Compare commits

...

15 Commits

Author SHA1 Message Date
Angelos Katharopoulos
8269c9d02d Support unaligned M 2025-07-23 00:40:27 -07:00
Angelos Katharopoulos
903b40627c Add dynamic shared memory and improve qmm 2025-07-22 23:36:53 -07:00
Angelos Katharopoulos
700f7dcf01 Refactor the matmul a bit 2025-07-21 23:38:21 -07:00
Angelos Katharopoulos
6c60bd1cbf Fixed mma and working dequant 2025-07-21 04:47:42 -07:00
Angelos Katharopoulos
a64cc02a0c Somewhat working matmul primitives 2025-07-21 04:47:42 -07:00
Angelos Katharopoulos
346ae5fdb5 Refactor quantized 2025-07-21 04:47:41 -07:00
Awni Hannun
93d70419e7 [CUDA] speedup handling scalars (#2389)
* speedup scalars in cuda

* comment
2025-07-18 21:47:31 -07:00
Awni Hannun
63f663d9c6 fix cuda manylinux version to match others (#2388) 2025-07-18 21:02:16 -07:00
Awni Hannun
84b4d96efa fix release build + patch bump (#2387) 2025-07-18 14:47:37 -07:00
Awni Hannun
aec67f2fa6 patch bump (#2386) 2025-07-18 12:25:48 -07:00
Gökdeniz Gülmez
deee214a95 Adding support for the Muon Optimizer (#1914)
* initial commit with workong optmimizer

* update ACKNOWLEDGMENTS.md

* nits and adding it to test

* nits

* G.astype(mx.bfloat16) to G.astype(G.dtype)

* G.ndim >= 2 to assert G.ndim == 2

* remove coments

* replace with  mx.addmm

* remove comments

* format

* nits

* match muon

* fix addmm

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-07-18 12:25:28 -07:00
Cheng
45adec102c Add contiguous_copy_gpu util for copying array (#2379) 2025-07-18 06:44:25 -07:00
Cheng
31fc530c76 [CUDA] Add more ways finding CCCL headers in JIT (#2382) 2025-07-17 15:25:34 -07:00
Awni Hannun
fbb3f65a1a fix resource leaks in matmul and graph (#2383) 2025-07-17 06:50:15 -07:00
Angelos Katharopoulos
6b1b8ea91b [CUDA] Add work per thread to compile (#2368) 2025-07-17 06:47:52 -07:00
60 changed files with 1620 additions and 298 deletions

View File

@@ -272,6 +272,7 @@ jobs:
name: Build Python package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
@@ -333,6 +334,7 @@ jobs:
<< parameters.build_env >> pip install ".[dev]" -v
pip install typing_extensions
python setup.py generate_stubs
python setup.py clean --all
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
bash python/scripts/repair_linux.sh
- when:
@@ -364,7 +366,7 @@ jobs:
type: string
default: ""
machine:
image: linux-cuda-12:default
image: linux-cuda-12:2024.11.1
resource_class: gpu.nvidia.small.gen2
steps:
- checkout

View File

@@ -19,6 +19,7 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -22,7 +22,7 @@ project(
# ----------------------------- Setup -----------------------------
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_INSTALL_MESSAGE NEVER)

View File

@@ -19,3 +19,4 @@ Common Optimizers
Adamax
Lion
MultiOptimizer
Muon

View File

@@ -42,7 +42,9 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/qmm.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
@@ -90,7 +92,7 @@ target_compile_options(
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"70;80"
"80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
@@ -130,3 +132,12 @@ target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
# Make Thunderkittens available
FetchContent_Declare(
kittens
GIT_REPOSITORY https://github.com/HazyResearch/ThunderKittens.git
GIT_TAG aaab847f430ed313ed466e64b25b9177babd1db8
GIT_SHALLOW TRUE)
FetchContent_MakeAvailable(kittens)
target_include_directories(mlx BEFORE PRIVATE "${kittens_SOURCE_DIR}/include")

View File

@@ -17,6 +17,52 @@ namespace cu {
constexpr int page_size = 16384;
// Any allocations smaller than this will try to use the small pool
constexpr int small_block_size = 8;
// The small pool size in bytes. This should be a multiple of the host page
// size and small_block_size.
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
CHECK_CUDA_ERROR(cudaMallocManaged(&buffer_, small_pool_size));
end_ = reinterpret_cast<void*>(
reinterpret_cast<char*>(buffer_) + small_pool_size);
next_free_ = reinterpret_cast<Block*>(buffer_);
auto num_blocks = small_pool_size / small_block_size;
auto curr = next_free_;
for (size_t i = 0; i < num_blocks - 1; ++i) {
curr->next = reinterpret_cast<Block*>(
reinterpret_cast<char*>(buffer_) + (i + 1) * small_block_size);
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(buffer_));
}
void* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
next_free_ = next_free_->next;
return static_cast<void*>(b);
}
void SmallSizePool::free(void* p) {
auto b = static_cast<Block*>(p);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(void* p) {
return (p >= buffer_) && (p < end_);
}
CudaAllocator::CudaAllocator()
: buffer_cache_(
page_size,
@@ -36,7 +82,9 @@ Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size < page_size) {
if (size <= small_block_size) {
size = 8;
} else if (size < page_size) {
size = next_power_of_2(size);
} else {
size = page_size * ((size + page_size - 1) / page_size);
@@ -53,11 +101,19 @@ Buffer CudaAllocator::malloc(size_t size) {
lock.unlock();
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
// Try the scalar pool first
if (size <= small_block_size) {
buf->data = scalar_pool_.malloc();
}
if (!buf->data) {
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
}
lock.lock();
}
active_memory_ += size;
@@ -116,7 +172,11 @@ void CudaAllocator::cuda_free(void* buf) {
return;
}
}
cudaFree(buf);
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
cudaFree(buf);
}
}
size_t CudaAllocator::get_active_memory() const {

View File

@@ -22,6 +22,28 @@ struct CudaBuffer {
size_t size;
};
class SmallSizePool {
private:
struct Block {
Block* next;
};
void* buffer_{nullptr};
Block* next_free_{nullptr};
void* end_{nullptr};
public:
SmallSizePool();
~SmallSizePool();
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
void* malloc();
void free(void* p);
bool in_pool(void* p);
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
@@ -60,6 +82,7 @@ class CudaAllocator : public allocator::Allocator {
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
SmallSizePool scalar_pool_;
};
CudaAllocator& allocator();

View File

@@ -166,6 +166,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
num_blocks,
block_dim(),
0,
in.data<T>(),
out.data<uint32_t>(),
out.size(),

View File

@@ -219,6 +219,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -235,6 +236,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -269,6 +271,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),

View File

@@ -239,6 +239,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
@@ -256,6 +257,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
@@ -291,6 +293,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),

View File

@@ -53,9 +53,10 @@ struct FusedKernelBuilder {
// Build function signature.
if (contiguous) {
os += "template <typename IdxT = uint32_t>\n";
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
} else {
os += "template <int NDIM, typename IdxT = uint32_t>\n";
os +=
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
}
os += fmt::format("__global__ void {}(\n", kernel_name + name);
for (size_t i = 0; i < params.size(); ++i) {
@@ -67,12 +68,46 @@ struct FusedKernelBuilder {
}
os += ") {\n";
// Index.
// Index. For non contiguous kernels we create a separate index
// variable per variable otherwise everyone uses `index`.
os +=
" IdxT index = cg::this_grid().thread_rank();\n"
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
" if (index >= size) {\n"
" return;\n"
" }\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " IdxT " + xname + "_idx = 0;\n";
}
os += " {\n";
os += " IdxT loc = index;\n";
os +=
" #pragma unroll\n"
" for (int i = NDIM - 1; i >= 0; i--) {\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
"_strides[i]);\n";
}
os +=
" loc /= shape[i];\n"
" }\n"
" }\n";
}
// Work loop
os +=
"\n"
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
// Read inputs.
for (size_t i = 0; i < inputs.size(); ++i) {
@@ -89,12 +124,9 @@ struct FusedKernelBuilder {
} else if (contiguous) {
value = fmt::format("{}[index]", xname);
} else {
std::string index = fmt::format(
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
xname);
value = fmt::format("{}[{}]", xname, index);
value = fmt::format("{}[{}_idx]", xname, xname);
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write tape.
@@ -113,14 +145,30 @@ struct FusedKernelBuilder {
}
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write output.
for (const auto& x : outputs) {
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
}
// End of work loop
os +=
"\n"
" index++;\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += " + xname + "_strides[NDIM - 1];\n";
}
}
os += " }\n";
os += "}\n";
}
};
@@ -156,15 +204,28 @@ void Compiled::eval_gpu(
builder.build("_strided", false);
builder.os += "\n} // namespace mlx::core::cu\n";
// Build kernel names.
std::vector<std::string> kernel_names = {
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()),
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
};
for (int i = 1; i <= MAX_NDIM; ++i) {
std::vector<std::string> kernel_names;
for (auto work_per_thread : std::array<int, 2>{1, 4}) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i));
kernel_names.push_back(
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i));
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
lib_name(),
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<int64_t, {}>",
lib_name(),
work_per_thread));
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t, {}>",
lib_name(),
i,
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, int64_t, {}>",
lib_name(),
i,
work_per_thread));
}
}
return std::make_pair(std::move(builder.os), std::move(kernel_names));
});
@@ -207,13 +268,21 @@ void Compiled::eval_gpu(
args.append<uint32_t>(outputs[0].data_size());
}
// Choose work per thread
int work_per_thread = 4;
if (!contiguous && shape.back() % work_per_thread != 0) {
work_per_thread = 1;
}
// Launch kernel.
const char* index_type = large ? "int64_t" : "uint32_t";
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
if (contiguous) {
kernel_name += fmt::format("_contiguous<{}>", index_type);
kernel_name +=
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
} else {
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type);
kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
}
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
@@ -224,8 +293,9 @@ void Compiled::eval_gpu(
}
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, outputs[0], large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
auto [num_blocks, block_dims] =
get_launch_args(kernel, outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -82,6 +82,7 @@ void copy_contiguous(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());

View File

@@ -79,6 +79,7 @@ void copy_general(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,
@@ -94,6 +95,7 @@ void copy_general(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,

View File

@@ -82,6 +82,7 @@ void copy_general_dynamic(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
@@ -99,6 +100,7 @@ void copy_general_dynamic(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),

View File

@@ -71,6 +71,7 @@ void copy_general_input(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
@@ -85,6 +86,7 @@ void copy_general_input(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),

View File

@@ -66,7 +66,6 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
}
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph, 0));
CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
}
@@ -216,12 +215,14 @@ void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
kernel_params.blockDim = block_dim;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
cudaGraphNode_t node;
CHECK_CUDA_ERROR(
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
@@ -232,6 +233,7 @@ void CommandEncoder::add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
@@ -242,6 +244,7 @@ void CommandEncoder::add_kernel_node(
kernel_params.blockDimY = block_dim.y;
kernel_params.blockDimZ = block_dim.z;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
CUgraphNode node;
CHECK_CUDA_ERROR(
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));

View File

@@ -45,25 +45,34 @@ class CommandEncoder {
void set_output_array(const array& arr);
template <typename F, typename... Params>
void
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
void add_kernel_node(
F* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
Params&&... params) {
constexpr size_t num = sizeof...(Params);
void* ptrs[num];
size_t i = 0;
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
std::forward<Params>(params)),
...);
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
}
void add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
void add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());

View File

@@ -129,7 +129,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -230,7 +230,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -318,7 +318,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -422,7 +422,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -52,13 +52,29 @@ const std::string& cuda_home() {
}
// Return the location of CCCL headers shipped with the distribution.
bool get_cccl_include(std::string* out) {
auto cccl_headers = current_binary_dir().parent_path() / "include" / "cccl";
if (!std::filesystem::exists(cccl_headers)) {
return false;
}
*out = fmt::format("--include-path={}", cccl_headers.string());
return true;
const std::string& cccl_dir() {
static std::string dir = []() {
std::filesystem::path path;
#if defined(MLX_CCCL_DIR)
// First search the install dir if defined.
path = MLX_CCCL_DIR;
if (std::filesystem::exists(path)) {
return path.string();
}
#endif
// Then search dynamically from the dir of libmlx.so file.
path = current_binary_dir().parent_path() / "include" / "cccl";
if (std::filesystem::exists(path)) {
return path.string();
}
// Finally check the environment variable.
path = std::getenv("MLX_CCCL_DIR");
if (!path.empty() && std::filesystem::exists(path)) {
return path.string();
}
return std::string();
}();
return dir;
}
// Get the cache directory for storing compiled results.
@@ -121,7 +137,8 @@ void write_cached_ptx(
const std::filesystem::path& cache_dir,
const std::string& module_name,
const std::vector<char>& ptx,
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
const std::string& source_code) {
if (cache_dir.empty()) {
return;
}
@@ -134,6 +151,9 @@ void write_cached_ptx(
for (const auto& [name, mangled] : ptx_kernels) {
txt_file << name << "\t" << mangled << std::endl;
}
std::ofstream source_file(cache_dir / (module_name + ".cu"));
source_file << source_code;
}
// Return if |device|'s version is not newer than |major|.|minor| version.
@@ -234,8 +254,9 @@ JitModule::JitModule(
device.compute_capability_major(),
device.compute_capability_minor());
args.push_back(compute.c_str());
std::string cccl_include;
if (get_cccl_include(&cccl_include)) {
std::string cccl_include = cccl_dir();
if (!cccl_include.empty()) {
cccl_include = fmt::format("--include-path={}", cccl_include);
args.push_back(cccl_include.c_str());
}
std::string cuda_include =
@@ -272,7 +293,8 @@ JitModule::JitModule(
} else {
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
}
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels);
write_cached_ptx(
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
}
// Load module.

View File

@@ -237,8 +237,7 @@ void LayerNorm::eval_gpu(
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -267,6 +266,7 @@ void LayerNorm::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
b.data<DataType>(),
@@ -295,9 +295,7 @@ void LayerNormVJP::eval_gpu(
return x;
}
copied = true;
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return x_copy;
return contiguous_copy_gpu(x, s);
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[3].is_donatable();
@@ -381,6 +379,7 @@ void LayerNormVJP::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),

View File

@@ -108,8 +108,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
encoder.add_temporary(x_copy);
return x_copy;
}
@@ -152,6 +151,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
n_rows,
block_dim(),
0,
in.data<DataType>(),
out.data<DataType>(),
axis_size);

View File

@@ -27,6 +27,35 @@ void check_cublas_error(const char* name, cublasStatus_t err) {
}
}
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
class MatMul {
public:
MatMul(
@@ -43,7 +72,7 @@ class MatMul {
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride)
: handle_(device.lt_handle()) {
: handle_(device.lt_handle()), pref_(cublas_preference(device)) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cuda_type(dtype);
@@ -77,20 +106,6 @@ class MatMul {
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
MatMul(
@@ -104,7 +119,6 @@ class MatMul {
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
bool c_transposed,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
@@ -126,15 +140,15 @@ class MatMul {
b_batch_stride) {
auto type = dtype_to_cuda_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, c_transposed, ldc, batch_count, c_batch_stride);
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
~MatMul() {
cublasLtMatrixLayoutDestroy(a_desc_);
cublasLtMatrixLayoutDestroy(b_desc_);
cublasLtMatrixLayoutDestroy(c_desc_);
cublasLtMatrixLayoutDestroy(out_desc_);
cublasLtMatmulDescDestroy(matmul_desc_);
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void run(
@@ -259,9 +273,9 @@ class MatMul {
return desc;
}
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
@@ -282,8 +296,7 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
} else if (stx == 1 && sty == arr.shape(-2)) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
array arr_copy = contiguous_copy_gpu(arr, s);
enc.add_temporary(arr_copy);
return std::make_tuple(false, arr.shape(-1), arr_copy);
}
@@ -389,9 +402,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
auto& c_pre = inputs[2];
out.set_data(allocator::malloc(out.nbytes()));
auto c = inputs[2];
/////////////////////////////////////////////////////////////////////////////
// Init checks and prep
@@ -404,7 +415,24 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
// the arrays
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
auto [c_transposed, ldc, c] = check_transpose(encoder, s, c_pre);
int64_t ldc;
{
auto stx = c.strides()[c.ndim() - 2];
auto sty = c.strides()[c.ndim() - 1];
if (sty == 1 && stx == c.shape(-1)) {
ldc = stx;
out.set_data(allocator::malloc(out.nbytes()));
} else if (sty == 1 && stx == 0) {
ldc = 0;
out.set_data(allocator::malloc(out.nbytes()));
} else {
// Copy C into out and set C to out
ldc = c.shape(-1);
copy_gpu(c, out, CopyType::General, s);
c = out;
}
}
/////////////////////////////////////////////////////////////////////////////
// Check and collapse batch dimensions
@@ -442,7 +470,6 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
K,
N,
ldb,
c_transposed,
ldc,
batch_shape.back(),
a_batch_strides.back(),

View File

@@ -0,0 +1,108 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/matmul/tiles.cuh"
namespace mlx::core::cu {
template <typename U, typename T>
__device__ inline void
mma_t(Tile16x16<U>& C, Tile16x16<T>& A, Tile16x16<T>& B) {}
/**
* Multiply the 16x16 bfloat16 tiles and accumulate the result in one 16x16
* float tile.
*
* We actually perform C += A @ B.T
*/
__device__ inline void mma_t(
Tile16x16<float>& C,
Tile16x16<__nv_bfloat16>& A,
Tile16x16<__nv_bfloat16>& B) {
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
"{%0, %1, %2, %3}, "
"{%4, %5, %6, %7}, "
"{%8, %9}, "
"{%10, %11, %12, %13};"
// D matrix
: "+f"(C.values[0].x),
"+f"(C.values[0].y),
"+f"(C.values[1].x),
"+f"(C.values[1].y)
// A matrix
: "r"(*(uint32_t*)(&A.values[0])),
"r"(*(uint32_t*)(&A.values[1])),
"r"(*(uint32_t*)(&A.values[2])),
"r"(*(uint32_t*)(&A.values[3])),
// B matrix
"r"(*(uint32_t*)(&B.values[0])),
"r"(*(uint32_t*)(&B.values[2])),
// C matrix
"f"(C.values[0].x),
"f"(C.values[0].y),
"f"(C.values[1].x),
"f"(C.values[1].y));
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
"{%0, %1, %2, %3}, "
"{%4, %5, %6, %7}, "
"{%8, %9}, "
"{%10, %11, %12, %13};"
// D matrix
: "+f"(C.values[2].x),
"+f"(C.values[2].y),
"+f"(C.values[3].x),
"+f"(C.values[3].y)
// A matrix
: "r"(*(uint32_t*)(&A.values[0])),
"r"(*(uint32_t*)(&A.values[1])),
"r"(*(uint32_t*)(&A.values[2])),
"r"(*(uint32_t*)(&A.values[3])),
// B matrix
"r"(*(uint32_t*)(&B.values[1])),
"r"(*(uint32_t*)(&B.values[3])),
// C matrix
"f"(C.values[2].x),
"f"(C.values[2].y),
"f"(C.values[3].x),
"f"(C.values[3].y));
}
/**
* Multiply larger register tiles by delegating to mma_t.
*/
template <typename U, typename T, int M, int N, int K>
__device__ inline void mma_t(
RegisterTile<U, M, N>& C,
RegisterTile<T, M, K>& A,
RegisterTile<T, N, K>& B) {
constexpr int TILES_M = RegisterTile<T, M, K>::TILES_Y;
constexpr int TILES_K = RegisterTile<T, M, K>::TILES_X;
constexpr int TILES_N = RegisterTile<T, N, K>::TILES_Y;
MLX_UNROLL
for (int k = 0; k < TILES_K; k++) {
MLX_UNROLL
for (int m = 0; m < TILES_M; m++) {
MLX_UNROLL
for (int n = 0; n < TILES_N; n++) {
mma_t(
C.data[m * TILES_N + n],
A.data[m * TILES_K + k],
B.data[n * TILES_K + k]);
}
}
}
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,419 @@
// Copyright © 2025 Apple Inc.
#pragma once
#define MLX_UNROLL _Pragma("unroll")
namespace mlx::core::cu {
// Map types to their vector of 2 type float -> float2, double -> double2 etc
template <typename T>
struct Vector2;
template <>
struct Vector2<double> {
using type = double2;
};
template <>
struct Vector2<float> {
using type = float2;
};
template <>
struct Vector2<__half> {
using type = __half2;
};
template <>
struct Vector2<__nv_bfloat16> {
using type = __nv_bfloat162;
};
template <typename T>
using Vector2_t = typename Vector2<T>::type;
/**
* The basic building block for Ampere mmas. A 16x16 tile distributed across
* the warp.
*
* Each thread holds 8 values. They are distributed according to
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-fragment-mma-16816-float
*
* For use instructions see the individual methods eg load().
*/
template <typename T>
struct Tile16x16 {
using T2 = Vector2_t<T>;
T2 values[4];
__device__ inline void fill(T v) {
T2 v2 = {v, v};
for (int i = 0; i < 4; i++) {
values[i] = v2;
}
}
/**
* Load a 16x16 tile from shared memory.
*
* The instruction is a bit weird in the sense that the address provided by
* each thread and the elements loaded are not the same.
*
* We load 4 8x8 tiles. The tile rows are stored contiguously in memory. As a
* result the warp provides 4*8 = 32 addresses one per row.
*
* Threads 0-7 provide the addresses for the first tile, 8-15 for the second
* and so on. For instance to load a non swizzled tile we would do
*
* base_addr + (laneid % 16) * BK + (laneid / 2) * 8
*
* See
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-instructions-ldmatrix
*/
__device__ inline void load(uint32_t row_address) {
if constexpr (
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
asm volatile(
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
: "=r"(*(uint32_t*)&(values[0])),
"=r"(*(uint32_t*)&(values[1])),
"=r"(*(uint32_t*)&(values[2])),
"=r"(*(uint32_t*)&(values[3]))
: "r"(row_address));
}
}
/**
* Store the tile to the address pointed to by `x`.
*
* The provided pointer is a generic pointer but this is meant to be used to
* store to global memory. For storing to shared memory we should use
* `stmatrix`.
*
* This also showcases the format of the tile quite nicely. Each register is
* holding to adjacent values. The indices are
*
* row + 0, col + 0
* row + 8, col + 0
* row + 0, col + 8
* row + 8, col + 8
*
* Given that we are dealing with Vector2_t<U> the column offsets are 4
* instead of 8.
*/
template <typename U>
__device__ inline void store_global(U* x, int N) {
using U2 = Vector2_t<U>;
U2* x2 = reinterpret_cast<U2*>(x);
const int laneid = threadIdx.x % 32;
const int row = laneid / 4;
const int col = laneid % 4;
if constexpr (std::is_same_v<U2, T2>) {
x2[(row + 0) * (N / 2) + col + 0] = values[0];
x2[(row + 0) * (N / 2) + col + 4] = values[2];
x2[(row + 8) * (N / 2) + col + 0] = values[1];
x2[(row + 8) * (N / 2) + col + 4] = values[3];
} else if constexpr (
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
x2[(row + 0) * (N / 2) + col + 0] =
__floats2bfloat162_rn(values[0].x, values[0].y);
x2[(row + 0) * (N / 2) + col + 4] =
__floats2bfloat162_rn(values[2].x, values[2].y);
x2[(row + 8) * (N / 2) + col + 0] =
__floats2bfloat162_rn(values[1].x, values[1].y);
x2[(row + 8) * (N / 2) + col + 4] =
__floats2bfloat162_rn(values[3].x, values[3].y);
}
}
template <typename U>
__device__ inline void store_global_safe(U* x, int N, int max_rows) {
const int laneid = threadIdx.x % 32;
const int row = laneid / 4;
const int col = laneid % 4;
if (row < max_rows) {
x[(row + 0) * N + 2 * col + 0] = static_cast<U>(values[0].x);
x[(row + 0) * N + 2 * col + 1] = static_cast<U>(values[0].y);
x[(row + 0) * N + 2 * col + 8] = static_cast<U>(values[2].x);
x[(row + 0) * N + 2 * col + 9] = static_cast<U>(values[2].y);
}
if (row + 8 < max_rows) {
x[(row + 8) * N + 2 * col + 0] = static_cast<U>(values[1].x);
x[(row + 8) * N + 2 * col + 1] = static_cast<U>(values[1].y);
x[(row + 8) * N + 2 * col + 8] = static_cast<U>(values[3].x);
x[(row + 8) * N + 2 * col + 9] = static_cast<U>(values[3].y);
}
}
};
/**
* A simple container of multiple Tile16x16.
*
* Provides utility functions for loading and manipulating collections of basic
* tiles.
*/
template <typename T, int ROWS_, int COLS_>
struct RegisterTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
Tile16x16<T> data[TILES_X * TILES_Y];
__device__ inline void fill(T v) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].fill(v);
}
}
}
template <typename Tile>
__device__ inline void
load(Tile& tile, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].load(
tile.loc(base_address, row + i * 16, col + j * 16));
}
}
}
template <typename U>
__device__ inline void store_global(U* x, int N, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global(
x + (row + i * 16) * N + col + j * 16, N);
}
}
}
template <typename U>
__device__ inline void
store_global_safe(U* x, int N, int row, int col, int max_rows) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global_safe(
x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i * 16);
}
}
}
};
template <typename T, int ROWS_, int COLS_>
struct SharedTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
static constexpr int NUMEL = ROWS * COLS;
// Swizzle taken from ThunderKittens.
//
// See inludes/types/shared/st.cuh
//
// I do feel that it is too math heavy and can be improved. Also the math is
// done every time although the addresses don't change from load to load. I
// guess we are expecting the compiler to figure that out.
static constexpr int swizzle_bytes =
(sizeof(T) == 2 ? (TILES_X % 4 == 0 ? 128 : (TILES_X % 2 == 0 ? 64 : 32))
: (sizeof(T) == 4 ? (TILES_X % 2 == 0 ? 128 : 64) : 0));
T data[ROWS * COLS];
// Return a pointer to the element at (row, col) using the swizzle.
__device__ static inline T* ptr(T* ptr, int row, int col) {
if constexpr (swizzle_bytes > 0) {
static constexpr int swizzle_repeat = swizzle_bytes * 8;
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
const int outer_idx = col / subtile_cols;
const uint64_t addr =
(uint64_t)(&ptr
[outer_idx * ROWS * subtile_cols + row * subtile_cols +
col % subtile_cols]);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (T*)(addr ^ swizzle);
} else {
return ptr + row * COLS + col;
}
}
// Return the location of the element at (row, col) using the swizzle.
__device__ static inline uint32_t loc(uint32_t ptr, int row, int col) {
if constexpr (swizzle_bytes > 0) {
static constexpr int swizzle_repeat = swizzle_bytes * 8;
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
const int outer_idx = col / subtile_cols;
const uint32_t addr = ptr +
sizeof(T) *
(outer_idx * ROWS * subtile_cols + row * subtile_cols +
col % subtile_cols);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (addr ^ swizzle);
} else {
return ptr + sizeof(T) * (row * COLS + col);
}
}
// Convenience functions to edit elements going through the swizzle.
__device__ inline T& operator()(int row, int col) {
return *ptr(data, row, col);
}
__device__ inline void store(float4& v, int row, int col) {
*(reinterpret_cast<float4*>(ptr(data, row, col))) = v;
}
__device__ inline void store(float2& v, int row, int col) {
*(reinterpret_cast<float2*>(ptr(data, row, col))) = v;
}
__device__ inline void store(float& v, int row, int col) {
*(reinterpret_cast<float*>(ptr(data, row, col))) = v;
}
template <int N>
__device__ inline void store(T (&v)[N], int row, int col) {
if constexpr (sizeof(T) * N == 4) {
store(*(reinterpret_cast<float*>(&v[0])), row, col);
} else if constexpr (sizeof(T) * N == 8) {
store(*(reinterpret_cast<float2*>(&v[0])), row, col);
} else if constexpr (sizeof(T) * N == 16) {
store(*(reinterpret_cast<float4*>(&v[0])), row, col);
} else {
MLX_UNROLL
for (int i = 0; i < N; i++) {
*ptr(data, row, col + i) = v[i];
}
}
}
};
/**
* Load the tile from global memory by loading 16 bytes at a time and storing
* them immediately.
*/
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void load(Tile& tile, const T* x, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
float4 tmp;
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
/**
* Copy 16 bytes from the globale memory address pointed to by x to the smem
* address pointed to by row_address.
*
* A simple wrapper over the PTX.
*/
template <typename T>
__device__ inline void cp_async_16(uint32_t row_address, const T* x) {
asm volatile(
"cp.async.ca.shared::cta.global [%0], [%1], 16;\n" ::"r"(row_address),
"l"(reinterpret_cast<const int4*>(x)));
}
/**
* Submit all the previous async copies to be executed.
*/
__device__ inline void cp_async_commit() {
asm volatile("cp.async.commit_group;\n" ::);
}
/**
* Wait for all the async copies to finish.
*/
__device__ inline void cp_async_wait_all() {
asm volatile("cp.async.wait_all;\n" ::);
}
/**
* The asynchronous equivalent of load.
*
* Loads the tile from global memory by submitting a bunch of async copy
* instructions. The copy won't start until commit is called and we don't have
* a guarantee it will finish until wait is called.
*
* It should be used as follows
*
* load(...)
* load(...)
* cp_async_commit()
* do_other_stuff()
* cp_async_wait_all()
* do_stuff_with_shmem()
*/
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void
load_async(Tile& tile, uint32_t base_address, const T* x, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
cp_async_16(
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
x + i * STEP_ROWS * N);
}
}
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void load_async_safe(
Tile& tile,
uint32_t base_address,
const T* x,
int N,
int max_rows) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
if (row + i * STEP_ROWS < max_rows) {
cp_async_16(
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
x + i * STEP_ROWS * N);
} else {
float4 tmp = {0, 0, 0, 0};
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
}
} // namespace mlx::core::cu

View File

@@ -81,7 +81,6 @@ NO_GPU(Hadamard)
NO_GPU(Load)
NO_GPU_MULTI(LUF)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(SegmentedMM)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)

View File

@@ -2,30 +2,17 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, int group_size, int bits>
__global__ void
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
@@ -240,145 +227,102 @@ __global__ void affine_dequantize(
}
} // namespace cu
namespace {
inline array ensure_row_contiguous(
const array& x,
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
} // namespace
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& w_pre = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
auto w = ensure_row_contiguous(w_pre, enc, s);
enc.set_input_array(w);
if (dequantize_) {
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(out);
} else {
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
enc.set_output_array(out);
enc.set_output_array(scales);
enc.set_output_array(biases);
}
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
// Treat uint32 as uint8 in kernel
int uint8_per_uint32 = 4;
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
: bits_ == 6 ? 4
: 8 / bits_;
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
size_t size =
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
// Calculate the number of elements per thread
int per_thread = group_size_ / WARP_SIZE;
size_t size = w.size() / per_thread;
// Calculate the thread grid that we need to launch
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() /= per_thread;
if (dequantize_) {
grid_shape.back() *= uint8_per_uint32;
} else {
grid_shape.back() /= per_thread;
}
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
enc.set_input_array(w);
enc.set_output_array(wq);
enc.set_output_array(scales);
enc.set_output_array(biases);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
if (dequantize_) {
auto kernel =
cu::affine_dequantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<uint8_t>(),
inputs[1].data<DataType>(),
inputs[2].data<DataType>(),
out.data<DataType>(),
out.size());
} else {
auto kernel =
cu::affine_quantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<DataType>(),
out.data<uint8_t>(),
outputs[1].data<DataType>(),
outputs[2].data<DataType>(),
w.size());
}
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
w.data<T>(),
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.size());
});
});
});
}
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
constexpr int uint8_per_uint32 = 4;
int packs_per_int;
switch (bits_) {
case 3:
case 5:
packs_per_int = 8;
break;
case 6:
packs_per_int = 4;
break;
default:
packs_per_int = 8 / bits_;
}
size_t size = w.size() / packs_per_int;
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() *= uint8_per_uint32;
enc.set_input_array(wq);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(w);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.data<T>(),
w.size());
});
});
});

View File

@@ -0,0 +1,228 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/matmul/mma.cuh"
#include "mlx/backend/cuda/matmul/tiles.cuh"
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
#include "mlx/dtype_utils.h"
namespace mlx::core {
namespace cu {
template <int NUM_WARPS, int group_size, int bits, typename T, typename Tile>
__device__ inline void load_quantized(
Tile& tile,
const uint8_t* x,
const T* scales,
const T* biases,
int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(uint32_t) * get_pack_factor<bits>();
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
constexpr int MASK = (1 << bits) - 1;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
const int Nx = N / get_pack_factor<bits>();
const int Ng = N / group_size;
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
T vs[ELEMENTS_PER_LOAD];
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
T s = scales[i * STEP_ROWS * Ng];
T b = biases[i * STEP_ROWS * Ng];
MLX_UNROLL
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
}
tile.store(vs, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
template <
typename T,
int BM,
int BN,
int BK,
int group_size,
int bits,
bool aligned_M>
__global__ void qmm_t(
const T* x,
const uint8_t* w,
const T* scales,
const T* biases,
T* y,
int M,
int N,
int K) {
constexpr int WARPS_M = 2;
constexpr int WARPS_N = 4;
constexpr int NUM_WARPS = WARPS_M * WARPS_N;
constexpr int WARP_STEP_M = BM / WARPS_M;
constexpr int WARP_STEP_N = BN / WARPS_N;
const int warpid = threadIdx.x / 32;
const int laneid = threadIdx.x % 32;
const int wm = warpid / WARPS_N;
const int wn = warpid % WARPS_N;
const int offset_m = wm * WARP_STEP_M;
const int offset_n = wn * WARP_STEP_N;
extern __shared__ char shmem[];
SharedTile<T, BM, BK>(&xs)[1] = *(SharedTile<T, BM, BK>(*)[1])(&shmem[0]);
SharedTile<T, BN, BK>(&ws)[1] =
*(SharedTile<T, BN, BK>(*)[1])(&shmem[1 * sizeof(T) * BM * BK]);
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
RegisterTile<T, BM / WARPS_M, 16> A;
RegisterTile<T, BN / WARPS_N, 16> B;
const int max_rows = M - blockIdx.y * BM;
x += blockIdx.y * BM * K;
w += blockIdx.x * BN * K / get_pack_factor<bits>();
scales += blockIdx.x * BN * K / group_size;
biases += blockIdx.x * BN * K / group_size;
y += blockIdx.y * BM * N + blockIdx.x * BN;
C.fill(0);
int tic = 0;
uint32_t base_addr_xs[1], base_addr_ws[1];
base_addr_xs[0] = __cvta_generic_to_shared(&xs[0].data[0]);
base_addr_ws[0] = __cvta_generic_to_shared(&ws[0].data[0]);
if (aligned_M || max_rows >= BM) {
for (int k_block = 0; k_block < K; k_block += BK) {
load_async<NUM_WARPS>(xs[tic], base_addr_xs[tic], x + k_block, K);
cp_async_commit();
load_quantized<NUM_WARPS, group_size, bits>(
ws[tic],
w + k_block / get_pack_factor<bits>(),
scales + k_block / group_size,
biases + k_block / group_size,
K);
cp_async_wait_all();
__syncthreads();
MLX_UNROLL
for (int k = 0; k < BK / 16; k++) {
A.load(
xs[tic],
base_addr_xs[tic],
offset_m + laneid % 16,
k * 16 + laneid / 16 * 8);
B.load(
ws[tic],
base_addr_ws[tic],
offset_n + laneid % 16,
k * 16 + laneid / 16 * 8);
mma_t(C, A, B);
}
}
C.store_global(y, N, offset_m, offset_n);
} else {
for (int k_block = 0; k_block < K; k_block += BK) {
load_async_safe<NUM_WARPS>(
xs[tic], base_addr_xs[tic], x + k_block, K, max_rows);
cp_async_commit();
load_quantized<NUM_WARPS, group_size, bits>(
ws[tic],
w + k_block / get_pack_factor<bits>(),
scales + k_block / group_size,
biases + k_block / group_size,
K);
cp_async_wait_all();
__syncthreads();
MLX_UNROLL
for (int k = 0; k < BK / 16; k++) {
A.load(
xs[tic],
base_addr_xs[tic],
offset_m + laneid % 16,
k * 16 + laneid / 16 * 8);
B.load(
ws[tic],
base_addr_ws[tic],
offset_n + laneid % 16,
k * 16 + laneid / 16 * 8);
mma_t(C, A, B);
}
}
C.store_global_safe(y, N, offset_m, offset_n, max_rows);
}
}
} // namespace cu
void qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
array& out,
bool transpose_,
int group_size_,
int bits_,
int M,
int N,
int K,
cu::CommandEncoder& enc,
const Stream& s) {
if (x.dtype() != bfloat16) {
throw std::invalid_argument("[qmm] Only bfloat16 is supported for now");
}
if (!transpose_) {
throw std::invalid_argument(
"[qmm] Only transposed matmul is supported for now");
}
dispatch_float_types(x.dtype(), "qmm", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 32;
auto kernel =
cu::qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, true>;
if (M % BM != 0) {
kernel = cu::
qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, false>;
}
dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM);
enc.add_kernel_node(
kernel,
grid,
2 * 4 * 32,
1 * sizeof(DataType) * (BM * BK + BN * BK),
x.data<DataType>(),
w.data<uint8_t>(),
scales.data<DataType>(),
biases.data<DataType>(),
out.data<DataType>(),
M,
N,
K);
});
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,113 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/quantized/quantized.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
inline array ensure_row_contiguous(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
inline array ensure_row_contiguous_matrix(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
auto stride_0 = x.strides()[x.ndim() - 2];
auto stride_1 = x.strides()[x.ndim() - 1];
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
}
}
} // namespace
void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
out.set_data(allocator::malloc(out.nbytes()));
// Make sure the last two dims of x and w, s, b are contiguous. This should
// be relaxed for x.
array x = ensure_row_contiguous_matrix(inputs[0], enc, s);
array w = ensure_row_contiguous_matrix(inputs[1], enc, s);
array scales = ensure_row_contiguous_matrix(inputs[2], enc, s);
array biases = ensure_row_contiguous_matrix(inputs[3], enc, s);
// Extract the matmul shapes
bool non_batched = w.ndim() == 2 && x.flags().row_contiguous;
int K = x.shape(-1);
int M = non_batched ? x.size() / K : x.shape(-2);
int N = out.shape(-1);
qmm(x,
w,
scales,
biases,
out,
transpose_,
group_size_,
bits_,
M,
N,
K,
enc,
s);
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
if (dequantize_) {
auto wq = ensure_row_contiguous(inputs[0], enc, s);
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
auto& w = outputs[0];
w.set_data(allocator::malloc(w.nbytes()));
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
} else {
auto w = ensure_row_contiguous(inputs[0], enc, s);
auto& wq = outputs[0];
auto& scales = outputs[1];
auto& biases = outputs[2];
wq.set_data(allocator::malloc(wq.nbytes()));
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,42 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
namespace mlx::core {
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
void qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
array& out,
bool transpose_,
int group_size_,
int bits_,
int M,
int N,
int K,
cu::CommandEncoder& enc,
const Stream& s);
} // namespace mlx::core

View File

@@ -0,0 +1,59 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core {
namespace cu {
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
} // namespace cu
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
} // namespace mlx::core

View File

@@ -170,6 +170,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
cu::rbitsc,
grid,
block,
0,
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dims,
@@ -180,6 +181,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
cu::rbits,
grid,
block,
0,
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dims,

View File

@@ -47,8 +47,7 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
}
}
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
array in_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, in_copy, CopyType::General, s);
array in_copy = contiguous_copy_gpu(in, s);
encoder.add_temporary(in_copy);
in = in_copy;
plan = get_reduction_plan(in, axes_);

View File

@@ -120,6 +120,7 @@ void all_reduce(
kernel,
blocks,
threads,
0,
static_cast<T*>(indata),
intermediate.data<U>(),
block_step,
@@ -146,6 +147,7 @@ void all_reduce(
kernel,
blocks,
threads,
0,
static_cast<T*>(indata),
out.data<U>(),
block_step,

View File

@@ -230,7 +230,7 @@ void col_reduce_looped(
auto kernel =
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
encoder.add_kernel_node(
kernel, grid, blocks, indata, out.data<U>(), args);
kernel, grid, blocks, 0, indata, out.data<U>(), args);
});
});
});

View File

@@ -41,7 +41,8 @@ void init_reduce(
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
grid.x = (grid.x + 1023) / 1024;
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
encoder.add_kernel_node(
kernel, grid, block, 0, out.data<U>(), out.size());
});
});
}

View File

@@ -269,7 +269,7 @@ void row_reduce_simple(
int size = plan.shape.back();
encoder.add_kernel_node(
kernel, grid, block, indata, out.data<U>(), out.size(), size);
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
});
});
}
@@ -322,7 +322,7 @@ void row_reduce_looped(
});
encoder.add_kernel_node(
kernel, grid, block, indata, out.data<U>(), out.size(), args);
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
});
});
}

View File

@@ -206,8 +206,7 @@ void RMSNorm::eval_gpu(
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -233,6 +232,7 @@ void RMSNorm::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
out.data<DataType>(),
@@ -259,9 +259,7 @@ void RMSNormVJP::eval_gpu(
return x;
}
copied = true;
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
return x_copy;
return contiguous_copy_gpu(x, s);
};
bool donate_x = inputs[0].is_donatable();
bool donate_g = inputs[2].is_donatable();
@@ -330,6 +328,7 @@ void RMSNormVJP::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),

View File

@@ -325,6 +325,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -341,6 +342,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -360,6 +362,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -381,6 +384,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),

View File

@@ -379,9 +379,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
in.flags());
}
} else {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, arr_copy, CopyType::General, s);
in = std::move(arr_copy);
in = contiguous_copy_gpu(in, s);
out.copy_shared_buffer(in);
}
@@ -416,6 +414,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
in.data_size() / axis_size,
block_dim,
0,
in.data<T>(),
out.data<U>(),
axis_size);
@@ -445,6 +444,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
num_blocks,
block_dim,
0,
in.data<T>(),
out.data<U>(),
axis_size,

View File

@@ -125,8 +125,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -153,6 +152,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
n_rows,
block_dim(),
0,
in.data<DataType>(),
out.data<DataType>(),
axis_size);

View File

@@ -72,8 +72,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
if (!is_segmented_sort) {
array trans = swapaxes_in_eval(in, axis, last_dim);
in = array(trans.shape(), trans.dtype(), nullptr, {});
copy_gpu(trans, in, CopyType::General, s);
in = contiguous_copy_gpu(trans, s);
encoder.add_temporary(in);
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
encoder.add_temporary(out);

View File

@@ -133,6 +133,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
@@ -151,6 +152,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
@@ -180,6 +182,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),

View File

@@ -142,6 +142,7 @@ void unary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>(),
out.data<OutType>(),
out.data_size());
@@ -154,6 +155,7 @@ void unary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>(),
out.data<OutType>(),
out.data_size(),

View File

@@ -46,4 +46,10 @@ void copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
array contiguous_copy_gpu(const array& arr, const Stream& s) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
return arr_copy;
}
} // namespace mlx::core

View File

@@ -43,4 +43,7 @@ void copy_gpu_inplace(
// Fill the output with the scalar val
void fill_gpu(const array& val, array& out, const Stream& s);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_gpu(const array& arr, const Stream& s);
} // namespace mlx::core

View File

@@ -149,8 +149,7 @@ void explicit_gemm_conv_group_ND_gpu(
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
// Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
array wt_transpose = contiguous_copy_gpu(wt_view, s);
// Perform gemm
std::vector<array> copies = {in_unfolded, wt_transpose};
@@ -961,16 +960,12 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
auto in = inputs[0];
auto wt = inputs[1];
if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
in = arr_copy;
in = contiguous_copy_gpu(in, s);
copies.push_back(in);
}
if (!wt.flags().row_contiguous) {
array arr_copy(wt.shape(), wt.dtype(), nullptr, {});
copy_gpu(wt, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
wt = arr_copy;
wt = contiguous_copy_gpu(wt, s);
copies.push_back(wt);
}
// 3D conv

View File

@@ -25,8 +25,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return x_copy;
}

View File

@@ -33,8 +33,7 @@ std::tuple<bool, int64_t, array> check_transpose(
} else if (stx == 1 && (!is_vector || sty == arr.shape(-2))) {
return std::make_tuple(true, sty, arr);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
array arr_copy = contiguous_copy_gpu(arr, s);
copies.push_back(arr_copy);
return std::make_tuple(false, arr.shape(-1), arr_copy);
}
@@ -43,8 +42,7 @@ std::tuple<bool, int64_t, array> check_transpose(
inline array
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return x_copy;
} else {
@@ -75,8 +73,7 @@ ensure_batch_contiguous(const array& x, metal::Device& d, const Stream& s) {
}
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return std::make_tuple(false, x_copy.strides()[x_copy.ndim() - 2], x_copy);
}
@@ -1894,8 +1891,7 @@ void segmented_mm(
return std::make_tuple(false, x);
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return std::make_tuple(true, x_copy);
};

View File

@@ -40,8 +40,7 @@ void RMSNorm::eval_gpu(
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -107,9 +106,7 @@ void RMSNormVJP::eval_gpu(
if (x.flags().row_contiguous) {
return {x, false};
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();
@@ -241,8 +238,7 @@ void LayerNorm::eval_gpu(
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}
@@ -319,8 +315,7 @@ void LayerNormVJP::eval_gpu(
if (x.flags().row_contiguous) {
return {x, false};
}
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
return {x_copy, true};
};
bool donate_x = inputs[0].is_donatable();

View File

@@ -20,8 +20,7 @@ namespace {
inline array
ensure_row_contiguous(const array& x, metal::Device& d, const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return x_copy;
} else {
@@ -38,8 +37,7 @@ inline array ensure_row_contiguous_matrix(
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
d.add_temporary(x_copy, s.index);
return x_copy;
}

View File

@@ -989,8 +989,7 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
// input for the axes with stride smaller than the minimum reduction
// stride.
if (plan.type == GeneralReduce) {
array in_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, in_copy, CopyType::General, s);
array in_copy = contiguous_copy_gpu(in, s);
d.add_temporary(in_copy, s.index);
in = in_copy;
plan = get_reduction_plan(in, axes_);

View File

@@ -398,8 +398,7 @@ void ScaledDotProductAttention::eval_gpu(
auto copy_unless = [&copies, &s](
auto predicate, const array& arr) -> const array& {
if (!predicate(arr)) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
array arr_copy = contiguous_copy_gpu(arr, s);
copies.push_back(std::move(arr_copy));
return copies.back();
} else {

View File

@@ -30,9 +30,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
in.flags());
}
} else {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, arr_copy, CopyType::General, s);
in = std::move(arr_copy);
in = contiguous_copy_gpu(in, s);
out.copy_shared_buffer(in);
}

View File

@@ -35,8 +35,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_gpu(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_gpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -4,7 +4,7 @@
#define MLX_VERSION_MAJOR 0
#define MLX_VERSION_MINOR 26
#define MLX_VERSION_PATCH 3
#define MLX_VERSION_PATCH 5
#define MLX_VERSION_NUMERIC \
(100000 * MLX_VERSION_MAJOR + 1000 * MLX_VERSION_MINOR + MLX_VERSION_PATCH)

View File

@@ -848,6 +848,106 @@ class Adafactor(Optimizer):
return parameter - update
class Muon(Optimizer):
r"""The Muon optimizer.
Our Muon (MomentUm Orthogonalized by Newton-schulz) optimizer follows the
original implementation: `Muon: An optimizer for hidden layers in neural
networks <https://kellerjordan.github.io/posts/muon/>`_
Note:
- Muon may be sub-optimal for the embedding layer, the final fully
connected layer, or any 0D/1D parameters. Those should be optimized
by a different method (e.g., :class:`AdamW`).
- For 4D convolutional filters, it works by flattening their last
dimensions.
Args:
learning_rate (float or callable): The learning rate.
momentum (float, optional): The momentum strength. Default: ``0.95``
weight_decay (float, optional): The weight decay (L2 penalty).
Default: ``0.01``
nesterov (bool, optional): Enables Nesterov momentum. Recommended for
better performance. Default: ``True``
ns_steps (int, optional): Number of Newton-Schulz iteration steps for
orthogonalization. Default: ``5``
"""
def __init__(
self,
learning_rate: Union[float, Callable[[mx.array], mx.array]],
momentum: float = 0.95,
weight_decay: float = 0.01,
nesterov: bool = True,
ns_steps: int = 5,
):
super().__init__()
self._maybe_schedule("learning_rate", learning_rate)
self.momentum = momentum
self.weight_decay = weight_decay
self.nesterov = nesterov
self.ns_steps = ns_steps
def init_single(self, parameter: mx.array, state: dict):
"""Initialize optimizer state"""
state["v"] = mx.zeros_like(parameter)
def _zeropower_via_newtonschulz5(self, X, steps: int):
assert (
X.ndim == 2
), f"Expected a 2D array for Newton-Schulz iteration, got shape {X.shape} instead."
a, b, c = (3.4445, -4.7750, 2.0315)
transpose_needed = X.shape[-2] > X.shape[-1]
if transpose_needed:
X = X.T
X = X / (mx.linalg.norm(X, keepdims=True) + 1e-7)
for _ in range(steps):
A = X @ X.T
B = mx.addmm(b * A, A, A, beta=1.0, alpha=c)
X = mx.addmm(a * X, B, X, beta=1.0, alpha=1.0)
if transpose_needed:
X = X.T
return X
def apply_single(self, gradient: mx.array, parameter: mx.array, state: dict):
"""Performs the Muon parameter update"""
if self.weight_decay != 0:
gradient = gradient + self.weight_decay * parameter
v = self.momentum * state["v"]
v = v + (1 - self.momentum) * gradient
state["v"] = v
if self.nesterov:
update = gradient * (1 - self.momentum) + v * self.momentum
else:
update = v
lr = self.learning_rate.astype(gradient.dtype)
if update.ndim >= 2:
original_shape = update.shape
reshape_needed = update.ndim > 2
if reshape_needed:
update = mx.reshape(update, (update.shape[0], -1))
update = self._zeropower_via_newtonschulz5(update, steps=self.ns_steps)
if reshape_needed:
update = mx.reshape(update, original_shape)
lr *= max(1, update.shape[-2] / update.shape[-1]) ** 0.5
return parameter - lr * update
def clip_grad_norm(grads, max_norm):
"""Clips the global norm of the gradients.

View File

@@ -1,7 +1,7 @@
#!/bin/bash
auditwheel repair dist/* \
--plat manylinux_2_39_x86_64 \
--plat manylinux_2_35_x86_64 \
--exclude libcublas* \
--exclude libnvrtc* \
-w wheel_tmp

View File

@@ -691,6 +691,21 @@ class TestBlas(mlx_tests.MLXTestCase):
self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
# Transposed c
a = mx.ones((10, 5)).T
b = mx.ones((5, 5))
out = mx.addmm(a, b, a, beta=1.5, alpha=0.5)
expected = 1.5 * a + 0.5 * (b @ a)
self.assertTrue(mx.allclose(expected, out))
# Broadcast c
a = mx.ones((5, 5))
b = mx.ones((5, 5))
c = mx.ones((1, 5))
out = mx.addmm(c, a, b, beta=1.5, alpha=0.5)
expected = 1.5 * c + 0.5 * (a @ b)
self.assertTrue(mx.allclose(expected, out))
def test_addmm_grad(self):
def make_ref_addmm(alpha, beta):
return lambda c, a, b: alpha * (a @ b) + beta * c

View File

@@ -286,6 +286,53 @@ class TestOptimizers(mlx_tests.MLXTestCase):
self.assertEqual(xp["x"].shape, x.shape)
self.assertEqual(optimizer.state["step"], 2)
def test_muon(self):
params = {
"first": [mx.zeros((10, 5)), mx.zeros((1,))],
"second": mx.zeros((3, 3)),
"conv": mx.zeros((16, 8, 3, 3)),
}
grads = tree_map(lambda x: mx.ones_like(x), params)
# Explicit init
optim = opt.Muon(learning_rate=1e-2, momentum=0.95, nesterov=True)
optim.init(params)
self.assertTrue(
tree_equal(
lambda p, s: mx.array_equal(s["v"], mx.zeros_like(p)),
params,
optim.state,
)
)
# Test update
updated_params = optim.apply_gradients(grads, params)
# Check that shapes are preserved
self.assertTrue(
tree_equal(
lambda p, u: p.shape == u.shape,
params,
updated_params,
)
)
# Check that parameters actually changed
self.assertFalse(
tree_equal(
lambda p, u: mx.array_equal(p, u),
params,
updated_params,
)
)
# Test with different configurations
optim_no_nesterov = opt.Muon(learning_rate=1e-2, momentum=0.95, nesterov=False)
optim_no_nesterov.apply_gradients(grads, params)
optim_no_momentum = opt.Muon(learning_rate=1e-2, momentum=0.0)
optim_no_momentum.apply_gradients(grads, params)
def test_compiled_optimizer(self):
model = nn.Linear(10, 10)
x = mx.random.uniform(shape=(2, 10))

View File

@@ -39,6 +39,14 @@ target_sources(
linalg_tests.cpp
${METAL_TEST_SOURCES})
if(MLX_BUILD_CUDA)
# Find the CCCL headers in install dir.
target_compile_definitions(
mlx
PRIVATE
MLX_CCCL_DIR="${CMAKE_INSTALL_PREFIX}/${CMAKE_INSTALL_INCLUDEDIR}/cccl")
endif()
target_link_libraries(tests PRIVATE mlx doctest)
doctest_discover_tests(tests)
add_test(NAME tests COMMAND tests)