mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
4 Commits
9bfc476d72
...
v0.29.3
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4bce5f9b2d | ||
|
|
e9eab527eb | ||
|
|
36ca62dba8 | ||
|
|
9cbb1b0148 |
@@ -15,6 +15,18 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// NaN-aware comparator that places NaNs at the end
|
||||
template <typename T>
|
||||
bool nan_aware_less(T a, T b) {
|
||||
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
|
||||
if (std::isnan(a))
|
||||
return false;
|
||||
if (std::isnan(b))
|
||||
return true;
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -130,7 +142,7 @@ void sort(array& out, int axis) {
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed);
|
||||
std::stable_sort(st, ed, nan_aware_less<T>);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
@@ -184,6 +196,15 @@ void argsort(const array& in, array& out, int axis) {
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -219,7 +240,7 @@ void partition(array& out, int axis, int kth) {
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed);
|
||||
std::nth_element(st, md, ed, nan_aware_less<T>);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -276,6 +297,15 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -170,6 +170,10 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
|
||||
@@ -1,284 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_unary_op() {
|
||||
if (std::is_same_v<Op, Abs> || std::is_same_v<Op, Negative> ||
|
||||
std::is_same_v<Op, Sign> || std::is_same_v<Op, Square>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCosh> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTanh> || std::is_same_v<Op, Erf> ||
|
||||
std::is_same_v<Op, ErfInv> || std::is_same_v<Op, Expm1> ||
|
||||
std::is_same_v<Op, Sigmoid>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseInvert>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
||||
return std::is_same_v<In, Out> && !mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Conjugate>) {
|
||||
return std::is_same_v<In, Out> && mlx::core::is_complex_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
||||
std::is_same_v<Op, Cosh> || std::is_same_v<Op, Exp> ||
|
||||
std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p> ||
|
||||
std::is_same_v<Op, Round> || std::is_same_v<Op, Rsqrt> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Sin> ||
|
||||
std::is_same_v<Op, Sinh> || std::is_same_v<Op, Tan> ||
|
||||
std::is_same_v<Op, Tanh>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
||||
return mlx::core::is_complex_v<In> && std::is_same_v<Out, float>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalNot>) {
|
||||
return std::is_same_v<In, Out> && std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& in = inputs[0];
|
||||
if (in.size() == 0) {
|
||||
return;
|
||||
}
|
||||
bool contig = in.flags().contiguous;
|
||||
bool large;
|
||||
if (!contig) {
|
||||
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
||||
} else {
|
||||
large = in.data_size() > UINT32_MAX;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
dispatch_bool(large, [&](auto large) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
if (contig) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(OutType);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large, N_READS);
|
||||
encoder.add_kernel_node(
|
||||
cu::unary_v<Op, InType, OutType, IdxT, N_READS>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT, 1>;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
kernel = cu::unary_g<Op, InType, OutType, IdxT, 4>;
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do unary op {} on input of {} with output of {}.",
|
||||
op,
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void unary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
set_unary_output_data(inputs[0], out);
|
||||
unary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
#define UNARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
unary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
UNARY_GPU(Abs)
|
||||
UNARY_GPU(ArcCos)
|
||||
UNARY_GPU(ArcCosh)
|
||||
UNARY_GPU(ArcSin)
|
||||
UNARY_GPU(ArcSinh)
|
||||
UNARY_GPU(ArcTan)
|
||||
UNARY_GPU(ArcTanh)
|
||||
UNARY_GPU(BitwiseInvert)
|
||||
UNARY_GPU(Ceil)
|
||||
UNARY_GPU(Conjugate)
|
||||
UNARY_GPU(Cos)
|
||||
UNARY_GPU(Cosh)
|
||||
UNARY_GPU(Erf)
|
||||
UNARY_GPU(ErfInv)
|
||||
UNARY_GPU(Exp)
|
||||
UNARY_GPU(Expm1)
|
||||
UNARY_GPU(Floor)
|
||||
UNARY_GPU(Imag)
|
||||
UNARY_GPU(Log1p)
|
||||
UNARY_GPU(LogicalNot)
|
||||
UNARY_GPU(Negative)
|
||||
UNARY_GPU(Real)
|
||||
UNARY_GPU(Sigmoid)
|
||||
UNARY_GPU(Sign)
|
||||
UNARY_GPU(Sin)
|
||||
UNARY_GPU(Sinh)
|
||||
UNARY_GPU(Square)
|
||||
UNARY_GPU(Tan)
|
||||
UNARY_GPU(Tanh)
|
||||
|
||||
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Log::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
unary_op_gpu<cu::Log>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::two:
|
||||
unary_op_gpu<cu::Log2>(inputs, out, name(), s);
|
||||
break;
|
||||
case Base::ten:
|
||||
unary_op_gpu<cu::Log10>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Round::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
auto& s = out.primitive().stream();
|
||||
if (issubdtype(in.dtype(), inexact)) {
|
||||
unary_op_gpu<cu::Round>(inputs, out, name(), s);
|
||||
} else {
|
||||
// No-op integer types
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
|
||||
void Sqrt::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Sort::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (recip_) {
|
||||
unary_op_gpu<cu::Rsqrt>(inputs, out, "Rsqrt", s);
|
||||
} else {
|
||||
unary_op_gpu<cu::Sqrt>(inputs, out, "Sqrt", s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -19,11 +19,28 @@ METAL_FUNC void thread_swap(thread T& a, thread T& b) {
|
||||
b = w;
|
||||
}
|
||||
|
||||
template <typename T, typename = void>
|
||||
struct Init {
|
||||
static constexpr constant T v = Limits<T>::max;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Init<T, metal::enable_if_t<metal::is_floating_point_v<T>>> {
|
||||
static constexpr constant T v = metal::numeric_limits<T>::quiet_NaN();
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct LessThan {
|
||||
static constexpr constant T init = Limits<T>::max;
|
||||
|
||||
METAL_FUNC bool operator()(T a, T b) {
|
||||
static constexpr constant T init = Init<T>::v;
|
||||
METAL_FUNC bool operator()(T a, T b) const {
|
||||
if constexpr (
|
||||
metal::is_floating_point_v<T> || metal::is_same_v<T, complex64_t>) {
|
||||
bool an = isnan(a);
|
||||
bool bn = isnan(b);
|
||||
if (an | bn) {
|
||||
return (!an) & bn;
|
||||
}
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -21,6 +21,9 @@
|
||||
|
||||
namespace mlx::core::distributed::nccl {
|
||||
|
||||
// Can be tuned with MLX_NCCL_TIMEOUT
|
||||
constexpr int nccl_timeout = 300000; // miliseconds
|
||||
|
||||
#define CHECK_CUDA(cmd) \
|
||||
do { \
|
||||
cudaError_t e = cmd; \
|
||||
@@ -181,8 +184,9 @@ inline void bootstrap_unique_id(
|
||||
close(sock);
|
||||
|
||||
} else {
|
||||
// Here just wanted to make show that rank 0 has enough time to bind
|
||||
// so we will retry to connect until max attempts
|
||||
// Here we want to make sure that rank 0 has enough time to bind
|
||||
// so we will retry to connect until elapsed time exceeds nccl_timeout
|
||||
// this is particularity important for multinode setup
|
||||
|
||||
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
||||
if (sock < 0) {
|
||||
@@ -200,32 +204,41 @@ inline void bootstrap_unique_id(
|
||||
memcpy(&serv.sin_addr, he->h_addr_list[0], he->h_length);
|
||||
serv.sin_port = htons(port);
|
||||
|
||||
const int max_retries = 30;
|
||||
int attempt = 0;
|
||||
const int timeout_ms = env::nccl_timeout(nccl_timeout);
|
||||
bool connected = false;
|
||||
|
||||
bool do_log = std::getenv("NCCL_DEBUG") == "INFO";
|
||||
for (attempt = 0; attempt < max_retries; ++attempt) {
|
||||
const char* dbg = std::getenv("NCCL_DEBUG");
|
||||
bool do_log = (dbg && std::string(dbg) == "INFO");
|
||||
|
||||
auto start = std::chrono::steady_clock::now();
|
||||
int attempt = 0;
|
||||
|
||||
while (true) {
|
||||
auto elapsed_ms = std::chrono::duration_cast<std::chrono::milliseconds>(
|
||||
std::chrono::steady_clock::now() - start)
|
||||
.count();
|
||||
if (elapsed_ms > timeout_ms)
|
||||
break;
|
||||
if (connect(sock, reinterpret_cast<sockaddr*>(&serv), sizeof(serv)) ==
|
||||
0) {
|
||||
connected = true;
|
||||
if (do_log) {
|
||||
std::cout << "[Rank " << rank
|
||||
<< "] Connected successfully on attempt " << attempt + 1
|
||||
<< std::endl;
|
||||
std::cout << "[Rank " << rank << "] Connected successfully after "
|
||||
<< elapsed_ms << " miliseconds" << std::endl;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (errno != ECONNREFUSED) {
|
||||
break;
|
||||
}
|
||||
++attempt;
|
||||
std::this_thread::sleep_for(std::chrono::milliseconds(500));
|
||||
}
|
||||
|
||||
if (!connected) {
|
||||
std::ostringstream msg;
|
||||
msg << "[Rank " << rank << "] connect() failed after " << attempt
|
||||
<< " retries: " << strerror(errno);
|
||||
msg << "[Rank " << rank << "] connect() failed after " << timeout_ms
|
||||
<< " milliseconds and " << attempt << " retries: " << strerror(errno);
|
||||
close(sock);
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
@@ -256,7 +269,6 @@ class NCCLGroup : public GroupImpl {
|
||||
|
||||
~NCCLGroup() {
|
||||
ncclCommDestroy(comm_);
|
||||
ncclGroupEnd();
|
||||
initialized_ = false;
|
||||
}
|
||||
|
||||
|
||||
@@ -165,6 +165,11 @@ inline bool enable_tf32() {
|
||||
return enable_tf32_;
|
||||
}
|
||||
|
||||
inline int nccl_timeout(int default_value) {
|
||||
static int nccl_timeout = get_var("MLX_NCCL_TIMEOUT", default_value);
|
||||
return nccl_timeout;
|
||||
}
|
||||
|
||||
} // namespace env
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -3100,8 +3100,6 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
out = mx.depends(b, c)
|
||||
self.assertTrue(mx.array_equal(out, b))
|
||||
|
||||
|
||||
class TestBroadcast(mlx_tests.MLXTestCase):
|
||||
def test_broadcast_shapes(self):
|
||||
# Basic broadcasting
|
||||
self.assertEqual(mx.broadcast_shapes((1, 2, 3), (3,)), (1, 2, 3))
|
||||
@@ -3140,6 +3138,12 @@ class TestBroadcast(mlx_tests.MLXTestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
mx.broadcast_shapes()
|
||||
|
||||
def test_sort_nan(self):
|
||||
x = mx.array([3.0, mx.nan, 2.0, 0.0])
|
||||
expected = mx.array([0.0, 2.0, 3.0, mx.nan])
|
||||
self.assertTrue(mx.array_equal(mx.sort(x), expected, equal_nan=True))
|
||||
x = mx.array([3.0, mx.nan, 2.0, 0.0]) + 1j * mx.array([1.0] * 4)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
mlx_tests.MLXTestRunner()
|
||||
|
||||
Reference in New Issue
Block a user