mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
Compare commits
8 Commits
692ef848fa
...
382270d8b5
Author | SHA1 | Date | |
---|---|---|---|
![]() |
382270d8b5 | ||
![]() |
5adf185f86 | ||
![]() |
c9a9180584 | ||
![]() |
4d68bd3250 | ||
![]() |
5fbce6c49e | ||
![]() |
0b5c5680f4 | ||
![]() |
221edc4a65 | ||
![]() |
190c72739b |
@ -12,6 +12,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/paged_attention.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
|
||||
|
@ -3,6 +3,7 @@
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <fmt/format.h>
|
||||
@ -14,9 +15,11 @@ namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
constexpr int page_size = 16384;
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
getpagesize(),
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
@ -31,7 +34,14 @@ CudaAllocator::CudaAllocator()
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size < page_size) {
|
||||
size = next_power_of_2(size);
|
||||
} else {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
}
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
|
@ -24,7 +24,6 @@ void copy_gpu_inplace(
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
|
||||
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
|
||||
return;
|
||||
|
@ -155,8 +155,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_nd(
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc);
|
||||
@ -175,9 +175,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
c_loc += dim_idx * c_strides[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
c_loc += dim_idx * IdxT(c_strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
@ -206,8 +206,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT b_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc);
|
||||
@ -226,9 +226,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT c_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
c_loc += dim_idx * c_strides[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
c_loc += dim_idx * IdxT(c_strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
|
@ -162,11 +162,15 @@ class MatMul {
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
@ -183,8 +187,8 @@ class MatMul {
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace.data<void>(),
|
||||
workspace.nbytes(),
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
stream));
|
||||
});
|
||||
}
|
||||
@ -358,9 +362,18 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
@ -444,10 +457,28 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
alpha_,
|
||||
beta_);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
|
@ -79,9 +79,6 @@ void segmented_sort(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
array out = out_;
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
@ -106,6 +103,8 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
in.flags());
|
||||
}
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
||||
|
@ -102,6 +102,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/paged_attention.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/normalization.cpp
|
||||
|
@ -241,6 +241,13 @@ MTL::ComputePipelineState* get_gather_qmm_kernel(
|
||||
int wn,
|
||||
bool transpose);
|
||||
|
||||
MTL::ComputePipelineState* get_paged_attention_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& hash_name,
|
||||
const metal::MTLFCList& func_consts,
|
||||
const std::string&);
|
||||
|
||||
// Create a GPU kernel template definition for JIT compilation
|
||||
template <typename... Args>
|
||||
std::string
|
||||
|
@ -109,6 +109,7 @@ if(NOT MLX_METAL_JIT)
|
||||
reduction/reduce_row.h)
|
||||
build_kernel(quantized quantized.h ${STEEL_HEADERS})
|
||||
build_kernel(scan scan.h)
|
||||
build_kernel(paged_attention paged_attention.h)
|
||||
build_kernel(softmax softmax.h)
|
||||
build_kernel(logsumexp logsumexp.h)
|
||||
build_kernel(sort sort.h)
|
||||
|
1196
mlx/backend/metal/kernels/paged_attention.h
Normal file
1196
mlx/backend/metal/kernels/paged_attention.h
Normal file
File diff suppressed because it is too large
Load Diff
131
mlx/backend/metal/kernels/paged_attention.metal
Normal file
131
mlx/backend/metal/kernels/paged_attention.metal
Normal file
@ -0,0 +1,131 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/metal/kernels/paged_attention.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#define instantiate_paged_attention_inner( \
|
||||
type, head_size, block_size, num_threads, num_simd_lanes, partition_size) \
|
||||
template \
|
||||
[[host_name("paged_attention_" #type "_hs" #head_size "_bs" #block_size \
|
||||
"_nt" #num_threads "_nsl" #num_simd_lanes \
|
||||
"_ps" #partition_size)]] [[kernel]] void \
|
||||
paged_attention< \
|
||||
type, \
|
||||
head_size, \
|
||||
block_size, \
|
||||
num_threads, \
|
||||
num_simd_lanes, \
|
||||
partition_size>( \
|
||||
device float* exp_sums \
|
||||
[[buffer(0), function_constant(use_partitioning)]], \
|
||||
device float* max_logits \
|
||||
[[buffer(1), function_constant(use_partitioning)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
device const type* q [[buffer(3)]], \
|
||||
device const type* k_cache [[buffer(4)]], \
|
||||
device const type* v_cache [[buffer(5)]], \
|
||||
const constant int& num_kv_heads [[buffer(6)]], \
|
||||
const constant float& scale [[buffer(7)]], \
|
||||
const constant float& softcapping [[buffer(8)]], \
|
||||
device const uint32_t* block_tables [[buffer(9)]], \
|
||||
device const uint32_t* context_lens [[buffer(10)]], \
|
||||
const constant int& max_num_blocks_per_seq [[buffer(11)]], \
|
||||
device const float* alibi_slopes \
|
||||
[[buffer(12), function_constant(use_alibi)]], \
|
||||
const constant int& q_stride [[buffer(13)]], \
|
||||
const constant int& kv_block_stride [[buffer(14)]], \
|
||||
const constant int& kv_head_stride [[buffer(15)]], \
|
||||
threadgroup char* shared_mem [[threadgroup(0)]], \
|
||||
uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]], \
|
||||
uint3 threadgroups_per_grid [[threadgroups_per_grid]], \
|
||||
uint3 thread_position_in_threadgroup \
|
||||
[[thread_position_in_threadgroup]], \
|
||||
uint simd_tid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
#define instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, head_size, num_threads, num_simd_lanes, partition_size) \
|
||||
template [[host_name("paged_attention_v2_reduce_" #type "_hs" #head_size \
|
||||
"_nt" #num_threads "_nsl" #num_simd_lanes \
|
||||
"_ps" #partition_size)]] [[kernel]] void \
|
||||
paged_attention_v2_reduce< \
|
||||
type, \
|
||||
head_size, \
|
||||
num_threads, \
|
||||
num_simd_lanes, \
|
||||
partition_size>( \
|
||||
device type * out [[buffer(0)]], \
|
||||
const device float* exp_sums [[buffer(1)]], \
|
||||
const device float* max_logits [[buffer(2)]], \
|
||||
const device type* tmp_out [[buffer(3)]], \
|
||||
device uint32_t* context_lens [[buffer(4)]], \
|
||||
const constant int& max_num_partitions [[buffer(5)]], \
|
||||
threadgroup char* shared_mem [[threadgroup(0)]], \
|
||||
uint3 threadgroup_position_in_grid [[threadgroup_position_in_grid]], \
|
||||
uint3 threadgroups_per_grid [[threadgroups_per_grid]], \
|
||||
uint3 thread_position_in_threadgroup [[thread_position_in_threadgroup]], \
|
||||
uint3 threads_per_threadgroup [[threads_per_threadgroup]], \
|
||||
uint simd_tid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
#define instantiate_paged_attention_heads( \
|
||||
type, block_size, num_threads, num_simd_lanes, partition_size) \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 64, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 80, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 96, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 112, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 128, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 192, block_size, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_inner( \
|
||||
type, 256, block_size, num_threads, num_simd_lanes, partition_size);
|
||||
|
||||
#define instantiate_paged_attention_v2_reduce_heads( \
|
||||
type, num_threads, num_simd_lanes, partition_size) \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 64, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 80, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 96, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 112, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 128, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 192, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_v2_reduce_inner( \
|
||||
type, 256, num_threads, num_simd_lanes, partition_size);
|
||||
|
||||
#define instantiate_paged_attention_block_size( \
|
||||
type, num_threads, num_simd_lanes, partition_size) \
|
||||
instantiate_paged_attention_heads( \
|
||||
type, 8, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_heads( \
|
||||
type, 16, num_threads, num_simd_lanes, partition_size); \
|
||||
instantiate_paged_attention_heads( \
|
||||
type, 32, num_threads, num_simd_lanes, partition_size);
|
||||
|
||||
// TODO: tune num_threads = 256
|
||||
// NOTE: partition_size = 0
|
||||
#define instantiate_paged_attention_v1(type, num_simd_lanes) \
|
||||
instantiate_paged_attention_block_size(type, 256, num_simd_lanes, 0);
|
||||
|
||||
// TODO: tune num_threads = 256
|
||||
// NOTE: partition_size = 512
|
||||
#define instantiate_paged_attention_v2(type, num_simd_lanes) \
|
||||
instantiate_paged_attention_block_size(type, 256, num_simd_lanes, 512); \
|
||||
instantiate_paged_attention_v2_reduce_heads(type, 256, num_simd_lanes, 512);
|
||||
|
||||
instantiate_paged_attention_v1(float, 32);
|
||||
instantiate_paged_attention_v1(bfloat16_t, 32);
|
||||
instantiate_paged_attention_v1(half, 32);
|
||||
|
||||
instantiate_paged_attention_v2(float, 32);
|
||||
instantiate_paged_attention_v2(bfloat16_t, 32);
|
||||
instantiate_paged_attention_v2(half, 32);
|
@ -288,4 +288,13 @@ MTL::ComputePipelineState* get_gather_qmm_kernel(
|
||||
return d.get_kernel(kernel_name, hash_name, func_consts);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_paged_attention_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& hash_name,
|
||||
const metal::MTLFCList& func_consts,
|
||||
const std::string&) {
|
||||
return d.get_kernel(kernel_name, "mlx", hash_name, func_consts);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
324
mlx/backend/metal/paged_attention.cpp
Normal file
324
mlx/backend/metal/paged_attention.cpp
Normal file
@ -0,0 +1,324 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/paged_attention_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core::paged_attention {
|
||||
|
||||
static void run_paged_attention(
|
||||
const array& q,
|
||||
const array& k_cache,
|
||||
const array& v_cache,
|
||||
const array& block_tables,
|
||||
const array& context_lens,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int num_kv_heads,
|
||||
const float scale,
|
||||
const float softcapping,
|
||||
const int max_context_len,
|
||||
const int max_num_blocks_per_seq,
|
||||
const bool use_partitioning,
|
||||
const std::optional<array> alibi,
|
||||
const int q_stride,
|
||||
const int kv_block_stride,
|
||||
const int kv_head_stride,
|
||||
const int num_heads,
|
||||
const int num_seqs,
|
||||
array& out,
|
||||
metal::Device& d,
|
||||
const Stream& s) {
|
||||
const int partition_size = use_partitioning ? 512 : 0;
|
||||
const int num_threads = 256;
|
||||
const int num_simd_lanes = 32;
|
||||
const bool use_alibi = alibi.has_value();
|
||||
|
||||
std::string type_string = get_type_string(q.dtype());
|
||||
std::string kname;
|
||||
kname.reserve(64);
|
||||
concatenate(
|
||||
kname,
|
||||
"paged_attention_",
|
||||
type_string,
|
||||
"_hs",
|
||||
head_size,
|
||||
"_bs",
|
||||
block_size,
|
||||
"_nt",
|
||||
num_threads,
|
||||
"_nsl",
|
||||
num_simd_lanes,
|
||||
"_ps",
|
||||
partition_size);
|
||||
|
||||
auto template_def = get_template_definition(
|
||||
kname,
|
||||
"paged_attention",
|
||||
type_string,
|
||||
head_size,
|
||||
block_size,
|
||||
num_threads,
|
||||
num_simd_lanes,
|
||||
partition_size);
|
||||
|
||||
// Encode and dispatch kernel
|
||||
metal::MTLFCList func_consts = {
|
||||
{use_partitioning, MTL::DataType::DataTypeBool, 10},
|
||||
{use_alibi, MTL::DataType::DataTypeBool, 20},
|
||||
};
|
||||
|
||||
std::string hash_name = kname;
|
||||
auto kernel = get_paged_attention_kernel(
|
||||
d, kname, hash_name, func_consts, template_def);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
int local_max_num_partitions = 1;
|
||||
if (use_partitioning) {
|
||||
local_max_num_partitions =
|
||||
(max_context_len + partition_size - 1) / partition_size;
|
||||
}
|
||||
|
||||
int logits_size = use_partitioning ? partition_size * size_of(float32) : 0;
|
||||
int outputs_size = use_partitioning
|
||||
? ((num_threads / num_simd_lanes) / 2) * head_size * size_of(float32)
|
||||
: 0;
|
||||
int shared_mem_size =
|
||||
use_partitioning ? std::max(logits_size, outputs_size) : 0;
|
||||
if (use_partitioning) {
|
||||
compute_encoder.set_threadgroup_memory_length(shared_mem_size, 0);
|
||||
}
|
||||
|
||||
if (use_partitioning) {
|
||||
auto tmp_out = array(
|
||||
{num_seqs, num_heads, local_max_num_partitions, head_size}, float32);
|
||||
tmp_out.set_data(allocator::malloc(tmp_out.nbytes()));
|
||||
auto exp_sums =
|
||||
array({num_seqs, num_heads, local_max_num_partitions}, float32);
|
||||
exp_sums.set_data(allocator::malloc(exp_sums.nbytes()));
|
||||
|
||||
std::vector<array> temporaries = {tmp_out, exp_sums};
|
||||
|
||||
compute_encoder.set_output_array(tmp_out, 0);
|
||||
compute_encoder.set_output_array(exp_sums, 1);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
compute_encoder.set_input_array(q, 3);
|
||||
compute_encoder.set_input_array(k_cache, 4);
|
||||
compute_encoder.set_input_array(v_cache, 5);
|
||||
|
||||
compute_encoder.set_bytes(num_kv_heads, 6);
|
||||
compute_encoder.set_bytes(scale, 7);
|
||||
compute_encoder.set_bytes(softcapping, 8);
|
||||
|
||||
compute_encoder.set_input_array(block_tables, 9);
|
||||
compute_encoder.set_input_array(context_lens, 10);
|
||||
|
||||
compute_encoder.set_bytes(max_num_blocks_per_seq, 11);
|
||||
|
||||
if (use_alibi) {
|
||||
compute_encoder.set_input_array(alibi.value(), 12);
|
||||
}
|
||||
|
||||
compute_encoder.set_bytes(q_stride, 13);
|
||||
compute_encoder.set_bytes(kv_block_stride, 14);
|
||||
compute_encoder.set_bytes(kv_head_stride, 15);
|
||||
|
||||
MTL::Size grid_dims(num_heads, num_seqs, local_max_num_partitions);
|
||||
MTL::Size group_dims(num_threads, 1, 1);
|
||||
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
d.add_temporaries(std::move(temporaries), s.index);
|
||||
} else {
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
compute_encoder.set_input_array(q, 3);
|
||||
compute_encoder.set_input_array(k_cache, 4);
|
||||
compute_encoder.set_input_array(v_cache, 5);
|
||||
|
||||
compute_encoder.set_bytes(num_kv_heads, 6);
|
||||
compute_encoder.set_bytes(scale, 7);
|
||||
compute_encoder.set_bytes(softcapping, 8);
|
||||
|
||||
compute_encoder.set_input_array(block_tables, 9);
|
||||
compute_encoder.set_input_array(context_lens, 10);
|
||||
|
||||
compute_encoder.set_bytes(max_num_blocks_per_seq, 11);
|
||||
|
||||
if (use_alibi) {
|
||||
compute_encoder.set_input_array(alibi.value(), 12);
|
||||
}
|
||||
|
||||
compute_encoder.set_bytes(q_stride, 13);
|
||||
compute_encoder.set_bytes(kv_block_stride, 14);
|
||||
compute_encoder.set_bytes(kv_head_stride, 15);
|
||||
|
||||
MTL::Size grid_dims(num_heads, num_seqs, 1);
|
||||
MTL::Size group_dims(num_threads, 1, 1);
|
||||
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
void paged_attention_v1(
|
||||
const array& q,
|
||||
const array& k_cache,
|
||||
const array& v_cache,
|
||||
const array& block_tables,
|
||||
const array& context_lens,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int num_kv_heads,
|
||||
const float scale,
|
||||
const float softcapping,
|
||||
const int max_context_len,
|
||||
const int max_num_blocks_per_seq,
|
||||
const std::optional<array> alibi,
|
||||
const int q_stride,
|
||||
const int kv_block_stride,
|
||||
const int kv_head_stride,
|
||||
const int num_heads,
|
||||
const int num_seqs,
|
||||
array& out,
|
||||
metal::Device& d,
|
||||
const Stream& s) {
|
||||
run_paged_attention(
|
||||
q,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
context_lens,
|
||||
head_size,
|
||||
block_size,
|
||||
num_kv_heads,
|
||||
scale,
|
||||
softcapping,
|
||||
max_context_len,
|
||||
max_num_blocks_per_seq,
|
||||
/*use_partitioning=*/false,
|
||||
alibi,
|
||||
q_stride,
|
||||
kv_block_stride,
|
||||
kv_head_stride,
|
||||
num_heads,
|
||||
num_seqs,
|
||||
out,
|
||||
d,
|
||||
s);
|
||||
}
|
||||
|
||||
void paged_attention_v2(
|
||||
const array& q,
|
||||
const array& k_cache,
|
||||
const array& v_cache,
|
||||
const array& block_tables,
|
||||
const array& context_lens,
|
||||
const int head_size,
|
||||
const int block_size,
|
||||
const int num_kv_heads,
|
||||
const float scale,
|
||||
const float softcapping,
|
||||
const int max_context_len,
|
||||
const int max_num_blocks_per_seq,
|
||||
const int /* max_num_partitions */,
|
||||
const std::optional<array> alibi,
|
||||
const int q_stride,
|
||||
const int kv_block_stride,
|
||||
const int kv_head_stride,
|
||||
const int num_heads,
|
||||
const int num_seqs,
|
||||
array& out,
|
||||
metal::Device& d,
|
||||
const Stream& s) {
|
||||
run_paged_attention(
|
||||
q,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
context_lens,
|
||||
head_size,
|
||||
block_size,
|
||||
num_kv_heads,
|
||||
scale,
|
||||
softcapping,
|
||||
max_context_len,
|
||||
max_num_blocks_per_seq,
|
||||
/*use_partitioning=*/true,
|
||||
alibi,
|
||||
q_stride,
|
||||
kv_block_stride,
|
||||
kv_head_stride,
|
||||
num_heads,
|
||||
num_seqs,
|
||||
out,
|
||||
d,
|
||||
s);
|
||||
}
|
||||
|
||||
void PagedAttention::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& q = inputs[0];
|
||||
auto& k_cache = inputs[1];
|
||||
auto& v_cache = inputs[2];
|
||||
auto& block_tables = inputs[3];
|
||||
auto& context_lens = inputs[4];
|
||||
const auto alibi_slopes =
|
||||
inputs.size() == 6 ? std::optional{inputs[5]} : std::nullopt;
|
||||
|
||||
if (use_v1_) {
|
||||
paged_attention_v1(
|
||||
q,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
context_lens,
|
||||
head_size_,
|
||||
block_size_,
|
||||
num_kv_heads_,
|
||||
softmax_scale_,
|
||||
softcapping_.value_or(1.),
|
||||
max_context_len_,
|
||||
max_num_blocks_per_seq_,
|
||||
alibi_slopes,
|
||||
q_stride_,
|
||||
kv_block_stride_,
|
||||
kv_head_stride_,
|
||||
num_heads_,
|
||||
num_seqs_,
|
||||
out,
|
||||
d,
|
||||
s);
|
||||
} else {
|
||||
paged_attention_v2(
|
||||
q,
|
||||
k_cache,
|
||||
v_cache,
|
||||
block_tables,
|
||||
context_lens,
|
||||
head_size_,
|
||||
block_size_,
|
||||
num_kv_heads_,
|
||||
softmax_scale_,
|
||||
softcapping_.value_or(1.),
|
||||
max_context_len_,
|
||||
max_num_blocks_per_seq_,
|
||||
max_num_partitions_,
|
||||
alibi_slopes,
|
||||
q_stride_,
|
||||
kv_block_stride_,
|
||||
kv_head_stride_,
|
||||
num_heads_,
|
||||
num_seqs_,
|
||||
out,
|
||||
d,
|
||||
s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core::paged_attention
|
@ -17,6 +17,7 @@
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/memory.h"
|
||||
#include "mlx/ops.h"
|
||||
#include "mlx/paged_attention.h"
|
||||
#include "mlx/random.h"
|
||||
#include "mlx/stream.h"
|
||||
#include "mlx/transforms.h"
|
||||
|
170
mlx/paged_attention.cpp
Normal file
170
mlx/paged_attention.cpp
Normal file
@ -0,0 +1,170 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
// Required for using M_PI in MSVC.
|
||||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <algorithm>
|
||||
#include <climits>
|
||||
#include <cmath>
|
||||
#include <numeric>
|
||||
#include <set>
|
||||
#include <sstream>
|
||||
#include <stdexcept>
|
||||
|
||||
#include "mlx/paged_attention_primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core::paged_attention {
|
||||
|
||||
array paged_attention(
|
||||
const array& q,
|
||||
const array& k_cache,
|
||||
const array& v_cache,
|
||||
const array& block_tables,
|
||||
const array& context_lens,
|
||||
int max_context_len,
|
||||
float softmax_scale,
|
||||
std::optional<array> alibi_slopes = std::nullopt,
|
||||
std::optional<float> softcapping = std::nullopt,
|
||||
StreamOrDevice s_ = {}) {
|
||||
auto s = to_stream(s_);
|
||||
|
||||
// supported dtypes
|
||||
if (!issubdtype(q.dtype(), floating)) {
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] Only real floating types are supported");
|
||||
}
|
||||
if (!(q.dtype() == k_cache.dtype() && k_cache.dtype() == v_cache.dtype())) {
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] q/k_cache/v_cache dtype must match");
|
||||
}
|
||||
if (!(block_tables.dtype() == uint32 && context_lens.dtype() == uint32)) {
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] block_tables/context_lens dtype must be uint32");
|
||||
}
|
||||
|
||||
// rank checks
|
||||
if (q.ndim() != 3)
|
||||
throw std::invalid_argument("[paged_attention] `q` must be rank-3");
|
||||
if (k_cache.ndim() != 5)
|
||||
throw std::invalid_argument("[paged_attention] `k_cache` must be rank-5");
|
||||
if (v_cache.ndim() != 4)
|
||||
throw std::invalid_argument("[paged_attention] `v_cache` must be rank-4");
|
||||
if (block_tables.ndim() != 2)
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] `block_tables` must be rank-2");
|
||||
if (context_lens.ndim() != 1)
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] `context_lens` must be rank-1");
|
||||
|
||||
// 4. Shape consistency
|
||||
const auto& q_shape = q.shape(); // [num_seqs, num_heads, head_size]
|
||||
const auto& kc_shape = k_cache.shape();
|
||||
const auto& vc_shape = v_cache.shape();
|
||||
const auto& bt_shape = block_tables.shape();
|
||||
const auto& cl_shape = context_lens.shape();
|
||||
|
||||
int num_seqs = q_shape[0];
|
||||
int num_heads = q_shape[1];
|
||||
int head_size = q_shape[2];
|
||||
|
||||
// Allowed head sizes
|
||||
switch (head_size) {
|
||||
case 64:
|
||||
case 80:
|
||||
case 96:
|
||||
case 112:
|
||||
case 128:
|
||||
case 192:
|
||||
case 256:
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] `head_size` must be one of "
|
||||
"{64, 80, 96, 112, 128, 192, 256}");
|
||||
}
|
||||
|
||||
int max_num_blocks_per_seq = bt_shape[1];
|
||||
|
||||
// block_tables first dimension must match num_seqs
|
||||
if (bt_shape[0] != num_seqs) {
|
||||
std::stringstream ss;
|
||||
ss << "[paged_attention] block_tables.shape[0] (" << bt_shape[0]
|
||||
<< ") must equal q.shape[0] (" << num_seqs << ")";
|
||||
throw std::invalid_argument(ss.str());
|
||||
}
|
||||
|
||||
// Extract k_cache dimensions
|
||||
int num_blocks = kc_shape[0];
|
||||
int num_kv_heads = kc_shape[1];
|
||||
int head_size_kc = kc_shape[2];
|
||||
int block_size = kc_shape[3];
|
||||
int x = kc_shape[4];
|
||||
|
||||
if (head_size_kc * x != head_size) {
|
||||
std::stringstream ss;
|
||||
ss << "[paged_attention] k_cache head_size (" << head_size_kc << " * " << x
|
||||
<< ") must equal q head_size (" << head_size << ")";
|
||||
throw std::invalid_argument(ss.str());
|
||||
}
|
||||
|
||||
// v_cache must match the derived dimensions
|
||||
if (!(vc_shape[0] == num_blocks && vc_shape[1] == num_kv_heads &&
|
||||
vc_shape[2] == head_size && vc_shape[3] == block_size)) {
|
||||
throw std::invalid_argument(
|
||||
"[paged_attention] `v_cache` shape mismatch with `k_cache`/`q`");
|
||||
}
|
||||
|
||||
// context_lens length must match num_seqs
|
||||
if (cl_shape[0] != num_seqs) {
|
||||
std::stringstream ss;
|
||||
ss << "paged_attention: context_lens length (" << cl_shape[0]
|
||||
<< ") must equal q.shape[0] (" << num_seqs << ")";
|
||||
throw std::invalid_argument(ss.str());
|
||||
}
|
||||
|
||||
constexpr int partition_size = 512;
|
||||
int max_num_partitions =
|
||||
(max_context_len + partition_size - 1) / partition_size; // ceil‑div
|
||||
bool use_v1 = ((max_num_partitions == 1) || (num_seqs * num_heads > 512)) &&
|
||||
(partition_size % block_size == 0);
|
||||
|
||||
auto out_shape = q.shape();
|
||||
|
||||
auto inputs = std::vector{
|
||||
std::move(q),
|
||||
std::move(k_cache),
|
||||
std::move(v_cache),
|
||||
std::move(block_tables),
|
||||
std::move(context_lens)};
|
||||
if (alibi_slopes.has_value()) {
|
||||
inputs.push_back(std::move(alibi_slopes.value()));
|
||||
}
|
||||
|
||||
int q_stride = q.strides()[0];
|
||||
int kv_block_stride = k_cache.strides()[0];
|
||||
int kv_head_stride = k_cache.strides()[1];
|
||||
|
||||
return array(
|
||||
std::move(out_shape),
|
||||
q.dtype(),
|
||||
std::make_shared<PagedAttention>(
|
||||
to_stream(s),
|
||||
use_v1,
|
||||
max_context_len,
|
||||
head_size,
|
||||
block_size,
|
||||
num_kv_heads,
|
||||
softmax_scale,
|
||||
max_num_blocks_per_seq,
|
||||
max_num_partitions,
|
||||
q_stride,
|
||||
kv_block_stride,
|
||||
kv_head_stride,
|
||||
num_heads,
|
||||
num_seqs,
|
||||
softcapping),
|
||||
inputs);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::paged_attention
|
34
mlx/paged_attention.h
Normal file
34
mlx/paged_attention.h
Normal file
@ -0,0 +1,34 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <optional>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/stream.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core::paged_attention {
|
||||
|
||||
/**
|
||||
* \defgroup ops Paged attention operations
|
||||
* @{
|
||||
*/
|
||||
|
||||
/** PagedAttention operation. */
|
||||
array paged_attention(
|
||||
const array& q,
|
||||
const array& k_cache,
|
||||
const array& v_cache,
|
||||
const array& block_tables,
|
||||
const array& context_lens,
|
||||
int max_context_len,
|
||||
float softmax_scale,
|
||||
std::optional<array> alibi_slopes = std::nullopt,
|
||||
std::optional<float> softcapping = std::nullopt,
|
||||
StreamOrDevice s_ = {});
|
||||
|
||||
/** @} */
|
||||
|
||||
} // namespace mlx::core::paged_attention
|
82
mlx/paged_attention_primitives.h
Normal file
82
mlx/paged_attention_primitives.h
Normal file
@ -0,0 +1,82 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
// Required for using M_PI in MSVC.
|
||||
#define _USE_MATH_DEFINES
|
||||
|
||||
#include <optional>
|
||||
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core::paged_attention {
|
||||
|
||||
class PagedAttention : public UnaryPrimitive {
|
||||
public:
|
||||
explicit PagedAttention(
|
||||
Stream stream,
|
||||
bool use_v1,
|
||||
int max_context_len,
|
||||
int head_size,
|
||||
int block_size,
|
||||
int num_kv_heads,
|
||||
int max_num_blocks_per_seq,
|
||||
int max_num_partitions,
|
||||
int q_stride,
|
||||
int kv_block_stride,
|
||||
int kv_head_stride,
|
||||
int num_heads,
|
||||
int num_seqs,
|
||||
float softmax_scale,
|
||||
std::optional<float> softcapping = std::nullopt)
|
||||
: UnaryPrimitive(stream),
|
||||
use_v1_(use_v1),
|
||||
max_context_len_(max_context_len),
|
||||
head_size_(head_size),
|
||||
block_size_(block_size),
|
||||
num_kv_heads_(num_kv_heads),
|
||||
max_num_blocks_per_seq_(max_num_blocks_per_seq),
|
||||
max_num_partitions_(max_num_partitions),
|
||||
q_stride_(q_stride),
|
||||
kv_block_stride_(kv_block_stride),
|
||||
kv_head_stride_(kv_head_stride),
|
||||
num_heads_(num_heads),
|
||||
num_seqs_(num_seqs),
|
||||
softmax_scale_(softmax_scale),
|
||||
softcapping_(softcapping) {}
|
||||
|
||||
void eval_cpu(const std::vector<array>& inputs, array& outputs) override {
|
||||
throw std::runtime_error("NYI");
|
||||
}
|
||||
|
||||
void eval_gpu(const std::vector<array>& inputs, array& outputs) override;
|
||||
|
||||
DEFINE_PRINT(PagedAttention);
|
||||
|
||||
bool is_equivalent(const Primitive& other) const override;
|
||||
std::vector<Shape> output_shapes(const std::vector<array>& inputs) override;
|
||||
auto state() const {
|
||||
return std::make_tuple(
|
||||
max_context_len_,
|
||||
head_size_,
|
||||
block_size_,
|
||||
softmax_scale_,
|
||||
softcapping_);
|
||||
}
|
||||
|
||||
private:
|
||||
bool use_v1_;
|
||||
int max_context_len_;
|
||||
int head_size_;
|
||||
int block_size_;
|
||||
int num_kv_heads_;
|
||||
int max_num_blocks_per_seq_;
|
||||
int max_num_partitions_;
|
||||
int q_stride_;
|
||||
int kv_block_stride_;
|
||||
int kv_head_stride_;
|
||||
int num_heads_;
|
||||
int num_seqs_;
|
||||
float softmax_scale_;
|
||||
std::optional<float> softcapping_ = std::nullopt;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::paged_attention
|
@ -413,7 +413,7 @@ class Module(dict):
|
||||
f'Module does not have sub-module named "{k}".'
|
||||
)
|
||||
elif isinstance(modules, list):
|
||||
for i in range(len(dst)):
|
||||
for i in range(len(modules)):
|
||||
current_value = dst[i]
|
||||
new_value = modules[i]
|
||||
if self.is_module(current_value) and self.is_module(new_value):
|
||||
|
@ -259,6 +259,11 @@ class TestBase(mlx_tests.MLXTestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
m = m.update_modules({"list": ["hi"]})
|
||||
|
||||
# Allow updating a strict subset
|
||||
m = nn.Sequential(nn.Linear(3, 3), nn.Linear(3, 3))
|
||||
m.update_modules({"layers": [{}, nn.Linear(3, 4)]})
|
||||
self.assertEqual(m.layers[1].weight.shape, (4, 3))
|
||||
|
||||
|
||||
class TestLayers(mlx_tests.MLXTestCase):
|
||||
def test_identity(self):
|
||||
|
Loading…
Reference in New Issue
Block a user