not plan on running the operation on the GPU or using transforms on
|
||||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||||
primitive here.
|
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||||
|
|
||||||
Implementing the GPU Back-end
|
Implementing the GPU Back-end
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||||
@@ -391,17 +466,17 @@ below.
|
|||||||
auto& d = metal::device(s.device);
|
auto& d = metal::device(s.device);
|
||||||
|
|
||||||
// Allocate output memory
|
// Allocate output memory
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
// Resolve name of kernel
|
// Resolve name of kernel
|
||||||
std::stream kname;
|
std::ostringstream kname;
|
||||||
kname = "axpby_general_" + type_to_name(out);
|
kname << "axpby_" << "general_" << type_to_name(out);
|
||||||
|
|
||||||
// Load the metal library
|
// Make sure the metal library is available
|
||||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
d.register_library("mlx_ext");
|
||||||
|
|
||||||
// Make a kernel from this metal library
|
// Make a kernel from this metal library
|
||||||
auto kernel = d.get_kernel(kname, lib);
|
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||||
|
|
||||||
// Prepare to encode kernel
|
// Prepare to encode kernel
|
||||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||||
@@ -469,7 +544,7 @@ one we just defined:
|
|||||||
const std::vector<array>& tangents,
|
const std::vector<array>& tangents,
|
||||||
const std::vector<int>& argnums) {
|
const std::vector<int>& argnums) {
|
||||||
// Forward mode diff that pushes along the tangents
|
// Forward mode diff that pushes along the tangents
|
||||||
// The jvp transform on the primitive can be built with ops
|
// The jvp transform on the primitive can built with ops
|
||||||
// that are scheduled on the same stream as the primitive
|
// that are scheduled on the same stream as the primitive
|
||||||
|
|
||||||
// If argnums = {0}, we only push along x in which case the
|
// If argnums = {0}, we only push along x in which case the
|
||||||
@@ -481,7 +556,7 @@ one we just defined:
|
|||||||
auto scale_arr = array(scale, tangents[0].dtype());
|
auto scale_arr = array(scale, tangents[0].dtype());
|
||||||
return {multiply(scale_arr, tangents[0], stream())};
|
return {multiply(scale_arr, tangents[0], stream())};
|
||||||
}
|
}
|
||||||
// If argnums = {0, 1}, we take contributions from both
|
// If, argnums = {0, 1}, we take contributions from both
|
||||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||||
else {
|
else {
|
||||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||||
@@ -735,7 +810,7 @@ Let's look at a simple script and its results:
|
|||||||
|
|
||||||
print(f"c shape: {c.shape}")
|
print(f"c shape: {c.shape}")
|
||||||
print(f"c dtype: {c.dtype}")
|
print(f"c dtype: {c.dtype}")
|
||||||
print(f"c is correct: {mx.all(c == 6.0).item()}")
|
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||||
|
|
||||||
Output:
|
Output:
|
||||||
|
|
||||||
@@ -743,13 +818,13 @@ Output:
|
|||||||
|
|
||||||
c shape: [3, 4]
|
c shape: [3, 4]
|
||||||
c dtype: float32
|
c dtype: float32
|
||||||
c is correct: True
|
c correctness: True
|
||||||
|
|
||||||
Results
|
Results
|
||||||
^^^^^^^
|
^^^^^^^
|
||||||
|
|
||||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||||
with the naive :meth:`simple_axpby` we first defined.
|
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
@@ -757,11 +832,13 @@ with the naive :meth:`simple_axpby` we first defined.
|
|||||||
from mlx_sample_extensions import axpby
|
from mlx_sample_extensions import axpby
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
mx.set_default_device(mx.cpu)
|
||||||
|
|
||||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||||
return alpha * x + beta * y
|
return alpha * x + beta * y
|
||||||
|
|
||||||
M = 4096
|
M = 256
|
||||||
N = 4096
|
N = 512
|
||||||
|
|
||||||
x = mx.random.normal((M, N))
|
x = mx.random.normal((M, N))
|
||||||
y = mx.random.normal((M, N))
|
y = mx.random.normal((M, N))
|
||||||
@@ -772,24 +849,24 @@ with the naive :meth:`simple_axpby` we first defined.
|
|||||||
|
|
||||||
def bench(f):
|
def bench(f):
|
||||||
# Warm up
|
# Warm up
|
||||||
for i in range(5):
|
for i in range(100):
|
||||||
z = f(x, y, alpha, beta)
|
z = f(x, y, alpha, beta)
|
||||||
mx.eval(z)
|
mx.eval(z)
|
||||||
|
|
||||||
# Timed run
|
# Timed run
|
||||||
s = time.time()
|
s = time.time()
|
||||||
for i in range(100):
|
for i in range(5000):
|
||||||
z = f(x, y, alpha, beta)
|
z = f(x, y, alpha, beta)
|
||||||
mx.eval(z)
|
mx.eval(z)
|
||||||
e = time.time()
|
e = time.time()
|
||||||
return 1000 * (e - s) / 100
|
return e - s
|
||||||
|
|
||||||
simple_time = bench(simple_axpby)
|
simple_time = bench(simple_axpby)
|
||||||
custom_time = bench(axpby)
|
custom_time = bench(axpby)
|
||||||
|
|
||||||
print(f"Simple axpby: {simple_time:.3f} ms | Custom axpby: {custom_time:.3f} ms")
|
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||||
|
|
||||||
The results are ``Simple axpby: 1.559 ms | Custom axpby: 0.774 ms``. We see
|
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||||
modest improvements right away!
|
modest improvements right away!
|
||||||
|
|
||||||
This operation is now good to be used to build other operations, in
|
This operation is now good to be used to build other operations, in
|
||||||
|
|||||||
@@ -70,8 +70,6 @@ are the CPU and GPU.
|
|||||||
python/fft
|
python/fft
|
||||||
python/linalg
|
python/linalg
|
||||||
python/metal
|
python/metal
|
||||||
python/cuda
|
|
||||||
python/memory_management
|
|
||||||
python/nn
|
python/nn
|
||||||
python/optimizers
|
python/optimizers
|
||||||
python/distributed
|
python/distributed
|
||||||
|
|||||||
@@ -13,48 +13,22 @@ silicon computer is
|
|||||||
|
|
||||||
pip install mlx
|
pip install mlx
|
||||||
|
|
||||||
To install from PyPI your system must meet the following requirements:
|
To install from PyPI you must meet the following requirements:
|
||||||
|
|
||||||
- Using an M series chip (Apple silicon)
|
- Using an M series chip (Apple silicon)
|
||||||
- Using a native Python >= 3.10
|
- Using a native Python >= 3.9
|
||||||
- macOS >= 14.0
|
- macOS >= 13.5
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
MLX is only available on devices running macOS >= 14.0 and higher.
|
MLX is only available on devices running macOS >= 13.5
|
||||||
|
It is highly recommended to use macOS 14 (Sonoma)
|
||||||
|
|
||||||
CUDA
|
|
||||||
^^^^
|
|
||||||
|
|
||||||
MLX has a CUDA backend which you can install with:
|
MLX is also available on conda-forge. To install MLX with conda do:
|
||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install mlx[cuda]
|
conda install conda-forge::mlx
|
||||||
|
|
||||||
To install the CUDA package from PyPi your system must meet the following
|
|
||||||
requirements:
|
|
||||||
|
|
||||||
- Nvidia architecture >= SM 7.0 (Volta)
|
|
||||||
- Nvidia driver >= 550.54.14
|
|
||||||
- CUDA toolkit >= 12.0
|
|
||||||
- Linux distribution with glibc >= 2.35
|
|
||||||
- Python >= 3.10
|
|
||||||
|
|
||||||
|
|
||||||
CPU-only (Linux)
|
|
||||||
^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
For a CPU-only version of MLX that runs on Linux use:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
pip install mlx[cpu]
|
|
||||||
|
|
||||||
To install the CPU-only package from PyPi your system must meet the following
|
|
||||||
requirements:
|
|
||||||
|
|
||||||
- Linux distribution with glibc >= 2.35
|
|
||||||
- Python >= 3.10
|
|
||||||
|
|
||||||
|
|
||||||
Troubleshooting
|
Troubleshooting
|
||||||
@@ -91,8 +65,6 @@ Build Requirements
|
|||||||
Python API
|
Python API
|
||||||
^^^^^^^^^^
|
^^^^^^^^^^
|
||||||
|
|
||||||
.. _python install:
|
|
||||||
|
|
||||||
To build and install the MLX python library from source, first, clone MLX from
|
To build and install the MLX python library from source, first, clone MLX from
|
||||||
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
|
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
|
||||||
|
|
||||||
@@ -104,20 +76,20 @@ Then simply build and install MLX using pip:
|
|||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install .
|
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||||
|
|
||||||
For developing, install the package with development dependencies, and use an
|
For developing, install the package with development dependencies, and use an
|
||||||
editable install:
|
editable install:
|
||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
pip install -e ".[dev]"
|
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||||
|
|
||||||
Once the development dependencies are installed, you can build faster with:
|
Once the development dependencies are installed, you can build faster with:
|
||||||
|
|
||||||
.. code-block:: shell
|
.. code-block:: shell
|
||||||
|
|
||||||
python setup.py build_ext --inplace
|
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||||
|
|
||||||
Run the tests with:
|
Run the tests with:
|
||||||
|
|
||||||
@@ -135,8 +107,6 @@ IDE:
|
|||||||
C++ API
|
C++ API
|
||||||
^^^^^^^
|
^^^^^^^
|
||||||
|
|
||||||
.. _cpp install:
|
|
||||||
|
|
||||||
Currently, MLX must be built and installed from source.
|
Currently, MLX must be built and installed from source.
|
||||||
|
|
||||||
Similarly to the python library, to build and install the MLX C++ library start
|
Similarly to the python library, to build and install the MLX C++ library start
|
||||||
@@ -215,7 +185,6 @@ should point to the path to the built metal library.
|
|||||||
|
|
||||||
xcrun -sdk macosx --show-sdk-version
|
xcrun -sdk macosx --show-sdk-version
|
||||||
|
|
||||||
|
|
||||||
Binary Size Minimization
|
Binary Size Minimization
|
||||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
||||||
@@ -244,50 +213,6 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
|
|||||||
application. Once a kernel is compiled, it will be cached by the system. The
|
application. Once a kernel is compiled, it will be cached by the system. The
|
||||||
Metal kernel cache persists across reboots.
|
Metal kernel cache persists across reboots.
|
||||||
|
|
||||||
Linux
|
|
||||||
^^^^^
|
|
||||||
|
|
||||||
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
|
|
||||||
For example on Ubuntu, run the following:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
apt-get update -y
|
|
||||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
|
||||||
|
|
||||||
From here follow the instructions to install either the :ref:`Python <python
|
|
||||||
install>` or :ref:`C++ <cpp install>` APIs.
|
|
||||||
|
|
||||||
CUDA
|
|
||||||
^^^^
|
|
||||||
|
|
||||||
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
|
|
||||||
and the CUDA toolkit. For example on Ubuntu, run the following:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
|
||||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
|
||||||
apt-get update -y
|
|
||||||
apt-get -y install cuda-toolkit-12-9
|
|
||||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
|
||||||
|
|
||||||
|
|
||||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
|
||||||
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
|
||||||
|
|
||||||
To build the C++ package run:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
mkdir -p build && cd build
|
|
||||||
cmake .. -DMLX_BUILD_CUDA=ON && make -j
|
|
||||||
|
|
||||||
|
|
||||||
Troubleshooting
|
Troubleshooting
|
||||||
^^^^^^^^^^^^^^^
|
^^^^^^^^^^^^^^^
|
||||||
|
|
||||||
|
|||||||
@@ -19,8 +19,6 @@ Array
|
|||||||
array.ndim
|
array.ndim
|
||||||
array.shape
|
array.shape
|
||||||
array.size
|
array.size
|
||||||
array.real
|
|
||||||
array.imag
|
|
||||||
array.abs
|
array.abs
|
||||||
array.all
|
array.all
|
||||||
array.any
|
array.any
|
||||||
@@ -40,7 +38,6 @@ Array
|
|||||||
array.log10
|
array.log10
|
||||||
array.log1p
|
array.log1p
|
||||||
array.log2
|
array.log2
|
||||||
array.logcumsumexp
|
|
||||||
array.logsumexp
|
array.logsumexp
|
||||||
array.max
|
array.max
|
||||||
array.mean
|
array.mean
|
||||||
|
|||||||
@@ -1,9 +0,0 @@
|
|||||||
CUDA
|
|
||||||
=====
|
|
||||||
|
|
||||||
.. currentmodule:: mlx.core.cuda
|
|
||||||
|
|
||||||
.. autosummary::
|
|
||||||
:toctree: _autosummary
|
|
||||||
|
|
||||||
is_available
|
|
||||||
@@ -51,20 +51,11 @@ The default floating point type is ``float32`` and the default integer type is
|
|||||||
* - ``float32``
|
* - ``float32``
|
||||||
- 4
|
- 4
|
||||||
- 32-bit float
|
- 32-bit float
|
||||||
* - ``float64``
|
|
||||||
- 4
|
|
||||||
- 64-bit double
|
|
||||||
* - ``complex64``
|
* - ``complex64``
|
||||||
- 8
|
- 8
|
||||||
- 64-bit complex float
|
- 64-bit complex float
|
||||||
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
|
|
||||||
Arrays with type ``float64`` only work with CPU operations. Using
|
|
||||||
``float64`` arrays on the GPU will result in an exception.
|
|
||||||
|
|
||||||
|
|
||||||
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
||||||
documentation for more information. Use :func:`issubdtype` to determine if one
|
documentation for more information. Use :func:`issubdtype` to determine if one
|
||||||
``dtype`` (or category) is a subtype of another category.
|
``dtype`` (or category) is a subtype of another category.
|
||||||
|
|||||||
@@ -13,4 +13,3 @@ Fast
|
|||||||
rope
|
rope
|
||||||
scaled_dot_product_attention
|
scaled_dot_product_attention
|
||||||
metal_kernel
|
metal_kernel
|
||||||
cuda_kernel
|
|
||||||
|
|||||||
@@ -20,5 +20,3 @@ FFT
|
|||||||
irfft2
|
irfft2
|
||||||
rfftn
|
rfftn
|
||||||
irfftn
|
irfftn
|
||||||
fftshift
|
|
||||||
ifftshift
|
|
||||||
|
|||||||
@@ -16,12 +16,5 @@ Linear Algebra
|
|||||||
cross
|
cross
|
||||||
qr
|
qr
|
||||||
svd
|
svd
|
||||||
eigvals
|
|
||||||
eig
|
|
||||||
eigvalsh
|
eigvalsh
|
||||||
eigh
|
eigh
|
||||||
lu
|
|
||||||
lu_factor
|
|
||||||
pinv
|
|
||||||
solve
|
|
||||||
solve_triangular
|
|
||||||
|
|||||||
@@ -1,16 +0,0 @@
|
|||||||
Memory Management
|
|
||||||
=================
|
|
||||||
|
|
||||||
.. currentmodule:: mlx.core
|
|
||||||
|
|
||||||
.. autosummary::
|
|
||||||
:toctree: _autosummary
|
|
||||||
|
|
||||||
get_active_memory
|
|
||||||
get_peak_memory
|
|
||||||
reset_peak_memory
|
|
||||||
get_cache_memory
|
|
||||||
set_memory_limit
|
|
||||||
set_cache_limit
|
|
||||||
set_wired_limit
|
|
||||||
clear_cache
|
|
||||||
@@ -8,5 +8,13 @@ Metal
|
|||||||
|
|
||||||
is_available
|
is_available
|
||||||
device_info
|
device_info
|
||||||
|
get_active_memory
|
||||||
|
get_peak_memory
|
||||||
|
reset_peak_memory
|
||||||
|
get_cache_memory
|
||||||
|
set_memory_limit
|
||||||
|
set_cache_limit
|
||||||
|
set_wired_limit
|
||||||
|
clear_cache
|
||||||
start_capture
|
start_capture
|
||||||
stop_capture
|
stop_capture
|
||||||
|
|||||||
@@ -174,7 +174,6 @@ In detail:
|
|||||||
|
|
||||||
value_and_grad
|
value_and_grad
|
||||||
quantize
|
quantize
|
||||||
average_gradients
|
|
||||||
|
|
||||||
.. toctree::
|
.. toctree::
|
||||||
|
|
||||||
|
|||||||
@@ -27,7 +27,6 @@ simple functions.
|
|||||||
mish
|
mish
|
||||||
prelu
|
prelu
|
||||||
relu
|
relu
|
||||||
relu2
|
|
||||||
relu6
|
relu6
|
||||||
selu
|
selu
|
||||||
sigmoid
|
sigmoid
|
||||||
|
|||||||
@@ -50,7 +50,6 @@ Layers
|
|||||||
QuantizedLinear
|
QuantizedLinear
|
||||||
RMSNorm
|
RMSNorm
|
||||||
ReLU
|
ReLU
|
||||||
ReLU2
|
|
||||||
ReLU6
|
ReLU6
|
||||||
RNN
|
RNN
|
||||||
RoPE
|
RoPE
|
||||||
|
|||||||
@@ -32,16 +32,13 @@ Operations
|
|||||||
atleast_2d
|
atleast_2d
|
||||||
atleast_3d
|
atleast_3d
|
||||||
bitwise_and
|
bitwise_and
|
||||||
bitwise_invert
|
|
||||||
bitwise_or
|
bitwise_or
|
||||||
bitwise_xor
|
bitwise_xor
|
||||||
block_masked_mm
|
block_masked_mm
|
||||||
broadcast_arrays
|
|
||||||
broadcast_to
|
broadcast_to
|
||||||
ceil
|
ceil
|
||||||
clip
|
clip
|
||||||
concatenate
|
concatenate
|
||||||
contiguous
|
|
||||||
conj
|
conj
|
||||||
conjugate
|
conjugate
|
||||||
convolve
|
convolve
|
||||||
@@ -103,7 +100,6 @@ Operations
|
|||||||
log10
|
log10
|
||||||
log1p
|
log1p
|
||||||
logaddexp
|
logaddexp
|
||||||
logcumsumexp
|
|
||||||
logical_not
|
logical_not
|
||||||
logical_and
|
logical_and
|
||||||
logical_or
|
logical_or
|
||||||
@@ -112,7 +108,6 @@ Operations
|
|||||||
max
|
max
|
||||||
maximum
|
maximum
|
||||||
mean
|
mean
|
||||||
median
|
|
||||||
meshgrid
|
meshgrid
|
||||||
min
|
min
|
||||||
minimum
|
minimum
|
||||||
|
|||||||
@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
|
|||||||
optimizer.update(model, grads)
|
optimizer.update(model, grads)
|
||||||
|
|
||||||
# Save the state
|
# Save the state
|
||||||
state = tree_flatten(optimizer.state, destination={})
|
state = tree_flatten(optimizer.state)
|
||||||
mx.save_safetensors("optimizer.safetensors", state)
|
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||||
|
|
||||||
# Later on, for example when loading from a checkpoint,
|
# Later on, for example when loading from a checkpoint,
|
||||||
# recreate the optimizer and load the state
|
# recreate the optimizer and load the state
|
||||||
optimizer = optim.Adam(learning_rate=1e-2)
|
optimizer = optim.Adam(learning_rate=1e-2)
|
||||||
|
|
||||||
state = tree_unflatten(mx.load("optimizer.safetensors"))
|
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||||
optimizer.state = state
|
optimizer.state = state
|
||||||
|
|
||||||
Note, not every optimizer configuation parameter is saved in the state. For
|
Note, not every optimizer configuation parameter is saved in the state. For
|
||||||
|
|||||||
@@ -18,5 +18,3 @@ Common Optimizers
|
|||||||
AdamW
|
AdamW
|
||||||
Adamax
|
Adamax
|
||||||
Lion
|
Lion
|
||||||
MultiOptimizer
|
|
||||||
Muon
|
|
||||||
|
|||||||
@@ -9,7 +9,6 @@ Transforms
|
|||||||
:toctree: _autosummary
|
:toctree: _autosummary
|
||||||
|
|
||||||
eval
|
eval
|
||||||
async_eval
|
|
||||||
compile
|
compile
|
||||||
custom_function
|
custom_function
|
||||||
disable_compile
|
disable_compile
|
||||||
|
|||||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
|||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||||
timeit(gelu, x)
|
timeit(nn.gelu, x)
|
||||||
timeit(mx.compile(gelu), x)
|
timeit(mx.compile(nn.gelu), x)
|
||||||
|
|
||||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||||
five times faster.
|
five times faster.
|
||||||
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
|
|||||||
def fun(x, y):
|
def fun(x, y):
|
||||||
z = x + y
|
z = x + y
|
||||||
state.append(z)
|
state.append(z)
|
||||||
return mx.exp(z)
|
return mx.exp(z), state
|
||||||
|
|
||||||
fun(mx.array(1.0), mx.array(2.0))
|
fun(mx.array(1.0), mx.array(2.0))
|
||||||
# Prints [array(3, dtype=float32)]
|
# Prints [array(3, dtype=float32)]
|
||||||
|
|||||||
@@ -5,28 +5,21 @@ Distributed Communication
|
|||||||
|
|
||||||
.. currentmodule:: mlx.core.distributed
|
.. currentmodule:: mlx.core.distributed
|
||||||
|
|
||||||
MLX supports distributed communication operations that allow the computational cost
|
MLX utilizes `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ to
|
||||||
of training or inference to be shared across many physical machines. At the
|
provide distributed communication operations that allow the computational cost
|
||||||
moment we support three different communication backends:
|
of training or inference to be shared across many physical machines. You can
|
||||||
|
see a list of the supported operations in the :ref:`API docs<distributed>`.
|
||||||
* `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ a
|
|
||||||
full-featured and mature distributed communications library
|
|
||||||
* A **ring** backend of our own that uses native TCP sockets. It should be
|
|
||||||
faster for thunderbolt connections, but it also works over Ethernet.
|
|
||||||
* `nccl <https://developer.nvidia.com/nccl>`_, for use in CUDA environments.
|
|
||||||
|
|
||||||
The list of all currently supported operations and their documentation can be
|
|
||||||
seen in the :ref:`API docs<distributed>`.
|
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
Some operations may not be supported or not as fast as they should be.
|
A lot of operations may not be supported or not as fast as they should be.
|
||||||
We are adding more and tuning the ones we have as we are figuring out the
|
We are adding more and tuning the ones we have as we are figuring out the
|
||||||
best way to do distributed computing on Macs using MLX.
|
best way to do distributed computing on Macs using MLX.
|
||||||
|
|
||||||
Getting Started
|
Getting Started
|
||||||
---------------
|
---------------
|
||||||
|
|
||||||
A distributed program in MLX is as simple as:
|
MLX already comes with the ability to "talk" to MPI if it is installed on the
|
||||||
|
machine. The minimal distributed program in MLX is as simple as:
|
||||||
|
|
||||||
.. code:: python
|
.. code:: python
|
||||||
|
|
||||||
@@ -37,78 +30,74 @@ A distributed program in MLX is as simple as:
|
|||||||
print(world.rank(), x)
|
print(world.rank(), x)
|
||||||
|
|
||||||
The program above sums the array ``mx.ones(10)`` across all
|
The program above sums the array ``mx.ones(10)`` across all
|
||||||
distributed processes. However, when this script is run with ``python`` only
|
distributed processes. If simply run with ``python``, however, only one
|
||||||
one process is launched and no distributed communication takes place. Namely,
|
process is launched and no distributed communication takes place.
|
||||||
all operations in ``mx.distributed`` are noops when the distributed group has a
|
|
||||||
size of one. This property allows us to avoid code that checks if we are in a
|
|
||||||
distributed setting similar to the one below:
|
|
||||||
|
|
||||||
.. code:: python
|
To launch the program in distributed mode we need to use ``mpirun`` or
|
||||||
|
``mpiexec`` depending on the MPI installation. The simplest possible way is the
|
||||||
import mlx.core as mx
|
following:
|
||||||
|
|
||||||
x = ...
|
|
||||||
world = mx.distributed.init()
|
|
||||||
# No need for the check we can simply do x = mx.distributed.all_sum(x)
|
|
||||||
if world.size() > 1:
|
|
||||||
x = mx.distributed.all_sum(x)
|
|
||||||
|
|
||||||
Running Distributed Programs
|
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
MLX provides ``mlx.launch`` a helper script to launch distributed programs.
|
|
||||||
Continuing with our initial example we can run it on localhost with 4 processes using
|
|
||||||
|
|
||||||
.. code:: shell
|
.. code:: shell
|
||||||
|
|
||||||
$ mlx.launch -n 4 my_script.py
|
$ mpirun -np 2 python test.py
|
||||||
3 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||||
2 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||||
1 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
0 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
|
|
||||||
We can also run it on some remote hosts by providing their IPs (provided that
|
The above launches two processes on the same (local) machine and we can see
|
||||||
the script exists on all hosts and they are reachable by ssh)
|
both standard output streams. The processes send the array of 1s to each other
|
||||||
|
and compute the sum which is printed. Launching with ``mpirun -np 4 ...`` would
|
||||||
|
print 4 etc.
|
||||||
|
|
||||||
|
Installing MPI
|
||||||
|
---------------
|
||||||
|
|
||||||
|
MPI can be installed with Homebrew, using the Anaconda package manager or
|
||||||
|
compiled from source. Most of our testing is done using ``openmpi`` installed
|
||||||
|
with the Anaconda package manager as follows:
|
||||||
|
|
||||||
.. code:: shell
|
.. code:: shell
|
||||||
|
|
||||||
$ mlx.launch --hosts ip1,ip2,ip3,ip4 my_script.py
|
$ conda install openmpi
|
||||||
3 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
2 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
1 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
0 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
|
||||||
|
|
||||||
Consult the dedicated :doc:`usage guide<launching_distributed>` for more
|
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
|
||||||
information on using ``mlx.launch``.
|
so that MLX can find it and load it at runtime. This can simply be achieved by
|
||||||
|
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun``.
|
||||||
|
|
||||||
Selecting Backend
|
.. code:: shell
|
||||||
^^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
You can select the backend you want to use when calling :func:`init` by passing
|
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
|
||||||
one of ``{'any', 'ring', 'mpi', 'nccl'}``. When passing ``any``, MLX will try all
|
|
||||||
available backends. If they all fail then a singleton group is created.
|
Setting up Remote Hosts
|
||||||
|
-----------------------
|
||||||
|
|
||||||
|
MPI can automatically connect to remote hosts and set up the communication over
|
||||||
|
the network if the remote hosts can be accessed via ssh. A good checklist to
|
||||||
|
debug connectivity issues is the following:
|
||||||
|
|
||||||
|
* ``ssh hostname`` works from all machines to all machines without asking for
|
||||||
|
password or host confirmation
|
||||||
|
* ``mpirun`` is accessible on all machines. You can call ``mpirun`` using its
|
||||||
|
full path to force all machines to use a specific path.
|
||||||
|
* Ensure that the ``hostname`` used by MPI is the one that you have configured
|
||||||
|
in the ``.ssh/config`` files on all machines.
|
||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
After a distributed backend is successfully initialized :func:`init` will
|
For an example hostname ``foo.bar.com`` MPI can use only ``foo`` as
|
||||||
return **the same backend** if called without arguments or with backend set to
|
the hostname passed to ssh if the current hostname matches ``*.bar.com``.
|
||||||
``any``.
|
|
||||||
|
|
||||||
The following examples aim to clarify the backend initialization logic in MLX:
|
An easy way to pass the host names to MPI is using a host file. A host file
|
||||||
|
looks like the following, where ``host1`` and ``host2`` should be the fully
|
||||||
|
qualified domain names or IPs for these hosts.
|
||||||
|
|
||||||
.. code:: python
|
.. code::
|
||||||
|
|
||||||
# Case 1: Initialize MPI regardless if it was possible to initialize the ring backend
|
host1 slots=1
|
||||||
world = mx.distributed.init(backend="mpi")
|
host2 slots=1
|
||||||
world2 = mx.distributed.init() # subsequent calls return the MPI backend!
|
|
||||||
|
|
||||||
# Case 2: Initialize any backend
|
When using MLX, it is very likely that you want to use 1 slot per host, ie one
|
||||||
world = mx.distributed.init(backend="any") # equivalent to no arguments
|
process per host. The hostfile also needs to contain the current
|
||||||
world2 = mx.distributed.init() # same as above
|
host if you want to run on the local host. Passing the host file to
|
||||||
|
``mpirun`` is simply done using the ``--hostfile`` command line argument.
|
||||||
# Case 3: Initialize both backends at the same time
|
|
||||||
world_mpi = mx.distributed.init(backend="mpi")
|
|
||||||
world_ring = mx.distributed.init(backend="ring")
|
|
||||||
world_any = mx.distributed.init() # same as MPI because it was initialized first!
|
|
||||||
|
|
||||||
Training Example
|
Training Example
|
||||||
----------------
|
----------------
|
||||||
@@ -166,181 +155,13 @@ everything else remaining the same.
|
|||||||
optimizer.update(model, grads)
|
optimizer.update(model, grads)
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
Utilizing ``nn.average_gradients``
|
Tuning All Reduce
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
-----------------
|
||||||
|
|
||||||
Although the code example above works correctly; it performs one communication
|
We are working on improving the performance of all reduce on MLX but for now
|
||||||
per gradient. It is significantly more efficient to aggregate several gradients
|
the two main things one can do to extract the most out of distributed training with MLX are:
|
||||||
together and perform fewer communication steps.
|
|
||||||
|
|
||||||
This is the purpose of :func:`mlx.nn.average_gradients`. The final code looks
|
1. Perform a few large reductions instead of many small ones to improve
|
||||||
almost identical to the example above:
|
bandwidth and latency
|
||||||
|
2. Pass ``--mca btl_tcp_links 4`` to ``mpirun`` to configure it to use 4 tcp
|
||||||
.. code:: python
|
connections between each host to improve bandwidth
|
||||||
|
|
||||||
model = ...
|
|
||||||
optimizer = ...
|
|
||||||
dataset = ...
|
|
||||||
|
|
||||||
def step(model, x, y):
|
|
||||||
loss, grads = loss_grad_fn(model, x, y)
|
|
||||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
|
||||||
optimizer.update(model, grads)
|
|
||||||
return loss
|
|
||||||
|
|
||||||
for x, y in dataset:
|
|
||||||
loss = step(model, x, y)
|
|
||||||
mx.eval(loss, model.parameters())
|
|
||||||
|
|
||||||
|
|
||||||
Getting Started with MPI
|
|
||||||
------------------------
|
|
||||||
|
|
||||||
MLX already comes with the ability to "talk" to MPI if it is installed on the
|
|
||||||
machine. Launching distributed MLX programs that use MPI can be done with
|
|
||||||
``mpirun`` as expected. However, in the following examples we will be using
|
|
||||||
``mlx.launch --backend mpi`` which takes care of some nuisances such as setting
|
|
||||||
absolute paths for the ``mpirun`` executable and the ``libmpi.dyld`` shared
|
|
||||||
library.
|
|
||||||
|
|
||||||
The simplest possible usage is the following which, assuming the minimal
|
|
||||||
example in the beginning of this page, should result in:
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
$ mlx.launch --backend mpi -n 2 test.py
|
|
||||||
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
|
||||||
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
|
||||||
|
|
||||||
The above launches two processes on the same (local) machine and we can see
|
|
||||||
both standard output streams. The processes send the array of 1s to each other
|
|
||||||
and compute the sum which is printed. Launching with ``mlx.launch -n 4 ...`` would
|
|
||||||
print 4 etc.
|
|
||||||
|
|
||||||
Installing MPI
|
|
||||||
^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
MPI can be installed with Homebrew, pip, using the Anaconda package manager, or
|
|
||||||
compiled from source. Most of our testing is done using ``openmpi`` installed
|
|
||||||
with the Anaconda package manager as follows:
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
$ conda install conda-forge::openmpi
|
|
||||||
|
|
||||||
Installing with Homebrew or pip requires specifying the location of ``libmpi.dyld``
|
|
||||||
so that MLX can find it and load it at runtime. This can simply be achieved by
|
|
||||||
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun`` and it is
|
|
||||||
done automatically by ``mlx.launch``. Some environments use a non-standard
|
|
||||||
library filename that can be specified using the ``MPI_LIBNAME`` environment
|
|
||||||
variable. This is automatically taken care of by ``mlx.launch`` as well.
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ -x MPI_LIBNAME=libmpi.40.dylib python test.py
|
|
||||||
$ # or simply
|
|
||||||
$ mlx.launch -n 2 test.py
|
|
||||||
|
|
||||||
Setting up Remote Hosts
|
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
MPI can automatically connect to remote hosts and set up the communication over
|
|
||||||
the network if the remote hosts can be accessed via ssh. A good checklist to
|
|
||||||
debug connectivity issues is the following:
|
|
||||||
|
|
||||||
* ``ssh hostname`` works from all machines to all machines without asking for
|
|
||||||
password or host confirmation
|
|
||||||
* ``mpirun`` is accessible on all machines.
|
|
||||||
* Ensure that the ``hostname`` used by MPI is the one that you have configured
|
|
||||||
in the ``.ssh/config`` files on all machines.
|
|
||||||
|
|
||||||
Tuning MPI All Reduce
|
|
||||||
^^^^^^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
.. note::
|
|
||||||
|
|
||||||
For faster all reduce consider using the ring backend either with Thunderbolt
|
|
||||||
connections or over Ethernet.
|
|
||||||
|
|
||||||
Configure MPI to use N tcp connections between each host to improve bandwidth
|
|
||||||
by passing ``--mca btl_tcp_links N``.
|
|
||||||
|
|
||||||
Force MPI to use the most performant network interface by setting ``--mca
|
|
||||||
btl_tcp_if_include <iface>`` where ``<iface>`` should be the interface you want
|
|
||||||
to use.
|
|
||||||
|
|
||||||
Getting Started with Ring
|
|
||||||
-------------------------
|
|
||||||
|
|
||||||
The ring backend does not depend on any third party library so it is always
|
|
||||||
available. It uses TCP sockets so the nodes need to be reachable via a network.
|
|
||||||
As the name suggests the nodes are connected in a ring which means that rank 1
|
|
||||||
can only communicate with rank 0 and rank 2, rank 2 only with rank 1 and rank 3
|
|
||||||
and so on and so forth. As a result :func:`send` and :func:`recv` with
|
|
||||||
arbitrary sender and receiver is not supported in the ring backend.
|
|
||||||
|
|
||||||
Defining a Ring
|
|
||||||
^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
The easiest way to define and use a ring is via a JSON hostfile and the
|
|
||||||
``mlx.launch`` :doc:`helper script <launching_distributed>`. For each node one
|
|
||||||
defines a hostname to ssh into to run commands on this node and one or more IPs
|
|
||||||
that this node will listen to for connections.
|
|
||||||
|
|
||||||
For example the hostfile below defines a 4 node ring. ``hostname1`` will be
|
|
||||||
rank 0, ``hostname2`` rank 1 etc.
|
|
||||||
|
|
||||||
.. code:: json
|
|
||||||
|
|
||||||
[
|
|
||||||
{"ssh": "hostname1", "ips": ["123.123.123.1"]},
|
|
||||||
{"ssh": "hostname2", "ips": ["123.123.123.2"]},
|
|
||||||
{"ssh": "hostname3", "ips": ["123.123.123.3"]},
|
|
||||||
{"ssh": "hostname4", "ips": ["123.123.123.4"]}
|
|
||||||
]
|
|
||||||
|
|
||||||
Running ``mlx.launch --hostfile ring-4.json my_script.py`` will ssh into each
|
|
||||||
node, run the script which will listen for connections in each of the provided
|
|
||||||
IPs. Specifically, ``hostname1`` will connect to ``123.123.123.2`` and accept a
|
|
||||||
connection from ``123.123.123.4`` and so on and so forth.
|
|
||||||
|
|
||||||
Thunderbolt Ring
|
|
||||||
^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
Although the ring backend can have benefits over MPI even for Ethernet, its
|
|
||||||
main purpose is to use Thunderbolt rings for higher bandwidth communication.
|
|
||||||
Setting up such thunderbolt rings can be done manually, but is a relatively
|
|
||||||
tedious process. To simplify this, we provide the utility ``mlx.distributed_config``.
|
|
||||||
|
|
||||||
To use ``mlx.distributed_config`` your computers need to be accessible by ssh via
|
|
||||||
Ethernet or Wi-Fi. Subsequently, connect them via thunderbolt cables and then call the
|
|
||||||
utility as follows:
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
mlx.distributed_config --verbose --hosts host1,host2,host3,host4
|
|
||||||
|
|
||||||
By default the script will attempt to discover the thunderbolt ring and provide
|
|
||||||
you with the commands to configure each node as well as the ``hostfile.json``
|
|
||||||
to use with ``mlx.launch``. If password-less ``sudo`` is available on the nodes
|
|
||||||
then ``--auto-setup`` can be used to configure them automatically.
|
|
||||||
|
|
||||||
To validate your connection without configuring anything
|
|
||||||
``mlx.distributed_config`` can also plot the ring using DOT format.
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
mlx.distributed_config --verbose --hosts host1,host2,host3,host4 --dot >ring.dot
|
|
||||||
dot -Tpng ring.dot >ring.png
|
|
||||||
open ring.png
|
|
||||||
|
|
||||||
If you want to go through the process manually, the steps are as follows:
|
|
||||||
|
|
||||||
* Disable the thunderbolt bridge interface
|
|
||||||
* For the cable connecting rank ``i`` to rank ``i + 1`` find the interfaces
|
|
||||||
corresponding to that cable in nodes ``i`` and ``i + 1``.
|
|
||||||
* Set up a unique subnetwork connecting the two nodes for the corresponding
|
|
||||||
interfaces. For instance if the cable corresponds to ``en2`` on node ``i``
|
|
||||||
and ``en2`` also on node ``i + 1`` then we may assign IPs ``192.168.0.1`` and
|
|
||||||
``192.168.0.2`` respectively to the two nodes. For more details you can see
|
|
||||||
the commands prepared by the utility script.
|
|
||||||
|
|||||||
@@ -151,7 +151,7 @@ parameters, pass them as inputs to the ``call`` wrapper:
|
|||||||
model.update(tree_unflatten(list(params.items())))
|
model.update(tree_unflatten(list(params.items())))
|
||||||
return model(x)
|
return model(x)
|
||||||
|
|
||||||
params = tree_flatten(model.parameters(), destination={})
|
params = dict(tree_flatten(model.parameters()))
|
||||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||||
|
|
||||||
|
|
||||||
@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
|
|||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||||
imported_abs = mx.import_function("fun.mlxfn")
|
imported_abs = mx.import_function("fun.mlxfn")
|
||||||
|
|
||||||
# Ok
|
# Ok
|
||||||
out, = imported_abs(mx.array([-1.0]))
|
out, = imported_abs(mx.array(-1.0))
|
||||||
|
|
||||||
# Also ok
|
# Also ok
|
||||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||||
|
|||||||
@@ -70,8 +70,7 @@ Differences from NumPy
|
|||||||
|
|
||||||
* Indexing does not perform bounds checking. Indexing out of bounds is
|
* Indexing does not perform bounds checking. Indexing out of bounds is
|
||||||
undefined behavior.
|
undefined behavior.
|
||||||
* Boolean mask based indexing is supported for assignment only (see
|
* Boolean mask based indexing is not yet supported.
|
||||||
:ref:`boolean-mask-assignment`).
|
|
||||||
|
|
||||||
The reason for the lack of bounds checking is that exceptions cannot propagate
|
The reason for the lack of bounds checking is that exceptions cannot propagate
|
||||||
from the GPU. Performing bounds checking for array indices before launching the
|
from the GPU. Performing bounds checking for array indices before launching the
|
||||||
@@ -108,28 +107,6 @@ same array:
|
|||||||
>>> a
|
>>> a
|
||||||
array([1, 2, 0], dtype=int32)
|
array([1, 2, 0], dtype=int32)
|
||||||
|
|
||||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
|
||||||
mutating it does not mutate the original array:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
>>> a = mx.array([1, 2, 3])
|
|
||||||
>>> b = a[:]
|
|
||||||
>>> b[2] = 0
|
|
||||||
>>> b
|
|
||||||
array([1, 2, 0], dtype=int32)
|
|
||||||
>>> a
|
|
||||||
array([1, 2, 3], dtype=int32)
|
|
||||||
|
|
||||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
>>> a = mx.array([1, 2, 3])
|
|
||||||
>>> a[[0, 0]] = mx.array([4, 5])
|
|
||||||
|
|
||||||
The first element of ``a`` could be ``4`` or ``5``.
|
|
||||||
|
|
||||||
Transformations of functions which use in-place updates are allowed and work as
|
Transformations of functions which use in-place updates are allowed and work as
|
||||||
expected. For example:
|
expected. For example:
|
||||||
|
|
||||||
@@ -144,51 +121,3 @@ expected. For example:
|
|||||||
|
|
||||||
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
|
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
|
||||||
and ones elsewhere.
|
and ones elsewhere.
|
||||||
|
|
||||||
.. _boolean-mask-assignment:
|
|
||||||
|
|
||||||
Boolean Mask Assignment
|
|
||||||
-----------------------
|
|
||||||
|
|
||||||
MLX supports boolean indices using NumPy syntax. A mask must already be
|
|
||||||
a :class:`bool_` MLX :class:`array` or a NumPy ``ndarray`` with ``dtype=bool``.
|
|
||||||
Other index types are routed through the standard scatter code.
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
>>> a = mx.array([1.0, 2.0, 3.0])
|
|
||||||
>>> mask = mx.array([True, False, True])
|
|
||||||
>>> updates = mx.array([5.0, 6.0])
|
|
||||||
>>> a[mask] = updates
|
|
||||||
>>> a
|
|
||||||
array([5.0, 2.0, 6.0], dtype=float32)
|
|
||||||
|
|
||||||
Scalar assignments broadcast to every ``True`` entry in ``mask``. For non-scalar
|
|
||||||
assignments, ``updates`` must provide at least as many elements as there are
|
|
||||||
``True`` entries in ``mask``.
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
>>> a = mx.zeros((2, 3))
|
|
||||||
>>> mask = mx.array([[True, False, True],
|
|
||||||
[False, False, True]])
|
|
||||||
>>> a[mask] = 1.0
|
|
||||||
>>> a
|
|
||||||
array([[1.0, 0.0, 1.0],
|
|
||||||
[0.0, 0.0, 1.0]], dtype=float32)
|
|
||||||
|
|
||||||
Boolean masks follow NumPy semantics:
|
|
||||||
|
|
||||||
- The mask shape must match the shape of the axes it indexes exactly. No mask
|
|
||||||
broadcasting occurs.
|
|
||||||
- Any axes not covered by the mask are taken in full.
|
|
||||||
|
|
||||||
.. code-block:: shell
|
|
||||||
|
|
||||||
>>> a = mx.arange(1000).reshape(10, 10, 10)
|
|
||||||
>>> a[mx.random.randn(10, 10) > 0.0] = 0 # valid: mask covers axes 0 and 1
|
|
||||||
|
|
||||||
The mask of shape ``(10, 10)`` applies to the first two axes, so ``a[mask]``
|
|
||||||
selects the 1-D slices ``a[i, j, :]`` where ``mask[i, j]`` is ``True``.
|
|
||||||
Shapes such as ``(1, 10, 10)`` or ``(10, 10, 1)`` do not match the indexed
|
|
||||||
axes and therefore raise errors.
|
|
||||||
|
|||||||
@@ -1,105 +0,0 @@
|
|||||||
:orphan:
|
|
||||||
|
|
||||||
.. _usage_launch_distributed:
|
|
||||||
|
|
||||||
Launching Distributed Programs
|
|
||||||
==============================
|
|
||||||
|
|
||||||
.. currentmodule:: mlx.core.distributed
|
|
||||||
|
|
||||||
Installing the MLX python package provides a helper script ``mlx.launch`` that
|
|
||||||
can be used to run python scripts distributed on several nodes. It allows
|
|
||||||
launching using either the MPI backend or the ring backend. See the
|
|
||||||
:doc:`distributed docs <distributed>` for the different backends.
|
|
||||||
|
|
||||||
Usage
|
|
||||||
-----
|
|
||||||
|
|
||||||
The minimal usage example of ``mlx.launch`` is simply
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
mlx.launch --hosts ip1,ip2 my_script.py
|
|
||||||
|
|
||||||
or for testing on localhost
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
mlx.launch -n 2 my_script.py
|
|
||||||
|
|
||||||
The ``mlx.launch`` command connects to the provided host and launches the input
|
|
||||||
script on each host. It monitors each of the launched processes and terminates
|
|
||||||
the rest if one of them fails unexpectedly or if ``mlx.launch`` is terminated.
|
|
||||||
It also takes care of forwarding the output of each remote process to stdout
|
|
||||||
and stderr respectively.
|
|
||||||
|
|
||||||
Providing Hosts
|
|
||||||
^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
Hosts can be provided as command line arguments, like above, but the way that
|
|
||||||
allows to fully define a list of hosts is via a JSON hostfile. The hostfile has
|
|
||||||
a very simple schema. It is simply a list of objects that define each host via
|
|
||||||
a hostname to ssh to and a list of IPs to utilize for the communication.
|
|
||||||
|
|
||||||
.. code:: json
|
|
||||||
|
|
||||||
[
|
|
||||||
{"ssh": "hostname1", "ips": ["123.123.1.1", "123.123.2.1"]},
|
|
||||||
{"ssh": "hostname2", "ips": ["123.123.1.2", "123.123.2.2"]}
|
|
||||||
]
|
|
||||||
|
|
||||||
You can use ``mlx.distributed_config --over ethernet`` to create a hostfile
|
|
||||||
with IPs corresponding to the ``en0`` interface.
|
|
||||||
|
|
||||||
Setting up Remote Hosts
|
|
||||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
|
||||||
|
|
||||||
In order to be able to launch the script on each host we need to be able to
|
|
||||||
connect via ssh. Moreover the input script and python binary need to be on each
|
|
||||||
host and on the same path. A good checklist to debug errors is the following:
|
|
||||||
|
|
||||||
* ``ssh hostname`` works without asking for password or host confirmation
|
|
||||||
* the python binary is available on all hosts at the same path. You can use
|
|
||||||
``mlx.launch --print-python`` to see what that path is.
|
|
||||||
* the script you want to run is available on all hosts at the same path
|
|
||||||
|
|
||||||
.. _mpi_specifics:
|
|
||||||
|
|
||||||
MPI Specifics
|
|
||||||
-------------
|
|
||||||
|
|
||||||
One can use MPI by passing ``--backend mpi`` to ``mlx.launch``. In that case,
|
|
||||||
``mlx.launch`` is a thin wrapper over ``mpirun``. Moreover,
|
|
||||||
|
|
||||||
* The IPs in the hostfile are ignored
|
|
||||||
* The ssh connectivity requirement is stronger as every node needs to be able
|
|
||||||
to connect to every other node
|
|
||||||
* ``mpirun`` needs to be available on every node at the same path
|
|
||||||
|
|
||||||
Finally, one can pass arguments to ``mpirun`` using ``--mpi-arg``. For instance
|
|
||||||
to choose a specific interface for the byte-transfer-layer of MPI we can call
|
|
||||||
``mlx.launch`` as follows:
|
|
||||||
|
|
||||||
.. code:: shell
|
|
||||||
|
|
||||||
mlx.launch --backend mpi --mpi-arg '--mca btl_tcp_if_include en0' --hostfile hosts.json my_script.py
|
|
||||||
|
|
||||||
|
|
||||||
.. _ring_specifics:
|
|
||||||
|
|
||||||
Ring Specifics
|
|
||||||
--------------
|
|
||||||
|
|
||||||
The ring backend, which is also the default backend, can be explicitly selected
|
|
||||||
with the argument ``--backend ring``. The ring backend has some specific
|
|
||||||
requirements and arguments that are different to MPI:
|
|
||||||
|
|
||||||
* The argument ``--hosts`` only accepts IPs and not hostnames. If we need to
|
|
||||||
ssh to a hostname that does not correspond to the IP we want to bind to we
|
|
||||||
have to provide a hostfile.
|
|
||||||
* ``--starting-port`` defines the port to bind to on the remote hosts.
|
|
||||||
Specifically rank 0 for the first IP will use this port and each subsequent
|
|
||||||
IP or rank will add 1 to this port.
|
|
||||||
* ``--connections-per-ip`` allows us to increase the number of connections
|
|
||||||
between neighboring nodes. This corresponds to ``--mca btl_tcp_links 2`` for
|
|
||||||
``mpirun``.
|
|
||||||
@@ -21,13 +21,11 @@ Let's convert an array to NumPy and back.
|
|||||||
|
|
||||||
.. note::
|
.. note::
|
||||||
|
|
||||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert
|
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
|
||||||
to ``float16`` or ``float32`` first: ``np.array(a.astype(mx.float32))``.
|
``np.array(a.astype(mx.float32))``.
|
||||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118
|
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
|
||||||
buffer format string does not match the dtype V item size 0.``
|
|
||||||
|
|
||||||
By default, NumPy copies data to a new array. This can be prevented by creating
|
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
|
||||||
an array view:
|
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
@@ -37,16 +35,10 @@ an array view:
|
|||||||
a_view[0] = 1
|
a_view[0] = 1
|
||||||
print(a[0].item()) # 1
|
print(a[0].item()) # 1
|
||||||
|
|
||||||
.. note::
|
A NumPy array view is a normal NumPy array, except that it does not own its memory.
|
||||||
|
This means writing to the view is reflected in the original array.
|
||||||
|
|
||||||
NumPy arrays with type ``float64`` will be default converted to MLX arrays
|
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
|
||||||
with type ``float32``.
|
|
||||||
|
|
||||||
A NumPy array view is a normal NumPy array, except that it does not own its
|
|
||||||
memory. This means writing to the view is reflected in the original array.
|
|
||||||
|
|
||||||
While this is quite powerful to prevent copying arrays, it should be noted that
|
|
||||||
external changes to the memory of arrays cannot be reflected in gradients.
|
|
||||||
|
|
||||||
Let's demonstrate this in an example:
|
Let's demonstrate this in an example:
|
||||||
|
|
||||||
@@ -64,12 +56,11 @@ Let's demonstrate this in an example:
|
|||||||
|
|
||||||
|
|
||||||
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
||||||
However, this modification is not reflected in the gradient, as seen in the
|
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
|
||||||
last line outputting ``1.0``, representing the gradient of the sum operation
|
representing the gradient of the sum operation alone.
|
||||||
alone. The squaring of ``x`` occurs externally to MLX, meaning that no
|
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
|
||||||
gradient is incorporated. It's important to note that a similar issue arises
|
It's important to note that a similar issue arises during array conversion and copying.
|
||||||
during array conversion and copying. For instance, a function defined as
|
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||||
``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
|
||||||
even though no in-place operations on MLX memory are executed.
|
even though no in-place operations on MLX memory are executed.
|
||||||
|
|
||||||
PyTorch
|
PyTorch
|
||||||
@@ -80,8 +71,7 @@ PyTorch
|
|||||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||||
|
|
||||||
PyTorch supports the buffer protocol, but it requires an explicit
|
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||||
:obj:`memoryview`.
|
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
@@ -92,8 +82,7 @@ PyTorch supports the buffer protocol, but it requires an explicit
|
|||||||
b = torch.tensor(memoryview(a))
|
b = torch.tensor(memoryview(a))
|
||||||
c = mx.array(b.numpy())
|
c = mx.array(b.numpy())
|
||||||
|
|
||||||
Conversion from PyTorch tensors back to arrays must be done via intermediate
|
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
|
||||||
NumPy arrays with ``numpy()``.
|
|
||||||
|
|
||||||
JAX
|
JAX
|
||||||
---
|
---
|
||||||
@@ -111,8 +100,7 @@ JAX fully supports the buffer protocol.
|
|||||||
TensorFlow
|
TensorFlow
|
||||||
----------
|
----------
|
||||||
|
|
||||||
TensorFlow supports the buffer protocol, but it requires an explicit
|
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||||
:obj:`memoryview`.
|
|
||||||
|
|
||||||
.. code-block:: python
|
.. code-block:: python
|
||||||
|
|
||||||
|
|||||||
@@ -10,6 +10,7 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
|||||||
option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||||
|
|
||||||
# ----------------------------- Dependencies -----------------------------
|
# ----------------------------- Dependencies -----------------------------
|
||||||
|
find_package(MLX CONFIG REQUIRED)
|
||||||
find_package(
|
find_package(
|
||||||
Python 3.8
|
Python 3.8
|
||||||
COMPONENTS Interpreter Development.Module
|
COMPONENTS Interpreter Development.Module
|
||||||
@@ -20,12 +21,6 @@ execute_process(
|
|||||||
OUTPUT_VARIABLE nanobind_ROOT)
|
OUTPUT_VARIABLE nanobind_ROOT)
|
||||||
find_package(nanobind CONFIG REQUIRED)
|
find_package(nanobind CONFIG REQUIRED)
|
||||||
|
|
||||||
execute_process(
|
|
||||||
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
|
|
||||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
|
||||||
OUTPUT_VARIABLE MLX_ROOT)
|
|
||||||
find_package(MLX CONFIG REQUIRED)
|
|
||||||
|
|
||||||
# ----------------------------- Extensions -----------------------------
|
# ----------------------------- Extensions -----------------------------
|
||||||
|
|
||||||
# Add library
|
# Add library
|
||||||
|
|||||||
@@ -1,15 +1,19 @@
|
|||||||
// Copyright © 2023-2025 Apple Inc.
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
#include <dlfcn.h>
|
#include <cassert>
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
#include "mlx/backend/cpu/encoder.h"
|
|
||||||
#include "mlx/utils.h"
|
#include "mlx/utils.h"
|
||||||
|
|
||||||
#include "axpby/axpby.h"
|
#include "axpby/axpby.h"
|
||||||
|
|
||||||
|
#ifdef ACCELERATE_NEW_LAPACK
|
||||||
|
#include <vecLib/cblas_new.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef _METAL_
|
#ifdef _METAL_
|
||||||
#include "mlx/backend/metal/device.h"
|
#include "mlx/backend/metal/device.h"
|
||||||
#include "mlx/backend/metal/utils.h"
|
#include "mlx/backend/metal/utils.h"
|
||||||
@@ -17,19 +21,6 @@
|
|||||||
|
|
||||||
namespace my_ext {
|
namespace my_ext {
|
||||||
|
|
||||||
// A helper function to find the location of the current binary on disk.
|
|
||||||
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
|
||||||
std::string current_binary_dir() {
|
|
||||||
static std::string binary_dir = []() {
|
|
||||||
Dl_info info;
|
|
||||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
|
||||||
throw std::runtime_error("Unable to get current binary dir.");
|
|
||||||
}
|
|
||||||
return std::filesystem::path(info.dli_fname).parent_path().string();
|
|
||||||
}();
|
|
||||||
return binary_dir;
|
|
||||||
}
|
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Operation Implementation
|
// Operation Implementation
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -84,65 +75,136 @@ void axpby_impl(
|
|||||||
const mx::array& y,
|
const mx::array& y,
|
||||||
mx::array& out,
|
mx::array& out,
|
||||||
float alpha_,
|
float alpha_,
|
||||||
float beta_,
|
float beta_) {
|
||||||
mx::Stream stream) {
|
// We only allocate memory when we are ready to fill the output
|
||||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
// malloc_or_wait synchronously allocates available memory
|
||||||
|
// There may be a wait executed here if the allocation is requested
|
||||||
|
// under memory-pressured conditions
|
||||||
|
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
// Get the CPU command encoder and register input and output arrays
|
// Collect input and output data pointers
|
||||||
auto& encoder = mx::cpu::get_command_encoder(stream);
|
const T* x_ptr = x.data<T>();
|
||||||
encoder.set_input_array(x);
|
const T* y_ptr = y.data<T>();
|
||||||
encoder.set_input_array(y);
|
T* out_ptr = out.data<T>();
|
||||||
encoder.set_output_array(out);
|
|
||||||
|
|
||||||
// Launch the CPU kernel
|
|
||||||
encoder.dispatch([x_ptr = x.data<T>(),
|
|
||||||
y_ptr = y.data<T>(),
|
|
||||||
out_ptr = out.data<T>(),
|
|
||||||
size = out.size(),
|
|
||||||
shape = out.shape(),
|
|
||||||
x_strides = x.strides(),
|
|
||||||
y_strides = y.strides(),
|
|
||||||
alpha_,
|
|
||||||
beta_]() {
|
|
||||||
// Cast alpha and beta to the relevant types
|
// Cast alpha and beta to the relevant types
|
||||||
T alpha = static_cast<T>(alpha_);
|
T alpha = static_cast<T>(alpha_);
|
||||||
T beta = static_cast<T>(beta_);
|
T beta = static_cast<T>(beta_);
|
||||||
|
|
||||||
// Do the element-wise operation for each output
|
// Do the element-wise operation for each output
|
||||||
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||||
// Map linear indices to offsets in x and y
|
// Map linear indices to offsets in x and y
|
||||||
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
auto x_offset = mx::elem_to_loc(out_idx, x.shape(), x.strides());
|
||||||
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
auto y_offset = mx::elem_to_loc(out_idx, y.shape(), y.strides());
|
||||||
|
|
||||||
// We allocate the output to be contiguous and regularly strided
|
// We allocate the output to be contiguous and regularly strided
|
||||||
// (defaults to row major) and hence it doesn't need additional mapping
|
// (defaults to row major) and hence it doesn't need additional mapping
|
||||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||||
}
|
}
|
||||||
});
|
|
||||||
}
|
}
|
||||||
|
|
||||||
void Axpby::eval_cpu(
|
/** Fall back implementation for evaluation on CPU */
|
||||||
|
void Axpby::eval(
|
||||||
const std::vector<mx::array>& inputs,
|
const std::vector<mx::array>& inputs,
|
||||||
std::vector<mx::array>& outputs) {
|
std::vector<mx::array>& outputs) {
|
||||||
|
// Check the inputs (registered in the op while constructing the out array)
|
||||||
|
assert(inputs.size() == 2);
|
||||||
auto& x = inputs[0];
|
auto& x = inputs[0];
|
||||||
auto& y = inputs[1];
|
auto& y = inputs[1];
|
||||||
auto& out = outputs[0];
|
auto& out = outputs[0];
|
||||||
|
|
||||||
// Dispatch to the correct dtype
|
// Dispatch to the correct dtype
|
||||||
if (out.dtype() == mx::float32) {
|
if (out.dtype() == mx::float32) {
|
||||||
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<float>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::float16) {
|
} else if (out.dtype() == mx::float16) {
|
||||||
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::bfloat16) {
|
} else if (out.dtype() == mx::bfloat16) {
|
||||||
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_);
|
||||||
} else if (out.dtype() == mx::complex64) {
|
} else if (out.dtype() == mx::complex64) {
|
||||||
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_);
|
||||||
} else {
|
} else {
|
||||||
throw std::runtime_error(
|
throw std::runtime_error(
|
||||||
"Axpby is only supported for floating point types.");
|
"Axpby is only supported for floating point types.");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
// Primitive Accelerate Backend Implementation
|
||||||
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
|
|
||||||
|
#ifdef ACCELERATE_NEW_LAPACK
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void axpby_impl_accelerate(
|
||||||
|
const mx::array& x,
|
||||||
|
const mx::array& y,
|
||||||
|
mx::array& out,
|
||||||
|
float alpha_,
|
||||||
|
float beta_) {
|
||||||
|
// Accelerate library provides catlas_saxpby which does
|
||||||
|
// Y = (alpha * X) + (beta * Y) in place
|
||||||
|
// To use it, we first copy the data in y over to the output array
|
||||||
|
|
||||||
|
// This specialization requires both x and y be contiguous in the same mode
|
||||||
|
// i.e: corresponding linear indices in both point to corresponding elements
|
||||||
|
// The data in the output array is allocated to match the strides in y
|
||||||
|
// such that x, y, and out are contiguous in the same mode and
|
||||||
|
// no transposition is needed
|
||||||
|
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
|
// We then copy over the elements using the contiguous vector specialization
|
||||||
|
copy_inplace(y, out, mx::CopyType::Vector);
|
||||||
|
|
||||||
|
// Get x and y pointers for catlas_saxpby
|
||||||
|
const T* x_ptr = x.data<T>();
|
||||||
|
T* y_ptr = out.data<T>();
|
||||||
|
|
||||||
|
T alpha = static_cast<T>(alpha_);
|
||||||
|
T beta = static_cast<T>(beta_);
|
||||||
|
|
||||||
|
// Call the inplace accelerate operator
|
||||||
|
catlas_saxpby(
|
||||||
|
/* N = */ out.size(),
|
||||||
|
/* ALPHA = */ alpha,
|
||||||
|
/* X = */ x_ptr,
|
||||||
|
/* INCX = */ 1,
|
||||||
|
/* BETA = */ beta,
|
||||||
|
/* Y = */ y_ptr,
|
||||||
|
/* INCY = */ 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
/** Evaluate primitive on CPU using accelerate specializations */
|
||||||
|
void Axpby::eval_cpu(
|
||||||
|
const std::vector<mx::array>& inputs,
|
||||||
|
std::vector<mx::array>& outputs) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& x = inputs[0];
|
||||||
|
auto& y = inputs[1];
|
||||||
|
auto& out = outputs[0];
|
||||||
|
|
||||||
|
// Accelerate specialization for contiguous single precision float arrays
|
||||||
|
if (out.dtype() == mx::float32 &&
|
||||||
|
((x.flags().row_contiguous && y.flags().row_contiguous) ||
|
||||||
|
(x.flags().col_contiguous && y.flags().col_contiguous))) {
|
||||||
|
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Fall back to common backend if specializations are not available
|
||||||
|
eval(inputs, outputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
#else // Accelerate not available
|
||||||
|
|
||||||
|
/** Evaluate primitive on CPU falling back to common backend */
|
||||||
|
void Axpby::eval_cpu(
|
||||||
|
const std::vector<mx::array>& inputs,
|
||||||
|
std::vector<mx::array>& outputs) {
|
||||||
|
eval(inputs, outputs);
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
// Primitive Metal Backend Implementation
|
// Primitive Metal Backend Implementation
|
||||||
///////////////////////////////////////////////////////////////////////////////
|
///////////////////////////////////////////////////////////////////////////////
|
||||||
@@ -154,6 +216,7 @@ void Axpby::eval_gpu(
|
|||||||
const std::vector<mx::array>& inputs,
|
const std::vector<mx::array>& inputs,
|
||||||
std::vector<mx::array>& outputs) {
|
std::vector<mx::array>& outputs) {
|
||||||
// Prepare inputs
|
// Prepare inputs
|
||||||
|
assert(inputs.size() == 2);
|
||||||
auto& x = inputs[0];
|
auto& x = inputs[0];
|
||||||
auto& y = inputs[1];
|
auto& y = inputs[1];
|
||||||
auto& out = outputs[0];
|
auto& out = outputs[0];
|
||||||
@@ -172,24 +235,25 @@ void Axpby::eval_gpu(
|
|||||||
// Allocate output memory with strides based on specialization
|
// Allocate output memory with strides based on specialization
|
||||||
if (contiguous_kernel) {
|
if (contiguous_kernel) {
|
||||||
out.set_data(
|
out.set_data(
|
||||||
mx::allocator::malloc(x.data_size() * out.itemsize()),
|
mx::allocator::malloc_or_wait(x.data_size() * out.itemsize()),
|
||||||
x.data_size(),
|
x.data_size(),
|
||||||
x.strides(),
|
x.strides(),
|
||||||
x.flags());
|
x.flags());
|
||||||
} else {
|
} else {
|
||||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Resolve name of kernel (corresponds to axpby.metal)
|
// Resolve name of kernel (corresponds to axpby.metal)
|
||||||
std::string kname = "axpby_";
|
std::ostringstream kname;
|
||||||
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
kname << "axpby_";
|
||||||
kname += type_to_name(out);
|
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||||
|
kname << type_to_name(out);
|
||||||
|
|
||||||
// Load the metal library
|
// Make sure the metal library is available
|
||||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
d.register_library("mlx_ext");
|
||||||
|
|
||||||
// Make a kernel from this metal library
|
// Make a kernel from this metal library
|
||||||
auto kernel = d.get_kernel(kname, lib);
|
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||||
|
|
||||||
// Prepare to encode kernel
|
// Prepare to encode kernel
|
||||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
// Copyright © 2023-2025 Apple Inc.
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
|
|||||||
const std::vector<mx::array>& inputs,
|
const std::vector<mx::array>& inputs,
|
||||||
const std::vector<int>& axes) override;
|
const std::vector<int>& axes) override;
|
||||||
|
|
||||||
/** The name of primitive. */
|
/** Print the primitive. */
|
||||||
const char* name() const override {
|
void print(std::ostream& os) override {
|
||||||
return "Axpby";
|
os << "Axpby";
|
||||||
}
|
}
|
||||||
|
|
||||||
/** Equivalence check **/
|
/** Equivalence check **/
|
||||||
@@ -85,6 +85,11 @@ class Axpby : public mx::Primitive {
|
|||||||
private:
|
private:
|
||||||
float alpha_;
|
float alpha_;
|
||||||
float beta_;
|
float beta_;
|
||||||
|
|
||||||
|
/** Fall back implementation for evaluation on CPU */
|
||||||
|
void eval(
|
||||||
|
const std::vector<mx::array>& inputs,
|
||||||
|
std::vector<mx::array>& outputs);
|
||||||
};
|
};
|
||||||
|
|
||||||
} // namespace my_ext
|
} // namespace my_ext
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
// Copyright © 2023-2025 Apple Inc.
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
#include <metal_stdlib>
|
#include <metal_stdlib>
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
setuptools>=42
|
setuptools>=42
|
||||||
cmake>=3.25
|
cmake>=3.25
|
||||||
mlx>=0.21.0
|
mlx>=0.21.0
|
||||||
nanobind==2.4.0
|
nanobind==2.2.0
|
||||||
|
|||||||
@@ -3,10 +3,8 @@ from mlx_sample_extensions import axpby
|
|||||||
|
|
||||||
a = mx.ones((3, 4))
|
a = mx.ones((3, 4))
|
||||||
b = mx.ones((3, 4))
|
b = mx.ones((3, 4))
|
||||||
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||||
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
|
|
||||||
|
|
||||||
print(f"c shape: {c_cpu.shape}")
|
print(f"c shape: {c.shape}")
|
||||||
print(f"c dtype: {c_cpu.dtype}")
|
print(f"c dtype: {c.dtype}")
|
||||||
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
|
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||||
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
|
|
||||||
|
|||||||
@@ -5,7 +5,6 @@ target_sources(
|
|||||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
|
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||||
@@ -20,11 +19,6 @@ target_sources(
|
|||||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
|
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
|
||||||
|
|
||||||
# Define MLX_VERSION only in the version.cpp file.
|
|
||||||
add_library(mlx_version OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
|
|
||||||
target_compile_definitions(mlx_version PRIVATE MLX_VERSION="${MLX_VERSION}")
|
|
||||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:mlx_version>)
|
|
||||||
|
|
||||||
if(MSVC)
|
if(MSVC)
|
||||||
# Disable some MSVC warnings to speed up compilation.
|
# Disable some MSVC warnings to speed up compilation.
|
||||||
target_compile_options(mlx PUBLIC /wd4068 /wd4244 /wd4267 /wd4804)
|
target_compile_options(mlx PUBLIC /wd4068 /wd4244 /wd4267 /wd4804)
|
||||||
@@ -35,33 +29,24 @@ if(WIN32)
|
|||||||
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
|
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
|
||||||
|
|
||||||
if(MLX_BUILD_CPU)
|
if(MLX_BUILD_CPU)
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cpu)
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||||
else()
|
else()
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
||||||
|
if(MLX_BUILD_ACCELERATE)
|
||||||
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||||
|
elseif(MLX_BUILD_CPU)
|
||||||
|
target_sources(
|
||||||
|
mlx
|
||||||
|
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
|
||||||
|
endif()
|
||||||
|
|
||||||
if(MLX_BUILD_METAL)
|
if(MLX_BUILD_METAL)
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
|
||||||
else()
|
else()
|
||||||
target_sources(mlx
|
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
|
||||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(MLX_BUILD_CUDA)
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
|
|
||||||
else()
|
|
||||||
target_sources(mlx
|
|
||||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda/no_cuda.cpp)
|
|
||||||
endif()
|
|
||||||
|
|
||||||
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
|
|
||||||
else()
|
|
||||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
|
|
||||||
endif()
|
endif()
|
||||||
|
|||||||
@@ -4,11 +4,12 @@
|
|||||||
#include <sstream>
|
#include <sstream>
|
||||||
|
|
||||||
#include "mlx/allocator.h"
|
#include "mlx/allocator.h"
|
||||||
|
#include "mlx/scheduler.h"
|
||||||
|
|
||||||
namespace mlx::core::allocator {
|
namespace mlx::core::allocator {
|
||||||
|
|
||||||
Buffer malloc(size_t size) {
|
Buffer malloc(size_t size) {
|
||||||
auto buffer = allocator().malloc(size);
|
auto buffer = allocator().malloc(size, /* allow_swap */ true);
|
||||||
if (size && !buffer.ptr()) {
|
if (size && !buffer.ptr()) {
|
||||||
std::ostringstream msg;
|
std::ostringstream msg;
|
||||||
msg << "[malloc] Unable to allocate " << size << " bytes.";
|
msg << "[malloc] Unable to allocate " << size << " bytes.";
|
||||||
@@ -21,4 +22,45 @@ void free(Buffer buffer) {
|
|||||||
allocator().free(buffer);
|
allocator().free(buffer);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Buffer CommonAllocator::malloc(size_t size, bool) {
|
||||||
|
void* ptr = std::malloc(size + sizeof(size_t));
|
||||||
|
if (ptr != nullptr) {
|
||||||
|
*static_cast<size_t*>(ptr) = size;
|
||||||
|
}
|
||||||
|
return Buffer{ptr};
|
||||||
|
}
|
||||||
|
|
||||||
|
void CommonAllocator::free(Buffer buffer) {
|
||||||
|
std::free(buffer.ptr());
|
||||||
|
}
|
||||||
|
|
||||||
|
size_t CommonAllocator::size(Buffer buffer) const {
|
||||||
|
if (buffer.ptr() == nullptr) {
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
return *static_cast<size_t*>(buffer.ptr());
|
||||||
|
}
|
||||||
|
|
||||||
|
Buffer malloc_or_wait(size_t size) {
|
||||||
|
auto buffer = allocator().malloc(size);
|
||||||
|
|
||||||
|
while (size && !buffer.ptr() && scheduler::n_active_tasks() > 0) {
|
||||||
|
scheduler::wait_for_one();
|
||||||
|
buffer = allocator().malloc(size);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Try swapping if needed
|
||||||
|
if (size && !buffer.ptr()) {
|
||||||
|
buffer = allocator().malloc(size, /* allow_swap = */ true);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (size && !buffer.ptr()) {
|
||||||
|
std::ostringstream msg;
|
||||||
|
msg << "[malloc_or_wait] Unable to allocate " << size << " bytes.";
|
||||||
|
throw std::runtime_error(msg.str());
|
||||||
|
}
|
||||||
|
|
||||||
|
return buffer;
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace mlx::core::allocator
|
} // namespace mlx::core::allocator
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ class Buffer {
|
|||||||
void* ptr_;
|
void* ptr_;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
explicit Buffer(void* ptr) : ptr_(ptr) {};
|
Buffer(void* ptr) : ptr_(ptr) {};
|
||||||
|
|
||||||
// Get the raw data pointer from the buffer
|
// Get the raw data pointer from the buffer
|
||||||
void* raw_ptr();
|
void* raw_ptr();
|
||||||
@@ -32,10 +32,14 @@ Buffer malloc(size_t size);
|
|||||||
|
|
||||||
void free(Buffer buffer);
|
void free(Buffer buffer);
|
||||||
|
|
||||||
|
// Wait for running tasks to finish and free up memory
|
||||||
|
// if allocation fails
|
||||||
|
Buffer malloc_or_wait(size_t size);
|
||||||
|
|
||||||
class Allocator {
|
class Allocator {
|
||||||
/** Abstract base class for a memory allocator. */
|
/** Abstract base class for a memory allocator. */
|
||||||
public:
|
public:
|
||||||
virtual Buffer malloc(size_t size) = 0;
|
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
|
||||||
virtual void free(Buffer buffer) = 0;
|
virtual void free(Buffer buffer) = 0;
|
||||||
virtual size_t size(Buffer buffer) const = 0;
|
virtual size_t size(Buffer buffer) const = 0;
|
||||||
|
|
||||||
@@ -49,4 +53,16 @@ class Allocator {
|
|||||||
|
|
||||||
Allocator& allocator();
|
Allocator& allocator();
|
||||||
|
|
||||||
|
class CommonAllocator : public Allocator {
|
||||||
|
/** A general CPU allocator. */
|
||||||
|
public:
|
||||||
|
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
|
||||||
|
virtual void free(Buffer buffer) override;
|
||||||
|
virtual size_t size(Buffer buffer) const override;
|
||||||
|
|
||||||
|
private:
|
||||||
|
CommonAllocator() = default;
|
||||||
|
friend Allocator& allocator();
|
||||||
|
};
|
||||||
|
|
||||||
} // namespace mlx::core::allocator
|
} // namespace mlx::core::allocator
|
||||||
|
|||||||
@@ -25,18 +25,7 @@ array::array(
|
|||||||
std::move(shape),
|
std::move(shape),
|
||||||
dtype,
|
dtype,
|
||||||
std::move(primitive),
|
std::move(primitive),
|
||||||
std::move(inputs))) {
|
std::move(inputs))) {}
|
||||||
if (has_primitive() && this->primitive().stream().device == Device::gpu) {
|
|
||||||
for (auto& in : this->inputs()) {
|
|
||||||
if (in.dtype() == float64) {
|
|
||||||
throw std::invalid_argument("float64 is not supported on the GPU");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (this->dtype() == float64) {
|
|
||||||
throw std::invalid_argument("float64 is not supported on the GPU");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
std::vector<array> array::make_arrays(
|
std::vector<array> array::make_arrays(
|
||||||
std::vector<Shape> shapes,
|
std::vector<Shape> shapes,
|
||||||
@@ -56,18 +45,6 @@ std::vector<array> array::make_arrays(
|
|||||||
return outputs;
|
return outputs;
|
||||||
}
|
}
|
||||||
|
|
||||||
array array::unsafe_weak_copy(const array& other) {
|
|
||||||
auto cpy = array(other.shape(), other.dtype(), nullptr, {});
|
|
||||||
cpy.set_data(
|
|
||||||
other.buffer(),
|
|
||||||
other.data_size(),
|
|
||||||
other.strides(),
|
|
||||||
other.flags(),
|
|
||||||
[](auto) {});
|
|
||||||
cpy.array_desc_->offset = other.array_desc_->offset;
|
|
||||||
return cpy;
|
|
||||||
}
|
|
||||||
|
|
||||||
array::array(std::initializer_list<float> data)
|
array::array(std::initializer_list<float> data)
|
||||||
: array_desc_(std::make_shared<ArrayDesc>(
|
: array_desc_(std::make_shared<ArrayDesc>(
|
||||||
Shape{static_cast<ShapeElem>(data.size())},
|
Shape{static_cast<ShapeElem>(data.size())},
|
||||||
@@ -89,26 +66,22 @@ array::array(allocator::Buffer data, Shape shape, Dtype dtype, Deleter deleter)
|
|||||||
}
|
}
|
||||||
|
|
||||||
void array::detach() {
|
void array::detach() {
|
||||||
array_desc_->primitive = nullptr;
|
|
||||||
for (auto& s : array_desc_->siblings) {
|
|
||||||
s.array_desc_->primitive = nullptr;
|
|
||||||
}
|
|
||||||
for (auto& s : array_desc_->siblings) {
|
for (auto& s : array_desc_->siblings) {
|
||||||
s.array_desc_->inputs.clear();
|
s.array_desc_->inputs.clear();
|
||||||
s.array_desc_->siblings.clear();
|
s.array_desc_->siblings.clear();
|
||||||
s.array_desc_->position = 0;
|
s.array_desc_->position = 0;
|
||||||
|
s.array_desc_->primitive = nullptr;
|
||||||
}
|
}
|
||||||
array_desc_->inputs.clear();
|
array_desc_->inputs.clear();
|
||||||
array_desc_->siblings.clear();
|
array_desc_->siblings.clear();
|
||||||
array_desc_->position = 0;
|
array_desc_->position = 0;
|
||||||
|
array_desc_->primitive = nullptr;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool array::is_available() const {
|
bool array::is_available() const {
|
||||||
if (status() == Status::available) {
|
if (status() == Status::available) {
|
||||||
return true;
|
return true;
|
||||||
} else if (
|
} else if (status() == Status::evaluated && event().is_signaled()) {
|
||||||
status() == Status::evaluated &&
|
|
||||||
(!event().valid() || event().is_signaled())) {
|
|
||||||
set_status(Status::available);
|
set_status(Status::available);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
@@ -117,10 +90,7 @@ bool array::is_available() const {
|
|||||||
|
|
||||||
void array::wait() {
|
void array::wait() {
|
||||||
if (!is_available()) {
|
if (!is_available()) {
|
||||||
if (event().valid()) {
|
|
||||||
event().wait();
|
event().wait();
|
||||||
detach_event();
|
|
||||||
}
|
|
||||||
set_status(Status::available);
|
set_status(Status::available);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@@ -141,7 +111,7 @@ bool array::is_tracer() const {
|
|||||||
|
|
||||||
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||||
array_desc_->offset = 0;
|
array_desc_->data_ptr = buffer.raw_ptr();
|
||||||
array_desc_->data_size = size();
|
array_desc_->data_size = size();
|
||||||
array_desc_->flags.contiguous = true;
|
array_desc_->flags.contiguous = true;
|
||||||
array_desc_->flags.row_contiguous = true;
|
array_desc_->flags.row_contiguous = true;
|
||||||
@@ -156,7 +126,7 @@ void array::set_data(
|
|||||||
Flags flags,
|
Flags flags,
|
||||||
Deleter d) {
|
Deleter d) {
|
||||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||||
array_desc_->offset = 0;
|
array_desc_->data_ptr = buffer.raw_ptr();
|
||||||
array_desc_->data_size = data_size;
|
array_desc_->data_size = data_size;
|
||||||
array_desc_->strides = std::move(strides);
|
array_desc_->strides = std::move(strides);
|
||||||
array_desc_->flags = flags;
|
array_desc_->flags = flags;
|
||||||
@@ -167,26 +137,48 @@ void array::copy_shared_buffer(
|
|||||||
const Strides& strides,
|
const Strides& strides,
|
||||||
Flags flags,
|
Flags flags,
|
||||||
size_t data_size,
|
size_t data_size,
|
||||||
int64_t offset /* = 0 */) {
|
size_t offset /* = 0 */) {
|
||||||
array_desc_->data = other.array_desc_->data;
|
array_desc_->data = other.array_desc_->data;
|
||||||
array_desc_->strides = strides;
|
array_desc_->strides = strides;
|
||||||
array_desc_->flags = flags;
|
array_desc_->flags = flags;
|
||||||
array_desc_->data_size = data_size;
|
array_desc_->data_size = data_size;
|
||||||
array_desc_->offset =
|
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||||
sizeof(char) * itemsize() * offset + other.array_desc_->offset;
|
array_desc_->data_ptr = static_cast<void*>(
|
||||||
|
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||||
}
|
}
|
||||||
|
|
||||||
void array::copy_shared_buffer(const array& other) {
|
void array::copy_shared_buffer(const array& other) {
|
||||||
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void array::move_shared_buffer(
|
||||||
|
array other,
|
||||||
|
const Strides& strides,
|
||||||
|
Flags flags,
|
||||||
|
size_t data_size,
|
||||||
|
size_t offset /* = 0 */) {
|
||||||
|
array_desc_->data = std::move(other.array_desc_->data);
|
||||||
|
array_desc_->strides = strides;
|
||||||
|
array_desc_->flags = flags;
|
||||||
|
array_desc_->data_size = data_size;
|
||||||
|
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||||
|
auto data_ptr = other.array_desc_->data_ptr;
|
||||||
|
other.array_desc_->data_ptr = nullptr;
|
||||||
|
array_desc_->data_ptr =
|
||||||
|
static_cast<void*>(static_cast<char*>(data_ptr) + char_offset);
|
||||||
|
}
|
||||||
|
|
||||||
|
void array::move_shared_buffer(array other) {
|
||||||
|
move_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||||
|
}
|
||||||
|
|
||||||
array::~array() {
|
array::~array() {
|
||||||
if (array_desc_ == nullptr) {
|
if (array_desc_ == nullptr) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Detached/detaching
|
// Ignore arrays that might be detached during eval
|
||||||
if (array_desc_->primitive == nullptr) {
|
if (status() == array::Status::scheduled) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -240,8 +232,8 @@ array::ArrayDesc::ArrayDesc(
|
|||||||
std::vector<array> inputs)
|
std::vector<array> inputs)
|
||||||
: shape(std::move(shape)),
|
: shape(std::move(shape)),
|
||||||
dtype(dtype),
|
dtype(dtype),
|
||||||
primitive(std::move(primitive)),
|
|
||||||
status(Status::unscheduled),
|
status(Status::unscheduled),
|
||||||
|
primitive(std::move(primitive)),
|
||||||
inputs(std::move(inputs)) {
|
inputs(std::move(inputs)) {
|
||||||
init();
|
init();
|
||||||
}
|
}
|
||||||
|
|||||||
70
mlx/array.h
70
mlx/array.h
@@ -10,7 +10,6 @@
|
|||||||
#include "mlx/allocator.h"
|
#include "mlx/allocator.h"
|
||||||
#include "mlx/dtype.h"
|
#include "mlx/dtype.h"
|
||||||
#include "mlx/event.h"
|
#include "mlx/event.h"
|
||||||
#include "mlx/small_vector.h"
|
|
||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
@@ -19,8 +18,8 @@ class Primitive;
|
|||||||
|
|
||||||
using Deleter = std::function<void(allocator::Buffer)>;
|
using Deleter = std::function<void(allocator::Buffer)>;
|
||||||
using ShapeElem = int32_t;
|
using ShapeElem = int32_t;
|
||||||
using Shape = SmallVector<ShapeElem>;
|
using Shape = std::vector<ShapeElem>;
|
||||||
using Strides = SmallVector<int64_t>;
|
using Strides = std::vector<int64_t>;
|
||||||
|
|
||||||
class array {
|
class array {
|
||||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||||
@@ -200,13 +199,6 @@ class array {
|
|||||||
const std::shared_ptr<Primitive>& primitive,
|
const std::shared_ptr<Primitive>& primitive,
|
||||||
const std::vector<array>& inputs);
|
const std::vector<array>& inputs);
|
||||||
|
|
||||||
/**
|
|
||||||
* Get a new array that refers to the same data as the input but with a
|
|
||||||
* non-owning pointer to it. Note the array is detached from the graph and has
|
|
||||||
* no inputs, siblings or primitive.
|
|
||||||
*/
|
|
||||||
static array unsafe_weak_copy(const array& other);
|
|
||||||
|
|
||||||
/** A unique identifier for an array. */
|
/** A unique identifier for an array. */
|
||||||
std::uintptr_t id() const {
|
std::uintptr_t id() const {
|
||||||
return reinterpret_cast<std::uintptr_t>(array_desc_.get());
|
return reinterpret_cast<std::uintptr_t>(array_desc_.get());
|
||||||
@@ -225,10 +217,6 @@ class array {
|
|||||||
// Not copyable
|
// Not copyable
|
||||||
Data(const Data& d) = delete;
|
Data(const Data& d) = delete;
|
||||||
Data& operator=(const Data& d) = delete;
|
Data& operator=(const Data& d) = delete;
|
||||||
Data(Data&& o) : buffer(o.buffer), d(o.d) {
|
|
||||||
o.buffer = allocator::Buffer(nullptr);
|
|
||||||
o.d = [](allocator::Buffer) {};
|
|
||||||
}
|
|
||||||
~Data() {
|
~Data() {
|
||||||
d(buffer);
|
d(buffer);
|
||||||
}
|
}
|
||||||
@@ -294,11 +282,6 @@ class array {
|
|||||||
return array_desc_->siblings;
|
return array_desc_->siblings;
|
||||||
}
|
}
|
||||||
|
|
||||||
/** The array's position in the sibling list. */
|
|
||||||
int sibling_position() const {
|
|
||||||
return array_desc_->position;
|
|
||||||
}
|
|
||||||
|
|
||||||
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
||||||
array_desc_->siblings = std::move(siblings);
|
array_desc_->siblings = std::move(siblings);
|
||||||
array_desc_->position = position;
|
array_desc_->position = position;
|
||||||
@@ -349,35 +332,32 @@ class array {
|
|||||||
return allocator::allocator().size(buffer());
|
return allocator::allocator().size(buffer());
|
||||||
}
|
}
|
||||||
|
|
||||||
// Return the shared pointer to the array::Data struct
|
// Return a copy of the shared pointer
|
||||||
const std::shared_ptr<Data>& data_shared_ptr() const {
|
// to the array::Data struct
|
||||||
|
std::shared_ptr<Data> data_shared_ptr() const {
|
||||||
return array_desc_->data;
|
return array_desc_->data;
|
||||||
}
|
}
|
||||||
|
// Return a raw pointer to the arrays data
|
||||||
// Return a raw pointer to the arrays data. This function may do a copy if
|
|
||||||
// the underlying buffer is not accessible on the CPU. When accessing the
|
|
||||||
// data for GPU kernels, be sure to use the correct method / function for the
|
|
||||||
// given backend to access the GPU pointer.
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
T* data() {
|
T* data() {
|
||||||
return reinterpret_cast<T*>(
|
return static_cast<T*>(array_desc_->data_ptr);
|
||||||
(static_cast<char*>(buffer().raw_ptr()) + array_desc_->offset));
|
|
||||||
}
|
}
|
||||||
|
|
||||||
template <typename T>
|
template <typename T>
|
||||||
const T* data() const {
|
const T* data() const {
|
||||||
return const_cast<array&>(*this).data<T>();
|
return static_cast<T*>(array_desc_->data_ptr);
|
||||||
}
|
|
||||||
|
|
||||||
int64_t offset() const {
|
|
||||||
return array_desc_->offset;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
enum Status {
|
enum Status {
|
||||||
// The output of a computation which has not been scheduled.
|
// The ouptut of a computation which has not been scheduled.
|
||||||
// For example, the status of `x` in `auto x = a + b`.
|
// For example, the status of `x` in `auto x = a + b`.
|
||||||
unscheduled,
|
unscheduled,
|
||||||
|
|
||||||
|
// The ouptut of a computation which has been scheduled but `eval_*` has
|
||||||
|
// not yet been called on the array's primitive. A possible
|
||||||
|
// status of `x` in `auto x = a + b; eval(x);`
|
||||||
|
scheduled,
|
||||||
|
|
||||||
// The array's `eval_*` function has been run, but the computation is not
|
// The array's `eval_*` function has been run, but the computation is not
|
||||||
// necessarily complete. The array will have memory allocated and if it is
|
// necessarily complete. The array will have memory allocated and if it is
|
||||||
// not a tracer then it will be detached from the graph.
|
// not a tracer then it will be detached from the graph.
|
||||||
@@ -414,10 +394,6 @@ class array {
|
|||||||
array_desc_->event = std::move(e);
|
array_desc_->event = std::move(e);
|
||||||
}
|
}
|
||||||
|
|
||||||
void detach_event() const {
|
|
||||||
array_desc_->event = Event{};
|
|
||||||
}
|
|
||||||
|
|
||||||
// Mark the array as a tracer array (true) or not.
|
// Mark the array as a tracer array (true) or not.
|
||||||
void set_tracer(bool is_tracer) {
|
void set_tracer(bool is_tracer) {
|
||||||
array_desc_->is_tracer = is_tracer;
|
array_desc_->is_tracer = is_tracer;
|
||||||
@@ -439,10 +415,19 @@ class array {
|
|||||||
const Strides& strides,
|
const Strides& strides,
|
||||||
Flags flags,
|
Flags flags,
|
||||||
size_t data_size,
|
size_t data_size,
|
||||||
int64_t offset = 0);
|
size_t offset = 0);
|
||||||
|
|
||||||
void copy_shared_buffer(const array& other);
|
void copy_shared_buffer(const array& other);
|
||||||
|
|
||||||
|
void move_shared_buffer(
|
||||||
|
array other,
|
||||||
|
const Strides& strides,
|
||||||
|
Flags flags,
|
||||||
|
size_t data_size,
|
||||||
|
size_t offset = 0);
|
||||||
|
|
||||||
|
void move_shared_buffer(array other);
|
||||||
|
|
||||||
void overwrite_descriptor(const array& other) {
|
void overwrite_descriptor(const array& other) {
|
||||||
array_desc_ = other.array_desc_;
|
array_desc_ = other.array_desc_;
|
||||||
}
|
}
|
||||||
@@ -474,8 +459,8 @@ class array {
|
|||||||
// can share the underlying data buffer.
|
// can share the underlying data buffer.
|
||||||
std::shared_ptr<Data> data;
|
std::shared_ptr<Data> data;
|
||||||
|
|
||||||
// Offset from beginning of data pointer
|
// Properly offset data pointer
|
||||||
int64_t offset{0};
|
void* data_ptr{nullptr};
|
||||||
|
|
||||||
// The size in elements of the data buffer the array accesses
|
// The size in elements of the data buffer the array accesses
|
||||||
size_t data_size;
|
size_t data_size;
|
||||||
@@ -609,9 +594,6 @@ void array::init(It src) {
|
|||||||
case float32:
|
case float32:
|
||||||
std::copy(src, src + size(), data<float>());
|
std::copy(src, src + size(), data<float>());
|
||||||
break;
|
break;
|
||||||
case float64:
|
|
||||||
std::copy(src, src + size(), data<double>());
|
|
||||||
break;
|
|
||||||
case bfloat16:
|
case bfloat16:
|
||||||
std::copy(src, src + size(), data<bfloat16_t>());
|
std::copy(src, src + size(), data<bfloat16_t>());
|
||||||
break;
|
break;
|
||||||
|
|||||||
8
mlx/backend/accelerate/CMakeLists.txt
Normal file
8
mlx/backend/accelerate/CMakeLists.txt
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
target_sources(
|
||||||
|
mlx
|
||||||
|
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)
|
||||||
20
mlx/backend/accelerate/conv.cpp
Normal file
20
mlx/backend/accelerate/conv.cpp
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include <Accelerate/Accelerate.h>
|
||||||
|
#include <simd/vector.h>
|
||||||
|
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
#include "mlx/utils.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
eval(inputs, out);
|
||||||
|
|
||||||
|
// TODO: Add accelerate based optimizations for CPU conv
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
253
mlx/backend/accelerate/matmul.cpp
Normal file
253
mlx/backend/accelerate/matmul.cpp
Normal file
@@ -0,0 +1,253 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include <Accelerate/Accelerate.h>
|
||||||
|
|
||||||
|
#include "mlx/backend/accelerate/utils.h"
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
#include "mlx/utils.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
std::tuple<bool, size_t, array> check_transpose(const array& arr) {
|
||||||
|
auto stx = arr.strides()[arr.ndim() - 2];
|
||||||
|
auto sty = arr.strides()[arr.ndim() - 1];
|
||||||
|
if (stx == arr.shape(-1) && sty == 1) {
|
||||||
|
return std::make_tuple(false, stx, arr);
|
||||||
|
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||||
|
return std::make_tuple(true, sty, arr);
|
||||||
|
} else {
|
||||||
|
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||||
|
copy(arr, arr_copy, CopyType::General);
|
||||||
|
size_t stx = arr.shape(-1);
|
||||||
|
return std::make_tuple(false, stx, arr_copy);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void matmul_cblas_general(
|
||||||
|
const array& a_pre,
|
||||||
|
const array& b_pre,
|
||||||
|
array& out,
|
||||||
|
float alpha = 1.0f,
|
||||||
|
float beta = 0.0f) {
|
||||||
|
if (out.dtype() != float32) {
|
||||||
|
throw std::runtime_error(
|
||||||
|
"[matmul_cblas] on CPU currently only supports float32");
|
||||||
|
}
|
||||||
|
|
||||||
|
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||||
|
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||||
|
size_t M = a.shape(-2);
|
||||||
|
size_t N = b.shape(-1);
|
||||||
|
size_t K = a.shape(-1);
|
||||||
|
|
||||||
|
if (M == 0 || N == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (K == 0) {
|
||||||
|
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||||
|
cblas_sgemm(
|
||||||
|
CblasRowMajor,
|
||||||
|
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||||
|
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||||
|
M,
|
||||||
|
N,
|
||||||
|
K,
|
||||||
|
alpha, // alpha
|
||||||
|
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
|
||||||
|
lda,
|
||||||
|
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
|
||||||
|
ldb,
|
||||||
|
beta, // beta
|
||||||
|
out.data<float>() + M * N * i,
|
||||||
|
out.shape(-1) // ldc
|
||||||
|
);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||||
|
if (out.dtype() != float32) {
|
||||||
|
throw std::runtime_error(
|
||||||
|
"[matmul_cblas] on CPU currently only supports float32");
|
||||||
|
}
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
return matmul_cblas_general(a_pre, b_pre, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void matmul_bnns_general(
|
||||||
|
const array& a_pre,
|
||||||
|
const array& b_pre,
|
||||||
|
array& out,
|
||||||
|
float alpha = 1.0f,
|
||||||
|
float beta = 0.0f) {
|
||||||
|
// TODO: Update to utilize BNNS broadcasting
|
||||||
|
|
||||||
|
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||||
|
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||||
|
size_t M = a.shape(-2);
|
||||||
|
size_t N = b.shape(-1);
|
||||||
|
size_t K = a.shape(-1);
|
||||||
|
|
||||||
|
if (M == 0 || N == 0) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
if (K == 0) {
|
||||||
|
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
|
||||||
|
|
||||||
|
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||||
|
/* float alpha = */ alpha,
|
||||||
|
/* float beta = */ beta,
|
||||||
|
/* bool transA = */ a_transposed,
|
||||||
|
/* bool transB = */ b_transposed,
|
||||||
|
/* bool quadratic = */ false,
|
||||||
|
/* bool a_is_weights = */ false,
|
||||||
|
/* bool b_is_weights = */ false,
|
||||||
|
/* BNNSNDArrayDescriptor iA_desc = */
|
||||||
|
BNNSNDArrayDescriptor{
|
||||||
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||||
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||||
|
|
||||||
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{lda, (M * K) / lda, 0, 0, 0, 0, 0, 0},
|
||||||
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{1, lda, 0, 0, 0, 0, 0, 0},
|
||||||
|
|
||||||
|
/* void * _Nullable data = */ nullptr,
|
||||||
|
/* BNNSDataType data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* void * _Nullable table_data = */ nullptr,
|
||||||
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* float data_scale = */ 1.0,
|
||||||
|
/* float data_bias = */ 0.0,
|
||||||
|
},
|
||||||
|
/* BNNSNDArrayDescriptor iB_desc = */
|
||||||
|
BNNSNDArrayDescriptor{
|
||||||
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||||
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||||
|
|
||||||
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{ldb, (K * N) / ldb, 0, 0, 0, 0, 0, 0},
|
||||||
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{1, ldb, 0, 0, 0, 0, 0, 0},
|
||||||
|
|
||||||
|
/* void * _Nullable data = */ nullptr,
|
||||||
|
/* BNNSDataType data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* void * _Nullable table_data = */ nullptr,
|
||||||
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* float data_scale = */ 1.0,
|
||||||
|
/* float data_bias = */ 0.0,
|
||||||
|
},
|
||||||
|
/* BNNSNDArrayDescriptor o_desc = */
|
||||||
|
BNNSNDArrayDescriptor{
|
||||||
|
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||||
|
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||||
|
|
||||||
|
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{N, M, 0, 0, 0, 0, 0, 0},
|
||||||
|
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||||
|
{1, N, 0, 0, 0, 0, 0, 0},
|
||||||
|
|
||||||
|
/* void * _Nullable data = */ nullptr,
|
||||||
|
/* BNNSDataType data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* void * _Nullable table_data = */ nullptr,
|
||||||
|
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||||
|
|
||||||
|
/* float data_scale = */ 1.0,
|
||||||
|
/* float data_bias = */ 0.0,
|
||||||
|
},
|
||||||
|
};
|
||||||
|
|
||||||
|
auto bnns_filter =
|
||||||
|
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
||||||
|
|
||||||
|
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||||
|
BNNSFilterApplyTwoInput(
|
||||||
|
bnns_filter,
|
||||||
|
a.data<uint8_t>() +
|
||||||
|
elem_to_loc(M * K * i, a.shape(), a.strides()) * a.itemsize(),
|
||||||
|
b.data<uint8_t>() +
|
||||||
|
elem_to_loc(K * N * i, b.shape(), b.strides()) * b.itemsize(),
|
||||||
|
out.data<uint8_t>() + M * N * i * out.itemsize());
|
||||||
|
}
|
||||||
|
|
||||||
|
BNNSFilterDestroy(bnns_filter);
|
||||||
|
}
|
||||||
|
|
||||||
|
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||||
|
// TODO: Update to utilize BNNS broadcasting
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
return matmul_bnns_general(a_pre, b_pre, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
inline void mask_matrix(
|
||||||
|
T* data,
|
||||||
|
const bool* mask,
|
||||||
|
int tile_size,
|
||||||
|
const int X,
|
||||||
|
const int Y,
|
||||||
|
const size_t X_data_str,
|
||||||
|
const size_t Y_data_str,
|
||||||
|
const size_t X_mask_str,
|
||||||
|
const size_t Y_mask_str) {
|
||||||
|
int tX = (X + tile_size - 1) / tile_size;
|
||||||
|
int tY = (Y + tile_size - 1) / tile_size;
|
||||||
|
|
||||||
|
for (int i = 0; i < tX; i++) {
|
||||||
|
for (int j = 0; j < tY; j++) {
|
||||||
|
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||||
|
if (!do_mask) {
|
||||||
|
int loc_x = i * tile_size;
|
||||||
|
int loc_y = j * tile_size;
|
||||||
|
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||||
|
|
||||||
|
int size_x = std::min(tile_size, X - loc_x);
|
||||||
|
int size_y = std::min(tile_size, Y - loc_y);
|
||||||
|
for (int ii = 0; ii < size_x; ii++) {
|
||||||
|
for (int jj = 0; jj < size_y; jj++) {
|
||||||
|
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
if (out.dtype() == float32) {
|
||||||
|
return matmul_cblas(inputs[0], inputs[1], out);
|
||||||
|
}
|
||||||
|
return matmul_bnns(inputs[0], inputs[1], out);
|
||||||
|
}
|
||||||
|
|
||||||
|
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
// Fill output with C
|
||||||
|
auto& c = inputs[2];
|
||||||
|
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
|
||||||
|
copy(c, out, ctype);
|
||||||
|
|
||||||
|
if (out.dtype() == float32) {
|
||||||
|
return matmul_cblas_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||||
|
}
|
||||||
|
return matmul_bnns_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
603
mlx/backend/accelerate/primitives.cpp
Normal file
603
mlx/backend/accelerate/primitives.cpp
Normal file
@@ -0,0 +1,603 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cmath>
|
||||||
|
|
||||||
|
#include <Accelerate/Accelerate.h>
|
||||||
|
|
||||||
|
#include "mlx/allocator.h"
|
||||||
|
#include "mlx/backend/common/binary.h"
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
|
#include "mlx/backend/common/unary.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
#define DEFAULT(primitive) \
|
||||||
|
void primitive::eval_cpu(const std::vector<array>& inputs, array& out) { \
|
||||||
|
primitive::eval(inputs, out); \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define DEFAULT_MULTI(primitive) \
|
||||||
|
void primitive::eval_cpu( \
|
||||||
|
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||||
|
primitive::eval(inputs, outputs); \
|
||||||
|
}
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
// Use the default implementation for the following primitives
|
||||||
|
DEFAULT(Arange)
|
||||||
|
DEFAULT(ArgPartition)
|
||||||
|
DEFAULT(ArgReduce)
|
||||||
|
DEFAULT(ArgSort)
|
||||||
|
DEFAULT(AsStrided)
|
||||||
|
DEFAULT(BlockMaskedMM)
|
||||||
|
DEFAULT(Broadcast)
|
||||||
|
DEFAULT(BroadcastAxes)
|
||||||
|
DEFAULT(Ceil)
|
||||||
|
DEFAULT(Concatenate)
|
||||||
|
DEFAULT(Conjugate)
|
||||||
|
DEFAULT(Copy)
|
||||||
|
DEFAULT_MULTI(CustomTransforms)
|
||||||
|
DEFAULT_MULTI(Depends)
|
||||||
|
DEFAULT_MULTI(DivMod)
|
||||||
|
DEFAULT(NumberOfElements)
|
||||||
|
DEFAULT(Equal)
|
||||||
|
DEFAULT(Erf)
|
||||||
|
DEFAULT(ErfInv)
|
||||||
|
DEFAULT(ExpandDims)
|
||||||
|
DEFAULT(FFT)
|
||||||
|
DEFAULT(Floor)
|
||||||
|
DEFAULT(Gather)
|
||||||
|
DEFAULT(GatherMM)
|
||||||
|
DEFAULT(GatherQMM)
|
||||||
|
DEFAULT(Greater)
|
||||||
|
DEFAULT(GreaterEqual)
|
||||||
|
DEFAULT(Hadamard)
|
||||||
|
DEFAULT(Less)
|
||||||
|
DEFAULT(LessEqual)
|
||||||
|
DEFAULT(Load)
|
||||||
|
DEFAULT(LogicalNot)
|
||||||
|
DEFAULT(LogicalAnd)
|
||||||
|
DEFAULT(LogicalOr)
|
||||||
|
DEFAULT(LogAddExp)
|
||||||
|
DEFAULT(Maximum)
|
||||||
|
DEFAULT(Minimum)
|
||||||
|
DEFAULT(NotEqual)
|
||||||
|
DEFAULT(Pad)
|
||||||
|
DEFAULT(Partition)
|
||||||
|
DEFAULT_MULTI(QRF)
|
||||||
|
DEFAULT(RandomBits)
|
||||||
|
DEFAULT(Remainder)
|
||||||
|
DEFAULT(Round)
|
||||||
|
DEFAULT(Scatter)
|
||||||
|
DEFAULT(Select)
|
||||||
|
DEFAULT(Sigmoid)
|
||||||
|
DEFAULT(Sign)
|
||||||
|
DEFAULT(Slice)
|
||||||
|
DEFAULT(SliceUpdate)
|
||||||
|
DEFAULT_MULTI(Split)
|
||||||
|
DEFAULT(Sort)
|
||||||
|
DEFAULT(Squeeze)
|
||||||
|
DEFAULT(StopGradient)
|
||||||
|
DEFAULT_MULTI(SVD)
|
||||||
|
DEFAULT(Transpose)
|
||||||
|
DEFAULT(Inverse)
|
||||||
|
DEFAULT(Cholesky)
|
||||||
|
DEFAULT_MULTI(Eigh)
|
||||||
|
|
||||||
|
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||||
|
} else if (in.dtype() == int32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
|
||||||
|
if (a.dtype() == float32) {
|
||||||
|
binary_op<float>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x + y; },
|
||||||
|
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||||
|
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else if (a.dtype() == int32) {
|
||||||
|
binary_op<int>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x + y; },
|
||||||
|
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||||
|
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcCos::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvacosf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcCosh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvacoshf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcSin::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvasinf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcSinh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvasinhf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvatanf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
if (out.dtype() == float32 && a.flags().row_contiguous &&
|
||||||
|
b.flags().row_contiguous) {
|
||||||
|
if (a.is_donatable()) {
|
||||||
|
out.copy_shared_buffer(a);
|
||||||
|
} else if (b.is_donatable()) {
|
||||||
|
out.copy_shared_buffer(b);
|
||||||
|
} else {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
}
|
||||||
|
int size = a.data_size();
|
||||||
|
vvatan2f(out.data<float>(), a.data<float>(), b.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvatanhf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
|
||||||
|
if (in.flags().contiguous) {
|
||||||
|
// Use accelerate functions if possible
|
||||||
|
if (in.dtype() == float32 && out.dtype() == uint32) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vfixu32(
|
||||||
|
in.data<float>(), 1, out.data<uint32_t>(), 1, in.data_size());
|
||||||
|
return;
|
||||||
|
} else if (in.dtype() == float32 && out.dtype() == int32) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vfix32(in.data<float>(), 1, out.data<int32_t>(), 1, in.data_size());
|
||||||
|
return;
|
||||||
|
} else if (in.dtype() == uint32 && out.dtype() == float32) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vfltu32(
|
||||||
|
in.data<uint32_t>(), 1, out.data<float>(), 1, in.data_size());
|
||||||
|
return;
|
||||||
|
} else if (in.dtype() == int32 && out.dtype() == float32) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vflt32(in.data<int32_t>(), 1, out.data<float>(), 1, in.data_size());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
void Cos::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvcosf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Cosh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvcoshf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
|
||||||
|
if (a.dtype() == int32) {
|
||||||
|
binary_op<int>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x / y; },
|
||||||
|
UseDefaultBinaryOp(),
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
vDSP_vsdivi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else if (a.dtype() == float32) {
|
||||||
|
binary_op<float>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x / y; },
|
||||||
|
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||||
|
vDSP_svdiv((const float*)s, (const float*)vec, 1, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
vDSP_vsdiv((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
auto size = in.data_size();
|
||||||
|
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Expm1::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
auto size = in.data_size();
|
||||||
|
vvexpm1f(
|
||||||
|
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
assert(in.dtype() == out.dtype());
|
||||||
|
if (in.data_size() == 1 && out.dtype() == float32) {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
vDSP_vfill(in.data<float>(), out.data<float>(), 1, out.size());
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Log::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
auto size = in.data_size();
|
||||||
|
switch (base_) {
|
||||||
|
case Base::e:
|
||||||
|
vvlogf(
|
||||||
|
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
break;
|
||||||
|
case Base::two:
|
||||||
|
vvlog2f(
|
||||||
|
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
break;
|
||||||
|
case Base::ten:
|
||||||
|
vvlog10f(
|
||||||
|
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
auto size = in.data_size();
|
||||||
|
vvlog1pf(
|
||||||
|
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
|
||||||
|
if (a.dtype() == float32) {
|
||||||
|
binary_op<float>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x * y; },
|
||||||
|
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||||
|
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
if (out.dtype() == float32 && a.flags().row_contiguous &&
|
||||||
|
b.flags().row_contiguous) {
|
||||||
|
int size = a.size();
|
||||||
|
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||||
|
out.copy_shared_buffer(a);
|
||||||
|
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
|
||||||
|
out.copy_shared_buffer(b);
|
||||||
|
} else {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
}
|
||||||
|
vvpowf(out.data<float>(), b.data<float>(), a.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (reduce_type_ == Scan::Sum && out.dtype() == float32 &&
|
||||||
|
in.flags().row_contiguous && in.strides()[axis_] == 1 && !inclusive_) {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
int stride = in.shape(axis_);
|
||||||
|
int count = in.size() / stride;
|
||||||
|
const float* input = in.data<float>();
|
||||||
|
float* output = out.data<float>();
|
||||||
|
float s = 1.0;
|
||||||
|
if (!reverse_) {
|
||||||
|
for (int i = 0; i < count; i++) {
|
||||||
|
vDSP_vrsum(input - 1, 1, &s, output, 1, stride);
|
||||||
|
input += stride;
|
||||||
|
output += stride;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < count; i++) {
|
||||||
|
input += stride - 1;
|
||||||
|
output += stride - 1;
|
||||||
|
vDSP_vrsum(input + 1, -1, &s, output, -1, stride);
|
||||||
|
input++;
|
||||||
|
output++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Sin::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvsinf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Sinh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvsinhf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
auto size = in.data_size();
|
||||||
|
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Sqrt::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
if (recip_) {
|
||||||
|
vvrsqrtf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
vvsqrtf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
|
||||||
|
if (a.dtype() == float32) {
|
||||||
|
binary_op<float>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x - y; },
|
||||||
|
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||||
|
float minus_1 = -1;
|
||||||
|
vDSP_vsmsa(
|
||||||
|
(const float*)vec, 1, &minus_1, (const float*)s, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
float val = -(*s);
|
||||||
|
vDSP_vsadd((const float*)vec, 1, &val, (float*)o, 1, n);
|
||||||
|
},
|
||||||
|
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||||
|
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||||
|
});
|
||||||
|
} else if (a.dtype() == int32) {
|
||||||
|
binary_op<int>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
[](auto x, auto y) { return x - y; },
|
||||||
|
UseDefaultBinaryOp(),
|
||||||
|
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||||
|
int val = -(*s);
|
||||||
|
vDSP_vsaddi((const int*)vec, 1, &val, (int*)o, 1, n);
|
||||||
|
},
|
||||||
|
UseDefaultBinaryOp());
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Tan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvtanf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Tanh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
const auto& in = inputs[0];
|
||||||
|
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||||
|
set_unary_output_data(in, out);
|
||||||
|
int size = in.data_size();
|
||||||
|
vvtanhf(out.data<float>(), in.data<float>(), &size);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
117
mlx/backend/accelerate/quantized.cpp
Normal file
117
mlx/backend/accelerate/quantized.cpp
Normal file
@@ -0,0 +1,117 @@
|
|||||||
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include <simd/vector.h>
|
||||||
|
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
void _qmm_t_4_64(
|
||||||
|
float* result,
|
||||||
|
const float* x,
|
||||||
|
const uint32_t* w,
|
||||||
|
const float* scales,
|
||||||
|
const float* biases,
|
||||||
|
int M,
|
||||||
|
int N,
|
||||||
|
int K,
|
||||||
|
int B,
|
||||||
|
bool batched_w) {
|
||||||
|
constexpr int bits = 4;
|
||||||
|
constexpr int group_size = 64;
|
||||||
|
constexpr int bitmask = (1 << bits) - 1;
|
||||||
|
constexpr int pack_factor = 32 / bits;
|
||||||
|
constexpr int packs_in_group = group_size / pack_factor;
|
||||||
|
|
||||||
|
int w_els = N * K / pack_factor;
|
||||||
|
int g_els = w_els * pack_factor / group_size;
|
||||||
|
|
||||||
|
for (int i = 0; i < B; i++) {
|
||||||
|
for (int m = 0; m < M; m++) {
|
||||||
|
const uint32_t* w_local = w;
|
||||||
|
const float* scales_local = scales;
|
||||||
|
const float* biases_local = biases;
|
||||||
|
|
||||||
|
for (int n = 0; n < N; n++) {
|
||||||
|
const simd_float16* x_local = (simd_float16*)x;
|
||||||
|
simd_float16 sum = 0;
|
||||||
|
for (int k = 0; k < K; k += group_size) {
|
||||||
|
float scale = *scales_local++;
|
||||||
|
float bias = *biases_local++;
|
||||||
|
|
||||||
|
for (int kw = 0; kw < packs_in_group; kw += 2) {
|
||||||
|
// TODO: vectorize this properly
|
||||||
|
simd_uint16 wi;
|
||||||
|
for (int e = 0; e < 2; e++) {
|
||||||
|
uint32_t wii = *w_local++;
|
||||||
|
for (int p = 0; p < 8; p++) {
|
||||||
|
wi[e * 8 + p] = wii & bitmask;
|
||||||
|
wii >>= bits;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
simd_float16 wf = simd_float(wi);
|
||||||
|
wf *= scale;
|
||||||
|
wf += bias;
|
||||||
|
|
||||||
|
sum += (*x_local) * wf;
|
||||||
|
x_local++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
*result = simd_reduce_add(sum);
|
||||||
|
result++;
|
||||||
|
}
|
||||||
|
|
||||||
|
x += K;
|
||||||
|
}
|
||||||
|
if (batched_w) {
|
||||||
|
w += w_els;
|
||||||
|
scales += g_els;
|
||||||
|
biases += g_els;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 4);
|
||||||
|
|
||||||
|
auto& x = inputs[0];
|
||||||
|
auto& w = inputs[1];
|
||||||
|
auto& scales = inputs[2];
|
||||||
|
auto& biases = inputs[3];
|
||||||
|
|
||||||
|
bool condition =
|
||||||
|
(transpose_ && x.flags().row_contiguous && w.flags().row_contiguous &&
|
||||||
|
scales.flags().row_contiguous && biases.flags().row_contiguous &&
|
||||||
|
x.dtype() == float32 && bits_ == 4 && group_size_ == 64);
|
||||||
|
|
||||||
|
if (condition) {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
int K = x.shape(-1);
|
||||||
|
int M = x.shape(-2);
|
||||||
|
int N = out.shape(-1);
|
||||||
|
int B = x.size() / K / M;
|
||||||
|
bool batched_w = w.ndim() > 2;
|
||||||
|
_qmm_t_4_64(
|
||||||
|
out.data<float>(),
|
||||||
|
x.data<float>(),
|
||||||
|
w.data<uint32_t>(),
|
||||||
|
scales.data<float>(),
|
||||||
|
biases.data<float>(),
|
||||||
|
M,
|
||||||
|
N,
|
||||||
|
K,
|
||||||
|
B,
|
||||||
|
batched_w);
|
||||||
|
} else {
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
139
mlx/backend/accelerate/reduce.cpp
Normal file
139
mlx/backend/accelerate/reduce.cpp
Normal file
@@ -0,0 +1,139 @@
|
|||||||
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include <Accelerate/Accelerate.h>
|
||||||
|
#include <simd/vector.h>
|
||||||
|
|
||||||
|
#include "mlx/backend/common/reduce.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
template <typename T, typename VT>
|
||||||
|
struct MinReduction {
|
||||||
|
T operator()(const T& a, const T& b) {
|
||||||
|
return std::min(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT operator()(VT a, VT b) {
|
||||||
|
return simd_min(a, b);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename VT>
|
||||||
|
struct MaxReduction {
|
||||||
|
T operator()(const T& a, const T& b) {
|
||||||
|
return std::max(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT operator()(VT a, VT b) {
|
||||||
|
return simd_max(a, b);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename VT>
|
||||||
|
struct SumReduction {
|
||||||
|
T operator()(const T& a, const T& b) {
|
||||||
|
return a + b;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT operator()(VT a, VT b) {
|
||||||
|
return a + b;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename VT, int N, typename Reduction>
|
||||||
|
struct StridedReduce {
|
||||||
|
void operator()(const T* x, T* accum, int size, size_t stride) {
|
||||||
|
Reduction op;
|
||||||
|
|
||||||
|
for (int i = 0; i < size; i++) {
|
||||||
|
size_t s = stride;
|
||||||
|
T* a = accum;
|
||||||
|
while (s >= N) {
|
||||||
|
*(VT*)a = op((*(VT*)x), (*(VT*)a));
|
||||||
|
x += N;
|
||||||
|
a += N;
|
||||||
|
s -= N;
|
||||||
|
}
|
||||||
|
while (s-- > 0) {
|
||||||
|
*a = op(*a, *x);
|
||||||
|
a++;
|
||||||
|
x++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
|
||||||
|
if (in.dtype() == float32) {
|
||||||
|
if (reduce_type_ == Reduce::Sum) {
|
||||||
|
reduction_op<float, float>(
|
||||||
|
in,
|
||||||
|
out,
|
||||||
|
axes_,
|
||||||
|
0,
|
||||||
|
StridedReduce<
|
||||||
|
float,
|
||||||
|
simd_float16,
|
||||||
|
16,
|
||||||
|
SumReduction<float, simd_float16>>(),
|
||||||
|
[](const auto* x, auto* accum, int size) {
|
||||||
|
float acc;
|
||||||
|
vDSP_sve((const float*)x, 1, &acc, size);
|
||||||
|
(*accum) += acc;
|
||||||
|
},
|
||||||
|
[](auto* accum, auto x) { *accum += x; });
|
||||||
|
return;
|
||||||
|
} else if (reduce_type_ == Reduce::Max) {
|
||||||
|
reduction_op<float, float>(
|
||||||
|
in,
|
||||||
|
out,
|
||||||
|
axes_,
|
||||||
|
-std::numeric_limits<float>::infinity(),
|
||||||
|
StridedReduce<
|
||||||
|
float,
|
||||||
|
simd_float16,
|
||||||
|
16,
|
||||||
|
MaxReduction<float, simd_float16>>(),
|
||||||
|
[](const auto* x, auto* accum, int size) {
|
||||||
|
float max;
|
||||||
|
vDSP_maxv((const float*)x, 1, &max, size);
|
||||||
|
(*accum) = (*accum < max) ? max : *accum;
|
||||||
|
},
|
||||||
|
[](auto* accum, auto x) { (*accum) = (*accum < x) ? x : *accum; });
|
||||||
|
return;
|
||||||
|
} else if (reduce_type_ == Reduce::Min) {
|
||||||
|
reduction_op<float, float>(
|
||||||
|
in,
|
||||||
|
out,
|
||||||
|
axes_,
|
||||||
|
std::numeric_limits<float>::infinity(),
|
||||||
|
StridedReduce<
|
||||||
|
float,
|
||||||
|
simd_float16,
|
||||||
|
16,
|
||||||
|
MinReduction<float, simd_float16>>(),
|
||||||
|
[](const auto* x, auto* accum, int size) {
|
||||||
|
float min;
|
||||||
|
vDSP_minv((const float*)x, 1, &min, size);
|
||||||
|
(*accum) = (*accum > min) ? min : *accum;
|
||||||
|
},
|
||||||
|
[](auto* accum, auto x) { (*accum) = (*accum > x) ? x : *accum; });
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// TODO: Add integer addition and min/max using the templates above and
|
||||||
|
// simd_int16 and friends.
|
||||||
|
eval(inputs, out);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
393
mlx/backend/accelerate/softmax.cpp
Normal file
393
mlx/backend/accelerate/softmax.cpp
Normal file
@@ -0,0 +1,393 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <limits>
|
||||||
|
|
||||||
|
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
#include <arm_neon.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <simd/math.h>
|
||||||
|
#include <simd/vector.h>
|
||||||
|
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Compute exp(x) in an optimizer friendly way as follows:
|
||||||
|
*
|
||||||
|
* First change the problem to computing 2**y where y = x / ln(2).
|
||||||
|
*
|
||||||
|
* Now we will compute 2**y as 2**y1 * 2**y2 where y1 is the integer part
|
||||||
|
* `ipart` and y2 is fractional part. For the integer part we perform bit
|
||||||
|
* shifting and for the fractional part we use a polynomial approximation.
|
||||||
|
*
|
||||||
|
* The algorithm and constants of the polynomial taken from
|
||||||
|
* https://github.com/akohlmey/fastermath/blob/master/src/exp.c which took them
|
||||||
|
* from Cephes math library.
|
||||||
|
*
|
||||||
|
* Note: The implementation below is a general fast exp. There could be faster
|
||||||
|
* implementations for numbers strictly < 0.
|
||||||
|
*/
|
||||||
|
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
|
||||||
|
auto x = x_init * 1.442695; // multiply with log_2(e)
|
||||||
|
simd_float16 ipart, fpart;
|
||||||
|
simd_int16 epart;
|
||||||
|
x = simd_clamp(x, -80, 80);
|
||||||
|
ipart = simd::floor(x + 0.5);
|
||||||
|
fpart = x - ipart;
|
||||||
|
|
||||||
|
x = 1.535336188319500e-4f;
|
||||||
|
x = x * fpart + 1.339887440266574e-3f;
|
||||||
|
x = x * fpart + 9.618437357674640e-3f;
|
||||||
|
x = x * fpart + 5.550332471162809e-2f;
|
||||||
|
x = x * fpart + 2.402264791363012e-1f;
|
||||||
|
x = x * fpart + 6.931472028550421e-1f;
|
||||||
|
x = x * fpart + 1.000000000000000f;
|
||||||
|
|
||||||
|
// generate 2**ipart in the floating point representation using integer
|
||||||
|
// bitshifting
|
||||||
|
epart = (simd_int(ipart) + 127) << 23;
|
||||||
|
|
||||||
|
// Avoid supressing NaNs
|
||||||
|
simd_int16 eq = (x_init == x_init);
|
||||||
|
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
/**
|
||||||
|
* The ARM neon equivalent of the fast exp above.
|
||||||
|
*/
|
||||||
|
inline float16x8_t neon_fast_exp(float16x8_t x) {
|
||||||
|
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
|
||||||
|
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
|
||||||
|
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
|
||||||
|
|
||||||
|
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
|
||||||
|
float16x8_t fpart = vsubq_f16(x, ipart);
|
||||||
|
|
||||||
|
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
|
||||||
|
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
|
||||||
|
|
||||||
|
// generate 2**ipart in the floating point representation using integer
|
||||||
|
// bitshifting
|
||||||
|
int16x8_t epart = vcvtq_s16_f16(ipart);
|
||||||
|
epart = vaddq_s16(epart, vdupq_n_s16(15));
|
||||||
|
epart = vshlq_n_s16(epart, 10);
|
||||||
|
|
||||||
|
return vmulq_f16(vreinterpretq_f16_s16(epart), x);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Implementation of folding maximum for ARM neon. This should possibly be
|
||||||
|
* refactored out of softmax.cpp at some point.
|
||||||
|
*/
|
||||||
|
inline float16_t neon_reduce_max(float16x8_t x) {
|
||||||
|
float16x4_t y;
|
||||||
|
y = vpmax_f16(vget_low_f16(x), vget_high_f16(x));
|
||||||
|
y = vpmax_f16(y, y);
|
||||||
|
y = vpmax_f16(y, y);
|
||||||
|
return vget_lane_f16(y, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Implementation of folding sum for ARM neon. This should possibly be
|
||||||
|
* refactored out of softmax.cpp at some point.
|
||||||
|
*/
|
||||||
|
inline float16_t neon_reduce_add(float16x8_t x) {
|
||||||
|
float16x4_t y;
|
||||||
|
float16x4_t zero = vdup_n_f16(0);
|
||||||
|
y = vpadd_f16(vget_low_f16(x), vget_high_f16(x));
|
||||||
|
y = vpadd_f16(y, zero);
|
||||||
|
y = vpadd_f16(y, zero);
|
||||||
|
return vget_lane_f16(y, 0);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename VT>
|
||||||
|
struct NeonFp16SimdOps {
|
||||||
|
VT init(T a) {
|
||||||
|
return vdupq_n_f16(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT load(const T* a) {
|
||||||
|
return vld1q_f16(a);
|
||||||
|
}
|
||||||
|
|
||||||
|
void store(T* dst, VT x) {
|
||||||
|
vst1q_f16(dst, x);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT max(VT a, VT b) {
|
||||||
|
return vmaxq_f16(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT exp(VT x) {
|
||||||
|
return neon_fast_exp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT add(VT a, VT b) {
|
||||||
|
return vaddq_f16(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT sub(VT a, T b) {
|
||||||
|
return vsubq_f16(a, vdupq_n_f16(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
VT mul(VT a, VT b) {
|
||||||
|
return vmulq_f16(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT mul(VT a, T b) {
|
||||||
|
return vmulq_f16(a, vdupq_n_f16(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
T reduce_max(VT x) {
|
||||||
|
return neon_reduce_max(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
T reduce_add(VT x) {
|
||||||
|
return neon_reduce_add(x);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
|
||||||
|
template <typename T, typename VT>
|
||||||
|
struct AccelerateSimdOps {
|
||||||
|
VT init(T a) {
|
||||||
|
return a;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT load(const T* a) {
|
||||||
|
return *(VT*)a;
|
||||||
|
}
|
||||||
|
|
||||||
|
void store(T* dst, VT x) {
|
||||||
|
*(VT*)dst = x;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT max(VT a, VT b) {
|
||||||
|
return simd_max(a, b);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT exp(VT x) {
|
||||||
|
return simd_fast_exp(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
VT add(VT a, VT b) {
|
||||||
|
return a + b;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT sub(VT a, T b) {
|
||||||
|
return a - b;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT mul(VT a, VT b) {
|
||||||
|
return a * b;
|
||||||
|
}
|
||||||
|
|
||||||
|
VT mul(VT a, T b) {
|
||||||
|
return a * b;
|
||||||
|
}
|
||||||
|
|
||||||
|
T reduce_max(VT x) {
|
||||||
|
return simd_reduce_max(x);
|
||||||
|
}
|
||||||
|
|
||||||
|
T reduce_add(VT x) {
|
||||||
|
return simd_reduce_add(x);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||||
|
void softmax(const array& in, array& out) {
|
||||||
|
Ops ops;
|
||||||
|
|
||||||
|
const T* in_ptr = in.data<T>();
|
||||||
|
T* out_ptr = out.data<T>();
|
||||||
|
int M = in.shape().back();
|
||||||
|
int L = in.data_size() / M;
|
||||||
|
const T* current_in_ptr;
|
||||||
|
T* current_out_ptr;
|
||||||
|
|
||||||
|
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += M) {
|
||||||
|
// Find the maximum
|
||||||
|
current_in_ptr = in_ptr;
|
||||||
|
VT vmaximum = ops.init(-std::numeric_limits<float>::infinity());
|
||||||
|
size_t s = M;
|
||||||
|
while (s >= N) {
|
||||||
|
VT vals;
|
||||||
|
if constexpr (std::is_same<T, AccT>::value) {
|
||||||
|
vals = ops.load(current_in_ptr);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < N; ++i) {
|
||||||
|
vals[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
vmaximum = ops.max(vals, vmaximum);
|
||||||
|
current_in_ptr += N;
|
||||||
|
s -= N;
|
||||||
|
}
|
||||||
|
AccT maximum = ops.reduce_max(vmaximum);
|
||||||
|
while (s-- > 0) {
|
||||||
|
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
|
||||||
|
current_in_ptr++;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Compute the normalizer and the exponentials
|
||||||
|
VT vnormalizer = ops.init(0.0);
|
||||||
|
current_out_ptr = out_ptr;
|
||||||
|
current_in_ptr = in_ptr;
|
||||||
|
s = M;
|
||||||
|
while (s >= N) {
|
||||||
|
VT vexp;
|
||||||
|
if constexpr (std::is_same<T, AccT>::value) {
|
||||||
|
vexp = ops.load(current_in_ptr);
|
||||||
|
} else {
|
||||||
|
for (int i = 0; i < N; ++i) {
|
||||||
|
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
vexp = ops.exp(ops.sub(vexp, maximum));
|
||||||
|
if constexpr (std::is_same<T, AccT>::value) {
|
||||||
|
ops.store(current_out_ptr, vexp);
|
||||||
|
}
|
||||||
|
vnormalizer = ops.add(vnormalizer, vexp);
|
||||||
|
current_in_ptr += N;
|
||||||
|
current_out_ptr += N;
|
||||||
|
s -= N;
|
||||||
|
}
|
||||||
|
AccT normalizer = ops.reduce_add(vnormalizer);
|
||||||
|
while (s-- > 0) {
|
||||||
|
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||||
|
if (std::is_same<T, AccT>::value) {
|
||||||
|
*current_out_ptr = _exp;
|
||||||
|
}
|
||||||
|
normalizer += _exp;
|
||||||
|
current_in_ptr++;
|
||||||
|
current_out_ptr++;
|
||||||
|
}
|
||||||
|
normalizer = 1 / normalizer;
|
||||||
|
|
||||||
|
// Normalize
|
||||||
|
current_out_ptr = out_ptr;
|
||||||
|
current_in_ptr = in_ptr;
|
||||||
|
s = M;
|
||||||
|
while (s >= N) {
|
||||||
|
if constexpr (std::is_same<T, AccT>::value) {
|
||||||
|
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||||
|
} else {
|
||||||
|
VT vexp;
|
||||||
|
for (int i = 0; i < N; ++i) {
|
||||||
|
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||||
|
}
|
||||||
|
vexp = ops.mul(ops.exp(ops.sub(vexp, maximum)), normalizer);
|
||||||
|
for (int i = 0; i < N; ++i) {
|
||||||
|
current_out_ptr[i] = vexp[i];
|
||||||
|
}
|
||||||
|
current_in_ptr += N;
|
||||||
|
}
|
||||||
|
current_out_ptr += N;
|
||||||
|
s -= N;
|
||||||
|
}
|
||||||
|
while (s-- > 0) {
|
||||||
|
if constexpr (std::is_same<T, AccT>::value) {
|
||||||
|
*current_out_ptr *= normalizer;
|
||||||
|
} else {
|
||||||
|
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||||
|
*current_out_ptr = static_cast<T>(_exp * normalizer);
|
||||||
|
current_in_ptr++;
|
||||||
|
}
|
||||||
|
current_out_ptr++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
|
||||||
|
// Make sure that the last dimension is contiguous
|
||||||
|
auto check_input = [](array x) {
|
||||||
|
bool no_copy = x.strides()[x.ndim() - 1] == 1;
|
||||||
|
if (x.ndim() > 1) {
|
||||||
|
auto s = x.strides()[x.ndim() - 2];
|
||||||
|
no_copy &= (s == 0 || s == x.shape().back());
|
||||||
|
}
|
||||||
|
if (no_copy) {
|
||||||
|
return x;
|
||||||
|
} else {
|
||||||
|
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||||
|
copy(x, x_copy, CopyType::General);
|
||||||
|
return x_copy;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
array in = check_input(std::move(inputs[0]));
|
||||||
|
out.set_data(
|
||||||
|
allocator::malloc_or_wait(in.data_size() * in.itemsize()),
|
||||||
|
in.data_size(),
|
||||||
|
in.strides(),
|
||||||
|
in.flags());
|
||||||
|
|
||||||
|
switch (in.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
case uint8:
|
||||||
|
case uint16:
|
||||||
|
case uint32:
|
||||||
|
case uint64:
|
||||||
|
case int8:
|
||||||
|
case int16:
|
||||||
|
case int32:
|
||||||
|
case int64:
|
||||||
|
throw std::invalid_argument(
|
||||||
|
"Softmax is defined only for floating point types");
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
softmax<
|
||||||
|
float,
|
||||||
|
float,
|
||||||
|
simd_float16,
|
||||||
|
AccelerateSimdOps<float, simd_float16>,
|
||||||
|
16>(in, out);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
if (precise_) {
|
||||||
|
softmax<
|
||||||
|
float16_t,
|
||||||
|
float,
|
||||||
|
simd_float16,
|
||||||
|
AccelerateSimdOps<float, simd_float16>,
|
||||||
|
16>(in, out);
|
||||||
|
} else {
|
||||||
|
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
softmax<
|
||||||
|
float16_t,
|
||||||
|
float16_t,
|
||||||
|
float16x8_t,
|
||||||
|
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||||
|
8>(in, out);
|
||||||
|
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
eval(inputs, out); // Redirect to common backend for consistency
|
||||||
|
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
eval(inputs, out);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
eval(inputs, out);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
28
mlx/backend/accelerate/utils.h
Normal file
28
mlx/backend/accelerate/utils.h
Normal file
@@ -0,0 +1,28 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <Accelerate/Accelerate.h>
|
||||||
|
#include "mlx/dtype.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
BNNSDataType to_bnns_dtype(Dtype mlx_dtype) {
|
||||||
|
uint32_t size_bits = size_of(mlx_dtype) * 8;
|
||||||
|
switch (kindof(mlx_dtype)) {
|
||||||
|
case Dtype::Kind::b:
|
||||||
|
return BNNSDataTypeBoolean;
|
||||||
|
case Dtype::Kind::u:
|
||||||
|
return BNNSDataType(BNNSDataTypeUIntBit | size_bits);
|
||||||
|
case Dtype::Kind::i:
|
||||||
|
return BNNSDataType(BNNSDataTypeIntBit | size_bits);
|
||||||
|
case Dtype::Kind::f:
|
||||||
|
return BNNSDataType(BNNSDataTypeFloatBit | size_bits);
|
||||||
|
case Dtype::Kind::V:
|
||||||
|
return BNNSDataTypeBFloat16;
|
||||||
|
case Dtype::Kind::c:
|
||||||
|
throw std::invalid_argument("BNNS does not support complex types");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
@@ -1,9 +1,71 @@
|
|||||||
|
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||||
|
set(COMPILER ${CMAKE_C_COMPILER})
|
||||||
|
set(CLANG TRUE)
|
||||||
|
else()
|
||||||
|
set(COMPILER ${CMAKE_CXX_COMPILER})
|
||||||
|
endif()
|
||||||
|
|
||||||
|
if(MSVC)
|
||||||
|
set(SHELL_EXT ps1)
|
||||||
|
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
|
||||||
|
else()
|
||||||
|
set(SHELL_EXT sh)
|
||||||
|
set(SHELL_CMD /bin/bash)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
add_custom_command(
|
||||||
|
OUTPUT compiled_preamble.cpp
|
||||||
|
COMMAND
|
||||||
|
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
|
||||||
|
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
|
||||||
|
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
|
||||||
|
DEPENDS make_compiled_preamble.${SHELL_EXT}
|
||||||
|
compiled_preamble.h
|
||||||
|
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
|
||||||
|
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
|
||||||
|
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
|
||||||
|
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
|
||||||
|
ops.h)
|
||||||
|
|
||||||
|
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
|
||||||
|
|
||||||
|
add_dependencies(mlx cpu_compiled_preamble)
|
||||||
|
|
||||||
target_sources(
|
target_sources(
|
||||||
mlx
|
mlx
|
||||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/broadcasting.cpp
|
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)
|
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||||
|
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
|
||||||
|
|
||||||
|
if(IOS)
|
||||||
|
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
|
||||||
|
else()
|
||||||
|
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
|
||||||
|
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
|
||||||
|
endif()
|
||||||
|
|||||||
74
mlx/backend/common/arange.h
Normal file
74
mlx/backend/common/arange.h
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "mlx/allocator.h"
|
||||||
|
#include "mlx/array.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
void arange(T start, T next, array& out, size_t size) {
|
||||||
|
auto ptr = out.data<T>();
|
||||||
|
auto step_size = next - start;
|
||||||
|
for (int i = 0; i < size; ++i) {
|
||||||
|
ptr[i] = start;
|
||||||
|
start += step_size;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void arange(
|
||||||
|
const std::vector<array>& inputs,
|
||||||
|
array& out,
|
||||||
|
double start,
|
||||||
|
double step) {
|
||||||
|
assert(inputs.size() == 0);
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
switch (out.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
throw std::runtime_error("Bool type unsupported for arange.");
|
||||||
|
break;
|
||||||
|
case uint8:
|
||||||
|
arange<uint8_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
arange<uint16_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
arange<uint32_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
arange<uint64_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
arange<int8_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
arange<int16_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
arange<int32_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
arange<int64_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
arange<float16_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
arange<float>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
arange<bfloat16_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
arange<complex64_t>(start, start + step, out, out.size());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
112
mlx/backend/common/arg_reduce.cpp
Normal file
112
mlx/backend/common/arg_reduce.cpp
Normal file
@@ -0,0 +1,112 @@
|
|||||||
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
#include "utils.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
template <typename InT, typename OpT>
|
||||||
|
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||||
|
auto axis_size = in.shape()[axis];
|
||||||
|
auto axis_stride = in.strides()[axis];
|
||||||
|
Strides strides = in.strides();
|
||||||
|
Shape shape = in.shape();
|
||||||
|
strides.erase(strides.begin() + axis);
|
||||||
|
shape.erase(shape.begin() + axis);
|
||||||
|
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||||
|
auto loc = elem_to_loc(i, shape, strides);
|
||||||
|
auto in_ptr = in.data<InT>() + loc;
|
||||||
|
uint32_t ind_v = 0;
|
||||||
|
InT v = (*in_ptr);
|
||||||
|
for (uint32_t j = 0; j < axis_size; ++j, in_ptr += axis_stride) {
|
||||||
|
op(j, (*in_ptr), &ind_v, &v);
|
||||||
|
}
|
||||||
|
out.data<uint32_t>()[i] = ind_v;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename InT>
|
||||||
|
void arg_reduce_dispatch(
|
||||||
|
const array& in,
|
||||||
|
array& out,
|
||||||
|
ArgReduce::ReduceType rtype,
|
||||||
|
int axis) {
|
||||||
|
switch (rtype) {
|
||||||
|
case ArgReduce::ArgMin: {
|
||||||
|
auto op = [](auto ind_x, auto x, auto ind_y, auto y) {
|
||||||
|
if (x < (*y)) {
|
||||||
|
(*y) = x;
|
||||||
|
(*ind_y) = ind_x;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
arg_reduce<InT>(in, out, op, axis);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
case ArgReduce::ArgMax: {
|
||||||
|
auto op = [](auto ind_x, auto x, auto ind_y, auto y) {
|
||||||
|
if (x > (*y)) {
|
||||||
|
(*y) = x;
|
||||||
|
(*ind_y) = ind_x;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
arg_reduce<InT>(in, out, op, axis);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void ArgReduce::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 1);
|
||||||
|
auto& in = inputs[0];
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
|
switch (in.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
arg_reduce_dispatch<bool>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case uint8:
|
||||||
|
arg_reduce_dispatch<uint8_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
arg_reduce_dispatch<uint16_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
arg_reduce_dispatch<uint32_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
arg_reduce_dispatch<uint64_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
arg_reduce_dispatch<int8_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
arg_reduce_dispatch<int16_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
arg_reduce_dispatch<int32_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
arg_reduce_dispatch<int64_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
arg_reduce_dispatch<float16_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
arg_reduce_dispatch<float>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
arg_reduce_dispatch<bfloat16_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
arg_reduce_dispatch<complex64_t>(in, out, reduce_type_, axis_);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
331
mlx/backend/common/binary.cpp
Normal file
331
mlx/backend/common/binary.cpp
Normal file
@@ -0,0 +1,331 @@
|
|||||||
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cmath>
|
||||||
|
#include <sstream>
|
||||||
|
|
||||||
|
#include "mlx/allocator.h"
|
||||||
|
#include "mlx/backend/common/binary.h"
|
||||||
|
#include "mlx/backend/common/binary_two.h"
|
||||||
|
#include "mlx/backend/common/ops.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
#include "mlx/utils.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
|
template <typename T, typename U, typename Op>
|
||||||
|
void comparison_op(const array& a, const array& b, array& out, Op op) {
|
||||||
|
DefaultScalarVector<T, U, Op> opsv(op);
|
||||||
|
DefaultVectorScalar<T, U, Op> opvs(op);
|
||||||
|
DefaultVectorVector<T, U, Op> opvv(op);
|
||||||
|
binary_op<T, U>(a, b, out, op, opsv, opvs, opvv);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename Op>
|
||||||
|
void comparison_op(const array& a, const array& b, array& out, Op op) {
|
||||||
|
switch (a.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
comparison_op<bool, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint8:
|
||||||
|
comparison_op<uint8_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
comparison_op<uint16_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
comparison_op<uint32_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
comparison_op<uint64_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
comparison_op<int8_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
comparison_op<int16_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
comparison_op<int32_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
comparison_op<int64_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
comparison_op<float16_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
comparison_op<float, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
comparison_op<bfloat16_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
comparison_op<complex64_t, bool>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
|
void Add::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Add());
|
||||||
|
}
|
||||||
|
|
||||||
|
void DivMod::eval(
|
||||||
|
const std::vector<array>& inputs,
|
||||||
|
std::vector<array>& outputs) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
auto integral_op = [](auto x, auto y) {
|
||||||
|
return std::make_pair(x / y, x % y);
|
||||||
|
};
|
||||||
|
auto float_op = [](auto x, auto y) {
|
||||||
|
return std::make_pair(std::trunc(x / y), std::fmod(x, y));
|
||||||
|
};
|
||||||
|
switch (outputs[0].dtype()) {
|
||||||
|
case bool_:
|
||||||
|
binary_op<bool>(a, b, outputs, integral_op);
|
||||||
|
case uint8:
|
||||||
|
binary_op<uint8_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
binary_op<uint16_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
binary_op<uint32_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
binary_op<uint64_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
binary_op<int8_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
binary_op<int16_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
binary_op<int32_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
binary_op<int64_t>(a, b, outputs, integral_op);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
binary_op<float16_t>(a, b, outputs, float_op);
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
binary_op<float>(a, b, outputs, float_op);
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
binary_op<bfloat16_t>(a, b, outputs, float_op);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
// Should never get here
|
||||||
|
throw std::runtime_error("[DivMod] Complex type not supported");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Divide::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Divide());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Remainder::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Remainder());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Equal::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
if (equal_nan_) {
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
|
||||||
|
} else {
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::Equal());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Greater::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::Greater());
|
||||||
|
}
|
||||||
|
|
||||||
|
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Less::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::Less());
|
||||||
|
}
|
||||||
|
|
||||||
|
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
|
||||||
|
}
|
||||||
|
|
||||||
|
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
if (out.dtype() == float32) {
|
||||||
|
binary_op<float>(a, b, out, detail::LogAddExp());
|
||||||
|
} else if (out.dtype() == float16) {
|
||||||
|
binary_op<float16_t>(a, b, out, detail::LogAddExp());
|
||||||
|
} else if (out.dtype() == bfloat16) {
|
||||||
|
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
|
||||||
|
} else if (issubdtype(out.dtype(), inexact)) {
|
||||||
|
std::ostringstream err;
|
||||||
|
err << "[logaddexp] Does not support " << out.dtype();
|
||||||
|
throw std::invalid_argument(err.str());
|
||||||
|
} else {
|
||||||
|
throw std::invalid_argument(
|
||||||
|
"[logaddexp] Cannot compute logaddexp for arrays with"
|
||||||
|
" non floating point type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||||
|
auto& in1 = inputs[0];
|
||||||
|
auto& in2 = inputs[1];
|
||||||
|
binary(in1, in2, out, detail::LogicalAnd());
|
||||||
|
}
|
||||||
|
|
||||||
|
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||||
|
auto& in1 = inputs[0];
|
||||||
|
auto& in2 = inputs[1];
|
||||||
|
binary(in1, in2, out, detail::LogicalOr());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Maximum::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Maximum());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Minimum::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Minimum());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Multiply::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Multiply());
|
||||||
|
}
|
||||||
|
|
||||||
|
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Power::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Power());
|
||||||
|
}
|
||||||
|
|
||||||
|
void Subtract::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
binary(a, b, out, detail::Subtract());
|
||||||
|
}
|
||||||
|
|
||||||
|
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
auto& a = inputs[0];
|
||||||
|
auto& b = inputs[1];
|
||||||
|
auto dispatch_type = [&a, &b, &out](auto op) {
|
||||||
|
switch (out.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
binary_op<bool>(a, b, out, op);
|
||||||
|
case uint8:
|
||||||
|
binary_op<uint8_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
binary_op<uint16_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
binary_op<uint32_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
binary_op<uint64_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
binary_op<int8_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
binary_op<int16_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
binary_op<int32_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
binary_op<int64_t>(a, b, out, op);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
throw std::runtime_error(
|
||||||
|
"[BitwiseBinary::eval_cpu] Type not supported");
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
switch (op_) {
|
||||||
|
case BitwiseBinary::And:
|
||||||
|
dispatch_type(detail::BitwiseAnd());
|
||||||
|
break;
|
||||||
|
case BitwiseBinary::Or:
|
||||||
|
dispatch_type(detail::BitwiseOr());
|
||||||
|
break;
|
||||||
|
case BitwiseBinary::Xor:
|
||||||
|
dispatch_type(detail::BitwiseXor());
|
||||||
|
break;
|
||||||
|
case BitwiseBinary::LeftShift:
|
||||||
|
dispatch_type(detail::LeftShift());
|
||||||
|
break;
|
||||||
|
case BitwiseBinary::RightShift:
|
||||||
|
dispatch_type(detail::RightShift());
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void ArcTan2::eval(const std::vector<array>& inputs, array& out) {
|
||||||
|
assert(inputs.size() == 2);
|
||||||
|
const auto& a = inputs[0];
|
||||||
|
const auto& b = inputs[1];
|
||||||
|
if (out.dtype() == float32) {
|
||||||
|
binary_op<float>(a, b, out, detail::ArcTan2());
|
||||||
|
} else if (out.dtype() == float16) {
|
||||||
|
binary_op<float16_t>(a, b, out, detail::ArcTan2());
|
||||||
|
} else if (out.dtype() == bfloat16) {
|
||||||
|
binary_op<bfloat16_t>(a, b, out, detail::ArcTan2());
|
||||||
|
} else if (issubdtype(out.dtype(), inexact)) {
|
||||||
|
std::ostringstream err;
|
||||||
|
err << "[arctan2] Does not support " << out.dtype();
|
||||||
|
throw std::invalid_argument(err.str());
|
||||||
|
} else {
|
||||||
|
throw std::invalid_argument(
|
||||||
|
"[arctan2] Cannot compute inverse tangent for arrays"
|
||||||
|
" with non floating point type.");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
@@ -1,6 +1,7 @@
|
|||||||
// Copyright © 2023 Apple Inc.
|
// Copyright © 2023 Apple Inc.
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
#include <cassert>
|
||||||
|
|
||||||
#include "mlx/allocator.h"
|
#include "mlx/allocator.h"
|
||||||
#include "mlx/array.h"
|
#include "mlx/array.h"
|
||||||
@@ -8,6 +9,8 @@
|
|||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
|
namespace {
|
||||||
|
|
||||||
enum class BinaryOpType {
|
enum class BinaryOpType {
|
||||||
ScalarScalar,
|
ScalarScalar,
|
||||||
ScalarVector,
|
ScalarVector,
|
||||||
@@ -16,7 +19,7 @@ enum class BinaryOpType {
|
|||||||
General,
|
General,
|
||||||
};
|
};
|
||||||
|
|
||||||
inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
||||||
BinaryOpType bopt;
|
BinaryOpType bopt;
|
||||||
if (a.data_size() == 1 && b.data_size() == 1) {
|
if (a.data_size() == 1 && b.data_size() == 1) {
|
||||||
bopt = BinaryOpType::ScalarScalar;
|
bopt = BinaryOpType::ScalarScalar;
|
||||||
@@ -34,24 +37,29 @@ inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
|||||||
return bopt;
|
return bopt;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void set_binary_op_output_data(
|
void set_binary_op_output_data(
|
||||||
const array& a,
|
const array& a,
|
||||||
const array& b,
|
const array& b,
|
||||||
array& out,
|
array& out,
|
||||||
BinaryOpType bopt,
|
BinaryOpType bopt,
|
||||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
bool donate_with_move = false) {
|
||||||
bool b_donatable = is_donatable(b, out);
|
bool b_donatable = is_donatable(b, out);
|
||||||
bool a_donatable = is_donatable(a, out);
|
bool a_donatable = is_donatable(a, out);
|
||||||
switch (bopt) {
|
switch (bopt) {
|
||||||
case BinaryOpType::ScalarScalar:
|
case BinaryOpType::ScalarScalar:
|
||||||
out.set_data(mallocfn(out.itemsize()), 1, a.strides(), a.flags());
|
out.set_data(
|
||||||
|
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
|
||||||
break;
|
break;
|
||||||
case BinaryOpType::ScalarVector:
|
case BinaryOpType::ScalarVector:
|
||||||
if (b_donatable) {
|
if (b_donatable) {
|
||||||
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(b);
|
||||||
|
} else {
|
||||||
out.copy_shared_buffer(b);
|
out.copy_shared_buffer(b);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
out.set_data(
|
out.set_data(
|
||||||
mallocfn(b.data_size() * out.itemsize()),
|
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
|
||||||
b.data_size(),
|
b.data_size(),
|
||||||
b.strides(),
|
b.strides(),
|
||||||
b.flags());
|
b.flags());
|
||||||
@@ -59,10 +67,14 @@ inline void set_binary_op_output_data(
|
|||||||
break;
|
break;
|
||||||
case BinaryOpType::VectorScalar:
|
case BinaryOpType::VectorScalar:
|
||||||
if (a_donatable) {
|
if (a_donatable) {
|
||||||
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(a);
|
||||||
|
} else {
|
||||||
out.copy_shared_buffer(a);
|
out.copy_shared_buffer(a);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
out.set_data(
|
out.set_data(
|
||||||
mallocfn(a.data_size() * out.itemsize()),
|
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
|
||||||
a.data_size(),
|
a.data_size(),
|
||||||
a.strides(),
|
a.strides(),
|
||||||
a.flags());
|
a.flags());
|
||||||
@@ -70,12 +82,20 @@ inline void set_binary_op_output_data(
|
|||||||
break;
|
break;
|
||||||
case BinaryOpType::VectorVector:
|
case BinaryOpType::VectorVector:
|
||||||
if (a_donatable) {
|
if (a_donatable) {
|
||||||
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(a);
|
||||||
|
} else {
|
||||||
out.copy_shared_buffer(a);
|
out.copy_shared_buffer(a);
|
||||||
|
}
|
||||||
} else if (b_donatable) {
|
} else if (b_donatable) {
|
||||||
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(b);
|
||||||
|
} else {
|
||||||
out.copy_shared_buffer(b);
|
out.copy_shared_buffer(b);
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
out.set_data(
|
out.set_data(
|
||||||
mallocfn(a.data_size() * out.itemsize()),
|
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
|
||||||
a.data_size(),
|
a.data_size(),
|
||||||
a.strides(),
|
a.strides(),
|
||||||
a.flags());
|
a.flags());
|
||||||
@@ -83,15 +103,428 @@ inline void set_binary_op_output_data(
|
|||||||
break;
|
break;
|
||||||
case BinaryOpType::General:
|
case BinaryOpType::General:
|
||||||
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
|
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
|
||||||
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(a);
|
||||||
|
} else {
|
||||||
out.copy_shared_buffer(a);
|
out.copy_shared_buffer(a);
|
||||||
|
}
|
||||||
} else if (
|
} else if (
|
||||||
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
|
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
|
||||||
out.copy_shared_buffer(b);
|
if (donate_with_move) {
|
||||||
|
out.move_shared_buffer(b);
|
||||||
} else {
|
} else {
|
||||||
out.set_data(mallocfn(out.nbytes()));
|
out.copy_shared_buffer(b);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct UseDefaultBinaryOp {};
|
||||||
|
|
||||||
|
template <typename T, typename U, typename Op>
|
||||||
|
struct DefaultVectorScalar {
|
||||||
|
Op op;
|
||||||
|
|
||||||
|
DefaultVectorScalar(Op op_) : op(op_) {}
|
||||||
|
|
||||||
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||||
|
T scalar = *b;
|
||||||
|
while (size-- > 0) {
|
||||||
|
*dst = op(*a, scalar);
|
||||||
|
dst++;
|
||||||
|
a++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename U, typename Op>
|
||||||
|
struct DefaultScalarVector {
|
||||||
|
Op op;
|
||||||
|
|
||||||
|
DefaultScalarVector(Op op_) : op(op_) {}
|
||||||
|
|
||||||
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||||
|
T scalar = *a;
|
||||||
|
while (size-- > 0) {
|
||||||
|
*dst = op(scalar, *b);
|
||||||
|
dst++;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename U, typename Op>
|
||||||
|
struct DefaultVectorVector {
|
||||||
|
Op op;
|
||||||
|
|
||||||
|
DefaultVectorVector(Op op_) : op(op_) {}
|
||||||
|
|
||||||
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||||
|
while (size-- > 0) {
|
||||||
|
*dst = op(*a, *b);
|
||||||
|
dst++;
|
||||||
|
a++;
|
||||||
|
b++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T, typename U, typename Op, int D, bool Strided>
|
||||||
|
void binary_op_dims(
|
||||||
|
const T* a,
|
||||||
|
const T* b,
|
||||||
|
U* out,
|
||||||
|
Op op,
|
||||||
|
const Shape& shape,
|
||||||
|
const Strides& a_strides,
|
||||||
|
const Strides& b_strides,
|
||||||
|
const Strides& out_strides,
|
||||||
|
int axis) {
|
||||||
|
auto stride_a = a_strides[axis];
|
||||||
|
auto stride_b = b_strides[axis];
|
||||||
|
auto stride_out = out_strides[axis];
|
||||||
|
auto N = shape[axis];
|
||||||
|
|
||||||
|
for (int i = 0; i < N; i++) {
|
||||||
|
if constexpr (D > 1) {
|
||||||
|
binary_op_dims<T, U, Op, D - 1, Strided>(
|
||||||
|
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
|
||||||
|
} else {
|
||||||
|
if constexpr (Strided) {
|
||||||
|
op(a, b, out, stride_out);
|
||||||
|
} else {
|
||||||
|
*out = op(*a, *b);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
out += stride_out;
|
||||||
|
a += stride_a;
|
||||||
|
b += stride_b;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename U, bool Strided, typename Op>
|
||||||
|
void binary_op_dispatch_dims(
|
||||||
|
const array& a,
|
||||||
|
const array& b,
|
||||||
|
array& out,
|
||||||
|
Op op,
|
||||||
|
int dim,
|
||||||
|
const Shape& shape,
|
||||||
|
const Strides& a_strides,
|
||||||
|
const Strides& b_strides,
|
||||||
|
const Strides& out_strides) {
|
||||||
|
const T* a_ptr = a.data<T>();
|
||||||
|
const T* b_ptr = b.data<T>();
|
||||||
|
U* out_ptr = out.data<U>();
|
||||||
|
switch (dim) {
|
||||||
|
case 1:
|
||||||
|
binary_op_dims<T, U, Op, 1, Strided>(
|
||||||
|
a_ptr,
|
||||||
|
b_ptr,
|
||||||
|
out_ptr,
|
||||||
|
op,
|
||||||
|
shape,
|
||||||
|
a_strides,
|
||||||
|
b_strides,
|
||||||
|
out_strides,
|
||||||
|
0);
|
||||||
|
return;
|
||||||
|
case 2:
|
||||||
|
binary_op_dims<T, U, Op, 2, Strided>(
|
||||||
|
a_ptr,
|
||||||
|
b_ptr,
|
||||||
|
out_ptr,
|
||||||
|
op,
|
||||||
|
shape,
|
||||||
|
a_strides,
|
||||||
|
b_strides,
|
||||||
|
out_strides,
|
||||||
|
0);
|
||||||
|
return;
|
||||||
|
case 3:
|
||||||
|
binary_op_dims<T, U, Op, 3, Strided>(
|
||||||
|
a_ptr,
|
||||||
|
b_ptr,
|
||||||
|
out_ptr,
|
||||||
|
op,
|
||||||
|
shape,
|
||||||
|
a_strides,
|
||||||
|
b_strides,
|
||||||
|
out_strides,
|
||||||
|
0);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
||||||
|
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
||||||
|
auto stride = out_strides[dim - 4];
|
||||||
|
for (int64_t elem = 0; elem < a.size(); elem += stride) {
|
||||||
|
binary_op_dims<T, U, Op, 3, Strided>(
|
||||||
|
a_ptr + a_it.loc,
|
||||||
|
b_ptr + b_it.loc,
|
||||||
|
out_ptr + elem,
|
||||||
|
op,
|
||||||
|
shape,
|
||||||
|
a_strides,
|
||||||
|
b_strides,
|
||||||
|
out_strides,
|
||||||
|
dim - 3);
|
||||||
|
a_it.step();
|
||||||
|
b_it.step();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <
|
||||||
|
typename T,
|
||||||
|
typename U,
|
||||||
|
typename Op,
|
||||||
|
typename OpSV,
|
||||||
|
typename OpVS,
|
||||||
|
typename OpVV>
|
||||||
|
void binary_op(
|
||||||
|
const array& a,
|
||||||
|
const array& b,
|
||||||
|
array& out,
|
||||||
|
Op op,
|
||||||
|
OpSV opsv,
|
||||||
|
OpVS opvs,
|
||||||
|
OpVV opvv) {
|
||||||
|
auto bopt = get_binary_op_type(a, b);
|
||||||
|
set_binary_op_output_data(a, b, out, bopt);
|
||||||
|
|
||||||
|
// The full computation is scalar scalar so call the base op once
|
||||||
|
if (bopt == BinaryOpType::ScalarScalar) {
|
||||||
|
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The full computation is scalar vector so delegate to the op
|
||||||
|
if (bopt == BinaryOpType::ScalarVector) {
|
||||||
|
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The full computation is vector scalar so delegate to the op
|
||||||
|
if (bopt == BinaryOpType::VectorScalar) {
|
||||||
|
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The full computation is vector vector so delegate to the op
|
||||||
|
if (bopt == BinaryOpType::VectorVector) {
|
||||||
|
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
// General computation so let's try to optimize
|
||||||
|
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||||
|
a.shape(), {a.strides(), b.strides(), out.strides()});
|
||||||
|
const auto& a_strides = new_strides[0];
|
||||||
|
const auto& b_strides = new_strides[1];
|
||||||
|
const auto& strides = new_strides[2];
|
||||||
|
|
||||||
|
// Get the left-most dim such that the array is row contiguous after
|
||||||
|
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
||||||
|
int d = arr_strides.size() - 1;
|
||||||
|
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
||||||
|
}
|
||||||
|
return d + 1;
|
||||||
|
};
|
||||||
|
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
||||||
|
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
||||||
|
|
||||||
|
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||||
|
auto leftmost_s_dim = [](const auto& arr_strides) {
|
||||||
|
int d = arr_strides.size() - 1;
|
||||||
|
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
||||||
|
}
|
||||||
|
return d + 1;
|
||||||
|
};
|
||||||
|
auto a_s_dim = leftmost_s_dim(a_strides);
|
||||||
|
auto b_s_dim = leftmost_s_dim(b_strides);
|
||||||
|
|
||||||
|
auto ndim = new_shape.size();
|
||||||
|
|
||||||
|
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||||
|
int dim = ndim;
|
||||||
|
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||||
|
bopt = BinaryOpType::VectorVector;
|
||||||
|
dim = d;
|
||||||
|
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||||
|
// contiguous
|
||||||
|
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||||
|
bopt = BinaryOpType::VectorScalar;
|
||||||
|
dim = d;
|
||||||
|
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||||
|
// contiguous
|
||||||
|
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||||
|
bopt = BinaryOpType::ScalarVector;
|
||||||
|
dim = d;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
||||||
|
// contiguous methods above. Except for the case that the flags do not
|
||||||
|
// correspond to the underlying contiguity.
|
||||||
|
if (dim == 0 || strides[dim - 1] < 16) {
|
||||||
|
bopt = BinaryOpType::General;
|
||||||
|
dim = ndim;
|
||||||
|
}
|
||||||
|
|
||||||
|
switch (bopt) {
|
||||||
|
case BinaryOpType::VectorVector:
|
||||||
|
binary_op_dispatch_dims<T, U, true>(
|
||||||
|
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
|
||||||
|
break;
|
||||||
|
case BinaryOpType::VectorScalar:
|
||||||
|
binary_op_dispatch_dims<T, U, true>(
|
||||||
|
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
|
||||||
|
break;
|
||||||
|
case BinaryOpType::ScalarVector:
|
||||||
|
binary_op_dispatch_dims<T, U, true>(
|
||||||
|
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
|
||||||
|
break;
|
||||||
|
default:
|
||||||
|
binary_op_dispatch_dims<T, U, false>(
|
||||||
|
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
|
||||||
|
void binary_op(
|
||||||
|
const array& a,
|
||||||
|
const array& b,
|
||||||
|
array& out,
|
||||||
|
Op op,
|
||||||
|
OpSV opsv,
|
||||||
|
OpVS opvs,
|
||||||
|
OpVV opvv) {
|
||||||
|
// TODO: The following mess of constexpr evaluations can probably be achieved
|
||||||
|
// with template specializations and overloading. Would it be simpler?
|
||||||
|
|
||||||
|
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
|
||||||
|
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||||
|
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||||
|
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
|
||||||
|
binary_op<T, T>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
op,
|
||||||
|
DefaultScalarVector<T, T, Op>(op),
|
||||||
|
DefaultVectorScalar<T, T, Op>(op),
|
||||||
|
DefaultVectorVector<T, T, Op>(op));
|
||||||
|
} else {
|
||||||
|
// opsv and opvs were UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
op,
|
||||||
|
DefaultScalarVector<T, T, Op>(op),
|
||||||
|
DefaultVectorScalar<T, T, Op>(op),
|
||||||
|
opvv);
|
||||||
|
}
|
||||||
|
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||||
|
value) {
|
||||||
|
// opsv and opvv were UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
op,
|
||||||
|
DefaultScalarVector<T, T, Op>(op),
|
||||||
|
opvs,
|
||||||
|
DefaultVectorVector<T, T, Op>(op));
|
||||||
|
} else {
|
||||||
|
// opsv was UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
|
||||||
|
}
|
||||||
|
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
|
||||||
|
value) {
|
||||||
|
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||||
|
// opvs and opvv were UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a,
|
||||||
|
b,
|
||||||
|
out,
|
||||||
|
op,
|
||||||
|
opsv,
|
||||||
|
DefaultVectorScalar<T, T, Op>(op),
|
||||||
|
DefaultVectorVector<T, T, Op>(op));
|
||||||
|
} else {
|
||||||
|
// opvs was UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
|
||||||
|
}
|
||||||
|
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||||
|
value) {
|
||||||
|
// opvv was UseDefaultBinaryOp
|
||||||
|
binary_op<T, T>(
|
||||||
|
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));
|
||||||
|
} else {
|
||||||
|
// All ops provided
|
||||||
|
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename T, typename Op>
|
||||||
|
void binary_op(const array& a, const array& b, array& out, Op op) {
|
||||||
|
DefaultScalarVector<T, T, Op> opsv(op);
|
||||||
|
DefaultVectorScalar<T, T, Op> opvs(op);
|
||||||
|
DefaultVectorVector<T, T, Op> opvv(op);
|
||||||
|
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename... Ops>
|
||||||
|
void binary(const array& a, const array& b, array& out, Ops... ops) {
|
||||||
|
switch (out.dtype()) {
|
||||||
|
case bool_:
|
||||||
|
binary_op<bool>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case uint8:
|
||||||
|
binary_op<uint8_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
binary_op<uint16_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
binary_op<uint32_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
binary_op<uint64_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
binary_op<int8_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
binary_op<int16_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
binary_op<int32_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
binary_op<int64_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
binary_op<float16_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
binary_op<float>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
binary_op<bfloat16_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
binary_op<complex64_t>(a, b, out, ops...);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
@@ -2,8 +2,8 @@
|
|||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
|
#include "mlx/backend/common/binary.h"
|
||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
#include "mlx/backend/cpu/binary.h"
|
|
||||||
|
|
||||||
namespace mlx::core {
|
namespace mlx::core {
|
||||||
|
|
||||||
@@ -58,14 +58,14 @@ void binary_op_dispatch_dims(
|
|||||||
Op op) {
|
Op op) {
|
||||||
auto [shape, strides] = collapse_contiguous_dims(
|
auto [shape, strides] = collapse_contiguous_dims(
|
||||||
a.shape(), {a.strides(), b.strides(), out_a.strides()});
|
a.shape(), {a.strides(), b.strides(), out_a.strides()});
|
||||||
|
const auto& a_strides = strides[0];
|
||||||
|
const auto& b_strides = strides[1];
|
||||||
|
const auto& out_strides = strides[2];
|
||||||
const T* a_ptr = a.data<T>();
|
const T* a_ptr = a.data<T>();
|
||||||
const T* b_ptr = b.data<T>();
|
const T* b_ptr = b.data<T>();
|
||||||
U* out_a_ptr = out_a.data<U>();
|
U* out_a_ptr = out_a.data<U>();
|
||||||
U* out_b_ptr = out_b.data<U>();
|
U* out_b_ptr = out_b.data<U>();
|
||||||
|
|
||||||
const auto& a_strides = strides[0];
|
|
||||||
const auto& b_strides = strides[1];
|
|
||||||
const auto& out_strides = strides[2];
|
|
||||||
int ndim = shape.size();
|
int ndim = shape.size();
|
||||||
switch (ndim) {
|
switch (ndim) {
|
||||||
case 1:
|
case 1:
|
||||||
@@ -120,10 +120,14 @@ template <typename T, typename U = T, typename Op>
|
|||||||
void binary_op(
|
void binary_op(
|
||||||
const array& a,
|
const array& a,
|
||||||
const array& b,
|
const array& b,
|
||||||
array& out_a,
|
std::vector<array>& outputs,
|
||||||
array& out_b,
|
Op op) {
|
||||||
Op op,
|
auto bopt = get_binary_op_type(a, b);
|
||||||
BinaryOpType bopt) {
|
auto& out_a = outputs[0];
|
||||||
|
auto& out_b = outputs[1];
|
||||||
|
set_binary_op_output_data(a, b, out_a, bopt);
|
||||||
|
set_binary_op_output_data(a, b, out_b, bopt);
|
||||||
|
|
||||||
// The full computation is scalar scalar so call the base op once
|
// The full computation is scalar scalar so call the base op once
|
||||||
if (bopt == BinaryOpType::General) {
|
if (bopt == BinaryOpType::General) {
|
||||||
binary_op_dispatch_dims<T, U, Op>(a, b, out_a, out_b, op);
|
binary_op_dispatch_dims<T, U, Op>(a, b, out_a, out_b, op);
|
||||||
@@ -137,14 +141,14 @@ void binary_op(
|
|||||||
if (bopt == BinaryOpType::ScalarScalar) {
|
if (bopt == BinaryOpType::ScalarScalar) {
|
||||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||||
} else if (bopt == BinaryOpType::ScalarVector) {
|
} else if (bopt == BinaryOpType::ScalarVector) {
|
||||||
for (size_t i = 0; i < b.data_size(); ++i) {
|
for (size_t i = 0; i < b.size(); ++i) {
|
||||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||||
out_a_ptr++;
|
out_a_ptr++;
|
||||||
out_b_ptr++;
|
out_b_ptr++;
|
||||||
b_ptr++;
|
b_ptr++;
|
||||||
}
|
}
|
||||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||||
for (size_t i = 0; i < a.data_size(); ++i) {
|
for (size_t i = 0; i < a.size(); ++i) {
|
||||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||||
out_a_ptr++;
|
out_a_ptr++;
|
||||||
out_b_ptr++;
|
out_b_ptr++;
|
||||||
@@ -161,6 +165,55 @@ void binary_op(
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
template <typename Op>
|
||||||
|
void binary(
|
||||||
|
const array& a,
|
||||||
|
const array& b,
|
||||||
|
std::vector<array>& outputs,
|
||||||
|
Op op) {
|
||||||
|
switch (outputs[0].dtype()) {
|
||||||
|
case bool_:
|
||||||
|
binary_op<bool>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case uint8:
|
||||||
|
binary_op<uint8_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case uint16:
|
||||||
|
binary_op<uint16_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case uint32:
|
||||||
|
binary_op<uint32_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case uint64:
|
||||||
|
binary_op<uint64_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case int8:
|
||||||
|
binary_op<int8_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case int16:
|
||||||
|
binary_op<int16_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case int32:
|
||||||
|
binary_op<int32_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case int64:
|
||||||
|
binary_op<int64_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case float16:
|
||||||
|
binary_op<float16_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case float32:
|
||||||
|
binary_op<float>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case bfloat16:
|
||||||
|
binary_op<bfloat16_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
case complex64:
|
||||||
|
binary_op<complex64_t>(a, b, outputs, op);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace
|
} // namespace
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
@@ -1,24 +0,0 @@
|
|||||||
// Copyright © 2024 Apple Inc.
|
|
||||||
|
|
||||||
#include "mlx/backend/common/utils.h"
|
|
||||||
|
|
||||||
namespace mlx::core {
|
|
||||||
|
|
||||||
void broadcast(const array& in, array& out) {
|
|
||||||
if (out.size() == 0) {
|
|
||||||
out.set_data(allocator::malloc(0));
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
Strides strides(out.ndim(), 0);
|
|
||||||
int diff = out.ndim() - in.ndim();
|
|
||||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
|
||||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
|
||||||
}
|
|
||||||
auto flags = in.flags();
|
|
||||||
if (out.size() > in.size()) {
|
|
||||||
flags.row_contiguous = flags.col_contiguous = false;
|
|
||||||
}
|
|
||||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
|
||||||
@@ -1,157 +0,0 @@
|
|||||||
// Copyright © 2025 Apple Inc.
|
|
||||||
|
|
||||||
#pragma once
|
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <functional>
|
|
||||||
#include <map>
|
|
||||||
|
|
||||||
namespace mlx::core {
|
|
||||||
|
|
||||||
template <typename T>
|
|
||||||
class BufferCache {
|
|
||||||
public:
|
|
||||||
BufferCache(
|
|
||||||
size_t page_size,
|
|
||||||
std::function<size_t(T*)> get_size,
|
|
||||||
std::function<void(T*)> free)
|
|
||||||
: page_size_(page_size),
|
|
||||||
get_size_(std::move(get_size)),
|
|
||||||
free_(std::move(free)) {}
|
|
||||||
|
|
||||||
~BufferCache() {
|
|
||||||
clear();
|
|
||||||
}
|
|
||||||
|
|
||||||
BufferCache(const BufferCache&) = delete;
|
|
||||||
BufferCache& operator=(const BufferCache&) = delete;
|
|
||||||
|
|
||||||
T* reuse_from_cache(size_t size) {
|
|
||||||
// Find the closest buffer in pool.
|
|
||||||
auto it = buffer_pool_.lower_bound(size);
|
|
||||||
if (it == buffer_pool_.end() ||
|
|
||||||
it->first >= std::min(2 * size, size + 2 * page_size_)) {
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Collect from the cache.
|
|
||||||
T* buf = it->second->buf;
|
|
||||||
pool_size_ -= it->first;
|
|
||||||
|
|
||||||
// Remove from record.
|
|
||||||
remove_from_list(it->second);
|
|
||||||
buffer_pool_.erase(it);
|
|
||||||
return buf;
|
|
||||||
}
|
|
||||||
|
|
||||||
void recycle_to_cache(T* buf) {
|
|
||||||
assert(buf);
|
|
||||||
// Add to cache.
|
|
||||||
BufferHolder* bh = new BufferHolder(buf);
|
|
||||||
add_at_head(bh);
|
|
||||||
size_t size = get_size_(buf);
|
|
||||||
pool_size_ += size;
|
|
||||||
buffer_pool_.emplace(size, bh);
|
|
||||||
}
|
|
||||||
|
|
||||||
int release_cached_buffers(size_t min_bytes_to_free) {
|
|
||||||
if (min_bytes_to_free >= 0.9 * pool_size_) {
|
|
||||||
return clear();
|
|
||||||
} else {
|
|
||||||
int n_release = 0;
|
|
||||||
size_t total_bytes_freed = 0;
|
|
||||||
|
|
||||||
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
|
|
||||||
// Release buffer.
|
|
||||||
size_t size = get_size_(tail_->buf);
|
|
||||||
total_bytes_freed += size;
|
|
||||||
free_(tail_->buf);
|
|
||||||
n_release++;
|
|
||||||
|
|
||||||
// Remove from record.
|
|
||||||
auto its = buffer_pool_.equal_range(size);
|
|
||||||
auto it = std::find_if(its.first, its.second, [this](const auto& el) {
|
|
||||||
return el.second == tail_;
|
|
||||||
});
|
|
||||||
assert(it != buffer_pool_.end());
|
|
||||||
buffer_pool_.erase(it);
|
|
||||||
remove_from_list(tail_);
|
|
||||||
}
|
|
||||||
|
|
||||||
pool_size_ -= total_bytes_freed;
|
|
||||||
return n_release;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
int clear() {
|
|
||||||
int n_release = 0;
|
|
||||||
for (auto& [size, holder] : buffer_pool_) {
|
|
||||||
free_(holder->buf);
|
|
||||||
n_release++;
|
|
||||||
delete holder;
|
|
||||||
}
|
|
||||||
buffer_pool_.clear();
|
|
||||||
pool_size_ = 0;
|
|
||||||
head_ = nullptr;
|
|
||||||
tail_ = nullptr;
|
|
||||||
return n_release;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t cache_size() const {
|
|
||||||
return pool_size_;
|
|
||||||
}
|
|
||||||
|
|
||||||
size_t page_size() const {
|
|
||||||
return page_size_;
|
|
||||||
}
|
|
||||||
|
|
||||||
private:
|
|
||||||
struct BufferHolder {
|
|
||||||
public:
|
|
||||||
explicit BufferHolder(T* buf_) : buf(buf_) {}
|
|
||||||
|
|
||||||
BufferHolder* prev{nullptr};
|
|
||||||
BufferHolder* next{nullptr};
|
|
||||||
T* buf;
|
|
||||||
};
|
|
||||||
|
|
||||||
void add_at_head(BufferHolder* to_add) {
|
|
||||||
if (!head_) {
|
|
||||||
head_ = to_add;
|
|
||||||
tail_ = to_add;
|
|
||||||
} else {
|
|
||||||
head_->prev = to_add;
|
|
||||||
to_add->next = head_;
|
|
||||||
head_ = to_add;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
void remove_from_list(BufferHolder* to_remove) {
|
|
||||||
if (to_remove->prev && to_remove->next) { // if middle
|
|
||||||
to_remove->prev->next = to_remove->next;
|
|
||||||
to_remove->next->prev = to_remove->prev;
|
|
||||||
} else if (to_remove->prev && to_remove == tail_) { // if tail
|
|
||||||
tail_ = to_remove->prev;
|
|
||||||
tail_->next = nullptr;
|
|
||||||
} else if (to_remove == head_ && to_remove->next) { // if head
|
|
||||||
head_ = to_remove->next;
|
|
||||||
head_->prev = nullptr;
|
|
||||||
} else if (to_remove == head_ && to_remove == tail_) { // if only element
|
|
||||||
head_ = nullptr;
|
|
||||||
tail_ = nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
delete to_remove;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::multimap<size_t, BufferHolder*> buffer_pool_;
|
|
||||||
BufferHolder* head_{nullptr};
|
|
||||||
BufferHolder* tail_{nullptr};
|
|
||||||
size_t pool_size_{0};
|
|
||||||
|
|
||||||
const size_t page_size_;
|
|
||||||
std::function<size_t(T*)> get_size_;
|
|
||||||
std::function<void(T*)> free_;
|
|
||||||
};
|
|
||||||
|
|
||||||
} // namespace mlx::core
|
|
||||||
74
mlx/backend/common/cholesky.cpp
Normal file
74
mlx/backend/common/cholesky.cpp
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
// Copyright © 2023-2024 Apple Inc.
|
||||||
|
|
||||||
|
#include "mlx/allocator.h"
|
||||||
|
#include "mlx/backend/common/copy.h"
|
||||||
|
#include "mlx/backend/common/lapack.h"
|
||||||
|
#include "mlx/linalg.h"
|
||||||
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
|
namespace mlx::core {
|
||||||
|
|
||||||
|
void cholesky_impl(const array& a, array& factor, bool upper) {
|
||||||
|
// Lapack uses the column-major convention. We take advantage of the fact that
|
||||||
|
// the matrix should be symmetric:
|
||||||
|
// (A)ᵀ = A
|
||||||
|
// and that a column-major lower triangular matrix is a row-major upper
|
||||||
|
// triangular matrix, so uplo is the opposite of what we would expect from
|
||||||
|
// upper
|
||||||
|
|
||||||
|
char uplo = (upper) ? 'L' : 'U';
|
||||||
|
|
||||||
|
// The decomposition is computed in place, so just copy the input to the
|
||||||
|
// output.
|
||||||
|
copy(
|
||||||
|
a,
|
||||||
|
factor,
|
||||||
|
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||||
|
|
||||||
|
const int N = a.shape(-1);
|
||||||
|
const size_t num_matrices = a.size() / (N * N);
|
||||||
|
|
||||||
|
float* matrix = factor.data<float>();
|
||||||
|
|
||||||
|
for (int i = 0; i < num_matrices; i++) {
|
||||||
|
// Compute Cholesky factorization.
|
||||||
|
int info;
|
||||||
|
MLX_LAPACK_FUNC(spotrf)
|
||||||
|
(
|
||||||
|
/* uplo = */ &uplo,
|
||||||
|
/* n = */ &N,
|
||||||
|
/* a = */ matrix,
|
||||||
|
/* lda = */ &N,
|
||||||
|
/* info = */ &info);
|
||||||
|
|
||||||
|
// TODO: We do nothing when the matrix is not positive semi-definite
|
||||||
|
// because throwing an error would result in a crash. If we figure out how
|
||||||
|
// to catch errors from the implementation we should throw.
|
||||||
|
if (info < 0) {
|
||||||
|
std::stringstream msg;
|
||||||
|
msg << "[cholesky] Cholesky decomposition failed with error code "
|
||||||
|
<< info;
|
||||||
|
throw std::runtime_error(msg.str());
|
||||||
|
}
|
||||||
|
|
||||||
|
// Zero out the upper/lower triangle while advancing the pointer to the
|
||||||
|
// next matrix at the same time.
|
||||||
|
for (int row = 0; row < N; row++) {
|
||||||
|
if (upper) {
|
||||||
|
std::fill(matrix, matrix + row, 0);
|
||||||
|
} else {
|
||||||
|
std::fill(matrix + row + 1, matrix + N, 0);
|
||||||
|
}
|
||||||
|
matrix += N;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void Cholesky::eval(const std::vector<array>& inputs, array& output) {
|
||||||
|
if (inputs[0].dtype() != float32) {
|
||||||
|
throw std::runtime_error("[Cholesky::eval] only supports float32.");
|
||||||
|
}
|
||||||
|
cholesky_impl(inputs[0], output, upper_);
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace mlx::core
|
||||||
@@ -1,7 +1,6 @@
|
|||||||
// Copyright © 2024 Apple Inc.
|
// Copyright © 2024 Apple Inc.
|
||||||
#include <cassert>
|
#include <cassert>
|
||||||
|
|
||||||
#include "mlx/backend/common/broadcasting.h"
|
|
||||||
#include "mlx/backend/common/utils.h"
|
#include "mlx/backend/common/utils.h"
|
||||||
#include "mlx/primitives.h"
|
#include "mlx/primitives.h"
|
||||||
|
|
||||||
@@ -40,7 +39,24 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
// rely on data_size anyway.
|
// rely on data_size anyway.
|
||||||
size_t data_size = out.size();
|
size_t data_size = out.size();
|
||||||
|
|
||||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
return move_or_copy(in, out, strides_, flags, data_size, offset_);
|
||||||
|
}
|
||||||
|
|
||||||
|
void broadcast(const array& in, array& out) {
|
||||||
|
if (out.size() == 0) {
|
||||||
|
out.set_data(nullptr);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
Strides strides(out.ndim(), 0);
|
||||||
|
int diff = out.ndim() - in.ndim();
|
||||||
|
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||||
|
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||||
|
}
|
||||||
|
auto flags = in.flags();
|
||||||
|
if (out.size() > in.size()) {
|
||||||
|
flags.row_contiguous = flags.col_contiguous = false;
|
||||||
|
}
|
||||||
|
move_or_copy(in, out, strides, flags, in.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -53,7 +69,7 @@ void BroadcastAxes::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
|
|
||||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||||
assert(inputs.size() == 1);
|
assert(inputs.size() == 1);
|
||||||
out.copy_shared_buffer(inputs[0]);
|
move_or_copy(inputs[0], out);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CustomTransforms::eval(
|
void CustomTransforms::eval(
|
||||||
@@ -62,7 +78,7 @@ void CustomTransforms::eval(
|
|||||||
assert(inputs.size() > outputs.size());
|
assert(inputs.size() > outputs.size());
|
||||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||||
i++, j++) {
|
i++, j++) {
|
||||||
outputs[i].copy_shared_buffer(inputs[j]);
|
move_or_copy(inputs[j], outputs[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -71,7 +87,7 @@ void Depends::eval(
|
|||||||
std::vector<array>& outputs) {
|
std::vector<array>& outputs) {
|
||||||
assert(inputs.size() > outputs.size());
|
assert(inputs.size() > outputs.size());
|
||||||
for (int i = 0; i < outputs.size(); i++) {
|
for (int i = 0; i < outputs.size(); i++) {
|
||||||
outputs[i].copy_shared_buffer(inputs[i]);
|
move_or_copy(inputs[i], outputs[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -82,12 +98,12 @@ void ExpandDims::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
for (auto ax : axes_) {
|
for (auto ax : axes_) {
|
||||||
strides.insert(strides.begin() + ax, 1);
|
strides.insert(strides.begin() + ax, 1);
|
||||||
}
|
}
|
||||||
out.copy_shared_buffer(in, strides, in.flags(), in.data_size());
|
move_or_copy(in, out, strides, in.flags(), in.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||||
assert(inputs.size() == 1);
|
assert(inputs.size() == 1);
|
||||||
out.set_data(allocator::malloc(out.nbytes()));
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||||
|
|
||||||
double numel = 1;
|
double numel = 1;
|
||||||
for (auto ax : axes_) {
|
for (auto ax : axes_) {
|
||||||
@@ -135,9 +151,6 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
case bfloat16:
|
case bfloat16:
|
||||||
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
||||||
break;
|
break;
|
||||||
case float64:
|
|
||||||
*out.data<double>() = static_cast<double>(numel);
|
|
||||||
break;
|
|
||||||
case complex64:
|
case complex64:
|
||||||
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
||||||
break;
|
break;
|
||||||
@@ -194,7 +207,7 @@ void shared_buffer_reshape(
|
|||||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||||
}
|
}
|
||||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void Split::eval(
|
void Split::eval(
|
||||||
@@ -260,12 +273,12 @@ void Squeeze::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
strides.push_back(in.strides(i));
|
strides.push_back(in.strides(i));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
out.copy_shared_buffer(in, strides, in.flags(), in.data_size());
|
move_or_copy(in, out, strides, in.flags(), in.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||||
assert(inputs.size() == 1);
|
assert(inputs.size() == 1);
|
||||||
out.copy_shared_buffer(inputs[0]);
|
move_or_copy(inputs[0], out);
|
||||||
}
|
}
|
||||||
|
|
||||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||||
@@ -299,7 +312,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
|||||||
b_stride *= out.shape(ri);
|
b_stride *= out.shape(ri);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace mlx::core
|
} // namespace mlx::core
|
||||||
|
|||||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user