mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
Compare commits
7 Commits
7170e5f40b
...
6c901ccbc9
Author | SHA1 | Date | |
---|---|---|---|
![]() |
6c901ccbc9 | ||
![]() |
b3d7b85376 | ||
![]() |
b3c1aaafd2 | ||
![]() |
989e8bab66 | ||
![]() |
fe0672a9d2 | ||
![]() |
cbd353bf73 | ||
![]() |
940f64fe6a |
@ -224,6 +224,13 @@ def relu6(x):
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def relu_squared(x):
|
||||
y = x
|
||||
for i in range(100):
|
||||
y = nn.relu_squared(y)
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def softplus(x):
|
||||
y = x
|
||||
for i in range(100):
|
||||
@ -458,6 +465,9 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "relu6":
|
||||
print(bench(relu6, x))
|
||||
|
||||
elif args.benchmark == "relu_squared":
|
||||
print(bench(relu_squared, x))
|
||||
|
||||
elif args.benchmark == "celu":
|
||||
print(bench(celu, x))
|
||||
|
||||
|
@ -157,6 +157,15 @@ def relu6(x):
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def relu_squared(x):
|
||||
y = x
|
||||
for i in range(100):
|
||||
y = torch.nn.functional.relu(y)
|
||||
y = torch.square(y)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def softplus(x):
|
||||
y = x
|
||||
@ -407,6 +416,9 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "relu6":
|
||||
print(bench(relu6, x))
|
||||
|
||||
elif args.benchmark == "relu_squared":
|
||||
print(bench(relu_squared, x))
|
||||
|
||||
elif args.benchmark == "softplus":
|
||||
print(bench(softplus, x))
|
||||
|
||||
|
@ -207,6 +207,8 @@ if __name__ == "__main__":
|
||||
compare_filtered("elu --size 32x16x1024 --cpu")
|
||||
compare_filtered("relu6 --size 32x16x1024")
|
||||
compare_filtered("relu6 --size 32x16x1024 --cpu")
|
||||
compare_filtered("relu_squared --size 32x16x1024")
|
||||
compare_filtered("relu_squared --size 32x16x1024 --cpu")
|
||||
compare_filtered("softplus --size 32x16x1024")
|
||||
compare_filtered("softplus --size 32x16x1024 --cpu")
|
||||
compare_filtered("celu --size 32x16x1024")
|
||||
|
@ -28,6 +28,7 @@ simple functions.
|
||||
prelu
|
||||
relu
|
||||
relu6
|
||||
relu_squared
|
||||
selu
|
||||
sigmoid
|
||||
silu
|
||||
|
@ -51,6 +51,7 @@ Layers
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU6
|
||||
ReLUSquared
|
||||
RNN
|
||||
RoPE
|
||||
SELU
|
||||
|
@ -37,36 +37,46 @@ void check_cu_error(const char* name, CUresult err) {
|
||||
}
|
||||
|
||||
// Return the location of the CUDA toolkit.
|
||||
const char* cuda_home() {
|
||||
const char* home = std::getenv("CUDA_HOME");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
home = std::getenv("CUDA_PATH");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
const std::string& cuda_home() {
|
||||
static std::string home = []() -> std::string {
|
||||
const char* home = std::getenv("CUDA_HOME");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
home = std::getenv("CUDA_PATH");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
#if defined(__linux__)
|
||||
home = "/usr/local/cuda";
|
||||
if (std::filesystem::exists(home)) {
|
||||
return home;
|
||||
}
|
||||
home = "/usr/local/cuda";
|
||||
if (std::filesystem::exists(home)) {
|
||||
return home;
|
||||
}
|
||||
#endif
|
||||
throw std::runtime_error(
|
||||
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
|
||||
throw std::runtime_error(
|
||||
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
|
||||
}();
|
||||
return home;
|
||||
}
|
||||
|
||||
// Get the cache directory for storing compiled results.
|
||||
bool get_ptx_cache_dir(std::filesystem::path* result) {
|
||||
auto path = std::filesystem::temp_directory_path() / "mlx" / "ptx";
|
||||
if (!std::filesystem::is_directory(path)) {
|
||||
std::error_code error;
|
||||
if (!std::filesystem::create_directories(path, error)) {
|
||||
return false;
|
||||
const std::filesystem::path& ptx_cache_dir() {
|
||||
static std::filesystem::path cache = []() -> std::filesystem::path {
|
||||
std::filesystem::path cache;
|
||||
if (auto c = std::getenv("MLX_PTX_CACHE"); c) {
|
||||
cache = c;
|
||||
} else {
|
||||
cache = std::filesystem::temp_directory_path() / "mlx" / "ptx";
|
||||
}
|
||||
}
|
||||
*result = path;
|
||||
return true;
|
||||
if (!std::filesystem::exists(cache)) {
|
||||
std::error_code error;
|
||||
if (!std::filesystem::create_directories(cache, error)) {
|
||||
return std::filesystem::path();
|
||||
}
|
||||
}
|
||||
return cache;
|
||||
}();
|
||||
return cache;
|
||||
}
|
||||
|
||||
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
|
||||
@ -75,6 +85,10 @@ bool read_cached_ptx(
|
||||
const std::string& module_name,
|
||||
std::vector<char>* ptx,
|
||||
std::vector<std::pair<std::string, std::string>>* ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir / (module_name + ".ptx");
|
||||
std::error_code error;
|
||||
auto ptx_size = std::filesystem::file_size(ptx_path, error);
|
||||
@ -105,6 +119,10 @@ void write_cached_ptx(
|
||||
const std::string& module_name,
|
||||
const std::vector<char>& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
|
||||
if (!ptx.empty()) {
|
||||
ptx_file.write(&ptx.front(), ptx.size());
|
||||
@ -184,11 +202,9 @@ JitModule::JitModule(
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder) {
|
||||
// Check cache.
|
||||
std::filesystem::path cache_dir;
|
||||
std::vector<char> ptx;
|
||||
std::vector<std::pair<std::string, std::string>> ptx_kernels;
|
||||
if (!get_ptx_cache_dir(&cache_dir) ||
|
||||
!read_cached_ptx(cache_dir, module_name, &ptx, &ptx_kernels)) {
|
||||
if (!read_cached_ptx(ptx_cache_dir(), module_name, &ptx, &ptx_kernels)) {
|
||||
// Create program.
|
||||
auto [source_code, kernel_names] = builder();
|
||||
nvrtcProgram prog;
|
||||
@ -246,7 +262,7 @@ JitModule::JitModule(
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||
}
|
||||
write_cached_ptx(cache_dir, module_name, ptx, ptx_kernels);
|
||||
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels);
|
||||
}
|
||||
|
||||
// Load module.
|
||||
|
@ -16,6 +16,7 @@ from mlx.nn.layers.activations import (
|
||||
PReLU,
|
||||
ReLU,
|
||||
ReLU6,
|
||||
ReLUSquared,
|
||||
Sigmoid,
|
||||
SiLU,
|
||||
Softmax,
|
||||
@ -41,6 +42,7 @@ from mlx.nn.layers.activations import (
|
||||
prelu,
|
||||
relu,
|
||||
relu6,
|
||||
relu_squared,
|
||||
selu,
|
||||
sigmoid,
|
||||
silu,
|
||||
|
@ -71,6 +71,17 @@ def relu6(x):
|
||||
return mx.minimum(mx.maximum(x, 0), 6.0)
|
||||
|
||||
|
||||
@partial(mx.compile, shapeless=True)
|
||||
def relu_squared(x):
|
||||
r"""Applies the Rectified Linear Unit squared.
|
||||
|
||||
Applies :math:`\max(x, 0)^2` element wise.
|
||||
|
||||
Reference: https://arxiv.org/abs/2109.08668v2
|
||||
"""
|
||||
return relu(x).square()
|
||||
|
||||
|
||||
@partial(mx.compile, shapeless=True)
|
||||
def softmax(x, axis=-1):
|
||||
r"""Applies the Softmax function.
|
||||
@ -420,6 +431,18 @@ class ReLU6(Module):
|
||||
"""
|
||||
|
||||
|
||||
@_make_activation_module(relu_squared)
|
||||
class ReLUSquared(Module):
|
||||
r"""Applies the Rectified Linear Unit squared.
|
||||
|
||||
Applies :math:`\max(x, 0)^2` element wise.
|
||||
|
||||
Reference: https://arxiv.org/abs/2109.08668v2
|
||||
|
||||
See :func:`relu_squared` for the functional equivalent.
|
||||
"""
|
||||
|
||||
|
||||
@_make_activation_module(softmax)
|
||||
class Softmax(Module):
|
||||
r"""Applies the Softmax function.
|
||||
|
@ -855,6 +855,13 @@ class TestLayers(mlx_tests.MLXTestCase):
|
||||
self.assertEqual(y.shape, (3,))
|
||||
self.assertEqual(y.dtype, mx.float32)
|
||||
|
||||
def test_relu_squared(self):
|
||||
x = mx.array([-1.0, 0.0, 1.0, 2.0, 3.0])
|
||||
y = nn.relu_squared(x)
|
||||
self.assertTrue(mx.array_equal(y, mx.array([0.0, 0.0, 1.0, 4.0, 9.0])))
|
||||
self.assertEqual(y.shape, (5,))
|
||||
self.assertEqual(y.dtype, mx.float32)
|
||||
|
||||
def test_leaky_relu(self):
|
||||
x = mx.array([1.0, -1.0, 0.0])
|
||||
y = nn.leaky_relu(x)
|
||||
|
Loading…
Reference in New Issue
Block a user