Compare commits

..

8 Commits

Author SHA1 Message Date
Angelos Katharopoulos
4987e7615a Improve the cutlass gemm 2025-08-25 18:18:19 -07:00
Angelos Katharopoulos
e1303f6160 Reset cutlass gemm to working state again 2025-08-21 01:29:43 -07:00
Angelos Katharopoulos
cf5eef095d tmp 2025-08-20 23:51:25 -07:00
Angelos Katharopoulos
395d582719 Add a cutlass gemm 2025-08-20 23:51:25 -07:00
Angelos Katharopoulos
05583bcd10 More pipelining for the sm_80 gemm 2025-08-20 23:51:25 -07:00
Angelos Katharopoulos
6fce01593a Improve gemm 2025-08-20 23:51:25 -07:00
Angelos Katharopoulos
97afe40b7b Remove duplicate register tile 2025-08-20 23:51:25 -07:00
Angelos Katharopoulos
f70c62d69c Simple gemm example 2025-08-20 23:51:25 -07:00
347 changed files with 6264 additions and 23043 deletions

724
.circleci/config.yml Normal file
View File

@@ -0,0 +1,724 @@
version: 2.1
orbs:
apple: ml-explore/pr-approval@0.1.0
parameters:
nightly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
jobs:
build_documentation:
parameters:
upload-docs:
type: boolean
default: false
macos:
xcode: "16.2.0"
resource_class: m2pro.medium
steps:
- checkout
- run:
name: Install
command: |
brew install python@3.9
brew install doxygen
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
steps:
- run:
name: Build documentation
command: |
source env/bin/activate
cd docs && doxygen && make html O=-W
- when:
condition: << parameters.upload-docs >>
steps:
- add_ssh_keys:
fingerprints:
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
- run:
name: Upload documentation
command: |
source env/bin/activate
git config user.email "mlx@group.apple.com"
git config user.name "CircleCI Docs"
git checkout gh-pages
git rebase main
cd docs
git rm -rf build/html
doxygen && make html O=-W
git add -f build/html
git commit -m "rebase"
git push -f origin gh-pages
linux_build_and_test:
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Run style checks
command: |
pip install pre-commit
pre-commit run --all
if ! git diff --quiet; then echo 'Style checks failed, please install pre-commit and run pre-commit run --all and push the change'; exit 1; fi
- run:
name: Install dependencies
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
uv pip install cmake
uv pip install -e ".[dev]" -v
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
python -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build CPP only
command: |
source .venv/bin/activate
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
- run:
name: Run CPP tests
command: ./build/tests/tests
mac_build_and_test:
parameters:
xcode_version:
type: string
default: "16.2.0"
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
resource_class: m2pro.medium
steps:
- checkout
- run:
name: Install dependencies
command: |
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
brew install openmpi uv
- run:
name: Install Python package
command: |
uv venv --python 3.9
uv pip install \
nanobind==2.4.0 \
cmake \
numpy \
torch \
tensorflow \
unittest-xml-reporting
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
uv pip install -e . -v
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build example extension
command: |
source .venv/bin/activate
cd examples/extensions
uv pip install -r requirements.txt
uv run --no-project setup.py build_ext --inplace
uv run --no-project python test.py
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source .venv/bin/activate
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
- run:
name: Run CPP tests
command: |
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
- run:
name: Build small binary
command: |
source .venv/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
make -j `sysctl -n hw.ncpu`
- run:
name: Run Python tests with JIT
command: |
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e .
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
uv run --no-project python -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit
cuda_build_and_test:
parameters:
image_date:
type: string
default: "2023.11.1"
machine:
image: "linux-cuda-12:<< parameters.image_date >>"
resource_class: gpu.nvidia.small.gen2
steps:
- checkout
- restore_cache:
keys:
- cuda-<< parameters.image_date >>-{{ arch }}-
- run:
name: Install dependencies
command: |
sudo apt-get update
sudo apt-get install libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
rm -rf ccache-4.11.3-linux-x86_64
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
uv pip install -e ".[dev]" -v
- run:
name: Run Python tests
command: |
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
- run:
name: CCache report
command: |
ccache --show-stats
ccache --zero-stats
ccache --max-size 400MB
ccache --cleanup
- save_cache:
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
paths:
- /home/circleci/.cache/ccache
build_release:
parameters:
python_version:
type: string
default: "3.9"
xcode_version:
type: string
default: "16.2.0"
build_env:
type: string
default: ""
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: m2pro.medium
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
steps:
- checkout
- run:
name: Install dependencies
command: |
brew install python@<< parameters.python_version >>
brew install openmpi
python<< parameters.python_version >> -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install twine
pip install build
- run:
name: Install Python package
command: |
source env/bin/activate
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
pip install . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Build Python package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
source env/bin/activate
twine upload dist/*
- store_artifacts:
path: dist/
build_linux_release:
parameters:
python_version:
type: string
default: "3.9"
build_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Build wheel
command: |
PYTHON=python<< parameters.python_version >>
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
TZ=Etc/UTC sudo apt-get -y install tzdata
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.build_env >> pip install ".[dev]" -v
pip install typing_extensions
python setup.py generate_stubs
python setup.py clean --all
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
bash python/scripts/repair_linux.sh
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload packages
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
build_cuda_release:
parameters:
build_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Build wheel
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install zip
pip install auditwheel
pip install patchelf
pip install build
pip install twine
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build -w
bash python/scripts/repair_cuda.sh
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
workflows:
build_and_test:
when:
and:
- matches:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
matrix:
parameters:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- cuda_build_and_test:
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
- build_documentation
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["PYPI_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- build_documentation:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
upload-docs: true
- build_linux_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
build_env: ["PYPI_RELEASE=1"]
prb:
when:
matches:
pattern: "^pull/\\d+(/head)?$"
value: << pipeline.git.branch >>
jobs:
- hold:
type: approval
- apple/authenticate:
context: pr-approval
- mac_build_and_test:
requires: [ hold ]
matrix:
parameters:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
- cuda_build_and_test:
requires: [ hold ]
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
nightly_build:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.nightly_build >>
jobs:
- build_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
jobs:
- build_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:
parameters:
build_env: ["DEV_RELEASE=1"]

View File

@@ -1,20 +0,0 @@
name: 'Build CUDA wheel'
description: 'Build CUDA wheel'
inputs:
toolkit:
description: 'The CUDA toolkit'
required: true
runs:
using: "composite"
steps:
- name: Build package
shell: bash
env:
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=/usr/local/${{ inputs.toolkit }}/bin/nvcc
run: |
pip install auditwheel build patchelf setuptools
python setup.py clean --all
MLX_BUILD_STAGE=2 python -m build -w
bash python/scripts/repair_cuda.sh

View File

@@ -1,26 +0,0 @@
name: 'Build and Test with CUDA'
description: 'Build and test MLX with CUDA'
inputs:
toolkit:
description: 'The CUDA toolkit'
required: true
runs:
using: "composite"
steps:
- name: Install Python package
shell: bash
env:
DEBUG: 1
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=/usr/local/${{ inputs.toolkit }}/bin/nvcc
run: pip install --no-build-isolation -e ".[dev]" -v
- name: Build CPP only
shell: bash
run: |
cmake . -B build \
-DMLX_BUILD_CUDA=ON \
-DCMAKE_CUDA_COMPILER=/usr/local/${{ inputs.toolkit }}/bin/nvcc \
-DCMAKE_BUILD_TYPE=DEBUG
cmake --build build -j $(nproc)

View File

@@ -1,38 +0,0 @@
name: 'Build Documentation'
description: 'Build documentation'
runs:
using: "composite"
steps:
- name: Setup machine
uses: ./.github/actions/setup-linux
- name: Install dependencies
shell: bash
run: |
sudo apt-get install -y doxygen
source .venv/bin/activate
pip install -r docs/requirements.txt
pip install . -v
- name: Build documentation
shell: bash
run: |
source .venv/bin/activate
cd docs
doxygen
make html O=-W
- name: Create artifact tar
shell: bash
run: tar -cf artifact.tar -C docs --dereference build/html index.html
# Do it manually because upload-pages-artifact requires gtar
- name: Upload artifact
id: upload-artifact
uses: actions/upload-artifact@v5
with:
name: github-pages
path: artifact.tar
retention-days: 1
if-no-files-found: error

View File

@@ -1,40 +0,0 @@
name: 'Build Linux wheel'
description: 'Build Linux wheel'
inputs:
build-backend:
description: 'Build the backend mlx-cpu package'
type: boolean
required: false
default: false
arch:
description: 'Platform architecture tag'
required: true
type: choice
options:
- x86_64
- aarch64
runs:
using: "composite"
steps:
- name: Generate package stubs
shell: bash
run: |
pip install -e ".[dev]" -v
pip install typing_extensions
python setup.py generate_stubs
- name: Build Python package
shell: bash
run: |
pip install auditwheel patchelf build
python setup.py clean --all
MLX_BUILD_STAGE=1 python -m build -w
bash python/scripts/repair_linux.sh ${{ inputs.arch }}
- name: Build backend package
if: ${{ inputs.build-backend }}
shell: bash
run: |
python setup.py clean --all
MLX_BUILD_STAGE=2 python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_${{ inputs.arch }}

View File

@@ -1,25 +0,0 @@
name: 'Build and Test on Linux'
description: 'Build and test MLX on Linux'
runs:
using: "composite"
steps:
- name: Install Python package
shell: sh
env:
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
DEBUG: 1
run: pip install --no-build-isolation -e ".[dev]" -v
- name: Generate package stubs
shell: sh
run: |
pip install typing_extensions
python setup.py generate_stubs
- name: Build CPP only
shell: bash
run: |
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j $(nproc)

View File

@@ -1,34 +0,0 @@
name: 'Build macOS release'
description: 'Build MLX releases macOS'
inputs:
macos-target:
description: 'macOS build target'
required: false
default: '15.0'
build-backend:
description: 'Build the backend mlx-metal package'
type: boolean
required: false
default: false
runs:
using: "composite"
steps:
- name: Build Python package
shell: bash -l {0}
env:
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
run: |
pip install build
python setup.py clean --all
MLX_BUILD_STAGE=1 python -m build -w
- name: Build backend package
if: ${{ inputs.build-backend }}
shell: bash -l {0}
env:
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
run: |
python setup.py clean --all
MLX_BUILD_STAGE=2 python -m build -w

View File

@@ -1,88 +0,0 @@
name: 'Build and Test on macOS'
description: 'Build and test MLX on macOS'
runs:
using: "composite"
steps:
- name: Install dependencies
env:
DEBUG: 1
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
shell: bash -l {0}
run: |
pip install --upgrade pip
pip install cmake setuptools nanobind==2.4.0
pip install -e . -v
- name: Generate package stubs
shell: bash -l {0}
run: |
pip install typing_extensions
python setup.py generate_stubs
- name: Install tests dependencies
shell: bash -l {0}
run: |
pip install numpy torch tensorflow unittest-xml-reporting
- name: Run Python tests
shell: bash -l {0}
env:
LOW_MEMORY: 1
run: |
DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- name: Build example extension
shell: bash -l {0}
run: |
cd examples/extensions
pip install -r requirements.txt
python setup.py build_ext --inplace
python test.py
- name: Build CPP only
shell: bash -l {0}
run: |
mkdir -p build
cd build
cmake ..
make -j $(sysctl -n hw.ncpu)
- name: Run CPP tests
shell: bash -l {0}
env:
DEVICE: gpu
METAL_DEVICE_WRAPPER_TYPE: 1
METAL_DEBUG_ERROR_MODE: 0
run: ./build/tests/tests
- name: Build small binary with JIT
shell: bash -l {0}
run: |
mkdir -p build
cd build
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
make -j $(sysctl -n hw.ncpu)
- name: Run Python tests with JIT
shell: bash -l {0}
env:
LOW_MEMORY: 1
DEVICE: gpu
METAL_DEVICE_WRAPPER_TYPE: 1
METAL_DEBUG_ERROR_MODE: 0
run: |
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
pip install -e . -v
python -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit

View File

@@ -1,85 +0,0 @@
name: 'Setup Linux Environment'
description: 'Install dependencies for Linux builds'
inputs:
toolkit:
description: 'Which toolkit to install'
required: false
default: 'cpu'
python-version:
description: 'Version of python to set up'
required: false
default: '3.10'
runs:
using: "composite"
steps:
- name: Use ccache
uses: hendrikmuhs/ccache-action@v1.2
with:
key: ccache-${{ runner.os }}-${{ runner.arch }}-${{ inputs.toolkit }}-py${{ inputs.python-version }}
max-size: 1GB
- name: Install common dependencies
shell: bash
run: |
sudo apt-get update
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev zip
- uses: actions/setup-python@v6
with:
python-version: ${{ inputs.python-version }}
- name: Setup Python venv
shell: bash
run: |
python -m venv .venv
source .venv/bin/activate
pip install setuptools cmake nanobind==2.4.0
echo PATH=$PATH >> $GITHUB_ENV
# Make cmake search .venv for nanobind
echo PYTHONPATH=`python -c 'import sys; print(sys.path[-1])'` >> $GITHUB_ENV
- name: Install MPI
shell: bash
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
- name: Install CUDA toolkit
if: ${{ startsWith(inputs.toolkit, 'cuda') }}
shell: bash
env:
# Note: the CI machine does not meet CUDA 13's driver requirement.
# Compatibility matrix:
# https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
# The `nvcc` is installed into `/usr/local/cuda-VERSION/bin/nvcc` - but
# it's *not* on the default toolkit path.
PACKAGES: |
{
"cuda-12.6": "libcudnn9-dev-cuda-12 cuda-toolkit-12-6",
"cuda-12.9": "libcudnn9-dev-cuda-12 cuda-toolkit-12-9",
"cuda-13.0": "libcudnn9-dev-cuda-13 cuda-toolkit-13-0"
}
run: |
export ARCH=${{ runner.arch == 'arm64' && 'arm64' || 'x86_64' }}
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/$ARCH/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install -y \
libnccl2 libnccl-dev \
${{ fromJson(env.PACKAGES)[inputs.toolkit] }}
- name: CUDA packages and driver report
if: ${{ startsWith(inputs.toolkit, 'cuda') }}
shell: bash
run: |
sudo apt-get install -y ubuntu-drivers-common dkms
echo "NVIDIA Driver Packages Available:"
sudo ubuntu-drivers list --gpgpu
echo "NVIDIA Driver Version:"
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
echo "Installed NVIDIA and CUDA packages:"
dpkg -l | egrep "cuda|nvidia" -i
echo "DKMS Status:"
dkms status || echo "dkms not found"
echo "NVIDIA-SMI Status:"
nvidia-smi || echo "nvidia-smi not found"

View File

@@ -1,24 +0,0 @@
name: 'Setup macOS Environment'
description: 'Install dependencies for macOS builds'
inputs:
python-version:
description: 'Python version to use'
required: false
default: '3.10'
runs:
using: "composite"
steps:
- name: Install Homebrew packages
shell: sh
run: /opt/homebrew/bin/brew install openmpi
- name: Verify MetalToolchain installed
shell: bash
run: xcodebuild -showComponent MetalToolchain
- uses: conda-incubator/setup-miniconda@v3
with:
miniconda-version: "latest"
python-version: ${{ inputs.python-version }}

View File

@@ -1,69 +0,0 @@
name: 'Run Linux tests'
inputs:
cpu-only:
description: 'Skip GPU tests'
required: false
default: false
runs:
using: "composite"
steps:
- name: Run MPI tests
shell: bash
run: |
echo "::group::MPI tests"
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
echo "::endgroup::"
- name: Run distributed tests
if: ${{ inputs.cpu-only == 'true' }}
shell: bash
run: |
echo "::group::Distributed tests"
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if grep -Fq '[WARN]' stderr.log ; then
grep -F '[WARN]' stderr.log
echo "Distributed ring test failed";
exit 1;
fi
echo "::endgroup::"
- name: Run Python tests - CPU
if: ${{ inputs.cpu-only == 'true' }}
shell: bash
env:
DEVICE: cpu
run: |
echo "::group::Python tests - CPU"
python -m unittest discover python/tests -v
echo "::endgroup::"
- name: Run Python tests - GPU
if: ${{ inputs.cpu-only == 'false' }}
shell: bash
env:
DEVICE: gpu
run: |
echo "::group::Python tests - GPU"
python -m tests discover python/tests -v
echo "::endgroup::"
- name: Run CPP tests - CPU
shell: bash
env:
DEVICE: cpu
run: |
echo "::group::CPP tests - CPU"
./build/tests/tests
echo "::endgroup::"
- name: Run CPP tests - GPU
if: ${{ inputs.cpu-only == 'false' }}
shell: bash
env:
DEVICE: gpu
run: |
echo "::group::CPP tests - GPU"
./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
echo "::endgroup::"

View File

@@ -1,6 +0,0 @@
version: 2
updates:
- package-ecosystem: "github-actions"
directory: "/"
schedule:
interval: "weekly"

View File

@@ -1,27 +0,0 @@
#!/bin/bash
set -ex
# [Setup] Install dependencies inside the container.
dnf update -y
dnf install -y \
blas-devel \
lapack-devel \
openblas-devel \
make \
cmake \
clang \
git
dnf clean all
# [C++] CI Build Sanity Check: Verifies code compilation, not for release.
export CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
export DEBUG=1
export CMAKE_C_COMPILER=/usr/bin/clang
export CMAKE_CXX_COMPILER=/usr/bin/clang++
mkdir -p build
pushd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j $(nproc)
./tests/tests
popd

View File

@@ -1,28 +0,0 @@
name: Documentation
on:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
deploy:
needs: build
permissions:
pages: write
id-token: write
runs-on: ubuntu-latest
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4

View File

@@ -1,98 +0,0 @@
name: Nightly Build
on:
schedule:
- cron: 33 6 * * 1-5
workflow_dispatch:
permissions:
contents: read
jobs:
build_linux_release:
strategy:
fail-fast: false
matrix:
python_version: ["3.10", "3.14"]
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: ./.github/actions/build-linux-release
with:
build-backend: ${{ matrix.python-version == '3.10' }}
arch: "x86_64"
- name: Upload mlx artifacts
uses: actions/upload-artifact@v5
with:
name: linux-wheels-${{ matrix.python_version }}
path: wheelhouse/mlx-*.whl
retention-days: 7
- name: Upload mlx-cpu artifacts
if: matrix.python_version == '3.10'
uses: actions/upload-artifact@v5
with:
name: mlx-cpu
path: wheelhouse/mlx_cpu-*.whl
retention-days: 7
build_linux_with_tests:
strategy:
fail-fast: false
matrix:
python_version: ["3.11", "3.12", "3.13", "3.14"]
runner:
- ubuntu-22.04
- ubuntu-22.04-arm
runs-on: ${{ matrix.runner }}
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
python-version: ${{ matrix.python_version }}
- uses: ./.github/actions/build-linux
- uses: ./.github/actions/test-linux
with:
cpu-only: true
build_mac_release:
if: github.repository == 'ml-explore/mlx'
strategy:
matrix:
python-version: ["3.10", "3.13"]
runs-on: [self-hosted, macos]
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
with:
python-version: ${{ matrix.python-version }}
- uses: ./.github/actions/build-macos
- name: Build macOS 15 package
uses: ./.github/actions/build-macos-release
with:
macos-target: 15.0
build-backend: ${{ matrix.python-version == '3.10' }}
- name: Build macOS 14 package
uses: ./.github/actions/build-macos-release
with:
macos-target: 14.0
build-backend: ${{ matrix.python-version == '3.10' }}
build_cuda_release:
if: github.repository == 'ml-explore/mlx'
runs-on: ubuntu-22-large
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
toolkit: 'cuda-12.9'
- name: Build Python package
uses: ./.github/actions/build-cuda-release
with:
toolkit: 'cuda-12.9'
- name: Upload artifacts
uses: actions/upload-artifact@v5
with:
name: mlx-cuda
path: wheelhouse/mlx_cuda-*.whl
retention-days: 7

View File

@@ -1,103 +1,20 @@
name: Build and Test
on:
pull_request:
push:
branches:
- main
# For testing CI without starting a pull request:
- test/*
permissions:
contents: read
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{ github.ref != 'refs/heads/main' }}
jobs:
check_lint:
runs-on: ubuntu-22.04
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v5
- uses: pre-commit/action@v3.0.1
linux_build_and_test:
needs: check_lint
strategy:
matrix:
runner:
- ubuntu-22.04
- ubuntu-22.04-arm
fail-fast: false
runs-on: ${{ matrix.runner }}
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
- uses: ./.github/actions/build-linux
- uses: ./.github/actions/test-linux
- uses: actions/checkout@v4
- uses: actions/setup-python@v4
with:
cpu-only: true
mac_build_and_test:
if: github.repository == 'ml-explore/mlx'
strategy:
matrix:
macos-target: ["14.0", "15.0"]
runs-on: [self-hosted, macos]
env:
MACOSX_DEPLOYMENT_TARGET: ${{ matrix.macos-target }}
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
- uses: ./.github/actions/build-macos
cuda_build_and_test:
if: github.repository == 'ml-explore/mlx'
strategy:
fail-fast: false
matrix:
toolkit: ['cuda-12.6', 'cuda-12.9']
runs-on: gpu-t4-4-core
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
toolkit: ${{ matrix.toolkit }}
- uses: ./.github/actions/build-cuda
with:
toolkit: ${{ matrix.toolkit }}
- uses: ./.github/actions/test-linux
build_documentation:
if: github.repository == 'ml-explore/mlx'
runs-on: ubuntu-22.04
needs: check_lint
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
linux_fedora_build_cpp:
name: Linux Fedora CPP Build (${{ matrix.arch }})
needs: check_lint
strategy:
fail-fast: false
matrix:
include:
- host: ubuntu-22.04
arch: x86_64
- host: ubuntu-22.04-arm
arch: aarch64
runs-on: ${{ matrix.host }}
container:
image: fedora:42
steps:
- name: Checkout code
uses: actions/checkout@v5
- name: CPP Build Test - No Release
python-version: 3.8
- name: Install dependencies
run: |
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
python -m pip install --upgrade pip
pip install pre-commit black isort clang-format
- name: Run lint
run: |
pre-commit run --all-files

View File

@@ -1,240 +0,0 @@
name: PyPI Release
on:
push:
tags:
- 'v*'
workflow_dispatch:
inputs:
dev_release:
description: "Do a dev release or regular release"
required: true
default: "false"
permissions:
contents: read
jobs:
setup:
runs-on: ubuntu-latest
steps:
- name: Set publishing variables
run: echo "Publishing setup complete"
build_documentation:
if: github.repository == 'ml-explore/mlx'
runs-on: ubuntu-22.04
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/build-docs
deploy_documentation:
needs: build_documentation
permissions:
pages: write
id-token: write
runs-on: ubuntu-latest
environment:
name: github-pages
url: ${{ steps.deployment.outputs.page_url }}
steps:
- name: Deploy to GitHub Pages
id: deployment
uses: actions/deploy-pages@v4
build_linux_release:
if: github.repository == 'ml-explore/mlx'
strategy:
matrix:
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
arch: ['x86_64', 'aarch64']
runs-on: ${{ matrix.arch == 'x86_64' && 'ubuntu-22.04' || 'ubuntu-22.04-arm' }}
env:
PYPI_RELEASE: 1
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
python-version: ${{ matrix.python_version }}
- uses: ./.github/actions/build-linux-release
with:
build-backend: ${{ matrix.python-version == '3.10' }}
arch: ${{ matrix.arch }}
- name: Upload MLX artifacts
uses: actions/upload-artifact@v5
with:
overwrite: true
name: linux-wheels-${{ matrix.python_version }}-${{ matrix.arch }}
path: wheelhouse/mlx-*.whl
- name: Upload CPU artifacts
if: matrix.python_version == '3.10'
uses: actions/upload-artifact@v5
with:
overwrite: true
name: mlx-cpu-${{ matrix.arch }}
path: wheelhouse/mlx_cpu-*.whl
build_mac_release:
if: github.repository == 'ml-explore/mlx'
strategy:
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
runs-on: [self-hosted, macos]
env:
PYPI_RELEASE: 1
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-macos
with:
python-version: ${{ matrix.python-version }}
- name: Install dependencies
shell: bash -l {0}
run: |
pip install --upgrade pip
pip install cmake setuptools nanobind==2.4.0
pip install -e . -v
- name: Generate package stubs
shell: bash -l {0}
run: |
pip install typing_extensions
python setup.py generate_stubs
- name: Build macOS 14 package
uses: ./.github/actions/build-macos-release
with:
macos-target: 14.0
build-backend: ${{ matrix.python-version == '3.10' }}
- name: Build macOS 15 package
uses: ./.github/actions/build-macos-release
with:
macos-target: 15.0
build-backend: ${{ matrix.python-version == '3.10' }}
- name: Upload MLX artifacts
uses: actions/upload-artifact@v5
with:
overwrite: true
name: mac-wheels-${{ matrix.python-version }}
path: dist/mlx-*.whl
- name: Upload Metal artifacts
if: matrix.python-version == '3.10'
uses: actions/upload-artifact@v5
with:
overwrite: true
name: mlx-metal
path: dist/mlx_metal-*.whl
build_cuda_release:
if: github.repository == 'ml-explore/mlx'
runs-on: ubuntu-22-large
env:
PYPI_RELEASE: 1
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
steps:
- uses: actions/checkout@v5
- uses: ./.github/actions/setup-linux
with:
toolkit: 'cuda-12.9'
- name: Build Python package
uses: ./.github/actions/build-cuda-release
with:
toolkit: 'cuda-12.9'
- name: Upload artifacts
uses: actions/upload-artifact@v5
with:
overwrite: true
name: mlx-cuda
path: wheelhouse/mlx_cuda-*.whl
pypi-publish:
name: Upload release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_linux_release, build_mac_release]
permissions:
id-token: write
environment:
name: pypi
url: https://pypi.org/p/mlx
steps:
- uses: actions/download-artifact@v6
with:
pattern: linux-wheels-*
merge-multiple: true
path: dist
- uses: actions/download-artifact@v6
with:
pattern: mac-wheels-*
merge-multiple: true
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://upload.pypi.org/legacy/
pypi-publish-cuda:
name: Upload CUDA release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_cuda_release]
permissions:
id-token: write
environment:
name: pypi
url: https://pypi.org/p/mlx-cuda
steps:
- uses: actions/download-artifact@v6
with:
name: mlx-cuda
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://upload.pypi.org/legacy/
pypi-publish-cpu:
name: Upload CPU release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_linux_release]
permissions:
id-token: write
environment:
name: pypi
url: https://pypi.org/p/mlx-cpu
steps:
- uses: actions/download-artifact@v6
with:
pattern: mlx-cpu-*
merge-multiple: true
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://upload.pypi.org/legacy/
pypi-publish-metal:
name: Upload Metal release to PyPI
runs-on: ubuntu-latest
needs: [setup, build_mac_release]
permissions:
id-token: write
environment:
name: pypi
url: https://pypi.org/p/mlx-metal
steps:
- uses: actions/download-artifact@v6
with:
name: mlx-metal
path: dist
- name: Display structure of downloaded files
run: ls -R dist
- name: Publish package distributions to PyPI
uses: pypa/gh-action-pypi-publish@release/v1
with:
repository-url: https://upload.pypi.org/legacy/

View File

@@ -1,10 +1,4 @@
repos:
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v6.0.0
hooks:
- id: check-yaml
# - id: end-of-file-fixer
# - id: trailing-whitespace
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v19.1.7
hooks:

View File

@@ -19,17 +19,12 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
</a>
# Organizations
MLX has received contributions from the following companies:
- NVIDIA Corporation & Affiliates
# Third-Party Software
MLX leverages several third-party software, listed here together with

View File

@@ -26,7 +26,6 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_INSTALL_MESSAGE NEVER)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
# ----------------------------- Configuration -----------------------------
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
@@ -74,7 +73,6 @@ endif()
if(MLX_USE_CCACHE)
find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
message(STATUS "Found CCache: ${CCACHE_PROGRAM}")
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
@@ -89,26 +87,22 @@ cmake_policy(SET CMP0135 NEW)
add_library(mlx)
# Supress warnings: note: parameter passing for argument of type
# std::pair<float, float> when C++17 is enabled changed to match C++14 in GCC
# 10.1
target_compile_options(mlx PRIVATE -Wno-psabi)
if(MLX_BUILD_METAL)
set(METAL_LIB "-framework Metal")
set(FOUNDATION_LIB "-framework Foundation")
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL)
find_library(METAL_LIB Metal)
find_library(FOUNDATION_LIB Foundation)
find_library(QUARTZ_LIB QuartzCore)
if(METAL_LIB)
message(STATUS "Metal found ${METAL_LIB}")
else()
message(
FATAL_ERROR
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
set(MLX_METAL_DEBUG OFF)
elseif(MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
if(MLX_METAL_DEBUG)
add_compile_definitions(MLX_METAL_DEBUG)
@@ -117,8 +111,7 @@ if(MLX_BUILD_METAL)
# Throw an error if xcrun not found
execute_process(
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_SDK_VERSION
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
if(${MACOS_SDK_VERSION} LESS 14.0)
message(
@@ -128,12 +121,9 @@ if(MLX_BUILD_METAL)
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_26.zip)
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
if(${CMAKE_OSX_DEPLOYMENT_TARGET} LESS 14.0)
message(FATAL_ERROR "MLX requires macOS >= 14.0")
endif()
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
endif()
execute_process(
@@ -142,6 +132,7 @@ if(MLX_BUILD_METAL)
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
FetchContent_MakeAvailable(metal_cpp)
target_include_directories(
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
@@ -149,12 +140,6 @@ if(MLX_BUILD_METAL)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
endif()
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
# With newer clang/gcc versions following libs are implicitly linked, but when
# building on old distributions they need to be explicitly listed.
target_link_libraries(mlx PRIVATE dl pthread)
endif()
if(WIN32)
if(MSVC)
# GGUF does not build with MSVC.
@@ -182,7 +167,7 @@ if(MLX_BUILD_CPU)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
else()
message(STATUS "Accelerate not found, using default backend.")
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
endif()

View File

@@ -2,7 +2,7 @@
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
[**Examples**](#examples)
[**Examples**](#examples)
[![CircleCI](https://circleci.com/gh/ml-explore/mlx.svg?style=svg)](https://circleci.com/gh/ml-explore/mlx)
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,
and computation graph optimization.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,
and computation graph optimization.
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
materialized when needed.
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
materialized when needed.
- **Dynamic graph construction**: Computation graphs in MLX are constructed
dynamically. Changing the shapes of function arguments does not trigger
slow compilations, and debugging is simple and intuitive.
- **Dynamic graph construction**: Computation graphs in MLX are constructed
dynamically. Changing the shapes of function arguments does not trigger
slow compilations, and debugging is simple and intuitive.
- **Multi-device**: Operations can run on any of the supported devices
(currently the CPU and the GPU).
- **Multi-device**: Operations can run on any of the supported devices
(currently the CPU and the GPU).
- **Unified memory**: A notable difference from MLX and other frameworks
is the *unified memory model*. Arrays in MLX live in shared memory.
Operations on MLX arrays can be performed on any of the supported
device types without transferring data.
- **Unified memory**: A notable difference from MLX and other frameworks
is the *unified memory model*. Arrays in MLX live in shared memory.
Operations on MLX arrays can be performed on any of the supported
device types without transferring data.
MLX is designed by machine learning researchers for machine learning
researchers. The framework is intended to be user-friendly, but still efficient
to train and deploy models. The design of the framework itself is also
conceptually simple. We intend to make it easy for researchers to extend and
improve MLX with the goal of quickly exploring new ideas.
improve MLX with the goal of quickly exploring new ideas.
The design of MLX is inspired by frameworks like
[NumPy](https://numpy.org/doc/stable/index.html),
@@ -91,7 +91,7 @@ Checkout the
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
for more information on building the C++ and Python APIs from source.
## Contributing
## Contributing
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
on contributing to MLX. See the
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
MLX useful in your research and wish to cite it, please use the following
BibTex entry:
```text
```
@software{mlx2023,
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},

View File

@@ -75,7 +75,7 @@ void time_irregular_binary_ops_3D() {
void time_irregular_binary_ops_4D() {
auto device = mx::default_device();
mx::Shape shape = {8, 8, 512, 512};
std::vector<int> shape = {8, 8, 512, 512};
auto a = mx::random::uniform(shape);
auto b = mx::random::uniform(shape);
@@ -115,7 +115,7 @@ void time_irregular_binary_ops_4D() {
void time_irregular_reshape() {
auto device = mx::default_device();
mx::Shape shape;
std::vector<int> shape;
auto reshape_fn = [&shape, device](const mx::array& a) {
return mx::reshape(a, shape, device);
};
@@ -170,7 +170,7 @@ void time_irregular_astype_1D() {
void time_irregular_astype_2D() {
auto device = mx::default_device();
int size = 2048;
mx::Shape shape = {size, size};
std::vector<int> shape = {size, size};
auto a = mx::random::uniform(shape);
TIMEM("2D regular", mx::astype, a, mx::int32, device);

View File

@@ -142,7 +142,9 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
np.float32
)
atol = 1e-5 if np_dtype == np.float32 else 1e-4
@@ -161,7 +163,7 @@ def get_gflop_count(B, M, N, K):
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
dtypes = ("float32", "float16", "complex64")
dtypes = ("float32", "float16")
transposes = ("nn", "nt", "tn")
shapes = (
(16, 234, 768, 3072),
@@ -185,7 +187,7 @@ if __name__ == "__main__":
diff = gflops_mx / gflops_pt - 1.0
print(
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
)
if gflops_pt >= 2.0 * gflops_mx:
print("ATTENTION ^^^^^^^")

View File

@@ -1,5 +1,6 @@
# Copyright © 2023 Apple Inc.
import argparse
import os
import subprocess
import time
@@ -195,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
for transpose in (False, True):
for dtype in ("float32", "float16", "complex64"):
for dtype in ("float32", "float16"):
fig, axs = plt.subplots(
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
)
@@ -214,7 +215,7 @@ for transpose in (False, True):
fig.suptitle(f"{device_name}: {dtype} {op_name}")
fig.savefig(
os.path.join(
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
)
)
plt.close(fig)

View File

@@ -1,212 +0,0 @@
import math
import os
import subprocess
import time
from copy import copy
from functools import partial
import matplotlib.pyplot as plt
import mlx.core as mx
import numpy as np
import torch
from matplotlib.ticker import FuncFormatter
RESULTS_DIR = "./results"
if not os.path.isdir(RESULTS_DIR):
os.mkdir(RESULTS_DIR)
DEVICE_NAME = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
DEVICE_NAME = DEVICE_NAME.decode("utf-8").strip("\n")
TORCH_DEVICE = torch.device(
"mps"
if torch.backends.mps.is_available()
else ("cuda" if torch.cuda.is_available() else "cpu")
)
N_WARMUP = 5
N_ITER_BENCH = 50
N_ITER_FUNC = 20
VECTOR_LENGTHS = [4096 * (2**i) for i in range(10)]
MASK_DENSITIES = [0.01, 0.1, 0.25, 0.5]
D_TYPES = ("float32", "float16")
def _power_of_two_formatter(value, _position):
if value <= 0:
return ""
exponent = int(round(math.log2(value)))
if abs(value - (1 << exponent)) / value > 1e-6:
return f"{value:g}"
return f"$2^{{{exponent}}}$"
def torch_sync():
if TORCH_DEVICE.type == "cuda":
torch.cuda.synchronize()
elif TORCH_DEVICE.type == "mps":
torch.mps.synchronize()
def masked_scatter_mlx(self_arr, mask_arr, src_arr):
outs = []
for _ in range(N_ITER_FUNC):
out = copy(self_arr)
out[mask_arr] = src_arr
outs.append(out)
mx.eval(outs)
return outs
@torch.no_grad()
def masked_scatter_torch(self_tensor, mask_tensor, src_tensor):
outs = []
for _ in range(N_ITER_FUNC):
out = self_tensor.clone()
out.masked_scatter_(mask_tensor, src_tensor)
outs.append(out)
torch_sync()
return outs
def measure(fn):
for _ in range(N_WARMUP):
fn()
start = time.perf_counter_ns()
for _ in range(N_ITER_BENCH):
fn()
end = time.perf_counter_ns()
return (end - start) * 1e-9
def bytes_touched(length, true_count, item_size):
mask_bytes = length
self_bytes = length * item_size * 2 # read + write
src_bytes = true_count * item_size
return (mask_bytes + self_bytes + src_bytes) * N_ITER_FUNC * N_ITER_BENCH
def build_case(length, density, np_dtype, torch_dtype):
true_count = max(1, int(round(length * density)))
rng = np.random.default_rng()
self_np = rng.normal(0.0, 1.0, length).astype(np_dtype)
mask_np = np.zeros(length, dtype=bool)
mask_np[:true_count] = True
rng.shuffle(mask_np)
src_np = rng.normal(0.0, 1.0, true_count).astype(np_dtype)
self_mlx = mx.array(self_np)
mask_mlx = mx.array(mask_np)
src_mlx = mx.array(src_np)
self_torch = torch.from_numpy(self_np).to(device=TORCH_DEVICE, dtype=torch_dtype)
mask_torch = torch.from_numpy(mask_np).to(device=TORCH_DEVICE)
src_torch = torch.from_numpy(src_np).to(device=TORCH_DEVICE, dtype=torch_dtype)
# Correctness check once per configuration
mx_out = mx.array(self_np)
mx_out[mask_mlx] = src_mlx
mx.eval(mx_out)
torch_out = self_torch.clone()
torch_out.masked_scatter_(mask_torch, src_torch)
atol = 5e-3 if np_dtype == np.float16 else 1e-5
if not np.allclose(np.array(mx_out), torch_out.cpu().numpy(), atol=atol):
raise AssertionError("masked_scatter results diverged between MLX and Torch")
return (self_mlx, mask_mlx, src_mlx, self_torch, mask_torch, src_torch, true_count)
def bench_case(length, density, dtype):
np_dtype = getattr(np, dtype)
torch_dtype = getattr(torch, dtype)
(
self_mlx,
mask_mlx,
src_mlx,
self_torch,
mask_torch,
src_torch,
true_count,
) = build_case(length, density, np_dtype, torch_dtype)
time_mlx = measure(partial(masked_scatter_mlx, self_mlx, mask_mlx, src_mlx))
time_torch = measure(
partial(masked_scatter_torch, self_torch, mask_torch, src_torch)
)
total_bytes = bytes_touched(length, true_count, np_dtype().itemsize)
bytes_per_gb = float(1024**3)
mlx_gbps = (total_bytes / bytes_per_gb) / time_mlx
torch_gbps = (total_bytes / bytes_per_gb) / time_torch
return time_mlx, time_torch, mlx_gbps, torch_gbps
def plot_density(ax_perf, ax_speedup, density, dtype):
mlx_gbps = []
torch_gbps = []
mlx_times = []
torch_times = []
for length in VECTOR_LENGTHS:
t_mlx, t_torch, gbps_mlx, gbps_torch = bench_case(length, density, dtype)
mlx_gbps.append(gbps_mlx)
torch_gbps.append(gbps_torch)
mlx_times.append(t_mlx)
torch_times.append(t_torch)
ax_perf.plot(VECTOR_LENGTHS, mlx_gbps, "tab:blue", label="MLX")
ax_perf.plot(VECTOR_LENGTHS, torch_gbps, "tab:red", label="Torch")
ax_perf.set_xscale("log", base=2)
ax_perf.set_xticks(VECTOR_LENGTHS)
formatter = FuncFormatter(_power_of_two_formatter)
ax_perf.xaxis.set_major_formatter(formatter)
ax_perf.set_title(f"density={density:.2f}")
ax_perf.set_ylabel("GB/s")
ax_perf.grid(True, which="both", linestyle=":", alpha=0.4)
ax_perf.legend()
speedup = np.array(torch_times) / np.array(mlx_times)
ax_speedup.plot(VECTOR_LENGTHS, speedup, "tab:green")
ax_speedup.axhline(1.0, color="tab:gray", linestyle="--")
ax_speedup.set_xscale("log", base=2)
ax_speedup.set_xticks(VECTOR_LENGTHS)
ax_speedup.xaxis.set_major_formatter(formatter)
ax_speedup.set_ylabel("Speedup (Torch_t / MLX_t)")
ax_speedup.grid(True, which="both", linestyle=":", alpha=0.4)
def main():
for dtype in D_TYPES:
fig, axs = plt.subplots(
len(MASK_DENSITIES),
2,
figsize=(10, 12),
layout="constrained",
sharex=True,
)
for i, density in enumerate(MASK_DENSITIES):
plot_density(axs[i][0], axs[i][1], density, dtype)
axs[i][0].set_xlabel("vector length")
axs[i][1].set_xlabel("vector length")
fig.suptitle(
f"{DEVICE_NAME.replace('Apple ', '')} ({TORCH_DEVICE.type}) | dtype={dtype}"
)
output_path = os.path.join(
RESULTS_DIR,
f"{DEVICE_NAME.replace(' ', '_')}_masked_scatter_{dtype}.pdf",
)
fig.savefig(output_path)
plt.close(fig)
if __name__ == "__main__":
main()

View File

@@ -1,54 +0,0 @@
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
# directories.
set(NCCL_ROOT_DIR
$ENV{NCCL_ROOT_DIR}
CACHE PATH "Folder contains NVIDIA NCCL")
find_path(
NCCL_INCLUDE_DIRS
NAMES nccl.h
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
${CUDA_TOOLKIT_ROOT_DIR}/include)
if($ENV{USE_STATIC_NCCL})
message(
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
set(NCCL_LIBNAME "libnccl_static.a")
else()
set(NCCL_LIBNAME "nccl")
endif()
find_library(
NCCL_LIBRARIES
NAMES ${NCCL_LIBNAME}
HINTS ${NCCL_LIB_DIR}
${NCCL_ROOT_DIR}
${NCCL_ROOT_DIR}/lib
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
${NCCL_ROOT_DIR}/lib64
${CUDA_TOOLKIT_ROOT_DIR}/lib
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
NCCL_LIBRARIES)
if(NCCL_FOUND)
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
message(
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
file(
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
LIMIT_COUNT 1)
if(NCCL_MAJOR_VERSION_DEFINED)
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
endif()
message(
STATUS
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
endif()

View File

@@ -1,3 +0,0 @@
# This file does nothing but to suppress the cmake warning: "By not providing
# Findnvpl.cmake in CMAKE_MODULE_PATH...", which is caused by the
# find_package(nvpl) from cmake's builtin FindLAPACK.cmake module.

View File

@@ -127,7 +127,7 @@ relying on a copy from ``ensure_row_contiguous``:
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source,
source=source
ensure_row_contiguous=False,
)

View File

@@ -16,11 +16,12 @@ silicon computer is
To install from PyPI your system must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.10
- macOS >= 14.0
- Using a native Python >= 3.9
- macOS >= 13.5
.. note::
MLX is only available on devices running macOS >= 14.0 and higher.
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
CUDA
^^^^
@@ -38,7 +39,7 @@ requirements:
- Nvidia driver >= 550.54.14
- CUDA toolkit >= 12.0
- Linux distribution with glibc >= 2.35
- Python >= 3.10
- Python >= 3.9
CPU-only (Linux)
@@ -54,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
requirements:
- Linux distribution with glibc >= 2.35
- Python >= 3.10
- Python >= 3.9
Troubleshooting
@@ -270,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag

View File

@@ -27,7 +27,6 @@ simple functions.
mish
prelu
relu
relu2
relu6
selu
sigmoid

View File

@@ -50,7 +50,6 @@ Layers
QuantizedLinear
RMSNorm
ReLU
ReLU2
ReLU6
RNN
RoPE

View File

@@ -112,7 +112,6 @@ Operations
max
maximum
mean
median
meshgrid
min
minimum

View File

@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
.. code-block:: python
x = mx.random.uniform(shape=(32, 1000, 4096))
timeit(gelu, x)
timeit(mx.compile(gelu), x)
timeit(nn.gelu, x)
timeit(mx.compile(nn.gelu), x)
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.

View File

@@ -7,13 +7,12 @@ Distributed Communication
MLX supports distributed communication operations that allow the computational cost
of training or inference to be shared across many physical machines. At the
moment we support three different communication backends:
moment we support two different communication backends:
* `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ a
full-featured and mature distributed communications library
* A **ring** backend of our own that uses native TCP sockets. It should be
faster for thunderbolt connections, but it also works over Ethernet.
* `nccl <https://developer.nvidia.com/nccl>`_, for use in CUDA environments.
* A **ring** backend of our own that uses native TCP sockets and should be
faster for thunderbolt connections.
The list of all currently supported operations and their documentation can be
seen in the :ref:`API docs<distributed>`.
@@ -85,8 +84,9 @@ Selecting Backend
^^^^^^^^^^^^^^^^^
You can select the backend you want to use when calling :func:`init` by passing
one of ``{'any', 'ring', 'mpi', 'nccl'}``. When passing ``any``, MLX will try all
available backends. If they all fail then a singleton group is created.
one of ``{'any', 'ring', 'mpi'}``. When passing ``any``, MLX will try to
initialize the ``ring`` backend and if it fails the ``mpi`` backend. If they
both fail then a singleton group is created.
.. note::
After a distributed backend is successfully initialized :func:`init` will
@@ -184,7 +184,7 @@ almost identical to the example above:
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)
grads = mx.nn.average_gradients(grads) # <---- This line was added
grads = mlx.nn.average_gradients(grads) # <---- This line was added
optimizer.update(model, grads)
return loss
@@ -220,7 +220,7 @@ print 4 etc.
Installing MPI
^^^^^^^^^^^^^^
MPI can be installed with Homebrew, pip, using the Anaconda package manager, or
MPI can be installed with Homebrew, using the Anaconda package manager or
compiled from source. Most of our testing is done using ``openmpi`` installed
with the Anaconda package manager as follows:
@@ -228,16 +228,14 @@ with the Anaconda package manager as follows:
$ conda install conda-forge::openmpi
Installing with Homebrew or pip requires specifying the location of ``libmpi.dyld``
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
so that MLX can find it and load it at runtime. This can simply be achieved by
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun`` and it is
done automatically by ``mlx.launch``. Some environments use a non-standard
library filename that can be specified using the ``MPI_LIBNAME`` environment
variable. This is automatically taken care of by ``mlx.launch`` as well.
done automatically by ``mlx.launch``.
.. code:: shell
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ -x MPI_LIBNAME=libmpi.40.dylib python test.py
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
$ # or simply
$ mlx.launch -n 2 test.py

View File

@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
.. code-block:: python
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
imported_abs = mx.import_function("fun.mlxfn")
# Ok
out, = imported_abs(mx.array([-1.0]))
out, = imported_abs(mx.array(-1.0))
# Also ok
out, = imported_abs(mx.array([-1.0, -2.0]))

View File

@@ -70,8 +70,7 @@ Differences from NumPy
* Indexing does not perform bounds checking. Indexing out of bounds is
undefined behavior.
* Boolean mask based indexing is supported for assignment only (see
:ref:`boolean-mask-assignment`).
* Boolean mask based indexing is not yet supported.
The reason for the lack of bounds checking is that exceptions cannot propagate
from the GPU. Performing bounds checking for array indices before launching the
@@ -108,20 +107,8 @@ same array:
>>> a
array([1, 2, 0], dtype=int32)
Note that unlike NumPy, slicing an array creates a copy, not a view. So
mutating it does not mutate the original array:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> b = a[:]
>>> b[2] = 0
>>> b
array([1, 2, 0], dtype=int32)
>>> a
array([1, 2, 3], dtype=int32)
Also unlike NumPy, updates to the same location are nondeterministic:
Note, unlike NumPy, updates to the same location are nondeterministic:
.. code-block:: shell
@@ -144,51 +131,3 @@ expected. For example:
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
and ones elsewhere.
.. _boolean-mask-assignment:
Boolean Mask Assignment
-----------------------
MLX supports boolean indices using NumPy syntax. A mask must already be
a :class:`bool_` MLX :class:`array` or a NumPy ``ndarray`` with ``dtype=bool``.
Other index types are routed through the standard scatter code.
.. code-block:: shell
>>> a = mx.array([1.0, 2.0, 3.0])
>>> mask = mx.array([True, False, True])
>>> updates = mx.array([5.0, 6.0])
>>> a[mask] = updates
>>> a
array([5.0, 2.0, 6.0], dtype=float32)
Scalar assignments broadcast to every ``True`` entry in ``mask``. For non-scalar
assignments, ``updates`` must provide at least as many elements as there are
``True`` entries in ``mask``.
.. code-block:: shell
>>> a = mx.zeros((2, 3))
>>> mask = mx.array([[True, False, True],
[False, False, True]])
>>> a[mask] = 1.0
>>> a
array([[1.0, 0.0, 1.0],
[0.0, 0.0, 1.0]], dtype=float32)
Boolean masks follow NumPy semantics:
- The mask shape must match the shape of the axes it indexes exactly. No mask
broadcasting occurs.
- Any axes not covered by the mask are taken in full.
.. code-block:: shell
>>> a = mx.arange(1000).reshape(10, 10, 10)
>>> a[mx.random.randn(10, 10) > 0.0] = 0 # valid: mask covers axes 0 and 1
The mask of shape ``(10, 10)`` applies to the first two axes, so ``a[mask]``
selects the 1-D slices ``a[i, j, :]`` where ``mask[i, j]`` is ``True``.
Shapes such as ``(1, 10, 10)`` or ``(10, 10, 1)`` do not match the indexed
axes and therefore raise errors.

View File

@@ -14,7 +14,7 @@ class Buffer {
void* ptr_;
public:
explicit Buffer(void* ptr) : ptr_(ptr) {};
Buffer(void* ptr) : ptr_(ptr) {};
// Get the raw data pointer from the buffer
void* raw_ptr();

View File

@@ -64,7 +64,7 @@ array array::unsafe_weak_copy(const array& other) {
other.strides(),
other.flags(),
[](auto) {});
cpy.array_desc_->offset = other.array_desc_->offset;
cpy.array_desc_->data_ptr = other.array_desc_->data_ptr;
return cpy;
}
@@ -141,7 +141,7 @@ bool array::is_tracer() const {
void array::set_data(allocator::Buffer buffer, Deleter d) {
array_desc_->data = std::make_shared<Data>(buffer, d);
array_desc_->offset = 0;
array_desc_->data_ptr = buffer.raw_ptr();
array_desc_->data_size = size();
array_desc_->flags.contiguous = true;
array_desc_->flags.row_contiguous = true;
@@ -156,7 +156,7 @@ void array::set_data(
Flags flags,
Deleter d) {
array_desc_->data = std::make_shared<Data>(buffer, d);
array_desc_->offset = 0;
array_desc_->data_ptr = buffer.raw_ptr();
array_desc_->data_size = data_size;
array_desc_->strides = std::move(strides);
array_desc_->flags = flags;
@@ -167,13 +167,14 @@ void array::copy_shared_buffer(
const Strides& strides,
Flags flags,
size_t data_size,
int64_t offset /* = 0 */) {
size_t offset /* = 0 */) {
array_desc_->data = other.array_desc_->data;
array_desc_->strides = strides;
array_desc_->flags = flags;
array_desc_->data_size = data_size;
array_desc_->offset =
sizeof(char) * itemsize() * offset + other.array_desc_->offset;
auto char_offset = sizeof(char) * itemsize() * offset;
array_desc_->data_ptr = static_cast<void*>(
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
}
void array::copy_shared_buffer(const array& other) {
@@ -240,8 +241,8 @@ array::ArrayDesc::ArrayDesc(
std::vector<array> inputs)
: shape(std::move(shape)),
dtype(dtype),
primitive(std::move(primitive)),
status(Status::unscheduled),
primitive(std::move(primitive)),
inputs(std::move(inputs)) {
init();
}

View File

@@ -294,11 +294,6 @@ class array {
return array_desc_->siblings;
}
/** The array's position in the sibling list. */
int sibling_position() const {
return array_desc_->position;
}
void set_siblings(std::vector<array> siblings, uint16_t position) {
array_desc_->siblings = std::move(siblings);
array_desc_->position = position;
@@ -354,23 +349,15 @@ class array {
return array_desc_->data;
}
// Return a raw pointer to the arrays data. This function may do a copy if
// the underlying buffer is not accessible on the CPU. When accessing the
// data for GPU kernels, be sure to use the correct method / function for the
// given backend to access the GPU pointer.
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
return reinterpret_cast<T*>(
(static_cast<char*>(buffer().raw_ptr()) + array_desc_->offset));
return static_cast<T*>(array_desc_->data_ptr);
}
template <typename T>
const T* data() const {
return const_cast<array&>(*this).data<T>();
}
int64_t offset() const {
return array_desc_->offset;
return static_cast<T*>(array_desc_->data_ptr);
}
enum Status {
@@ -439,7 +426,7 @@ class array {
const Strides& strides,
Flags flags,
size_t data_size,
int64_t offset = 0);
size_t offset = 0);
void copy_shared_buffer(const array& other);
@@ -474,8 +461,8 @@ class array {
// can share the underlying data buffer.
std::shared_ptr<Data> data;
// Offset from beginning of data pointer
int64_t offset{0};
// Properly offset data pointer
void* data_ptr{nullptr};
// The size in elements of the data buffer the array accesses
size_t data_size;

View File

@@ -38,20 +38,20 @@ inline void set_binary_op_output_data(
const array& a,
const array& b,
array& out,
BinaryOpType bopt,
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
BinaryOpType bopt) {
bool b_donatable = is_donatable(b, out);
bool a_donatable = is_donatable(a, out);
switch (bopt) {
case BinaryOpType::ScalarScalar:
out.set_data(mallocfn(out.itemsize()), 1, a.strides(), a.flags());
out.set_data(
allocator::malloc(out.itemsize()), 1, a.strides(), a.flags());
break;
case BinaryOpType::ScalarVector:
if (b_donatable) {
out.copy_shared_buffer(b);
} else {
out.set_data(
mallocfn(b.data_size() * out.itemsize()),
allocator::malloc(b.data_size() * out.itemsize()),
b.data_size(),
b.strides(),
b.flags());
@@ -62,7 +62,7 @@ inline void set_binary_op_output_data(
out.copy_shared_buffer(a);
} else {
out.set_data(
mallocfn(a.data_size() * out.itemsize()),
allocator::malloc(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
@@ -75,7 +75,7 @@ inline void set_binary_op_output_data(
out.copy_shared_buffer(b);
} else {
out.set_data(
mallocfn(a.data_size() * out.itemsize()),
allocator::malloc(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
@@ -88,7 +88,7 @@ inline void set_binary_op_output_data(
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
out.copy_shared_buffer(b);
} else {
out.set_data(mallocfn(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
break;
}

View File

@@ -6,7 +6,7 @@ namespace mlx::core {
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(allocator::malloc(0));
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);

View File

@@ -114,9 +114,7 @@ void compiled_allocate_outputs(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const std::function<bool(size_t)>& is_constant,
bool contiguous,
const std::function<allocator::Buffer(size_t)>&
mallocfn /* = allocator::malloc */) {
bool contiguous) {
if (contiguous) {
int o = 0;
Strides strides;
@@ -142,7 +140,7 @@ void compiled_allocate_outputs(
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(
mallocfn(data_size * outputs[o].itemsize()),
allocator::malloc(data_size * outputs[o].itemsize()),
data_size,
strides,
flags);
@@ -165,7 +163,7 @@ void compiled_allocate_outputs(
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(mallocfn(outputs[o].nbytes()));
outputs[o].set_data(allocator::malloc(outputs[o].nbytes()));
}
}
}

View File

@@ -58,9 +58,7 @@ void compiled_allocate_outputs(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const std::function<bool(size_t)>& is_constant,
bool contiguous,
const std::function<allocator::Buffer(size_t)>& mallocfn =
allocator::malloc);
bool contiguous);
// Collapse contiguous dims ignoring scalars and constants.
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(

View File

@@ -22,11 +22,7 @@ enum class CopyType {
GeneralGeneral
};
inline bool set_copy_output_data(
const array& in,
array& out,
CopyType ctype,
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
inline bool set_copy_output_data(const array& in, array& out, CopyType ctype) {
if (ctype == CopyType::Vector) {
// If the input is donateable, we are doing a vector copy and the types
// have the same size, then the input buffer can hold the output.
@@ -35,14 +31,14 @@ inline bool set_copy_output_data(
return true;
} else {
out.set_data(
mallocfn(in.data_size() * out.itemsize()),
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
return false;
}
} else {
out.set_data(mallocfn(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
return false;
}
}

View File

@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
const array& a,
const array& b) {
if (a.ndim() == 2) {
return {Shape{1}, Strides{0}, Strides{0}};
return {{1}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
inline std::tuple<Shape, Strides, Strides, Strides>
collapse_batches(const array& a, const array& b, const array& c) {
if (a.ndim() == 2) {
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
return {{1}, {0}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};

View File

@@ -14,13 +14,17 @@ std::tuple<int64_t, Strides> prepare_slice(
data_offset += start_indices[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides[i];
}
// Normalize the offset
if (data_offset < 0) {
data_offset += in.data_size();
}
return std::make_tuple(data_offset, inp_strides);
}
void shared_buffer_slice(
const array& in,
const Strides& out_strides,
int64_t data_offset,
size_t data_offset,
size_t data_size,
array& out) {
// Compute row/col contiguity
@@ -41,30 +45,23 @@ void slice(
const Shape& start_indices,
const Shape& strides) {
if (out.size() == 0) {
out.set_data(allocator::malloc(0));
out.set_data(nullptr);
return;
}
// Calculate out strides, initial offset
auto [data_offset, inp_strides] = prepare_slice(in, start_indices, strides);
// Get the location of the end based on the inp strides and out.shape()
int64_t low_idx = 0;
int64_t high_idx = 0;
for (int i = 0; i < inp_strides.size(); ++i) {
auto delta = inp_strides[i] * (out.shape()[i] - 1);
if (inp_strides[i] > 0) {
high_idx += delta;
} else {
low_idx += delta;
int64_t data_end = 1;
for (int i = 0; i < start_indices.size(); ++i) {
if (in.shape()[i] > 1) {
auto end_idx = start_indices[i] + out.shape()[i] * strides[i] - 1;
data_end += end_idx * in.strides()[i];
}
}
int64_t data_size = (high_idx - low_idx) + 1;
if (data_size < 0) {
std::ostringstream msg;
msg << "[slice] Computed invalid data size: " << data_size << ".";
throw std::runtime_error(msg.str());
if (data_end < 0) {
data_end += in.data_size();
}
size_t data_size = (data_end - data_offset);
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
}

View File

@@ -11,8 +11,6 @@ namespace mlx::core {
enum class TernaryOpType {
ScalarScalarScalar,
VectorVectorVector,
VectorVectorScalar,
VectorScalarVector,
General,
};
@@ -27,14 +25,6 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
(a.flags().col_contiguous && b.flags().col_contiguous &&
c.flags().col_contiguous)) {
topt = TernaryOpType::VectorVectorVector;
} else if (
b.data_size() == 1 && a.flags().row_contiguous &&
c.flags().row_contiguous) {
topt = TernaryOpType::VectorScalarVector;
} else if (
c.data_size() == 1 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
topt = TernaryOpType::VectorVectorScalar;
} else {
topt = TernaryOpType::General;
}
@@ -46,8 +36,7 @@ inline void set_ternary_op_output_data(
const array& b,
const array& c,
array& out,
TernaryOpType topt,
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
TernaryOpType topt) {
auto maybe_donate = [&out](const array& x) {
if (is_donatable(x, out)) {
out.copy_shared_buffer(x);
@@ -58,25 +47,24 @@ inline void set_ternary_op_output_data(
switch (topt) {
case TernaryOpType::ScalarScalarScalar:
out.set_data(mallocfn(out.itemsize()), 1, b.strides(), b.flags());
out.set_data(
allocator::malloc(out.itemsize()), 1, b.strides(), b.flags());
break;
case TernaryOpType::VectorVectorVector:
if (!(maybe_donate(a) || maybe_donate(b) || maybe_donate(c))) {
out.set_data(
mallocfn(out.itemsize() * b.data_size()),
allocator::malloc(out.itemsize() * b.data_size()),
b.data_size(),
b.strides(),
b.flags());
}
break;
case TernaryOpType::VectorVectorScalar:
case TernaryOpType::VectorScalarVector:
case TernaryOpType::General:
// Try to donate an input which is row_contiguous
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
(b.flags().row_contiguous && maybe_donate(b)) ||
(c.flags().row_contiguous && maybe_donate(c)))) {
out.set_data(mallocfn(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
break;
}

View File

@@ -7,22 +7,19 @@
namespace mlx::core {
inline void set_unary_output_data(
const array& in,
array& out,
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
inline void set_unary_output_data(const array& in, array& out) {
if (in.flags().contiguous) {
if (is_donatable(in, out)) {
out.copy_shared_buffer(in);
} else {
out.set_data(
mallocfn(in.data_size() * out.itemsize()),
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
} else {
out.set_data(mallocfn(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
}

View File

@@ -14,11 +14,233 @@
namespace mlx::core {
namespace {
template <typename Op>
void binary(const array& a, const array& b, array& out, Op op, Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case bool_:
binary_op<bool, Op>(a, b, out, bopt);
break;
case uint8:
binary_op<uint8_t, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, Op>(a, b, out, bopt);
break;
case float16:
binary_op<float16_t, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
}
});
}
template <typename Op>
void comparison_op(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (a.dtype()) {
case bool_:
binary_op<bool, bool, Op>(a, b, out, bopt);
break;
case uint8:
binary_op<uint8_t, bool, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, bool, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, bool, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, bool, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, bool, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, bool, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, bool, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, bool, Op>(a, b, out, bopt);
break;
case float16:
binary_op<float16_t, bool, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, bool, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, bool, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, bool, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, bool, Op>(a, b, out, bopt);
break;
}
});
}
template <typename Op>
void binary_float(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case float16:
binary_op<float16_t, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports floating point types.");
}
});
}
template <typename Op>
void binary_int(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case bool_:
binary_op<bool, Op>(a, b, out, bopt);
case uint8:
binary_op<uint8_t, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error("[binary_int] Type not supported");
break;
}
});
}
} // namespace
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Add(), stream());
binary(a, b, out, detail::Add(), stream());
}
void DivMod::eval_cpu(
@@ -102,14 +324,14 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Divide(), stream());
binary(a, b, out, detail::Divide(), stream());
}
void Remainder::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Remainder(), stream());
binary(a, b, out, detail::Remainder(), stream());
}
void Equal::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -150,90 +372,89 @@ void Equal::eval_cpu(const std::vector<array>& inputs, array& out) {
}
});
} else {
comparison_op_cpu(a, b, out, detail::Equal(), stream());
comparison_op(a, b, out, detail::Equal(), stream());
}
}
void Greater::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op_cpu(inputs[0], inputs[1], out, detail::Greater(), stream());
comparison_op(inputs[0], inputs[1], out, detail::Greater(), stream());
}
void GreaterEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op_cpu(
inputs[0], inputs[1], out, detail::GreaterEqual(), stream());
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual(), stream());
}
void Less::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op_cpu(inputs[0], inputs[1], out, detail::Less(), stream());
comparison_op(inputs[0], inputs[1], out, detail::Less(), stream());
}
void LessEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op_cpu(inputs[0], inputs[1], out, detail::LessEqual(), stream());
comparison_op(inputs[0], inputs[1], out, detail::LessEqual(), stream());
}
void LogAddExp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_float_op_cpu(a, b, out, detail::LogAddExp(), stream());
binary_float(a, b, out, detail::LogAddExp(), stream());
}
void LogicalAnd::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary_op_cpu(in1, in2, out, detail::LogicalAnd(), stream());
binary(in1, in2, out, detail::LogicalAnd(), stream());
}
void LogicalOr::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalOr requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary_op_cpu(in1, in2, out, detail::LogicalOr(), stream());
binary(in1, in2, out, detail::LogicalOr(), stream());
}
void Maximum::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Maximum(), stream());
binary(a, b, out, detail::Maximum(), stream());
}
void Minimum::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Minimum(), stream());
binary(a, b, out, detail::Minimum(), stream());
}
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Multiply(), stream());
binary(a, b, out, detail::Multiply(), stream());
}
void NotEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op_cpu(inputs[0], inputs[1], out, detail::NotEqual(), stream());
comparison_op(inputs[0], inputs[1], out, detail::NotEqual(), stream());
}
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Power(), stream());
binary(a, b, out, detail::Power(), stream());
}
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary_op_cpu(a, b, out, detail::Subtract(), stream());
binary(a, b, out, detail::Subtract(), stream());
}
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -242,19 +463,19 @@ void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b = inputs[1];
switch (op_) {
case BitwiseBinary::And:
binary_int_op_cpu(a, b, out, detail::BitwiseAnd(), stream());
binary_int(a, b, out, detail::BitwiseAnd(), stream());
break;
case BitwiseBinary::Or:
binary_int_op_cpu(a, b, out, detail::BitwiseOr(), stream());
binary_int(a, b, out, detail::BitwiseOr(), stream());
break;
case BitwiseBinary::Xor:
binary_int_op_cpu(a, b, out, detail::BitwiseXor(), stream());
binary_int(a, b, out, detail::BitwiseXor(), stream());
break;
case BitwiseBinary::LeftShift:
binary_int_op_cpu(a, b, out, detail::LeftShift(), stream());
binary_int(a, b, out, detail::LeftShift(), stream());
break;
case BitwiseBinary::RightShift:
binary_int_op_cpu(a, b, out, detail::RightShift(), stream());
binary_int(a, b, out, detail::RightShift(), stream());
break;
}
}
@@ -263,7 +484,7 @@ void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
const auto& a = inputs[0];
const auto& b = inputs[1];
binary_float_op_cpu(a, b, out, detail::ArcTan2(), stream());
binary_float(a, b, out, detail::ArcTan2(), stream());
}
} // namespace mlx::core

View File

@@ -7,7 +7,6 @@
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
@@ -291,227 +290,4 @@ void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
binary_op<T, T, Op>(a, b, out, bopt);
}
template <typename Op>
void binary_op_cpu(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case bool_:
binary_op<bool, Op>(a, b, out, bopt);
break;
case uint8:
binary_op<uint8_t, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, Op>(a, b, out, bopt);
break;
case float16:
binary_op<float16_t, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
}
});
}
template <typename Op>
void comparison_op_cpu(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (a.dtype()) {
case bool_:
binary_op<bool, bool, Op>(a, b, out, bopt);
break;
case uint8:
binary_op<uint8_t, bool, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, bool, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, bool, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, bool, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, bool, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, bool, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, bool, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, bool, Op>(a, b, out, bopt);
break;
case float16:
binary_op<float16_t, bool, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, bool, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, bool, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, bool, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, bool, Op>(a, b, out, bopt);
break;
}
});
}
template <typename Op>
void binary_float_op_cpu(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case float16:
binary_op<float16_t, Op>(a, b, out, bopt);
break;
case float32:
binary_op<float, Op>(a, b, out, bopt);
break;
case float64:
binary_op<double, Op>(a, b, out, bopt);
break;
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports floating point types.");
}
});
}
template <typename Op>
void binary_int_op_cpu(
const array& a,
const array& b,
array& out,
Op op,
Stream stream) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
out = array::unsafe_weak_copy(out),
bopt]() mutable {
switch (out.dtype()) {
case bool_:
binary_op<bool, Op>(a, b, out, bopt);
case uint8:
binary_op<uint8_t, Op>(a, b, out, bopt);
break;
case uint16:
binary_op<uint16_t, Op>(a, b, out, bopt);
break;
case uint32:
binary_op<uint32_t, Op>(a, b, out, bopt);
break;
case uint64:
binary_op<uint64_t, Op>(a, b, out, bopt);
break;
case int8:
binary_op<int8_t, Op>(a, b, out, bopt);
break;
case int16:
binary_op<int16_t, Op>(a, b, out, bopt);
break;
case int32:
binary_op<int32_t, Op>(a, b, out, bopt);
break;
case int64:
binary_op<int64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error("[binary_int] Type not supported");
break;
}
});
}
} // namespace mlx::core

View File

@@ -15,7 +15,6 @@
#include "mlx/backend/cpu/jit_compiler.h"
#include "mlx/device.h"
#include "mlx/graph_utils.h"
#include "mlx/version.h"
namespace mlx::core {
@@ -95,11 +94,7 @@ void* compile(
kernel_file_name = kernel_name;
}
auto output_dir =
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
if (!std::filesystem::exists(output_dir)) {
std::filesystem::create_directories(output_dir);
}
auto output_dir = std::filesystem::temp_directory_path();
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
auto shared_lib_path = (output_dir / shared_lib_name).string();

View File

@@ -996,6 +996,131 @@ void explicit_gemm_conv_1D_cpu(
encoder.add_temporaries(std::move(temps));
}
void explicit_gemm_conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iW = in.shape(2); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int oW = out.shape(2); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(3); // In channels
const int wH = wt.shape(1); // Weight spatial dim
const int wW = wt.shape(2); // Weight spatial dim
auto conv_dtype = out.dtype();
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {
N,
iH + padding_lo[0] + padding_hi[0],
iW + padding_lo[1] + padding_hi[1],
C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
padding_lo[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
temps.push_back(in_padded_slice);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C};
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[2] * wt_strides[1],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]};
auto flags = in_padded.flags();
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
auto gemm_wt = wt;
auto gemm_out = out;
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
temps.push_back(gemm_out);
}
encoder.set_input_array(in_strided);
encoder.set_input_array(gemm_wt);
encoder.set_output_array(gemm_out);
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
gemm_wt_ptr = gemm_wt.data<float>(),
gemm_out_ptr = gemm_out.data<float>(),
strided_reshape = std::move(strided_reshape),
O]() {
// Perform gemm
cblas_sgemm(
CblasRowMajor,
CblasNoTrans, // no trans A
CblasTrans, // transB
strided_reshape[0], // M
O, // N
strided_reshape[1], // K
1.0f, // alpha
in_strided_ptr,
strided_reshape[1], // lda
gemm_wt_ptr,
strided_reshape[1], // ldb
0.0f, // beta
gemm_out_ptr,
O // ldc
);
});
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
void explicit_gemm_conv_ND_cpu(
const array& in,
const array& wt,

View File

@@ -95,9 +95,4 @@ void Recv::eval_cpu(
distributed::detail::recv(group(), outputs[0], src_, stream());
}
void ReduceScatter::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("[ReduceScatter] Not implemented yet.");
}
} // namespace mlx::core::distributed

View File

@@ -12,167 +12,6 @@ namespace mlx::core {
namespace {
template <typename T>
complex64_t to_complex(T r, T i) {
return {static_cast<float>(r), static_cast<float>(i)};
}
template <typename T, class Enable = void>
struct EigWork {};
template <typename T>
struct EigWork<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
using O = complex64_t;
char jobl;
char jobr;
int N;
int lwork;
int info;
std::vector<array::Data> buffers;
EigWork(char jobl_, char jobr_, int N_, bool compute_eigenvectors)
: jobl(jobl_), jobr(jobr_), N(N_), lwork(-1) {
T work;
int n_vecs_l = compute_eigenvectors ? N_ : 1;
int n_vecs_r = 1;
geev<T>(
&jobl,
&jobr,
&N,
nullptr,
&N,
nullptr,
nullptr,
nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
&work,
&lwork,
&info);
lwork = static_cast<int>(work);
buffers.emplace_back(allocator::malloc(sizeof(T) * N * 2));
if (compute_eigenvectors) {
buffers.emplace_back(allocator::malloc(sizeof(T) * N * N * 2));
}
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
}
void run(T* a, O* values, O* vectors) {
auto eig_tmp = static_cast<T*>(buffers[0].buffer.raw_ptr());
T* vec_tmp = nullptr;
if (vectors) {
vec_tmp = static_cast<T*>(buffers[1].buffer.raw_ptr());
}
auto work = static_cast<T*>(buffers.back().buffer.raw_ptr());
int n_vecs_l = vectors ? N : 1;
int n_vecs_r = 1;
geev<T>(
&jobl,
&jobr,
&N,
a,
&N,
eig_tmp,
eig_tmp + N,
vectors ? vec_tmp : nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
work,
&lwork,
&info);
for (int i = 0; i < N; ++i) {
values[i] = to_complex(eig_tmp[i], eig_tmp[N + i]);
}
if (vectors) {
for (int i = 0; i < N; ++i) {
if (values[i].imag() != 0) {
for (int j = 0; j < N; ++j) {
vectors[i * N + j] =
to_complex(vec_tmp[i * N + j], -vec_tmp[(i + 1) * N + j]);
vectors[(i + 1) * N + j] =
to_complex(vec_tmp[i * N + j], vec_tmp[(i + 1) * N + j]);
}
i += 1;
} else {
for (int j = 0; j < N; ++j) {
vectors[i * N + j] = to_complex(vec_tmp[i * N + j], T(0.0));
}
}
}
}
}
};
template <>
struct EigWork<std::complex<float>> {
using T = std::complex<float>;
using R = float;
using O = T;
char jobl;
char jobr;
int N;
int lwork;
int lrwork;
int info;
std::vector<array::Data> buffers;
EigWork(char jobl_, char jobr_, int N_, bool compute_eigenvectors)
: jobl(jobl_), jobr(jobr_), N(N_), lwork(-1), lrwork(2 * N_) {
T work;
R rwork;
int n_vecs_l = compute_eigenvectors ? N_ : 1;
int n_vecs_r = 1;
geev<T>(
&jobl,
&jobr,
&N,
nullptr,
&N,
nullptr,
nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
&work,
&lwork,
&rwork,
&info);
lwork = static_cast<int>(work.real());
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
buffers.emplace_back(allocator::malloc(sizeof(R) * lrwork));
}
void run(T* a, T* values, T* vectors) {
int n_vecs_l = vectors ? N : 1;
int n_vecs_r = 1;
geev<T>(
&jobl,
&jobr,
&N,
a,
&N,
values,
vectors,
&n_vecs_l,
nullptr,
&n_vecs_r,
static_cast<T*>(buffers[0].buffer.raw_ptr()),
&lwork,
static_cast<R*>(buffers[1].buffer.raw_ptr()),
&info);
}
};
template <typename T>
void eig_impl(
array& a,
@@ -180,39 +19,102 @@ void eig_impl(
array& values,
bool compute_eigenvectors,
Stream stream) {
using OT = std::complex<T>;
auto a_ptr = a.data<T>();
auto val_ptr = values.data<complex64_t>();
auto eig_ptr = values.data<OT>();
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_output_array(values);
complex64_t* vec_ptr = nullptr;
OT* vec_ptr = nullptr;
if (compute_eigenvectors) {
encoder.set_output_array(vectors);
vec_ptr = vectors.data<complex64_t>();
vec_ptr = vectors.data<OT>();
}
encoder.dispatch([a_ptr,
val_ptr,
vec_ptr,
eig_ptr,
compute_eigenvectors,
N = vectors.shape(-1),
size = vectors.size()]() mutable {
// Work query
char jobr = 'N';
char jobl = compute_eigenvectors ? 'V' : 'N';
int n_vecs_r = 1;
int n_vecs_l = compute_eigenvectors ? N : 1;
int lwork = -1;
int info;
{
T work;
int iwork;
geev<T>(
&jobl,
&jobr,
&N,
nullptr,
&N,
nullptr,
nullptr,
nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
&work,
&lwork,
&info);
lwork = static_cast<int>(work);
}
EigWork<T> work(jobl, jobr, N, compute_eigenvectors);
auto eig_tmp_data = array::Data{allocator::malloc(sizeof(T) * N * 2)};
auto vec_tmp_data =
array::Data{allocator::malloc(vec_ptr ? sizeof(T) * N * N * 2 : 0)};
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
for (size_t i = 0; i < size / (N * N); ++i) {
work.run(a_ptr, val_ptr, vec_ptr);
a_ptr += N * N;
val_ptr += N;
geev<T>(
&jobl,
&jobr,
&N,
a_ptr,
&N,
eig_tmp,
eig_tmp + N,
vec_tmp,
&n_vecs_l,
nullptr,
&n_vecs_r,
static_cast<T*>(work_buf.buffer.raw_ptr()),
&lwork,
&info);
for (int i = 0; i < N; ++i) {
eig_ptr[i] = {eig_tmp[i], eig_tmp[N + i]};
}
if (vec_ptr) {
for (int i = 0; i < N; ++i) {
if (eig_ptr[i].imag() != 0) {
// This vector and the next are a pair
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {
vec_tmp[i * N + j], -vec_tmp[(i + 1) * N + j]};
vec_ptr[(i + 1) * N + j] = {
vec_tmp[i * N + j], vec_tmp[(i + 1) * N + j]};
}
i += 1;
} else {
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {vec_tmp[i * N + j], 0};
}
}
}
vec_ptr += N * N;
}
if (work.info != 0) {
a_ptr += N * N;
eig_ptr += N;
if (info != 0) {
std::stringstream msg;
msg << "[Eig::eval_cpu] Eigenvalue decomposition failed with error code "
<< work.info;
<< info;
throw std::runtime_error(msg.str());
}
}
@@ -264,17 +166,8 @@ void Eig::eval_cpu(
case float32:
eig_impl<float>(a_copy, vectors, values, compute_eigenvectors_, stream());
break;
case float64:
eig_impl<double>(
a_copy, vectors, values, compute_eigenvectors_, stream());
break;
case complex64:
eig_impl<std::complex<float>>(
a_copy, vectors, values, compute_eigenvectors_, stream());
break;
default:
throw std::runtime_error(
"[Eig::eval_cpu] only supports float32, float64, or complex64.");
throw std::runtime_error("[Eig::eval_cpu] only supports float32.");
}
}

View File

@@ -1,4 +1,5 @@
// Copyright © 2023-2024 Apple Inc.
#include <Accelerate/Accelerate.h>
#include "mlx/array.h"
@@ -48,15 +49,9 @@ void matmul_bnns(
size_t K = a_shape[ndim - 1];
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
if (beta != 1.0 && beta != 0.0) {
// scale the output
for (auto i = 0; i < batch_size * M * N; ++i) {
out[i] *= beta;
}
beta = 1.0;
}
const BNNSLayerParametersBroadcastMatMul gemm_params{
/* float alpha = */ alpha,
/* float beta = */ beta,

View File

@@ -88,47 +88,4 @@ void matmul<double>(
}
}
template <>
void matmul<complex64_t>(
const complex64_t* a,
const complex64_t* b,
complex64_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
auto calpha = static_cast<complex64_t>(alpha);
auto cbeta = static_cast<complex64_t>(beta);
for (int i = 0; i < batch_size; ++i) {
cblas_cgemm(
CblasRowMajor,
a_transposed ? CblasTrans : CblasNoTrans, // transA
b_transposed ? CblasTrans : CblasNoTrans, // transB
M,
N,
K,
&calpha,
a + elem_to_loc(M * K * i, a_shape, a_strides),
lda,
b + elem_to_loc(K * N * i, b_shape, b_strides),
ldb,
&cbeta,
out + M * N * i,
ldc);
}
}
} // namespace mlx::core

View File

@@ -747,108 +747,4 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
});
}
template <typename T>
void masked_scatter_impl(const array& mask, const array& src, array& out) {
ContiguousIterator mask_it(mask);
ContiguousIterator src_it(src);
ContiguousIterator out_it(out);
const bool* mask_ptr = mask.data<bool>();
const T* src_ptr = src.data<T>();
T* dst_ptr = out.data<T>();
const size_t batch_count = mask.shape(0);
const size_t mask_batch_size = mask.size() / batch_count;
const size_t src_batch_size = src.size() / batch_count;
for (uint b = 0; b < batch_count; ++b) {
size_t src_consumed = 0;
src_it.seek(b * src_batch_size);
for (size_t i = 0; i < mask_batch_size; ++i) {
if (mask_ptr[mask_it.loc]) {
if (src_consumed >= src_batch_size) {
throw std::runtime_error(
"[MaskedScatter::eval_cpu] Source does not have enough elements for mask.");
}
dst_ptr[out_it.loc] = src_ptr[src_it.loc];
src_it.step();
++src_consumed;
}
mask_it.step();
out_it.step();
}
}
}
void MaskedScatter::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
auto& dst = inputs[0];
auto& mask = inputs[1];
auto& src = inputs[2];
// Copy src into out (copy allocates memory for out)
auto ctype =
dst.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(dst, out, ctype, stream());
if (mask.size() == 0) {
return;
}
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(mask);
encoder.set_input_array(src);
encoder.set_output_array(out);
encoder.dispatch([mask = array::unsafe_weak_copy(mask),
src = array::unsafe_weak_copy(src),
out = array::unsafe_weak_copy(out)]() mutable {
switch (out.dtype()) {
case bool_:
masked_scatter_impl<bool>(mask, src, out);
break;
case uint8:
masked_scatter_impl<uint8_t>(mask, src, out);
break;
case uint16:
masked_scatter_impl<uint16_t>(mask, src, out);
break;
case uint32:
masked_scatter_impl<uint32_t>(mask, src, out);
break;
case uint64:
masked_scatter_impl<uint64_t>(mask, src, out);
break;
case int8:
masked_scatter_impl<int8_t>(mask, src, out);
break;
case int16:
masked_scatter_impl<int16_t>(mask, src, out);
break;
case int32:
masked_scatter_impl<int32_t>(mask, src, out);
break;
case int64:
masked_scatter_impl<int64_t>(mask, src, out);
break;
case float16:
masked_scatter_impl<float16_t>(mask, src, out);
break;
case float32:
masked_scatter_impl<float>(mask, src, out);
break;
case float64:
masked_scatter_impl<double>(mask, src, out);
break;
case bfloat16:
masked_scatter_impl<bfloat16_t>(mask, src, out);
break;
case complex64:
masked_scatter_impl<complex64_t>(mask, src, out);
break;
}
});
}
} // namespace mlx::core

View File

@@ -45,7 +45,9 @@
INSTANTIATE_LAPACK_REAL(geqrf)
INSTANTIATE_LAPACK_REAL(orgqr)
INSTANTIATE_LAPACK_REAL(syevd)
INSTANTIATE_LAPACK_REAL(geev)
INSTANTIATE_LAPACK_REAL(potrf)
INSTANTIATE_LAPACK_REAL(gesdd)
INSTANTIATE_LAPACK_REAL(getrf)
INSTANTIATE_LAPACK_REAL(getri)
INSTANTIATE_LAPACK_REAL(trtri)
@@ -61,20 +63,3 @@ INSTANTIATE_LAPACK_REAL(trtri)
}
INSTANTIATE_LAPACK_COMPLEX(heevd)
#define INSTANTIATE_LAPACK_ALL(FUNC) \
template <typename T, typename... Args> \
void FUNC(Args... args) { \
if constexpr (std::is_same_v<T, float>) { \
MLX_LAPACK_FUNC(s##FUNC)(std::forward<Args>(args)...); \
} else if constexpr (std::is_same_v<T, double>) { \
MLX_LAPACK_FUNC(d##FUNC)(std::forward<Args>(args)...); \
} else if constexpr (std::is_same_v<T, std::complex<float>>) { \
MLX_LAPACK_FUNC(c##FUNC)(std::forward<Args>(args)...); \
} else if constexpr (std::is_same_v<T, std::complex<double>>) { \
MLX_LAPACK_FUNC(z##FUNC)(std::forward<Args>(args)...); \
} \
}
INSTANTIATE_LAPACK_ALL(geev)
INSTANTIATE_LAPACK_ALL(gesdd)

View File

@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
encoder.set_input_array(a);
encoder.set_input_array(b);
const void* a_mask_ptr = nullptr;
const void* b_mask_ptr = nullptr;
const void* out_mask_ptr = nullptr;
const void* a_mask_ptr;
const void* b_mask_ptr;
const void* out_mask_ptr;
Shape a_mask_shape;
Shape b_mask_shape;
Shape out_mask_shape;
Strides a_mask_strides;
Strides b_mask_strides;
Strides out_mask_strides;
bool a_mask_bool = false;
bool b_mask_bool = false;
bool out_mask_bool = false;
bool a_mask_bool;
bool b_mask_bool;
bool out_mask_bool;
if (has_op_mask) {
auto& a_mask = inputs[inputs.size() - 2];
auto& b_mask = inputs[inputs.size() - 1];
@@ -423,6 +423,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& rhs_indices = inputs[3];
auto batch_shape = get_batch_dims(out.shape());
int batch_ndim = batch_shape.size();
auto batch_shape_A = get_batch_dims(a.shape());
auto batch_strides_A = get_batch_dims(a.strides());

View File

@@ -2,8 +2,6 @@
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/cpu/binary.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/gemm.h"
@@ -93,6 +91,7 @@ void matmul_general(
auto [b_transposed, ldb, b] = check_transpose(b_pre);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
@@ -109,9 +108,6 @@ void matmul_general(
} else if (out.dtype() == float64) {
matmul_dispatch<double>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else if (out.dtype() == complex64) {
matmul_dispatch<complex64_t>(
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
} else {
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
}
@@ -132,34 +128,24 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
if (out.size() == 0) {
out.set_data(allocator::malloc(out.nbytes()));
return;
}
// Handle empty matrix case (K=0)
if (inputs[0].shape(-1) == 0) {
auto& c = inputs[2];
if (beta_ == 1.0f) {
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy_cpu(c, out, ctype, stream());
} else {
array beta_scalar = array(beta_, c.dtype());
auto& encoder = cpu::get_command_encoder(stream());
binary_float_op_cpu(c, beta_scalar, out, detail::Multiply(), stream());
encoder.add_temporary(std::move(beta_scalar));
}
return;
}
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy_cpu(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
}

View File

@@ -333,7 +333,7 @@ void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.size() == 0) {
out.set_data(allocator::malloc(0));
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
@@ -361,7 +361,7 @@ void DynamicSliceUpdate::eval_cpu(
const std::vector<array>& inputs,
array& out) {
if (out.size() == 0) {
out.set_data(allocator::malloc(0));
out.set_data(nullptr);
return;
}
@@ -396,7 +396,7 @@ void DynamicSliceUpdate::eval_cpu(
void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (out.size() == 0) {
out.set_data(allocator::malloc(0));
out.set_data(nullptr);
return;
}

View File

@@ -1,11 +1,10 @@
// Copyright © 2023 Apple Inc.
#include "mlx/backend/common/unary.h"
#include <cassert>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/backend/cpu/unary.h"
#include "mlx/backend/cpu/unary_ops.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -14,35 +13,6 @@ namespace mlx::core {
namespace {
const static float MXFP4_LUT[16] = {
+0.0f,
+0.5f,
+1.0f,
+1.5f,
+2.0f,
+3.0f,
+4.0f,
+6.0f,
-0.0f,
-0.5f,
-1.0f,
-1.5f,
-2.0f,
-3.0f,
-4.0f,
-6.0f};
template <typename T>
static inline T dequantize_scale(uint8_t s) {
using FOrI = union {
bfloat16_t f;
uint16_t i;
};
FOrI out;
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
return static_cast<T>(out.f);
}
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
@@ -437,229 +407,6 @@ void _qmm_dispatch(
}
}
template <typename T>
void mxfp4_qmm(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = get_pack_factor(4, 8);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
const uint8_t* w_local = (const uint8_t*)w;
const uint8_t* scales_local = scales;
std::fill(result, result + N, 0);
for (int k = 0; k < K; k++) {
T* result_local = result;
T xi = *x++;
for (int n = 0; n < N; n += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
for (int ng = 0; ng < packs_in_group; ng++) {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
(*result_local++) +=
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
wi >>= 4;
}
}
}
}
result += N;
}
}
template <typename T>
void mxfp4_qmm_t(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = get_pack_factor(4, 8);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
const uint8_t* w_local = (const uint8_t*)w;
const uint8_t* scales_local = scales;
for (int n = 0; n < N; n++) {
const T* x_local = x;
T sum = 0;
for (int k = 0; k < K; k += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
T gsum = 0;
for (int kw = 0; kw < packs_in_group; kw++) {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
wi >>= 4;
}
}
sum += scale * gsum;
}
*result = sum;
result++;
}
x += K;
}
}
template <int S>
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
if constexpr (S == 8) {
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
auto wi = simd::Simd<uint32_t, S>(*w);
wi = wi >> shifts;
wi = wi & 0xf;
simd::Simd<float, S> w_out;
for (int i = 0; i < S; ++i) {
w_out[i] = MXFP4_LUT[wi[i]];
}
return w_out;
} else {
// Appease compiler.. but should never get here
throw std::runtime_error("Unsupported combination for simd qmm.");
}
}
template <typename T>
void mxfp4_qmm_t_simd(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K) {
constexpr int group_size = 32;
constexpr int pack_factor = 32 / 4;
constexpr int packs_in_group = group_size / pack_factor;
constexpr int S = simd::max_size<T>;
static_assert(
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
constexpr int packs_per_simd = S / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const uint8_t* scales_local = scales;
for (int n = 0; n < N; n++) {
simd::Simd<float, S> acc(0);
auto x_local = x;
for (int k = 0; k < K; k += group_size) {
T scale = dequantize_scale<T>(*scales_local++);
simd::Simd<float, S> g_acc(0);
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
// Extract bits
auto wf = mxfp4_extract_bits_simd<S>(w_local);
w_local += packs_per_simd;
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
g_acc = g_acc + x_simd * wf;
x_local += S;
}
acc = acc + scale * g_acc;
}
*result = T(simd::sum(acc));
result++;
}
x += K;
}
}
template <typename T>
void mxfp4_qmm_dispatch_transpose(
T* result,
const T* x,
const uint32_t* w,
const uint8_t* scales,
int M,
int N,
int K,
bool transposed_w) {
if (transposed_w) {
// the simd size must be a multiple of the number of elements per word
if constexpr (simd::max_size<T> % 8 == 0) {
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
} else {
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
}
} else {
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
}
}
template <typename T>
void mxfp4_qmm_dispatch_typed(
array& out,
const array& x,
const array& w,
const array& scales,
bool transposed_w) {
int K = x.shape(-1);
int M = x.ndim() > 1 ? x.shape(-2) : 1;
int N = out.shape(-1);
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
int batch_size = x.size() / (K * M);
auto out_ptr = out.data<T>();
auto x_ptr = x.data<T>();
auto w_ptr = w.data<uint32_t>();
auto scales_ptr = scales.data<uint8_t>();
for (int i = 0; i < batch_size; i++) {
mxfp4_qmm_dispatch_transpose<T>(
out_ptr + i * M * N,
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
M,
N,
K,
transposed_w);
}
}
void mxfp4_qmm_dispatch(
array& out,
const array& x,
const array& w,
const array& scales,
bool transposed_w) {
switch (x.dtype()) {
case bfloat16:
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
break;
case float16:
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
break;
case float32:
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}
template <typename T>
void _bs_qmm_dispatch_typed(
array& out,
@@ -766,198 +513,115 @@ void _bs_qmm_dispatch(
}
}
template <typename T>
void mxfp4_bs_qmm_dispatch_typed(
array& out,
const array& x,
const array& w,
const array& scales,
const array& lhs_indices,
const array& rhs_indices,
bool transposed_w) {
int K = x.shape(-1);
int M = x.shape(-2);
int N = out.shape(-1);
int w_els = w.shape(-1) * w.shape(-2);
int g_els = scales.shape(-1) * scales.shape(-2);
auto out_ptr = out.data<T>();
auto x_ptr = x.data<T>();
auto w_ptr = w.data<uint32_t>();
auto scales_ptr = scales.data<uint8_t>();
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
for (int i = 0; i < lhs_indices.size(); i++) {
int x_idx = lhs_indices_ptr[elem_to_loc(
i, lhs_indices.shape(), lhs_indices.strides())];
int w_idx = rhs_indices_ptr[elem_to_loc(
i, rhs_indices.shape(), rhs_indices.strides())];
mxfp4_qmm_dispatch_transpose<T>(
out_ptr + i * M * N,
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
scales_ptr +
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
M,
N,
K,
transposed_w);
}
}
void mxfp4_bs_qmm_dispatch(
array& out,
const array& x,
const array& w,
const array& scales,
const array& lhs_indices,
const array& rhs_indices,
bool transposed_w) {
switch (x.dtype()) {
case float32:
mxfp4_bs_qmm_dispatch_typed<float>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
case float16:
mxfp4_bs_qmm_dispatch_typed<float16_t>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
case bfloat16:
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}
} // namespace
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 4);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
auto& encoder = cpu::get_command_encoder(stream());
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
std::vector<array> temps;
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
if (arr.flags().row_contiguous) {
return arr;
} else {
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_cpy, CopyType::General, s);
encoder.add_temporary(arr_cpy);
return arr_cpy;
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
auto x = ensure_row_contiguous(x_pre);
auto w = ensure_row_contiguous(w_pre);
auto scales = ensure_row_contiguous(scales_pre);
auto biases = ensure_row_contiguous(biases_pre);
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(scales);
encoder.set_input_array(biases);
encoder.set_output_array(out);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous(inputs[3]);
encoder.set_input_array(biases);
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
});
} else {
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
transpose_ = transpose_]() mutable {
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
});
}
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
});
}
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& lhs_indices = inputs[inputs.size() - 2];
auto& rhs_indices = inputs[inputs.size() - 1];
auto& biases_pre = inputs[3];
auto& lhs_indices = inputs[4];
auto& rhs_indices = inputs[5];
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> temps;
auto ensure_row_contiguous_last_dims = [s = stream(),
&encoder](const array& arr) {
&temps](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_cpy, CopyType::General, s);
encoder.add_temporary(arr_cpy);
return arr_cpy;
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
encoder.set_input_array(x);
encoder.set_input_array(w);
encoder.set_input_array(scales);
encoder.set_input_array(biases);
encoder.set_input_array(lhs_indices);
encoder.set_input_array(rhs_indices);
encoder.set_output_array(out);
if (mode_ == QuantizationMode::Affine) {
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
encoder.set_input_array(biases);
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_bs_qmm_dispatch(
out,
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
group_size_,
bits_,
transpose_);
});
} else {
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
transpose_ = transpose_]() mutable {
mxfp4_bs_qmm_dispatch(
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
});
}
encoder.dispatch([out = array::unsafe_weak_copy(out),
x = array::unsafe_weak_copy(x),
w = array::unsafe_weak_copy(w),
scales = array::unsafe_weak_copy(scales),
biases = array::unsafe_weak_copy(biases),
lhs_indices = array::unsafe_weak_copy(lhs_indices),
rhs_indices = array::unsafe_weak_copy(rhs_indices),
group_size_ = group_size_,
bits_ = bits_,
transpose_ = transpose_]() mutable {
_bs_qmm_dispatch(
out,
x,
w,
scales,
biases,
lhs_indices,
rhs_indices,
group_size_,
bits_,
transpose_);
});
}
template <typename T, typename U>
@@ -1041,7 +705,7 @@ void dispatch_quantize(
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
}
void fast::Quantize::eval_cpu(
void fast::AffineQuantize::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto ensure_row_contiguous = [s = stream()](const array& arr) {
@@ -1100,47 +764,7 @@ void fast::Quantize::eval_cpu(
}
} else {
throw std::runtime_error(
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
}
});
}
void fast::ConvertFP8::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& in = inputs[0];
auto& out = outputs[0];
set_unary_output_data(in, out);
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);
encoder.set_output_array(out);
encoder.dispatch([in = array::unsafe_weak_copy(in),
out = array::unsafe_weak_copy(out),
to_fp8 = to_fp8_]() mutable {
if (to_fp8) {
switch (in.dtype()) {
case float16:
unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
break;
case bfloat16:
unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
break;
default:
unary_op<float, uint8_t>(in, out, detail::ToFP8());
break;
}
} else {
switch (out.dtype()) {
case float16:
unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
break;
case bfloat16:
unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
break;
default:
unary_op<uint8_t, float>(in, out, detail::FromFP8());
break;
}
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
}
});
}

View File

@@ -1,6 +1,5 @@
#pragma once
#include <arm_neon.h>
#include <simd/math.h>
#include <simd/vector.h>
@@ -10,7 +9,7 @@
#include "mlx/backend/cpu/simd/base_simd.h"
// There seems to be a bug in simd/base_simd.h
// There seems to be a bug in sims/base.h
// __XROS_2_0 is not defined, the expression evaluates
// to true instead of false setting the SIMD library
// higher than it should be even on macOS < 15
@@ -201,15 +200,6 @@ SIMD_DEFAULT_COMPARISONS(<=)
SIMD_DEFAULT_COMPARISONS(==)
SIMD_DEFAULT_COMPARISONS(!=)
template <typename T, int N>
Simd<T, N> clz(Simd<T, N> x) {
auto a = *(uint32x4_t*)(&x);
auto b = *((uint32x4_t*)(&x) + 1);
a = vclzq_u32(a);
b = vclzq_u32(b);
return asd::make_uint8(a, b);
}
template <typename T, int N>
Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
return asd::atan2(a.value, b.value);
@@ -217,20 +207,14 @@ Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
template <typename T, int N>
Simd<T, N> maximum(Simd<T, N> a, Simd<T, N> b) {
auto out = Simd<T, N>(asd::max(a.value, b.value));
if constexpr (!std::is_integral_v<T>) {
out = select(isnan(b), b, select(isnan(a), a, out));
}
return out;
// TODO add isnan
return asd::max(a.value, b.value);
}
template <typename T, int N>
Simd<T, N> minimum(Simd<T, N> a, Simd<T, N> b) {
auto out = Simd<T, N>(asd::min(a.value, b.value));
if constexpr (!std::is_integral_v<T>) {
out = select(isnan(b), b, select(isnan(a), a, out));
}
return out;
// TODO add isnan
return asd::min(a.value, b.value);
}
template <typename T, int N>
@@ -250,7 +234,6 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
template <typename MaskT, typename T1, typename T2, int N>
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
static_assert(std::is_same_v<MaskT, bool>);
if constexpr (sizeof(T1) == 1) {
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
} else if constexpr (sizeof(T1) == 2) {
@@ -268,13 +251,9 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
return asd::pow(base.value, exp.value);
} else {
Simd<T, N> res = 1;
// Raising an integer to a negative power is undefined
if (any(exp < 0)) {
return 0;
}
while (any(exp > 0)) {
res = select((exp & 1) != 0, res * base, res);
base = select(exp > 0, base * base, base);
while (any(exp)) {
res = select(exp & 1, res * base, res);
base = select(exp, base * base, base);
exp = exp >> 1;
}
return res;

View File

@@ -171,11 +171,6 @@ DEFAULT_BINARY(&)
DEFAULT_BINARY(&&)
DEFAULT_BINARY(||)
template <typename T>
Simd<T, 1> clz(Simd<T, 1> x_) {
return __builtin_clz(x_.value);
}
template <typename T>
Simd<T, 1> remainder(Simd<T, 1> a_, Simd<T, 1> b_) {
T a = a_.value;

View File

@@ -15,18 +15,6 @@ namespace mlx::core {
namespace {
// NaN-aware comparator that places NaNs at the end
template <typename T>
bool nan_aware_less(T a, T b) {
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
if (std::isnan(a))
return false;
if (std::isnan(b))
return true;
}
return a < b;
}
template <typename T>
struct StridedIterator {
using iterator_category = std::random_access_iterator_tag;
@@ -39,7 +27,7 @@ struct StridedIterator {
StridedIterator() = default;
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
: stride_(stride), ptr_(ptr + offset * stride) {}
: ptr_(ptr + offset * stride), stride_(stride) {}
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
@@ -142,7 +130,7 @@ void sort(array& out, int axis) {
StridedIterator st(data_ptr, axis_stride, 0);
StridedIterator ed(data_ptr, axis_stride, axis_size);
std::stable_sort(st, ed, nan_aware_less<T>);
std::stable_sort(st, ed);
src_it.step();
}
}
@@ -196,15 +184,6 @@ void argsort(const array& in, array& out, int axis) {
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * in_stride];
auto v2 = data_ptr[b * in_stride];
// Handle NaNs (place them at the end)
if (std::is_floating_point<T>::value) {
if (std::isnan(v1))
return false;
if (std::isnan(v2))
return true;
}
return v1 < v2 || (v1 == v2 && a < b);
});
}
@@ -240,7 +219,7 @@ void partition(array& out, int axis, int kth) {
StridedIterator md(data_ptr, axis_stride, kth);
StridedIterator ed(data_ptr, axis_stride, axis_size);
std::nth_element(st, md, ed, nan_aware_less<T>);
std::nth_element(st, md, ed);
}
}
@@ -297,15 +276,6 @@ void argpartition(const array& in, array& out, int axis, int kth) {
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * in_stride];
auto v2 = data_ptr[b * in_stride];
// Handle NaNs (place them at the end)
if (std::is_floating_point<T>::value) {
if (std::isnan(v1))
return false;
if (std::isnan(v2))
return true;
}
return v1 < v2 || (v1 == v2 && a < b);
});
}

View File

@@ -8,183 +8,6 @@
namespace mlx::core {
template <typename T, class Enable = void>
struct SVDWork {};
template <typename T>
struct SVDWork<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
using R = T;
int N;
int M;
int K;
int lda;
int ldu;
int ldvt;
char jobz;
std::vector<array::Data> buffers;
int lwork;
SVDWork(int N, int M, int K, char jobz)
: N(N), M(M), K(K), lda(N), ldu(N), ldvt(M), jobz(jobz) {
T workspace_dimension = 0;
// Will contain the indices of eigenvectors that failed to converge (not
// used here but required by lapack).
buffers.emplace_back(allocator::malloc(sizeof(int) * 8 * K));
int lwork_query = -1;
int info;
// Compute workspace size.
gesdd<T>(
/* jobz = */ &jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ nullptr,
/* lda = */ &lda,
/* s = */ nullptr,
/* u = */ nullptr,
/* ldu = */ &ldu,
/* vt = */ nullptr,
/* ldvt = */ &ldvt,
/* work = */ &workspace_dimension,
/* lwork = */ &lwork_query,
/* iwork = */ static_cast<int*>(buffers[0].buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "[SVD::eval_cpu] workspace calculation failed with code " << info;
throw std::runtime_error(ss.str());
}
lwork = workspace_dimension;
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
}
void run(T* a, R* s, T* u, T* vt) {
int info;
gesdd<T>(
/* jobz = */ &jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ a,
/* lda = */ &lda,
/* s = */ s,
// According to the identity above, lapack will write Vᵀᵀ as U.
/* u = */ u,
/* ldu = */ &ldu,
// According to the identity above, lapack will write Uᵀ as Vᵀ.
/* vt = */ vt,
/* ldvt = */ &ldvt,
/* work = */ static_cast<T*>(buffers[1].buffer.raw_ptr()),
/* lwork = */ &lwork,
/* iwork = */ static_cast<int*>(buffers[0].buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "svd_impl: sgesvdx_ failed with code " << info;
throw std::runtime_error(ss.str());
}
}
};
template <>
struct SVDWork<std::complex<float>> {
using T = std::complex<float>;
using R = float;
int N;
int M;
int K;
int lda;
int ldu;
int ldvt;
char jobz;
std::vector<array::Data> buffers;
int lwork;
SVDWork(int N, int M, int K, char jobz)
: N(N), M(M), K(K), lda(N), ldu(N), ldvt(M), jobz(jobz) {
T workspace_dimension = 0;
// Will contain the indices of eigenvectors that failed to converge (not
// used here but required by lapack).
buffers.emplace_back(allocator::malloc(sizeof(int) * 8 * K));
const int lrwork =
jobz == 'A' ? std::max(1, 5 * K * K + 5 * K) : std::max(1, 7 * K);
buffers.emplace_back(allocator::malloc(sizeof(float) * lrwork));
int lwork_query = -1;
int work_query = -1;
int info;
// Compute workspace size.
gesdd<T>(
/* jobz = */ &jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ nullptr,
/* lda = */ &lda,
/* s = */ nullptr,
/* u = */ nullptr,
/* ldu = */ &ldu,
/* vt = */ nullptr,
/* ldvt = */ &ldvt,
/* work = */ &workspace_dimension,
/* lwork = */ &lwork_query,
/* rwork = */ static_cast<float*>(buffers[1].buffer.raw_ptr()),
/* iwork = */ static_cast<int*>(buffers[0].buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "[SVD::eval_cpu] workspace calculation failed with code " << info;
throw std::runtime_error(ss.str());
}
lwork = workspace_dimension.real();
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
}
void run(T* a, R* s, T* u, T* vt) {
int info;
gesdd<T>(
/* jobz = */ &jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ a,
/* lda = */ &lda,
/* s = */ s,
// According to the identity above, lapack will write Vᵀᵀ as U.
/* u = */ u,
/* ldu = */ &ldu,
// According to the identity above, lapack will write Uᵀ as Vᵀ.
/* vt = */ vt,
/* ldvt = */ &ldvt,
/* work = */ static_cast<T*>(buffers[2].buffer.raw_ptr()),
/* lwork = */ &lwork,
/* rwork = */ static_cast<float*>(buffers[1].buffer.raw_ptr()),
/* iwork = */ static_cast<int*>(buffers[0].buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "svd_impl: sgesvdx_ failed with code " << info;
throw std::runtime_error(ss.str());
}
}
};
template <typename T>
void svd_impl(
const array& a,
@@ -204,8 +27,6 @@ void svd_impl(
const int N = a.shape(-1);
const int K = std::min(M, N);
using R = typename SVDWork<T>::R;
size_t num_matrices = a.size() / (M * N);
// lapack clobbers the input, so we have to make a copy.
@@ -221,7 +42,7 @@ void svd_impl(
encoder.set_input_array(a);
auto in_ptr = in.data<T>();
T* u_ptr;
R* s_ptr;
T* s_ptr;
T* vt_ptr;
if (compute_uv) {
@@ -237,7 +58,7 @@ void svd_impl(
encoder.set_output_array(s);
encoder.set_output_array(vt);
s_ptr = s.data<R>();
s_ptr = s.data<T>();
u_ptr = u.data<T>();
vt_ptr = vt.data<T>();
} else {
@@ -247,26 +68,98 @@ void svd_impl(
encoder.set_output_array(s);
s_ptr = s.data<R>();
s_ptr = s.data<T>();
u_ptr = nullptr;
vt_ptr = nullptr;
}
encoder.dispatch([in_ptr, u_ptr, s_ptr, vt_ptr, M, N, K, num_matrices]() {
auto jobz = (u_ptr) ? 'A' : 'N';
SVDWork<T> svd_work(N, M, K, jobz);
// A of shape M x N. The leading dimension is N since lapack receives Aᵀ.
const int lda = N;
// U of shape M x M. (N x N in lapack).
const int ldu = N;
// Vᵀ of shape N x N. (M x M in lapack).
const int ldvt = M;
auto jobz = (u_ptr) ? "A" : "N";
// Will contain the number of singular values after the call has returned.
int ns = 0;
T workspace_dimension = 0;
// Will contain the indices of eigenvectors that failed to converge (not
// used here but required by lapack).
auto iwork = array::Data{allocator::malloc(sizeof(int) * 8 * K)};
static const int lwork_query = -1;
int info;
// Compute workspace size.
gesdd<T>(
/* jobz = */ jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ nullptr,
/* lda = */ &lda,
/* s = */ nullptr,
/* u = */ nullptr,
/* ldu = */ &ldu,
/* vt = */ nullptr,
/* ldvt = */ &ldvt,
/* work = */ &workspace_dimension,
/* lwork = */ &lwork_query,
/* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "[SVD::eval_cpu] workspace calculation failed with code " << info;
throw std::runtime_error(ss.str());
}
const int lwork = workspace_dimension;
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
// Loop over matrices.
for (int i = 0; i < num_matrices; i++) {
svd_work.run(
in_ptr + M * N * i,
s_ptr + K * i,
vt_ptr ? vt_ptr + N * N * i : nullptr,
u_ptr ? u_ptr + M * M * i : nullptr);
gesdd<T>(
/* jobz = */ jobz,
// M and N are swapped since lapack expects column-major.
/* m = */ &N,
/* n = */ &M,
/* a = */ in_ptr + M * N * i,
/* lda = */ &lda,
/* s = */ s_ptr + K * i,
// According to the identity above, lapack will write Vᵀᵀ as U.
/* u = */ vt_ptr ? vt_ptr + N * N * i : nullptr,
/* ldu = */ &ldu,
// According to the identity above, lapack will write Uᵀ as Vᵀ.
/* vt = */ u_ptr ? u_ptr + M * M * i : nullptr,
/* ldvt = */ &ldvt,
/* work = */ static_cast<T*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork,
/* iwork = */ static_cast<int*>(iwork.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "svd_impl: sgesvdx_ failed with code " << info;
throw std::runtime_error(ss.str());
}
}
});
encoder.add_temporary(in);
}
template <typename T>
void compute_svd(
const array& a,
bool compute_uv,
std::vector<array>& outputs,
Stream stream) {}
void SVD::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
@@ -277,12 +170,9 @@ void SVD::eval_cpu(
case float64:
svd_impl<double>(inputs[0], outputs, compute_uv_, stream());
break;
case complex64:
svd_impl<std::complex<float>>(inputs[0], outputs, compute_uv_, stream());
break;
default:
throw std::runtime_error(
"[SVD::eval_cpu] only supports float32, float64, or complex64.");
"[SVD::eval_cpu] only supports float32 or float64.");
}
}

View File

@@ -24,9 +24,9 @@ void unary_op(const array& a, array& out, Op) {
auto ndim = a.ndim();
if (a.flags().contiguous) {
auto size = a.data_size();
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
constexpr int N = simd::max_size<T>;
while (size >= N) {
simd::store(dst, simd::Simd<U, N>(Op{}(simd::load<T, N>(src))));
simd::store(dst, Op{}(simd::load<T, N>(src)));
size -= N;
src += N;
dst += N;

View File

@@ -77,8 +77,7 @@ struct Real {
struct Sigmoid {
template <int N, typename T>
Simd<T, N> operator()(Simd<T, N> x) {
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
return 1.0f / (1.0f + simd::exp(-x));
}
SINGLE()
};
@@ -108,73 +107,4 @@ struct Square {
SINGLE()
};
template <int N>
Simd<float, N> fp32_from_bits(Simd<uint32_t, N> x) {
return *(Simd<float, N>*)(&x);
}
template <int N>
Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
return *(Simd<uint32_t, N>*)(&x);
}
struct ToFP8 {
template <typename T, int N>
Simd<uint8_t, N> operator()(Simd<T, N> f) {
uint32_t fp8_max = 543 << 21;
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
Simd<uint32_t, N> f_bits;
Simd<float, N> f32 = f;
f_bits = fp32_to_bits(f32);
Simd<uint8_t, N> result = 0u;
auto sign = f_bits & 0x80000000;
f_bits = f_bits ^ sign;
auto f_bits_low =
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
auto result_low = Simd<uint8_t, N>(f_bits_low - denorm_mask);
auto mant_odd = Simd<uint8_t, N>((f_bits >> 20) & 1);
auto f_bits_high = f_bits + (((uint32_t)(7 - 127) << 23) + 0x7FFFF);
f_bits_high = f_bits_high + Simd<uint32_t, N>(mant_odd);
auto result_high = Simd<uint8_t, N>(f_bits_high >> 20);
result = select(f_bits < (121 << 23), result_low, result_high);
auto result_sat = Simd<uint8_t, N>(0x7E);
result = select(f_bits >= fp8_max, result_sat, result);
return result | Simd<uint8_t, N>(sign >> 24);
}
template <typename T>
uint8_t operator()(T x) {
return (*this)(Simd<T, 1>(x)).value;
}
};
struct FromFP8 {
template <int N>
Simd<float, N> operator()(Simd<uint8_t, N> x) {
auto w = Simd<uint32_t, N>(x) << 24;
auto sign = w & 0x80000000;
auto nonsign = w & 0x7FFFFFFF;
auto renorm_shift = clz(nonsign);
renorm_shift = simd::select(
renorm_shift > Simd<uint32_t, N>{4},
renorm_shift - Simd<uint32_t, N>{4},
Simd<uint32_t, N>{0});
Simd<int32_t, N> inf_nan_mask =
(Simd<int32_t, N>(nonsign + 0x01000000) >> 8) & 0x7F800000;
auto zero_mask = Simd<int32_t, N>(nonsign - 1) >> 31;
auto result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
return fp32_from_bits(result);
}
float operator()(uint8_t x) {
return (*this)(Simd<uint8_t, 1>(x)).value;
}
};
} // namespace mlx::core::detail

View File

@@ -22,17 +22,17 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cutlass_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/simple_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
@@ -44,7 +44,6 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
@@ -53,19 +52,12 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
# fp4 is not available on < 12.8
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
endif()
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
@@ -98,6 +90,9 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Keep ptx around for inspection
target_compile_options(mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--keep>")
# Enable calling host constexpr functions from device. This is needed because
# the constexpr version of isnan is host only.
target_compile_options(
@@ -126,11 +121,7 @@ endif()
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
# managed memory.
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
execute_process(
COMMAND bash detect_cuda_arch.sh
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}
OUTPUT_VARIABLE MLX_CUDA_ARCHITECTURES
OUTPUT_STRIP_TRAILING_WHITESPACE)
set(MLX_CUDA_ARCHITECTURES "native")
endif()
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
@@ -142,7 +133,6 @@ FetchContent_Declare(
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
FetchContent_MakeAvailable(cccl)
target_include_directories(mlx BEFORE PRIVATE "${cccl_SOURCE_DIR}/include")
set_target_properties(mlx PROPERTIES CCCL_DIR "${cccl_SOURCE_DIR}/include")
# Use fixed version of NVTX.
FetchContent_Declare(
@@ -168,7 +158,7 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
FetchContent_Declare(
cudnn
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
GIT_TAG v1.16.0
GIT_TAG v1.14.0
GIT_SHALLOW TRUE
EXCLUDE_FROM_ALL)
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
@@ -184,6 +174,16 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
# Fetch and make available cutlass
FetchContent_Declare(
cutlass
GIT_REPOSITORY https://github.com/NVIDIA/cutlass.git
GIT_TAG v4.1.0)
FetchContent_Populate(cutlass)
target_include_directories(
mlx PRIVATE $<BUILD_INTERFACE:${cutlass_SOURCE_DIR}/include>)

View File

@@ -1,7 +1,6 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/utils.h"
@@ -31,20 +30,8 @@ SmallSizePool::SmallSizePool() {
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
int device_count = 0;
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
for (int i = 0; i < device_count; ++i) {
#if CUDART_VERSION >= 13000
cudaMemLocation loc;
loc.type = cudaMemLocationTypeDevice;
loc.id = i;
#else
int loc = i;
#endif // CUDART_VERSION >= 13000
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
}
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
@@ -68,7 +55,6 @@ CudaBuffer* SmallSizePool::malloc() {
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
b->buf.device = -1;
return &b->buf;
}
@@ -90,42 +76,16 @@ CudaAllocator::CudaAllocator()
page_size,
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.9;
memory_limit_ = total * 0.8;
max_pool_size_ = memory_limit_;
int device_count = 0;
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
int curr;
CHECK_CUDA_ERROR(cudaGetDevice(&curr));
for (int i = 0; i < device_count; ++i) {
CHECK_CUDA_ERROR(cudaSetDevice(i));
cudaStream_t s;
CHECK_CUDA_ERROR(cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking));
free_streams_.push_back(s);
}
CHECK_CUDA_ERROR(cudaSetDevice(curr));
}
void copy_to_managed(CudaBuffer& buf) {
// TODO maybe make this async on a i/o stream to avoid synchronizing the
// device on malloc/and free
void* new_data;
CHECK_CUDA_ERROR(cudaMallocManaged(&new_data, buf.size));
buf.device = -1;
CHECK_CUDA_ERROR(cudaMemcpy(new_data, buf.data, buf.size, cudaMemcpyDefault));
CHECK_CUDA_ERROR(cudaFree(buf.data));
buf.data = new_data;
}
Buffer
CudaAllocator::malloc_async(size_t size, int device, cudaStream_t stream) {
if (size == 0) {
return Buffer{new CudaBuffer{nullptr, 0, -1}};
}
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size <= small_block_size) {
size = 8;
@@ -135,10 +95,6 @@ CudaAllocator::malloc_async(size_t size, int device, cudaStream_t stream) {
size = page_size * ((size + page_size - 1) / page_size);
}
if (size <= small_block_size || stream == nullptr) {
device = -1;
}
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure try to reclaim memory from the cache.
@@ -154,13 +110,8 @@ CudaAllocator::malloc_async(size_t size, int device, cudaStream_t stream) {
}
lock.unlock();
if (!buf) {
buf = new CudaBuffer{nullptr, size, device};
cudaError_t err;
if (device == -1) {
err = cudaMallocManaged(&buf->data, size);
} else {
err = cudaMallocAsync(&buf->data, size, stream);
}
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
@@ -168,33 +119,21 @@ CudaAllocator::malloc_async(size_t size, int device, cudaStream_t stream) {
}
lock.lock();
}
active_memory_ += buf->size;
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
// Maintain the cache below the requested limit.
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
// Copy to managed here if the buffer is not on the right device
if (buf->device >= 0 && buf->device != device) {
copy_to_managed(*buf);
}
return Buffer{buf};
}
Buffer CudaAllocator::malloc(size_t size) {
return malloc_async(size, -1, nullptr);
}
void CudaAllocator::free(Buffer buffer) {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return;
}
if (buf->size == 0) {
delete buf;
return;
}
std::unique_lock lock(mutex_);
active_memory_ -= buf->size;
@@ -218,11 +157,7 @@ void CudaAllocator::cuda_free(CudaBuffer* buf) {
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
if (buf->device >= 0) {
CHECK_CUDA_ERROR(cudaFreeAsync(buf->data, free_streams_[buf->device]));
} else {
CHECK_CUDA_ERROR(cudaFree(buf->data));
}
cudaFree(buf->data);
delete buf;
}
}
@@ -273,17 +208,6 @@ CudaAllocator& allocator() {
return *allocator_;
}
Buffer malloc_async(size_t size, CommandEncoder& encoder) {
auto buffer = allocator().malloc_async(
size, encoder.device().cuda_device(), encoder.stream());
if (size && !buffer.ptr()) {
std::ostringstream msg;
msg << "[malloc_async] Unable to allocate " << size << " bytes.";
throw std::runtime_error(msg.str());
}
return buffer;
}
} // namespace cu
namespace allocator {
@@ -296,11 +220,7 @@ void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
auto& cbuf = *static_cast<cu::CudaBuffer*>(ptr_);
if (cbuf.device != -1) {
copy_to_managed(cbuf);
}
return cbuf.data;
return static_cast<cu::CudaBuffer*>(ptr_)->data;
}
} // namespace allocator

View File

@@ -4,24 +4,19 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/buffer_cache.h"
#include "mlx/backend/cuda/cuda_utils.h"
#include <cuda_runtime.h>
#include <mutex>
#include <set>
#include <utility>
namespace mlx::core::cu {
class CommandEncoder;
using allocator::Buffer;
// Stores cuda-managed unified memory.
struct CudaBuffer {
void* data;
size_t size;
int device; // -1 for managed
};
class SmallSizePool {
@@ -50,7 +45,6 @@ class SmallSizePool {
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
Buffer malloc_async(size_t size, int device, cudaStream_t stream);
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
@@ -75,12 +69,9 @@ class CudaAllocator : public allocator::Allocator {
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
std::vector<cudaStream_t> free_streams_;
SmallSizePool scalar_pool_;
};
CudaAllocator& allocator();
Buffer malloc_async(size_t size, CommandEncoder& encoder);
} // namespace mlx::core::cu

View File

@@ -6,33 +6,23 @@
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T>
struct Arange {
const T start;
const T step;
template <typename T, typename IdxT, int N_WRITES>
__global__ void arange(T* out, IdxT size, T start, T step) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_WRITES > size) {
for (IdxT i = index * N_WRITES; i < size; ++i) {
out[i] = start + i * step;
}
} else {
AlignedVector<T, N_WRITES> out_vec;
#pragma unroll
for (int i = 0; i < N_WRITES; ++i) {
out_vec[i] = start + (index * N_WRITES + i) * step;
}
store_vector<N_WRITES>(out, index, out_vec);
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
}
};
} // namespace cu
@@ -41,27 +31,24 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(stream());
out.set_data(cu::malloc_async(out.nbytes(), encoder));
encoder.set_output_array(out);
auto capture = encoder.capture_context();
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
using OutType = cuda_type_t<CTYPE>;
constexpr int N_WRITES = 16 / sizeof(OutType);
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
encoder.add_kernel_node(
cu::arange<OutType, IdxT, N_WRITES>,
num_blocks,
block_dims,
0,
gpu_ptr<OutType>(out),
out.data_size(),
static_cast<CTYPE>(start_),
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
});
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(encoder.stream()),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
}

View File

@@ -140,10 +140,8 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgReduce::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
out.set_data(cu::malloc_async(out.nbytes(), encoder));
// Prepare the shapes, strides and axis arguments.
Shape shape = remove_index(in.shape(), axis_);
@@ -156,6 +154,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
int32_t ndim = shape.size();
// ArgReduce.
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
@@ -173,8 +172,8 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
num_blocks,
block_dim(),
0,
gpu_ptr<T>(in),
gpu_ptr<uint32_t>(out),
in.data<T>(),
out.data<uint32_t>(),
out.size(),
const_param(shape),
const_param(in_strides),

View File

@@ -292,9 +292,9 @@ void binary_op_gpu_inplace(
{num_blocks_x, num_blocks_y},
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out),
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
rest,
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
@@ -310,9 +310,9 @@ void binary_op_gpu_inplace(
{num_blocks_x, num_blocks_y},
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out),
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
rest,
const_param(shape),
const_param(a_strides),
@@ -339,9 +339,9 @@ void binary_op_gpu_inplace(
num_blocks,
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out),
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.data_size());
});
}
@@ -365,10 +365,7 @@ void binary_op_gpu(
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
auto& encoder = cu::get_command_encoder(s);
set_binary_op_output_data(
a, b, out, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
set_binary_op_output_data(a, b, out, bopt);
binary_op_gpu_inplace<Op>(inputs, out, op, s);
}

View File

@@ -245,16 +245,14 @@ void binary_two_op_gpu_inplace(
auto& out_a = outputs[0];
auto& out_b = outputs[1];
auto bopt = get_binary_op_type(a, b);
auto& encoder = cu::get_command_encoder(s);
set_binary_op_output_data(
a, b, out_a, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
set_binary_op_output_data(
a, b, out_b, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
if (out_a.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out_a);
@@ -315,10 +313,10 @@ void binary_two_op_gpu_inplace(
{num_blocks_x, num_blocks_y},
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out_a),
gpu_ptr<OutType>(out_b),
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
rest,
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
@@ -334,10 +332,10 @@ void binary_two_op_gpu_inplace(
{num_blocks_x, num_blocks_y},
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out_a),
gpu_ptr<OutType>(out_b),
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
rest,
const_param(shape),
const_param(a_strides),
@@ -368,10 +366,10 @@ void binary_two_op_gpu_inplace(
num_blocks,
block_dims,
0,
gpu_ptr<InType>(a),
gpu_ptr<InType>(b),
gpu_ptr<OutType>(out_a),
gpu_ptr<OutType>(out_b),
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.data_size());
});
}

View File

@@ -293,13 +293,8 @@ void Compiled::eval_gpu(
}
}
auto& encoder = cu::get_command_encoder(s);
// Put outputs.
compiled_allocate_outputs(
inputs, outputs, is_constant_, contiguous, [&](auto n) {
return cu::malloc_async(n, encoder);
});
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
for (auto& x : outputs) {
args.append(x);
}
@@ -329,6 +324,7 @@ void Compiled::eval_gpu(
kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
}
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
@@ -336,9 +332,9 @@ void Compiled::eval_gpu(
encoder.set_output_array(out);
}
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
get_launch_args(outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}

View File

@@ -47,7 +47,7 @@ auto& conv_cache() {
std::pair<
cudnnBackendDescriptorType_t,
std::optional<cudnn_frontend::ExecutionPlan>>>
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
cache(/* capacity */ 128);
return cache;
}
@@ -270,19 +270,19 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
if (out_.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
assert(inputs.size() == 2);
array in = inputs[0];
array wt = inputs[1];
array out = out_;
out.set_data(cu::malloc_async(out.nbytes(), encoder));
out.set_data(allocator::malloc(out.nbytes()));
Dtype dtype = out.dtype();
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
// Search cache.
BytesKey<ConvCacheKey> cache_key;
cache_key.pod = {
ConvCacheKey cache_key{
encoder.device().cuda_device(),
dtype_to_cudnn_type(dtype),
vector_key(in.shape()),
@@ -382,19 +382,20 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
}
if (op_graph) {
// Setup inputs and outputs.
register_args(encoder, backend_type, in, wt, out, out_);
// Find a plan for the graph and execute it.
auto plan = find_cudnn_plan_from_op_graph(
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
if (plan) {
// Setup inputs and outputs.
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(*plan)));
return;
}
if (!plan) {
throw std::runtime_error("[conv] Unable to find an execution plan.");
}
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(*plan)));
return;
}
}

View File

@@ -86,7 +86,7 @@ array unfold_inputs_nd(
int mat_N,
ConvParams<NDIM>& params) {
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder));
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
encoder.add_temporary(unfolded);
int filter_size = params.C;
@@ -118,8 +118,8 @@ array unfold_inputs_nd(
num_blocks,
block_dims,
0,
gpu_ptr<DataType>(in),
gpu_ptr<DataType>(unfolded),
in.data<DataType>(),
unfolded.data<DataType>(),
filter_size,
out_pixels,
params);

View File

@@ -89,7 +89,7 @@ array grouped_unfold_transpose_inputs_nd(
int mat_N,
ConvParams<NDIM>& params) {
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder));
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
encoder.add_temporary(unfolded);
int filter_size = params.C;
@@ -121,8 +121,8 @@ array grouped_unfold_transpose_inputs_nd(
num_blocks,
block_dims,
0,
gpu_ptr<DataType>(in),
gpu_ptr<DataType>(unfolded),
in.data<DataType>(),
unfolded.data<DataType>(),
filter_size,
out_pixels,
params);

View File

@@ -5,21 +5,6 @@
namespace mlx::core {
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
auto& encoder = cu::get_command_encoder(s);
bool donated = set_copy_output_data(
in, out, ctype, [&](auto n) { return cu::malloc_async(n, encoder); });
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
@@ -30,8 +15,8 @@ void copy_gpu_inplace(
int64_t offset_out,
CopyType ctype,
const Stream& s,
std::optional<array> dynamic_offset_in,
std::optional<array> dynamic_offset_out) {
const std::optional<array>& dynamic_offset_in,
const std::optional<array>& dynamic_offset_out) {
if (out.size() == 0) {
return;
}
@@ -59,16 +44,6 @@ void copy_gpu_inplace(
strides_vec[0]);
} else {
if (dynamic_offset_in || dynamic_offset_out) {
if (!dynamic_offset_in) {
dynamic_offset_in = array(0, int64);
encoder.add_temporary(*dynamic_offset_in);
}
if (!dynamic_offset_out) {
dynamic_offset_out = array(0, int64);
encoder.add_temporary(*dynamic_offset_out);
}
encoder.set_input_array(*dynamic_offset_in);
encoder.set_input_array(*dynamic_offset_out);
copy_general_dynamic(
encoder,
ctype,
@@ -79,8 +54,8 @@ void copy_gpu_inplace(
shape_collapsed,
strides_vec[0],
strides_vec[1],
*dynamic_offset_in,
*dynamic_offset_out);
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
} else {
copy_general(
encoder,
@@ -102,31 +77,11 @@ void fill_gpu(const array& in, array& out, const Stream& s) {
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(s);
out.set_data(cu::malloc_async(out.nbytes(), encoder));
encoder.set_input_array(in);
encoder.set_output_array(out);
copy_contiguous(encoder, CopyType::Scalar, in, out, 0, 0);
}
void reshape_gpu(const array& in, array& out, Stream s) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
auto& encoder = cu::get_command_encoder(s);
out.set_data(cu::malloc_async(out.nbytes(), encoder));
copy_gpu_inplace(
in,
out,
in.shape(),
in.strides(),
make_contiguous_strides(in.shape()),
0,
0,
CopyType::General,
s);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
} // namespace mlx::core

View File

@@ -77,8 +77,8 @@ void copy_contiguous(
num_blocks,
block_dims,
0,
gpu_ptr<InType>(in) + in_offset,
gpu_ptr<OutType>(out) + out_offset,
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());
});
});

View File

@@ -106,8 +106,8 @@ void copy_general(
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
size_t data_size = 1;
for (auto& s : shape)

View File

@@ -69,8 +69,8 @@ void copy_general_dynamic(
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
@@ -90,8 +90,8 @@ void copy_general_dynamic(
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in),
const_param<dims_constant()>(strides_out),
gpu_ptr<int64_t>(dynamic_offset_in),
gpu_ptr<int64_t>(dynamic_offset_out));
dynamic_offset_in.data<int64_t>(),
dynamic_offset_out.data<int64_t>());
});
} else { // ndim >= 4
auto [num_blocks, block_dims] = get_launch_args(out, large());
@@ -107,8 +107,8 @@ void copy_general_dynamic(
const_param(strides_in),
const_param(strides_out),
ndim,
gpu_ptr<int64_t>(dynamic_offset_in),
gpu_ptr<int64_t>(dynamic_offset_out));
dynamic_offset_in.data<int64_t>(),
dynamic_offset_out.data<int64_t>());
}
});
});

View File

@@ -92,8 +92,8 @@ void copy_general_input(
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;

View File

@@ -1,82 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cublasLt.h>
#include <cuda.h>
#include <cuda_runtime.h>
namespace mlx::core {
// Throw exception if the cuda API does not succeed.
void check_cublas_error(const char* name, cublasStatus_t err);
void check_cuda_error(const char* name, cudaError_t err);
void check_cuda_error(const char* name, CUresult err);
// The macro version that prints the command that failed.
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
// Base class for RAII managed CUDA resources.
template <typename Handle, cudaError_t (*Destroy)(Handle)>
class CudaHandle {
public:
CudaHandle(Handle handle = nullptr) : handle_(handle) {}
CudaHandle(CudaHandle&& other) : handle_(other.handle_) {
assert(this != &other);
other.handle_ = nullptr;
}
~CudaHandle() {
reset();
}
CudaHandle(const CudaHandle&) = delete;
CudaHandle& operator=(const CudaHandle&) = delete;
CudaHandle& operator=(CudaHandle&& other) {
assert(this != &other);
reset();
std::swap(handle_, other.handle_);
return *this;
}
void reset() {
if (handle_ != nullptr) {
CHECK_CUDA_ERROR(Destroy(handle_));
handle_ = nullptr;
}
}
operator Handle() const {
return handle_;
}
protected:
Handle handle_;
};
namespace cu {
class Device;
}; // namespace cu
// Wrappers of CUDA resources.
class CudaGraph : public CudaHandle<cudaGraph_t, cudaGraphDestroy> {
public:
using CudaHandle::CudaHandle;
explicit CudaGraph(cu::Device& device);
void end_capture(cudaStream_t stream);
};
class CudaGraphExec : public CudaHandle<cudaGraphExec_t, cudaGraphExecDestroy> {
public:
void instantiate(cudaGraph_t graph);
};
class CudaStream : public CudaHandle<cudaStream_t, cudaStreamDestroy> {
public:
explicit CudaStream(cu::Device& device);
};
} // namespace mlx::core

View File

@@ -132,16 +132,14 @@ bool prepare_cudnn_plan(
void** data_ptrs,
F&& execute) {
int workspace_size = plan.getWorkspaceSize();
void* workspace_ptr = nullptr;
if (workspace_size > 0) {
array workspace(
cu::malloc_async(workspace_size, encoder), {workspace_size}, uint8);
encoder.add_temporary(workspace);
workspace_ptr = gpu_ptr<void>(workspace);
}
array workspace(
workspace_size > 0 ? allocator::malloc(workspace_size)
: allocator::Buffer(nullptr),
{workspace_size},
uint8);
auto args = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace_ptr)
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(num_args, data_ptrs)
.setUids(num_args, uids)
.build();
@@ -153,6 +151,7 @@ bool prepare_cudnn_plan(
return false;
}
encoder.add_temporary(workspace);
return true;
}
@@ -211,9 +210,6 @@ std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph) {
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
if (engine_configs.empty()) {
return std::nullopt;
}
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
}

View File

@@ -3,7 +3,6 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/dtype_utils.h"
@@ -24,7 +23,7 @@ class CommandEncoder;
// Return pointer alignment of |x|'s data.
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(gpu_ptr<void>(x));
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
@@ -44,20 +43,20 @@ inline SmallVector<T> convert_vector(const Vec& vec) {
// There are 2 differences from the const_param util from kernel_utils.cuh:
// 1. The rest of array is filled with 0.
// 2. This util can be used in .cpp files.
template <int NDIM = MAX_NDIM, typename T, template <typename U> class Vec>
inline std::array<T, NDIM> vector_key(const Vec<T>& vec) {
if (vec.size() > NDIM) {
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, NDIM> result = {};
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
// Helpers used by get_data_ptrs to get pointers.
inline void* get_data_ptr(const array& arr) {
return const_cast<void*>(gpu_ptr<void>(arr));
return const_cast<void*>(arr.data<void>());
}
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>

View File

@@ -57,7 +57,7 @@ std::string build_kernel(
const std::vector<std::string>& output_names,
const std::vector<Dtype>& output_dtypes,
const std::vector<std::pair<std::string, TemplateArg>>& template_args,
const std::vector<std::tuple<bool, bool, bool>>& shape_infos) {
const std::vector<CustomKernelShapeInfo>& shape_infos) {
std::string kernel_source;
kernel_source.reserve(header.size() + source.size() + 8192);
kernel_source += default_header;
@@ -81,17 +81,17 @@ std::string build_kernel(
kernel_source += ",\n";
// Add input shape, strides and ndim if present in the source
if (arr.ndim() > 0) {
if (std::get<0>(shape_infos[i])) {
if (shape_infos[i].shape) {
kernel_source += " const __grid_constant__ Shape ";
kernel_source += name;
kernel_source += "_shape,\n";
}
if (std::get<1>(shape_infos[i])) {
if (shape_infos[i].strides) {
kernel_source += " const __grid_constant__ Strides ";
kernel_source += name;
kernel_source += "_strides,\n";
}
if (std::get<2>(shape_infos[i])) {
if (shape_infos[i].ndim) {
kernel_source += " const __grid_constant__ int ";
kernel_source += name;
kernel_source += "_ndim,\n";
@@ -154,12 +154,12 @@ CustomKernelFunction cuda_kernel(
"[custom_kernel] Must specify at least one output.");
}
std::vector<std::tuple<bool, bool, bool>> shape_infos;
std::vector<CustomKernelShapeInfo> shape_infos;
for (auto& n : input_names) {
std::tuple<bool, bool, bool> shape_info;
std::get<0>(shape_info) = source.find(n + "_shape") != std::string::npos;
std::get<1>(shape_info) = source.find(n + "_strides") != std::string::npos;
std::get<2>(shape_info) = source.find(n + "_ndim") != std::string::npos;
CustomKernelShapeInfo shape_info;
shape_info.shape = source.find(n + "_shape") != std::string::npos;
shape_info.strides = source.find(n + "_strides") != std::string::npos;
shape_info.ndim = source.find(n + "_ndim") != std::string::npos;
shape_infos.push_back(shape_info);
}
@@ -254,8 +254,8 @@ std::vector<array> precompiled_cuda_kernel(
std::optional<float> init_value,
bool ensure_row_contiguous,
StreamOrDevice s) {
std::vector<std::tuple<bool, bool, bool>> shape_infos(
inputs.size(), {false, false, false});
std::vector<CustomKernelShapeInfo> shape_infos(
inputs.size(), CustomKernelShapeInfo{false, false, false});
return array::make_arrays(
output_shapes,
output_dtypes,
@@ -279,7 +279,6 @@ void CustomKernel::eval_gpu(
std::vector<array>& outputs) {
nvtx3::scoped_range r("CustomKernel::eval_gpu");
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
std::vector<array> copies;
@@ -289,7 +288,7 @@ void CustomKernel::eval_gpu(
copies.emplace_back(init_value_.value(), out.dtype());
fill_gpu(copies.back(), out, s);
} else {
out.set_data(cu::malloc_async(out.nbytes(), encoder));
out.set_data(allocator::malloc(out.nbytes()));
}
}
@@ -327,13 +326,13 @@ void CustomKernel::eval_gpu(
const array& in = checked_inputs[i];
auto& shape_info = shape_infos_[i];
args.append(in);
if (std::get<0>(shape_info)) {
if (shape_info.shape) {
args.append_ndim(in.shape());
}
if (std::get<1>(shape_info)) {
if (shape_info.strides) {
args.append_ndim(in.strides());
}
if (std::get<2>(shape_info)) {
if (shape_info.ndim) {
args.append<int32_t>(in.ndim());
}
}
@@ -357,6 +356,7 @@ void CustomKernel::eval_gpu(
dim3 grid((gx + tx - 1) / tx, (gy + ty - 1) / ty, (gz + tz - 1) / tz);
// Call the kernel
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : checked_inputs) {
encoder.set_input_array(in);
}

View File

@@ -1,13 +0,0 @@
#!/bin/bash
arch=`__nvcc_device_query`
case "$arch" in
"90")
echo "90a" ;;
"100")
echo "100a" ;;
"121")
echo "121a" ;;
*)
echo "native" ;;
esac

View File

@@ -14,6 +14,10 @@ namespace mlx::core::cu {
namespace {
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
// This should be less than 255
constexpr int default_max_nodes_per_graph = 20;
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
void check_cudnn_error(const char* name, cudnnStatus_t err) {
@@ -23,11 +27,11 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
}
}
bool use_cuda_graphs() {
static bool use_graphs = []() {
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
int cuda_graph_cache_size() {
static int cache_size = []() {
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
}();
return use_graphs;
return cache_size;
}
} // namespace
@@ -46,7 +50,6 @@ Device::Device(int device) : device_(device) {
"Device {} does not support synchronization in managed memory.",
device_));
}
// The cublasLt handle is used by matmul.
make_current();
CHECK_CUBLAS_ERROR(cublasLtCreate(&lt_));
@@ -65,8 +68,8 @@ Device::~Device() {
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs.
static thread_local int current = 0;
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
@@ -83,19 +86,11 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
enc.device().make_current();
if (!use_cuda_graphs()) {
return;
}
CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
}
CommandEncoder::CaptureContext::~CaptureContext() {
if (!use_cuda_graphs()) {
enc.node_count_++;
return;
}
graph.end_capture(enc.stream());
if (discard) {
return;
@@ -110,9 +105,6 @@ CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
enc.in_concurrent_ = false;
if (!use_cuda_graphs()) {
return;
}
// Use an empty graph node for synchronization
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
@@ -190,77 +182,39 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
}
}
// Can be tuned with MLX_MAX_OPS_PER_BUFFER, MLX_MAX_MB_PER_BUFFER
std::pair<int, int> get_graph_limits(Device& d) {
auto cc =
d.compute_capability_major() * 100 + d.compute_capability_minor() * 10;
int ops = 20;
int mb = 100;
switch (cc) {
case 800: // A100
ops = 20;
mb = 400;
break;
case 900: // H100
ops = 30;
mb = 400;
break;
case 1000: // B200
ops = 50;
mb = 500;
break;
case 1210: // DGX Spark
ops = 20;
mb = 25;
break;
}
return {env::max_ops_per_buffer(ops), env::max_mb_per_buffer(mb)};
}
CommandEncoder::CommandEncoder(Device& d)
: device_(d),
stream_(d),
graph_(d),
worker_(d),
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {
std::tie(max_ops_per_graph_, max_mb_per_graph_) = get_graph_limits(d);
}
graph_cache_(cuda_graph_cache_size()) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::set_input_array(const array& arr) {
if (!use_cuda_graphs()) {
return;
}
bytes_in_graph_ += arr.data_size();
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
}
void CommandEncoder::set_output_array(const array& arr) {
if (!use_cuda_graphs()) {
return;
}
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
active_outputs_.push_back(id);
}
void CommandEncoder::maybe_commit() {
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
commit();
}
}
void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
if (!use_cuda_graphs()) {
node_count_++;
CHECK_CUDA_ERROR(cudaLaunchKernel(
func, grid_dim, block_dim, params, smem_bytes, stream()));
return;
}
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
@@ -276,23 +230,6 @@ void CommandEncoder::add_kernel_node(
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
if (!use_cuda_graphs()) {
node_count_++;
CHECK_CUDA_ERROR(cuLaunchKernel(
func,
grid_dim.x,
grid_dim.y,
grid_dim.z,
block_dim.x,
block_dim.y,
block_dim.z,
smem_bytes,
stream(),
params,
nullptr));
return;
}
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDimX = grid_dim.x;
@@ -319,39 +256,20 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
}
void CommandEncoder::add_graph_node(cudaGraph_t child) {
if (!use_cuda_graphs()) {
node_count_++;
CudaGraphExec graph_exec;
graph_exec.instantiate(child);
device_.make_current();
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
return;
}
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
insert_graph_dependencies(GraphNode{node, 'G'});
}
bool CommandEncoder::needs_commit() {
return (node_count_ > max_ops_per_graph_) ||
((bytes_in_graph_ >> 20) > max_mb_per_graph_);
}
void CommandEncoder::commit() {
nvtx3::scoped_range r("CommandEncoder::commit");
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
if (use_cuda_graphs() && node_count_ > 0) {
if (node_count_ > 0) {
if (!from_nodes_.empty()) {
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
graph_,
from_nodes_.data(),
to_nodes_.data(),
#if CUDART_VERSION >= 13000
nullptr, // edgeData
#endif // CUDART_VERSION >= 13000
from_nodes_.size()));
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
}
graph_key_ += ".";
@@ -385,6 +303,7 @@ void CommandEncoder::commit() {
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
// Reset state
node_count_ = 0;
graph_node_count_ = 0;
empty_node_count_ = 0;
from_nodes_.clear();
@@ -396,12 +315,10 @@ void CommandEncoder::commit() {
// Put completion handlers in a batch.
worker_.commit(stream_);
node_count_ = 0;
bytes_in_graph_ = 0;
}
void CommandEncoder::synchronize() {
CHECK_CUDA_ERROR(cudaStreamSynchronize(stream_));
cudaStreamSynchronize(stream_);
auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); });

View File

@@ -3,7 +3,6 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
@@ -77,6 +76,9 @@ class CommandEncoder {
uint32_t smem_bytes,
void** params);
// Low-level graph helpers.
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
void add_graph_node(cudaGraph_t child);
void add_temporary(const array& arr) {
@@ -84,7 +86,7 @@ class CommandEncoder {
}
void add_completed_handler(std::function<void()> task);
bool needs_commit();
void maybe_commit();
void commit();
Device& device() {
@@ -99,9 +101,6 @@ class CommandEncoder {
void synchronize();
private:
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
struct GraphNode {
cudaGraphNode_t node;
// K = kernel
@@ -131,9 +130,6 @@ class CommandEncoder {
std::vector<std::uintptr_t> active_deps_;
std::vector<std::uintptr_t> active_outputs_;
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
size_t bytes_in_graph_{0};
int max_ops_per_graph_;
int max_mb_per_graph_;
};
class Device {
@@ -144,7 +140,7 @@ class Device {
Device(const Device&) = delete;
Device& operator=(const Device&) = delete;
// Make this device the current cuda device, this method is thread-safe.
// Make this device the current cuda device, required by some cuda calls.
void make_current();
CommandEncoder& get_command_encoder(Stream s);
@@ -169,7 +165,6 @@ class Device {
int device_;
int compute_capability_major_;
int compute_capability_minor_;
std::string device_name_;
cublasLtHandle_t lt_;
cudnnHandle_t cudnn_;
std::unordered_map<int, CommandEncoder> encoders_;

View File

@@ -204,12 +204,6 @@ struct Power {
__device__ T operator()(T base, T exp) {
if constexpr (cuda::std::is_integral_v<T>) {
T res = 1;
// Raising an integer to a negative power is undefined
if constexpr (cuda::std::is_signed_v<T>) {
if (exp < 0) {
return 0;
}
}
while (exp) {
if (exp & 1) {
res *= base;

View File

@@ -6,6 +6,7 @@
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <thrust/iterator/transform_iterator.h>
namespace mlx::core::cu {
@@ -115,4 +116,15 @@ inline __host__ __device__ auto cast_to(SrcT x) {
return CastOp<SrcT, DstT>{}(x);
}
// Return an iterator that cast the value to DstT using CastOp.
template <typename DstT, typename Iterator>
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
if constexpr (std::is_same_v<SrcT, DstT>) {
return it;
} else {
return thrust::make_transform_iterator(it, CastOp<SrcT, DstT>{});
}
}
} // namespace mlx::core::cu

View File

@@ -2,8 +2,6 @@
#pragma once
#include <cuda_fp8.h>
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
@@ -259,8 +257,8 @@ struct Round {
struct Sigmoid {
template <typename T>
__device__ T operator()(T x) {
T y = 1 / (1 + exp(abs(x)));
return (x < 0) ? y : 1 - y;
T y = 1 / (1 + exp(-abs(x)));
return (x < 0) ? 1 - y : y;
}
};
@@ -336,17 +334,4 @@ struct Tanh {
}
};
struct ToFP8 {
template <typename T>
__device__ uint8_t operator()(T x) {
return __nv_fp8_e4m3(x).__x;
}
};
struct FromFP8 {
__device__ float operator()(uint8_t x) {
return float(*(__nv_fp8_e4m3*)(&x));
}
};
} // namespace mlx::core::cu

View File

@@ -1,6 +1,6 @@
// Copyright © 2025 Apple Inc.
// This file must not include any host-only code, utilities that work under both
// This file must not include any host-only code, utilies that work under both
// host and device can be put here.
//
// See more about the requirements at:
@@ -202,7 +202,7 @@ struct Limits<
}
};
// CUDA 11 does not have host side arithmetic operators for half types.
// CUDA 11 does not have host side arithmatic operators for half types.
template <typename T>
struct Limits<
T,

View File

@@ -1,121 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/distributed/primitives.h"
#include "mlx/primitives.h"
#include <cassert>
namespace mlx::core::distributed {
void AllReduce::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
auto set_input_output = [&](const array& in,
array& out) -> std::pair<array, array> {
if (!in.flags().row_contiguous) {
copy_gpu(in, out, CopyType::General, s);
return {out, out};
} else if (in.is_donatable()) {
out.copy_shared_buffer(in);
return {in, out};
} else {
out.set_data(cu::malloc_async(out.nbytes(), encoder));
return {in, out};
}
};
auto [input, output] = set_input_output(inputs[0], outputs[0]);
encoder.set_input_array(input);
encoder.set_output_array(output);
auto capture = encoder.capture_context();
switch (reduce_type_) {
case Sum:
distributed::detail::all_sum(group(), input, output, s);
break;
case Max:
distributed::detail::all_max(group(), input, output, s);
break;
case Min:
distributed::detail::all_min(group(), input, output, s);
break;
default:
throw std::runtime_error(
"Only all reduce sum, max, and min are supported.");
}
}
void AllGather::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
auto ensure_contiguous = [&s, &encoder](const array& x) {
if (x.flags().row_contiguous) {
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
encoder.add_temporary(x_copy);
return x_copy;
}
};
auto input = ensure_contiguous(inputs[0]);
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder));
encoder.set_input_array(input);
encoder.set_output_array(outputs[0]);
auto capture = encoder.capture_context();
distributed::detail::all_gather(group(), input, outputs[0], s);
}
void ReduceScatter::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
assert(outputs.size() == 1);
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
auto ensure_contiguous = [&s, &encoder](const array& x) {
if (x.flags().row_contiguous) {
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
encoder.add_temporary(x_copy);
return x_copy;
}
};
auto input = ensure_contiguous(inputs[0]);
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder));
encoder.set_input_array(input);
encoder.set_output_array(outputs[0]);
auto capture = encoder.capture_context();
switch (reduce_type_) {
case Sum:
distributed::detail::sum_scatter(group(), input, outputs[0], s);
break;
default:
throw std::runtime_error("Only sum scatter is supported. ");
}
}
} // namespace mlx::core::distributed

View File

@@ -5,7 +5,6 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/available.h"
#include "mlx/primitives.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
@@ -16,10 +15,8 @@ bool is_available() {
}
void new_stream(Stream s) {
// Force initalization of CUDA, so CUDA runtime get destroyed at last.
// Force initalization of cuda, so cuda runtime get destroyed at last.
cudaFree(nullptr);
// Make sure CUDA event pool get destroyed after device and stream.
cu::CudaEvent::init_pool();
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
}
@@ -37,8 +34,7 @@ void eval(array& arr) {
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
auto& stream = arr.primitive().stream();
auto& encoder = cu::get_command_encoder(stream);
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
// Keep used buffers alive until kernel finishes running.
for (auto& in : arr.inputs()) {
// Except for the donated one.
@@ -49,13 +45,7 @@ void eval(array& arr) {
for (auto& s : arr.siblings()) {
encoder.add_temporary(s);
}
if (encoder.needs_commit()) {
scheduler::notify_new_task(stream);
encoder.add_completed_handler(
[stream]() { scheduler::notify_task_completion(stream); });
encoder.commit();
}
encoder.maybe_commit();
}
void finalize(Stream s) {

View File

@@ -3,12 +3,10 @@
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/event.h"
#include "mlx/scheduler.h"
#include <map>
#include <vector>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
@@ -19,180 +17,104 @@ namespace cu {
// CudaEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
// Manage cached cudaEvent_t objects.
class CudaEventPool {
// Cuda event managed with RAII.
class CudaEventHandle {
public:
CudaEventHandle create(Device& d, int flags) {
if (!on_creation_thread()) {
return CudaEventHandle(d, flags);
}
auto& cache = cache_for(d, flags);
if (cache.empty()) {
return CudaEventHandle(d, flags);
} else {
CudaEventHandle ret = std::move(cache.back());
cache.pop_back();
return ret;
}
CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
}
void release(CudaEventHandle event) {
if (!on_creation_thread()) {
// Event will be destroyed directly instead of getting moved to cache.
return;
}
cache_for(event.device, event.flags).push_back(std::move(event));
~CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
}
CudaEventHandle(const CudaEventHandle&) = delete;
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
operator cudaEvent_t() const {
return event_;
}
private:
std::vector<CudaEventHandle>& cache_for(Device& d, int flags) {
return cache_[d.cuda_device()][flags];
}
bool on_creation_thread() {
return std::this_thread::get_id() == thread_id_;
}
// The CudaEvent may be created and destroyed on different threads (for
// example when waiting on GPU work in CPU stream), we don't want to make
// the cache thread-safe as it adds overhead, so we just skip cache when
// using events in worker threads.
std::thread::id thread_id_{std::this_thread::get_id()};
// {device: {flags: [events]}}
std::map<int, std::map<int, std::vector<CudaEventHandle>>> cache_;
cudaEvent_t event_;
};
CudaEventPool& cuda_event_pool() {
static CudaEventPool pool;
return pool;
}
} // namespace
CudaEventHandle::CudaEventHandle(Device& d, int flags)
: device(d), flags(flags) {
device.make_current();
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(&handle_, flags));
assert(handle_ != nullptr);
}
CudaEvent::CudaEvent(Device& d, int flags)
: event_(cuda_event_pool().create(d, flags)) {}
CudaEvent::~CudaEvent() {
cuda_event_pool().release(std::move(event_));
}
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
void CudaEvent::wait() {
nvtx3::scoped_range r("cu::CudaEvent::wait");
event_.device.make_current();
cudaEventSynchronize(event_);
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaEventSynchronize(*event_);
}
void CudaEvent::wait(cudaStream_t stream) {
event_.device.make_current();
cudaStreamWaitEvent(stream, event_);
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaStreamWaitEvent(stream, *event_);
}
void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
wait(enc.stream());
}
}
void CudaEvent::record(cudaStream_t stream) {
event_.device.make_current();
cudaEventRecord(event_, stream);
cudaEventRecord(*event_, stream);
recorded_ = true;
}
void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
record(enc.stream());
}
}
bool CudaEvent::completed() const {
// Note: cudaEventQuery can be safely called from any device.
return cudaEventQuery(event_) == cudaSuccess;
return cudaEventQuery(*event_) == cudaSuccess;
}
// static
void CudaEvent::init_pool() {
cuda_event_pool();
}
// Wraps CudaEvent with a few features:
// 1. The class can be copied.
// 2. Make wait/record work with CPU streams.
// 3. Add checks for waiting on un-recorded event.
class CopyableCudaEvent {
public:
explicit CopyableCudaEvent(Device& d)
: event_(std::make_shared<CudaEvent>(
d,
cudaEventDisableTiming | cudaEventBlockingSync)) {}
void wait() {
event_->wait();
}
void wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable {
check_recorded();
event_->wait();
});
} else {
check_recorded();
auto& encoder = cu::get_command_encoder(s);
encoder.commit();
event_->wait(encoder.stream());
}
}
void record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on CPU stream.");
} else {
auto& encoder = cu::get_command_encoder(s);
encoder.commit();
event_->record(encoder.stream());
recorded_ = true;
}
}
bool is_signaled() const {
return recorded_ && event_->completed();
}
private:
void check_recorded() const {
if (!recorded_) {
throw std::runtime_error(
"Should not wait on a CudaEvent before recording.");
}
}
std::shared_ptr<CudaEvent> event_;
bool recorded_{false};
};
///////////////////////////////////////////////////////////////////////////////
// AtomicEvent implementations
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
__host__ __device__ void event_wait(AtomicEvent::Atomic* ac, uint64_t value) {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
ac->wait(current);
}
}
__host__ __device__ void event_signal(AtomicEvent::Atomic* ac, uint64_t value) {
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
ac->store(value);
ac->notify_all();
}
__global__ void event_wait_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_wait(ac, value);
}
__global__ void event_signal_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
AtomicEvent::AtomicEvent() {
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
SharedEvent::SharedEvent() {
buf_ = std::shared_ptr<Buffer>(
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
allocator().free(*ptr);
@@ -201,17 +123,17 @@ AtomicEvent::AtomicEvent() {
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
}
void AtomicEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::wait");
event_wait(atomic(), value);
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(to_atomic(buf_), value);
}
void AtomicEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(atomic(), value);
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
}
void AtomicEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::wait(s)");
void SharedEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
@@ -222,17 +144,17 @@ void AtomicEvent::wait(Stream s, uint64_t value) {
}
}
void AtomicEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::signal");
event_signal(atomic(), value);
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(to_atomic(buf_), value);
}
void AtomicEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(atomic(), value);
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
}
void AtomicEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::AtomicEvent::signal(s)");
void SharedEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
if (s.device == mlx::core::Device::cpu) {
// Signal through a GPU stream so the atomic is updated in GPU - updating
// the atomic in CPU sometimes does not get GPU notified.
@@ -246,14 +168,14 @@ void AtomicEvent::signal(Stream s, uint64_t value) {
}
}
bool AtomicEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::AtomicEvent::is_signaled");
return atomic()->load() >= value;
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return to_atomic(buf_)->load() >= value;
}
uint64_t AtomicEvent::value() const {
nvtx3::scoped_range r("cu::AtomicEvent::value");
return atomic()->load();
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return to_atomic(buf_)->load();
}
} // namespace cu
@@ -266,14 +188,14 @@ namespace {
struct EventImpl {
// CudaEvent is preferred when possible because it is fast, however we have
// to fallback to AtomicEvent in following cases:
// to fallback to SharedEvent in following cases:
// 1. the event is used to wait/signal a cpu stream;
// 2. signal value other than 1 has been specified.
std::unique_ptr<cu::CopyableCudaEvent> cuda;
std::unique_ptr<cu::AtomicEvent> atomic;
std::unique_ptr<cu::CudaEvent> cuda;
std::unique_ptr<cu::SharedEvent> shared;
bool is_created() const {
return cuda || atomic;
return cuda || shared;
}
void ensure_created(Stream s, uint64_t signal_value) {
@@ -281,10 +203,10 @@ struct EventImpl {
return;
}
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
nvtx3::mark("Using slow AtomicEvent");
atomic = std::make_unique<cu::AtomicEvent>();
nvtx3::mark("Using slow SharedEvent");
shared = std::make_unique<cu::SharedEvent>();
} else {
cuda = std::make_unique<cu::CopyableCudaEvent>(cu::device(s.device));
cuda = std::make_unique<cu::CudaEvent>();
}
}
};
@@ -303,7 +225,7 @@ void Event::wait() {
assert(value() == 1);
event->cuda->wait();
} else {
event->atomic->wait(value());
event->shared->wait(value());
}
}
@@ -314,7 +236,7 @@ void Event::wait(Stream s) {
assert(value() == 1);
event->cuda->wait(s);
} else {
event->atomic->wait(s, value());
event->shared->wait(s, value());
}
}
@@ -325,7 +247,7 @@ void Event::signal(Stream s) {
assert(value() == 1);
event->cuda->record(s);
} else {
event->atomic->signal(s, value());
event->shared->signal(s, value());
}
}
@@ -336,9 +258,9 @@ bool Event::is_signaled() const {
}
if (event->cuda) {
assert(value() == 1);
return event->cuda->is_signaled();
return event->cuda->recorded() && event->cuda->completed();
} else {
return event->atomic->is_signaled(value());
return event->shared->is_signaled(value());
}
}

View File

@@ -3,60 +3,49 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/stream.h"
#include <memory>
#include <cuda_runtime.h>
#include <cuda/atomic>
#include <memory>
namespace mlx::core::cu {
class Device;
// RAII-managed move-only wrapper of cudaEvent_t.
struct CudaEventHandle : public CudaHandle<cudaEvent_t, cudaEventDestroy> {
CudaEventHandle(Device& d, int flags);
Device& device;
int flags;
};
class CudaEventHandle;
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
// on GPU stream in CPU stream, but can not wait on CPU stream.
class CudaEvent {
public:
CudaEvent(Device& d, int flags);
~CudaEvent();
CudaEvent(CudaEvent&&) = default;
CudaEvent& operator=(CudaEvent&&) = default;
CudaEvent(const CudaEvent&) = delete;
CudaEvent& operator=(const CudaEvent&) = delete;
CudaEvent();
void wait();
void wait(cudaStream_t stream);
void wait(Stream s);
void record(cudaStream_t stream);
void record(Stream s);
// Return whether the recorded kernels have completed. Note that this method
// returns true if record() has not been called.
bool completed() const;
// Internal: make sure event pool is initialized.
static void init_pool();
bool recorded() const {
return recorded_;
}
private:
CudaEventHandle event_;
bool recorded_{false};
std::shared_ptr<CudaEventHandle> event_;
};
// Event that can synchronize between CPU and GPU. It is much slower than
// CudaEvent so the latter should always be preferred when possible.
class AtomicEvent {
class SharedEvent {
public:
using Atomic = cuda::atomic<uint64_t>;
AtomicEvent();
SharedEvent();
void wait(uint64_t value);
void wait(cudaStream_t stream, uint64_t value);
@@ -68,11 +57,7 @@ class AtomicEvent {
uint64_t value() const;
private:
Atomic* atomic() const {
return static_cast<AtomicEvent::Atomic*>(buf_->raw_ptr());
}
std::shared_ptr<allocator::Buffer> buf_;
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
};
} // namespace mlx::core::cu

View File

@@ -1,15 +1,13 @@
// Copyright © 2025 Apple Inc.
#include "mlx/fence.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
namespace mlx::core {
struct FenceImpl {
uint32_t count;
cu::AtomicEvent event;
cu::SharedEvent event;
};
Fence::Fence(Stream s) {
@@ -22,24 +20,8 @@ void Fence::wait(Stream s, const array&) {
fence->event.wait(fence->count);
}
void Fence::update(Stream s, const array& a, bool cross_device) {
void Fence::update(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
if (cross_device) {
// Move to managed memory if there is a device switch
auto& cbuf =
*static_cast<cu::CudaBuffer*>(const_cast<array&>(a).buffer().ptr());
if (cbuf.device != -1) {
void* new_data;
CHECK_CUDA_ERROR(cudaMallocManaged(&new_data, cbuf.size));
cbuf.device = -1;
auto& encoder = cu::device(s.device).get_command_encoder(s);
encoder.commit();
CHECK_CUDA_ERROR(cudaMemcpyAsync(
new_data, cbuf.data, cbuf.size, cudaMemcpyDefault, encoder.stream()));
CHECK_CUDA_ERROR(cudaFreeAsync(cbuf.data, encoder.stream()));
cbuf.data = new_data;
}
}
fence->count++;
fence->event.signal(s, fence->count);
}

Some files were not shown because too many files have changed in this diff Show More