mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
6 Commits
4ad53414dd
...
qmm
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
8269c9d02d | ||
|
|
903b40627c | ||
|
|
700f7dcf01 | ||
|
|
6c60bd1cbf | ||
|
|
a64cc02a0c | ||
|
|
346ae5fdb5 |
@@ -7,9 +7,6 @@ parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
@@ -203,12 +200,8 @@ jobs:
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
|
||||
cuda_build_and_test:
|
||||
parameters:
|
||||
image_date:
|
||||
type: string
|
||||
default: "2023.11.1"
|
||||
machine:
|
||||
image: "linux-cuda-12:<< parameters.image_date >>"
|
||||
image: linux-cuda-12:2023.11.1
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
@@ -216,7 +209,6 @@ jobs:
|
||||
name: Install Python package
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
python3 -m venv env
|
||||
source env/bin/activate
|
||||
@@ -374,27 +366,22 @@ jobs:
|
||||
type: string
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
image: linux-cuda-12:2024.11.1
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install zip
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build -w
|
||||
@@ -405,6 +392,7 @@ jobs:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
@@ -417,24 +405,19 @@ workflows:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
- cuda_build_and_test
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
filters:
|
||||
@@ -618,87 +601,3 @@ workflows:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
|
||||
@@ -22,7 +22,7 @@ project(
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
|
||||
21
README.md
21
README.md
@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
@@ -68,23 +68,18 @@ in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
||||
macOS, run:
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
|
||||
```bash
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
To install the CUDA backend on Linux, run:
|
||||
**With `conda`**:
|
||||
|
||||
```bash
|
||||
pip install "mlx[cuda]"
|
||||
```
|
||||
|
||||
To install a CPU-only Linux package, run:
|
||||
|
||||
```bash
|
||||
pip install "mlx[cpu]"
|
||||
conda install -c conda-forge mlx
|
||||
```
|
||||
|
||||
Checkout the
|
||||
|
||||
@@ -13,7 +13,7 @@ silicon computer is
|
||||
|
||||
pip install mlx
|
||||
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
To install from PyPI you must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
@@ -26,22 +26,13 @@ To install from PyPI your system must meet the following requirements:
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX has a CUDA backend which you can install with:
|
||||
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
|
||||
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install "mlx[cuda]"
|
||||
|
||||
To install the CUDA package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Nvidia architecture >= SM 7.0 (Volta)
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
@@ -51,13 +42,6 @@ For a CPU-only version of MLX that runs on Linux use:
|
||||
|
||||
pip install "mlx[cpu]"
|
||||
|
||||
To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
|
||||
@@ -377,10 +377,4 @@ void copy_cpu_inplace(
|
||||
});
|
||||
}
|
||||
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -30,7 +30,4 @@ void copy_cpu_inplace(
|
||||
const std::optional<array>& dynamic_i_offset = std::nullopt,
|
||||
const std::optional<array>& dynamic_o_offset = std::nullopt);
|
||||
|
||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -13,7 +13,9 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return {arr, false};
|
||||
} else {
|
||||
return {contiguous_copy_cpu(arr, stream), true};
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return {arr_copy, true};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -32,7 +34,8 @@ void AllReduce::eval_cpu(
|
||||
}
|
||||
return in;
|
||||
} else {
|
||||
array arr_copy = contiguous_copy_cpu(in, s);
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_cpu(in, arr_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(arr_copy);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
@@ -87,7 +87,8 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, x_copy, CopyType::General, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -136,8 +136,9 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return std::make_tuple(true, sty, arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
array arr_copy = contiguous_copy_cpu(arr, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -712,7 +712,9 @@ void fast::AffineQuantize::eval_cpu(
|
||||
if (arr.flags().row_contiguous) {
|
||||
return std::make_pair(arr, false);
|
||||
} else {
|
||||
return std::make_pair(contiguous_copy_cpu(arr, s), true);
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, s);
|
||||
return std::make_pair(arr_copy, true);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -250,8 +250,10 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Ensure contiguity
|
||||
auto in = inputs[0];
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_cpu(in, stream());
|
||||
encoder.add_temporary(in);
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_cpu(in, arr_copy, CopyType::General, stream());
|
||||
in = arr_copy;
|
||||
encoder.add_temporary(arr_copy);
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
|
||||
@@ -131,7 +131,8 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, x_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -15,14 +15,11 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
@@ -45,17 +42,11 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/qmm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
|
||||
else()
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||
|
||||
# Embed kernel sources in binary for JIT compilation.
|
||||
@@ -98,17 +89,10 @@ endif()
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
|
||||
|
||||
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
|
||||
# and requires drivers released after CUDA 12.4.
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
|
||||
endif()
|
||||
|
||||
# Compute capability 7 is required for synchronization between CPU/GPU with
|
||||
# managed memory. TODO: Add more architectures for potential performance gain.
|
||||
set(MLX_CUDA_ARCHITECTURES
|
||||
"70;80"
|
||||
"80"
|
||||
CACHE STRING "CUDA architectures")
|
||||
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
|
||||
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
|
||||
@@ -141,23 +125,6 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
|
||||
# Use NVRTC and driver APIs.
|
||||
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
|
||||
# Use the frontend APIs of cuDNN.
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.12.1
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
|
||||
FetchContent_MakeAvailable(cudnn)
|
||||
target_link_libraries(mlx PRIVATE cudnn_frontend)
|
||||
# Link with the actual cuDNN libraries.
|
||||
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
|
||||
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
@@ -165,3 +132,12 @@ target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
# Make Thunderkittens available
|
||||
FetchContent_Declare(
|
||||
kittens
|
||||
GIT_REPOSITORY https://github.com/HazyResearch/ThunderKittens.git
|
||||
GIT_TAG aaab847f430ed313ed466e64b25b9177babd1db8
|
||||
GIT_SHALLOW TRUE)
|
||||
FetchContent_MakeAvailable(kittens)
|
||||
target_include_directories(mlx BEFORE PRIVATE "${kittens_SOURCE_DIR}/include")
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -24,58 +25,52 @@ constexpr int small_block_size = 8;
|
||||
constexpr int small_pool_size = 4 * page_size;
|
||||
|
||||
SmallSizePool::SmallSizePool() {
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&buffer_, small_pool_size));
|
||||
end_ = reinterpret_cast<void*>(
|
||||
reinterpret_cast<char*>(buffer_) + small_pool_size);
|
||||
next_free_ = reinterpret_cast<Block*>(buffer_);
|
||||
|
||||
auto num_blocks = small_pool_size / small_block_size;
|
||||
buffer_ = new Block[num_blocks];
|
||||
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
curr->next = buffer_ + i;
|
||||
for (size_t i = 0; i < num_blocks - 1; ++i) {
|
||||
curr->next = reinterpret_cast<Block*>(
|
||||
reinterpret_cast<char*>(buffer_) + (i + 1) * small_block_size);
|
||||
curr = curr->next;
|
||||
}
|
||||
curr->next = nullptr;
|
||||
}
|
||||
|
||||
SmallSizePool::~SmallSizePool() {
|
||||
CHECK_CUDA_ERROR(cudaFree(data_));
|
||||
delete[] buffer_;
|
||||
CHECK_CUDA_ERROR(cudaFree(buffer_));
|
||||
}
|
||||
|
||||
CudaBuffer* SmallSizePool::malloc() {
|
||||
void* SmallSizePool::malloc() {
|
||||
if (next_free_ == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
Block* b = next_free_;
|
||||
uint64_t i = next_free_ - buffer_;
|
||||
next_free_ = next_free_->next;
|
||||
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
|
||||
b->buf.size = small_block_size;
|
||||
return &b->buf;
|
||||
return static_cast<void*>(b);
|
||||
}
|
||||
|
||||
void SmallSizePool::free(CudaBuffer* buf) {
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
void SmallSizePool::free(void* p) {
|
||||
auto b = static_cast<Block*>(p);
|
||||
b->next = next_free_;
|
||||
next_free_ = b;
|
||||
}
|
||||
|
||||
bool SmallSizePool::in_pool(CudaBuffer* buf) {
|
||||
constexpr int num_blocks = (small_pool_size / small_block_size);
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
int64_t block_num = b - buffer_;
|
||||
return block_num >= 0 && block_num < num_blocks;
|
||||
bool SmallSizePool::in_pool(void* p) {
|
||||
return (p >= buffer_) && (p < end_);
|
||||
}
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) { cuda_free(buf); }) {
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
@@ -97,26 +92,28 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache.
|
||||
int64_t mem_to_free =
|
||||
get_active_memory() + get_cache_memory() + size - memory_limit_;
|
||||
if (mem_to_free > 0) {
|
||||
buffer_cache_.release_cached_buffers(mem_to_free);
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache.
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
if (mem_required >= memory_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
|
||||
}
|
||||
|
||||
lock.unlock();
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
|
||||
// Try the scalar pool first
|
||||
if (size <= small_block_size) {
|
||||
buf = scalar_pool_.malloc();
|
||||
buf->data = scalar_pool_.malloc();
|
||||
}
|
||||
lock.unlock();
|
||||
if (!buf) {
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
if (!buf->data) {
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
|
||||
lock.lock();
|
||||
}
|
||||
active_memory_ += size;
|
||||
@@ -126,6 +123,7 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
@@ -140,7 +138,9 @@ void CudaAllocator::free(Buffer buffer) {
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
cuda_free(buf);
|
||||
lock.unlock();
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -152,13 +152,30 @@ size_t CudaAllocator::size(Buffer buffer) const {
|
||||
return buf->size;
|
||||
}
|
||||
|
||||
// This must be called with mutex_ aquired
|
||||
void CudaAllocator::cuda_free(CudaBuffer* buf) {
|
||||
void CudaAllocator::register_this_thread() {
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
allowed_threads_.insert(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
void CudaAllocator::cuda_free(void* buf) {
|
||||
// If cuda_free() is called from a unregistered thread, reschedule the call to
|
||||
// worker.
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
|
||||
if (!worker_) {
|
||||
worker_.reset(new Worker);
|
||||
}
|
||||
worker_->add_task([this, buf]() { this->cuda_free(buf); });
|
||||
worker_->end_batch();
|
||||
worker_->commit();
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (scalar_pool_.in_pool(buf)) {
|
||||
scalar_pool_.free(buf);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
delete buf;
|
||||
cudaFree(buf);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -7,10 +7,13 @@
|
||||
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class Worker;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores cuda-managed unified memory.
|
||||
@@ -21,14 +24,13 @@ struct CudaBuffer {
|
||||
|
||||
class SmallSizePool {
|
||||
private:
|
||||
union Block {
|
||||
struct Block {
|
||||
Block* next;
|
||||
CudaBuffer buf;
|
||||
};
|
||||
|
||||
Block* buffer_{nullptr};
|
||||
void* data_{nullptr};
|
||||
void* buffer_{nullptr};
|
||||
Block* next_free_{nullptr};
|
||||
void* end_{nullptr};
|
||||
|
||||
public:
|
||||
SmallSizePool();
|
||||
@@ -37,9 +39,9 @@ class SmallSizePool {
|
||||
SmallSizePool(const SmallSizePool&) = delete;
|
||||
SmallSizePool& operator=(const SmallSizePool&) = delete;
|
||||
|
||||
CudaBuffer* malloc();
|
||||
void free(CudaBuffer* buf);
|
||||
bool in_pool(CudaBuffer* buf);
|
||||
void* malloc();
|
||||
void free(void* p);
|
||||
bool in_pool(void* p);
|
||||
};
|
||||
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
@@ -48,6 +50,15 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
// Register current thread as safe to free buffers.
|
||||
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
|
||||
// that may be waited by gpu stream (for example cpu stream threads), freeing
|
||||
// buffers there would result in dead lock.
|
||||
void register_this_thread();
|
||||
|
||||
// Call cudaFree in the safe thread.
|
||||
void cuda_free(void* buf);
|
||||
|
||||
size_t get_active_memory() const;
|
||||
size_t get_peak_memory() const;
|
||||
void reset_peak_memory();
|
||||
@@ -58,11 +69,13 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
friend CudaAllocator& allocator();
|
||||
|
||||
std::mutex worker_mutex_;
|
||||
std::unique_ptr<Worker> worker_;
|
||||
std::set<std::thread::id> allowed_threads_;
|
||||
|
||||
std::mutex mutex_;
|
||||
size_t memory_limit_;
|
||||
size_t max_pool_size_;
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -115,7 +115,7 @@ __global__ void arg_reduce_general(
|
||||
T vals[N_READS];
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().x;
|
||||
cub::LoadDirectBlocked(
|
||||
tid, StridedIterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
best = op.reduce_many(best, vals, tid * N_READS);
|
||||
}
|
||||
|
||||
@@ -166,6 +166,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
|
||||
@@ -128,7 +128,7 @@ __global__ void binary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
@@ -219,6 +219,7 @@ void binary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -235,6 +236,7 @@ void binary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -269,6 +271,7 @@ void binary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
|
||||
@@ -160,7 +160,7 @@ __global__ void binary_two_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
@@ -239,6 +239,7 @@ void binary_two_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -256,6 +257,7 @@ void binary_two_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -291,6 +293,7 @@ void binary_two_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
|
||||
@@ -295,7 +295,7 @@ void Compiled::eval_gpu(
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,340 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Not all engines support it so can not use this API now.
|
||||
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnBackendDescriptorType_t backend_type;
|
||||
cudnnDataType_t cudnn_type;
|
||||
std::array<int, MAX_NDIM> input_shape;
|
||||
std::array<int, MAX_NDIM> filter_shape;
|
||||
std::array<int, MAX_NDIM> padding_lo;
|
||||
std::array<int, MAX_NDIM> padding_hi;
|
||||
std::array<int, MAX_NDIM> stride;
|
||||
std::array<int, MAX_NDIM> dilation;
|
||||
int groups;
|
||||
uint8_t input_alignment;
|
||||
uint8_t filter_alignment;
|
||||
uint8_t output_alignment;
|
||||
};
|
||||
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<ConvCacheKey, cudnn_frontend::ExecutionPlan> cache(
|
||||
/* capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
inline std::vector<T> convert_vector(const std::vector<U>& vec) {
|
||||
return std::vector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline std::array<T, MAX_NDIM> fixed_vector(const std::vector<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
auto nhwc_to_nchw(const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
auto strides = convert_vector<int64_t>(x.strides());
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(shape, strides);
|
||||
}
|
||||
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigList get_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = false) {
|
||||
cudnn_frontend::GeneratorSource source;
|
||||
if (use_fallback) {
|
||||
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
};
|
||||
} else {
|
||||
source = [](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
};
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigGenerator generator(1, &source);
|
||||
auto configs = generator.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
bool execute_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
|
||||
|
||||
int64_t uids[3] = {'x', 'w', 'y'};
|
||||
void* data_ptrs[3] = {
|
||||
const_cast<void*>(in.data<void>()),
|
||||
const_cast<void*>(wt.data<void>()),
|
||||
out.data<void>(),
|
||||
};
|
||||
|
||||
auto variantPack = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(3, data_ptrs)
|
||||
.setUids(3, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
|
||||
cudaGraph_t graph;
|
||||
cudaGraphCreate(&graph, 0);
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
|
||||
if (cudnnBackendPopulateCudaGraph(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
#else
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool try_engines(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::EngineConfigList& configs,
|
||||
const ConvCacheKey& cache_key,
|
||||
const std::string& op_graph_tag,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out) {
|
||||
for (auto& config : configs) {
|
||||
try {
|
||||
auto plan = cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
if (execute_plan(encoder, plan, in, wt, out)) {
|
||||
conv_cache().emplace(cache_key, std::move(plan));
|
||||
return true;
|
||||
}
|
||||
} catch (cudnn_frontend::cudnnException&) {
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Convolution::eval_gpu");
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(inputs.size() == 2);
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// cuDNN requires contiguous input.
|
||||
// TODO: Handle NCHW format specially.
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_input_array(wt);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto backend_type = CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR;
|
||||
auto cudnn_type = dtype_to_cudnn_type(in.dtype());
|
||||
|
||||
// Search cache.
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
backend_type,
|
||||
cudnn_type,
|
||||
fixed_vector(in.shape()),
|
||||
fixed_vector(wt.shape()),
|
||||
fixed_vector(padding_lo_),
|
||||
fixed_vector(padding_hi_),
|
||||
fixed_vector(kernel_strides_),
|
||||
fixed_vector(kernel_dilation_),
|
||||
groups_,
|
||||
get_alignment(in),
|
||||
get_alignment(wt),
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
if (!execute_plan(encoder, it->second, in, wt, out)) {
|
||||
throw std::runtime_error("Cached convolution plan failed to execute.");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Build operation graph.
|
||||
auto compute_data_type = (in.dtype() == float16 || in.dtype() == bfloat16)
|
||||
? CUDNN_DATA_FLOAT
|
||||
: cudnn_type;
|
||||
|
||||
auto stride = convert_vector<int64_t>(kernel_strides_);
|
||||
auto padding_lo = convert_vector<int64_t>(padding_lo_);
|
||||
auto padding_hi = convert_vector<int64_t>(padding_hi_);
|
||||
auto dilation = convert_vector<int64_t>(kernel_dilation_);
|
||||
|
||||
auto conv_desc = cudnn_frontend::ConvDescBuilder()
|
||||
.setDataType(compute_data_type)
|
||||
.setMathMode(CUDNN_CROSS_CORRELATION)
|
||||
.setNDims(stride.size())
|
||||
.setStrides(stride.size(), stride.data())
|
||||
.setPrePadding(padding_lo.size(), padding_lo.data())
|
||||
.setPostPadding(padding_hi.size(), padding_hi.data())
|
||||
.setDilation(dilation.size(), dilation.data())
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_tensor('x', in))
|
||||
.setwDesc(build_tensor('w', wt))
|
||||
.setyDesc(build_tensor('y', out))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
|
||||
auto op_graph = cudnn_frontend::OperationGraphBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setOperationGraph(ops.size(), ops.data())
|
||||
.build();
|
||||
|
||||
// Try to run plans based on heuristics.
|
||||
auto configs = get_engine_configs(backend_type, in.dtype(), op_graph);
|
||||
auto op_graph_tag = op_graph.getTag();
|
||||
if (try_engines(encoder, configs, cache_key, op_graph_tag, in, wt, out)) {
|
||||
return;
|
||||
}
|
||||
// Then try fallback plans.
|
||||
configs = get_engine_configs(backend_type, in.dtype(), op_graph);
|
||||
if (try_engines(encoder, configs, cache_key, op_graph_tag, in, wt, out)) {
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("Unable to find an engine for convolution.");
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -82,6 +82,7 @@ void copy_contiguous(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
out.data_size());
|
||||
|
||||
@@ -37,7 +37,7 @@ __global__ void copy_gg(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
@@ -79,6 +79,7 @@ void copy_general(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
@@ -94,6 +95,7 @@ void copy_general(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
|
||||
@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
|
||||
const int64_t* offset_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
|
||||
}
|
||||
@@ -82,6 +82,7 @@ void copy_general_dynamic(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -99,6 +100,7 @@ void copy_general_dynamic(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -34,7 +34,7 @@ __global__ void copy_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
}
|
||||
@@ -71,6 +71,7 @@ void copy_general_input(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -85,6 +86,7 @@ void copy_general_input(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -9,23 +9,12 @@
|
||||
#include <future>
|
||||
#include <unordered_set>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
namespace mlx::core {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
if (err != CUDNN_STATUS_SUCCESS) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed: {}.", name, cudnnGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
@@ -33,7 +22,7 @@ int cuda_graph_cache_size() {
|
||||
return cache_size;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
namespace cu {
|
||||
|
||||
Device::Device(int device) : device_(device) {
|
||||
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
|
||||
@@ -51,14 +40,11 @@ Device::Device(int device) : device_(device) {
|
||||
}
|
||||
// The cublasLt handle is used by matmul.
|
||||
make_current();
|
||||
CHECK_CUBLAS_ERROR(cublasLtCreate(<_));
|
||||
// The cudnn handle is used by Convolution.
|
||||
CHECK_CUDNN_ERROR(cudnnCreate(&cudnn_));
|
||||
cublasLtCreate(<_);
|
||||
}
|
||||
|
||||
Device::~Device() {
|
||||
CHECK_CUDNN_ERROR(cudnnDestroy(cudnn_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtDestroy(lt_));
|
||||
cublasLtDestroy(lt_);
|
||||
}
|
||||
|
||||
void Device::make_current() {
|
||||
@@ -80,36 +66,29 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
|
||||
if (discard) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Extract and add as single kernel node when possible.
|
||||
size_t num_nodes;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, NULL, &num_nodes));
|
||||
if (num_nodes == 1) {
|
||||
cudaGraphNode_t captured_node;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, &captured_node, &num_nodes));
|
||||
cudaGraphNodeType type;
|
||||
CHECK_CUDA_ERROR(cudaGraphNodeGetType(captured_node, &type));
|
||||
if (type == cudaGraphNodeTypeKernel) {
|
||||
CUDA_KERNEL_NODE_PARAMS params;
|
||||
CHECK_CUDA_ERROR(cuGraphKernelNodeGetParams(captured_node, ¶ms));
|
||||
enc.add_kernel_node(params);
|
||||
return;
|
||||
}
|
||||
CUDA_KERNEL_NODE_PARAMS params;
|
||||
CHECK_CUDA_ERROR(cuGraphKernelNodeGetParams(captured_node, ¶ms));
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, enc.graph_, NULL, 0, ¶ms));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
} else {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddChildGraphNode(&node, enc.graph_, NULL, 0, graph));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
// Otherwise add the captured graph as subgraph.
|
||||
enc.add_graph_node(graph);
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph));
|
||||
}
|
||||
|
||||
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
@@ -236,19 +215,25 @@ void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
kernel_params.blockDim = block_dim;
|
||||
kernel_params.kernelParams = params;
|
||||
add_kernel_node(kernel_params);
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
@@ -259,27 +244,13 @@ void CommandEncoder::add_kernel_node(
|
||||
kernel_params.blockDimY = block_dim.y;
|
||||
kernel_params.blockDimZ = block_dim.z;
|
||||
kernel_params.kernelParams = params;
|
||||
add_kernel_node(kernel_params);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const cudaKernelNodeParams& params) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
CUgraphNode node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
CHECK_CUDA_ERROR(
|
||||
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
@@ -339,6 +310,7 @@ void CommandEncoder::commit() {
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.end_batch();
|
||||
worker_.commit(stream_);
|
||||
}
|
||||
|
||||
@@ -347,6 +319,7 @@ void CommandEncoder::synchronize() {
|
||||
auto p = std::make_shared<std::promise<void>>();
|
||||
std::future<void> f = p->get_future();
|
||||
add_completed_handler([p = std::move(p)]() { p->set_value(); });
|
||||
worker_.end_batch();
|
||||
commit();
|
||||
f.wait();
|
||||
}
|
||||
@@ -364,4 +337,6 @@ CommandEncoder& get_command_encoder(Stream s) {
|
||||
return device(s.device).get_command_encoder(s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
} // namespace cu
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -8,7 +8,6 @@
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cudnn.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
|
||||
#include <unordered_map>
|
||||
@@ -22,7 +21,6 @@ class CommandEncoder {
|
||||
~CaptureContext();
|
||||
cudaGraph_t graph;
|
||||
CommandEncoder& enc;
|
||||
bool discard{false};
|
||||
};
|
||||
struct ConcurrentContext {
|
||||
ConcurrentContext(CommandEncoder& enc);
|
||||
@@ -47,30 +45,34 @@ class CommandEncoder {
|
||||
void set_output_array(const array& arr);
|
||||
|
||||
template <typename F, typename... Params>
|
||||
void
|
||||
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
|
||||
void add_kernel_node(
|
||||
F* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
Params&&... params) {
|
||||
constexpr size_t num = sizeof...(Params);
|
||||
void* ptrs[num];
|
||||
size_t i = 0;
|
||||
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
|
||||
std::forward<Params>(params)),
|
||||
...);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
|
||||
}
|
||||
|
||||
void add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
void
|
||||
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
void add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
@@ -80,10 +82,6 @@ class CommandEncoder {
|
||||
void maybe_commit();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
CudaStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
@@ -148,16 +146,12 @@ class Device {
|
||||
cublasLtHandle_t lt_handle() const {
|
||||
return lt_;
|
||||
}
|
||||
cudnnHandle_t cudnn_handle() const {
|
||||
return cudnn_;
|
||||
}
|
||||
|
||||
private:
|
||||
int device_;
|
||||
int compute_capability_major_;
|
||||
int compute_capability_minor_;
|
||||
cublasLtHandle_t lt_;
|
||||
cudnnHandle_t cudnn_;
|
||||
std::unordered_map<int, CommandEncoder> encoders_;
|
||||
};
|
||||
|
||||
|
||||
@@ -49,20 +49,6 @@ store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
to[offset] = vec;
|
||||
}
|
||||
|
||||
// Helper for accessing strided data.
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
T it;
|
||||
int64_t stride;
|
||||
|
||||
__host__ __device__ StridedIterator(T it, int64_t stride)
|
||||
: it(it), stride(stride) {}
|
||||
|
||||
__host__ __device__ auto operator[](int i) const {
|
||||
return it[i * stride];
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Type limits utils
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -218,8 +204,20 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
}
|
||||
|
||||
// Optimized version when ndim is larger than 4.
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
|
||||
inline __host__ __device__ IdxT
|
||||
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
|
||||
IdxT loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
loc += (elem % shape[i]) * IdxT(strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return loc;
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
@@ -237,7 +235,7 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
|
||||
@@ -19,6 +19,8 @@ void new_stream(Stream s) {
|
||||
cudaFree(nullptr);
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
// The main thread is safe to free buffers.
|
||||
cu::allocator().register_this_thread();
|
||||
}
|
||||
|
||||
void eval(array& arr) {
|
||||
|
||||
@@ -110,26 +110,24 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
delete ptr;
|
||||
});
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
// Allocate cuda::atomic on managed memory.
|
||||
Atomic* ac;
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
|
||||
new (ac) Atomic(0);
|
||||
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
|
||||
ptr->~Atomic();
|
||||
allocator().cuda_free(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(to_atomic(buf_), value);
|
||||
event_wait(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
@@ -140,17 +138,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
wait(encoder.stream(), value);
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(to_atomic(buf_), value);
|
||||
event_signal(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
@@ -164,18 +162,18 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
signal(encoder.stream(), value);
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
return ac_->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return to_atomic(buf_)->load();
|
||||
return ac_->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -56,8 +55,12 @@ class SharedEvent {
|
||||
bool is_signaled(uint64_t value) const;
|
||||
uint64_t value() const;
|
||||
|
||||
const std::shared_ptr<Atomic>& atomic() const {
|
||||
return ac_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
std::shared_ptr<Atomic> ac_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -1,73 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha,
|
||||
beta);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,206 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__global__ void set_mm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
const __grid_constant__ Strides c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
|
||||
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
|
||||
&batch_mode,
|
||||
sizeof(batch_mode)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
|
||||
{static_cast<int>(batch_count * 3)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{static_cast<int>(batch_count * 4)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
reinterpret_cast<void*>(c_pointers),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,282 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
~CublasPreference() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()),
|
||||
pref_(cublas_preference(device)),
|
||||
M_(a_rows),
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: Matmul(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
Matmul::~Matmul() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void Matmul::run_impl(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
out_desc_, // TODO should that be c_desc is it's set?
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
void Matmul::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c /* = std::nullopt */,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
if (c) {
|
||||
encoder.set_input_array(*c);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c ? c->data<void>() : nullptr,
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,100 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <optional>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
class Matmul {
|
||||
public:
|
||||
Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride);
|
||||
|
||||
Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride);
|
||||
|
||||
~Matmul();
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c = std::nullopt,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
private:
|
||||
void run_impl(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,147 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int n_per_thread = 4;
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
auto g_idx = block.group_index();
|
||||
auto t_idx = block.thread_index();
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
float sum = 0.0f;
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat = load_vector<n_per_thread>(mat + row * cols + col, 0);
|
||||
auto local_vec = load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum += static_cast<float>(local_mat.val[j]) *
|
||||
static_cast<float>(local_vec.val[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void
|
||||
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void gemv_batched(
|
||||
const T* mat,
|
||||
const T* vec,
|
||||
T* out,
|
||||
int rows,
|
||||
int cols,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides mat_batch_strides,
|
||||
const __grid_constant__ Strides vec_batch_strides,
|
||||
int batch_ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto batch_idx = block.group_index().y;
|
||||
auto [vec_offset, mat_offset] = elem_to_loc(
|
||||
batch_idx,
|
||||
batch_shape.data(),
|
||||
vec_batch_strides.data(),
|
||||
mat_batch_strides.data(),
|
||||
batch_ndim);
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(
|
||||
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
|
||||
}
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
|
||||
return K % (WARP_SIZE * n_per_thread) == 0 &&
|
||||
((M == 1 && b_transposed) || (N == 1 && !a_transposed));
|
||||
}
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
const DataType* vec;
|
||||
int rows;
|
||||
int cols = K;
|
||||
auto mat_strides = const_param(a_batch_strides);
|
||||
auto vec_strides = const_param(b_batch_strides);
|
||||
|
||||
if (M == 1) {
|
||||
mat = b.data<DataType>();
|
||||
vec = a.data<DataType>();
|
||||
rows = N;
|
||||
std::swap(mat_strides, vec_strides);
|
||||
} else {
|
||||
mat = a.data<DataType>();
|
||||
vec = b.data<DataType>();
|
||||
rows = M;
|
||||
}
|
||||
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
|
||||
if (batch_count == 1) {
|
||||
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks_x,
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
dim3{num_blocks_x, batch_count},
|
||||
block_dims,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
mat_strides,
|
||||
vec_strides,
|
||||
batch_shape.size());
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,24 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -129,7 +129,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -230,7 +230,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -318,7 +318,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -422,7 +422,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
121
mlx/backend/cuda/iterators/general_iterator.cuh
Normal file
121
mlx/backend/cuda/iterators/general_iterator.cuh
Normal file
@@ -0,0 +1,121 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <cuda/std/utility>
|
||||
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Iterating non-contiguous array.
|
||||
template <typename Iterator, typename IdxT = int64_t>
|
||||
class general_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides)
|
||||
: super_t(it),
|
||||
index_(index),
|
||||
ndim_(ndim),
|
||||
shape_(cuda::std::move(shape)),
|
||||
strides_(cuda::std::move(strides)) {}
|
||||
|
||||
__host__ __device__ IdxT index() const {
|
||||
return index_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Shape& shape() const {
|
||||
return shape_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Strides& strides() const {
|
||||
return strides_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const general_iterator& other) const {
|
||||
return this->base() == other.base() && this->index() == other.index();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->index_ += n;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->index_ += 1;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->index_ -= 1;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const general_iterator& other) const {
|
||||
_CCCL_ASSERT(
|
||||
this->base() == other.base(),
|
||||
"Underlying iterator must point to same base iterator");
|
||||
return other.index() - this->index();
|
||||
}
|
||||
|
||||
// The dereference is device-only to avoid accidental running in host.
|
||||
__device__ typename super_t::reference dereference() const {
|
||||
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
|
||||
return *(this->base() + offset);
|
||||
}
|
||||
|
||||
IdxT index_;
|
||||
int ndim_;
|
||||
Shape shape_;
|
||||
Strides strides_;
|
||||
};
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
__host__ __device__ auto make_general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides) {
|
||||
return general_iterator<Iterator, IdxT>(
|
||||
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterator(
|
||||
Iterator it,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
return make_general_iterator<IdxT>(
|
||||
it, 0, shape.size(), const_param(shape), const_param(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterators(
|
||||
Iterator it,
|
||||
IdxT size,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
auto ndim = shape.size();
|
||||
auto shape_arg = const_param(shape);
|
||||
auto strides_arg = const_param(strides);
|
||||
return std::make_pair(
|
||||
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
|
||||
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <thrust/iterator/iterator_facade.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// RandomAccessIterator for strided access to array entries.
|
||||
template <typename Iterator, typename Stride = int64_t>
|
||||
class strided_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ strided_iterator(Iterator it, Stride stride)
|
||||
: super_t(it), stride_(stride) {}
|
||||
|
||||
__host__ __device__ Stride stride() const {
|
||||
return stride_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const strided_iterator& other) const {
|
||||
return this->base() == other.base();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->base_reference() += n * stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->base_reference() += stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->base_reference() -= stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const strided_iterator& other) const {
|
||||
const difference_type dist = other.base() - this->base();
|
||||
_CCCL_ASSERT(
|
||||
dist % stride() == 0,
|
||||
"Underlying iterator difference must be divisible by the stride");
|
||||
return dist / stride();
|
||||
}
|
||||
|
||||
Stride stride_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -104,8 +105,8 @@ __global__ void layer_norm(
|
||||
T wn[N_READS];
|
||||
T bn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(b, b_stride), bn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
|
||||
@@ -161,7 +162,7 @@ __global__ void layer_norm_vjp(
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
float wi = wn[i];
|
||||
@@ -184,7 +185,7 @@ __global__ void layer_norm_vjp(
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
float wi = wn[i];
|
||||
@@ -265,6 +266,7 @@ void LayerNorm::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
@@ -377,6 +379,7 @@ void LayerNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -151,6 +151,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
@@ -1,146 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
typename K,
|
||||
typename V,
|
||||
template <typename...> typename M = std::unordered_map>
|
||||
class LRUCache {
|
||||
public:
|
||||
using value_type = std::pair<K, V>;
|
||||
using list_type = std::list<value_type>;
|
||||
using iterator = typename list_type::iterator;
|
||||
using const_iterator = typename list_type::const_iterator;
|
||||
using map_type = M<K, iterator>;
|
||||
|
||||
explicit LRUCache(size_t capacity) : capacity_(capacity) {}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
size_t capacity() const {
|
||||
return capacity_;
|
||||
}
|
||||
bool empty() const {
|
||||
return vlist_.empty();
|
||||
}
|
||||
|
||||
void resize(size_t new_capacity) {
|
||||
capacity_ = new_capacity;
|
||||
trim();
|
||||
}
|
||||
|
||||
iterator begin() {
|
||||
return vlist_.begin();
|
||||
}
|
||||
const_iterator begin() const {
|
||||
return vlist_.begin();
|
||||
}
|
||||
iterator end() {
|
||||
return vlist_.end();
|
||||
}
|
||||
const_iterator end() const {
|
||||
return vlist_.end();
|
||||
}
|
||||
|
||||
void clear() {
|
||||
map_.clear();
|
||||
vlist_.clear();
|
||||
}
|
||||
|
||||
iterator find(const K& key) {
|
||||
auto it = map_.find(key);
|
||||
if (it == map_.end())
|
||||
return end();
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return it->second;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
std::pair<iterator, bool> emplace(const K& key, U&& value) {
|
||||
auto it = map_.find(key);
|
||||
if (it != map_.end()) {
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
trim();
|
||||
|
||||
return {vlist_.begin(), true};
|
||||
}
|
||||
|
||||
iterator erase(iterator pos) {
|
||||
map_.erase(pos->first);
|
||||
return vlist_.erase(pos);
|
||||
}
|
||||
|
||||
private:
|
||||
void trim() {
|
||||
while (map_.size() > capacity_) {
|
||||
auto last = std::prev(vlist_.end());
|
||||
map_.erase(last->first);
|
||||
vlist_.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
};
|
||||
|
||||
// Turn a POD struct into a container key by doing bytes compare.
|
||||
template <typename T>
|
||||
struct BytesKey {
|
||||
T pod;
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
BytesKey(T pod) : pod(std::move(pod)) {}
|
||||
|
||||
BytesKey(const BytesKey& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
BytesKey(BytesKey&& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
bool operator==(const BytesKey& other) const {
|
||||
auto* ptr1 = reinterpret_cast<const uint8_t*>(&pod);
|
||||
auto* ptr2 = reinterpret_cast<const uint8_t*>(&other.pod);
|
||||
return memcmp(ptr1, ptr2, sizeof(T)) == 0;
|
||||
}
|
||||
};
|
||||
|
||||
// Compute hash according to the bytes value of T.
|
||||
template <typename T>
|
||||
struct BytesHash {
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
size_t operator()(const T& pod) const {
|
||||
auto* ptr = reinterpret_cast<const uint8_t*>(&pod);
|
||||
uint32_t value = 0x811C9DC5;
|
||||
for (int i = 0; i < sizeof(T); ++i) {
|
||||
value ^= ptr[i];
|
||||
value *= 0x01000193;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename K, typename V>
|
||||
using BytesKeyHashMap = std::unordered_map<K, V, BytesHash<K>>;
|
||||
|
||||
template <typename K, typename V>
|
||||
using LRUBytesKeyCache = LRUCache<BytesKey<K>, V, BytesKeyHashMap>;
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -2,15 +2,289 @@
|
||||
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
|
||||
void check_cublas_error(const char* name, cublasStatus_t err) {
|
||||
if (err != CUBLAS_STATUS_SUCCESS) {
|
||||
// TODO: Use cublasGetStatusString when it is widely available.
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
|
||||
}
|
||||
}
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
~CublasPreference() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
|
||||
class MatMul {
|
||||
public:
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()), pref_(cublas_preference(device)) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cuda_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: MatMul(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
~MatMul() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
void* a,
|
||||
void* b,
|
||||
void* c = nullptr,
|
||||
float alpha = 1,
|
||||
float beta = 0) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
out_desc_,
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
private:
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order =
|
||||
transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
@@ -79,25 +353,10 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
cu::Matmul matmul(
|
||||
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -112,13 +371,27 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
|
||||
return;
|
||||
}
|
||||
|
||||
matmul.run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -186,7 +459,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::Matmul matmul(
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -203,22 +476,41 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b, c, alpha_, beta_);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
alpha_,
|
||||
beta_);
|
||||
return;
|
||||
}
|
||||
matmul.run_batched(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
c_batch_strides,
|
||||
alpha_,
|
||||
beta_);
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha_,
|
||||
beta_);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
108
mlx/backend/cuda/matmul/mma.cuh
Normal file
108
mlx/backend/cuda/matmul/mma.cuh
Normal file
@@ -0,0 +1,108 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/matmul/tiles.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
template <typename U, typename T>
|
||||
__device__ inline void
|
||||
mma_t(Tile16x16<U>& C, Tile16x16<T>& A, Tile16x16<T>& B) {}
|
||||
|
||||
/**
|
||||
* Multiply the 16x16 bfloat16 tiles and accumulate the result in one 16x16
|
||||
* float tile.
|
||||
*
|
||||
* We actually perform C += A @ B.T
|
||||
*/
|
||||
__device__ inline void mma_t(
|
||||
Tile16x16<float>& C,
|
||||
Tile16x16<__nv_bfloat16>& A,
|
||||
Tile16x16<__nv_bfloat16>& B) {
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[0].x),
|
||||
"+f"(C.values[0].y),
|
||||
"+f"(C.values[1].x),
|
||||
"+f"(C.values[1].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[0])),
|
||||
"r"(*(uint32_t*)(&B.values[2])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[0].x),
|
||||
"f"(C.values[0].y),
|
||||
"f"(C.values[1].x),
|
||||
"f"(C.values[1].y));
|
||||
asm volatile(
|
||||
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
|
||||
"{%0, %1, %2, %3}, "
|
||||
"{%4, %5, %6, %7}, "
|
||||
"{%8, %9}, "
|
||||
"{%10, %11, %12, %13};"
|
||||
|
||||
// D matrix
|
||||
: "+f"(C.values[2].x),
|
||||
"+f"(C.values[2].y),
|
||||
"+f"(C.values[3].x),
|
||||
"+f"(C.values[3].y)
|
||||
|
||||
// A matrix
|
||||
: "r"(*(uint32_t*)(&A.values[0])),
|
||||
"r"(*(uint32_t*)(&A.values[1])),
|
||||
"r"(*(uint32_t*)(&A.values[2])),
|
||||
"r"(*(uint32_t*)(&A.values[3])),
|
||||
|
||||
// B matrix
|
||||
"r"(*(uint32_t*)(&B.values[1])),
|
||||
"r"(*(uint32_t*)(&B.values[3])),
|
||||
|
||||
// C matrix
|
||||
"f"(C.values[2].x),
|
||||
"f"(C.values[2].y),
|
||||
"f"(C.values[3].x),
|
||||
"f"(C.values[3].y));
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply larger register tiles by delegating to mma_t.
|
||||
*/
|
||||
template <typename U, typename T, int M, int N, int K>
|
||||
__device__ inline void mma_t(
|
||||
RegisterTile<U, M, N>& C,
|
||||
RegisterTile<T, M, K>& A,
|
||||
RegisterTile<T, N, K>& B) {
|
||||
constexpr int TILES_M = RegisterTile<T, M, K>::TILES_Y;
|
||||
constexpr int TILES_K = RegisterTile<T, M, K>::TILES_X;
|
||||
constexpr int TILES_N = RegisterTile<T, N, K>::TILES_Y;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < TILES_K; k++) {
|
||||
MLX_UNROLL
|
||||
for (int m = 0; m < TILES_M; m++) {
|
||||
MLX_UNROLL
|
||||
for (int n = 0; n < TILES_N; n++) {
|
||||
mma_t(
|
||||
C.data[m * TILES_N + n],
|
||||
A.data[m * TILES_K + k],
|
||||
B.data[n * TILES_K + k]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
419
mlx/backend/cuda/matmul/tiles.cuh
Normal file
419
mlx/backend/cuda/matmul/tiles.cuh
Normal file
@@ -0,0 +1,419 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#define MLX_UNROLL _Pragma("unroll")
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Map types to their vector of 2 type float -> float2, double -> double2 etc
|
||||
template <typename T>
|
||||
struct Vector2;
|
||||
template <>
|
||||
struct Vector2<double> {
|
||||
using type = double2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<float> {
|
||||
using type = float2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__half> {
|
||||
using type = __half2;
|
||||
};
|
||||
template <>
|
||||
struct Vector2<__nv_bfloat16> {
|
||||
using type = __nv_bfloat162;
|
||||
};
|
||||
template <typename T>
|
||||
using Vector2_t = typename Vector2<T>::type;
|
||||
|
||||
/**
|
||||
* The basic building block for Ampere mmas. A 16x16 tile distributed across
|
||||
* the warp.
|
||||
*
|
||||
* Each thread holds 8 values. They are distributed according to
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-fragment-mma-16816-float
|
||||
*
|
||||
* For use instructions see the individual methods eg load().
|
||||
*/
|
||||
template <typename T>
|
||||
struct Tile16x16 {
|
||||
using T2 = Vector2_t<T>;
|
||||
|
||||
T2 values[4];
|
||||
|
||||
__device__ inline void fill(T v) {
|
||||
T2 v2 = {v, v};
|
||||
for (int i = 0; i < 4; i++) {
|
||||
values[i] = v2;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Load a 16x16 tile from shared memory.
|
||||
*
|
||||
* The instruction is a bit weird in the sense that the address provided by
|
||||
* each thread and the elements loaded are not the same.
|
||||
*
|
||||
* We load 4 8x8 tiles. The tile rows are stored contiguously in memory. As a
|
||||
* result the warp provides 4*8 = 32 addresses one per row.
|
||||
*
|
||||
* Threads 0-7 provide the addresses for the first tile, 8-15 for the second
|
||||
* and so on. For instance to load a non swizzled tile we would do
|
||||
*
|
||||
* base_addr + (laneid % 16) * BK + (laneid / 2) * 8
|
||||
*
|
||||
* See
|
||||
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-instructions-ldmatrix
|
||||
*/
|
||||
__device__ inline void load(uint32_t row_address) {
|
||||
if constexpr (
|
||||
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
|
||||
asm volatile(
|
||||
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
|
||||
: "=r"(*(uint32_t*)&(values[0])),
|
||||
"=r"(*(uint32_t*)&(values[1])),
|
||||
"=r"(*(uint32_t*)&(values[2])),
|
||||
"=r"(*(uint32_t*)&(values[3]))
|
||||
: "r"(row_address));
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Store the tile to the address pointed to by `x`.
|
||||
*
|
||||
* The provided pointer is a generic pointer but this is meant to be used to
|
||||
* store to global memory. For storing to shared memory we should use
|
||||
* `stmatrix`.
|
||||
*
|
||||
* This also showcases the format of the tile quite nicely. Each register is
|
||||
* holding to adjacent values. The indices are
|
||||
*
|
||||
* row + 0, col + 0
|
||||
* row + 8, col + 0
|
||||
* row + 0, col + 8
|
||||
* row + 8, col + 8
|
||||
*
|
||||
* Given that we are dealing with Vector2_t<U> the column offsets are 4
|
||||
* instead of 8.
|
||||
*/
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N) {
|
||||
using U2 = Vector2_t<U>;
|
||||
U2* x2 = reinterpret_cast<U2*>(x);
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if constexpr (std::is_same_v<U2, T2>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] = values[0];
|
||||
x2[(row + 0) * (N / 2) + col + 4] = values[2];
|
||||
x2[(row + 8) * (N / 2) + col + 0] = values[1];
|
||||
x2[(row + 8) * (N / 2) + col + 4] = values[3];
|
||||
} else if constexpr (
|
||||
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
|
||||
x2[(row + 0) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[0].x, values[0].y);
|
||||
x2[(row + 0) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[2].x, values[2].y);
|
||||
x2[(row + 8) * (N / 2) + col + 0] =
|
||||
__floats2bfloat162_rn(values[1].x, values[1].y);
|
||||
x2[(row + 8) * (N / 2) + col + 4] =
|
||||
__floats2bfloat162_rn(values[3].x, values[3].y);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global_safe(U* x, int N, int max_rows) {
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int row = laneid / 4;
|
||||
const int col = laneid % 4;
|
||||
if (row < max_rows) {
|
||||
x[(row + 0) * N + 2 * col + 0] = static_cast<U>(values[0].x);
|
||||
x[(row + 0) * N + 2 * col + 1] = static_cast<U>(values[0].y);
|
||||
x[(row + 0) * N + 2 * col + 8] = static_cast<U>(values[2].x);
|
||||
x[(row + 0) * N + 2 * col + 9] = static_cast<U>(values[2].y);
|
||||
}
|
||||
if (row + 8 < max_rows) {
|
||||
x[(row + 8) * N + 2 * col + 0] = static_cast<U>(values[1].x);
|
||||
x[(row + 8) * N + 2 * col + 1] = static_cast<U>(values[1].y);
|
||||
x[(row + 8) * N + 2 * col + 8] = static_cast<U>(values[3].x);
|
||||
x[(row + 8) * N + 2 * col + 9] = static_cast<U>(values[3].y);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* A simple container of multiple Tile16x16.
|
||||
*
|
||||
* Provides utility functions for loading and manipulating collections of basic
|
||||
* tiles.
|
||||
*/
|
||||
template <typename T, int ROWS_, int COLS_>
|
||||
struct RegisterTile {
|
||||
static constexpr int ROWS = ROWS_;
|
||||
static constexpr int COLS = COLS_;
|
||||
static constexpr int TILES_X = COLS / 16;
|
||||
static constexpr int TILES_Y = ROWS / 16;
|
||||
|
||||
Tile16x16<T> data[TILES_X * TILES_Y];
|
||||
|
||||
__device__ inline void fill(T v) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].fill(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Tile>
|
||||
__device__ inline void
|
||||
load(Tile& tile, uint32_t base_address, int row, int col) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].load(
|
||||
tile.loc(base_address, row + i * 16, col + j * 16));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void store_global(U* x, int N, int row, int col) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].store_global(
|
||||
x + (row + i * 16) * N + col + j * 16, N);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
__device__ inline void
|
||||
store_global_safe(U* x, int N, int row, int col, int max_rows) {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < TILES_Y; i++) {
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < TILES_X; j++) {
|
||||
data[i * TILES_X + j].store_global_safe(
|
||||
x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i * 16);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, int ROWS_, int COLS_>
|
||||
struct SharedTile {
|
||||
static constexpr int ROWS = ROWS_;
|
||||
static constexpr int COLS = COLS_;
|
||||
static constexpr int TILES_X = COLS / 16;
|
||||
static constexpr int TILES_Y = ROWS / 16;
|
||||
static constexpr int NUMEL = ROWS * COLS;
|
||||
|
||||
// Swizzle taken from ThunderKittens.
|
||||
//
|
||||
// See inludes/types/shared/st.cuh
|
||||
//
|
||||
// I do feel that it is too math heavy and can be improved. Also the math is
|
||||
// done every time although the addresses don't change from load to load. I
|
||||
// guess we are expecting the compiler to figure that out.
|
||||
static constexpr int swizzle_bytes =
|
||||
(sizeof(T) == 2 ? (TILES_X % 4 == 0 ? 128 : (TILES_X % 2 == 0 ? 64 : 32))
|
||||
: (sizeof(T) == 4 ? (TILES_X % 2 == 0 ? 128 : 64) : 0));
|
||||
|
||||
T data[ROWS * COLS];
|
||||
|
||||
// Return a pointer to the element at (row, col) using the swizzle.
|
||||
__device__ static inline T* ptr(T* ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint64_t addr =
|
||||
(uint64_t)(&ptr
|
||||
[outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols]);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (T*)(addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + row * COLS + col;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the location of the element at (row, col) using the swizzle.
|
||||
__device__ static inline uint32_t loc(uint32_t ptr, int row, int col) {
|
||||
if constexpr (swizzle_bytes > 0) {
|
||||
static constexpr int swizzle_repeat = swizzle_bytes * 8;
|
||||
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
|
||||
const int outer_idx = col / subtile_cols;
|
||||
const uint32_t addr = ptr +
|
||||
sizeof(T) *
|
||||
(outer_idx * ROWS * subtile_cols + row * subtile_cols +
|
||||
col % subtile_cols);
|
||||
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
|
||||
return (addr ^ swizzle);
|
||||
} else {
|
||||
return ptr + sizeof(T) * (row * COLS + col);
|
||||
}
|
||||
}
|
||||
|
||||
// Convenience functions to edit elements going through the swizzle.
|
||||
__device__ inline T& operator()(int row, int col) {
|
||||
return *ptr(data, row, col);
|
||||
}
|
||||
__device__ inline void store(float4& v, int row, int col) {
|
||||
*(reinterpret_cast<float4*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float2& v, int row, int col) {
|
||||
*(reinterpret_cast<float2*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
__device__ inline void store(float& v, int row, int col) {
|
||||
*(reinterpret_cast<float*>(ptr(data, row, col))) = v;
|
||||
}
|
||||
template <int N>
|
||||
__device__ inline void store(T (&v)[N], int row, int col) {
|
||||
if constexpr (sizeof(T) * N == 4) {
|
||||
store(*(reinterpret_cast<float*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 8) {
|
||||
store(*(reinterpret_cast<float2*>(&v[0])), row, col);
|
||||
} else if constexpr (sizeof(T) * N == 16) {
|
||||
store(*(reinterpret_cast<float4*>(&v[0])), row, col);
|
||||
} else {
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < N; i++) {
|
||||
*ptr(data, row, col + i) = v[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Load the tile from global memory by loading 16 bytes at a time and storing
|
||||
* them immediately.
|
||||
*/
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void load(Tile& tile, const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
float4 tmp;
|
||||
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
|
||||
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Copy 16 bytes from the globale memory address pointed to by x to the smem
|
||||
* address pointed to by row_address.
|
||||
*
|
||||
* A simple wrapper over the PTX.
|
||||
*/
|
||||
template <typename T>
|
||||
__device__ inline void cp_async_16(uint32_t row_address, const T* x) {
|
||||
asm volatile(
|
||||
"cp.async.ca.shared::cta.global [%0], [%1], 16;\n" ::"r"(row_address),
|
||||
"l"(reinterpret_cast<const int4*>(x)));
|
||||
}
|
||||
|
||||
/**
|
||||
* Submit all the previous async copies to be executed.
|
||||
*/
|
||||
__device__ inline void cp_async_commit() {
|
||||
asm volatile("cp.async.commit_group;\n" ::);
|
||||
}
|
||||
|
||||
/**
|
||||
* Wait for all the async copies to finish.
|
||||
*/
|
||||
__device__ inline void cp_async_wait_all() {
|
||||
asm volatile("cp.async.wait_all;\n" ::);
|
||||
}
|
||||
|
||||
/**
|
||||
* The asynchronous equivalent of load.
|
||||
*
|
||||
* Loads the tile from global memory by submitting a bunch of async copy
|
||||
* instructions. The copy won't start until commit is called and we don't have
|
||||
* a guarantee it will finish until wait is called.
|
||||
*
|
||||
* It should be used as follows
|
||||
*
|
||||
* load(...)
|
||||
* load(...)
|
||||
* cp_async_commit()
|
||||
* do_other_stuff()
|
||||
* cp_async_wait_all()
|
||||
* do_stuff_with_shmem()
|
||||
*/
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void
|
||||
load_async(Tile& tile, uint32_t base_address, const T* x, int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
cp_async_16(
|
||||
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
|
||||
x + i * STEP_ROWS * N);
|
||||
}
|
||||
}
|
||||
|
||||
template <int NUM_WARPS, typename T, typename Tile>
|
||||
__device__ inline void load_async_safe(
|
||||
Tile& tile,
|
||||
uint32_t base_address,
|
||||
const T* x,
|
||||
int N,
|
||||
int max_rows) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
x += row * N + col * ELEMENTS_PER_LOAD;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
if (row + i * STEP_ROWS < max_rows) {
|
||||
cp_async_16(
|
||||
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
|
||||
x + i * STEP_ROWS * N);
|
||||
} else {
|
||||
float4 tmp = {0, 0, 0, 0};
|
||||
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -71,6 +71,7 @@ bool fast::ScaledDotProductAttention::use_fallback(
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(Convolution)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
@@ -80,7 +81,6 @@ NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
|
||||
@@ -2,30 +2,17 @@
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_pack_factor() {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_bytes_per_pack() {
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
||||
}
|
||||
|
||||
template <typename T, int group_size, int bits>
|
||||
__global__ void
|
||||
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
|
||||
@@ -240,144 +227,102 @@ __global__ void affine_dequantize(
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
namespace {
|
||||
|
||||
inline array ensure_row_contiguous(
|
||||
const array& x,
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (!x.flags().row_contiguous) {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
template <typename F>
|
||||
void dispatch_groups(int group_size, F&& f) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
f(std::integral_constant<int, 32>{});
|
||||
break;
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bits(int bits, F&& f) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
case 5:
|
||||
f(std::integral_constant<int, 5>{});
|
||||
break;
|
||||
case 6:
|
||||
f(std::integral_constant<int, 6>{});
|
||||
break;
|
||||
case 8:
|
||||
f(std::integral_constant<int, 8>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& w_pre = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
auto w = ensure_row_contiguous(w_pre, enc, s);
|
||||
enc.set_input_array(w);
|
||||
if (dequantize_) {
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(out);
|
||||
} else {
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
enc.set_output_array(out);
|
||||
enc.set_output_array(scales);
|
||||
enc.set_output_array(biases);
|
||||
}
|
||||
|
||||
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
|
||||
|
||||
// Treat uint32 as uint8 in kernel
|
||||
int uint8_per_uint32 = 4;
|
||||
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
|
||||
: bits_ == 6 ? 4
|
||||
: 8 / bits_;
|
||||
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
|
||||
size_t size =
|
||||
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
|
||||
// Calculate the number of elements per thread
|
||||
int per_thread = group_size_ / WARP_SIZE;
|
||||
size_t size = w.size() / per_thread;
|
||||
|
||||
// Calculate the thread grid that we need to launch
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() /= per_thread;
|
||||
|
||||
if (dequantize_) {
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
} else {
|
||||
grid_shape.back() /= per_thread;
|
||||
}
|
||||
|
||||
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
|
||||
enc.set_input_array(w);
|
||||
enc.set_output_array(wq);
|
||||
enc.set_output_array(scales);
|
||||
enc.set_output_array(biases);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if (dequantize_) {
|
||||
auto kernel =
|
||||
cu::affine_dequantize<DataType, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
w.data<uint8_t>(),
|
||||
inputs[1].data<DataType>(),
|
||||
inputs[2].data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
out.size());
|
||||
} else {
|
||||
auto kernel =
|
||||
cu::affine_quantize<DataType, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
w.data<DataType>(),
|
||||
out.data<uint8_t>(),
|
||||
outputs[1].data<DataType>(),
|
||||
outputs[2].data<DataType>(),
|
||||
w.size());
|
||||
}
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
w.data<T>(),
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
|
||||
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
|
||||
constexpr int uint8_per_uint32 = 4;
|
||||
int packs_per_int;
|
||||
switch (bits_) {
|
||||
case 3:
|
||||
case 5:
|
||||
packs_per_int = 8;
|
||||
break;
|
||||
case 6:
|
||||
packs_per_int = 4;
|
||||
break;
|
||||
default:
|
||||
packs_per_int = 8 / bits_;
|
||||
}
|
||||
|
||||
size_t size = w.size() / packs_per_int;
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
|
||||
enc.set_input_array(wq);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(w);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
228
mlx/backend/cuda/quantized/qmm.cu
Normal file
228
mlx/backend/cuda/quantized/qmm.cu
Normal file
@@ -0,0 +1,228 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/matmul/mma.cuh"
|
||||
#include "mlx/backend/cuda/matmul/tiles.cuh"
|
||||
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <int NUM_WARPS, int group_size, int bits, typename T, typename Tile>
|
||||
__device__ inline void load_quantized(
|
||||
Tile& tile,
|
||||
const uint8_t* x,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int N) {
|
||||
constexpr int NUM_THREADS = NUM_WARPS * 32;
|
||||
constexpr int ELEMENTS_PER_LOAD = sizeof(uint32_t) * get_pack_factor<bits>();
|
||||
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
|
||||
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
|
||||
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
|
||||
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
|
||||
constexpr int MASK = (1 << bits) - 1;
|
||||
|
||||
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
|
||||
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
|
||||
|
||||
const int Nx = N / get_pack_factor<bits>();
|
||||
const int Ng = N / group_size;
|
||||
|
||||
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
|
||||
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
|
||||
T vs[ELEMENTS_PER_LOAD];
|
||||
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
|
||||
T s = scales[i * STEP_ROWS * Ng];
|
||||
T b = biases[i * STEP_ROWS * Ng];
|
||||
MLX_UNROLL
|
||||
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
|
||||
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
|
||||
}
|
||||
tile.store(vs, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int group_size,
|
||||
int bits,
|
||||
bool aligned_M>
|
||||
__global__ void qmm_t(
|
||||
const T* x,
|
||||
const uint8_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
T* y,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int WARPS_M = 2;
|
||||
constexpr int WARPS_N = 4;
|
||||
constexpr int NUM_WARPS = WARPS_M * WARPS_N;
|
||||
constexpr int WARP_STEP_M = BM / WARPS_M;
|
||||
constexpr int WARP_STEP_N = BN / WARPS_N;
|
||||
|
||||
const int warpid = threadIdx.x / 32;
|
||||
const int laneid = threadIdx.x % 32;
|
||||
const int wm = warpid / WARPS_N;
|
||||
const int wn = warpid % WARPS_N;
|
||||
const int offset_m = wm * WARP_STEP_M;
|
||||
const int offset_n = wn * WARP_STEP_N;
|
||||
|
||||
extern __shared__ char shmem[];
|
||||
SharedTile<T, BM, BK>(&xs)[1] = *(SharedTile<T, BM, BK>(*)[1])(&shmem[0]);
|
||||
SharedTile<T, BN, BK>(&ws)[1] =
|
||||
*(SharedTile<T, BN, BK>(*)[1])(&shmem[1 * sizeof(T) * BM * BK]);
|
||||
|
||||
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
|
||||
RegisterTile<T, BM / WARPS_M, 16> A;
|
||||
RegisterTile<T, BN / WARPS_N, 16> B;
|
||||
|
||||
const int max_rows = M - blockIdx.y * BM;
|
||||
|
||||
x += blockIdx.y * BM * K;
|
||||
w += blockIdx.x * BN * K / get_pack_factor<bits>();
|
||||
scales += blockIdx.x * BN * K / group_size;
|
||||
biases += blockIdx.x * BN * K / group_size;
|
||||
y += blockIdx.y * BM * N + blockIdx.x * BN;
|
||||
|
||||
C.fill(0);
|
||||
|
||||
int tic = 0;
|
||||
uint32_t base_addr_xs[1], base_addr_ws[1];
|
||||
base_addr_xs[0] = __cvta_generic_to_shared(&xs[0].data[0]);
|
||||
base_addr_ws[0] = __cvta_generic_to_shared(&ws[0].data[0]);
|
||||
|
||||
if (aligned_M || max_rows >= BM) {
|
||||
for (int k_block = 0; k_block < K; k_block += BK) {
|
||||
load_async<NUM_WARPS>(xs[tic], base_addr_xs[tic], x + k_block, K);
|
||||
cp_async_commit();
|
||||
load_quantized<NUM_WARPS, group_size, bits>(
|
||||
ws[tic],
|
||||
w + k_block / get_pack_factor<bits>(),
|
||||
scales + k_block / group_size,
|
||||
biases + k_block / group_size,
|
||||
K);
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < BK / 16; k++) {
|
||||
A.load(
|
||||
xs[tic],
|
||||
base_addr_xs[tic],
|
||||
offset_m + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
B.load(
|
||||
ws[tic],
|
||||
base_addr_ws[tic],
|
||||
offset_n + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
mma_t(C, A, B);
|
||||
}
|
||||
}
|
||||
C.store_global(y, N, offset_m, offset_n);
|
||||
} else {
|
||||
for (int k_block = 0; k_block < K; k_block += BK) {
|
||||
load_async_safe<NUM_WARPS>(
|
||||
xs[tic], base_addr_xs[tic], x + k_block, K, max_rows);
|
||||
cp_async_commit();
|
||||
load_quantized<NUM_WARPS, group_size, bits>(
|
||||
ws[tic],
|
||||
w + k_block / get_pack_factor<bits>(),
|
||||
scales + k_block / group_size,
|
||||
biases + k_block / group_size,
|
||||
K);
|
||||
cp_async_wait_all();
|
||||
__syncthreads();
|
||||
|
||||
MLX_UNROLL
|
||||
for (int k = 0; k < BK / 16; k++) {
|
||||
A.load(
|
||||
xs[tic],
|
||||
base_addr_xs[tic],
|
||||
offset_m + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
B.load(
|
||||
ws[tic],
|
||||
base_addr_ws[tic],
|
||||
offset_n + laneid % 16,
|
||||
k * 16 + laneid / 16 * 8);
|
||||
mma_t(C, A, B);
|
||||
}
|
||||
}
|
||||
C.store_global_safe(y, N, offset_m, offset_n, max_rows);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void qmm(
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& out,
|
||||
bool transpose_,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (x.dtype() != bfloat16) {
|
||||
throw std::invalid_argument("[qmm] Only bfloat16 is supported for now");
|
||||
}
|
||||
if (!transpose_) {
|
||||
throw std::invalid_argument(
|
||||
"[qmm] Only transposed matmul is supported for now");
|
||||
}
|
||||
|
||||
dispatch_float_types(x.dtype(), "qmm", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
constexpr int BM = 128;
|
||||
constexpr int BN = 128;
|
||||
constexpr int BK = 32;
|
||||
auto kernel =
|
||||
cu::qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, true>;
|
||||
if (M % BM != 0) {
|
||||
kernel = cu::
|
||||
qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, false>;
|
||||
}
|
||||
|
||||
dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM);
|
||||
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
2 * 4 * 32,
|
||||
1 * sizeof(DataType) * (BM * BK + BN * BK),
|
||||
x.data<DataType>(),
|
||||
w.data<uint8_t>(),
|
||||
scales.data<DataType>(),
|
||||
biases.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
M,
|
||||
N,
|
||||
K);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
113
mlx/backend/cuda/quantized/quantized.cu
Normal file
113
mlx/backend/cuda/quantized/quantized.cu
Normal file
@@ -0,0 +1,113 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/quantized/quantized.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
inline array ensure_row_contiguous(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (!x.flags().row_contiguous) {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
inline array ensure_row_contiguous_matrix(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
auto stride_0 = x.strides()[x.ndim() - 2];
|
||||
auto stride_1 = x.strides()[x.ndim() - 1];
|
||||
if (stride_0 == x.shape(-1) && stride_1 == 1) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Make sure the last two dims of x and w, s, b are contiguous. This should
|
||||
// be relaxed for x.
|
||||
array x = ensure_row_contiguous_matrix(inputs[0], enc, s);
|
||||
array w = ensure_row_contiguous_matrix(inputs[1], enc, s);
|
||||
array scales = ensure_row_contiguous_matrix(inputs[2], enc, s);
|
||||
array biases = ensure_row_contiguous_matrix(inputs[3], enc, s);
|
||||
|
||||
// Extract the matmul shapes
|
||||
bool non_batched = w.ndim() == 2 && x.flags().row_contiguous;
|
||||
int K = x.shape(-1);
|
||||
int M = non_batched ? x.size() / K : x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
qmm(x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
out,
|
||||
transpose_,
|
||||
group_size_,
|
||||
bits_,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
enc,
|
||||
s);
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
if (dequantize_) {
|
||||
auto wq = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
auto& w = outputs[0];
|
||||
|
||||
w.set_data(allocator::malloc(w.nbytes()));
|
||||
|
||||
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
auto w = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto& wq = outputs[0];
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
|
||||
wq.set_data(allocator::malloc(wq.nbytes()));
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
42
mlx/backend/cuda/quantized/quantized.cuh
Normal file
42
mlx/backend/cuda/quantized/quantized.cuh
Normal file
@@ -0,0 +1,42 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void qmm(
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& out,
|
||||
bool transpose_,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
||||
59
mlx/backend/cuda/quantized/quantized_utils.cuh
Normal file
59
mlx/backend/cuda/quantized/quantized_utils.cuh
Normal file
@@ -0,0 +1,59 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_pack_factor() {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_bytes_per_pack() {
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename F>
|
||||
void dispatch_groups(int group_size, F&& f) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
f(std::integral_constant<int, 32>{});
|
||||
break;
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bits(int bits, F&& f) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
case 5:
|
||||
f(std::integral_constant<int, 5>{});
|
||||
break;
|
||||
case 6:
|
||||
f(std::integral_constant<int, 6>{});
|
||||
break;
|
||||
case 8:
|
||||
f(std::integral_constant<int, 8>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -170,6 +170,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbitsc,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
@@ -180,6 +181,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbits,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
|
||||
@@ -120,6 +120,7 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
intermediate.data<U>(),
|
||||
block_step,
|
||||
@@ -146,6 +147,7 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
out.data<U>(),
|
||||
block_step,
|
||||
|
||||
@@ -230,7 +230,7 @@ void col_reduce_looped(
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, indata, out.data<U>(), args);
|
||||
kernel, grid, blocks, 0, indata, out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -41,7 +41,8 @@ void init_reduce(
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
|
||||
grid.x = (grid.x + 1023) / 1024;
|
||||
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, out.data<U>(), out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -269,7 +269,7 @@ void row_reduce_simple(
|
||||
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), size);
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -322,7 +322,7 @@ void row_reduce_looped(
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), args);
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -88,7 +89,7 @@ __global__ void rms_norm(
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float norm = static_cast<float>(xn[i]) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm);
|
||||
@@ -131,7 +132,7 @@ __global__ void rms_norm_vjp(
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
float wi = wn[i];
|
||||
@@ -153,7 +154,7 @@ __global__ void rms_norm_vjp(
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = xn[i];
|
||||
float wi = wn[i];
|
||||
@@ -231,6 +232,7 @@ void RMSNorm::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
@@ -326,6 +328,7 @@ void RMSNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -325,6 +325,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -341,6 +342,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -360,6 +362,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -381,6 +384,7 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
|
||||
@@ -414,6 +414,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
in.data_size() / axis_size,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size);
|
||||
@@ -443,6 +444,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size,
|
||||
|
||||
@@ -152,6 +152,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
@@ -76,7 +76,7 @@ __global__ void ternary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc(
|
||||
auto [a_idx, b_idx, c_idx] = elem_to_loc_4d(
|
||||
index,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
@@ -133,6 +133,7 @@ void ternary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
@@ -151,6 +152,7 @@ void ternary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
@@ -180,6 +182,7 @@ void ternary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -47,7 +48,7 @@ __global__ void unary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto idx = elem_to_loc(index, shape.data(), strides.data(), ndim);
|
||||
auto idx = elem_to_loc_4d(index, shape.data(), strides.data(), ndim);
|
||||
out[index] = Op{}(in[idx]);
|
||||
}
|
||||
}
|
||||
@@ -141,6 +142,7 @@ void unary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
@@ -153,6 +155,7 @@ void unary_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
|
||||
@@ -17,14 +17,6 @@ CudaStream::~CudaStream() {
|
||||
CHECK_CUDA_ERROR(cudaStreamDestroy(stream_));
|
||||
}
|
||||
|
||||
void check_cublas_error(const char* name, cublasStatus_t err) {
|
||||
if (err != CUBLAS_STATUS_SUCCESS) {
|
||||
// TODO: Use cublasGetStatusString when it is widely available.
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
|
||||
}
|
||||
}
|
||||
|
||||
void check_cuda_error(const char* name, cudaError_t err) {
|
||||
if (err != cudaSuccess) {
|
||||
throw std::runtime_error(
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
@@ -34,12 +33,10 @@ class CudaStream {
|
||||
};
|
||||
|
||||
// Throw exception if the cuda API does not succeed.
|
||||
void check_cublas_error(const char* name, cublasStatus_t err);
|
||||
void check_cuda_error(const char* name, cudaError_t err);
|
||||
void check_cuda_error(const char* name, CUresult err);
|
||||
|
||||
// The macro version that prints the command that failed.
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
|
||||
|
||||
// Convert Dtype to CUDA C++ types.
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
@@ -11,10 +12,10 @@ Worker::Worker()
|
||||
|
||||
Worker::~Worker() {
|
||||
{
|
||||
std::lock_guard lock(mtx_);
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
stop_ = true;
|
||||
}
|
||||
cond_.notify_one();
|
||||
worker_event_.signal(batch_ + 1);
|
||||
worker_.join();
|
||||
}
|
||||
|
||||
@@ -22,41 +23,53 @@ void Worker::add_task(std::function<void()> task) {
|
||||
pending_tasks_.push_back(std::move(task));
|
||||
}
|
||||
|
||||
void Worker::signal(void* data) {
|
||||
auto w = static_cast<Worker*>(data);
|
||||
{
|
||||
std::lock_guard lock(w->mtx_);
|
||||
w->signaled_batch_++;
|
||||
void Worker::consume_in_this_thread() {
|
||||
for (auto& task : pending_tasks_) {
|
||||
task();
|
||||
}
|
||||
w->cond_.notify_one();
|
||||
pending_tasks_.clear();
|
||||
}
|
||||
|
||||
void Worker::end_batch() {
|
||||
batch_++;
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
worker_tasks_[batch_] = std::move(pending_tasks_);
|
||||
}
|
||||
uncommited_batches_++;
|
||||
}
|
||||
|
||||
void Worker::commit() {
|
||||
if (uncommited_batches_ == 0) {
|
||||
return;
|
||||
}
|
||||
uncommited_batches_ = 0;
|
||||
worker_event_.signal(batch_);
|
||||
}
|
||||
|
||||
void Worker::commit(cudaStream_t stream) {
|
||||
// Move pending tasks into tasks
|
||||
if (pending_tasks_.empty()) {
|
||||
if (uncommited_batches_ == 0) {
|
||||
return;
|
||||
}
|
||||
{
|
||||
std::lock_guard lock(mtx_);
|
||||
// Move pending tasks into ready tasks
|
||||
worker_tasks_[++committed_batch_] = std::move(pending_tasks_);
|
||||
}
|
||||
uncommited_batches_ = 0;
|
||||
// Signal the |worker_event_| in |signal_stream_| after the kernels in
|
||||
// |stream_| finish running.
|
||||
signal_event_.record(stream);
|
||||
signal_event_.wait(signal_stream_);
|
||||
cudaLaunchHostFunc(signal_stream_, signal, this);
|
||||
worker_event_.signal(signal_stream_, batch_);
|
||||
}
|
||||
|
||||
void Worker::thread_fn() {
|
||||
// The worker thread is safe to free buffers.
|
||||
allocator().register_this_thread();
|
||||
|
||||
while (!stop_) {
|
||||
uint64_t current_batch = 0;
|
||||
uint64_t batch = worker_event_.value();
|
||||
Tasks tasks;
|
||||
{
|
||||
std::unique_lock<std::mutex> lk(mtx_);
|
||||
cond_.wait(lk, [this, ¤t_batch] {
|
||||
return this->signaled_batch_ > current_batch || this->stop_;
|
||||
});
|
||||
current_batch = signaled_batch_;
|
||||
auto end = worker_tasks_.upper_bound(current_batch);
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
// Move tasks in signaled batches.
|
||||
auto end = worker_tasks_.upper_bound(batch);
|
||||
for (auto it = worker_tasks_.begin(); it != end; ++it) {
|
||||
if (tasks.empty()) {
|
||||
tasks = std::move(it->second);
|
||||
@@ -72,6 +85,7 @@ void Worker::thread_fn() {
|
||||
auto task = std::move(tasks[i]);
|
||||
task();
|
||||
}
|
||||
worker_event_.wait(batch + 1);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -5,7 +5,6 @@
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
|
||||
#include <condition_variable>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
#include <mutex>
|
||||
@@ -25,24 +24,38 @@ class Worker {
|
||||
// Add a pending |task| that will run when consumed or commited.
|
||||
void add_task(std::function<void()> task);
|
||||
|
||||
// Run pending tasks immediately in current thread.
|
||||
void consume_in_this_thread();
|
||||
|
||||
// Put pending tasks in a batch.
|
||||
void end_batch();
|
||||
|
||||
// Inform worker thread to run current batches now.
|
||||
void commit();
|
||||
|
||||
// Inform worker thread to run current batches after kernels in |stream|
|
||||
// finish running.
|
||||
void commit(cudaStream_t stream);
|
||||
|
||||
// Return how many batches have been added but not committed yet.
|
||||
size_t uncommited_batches() const {
|
||||
return uncommited_batches_;
|
||||
}
|
||||
|
||||
private:
|
||||
static void signal(void*);
|
||||
|
||||
void thread_fn();
|
||||
std::mutex mtx_;
|
||||
std::condition_variable cond_;
|
||||
|
||||
uint64_t committed_batch_{0};
|
||||
uint64_t signaled_batch_{0};
|
||||
uint64_t batch_{0};
|
||||
size_t uncommited_batches_{0};
|
||||
|
||||
// Cuda stream and event for signaling kernel completion.
|
||||
CudaStream signal_stream_;
|
||||
CudaEvent signal_event_;
|
||||
|
||||
// Worker thread.
|
||||
SharedEvent worker_event_;
|
||||
std::thread worker_;
|
||||
std::mutex worker_mutex_;
|
||||
bool stop_{false};
|
||||
|
||||
// Tasks are put in |pending_tasks_| first, and then moved to
|
||||
@@ -50,7 +63,6 @@ class Worker {
|
||||
using Tasks = std::vector<std::function<void()>>;
|
||||
Tasks pending_tasks_;
|
||||
std::map<uint64_t, Tasks> worker_tasks_;
|
||||
std::thread worker_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -128,7 +128,8 @@ Buffer MetalAllocator::malloc(size_t size) {
|
||||
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache
|
||||
if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) {
|
||||
num_resources_ -=
|
||||
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
|
||||
|
||||
@@ -14,10 +14,6 @@ Event::Event(Stream stream) : stream_(stream) {
|
||||
auto p = metal::new_scoped_memory_pool();
|
||||
event_ = std::shared_ptr<void>(
|
||||
metal::device(Device::gpu).mtl_device()->newSharedEvent(), dtor);
|
||||
if (event_ == nullptr) {
|
||||
throw std::runtime_error(
|
||||
"[Event::Event] Failed to create Metal shared event.");
|
||||
}
|
||||
}
|
||||
|
||||
void Event::wait() {
|
||||
|
||||
@@ -265,15 +265,9 @@ void qvm_split_k(
|
||||
MTL::Size group_dims = MTL::Size(bk, 2, 1);
|
||||
MTL::Size grid_dims = MTL::Size(M, N / bn, B);
|
||||
|
||||
int x_batch_ndims = x.ndim() - 2;
|
||||
auto x_shape = x.shape();
|
||||
auto x_strides = x.strides();
|
||||
if (x_shape.size() == 1) {
|
||||
x_shape.insert(x_shape.begin(), 1);
|
||||
x_strides.insert(x_strides.begin(), 0);
|
||||
}
|
||||
|
||||
int x_ndim = x_shape.size();
|
||||
int x_batch_ndims = x_ndim - 2;
|
||||
int w_batch_ndims = w.ndim() - 2;
|
||||
auto w_shape = w.shape();
|
||||
auto w_strides = w.strides();
|
||||
@@ -284,7 +278,7 @@ void qvm_split_k(
|
||||
x_shape.insert(x_shape.end() - 2, split_k);
|
||||
x_shape.back() /= split_k;
|
||||
x_strides.insert(x_strides.end() - 2, split_D);
|
||||
x_strides[x_ndim - 1] = split_D;
|
||||
x_strides[x.ndim() - 1] = split_D;
|
||||
x_batch_ndims += 1;
|
||||
|
||||
w_shape.insert(w_shape.end() - 2, split_k);
|
||||
@@ -297,9 +291,6 @@ void qvm_split_k(
|
||||
int final_block_size = K - (split_k - 1) * split_D;
|
||||
|
||||
auto temp_shape = out.shape();
|
||||
if (temp_shape.size() == 1) {
|
||||
temp_shape.insert(temp_shape.begin(), 1);
|
||||
}
|
||||
temp_shape.insert(temp_shape.end() - 2, split_k);
|
||||
array intermediate(temp_shape, x.dtype(), nullptr, {});
|
||||
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
||||
|
||||
@@ -708,10 +708,7 @@ array scaled_dot_product_attention(
|
||||
}
|
||||
if (mask.dtype() == bool_) {
|
||||
scores = where(
|
||||
mask,
|
||||
scores,
|
||||
array(-std::numeric_limits<float>::infinity(), scores.dtype()),
|
||||
s);
|
||||
mask, scores, array(finfo(scores.dtype()).min, scores.dtype()));
|
||||
} else {
|
||||
scores = add(scores, mask, s);
|
||||
}
|
||||
|
||||
@@ -1271,6 +1271,19 @@ std::vector<array> Convolution::vjp(
|
||||
has_neg_padding |= (pd < 0);
|
||||
}
|
||||
|
||||
auto padding_lo_ = std::vector<int>(padding_lo);
|
||||
auto padding_hi_ = std::vector<int>(padding_hi);
|
||||
|
||||
// Use negative padding on the gradient output
|
||||
if (has_neg_padding) {
|
||||
for (auto& p : padding_lo_) {
|
||||
p = std::max(0, p);
|
||||
}
|
||||
for (auto& p : padding_hi_) {
|
||||
p = std::max(0, p);
|
||||
}
|
||||
}
|
||||
|
||||
auto wt_trans = group_transpose(wt, 0, 1, -1);
|
||||
auto grad = conv_general(
|
||||
/* const array& input = */ cotan,
|
||||
@@ -1292,9 +1305,12 @@ std::vector<array> Convolution::vjp(
|
||||
for (int i = 0; i < grad.ndim() - 2; i++) {
|
||||
if (padding_lo[i] < 0) {
|
||||
starts[i + 1] -= padding_lo[i];
|
||||
padding_lo[i] = 0;
|
||||
}
|
||||
|
||||
if (padding_hi[i] < 0) {
|
||||
stops[i + 1] += padding_hi[i];
|
||||
padding_hi[i] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -72,12 +72,7 @@ array eval_impl(std::vector<array> outputs, bool async) {
|
||||
|
||||
// Stream events for synchronization after eval
|
||||
std::unordered_map<uint32_t, Event> events;
|
||||
{
|
||||
auto e = Event{stream};
|
||||
e.set_value(1);
|
||||
synchronizer.attach_event(e);
|
||||
events.emplace(stream.index, std::move(e));
|
||||
}
|
||||
events.emplace(stream.index, Event{stream});
|
||||
|
||||
{
|
||||
// Record the degree of each input
|
||||
@@ -189,26 +184,21 @@ array eval_impl(std::vector<array> outputs, bool async) {
|
||||
}
|
||||
}
|
||||
|
||||
std::unordered_set<int> open_streams;
|
||||
|
||||
while (!tape.empty()) {
|
||||
auto arr = std::move(tape.back());
|
||||
tape.pop_back();
|
||||
|
||||
auto stream = arr.primitive().stream();
|
||||
open_streams.insert(stream.index);
|
||||
|
||||
if (async) {
|
||||
// Lookup corresponding event
|
||||
auto e = events.find(stream.index);
|
||||
if (e == events.end()) {
|
||||
e = events.emplace(stream.index, Event{stream}).first;
|
||||
}
|
||||
e->second.set_value(1);
|
||||
arr.attach_event(e->second);
|
||||
for (auto& s : arr.siblings()) {
|
||||
s.attach_event(e->second);
|
||||
}
|
||||
// Lookup corresponding event
|
||||
auto e = events.find(stream.index);
|
||||
if (e == events.end()) {
|
||||
e = events.emplace(stream.index, Event{stream}).first;
|
||||
}
|
||||
e->second.set_value(1);
|
||||
arr.attach_event(e->second);
|
||||
for (auto& s : arr.siblings()) {
|
||||
s.attach_event(e->second);
|
||||
}
|
||||
|
||||
for (auto& in : arr.inputs()) {
|
||||
@@ -237,10 +227,9 @@ array eval_impl(std::vector<array> outputs, bool async) {
|
||||
(get_active_memory() > get_memory_limit() &&
|
||||
scheduler::n_active_tasks() > 0)) {
|
||||
// Commit any open streams
|
||||
for (auto i : open_streams) {
|
||||
auto s = get_stream(i);
|
||||
if (s.device == Device::gpu) {
|
||||
gpu::finalize(s);
|
||||
for (auto& [_, e] : events) {
|
||||
if (e.stream().device == Device::gpu) {
|
||||
gpu::finalize(e.stream());
|
||||
}
|
||||
}
|
||||
scheduler::wait_for_one();
|
||||
@@ -274,11 +263,9 @@ array eval_impl(std::vector<array> outputs, bool async) {
|
||||
}
|
||||
|
||||
// Signal the event in its stream
|
||||
for (auto i : open_streams) {
|
||||
auto s = get_stream(i);
|
||||
if (auto e = events.find(i); e != events.end()) {
|
||||
e->second.signal(s);
|
||||
}
|
||||
for (auto& [_, e] : events) {
|
||||
auto s = e.stream();
|
||||
e.signal(s);
|
||||
if (s.device == Device::gpu) {
|
||||
gpu::finalize(s);
|
||||
}
|
||||
@@ -315,7 +302,7 @@ void eval(std::vector<array> outputs) {
|
||||
return;
|
||||
}
|
||||
|
||||
eval_impl(std::move(outputs), false).wait();
|
||||
eval_impl(std::move(outputs), false).event().wait();
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<array>> vjp(
|
||||
|
||||
@@ -3,8 +3,8 @@
|
||||
#pragma once
|
||||
|
||||
#define MLX_VERSION_MAJOR 0
|
||||
#define MLX_VERSION_MINOR 27
|
||||
#define MLX_VERSION_PATCH 1
|
||||
#define MLX_VERSION_MINOR 26
|
||||
#define MLX_VERSION_PATCH 5
|
||||
#define MLX_VERSION_NUMERIC \
|
||||
(100000 * MLX_VERSION_MAJOR + 1000 * MLX_VERSION_MINOR + MLX_VERSION_PATCH)
|
||||
|
||||
|
||||
@@ -477,7 +477,7 @@ class Adam(Optimizer):
|
||||
|
||||
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
|
||||
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
|
||||
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{\sqrt{v_{t+1}} + \epsilon}
|
||||
w_{t+1} &= w_t - \lambda \frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}}
|
||||
|
||||
Args:
|
||||
learning_rate (float or callable): The learning rate :math:`\lambda`.
|
||||
@@ -546,7 +546,7 @@ class AdamW(Adam):
|
||||
|
||||
m_{t+1} &= \beta_1 m_t + (1 - \beta_1) g_t \\
|
||||
v_{t+1} &= \beta_2 v_t + (1 - \beta_2) g_t^2 \\
|
||||
w_{t+1} &= w_t - \alpha (\frac{m_{t+1}}{\sqrt{v_{t+1}} + \epsilon} + \lambda w_t)
|
||||
w_{t+1} &= w_t - \alpha (\frac{m_{t+1}}{\sqrt{v_{t+1} + \epsilon}} + \lambda w_t)
|
||||
|
||||
Args:
|
||||
learning_rate (float or callable): The learning rate :math:`\alpha`.
|
||||
|
||||
@@ -4,8 +4,6 @@ auditwheel repair dist/* \
|
||||
--plat manylinux_2_35_x86_64 \
|
||||
--exclude libcublas* \
|
||||
--exclude libnvrtc* \
|
||||
--exclude libcuda* \
|
||||
--exclude libcudnn* \
|
||||
-w wheel_tmp
|
||||
|
||||
|
||||
@@ -17,7 +15,7 @@ rm "${repaired_wheel}"
|
||||
mlx_so="mlx/lib/libmlx.so"
|
||||
rpath=$(patchelf --print-rpath "${mlx_so}")
|
||||
base="\$ORIGIN/../../nvidia"
|
||||
rpath=$rpath:${base}/cublas/lib:${base}/cuda_nvrtc/lib:${base}/cudnn/lib
|
||||
rpath=$rpath:${base}/cublas/lib:${base}/cuda_nvrtc/lib
|
||||
patchelf --force-rpath --set-rpath "$rpath" "$mlx_so"
|
||||
python ../python/scripts/repair_record.py ${mlx_so}
|
||||
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
auditwheel repair dist/* \
|
||||
--plat manylinux_2_35_x86_64 \
|
||||
--only-plat \
|
||||
--exclude libmlx* \
|
||||
-w wheel_tmp
|
||||
|
||||
|
||||
@@ -4022,9 +4022,8 @@ void init_ops(nb::module_& m) {
|
||||
Args:
|
||||
file (file, str): File in which the array is saved.
|
||||
arrays (dict(str, array)): The dictionary of names to arrays to
|
||||
be saved.
|
||||
metadata (dict(str, str), optional): The dictionary of
|
||||
metadata to be saved.
|
||||
be saved. metadata (dict(str, str), optional): The dictionary of
|
||||
metadata to be saved.
|
||||
)pbdoc");
|
||||
m.def(
|
||||
"save_gguf",
|
||||
@@ -4259,7 +4258,7 @@ void init_ops(nb::module_& m) {
|
||||
|
||||
.. math::
|
||||
|
||||
w_i = s \hat{w_i} + \beta
|
||||
w_i = s \hat{w_i} - \beta
|
||||
|
||||
Args:
|
||||
w (array): Matrix to be quantized
|
||||
|
||||
@@ -15,12 +15,19 @@ cuda_skip = {
|
||||
"TestOps.test_hadamard_grad_vmap",
|
||||
# Convolutions NYI
|
||||
"TestConv.test_1d_conv_with_2d",
|
||||
"TestConv.test_asymmetric_padding",
|
||||
"TestConv.test_basic_grad_shapes",
|
||||
"TestConv.test_conv2d_unaligned_channels",
|
||||
"TestConv.test_conv_1d_groups_flipped",
|
||||
"TestConv.test_conv_general_flip_grad",
|
||||
"TestConv.test_conv_groups_grad",
|
||||
"TestConv.test_numpy_conv",
|
||||
"TestConv.test_repeated_conv",
|
||||
"TestConv.test_torch_conv_1D",
|
||||
"TestConv.test_torch_conv_1D_grad",
|
||||
"TestConv.test_torch_conv_2D",
|
||||
"TestConv.test_torch_conv_2D_grad",
|
||||
"TestConv.test_torch_conv_3D",
|
||||
"TestConv.test_torch_conv_3D_grad",
|
||||
"TestConv.test_torch_conv_depthwise",
|
||||
"TestConv.test_torch_conv_general",
|
||||
@@ -33,6 +40,10 @@ cuda_skip = {
|
||||
"TestConvTranspose.test_torch_conv_transpose_3D",
|
||||
"TestConvTranspose.test_torch_conv_transpose_3D_grad",
|
||||
"TestConvTranspose.test_torch_conv_transpose_3d_output_padding",
|
||||
"TestExportImport.test_export_conv",
|
||||
"TestLayers.test_conv1d",
|
||||
"TestLayers.test_conv2d",
|
||||
"TestVmap.test_vmap_conv",
|
||||
# FFTs NYI
|
||||
"TestFFT.test_fft",
|
||||
"TestFFT.test_fft_big_powers_of_two",
|
||||
|
||||
@@ -398,18 +398,6 @@ class TestFastSDPA(mlx_tests.MLXTestCase):
|
||||
)
|
||||
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
|
||||
|
||||
def test_fully_masked(self):
|
||||
Lkv = 8
|
||||
mask = mx.array(False)
|
||||
for D in [4, 128]:
|
||||
for Lq in [1, 8]:
|
||||
q = mx.random.normal(shape=(1, 4, Lq, D))
|
||||
k = mx.random.normal(shape=(1, 4, Lkv, D))
|
||||
v = mx.random.normal(shape=(1, 4, Lkv, D))
|
||||
|
||||
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1)
|
||||
self.assertTrue(mx.all(mx.isnan(out)))
|
||||
|
||||
def test_fast_sdpa_few_query(self):
|
||||
D = 64
|
||||
L = 43
|
||||
|
||||
@@ -220,19 +220,6 @@ class TestQuantized(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 2e-3)
|
||||
|
||||
# Test with 1D vector
|
||||
group_size = 32
|
||||
bits = 8
|
||||
N = 2048
|
||||
x = 1e-1 * mx.random.normal(shape=(N,), key=k1)
|
||||
w = 1e-1 * mx.random.normal(shape=(N, N), key=k2)
|
||||
w_q, scales, biases = mx.quantize(w, group_size, bits)
|
||||
w_hat = mx.dequantize(w_q, scales, biases, group_size, bits)
|
||||
y_q = mx.quantized_matmul(x, w_q, scales, biases, False, group_size, bits)
|
||||
y_hat = x @ w_hat
|
||||
self.assertEqual(y_q.shape, y_hat.shape)
|
||||
self.assertLess((y_q - y_hat).abs().max(), 2e-3)
|
||||
|
||||
def test_throw(self):
|
||||
x = mx.random.normal(shape=(10, 512))
|
||||
w = mx.random.normal(shape=(32, 512))
|
||||
|
||||
47
setup.py
47
setup.py
@@ -9,7 +9,7 @@ from functools import partial
|
||||
from pathlib import Path
|
||||
from subprocess import run
|
||||
|
||||
from setuptools import Command, Extension, find_namespace_packages, setup
|
||||
from setuptools import Command, Extension, setup
|
||||
from setuptools.command.bdist_wheel import bdist_wheel
|
||||
from setuptools.command.build_ext import build_ext
|
||||
|
||||
@@ -166,10 +166,6 @@ class GenerateStubs(Command):
|
||||
# Run again without recursive to specify output file name
|
||||
subprocess.run(["rm", f"{out_path}/mlx.pyi"])
|
||||
subprocess.run(stub_cmd + ["-o", f"{out_path}/__init__.pyi"])
|
||||
# mx.bool_ gets filtered by nanobind because of the trailing
|
||||
# underscore, add it manually:
|
||||
with open(f"{out_path}/__init__.pyi", "a") as fid:
|
||||
fid.write("\nbool_: Dtype = ...")
|
||||
|
||||
|
||||
class MLXBdistWheel(bdist_wheel):
|
||||
@@ -188,23 +184,19 @@ with open(Path(__file__).parent / "README.md", encoding="utf-8") as f:
|
||||
|
||||
if __name__ == "__main__":
|
||||
package_dir = {"": "python"}
|
||||
packages = find_namespace_packages(
|
||||
where="python",
|
||||
exclude=[
|
||||
"src",
|
||||
"tests",
|
||||
"scripts",
|
||||
"mlx.lib",
|
||||
"mlx.include",
|
||||
"mlx.share",
|
||||
"mlx.share.**",
|
||||
"mlx.include.**",
|
||||
],
|
||||
)
|
||||
packages = [
|
||||
"mlx",
|
||||
"mlx.nn",
|
||||
"mlx.nn.layers",
|
||||
"mlx.optimizers",
|
||||
]
|
||||
|
||||
build_macos = platform.system() == "Darwin"
|
||||
build_cuda = "MLX_BUILD_CUDA=ON" in os.environ.get("CMAKE_ARGS", "")
|
||||
|
||||
install_requires = []
|
||||
if build_cuda:
|
||||
install_requires = ["nvidia-cublas-cu12", "nvidia-cuda-nvrtc-cu12"]
|
||||
version = get_version()
|
||||
|
||||
_setup = partial(
|
||||
@@ -229,7 +221,7 @@ if __name__ == "__main__":
|
||||
},
|
||||
)
|
||||
|
||||
package_data = {"mlx.core": ["*.pyi"]}
|
||||
package_data = {"mlx": ["lib/*", "include/*", "share/*"], "mlx.core": ["*.pyi"]}
|
||||
|
||||
extras = {
|
||||
"dev": [
|
||||
@@ -247,7 +239,6 @@ if __name__ == "__main__":
|
||||
"mlx.distributed_config = mlx.distributed_run:distributed_config",
|
||||
]
|
||||
}
|
||||
install_requires = []
|
||||
|
||||
# Release builds for PyPi are in two stages.
|
||||
# Each stage should be run from a clean build:
|
||||
@@ -267,11 +258,11 @@ if __name__ == "__main__":
|
||||
# - Package name is back-end specific, e.g mlx-metal
|
||||
if build_stage != 2:
|
||||
if build_stage == 1:
|
||||
install_requires.append(
|
||||
f'mlx-metal=={version}; platform_system == "Darwin"'
|
||||
)
|
||||
extras["cuda"] = [f'mlx-cuda=={version}; platform_system == "Linux"']
|
||||
extras["cpu"] = [f'mlx-cpu=={version}; platform_system == "Linux"']
|
||||
if build_macos:
|
||||
install_requires += [f"mlx-metal=={version}"]
|
||||
else:
|
||||
extras["cuda"] = [f"mlx-cuda=={version}"]
|
||||
extras["cpu"] = [f"mlx-cpu=={version}"]
|
||||
|
||||
_setup(
|
||||
name="mlx",
|
||||
@@ -286,15 +277,9 @@ if __name__ == "__main__":
|
||||
name = "mlx-metal"
|
||||
elif build_cuda:
|
||||
name = "mlx-cuda"
|
||||
install_requires += [
|
||||
"nvidia-cublas-cu12==12.9.*",
|
||||
"nvidia-cuda-nvrtc-cu12==12.9.*",
|
||||
"nvidia-cudnn-cu12==9.*",
|
||||
]
|
||||
else:
|
||||
name = "mlx-cpu"
|
||||
_setup(
|
||||
name=name,
|
||||
packages=["mlx"],
|
||||
install_requires=install_requires,
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user