Compare commits

...

5 Commits

Author SHA1 Message Date
Awni Hannun
f07eb684a6 fix 2025-06-12 20:24:23 -07:00
Awni Hannun
850ad01914 comment + fix 2025-06-12 20:10:45 -07:00
Awni Hannun
4d95cb24b4 cuda ternary with select op 2025-06-12 20:10:45 -07:00
Awni Hannun
aa07429bad
Fix cuda build (#2284) 2025-06-12 17:48:05 -07:00
Awni Hannun
918761a25a
[CUDA] RMSNorm and VJP (#2280)
* rms norm start

* nit
2025-06-12 17:09:49 -07:00
7 changed files with 578 additions and 7 deletions

View File

@ -30,9 +30,11 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/segmented_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
@ -43,8 +45,8 @@ target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
file(
GLOB MLX_JIT_SOURCES
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"${CMAKE_CURRENT_SOURCE_DIR}/kernels/*.h"
"${CMAKE_CURRENT_SOURCE_DIR}/kernels/*.cuh")
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.h"
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.cuh")
string(JOIN ":" MLX_JIT_SOURCES_ARG ${MLX_JIT_SOURCES})
add_custom_command(
OUTPUT gen/cuda_jit_sources.h

View File

@ -0,0 +1,12 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
struct Select {
template <typename T>
__device__ T operator()(bool condition, T x, T y) {
return condition ? x : y;
}
};
} // namespace mlx::core::cu

View File

@ -162,6 +162,27 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_nd(
return cuda::std::make_tuple(a_loc, b_loc);
}
template <int NDIM, typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides,
const int64_t* c_strides) {
IdxT a_loc = 0;
IdxT b_loc = 0;
IdxT c_loc = 0;
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
c_loc += dim_idx * c_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
// Optimized version when ndim is larger than 4.
template <typename IdxT = int64_t>
inline __host__ __device__ IdxT
@ -191,6 +212,26 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
return cuda::std::make_tuple(a_loc, b_loc);
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides,
const int64_t* c_strides,
int ndim) {
auto [a_loc, b_loc, c_loc] =
elem_to_loc_nd<3>(elem, shape, a_strides, b_strides, c_strides);
for (int i = ndim - 1; i >= 3; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * a_strides[i];
b_loc += dim_idx * b_strides[i];
c_loc += dim_idx * c_strides[i];
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
///////////////////////////////////////////////////////////////////////////////
// Elem to loc in a loop utils
///////////////////////////////////////////////////////////////////////////////

View File

@ -244,8 +244,7 @@ void LayerNorm::eval_gpu(
}
};
array o = set_output(inputs[0]);
const array& x = o.data_shared_ptr() ? o : out;
const array x = set_output(inputs[0]);
const array& w = inputs[1];
const array& b = inputs[2];

View File

@ -91,7 +91,6 @@ NO_GPU(QuantizedMatmul)
NO_GPU(Scan)
NO_GPU(Scatter)
NO_GPU(ScatterAxis)
NO_GPU(Select)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)
NO_GPU(Cholesky)
@ -99,8 +98,6 @@ NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_USE_FALLBACK(RMSNorm)
NO_GPU_MULTI(RMSNormVJP)
NO_GPU_USE_FALLBACK(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)

View File

@ -0,0 +1,343 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
inline __device__ float2 plus_f2(const float2& a, const float2& b) {
return {a.x + b.x, a.y + b.y};
}
// Similar to cub::BlockReduce, but result is broadcasted to every thread.
template <typename T, int BLOCK_DIM>
struct BlockBroadcastReduce {
static_assert(WARP_SIZE <= BLOCK_DIM && BLOCK_DIM <= WARP_SIZE * WARP_SIZE);
static_assert(BLOCK_DIM % WARP_SIZE == 0);
using TempStorage = T[BLOCK_DIM / WARP_SIZE];
cg::thread_block& block;
TempStorage& temp;
template <typename Op>
__device__ T Reduce(const T& input, const Op& op, const T& init_value) {
auto warp = cg::tiled_partition<WARP_SIZE>(block);
T x = cg::reduce(warp, input, op);
if (warp.thread_rank() == 0) {
temp[warp.meta_group_rank()] = x;
}
block.sync();
x = warp.thread_rank() < warp.meta_group_size() ? temp[warp.thread_rank()]
: init_value;
return cg::reduce(warp, x, op);
}
__device__ T Sum(const T& input) {
return Reduce(input, cg::plus<T>{}, T{});
}
};
template <typename T, int BLOCK_DIM, int N_READS = 4>
__global__ void rms_norm(
const T* x,
const T* w,
T* out,
float eps,
int32_t axis_size,
int64_t w_stride) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
using BlockReduceT = BlockBroadcastReduce<float, BLOCK_DIM>;
__shared__ typename BlockReduceT::TempStorage temp;
x += grid.block_rank() * axis_size;
out += grid.block_rank() * axis_size;
// Normalizer.
float normalizer = 0;
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
for (int i = 0; i < N_READS; ++i) {
float t = static_cast<float>(xn[i]);
normalizer += t * t;
}
}
normalizer = BlockReduceT{block, temp}.Sum(normalizer);
normalizer = rsqrt(normalizer / axis_size + eps);
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; ++i) {
float norm = static_cast<float>(xn[i]) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm);
}
cub::StoreDirectBlocked(index, out, xn, axis_size);
}
}
template <typename T, bool HAS_W, int BLOCK_DIM, int N_READS = 4>
__global__ void rms_norm_vjp(
const T* x,
const T* w,
const T* g,
T* gx,
T* gw,
float eps,
int32_t axis_size,
int64_t w_stride) {
auto grid = cg::this_grid();
auto block = cg::this_thread_block();
using BlockReduceF = BlockBroadcastReduce<float, BLOCK_DIM>;
using BlockReduceF2 = BlockBroadcastReduce<float2, BLOCK_DIM>;
__shared__ union {
typename BlockReduceF::TempStorage f;
typename BlockReduceF2::TempStorage f2;
} temp;
x += grid.block_rank() * axis_size;
g += grid.block_rank() * axis_size;
gx += grid.block_rank() * axis_size;
gw += grid.block_rank() * axis_size;
// Normalizer.
float2 factors = {};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
T xn[N_READS];
T wn[N_READS] = {};
T gn[N_READS] = {};
auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]);
float wi = wn[i];
float gi = gn[i];
float wg = wi * gi;
factors = plus_f2(factors, {wg * t, t * t});
}
}
factors = BlockReduceF2{block, temp.f2}.Reduce(factors, plus_f2, {});
float meangwx = factors.x / axis_size;
float normalizer = rsqrt(factors.y / axis_size + eps);
float normalizer3 = normalizer * normalizer * normalizer;
// Outputs.
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto index = r * BLOCK_DIM + block.thread_rank();
T xn[N_READS];
T wn[N_READS];
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float xi = xn[i];
float wi = wn[i];
float gi = gn[i];
xn[i] = static_cast<T>(normalizer * wi * gi - xi * meangwx * normalizer3);
if constexpr (HAS_W) {
wn[i] = static_cast<T>(gi * xi * normalizer);
}
}
cub::StoreDirectBlocked(index, gx, xn, axis_size);
if constexpr (HAS_W) {
cub::StoreDirectBlocked(index, gw, wn, axis_size);
}
}
}
} // namespace cu
namespace fast {
bool RMSNorm::use_fallback(Stream s) {
return s.device == Device::cpu;
}
// TODO: There are duplicate code with backend/metal/normalization.cpp
void RMSNorm::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("RMSNorm::eval_gpu");
auto& s = stream();
auto& out = outputs[0];
// Make sure that the last dimension is contiguous.
auto set_output = [&s, &out](const array& x) {
bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
if (no_copy && x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
if (x.is_donatable()) {
out.copy_shared_buffer(x);
} else {
out.set_data(
allocator::malloc(x.data_size() * x.itemsize()),
x.data_size(),
x.strides(),
x.flags());
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
};
const array x = set_output(inputs[0]);
const array& w = inputs[1];
int32_t axis_size = x.shape().back();
int32_t n_rows = x.data_size() / axis_size;
int64_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_output_array(out);
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "rms_norm", CTYPE, {
using DataType = cuda_type_t<CTYPE>;
constexpr uint32_t N_READS = 4;
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
auto kernel = cu::rms_norm<DataType, BLOCK_DIM, N_READS>;
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
x.data<DataType>(),
w.data<DataType>(),
out.data<DataType>(),
eps_,
axis_size,
w_stride);
});
});
});
}
void RMSNormVJP::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("RMSNormVJP::eval_gpu");
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
// Ensure row contiguity. We could relax this step by checking that the array
// is contiguous (no broadcasts or holes) and that the input strides are the
// same as the cotangent strides but for now this is simpler.
auto check_input = [&s](const array& x) -> std::pair<array, bool> {
if (x.flags().row_contiguous) {
return {x, false};
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[2].is_donatable();
auto [x, copied] = check_input(inputs[0]);
donate_x |= copied;
const array& w = inputs[1];
auto [g, g_copied] = check_input(inputs[2]);
donate_g |= g_copied;
array& gx = outputs[0];
array& gw = outputs[1];
// Check whether we had a weight.
bool has_w = w.ndim() != 0;
// Allocate space for the outputs.
bool g_in_gx = false;
if (donate_x) {
gx.copy_shared_buffer(x);
} else if (donate_g) {
gx.copy_shared_buffer(g);
g_in_gx = true;
} else {
gx.set_data(allocator::malloc(gx.nbytes()));
}
if (g_copied && !g_in_gx) {
encoder.add_temporary(g);
}
int32_t axis_size = x.shape().back();
int32_t n_rows = x.data_size() / axis_size;
int64_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
// Allocate a temporary to store the gradients for w and allocate the output
// gradient accumulators.
array gw_temp =
(has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
if (has_w) {
if (!g_in_gx && donate_g) {
gw_temp.copy_shared_buffer(g);
} else {
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
encoder.add_temporary(gw_temp);
}
}
gw.set_data(allocator::malloc(gw.nbytes()));
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(g);
encoder.set_output_array(gx);
encoder.set_output_array(gw_temp);
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
MLX_SWITCH_FLOAT_TYPES_CHECKED(gx.dtype(), "rms_norm_vjp", CTYPE, {
using DataType = cuda_type_t<CTYPE>;
constexpr int N_READS = 4;
MLX_SWITCH_BOOL(has_w, HAS_W, {
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
auto kernel = cu::rms_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),
gx.data<DataType>(),
gw_temp.data<DataType>(),
eps_,
axis_size,
w_stride);
});
});
});
});
if (has_w) {
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
col_reduce(encoder, gw_temp, gw, Reduce::ReduceType::Sum, {0}, plan);
}
}
} // namespace fast
} // namespace mlx::core

177
mlx/backend/cuda/ternary.cu Normal file
View File

@ -0,0 +1,177 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/ternary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/ternary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename T, typename IdxT>
__global__ void
ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
out[index] = Op{}(a[index], b[index], c[index]);
}
}
template <typename Op, typename T, typename IdxT, int NDIM>
__global__ void ternary_g_nd(
const bool* a,
const T* b,
const T* c,
T* out,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_strides) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx, c_idx] = elem_to_loc_nd<NDIM>(
index,
shape.data(),
a_strides.data(),
b_strides.data(),
c_strides.data());
out[index] = Op{}(a[a_idx], b[b_idx], c[c_idx]);
}
}
template <typename Op, typename T, typename IdxT>
__global__ void ternary_g(
const bool* a,
const T* b,
const T* c,
T* out,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
const __grid_constant__ Strides c_strides,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx, c_idx] = elem_to_loc_4d(
index,
shape.data(),
a_strides.data(),
b_strides.data(),
c_strides.data(),
ndim);
out[index] = Op{}(a[a_idx], b[b_idx], c[c_idx]);
}
}
} // namespace cu
template <typename Op>
void ternary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const Stream& s) {
const auto& a = inputs[0];
const auto& b = inputs[1];
const auto& c = inputs[2];
if (out.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE, {
using DType = cuda_type_t<CTYPE>;
auto topt = get_ternary_op_type(a, b, c);
if (topt == TernaryOpType::General) {
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
auto& c_strides = strides[2];
bool large = a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX ||
c.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
int ndim = shape.size();
if (ndim <= 3) {
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel = cu::ternary_g_nd<Op, DType, IdxT, NDIM>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
out.data<DType>(),
out.data_size(),
const_param<NDIM>(shape),
const_param<NDIM>(a_strides),
const_param<NDIM>(b_strides),
const_param<NDIM>(c_strides));
});
} else {
auto kernel = cu::ternary_g<Op, DType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
out.data<DType>(),
out.data_size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
const_param(c_strides),
ndim);
}
});
} else {
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
auto kernel = cu::ternary_v<Op, DType, IdxT>;
auto [num_blocks, block_dims] = get_launch_args(kernel, out, LARGE);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
out.data<DType>(),
out.data_size());
});
}
});
});
}
template <typename Op>
void ternary_op_gpu(
const std::vector<array>& inputs,
array& out,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto& c = inputs[2];
auto topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
ternary_op_gpu_inplace<Op>(inputs, out, s);
}
void Select::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("select::eval_gpu");
auto& s = out.primitive().stream();
ternary_op_gpu<cu::Select>(inputs, out, s);
}
} // namespace mlx::core