mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
Compare commits
3 Commits
c1164ffcaa
...
1963714f8d
Author | SHA1 | Date | |
---|---|---|---|
![]() |
1963714f8d | ||
![]() |
bc53f8293f | ||
![]() |
c552ff2451 |
@ -107,6 +107,16 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> a[[0, 0]] = mx.array([4, 5])
|
||||
|
||||
The first element of ``a`` could be ``4`` or ``5``.
|
||||
|
||||
Transformations of functions which use in-place updates are allowed and work as
|
||||
expected. For example:
|
||||
|
||||
|
@ -101,10 +101,12 @@ constexpr bool supports_binary_op() {
|
||||
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, NaNEqual>) {
|
||||
return std::is_same_v<Out, bool> &&
|
||||
(is_floating_v<In> || std::is_same_v<In, complex64_t>);
|
||||
return std::is_same_v<Out, bool> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogAddExp> || std::is_same_v<Op, ArcTan2>) {
|
||||
if (std::is_same_v<Op, LogAddExp>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcTan2>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
|
||||
@ -150,10 +152,10 @@ void binary_op_gpu_inplace(
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > UINT32_MAX ||
|
||||
b.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
@ -165,7 +167,7 @@ void binary_op_gpu_inplace(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides));
|
||||
@ -178,7 +180,7 @@ void binary_op_gpu_inplace(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
@ -196,8 +198,8 @@ void binary_op_gpu_inplace(
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, LARGE);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
@ -264,7 +266,6 @@ BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Equal)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
@ -279,6 +280,17 @@ BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, op, s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
|
@ -130,11 +130,13 @@ struct FusedKernelBuilder {
|
||||
|
||||
constexpr const char* g_jit_includes = R"(
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/ternary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
#define inf cuda::std::numeric_limits<float>::infinity()
|
||||
)";
|
||||
|
||||
void Compiled::eval_gpu(
|
||||
|
@ -6,7 +6,7 @@
|
||||
namespace mlx::core {
|
||||
|
||||
void copy_gpu_inplace(
|
||||
const array& in_,
|
||||
const array& in,
|
||||
array& out,
|
||||
const Shape& shape,
|
||||
const Strides& strides_in,
|
||||
@ -20,7 +20,6 @@ void copy_gpu_inplace(
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
const array& in = in_.data_shared_ptr() ? in_ : out;
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
|
@ -10,20 +10,13 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, ...) \
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, { \
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, { \
|
||||
using InType = cuda_type_t<CTYPE_IN>; \
|
||||
using OutType = cuda_type_t<CTYPE_OUT>; \
|
||||
if constexpr (cu::CastOp<InType, OutType>::is_castable) { \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
throw std::runtime_error(fmt::format( \
|
||||
"Can not copy data from dtype {} to {}.", \
|
||||
dtype_to_string(out.dtype()), \
|
||||
dtype_to_string(in.dtype()))); \
|
||||
} \
|
||||
}); \
|
||||
#define MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, ...) \
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, { \
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, { \
|
||||
using InType = cuda_type_t<CTYPE_IN>; \
|
||||
using OutType = cuda_type_t<CTYPE_OUT>; \
|
||||
__VA_ARGS__; \
|
||||
}); \
|
||||
})
|
||||
|
||||
void copy_contiguous(
|
||||
|
@ -43,7 +43,8 @@ void copy_contiguous(
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, LARGE);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
|
@ -59,9 +59,9 @@ void copy_general(
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
@ -70,7 +70,7 @@ void copy_general(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out));
|
||||
@ -81,7 +81,7 @@ void copy_general(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
|
@ -65,9 +65,9 @@ void copy_general_dynamic(
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
@ -76,7 +76,7 @@ void copy_general_dynamic(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out),
|
||||
@ -89,7 +89,7 @@ void copy_general_dynamic(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
|
@ -54,9 +54,9 @@ void copy_general_input(
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
@ -65,7 +65,7 @@ void copy_general_input(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in));
|
||||
});
|
||||
@ -75,7 +75,7 @@ void copy_general_input(
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
|
@ -1,6 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda/std/array>
|
||||
@ -122,6 +124,26 @@ struct LogAddExp {
|
||||
? maxval
|
||||
: T(float(maxval) + log1p(expf(minval - maxval)));
|
||||
};
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x, cuComplex y) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
|
||||
isnan(cuCimagf(y))) {
|
||||
return {
|
||||
cuda::std::numeric_limits<float>::quiet_NaN(),
|
||||
cuda::std::numeric_limits<float>::quiet_NaN()};
|
||||
}
|
||||
constexpr float inf = cuda::std::numeric_limits<float>::infinity();
|
||||
auto maxval = x > y ? x : y;
|
||||
auto minval = x < y ? x : y;
|
||||
if (cuCrealf(minval) == -inf || cuCrealf(maxval) == inf)
|
||||
return maxval;
|
||||
float m = exp(cuCrealf(minval) - cuCrealf(maxval));
|
||||
cuComplex dexp{
|
||||
m * cos(cuCimagf(minval) - cuCimagf(maxval)),
|
||||
m * sin(cuCimagf(minval) - cuCimagf(maxval)),
|
||||
};
|
||||
return maxval + log1p(dexp);
|
||||
}
|
||||
};
|
||||
|
||||
struct Maximum {
|
||||
|
@ -45,6 +45,18 @@ struct CastOp<
|
||||
}
|
||||
};
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
struct CastOp<
|
||||
SrcT,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<cuda::std::is_same_v<SrcT, DstT>>> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ SrcT operator()(SrcT x) {
|
||||
return x;
|
||||
}
|
||||
};
|
||||
|
||||
// Return an iterator that cast the value to DstT using CastOp.
|
||||
template <typename DstT, typename Iterator>
|
||||
__host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||
|
@ -1,4 +1,5 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
|
@ -5,6 +5,8 @@
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <math_constants.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
struct Abs {
|
||||
@ -183,21 +185,38 @@ struct Imag {
|
||||
struct Log {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return log(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto r = log(cuCrealf(Abs{}(x)));
|
||||
auto i = atan2f(cuCimagf(x), cuCrealf(x));
|
||||
return {r, i};
|
||||
} else {
|
||||
return log(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Log2 {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return log2(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto y = Log{}(x);
|
||||
return {cuCrealf(y) / CUDART_LN2_F, cuCimagf(y) / CUDART_LN2_F};
|
||||
} else {
|
||||
return log2(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Log10 {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return log10(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto y = Log{}(x);
|
||||
return {cuCrealf(y) / CUDART_LNT_F, cuCimagf(y) / CUDART_LNT_F};
|
||||
return y;
|
||||
} else {
|
||||
return log10(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -187,8 +187,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ IdxT
|
||||
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
|
||||
IdxT loc = elem_to_loc_nd<3>(elem, shape, strides);
|
||||
for (int i = ndim - 1; i >= 3; --i) {
|
||||
IdxT loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
loc += (elem % shape[i]) * IdxT(strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
@ -202,8 +202,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
const int64_t* a_strides,
|
||||
const int64_t* b_strides,
|
||||
int ndim) {
|
||||
auto [a_loc, b_loc] = elem_to_loc_nd<3>(elem, shape, a_strides, b_strides);
|
||||
for (int i = ndim - 1; i >= 3; --i) {
|
||||
IdxT a_loc = 0;
|
||||
IdxT b_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
@ -220,9 +221,10 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
const int64_t* b_strides,
|
||||
const int64_t* c_strides,
|
||||
int ndim) {
|
||||
auto [a_loc, b_loc, c_loc] =
|
||||
elem_to_loc_nd<3>(elem, shape, a_strides, b_strides, c_strides);
|
||||
for (int i = ndim - 1; i >= 3; --i) {
|
||||
IdxT a_loc = 0;
|
||||
IdxT b_loc = 0;
|
||||
IdxT c_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
@ -336,4 +338,21 @@ struct LoopedElemToLoc<1, false, OffsetT> {
|
||||
}
|
||||
};
|
||||
|
||||
inline __device__ cuComplex log1p(cuComplex in) {
|
||||
float x = cuCrealf(in);
|
||||
float y = cuCimagf(in);
|
||||
float zabs = sqrt(x * x + y * y);
|
||||
float theta = atan2f(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return {x, theta};
|
||||
}
|
||||
return {0.5f * log1pf(r), theta};
|
||||
} else {
|
||||
auto z0 = sqrt((x + 1) * (x + 1) + y * y);
|
||||
return {log(z0), theta};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
@ -65,8 +65,8 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
Dtype idx_dtype = nidx > 0 ? inputs[1].dtype() : int32;
|
||||
int32_t idx_ndim = nidx > 0 ? inputs[1].ndim() : 0;
|
||||
|
||||
bool large = (nidx > 0 && inputs[1].size() > UINT32_MAX) ||
|
||||
(src.size() > UINT32_MAX) || (out.size() > UINT32_MAX);
|
||||
bool large = (nidx > 0 && inputs[1].size() > INT32_MAX) ||
|
||||
(src.size() > INT32_MAX) || (out.size() > INT32_MAX);
|
||||
|
||||
uint32_t slice_size = std::accumulate(
|
||||
slice_sizes_.begin(), slice_sizes_.end(), 1, std::multiplies<uint32_t>());
|
||||
@ -88,7 +88,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
dtype_to_cuda_type(idx_dtype),
|
||||
nidx,
|
||||
ndim,
|
||||
large ? "int64_t" : "uint32_t"));
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
return std::make_pair(jit_source_gather, std::move(kernel_names));
|
||||
@ -99,7 +99,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (large) {
|
||||
mod.append_arg<int64_t>(out.size());
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(out.size());
|
||||
mod.append_arg<int32_t>(out.size());
|
||||
}
|
||||
mod.append_ndim_arg(src.shape());
|
||||
mod.append_ndim_arg(src.strides());
|
||||
@ -115,7 +115,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
dtype_to_cuda_type(idx_dtype),
|
||||
nidx,
|
||||
idx_ndim,
|
||||
large ? "int64_t" : "uint32_t");
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
@ -152,14 +152,14 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
Dtype idx_dtype = nidx > 0 ? inputs[1].dtype() : int32;
|
||||
int32_t idx_ndim = nidx > 0 ? inputs[1].ndim() : 0;
|
||||
|
||||
bool large = (nidx > 0 && inputs[1].size() > UINT32_MAX) ||
|
||||
(upd.size() > UINT32_MAX) || (out.size() > UINT32_MAX);
|
||||
bool large = (nidx > 0 && inputs[1].size() > INT32_MAX) ||
|
||||
(upd.size() > INT32_MAX) || (out.size() > INT32_MAX);
|
||||
|
||||
uint32_t upd_post_idx_size = std::accumulate(
|
||||
int32_t upd_post_idx_size = std::accumulate(
|
||||
upd.shape().begin() + idx_ndim,
|
||||
upd.shape().end(),
|
||||
1,
|
||||
std::multiplies<uint32_t>());
|
||||
std::multiplies<int32_t>());
|
||||
|
||||
const char* op = g_scatter_ops[reduce_type_];
|
||||
std::string module_name = fmt::format(
|
||||
@ -181,7 +181,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
op,
|
||||
nidx,
|
||||
ndim,
|
||||
large ? "int64_t" : "uint32_t"));
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
return std::make_pair(jit_source_scatter, std::move(kernel_names));
|
||||
@ -192,7 +192,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (large) {
|
||||
mod.append_arg<int64_t>(upd.size());
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(upd.size());
|
||||
mod.append_arg<int32_t>(upd.size());
|
||||
}
|
||||
mod.append_ndim_arg(upd.shape());
|
||||
mod.append_ndim_arg(upd.strides());
|
||||
@ -200,7 +200,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (large) {
|
||||
mod.append_arg<int64_t>(upd_post_idx_size);
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(upd_post_idx_size);
|
||||
mod.append_arg<int32_t>(upd_post_idx_size);
|
||||
}
|
||||
mod.append_ndim_arg(out.shape());
|
||||
mod.append_ndim_arg(out.strides());
|
||||
@ -215,7 +215,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
op,
|
||||
nidx,
|
||||
idx_ndim,
|
||||
large ? "int64_t" : "uint32_t");
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
@ -238,7 +238,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
bool large = idx.size() > UINT32_MAX || src.size() > UINT32_MAX;
|
||||
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
|
||||
|
||||
std::string module_name = fmt::format(
|
||||
"gather_axis_{}_{}",
|
||||
@ -258,7 +258,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
ndim,
|
||||
contiguous & 1 ? true : false,
|
||||
contiguous & 2 ? true : false,
|
||||
large ? "int64_t" : "uint32_t"));
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -283,9 +283,9 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
mod.append_arg<int64_t>(idx_size_axis);
|
||||
mod.append_arg<int64_t>(idx_size_post);
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(idx_size_pre);
|
||||
mod.append_arg<uint32_t>(idx_size_axis);
|
||||
mod.append_arg<uint32_t>(idx_size_post);
|
||||
mod.append_arg<int32_t>(idx_size_pre);
|
||||
mod.append_arg<int32_t>(idx_size_axis);
|
||||
mod.append_arg<int32_t>(idx_size_post);
|
||||
}
|
||||
mod.append_arg(remove_index(idx.shape(), axis_));
|
||||
mod.append_arg(remove_index(src.strides(), axis_));
|
||||
@ -302,7 +302,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
src.ndim() - 1,
|
||||
src.flags().row_contiguous,
|
||||
idx.flags().row_contiguous,
|
||||
large ? "int64_t" : "uint32_t");
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
@ -337,7 +337,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
bool large = idx.size() > UINT32_MAX || src.size() > UINT32_MAX;
|
||||
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
|
||||
|
||||
const char* op = reduce_type_ == ScatterAxis::Sum ? "Sum" : "Assign";
|
||||
std::string module_name = fmt::format(
|
||||
@ -360,7 +360,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
ndim,
|
||||
contiguous & 1 ? true : false,
|
||||
contiguous & 2 ? true : false,
|
||||
large ? "int64_t" : "uint32_t"));
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -385,9 +385,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
mod.append_arg<int64_t>(idx_size_axis);
|
||||
mod.append_arg<int64_t>(idx_size_post);
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(idx_size_pre);
|
||||
mod.append_arg<uint32_t>(idx_size_axis);
|
||||
mod.append_arg<uint32_t>(idx_size_post);
|
||||
mod.append_arg<int32_t>(idx_size_pre);
|
||||
mod.append_arg<int32_t>(idx_size_axis);
|
||||
mod.append_arg<int32_t>(idx_size_post);
|
||||
}
|
||||
mod.append_arg(remove_index(idx.shape(), axis_));
|
||||
mod.append_arg(remove_index(upd.strides(), axis_));
|
||||
@ -405,7 +405,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
idx.ndim() - 1,
|
||||
upd.flags().row_contiguous,
|
||||
idx.flags().row_contiguous,
|
||||
large ? "int64_t" : "uint32_t");
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
|
@ -102,6 +102,11 @@ inline constexpr bool is_floating_v =
|
||||
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
|
||||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
|
||||
|
||||
// Type traits for detecting complex or real floating point numbers.
|
||||
template <typename T>
|
||||
inline constexpr bool is_inexact_v =
|
||||
is_floating_v<T> || cuda::std::is_same_v<T, complex64_t>;
|
||||
|
||||
// Utility to copy data from vector to array in host.
|
||||
template <int NDIM = MAX_NDIM, typename T = int32_t>
|
||||
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
|
||||
@ -136,17 +141,19 @@ inline uint max_occupancy_block_dim(T kernel) {
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
const array& arr,
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1) {
|
||||
size_t nthreads = cuda::ceil_div(arr.size(), work_per_thread);
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = max_occupancy_block_dim(kernel);
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(arr.shape(), arr.strides(), work_per_thread);
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
|
||||
} else {
|
||||
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
|
||||
@ -154,4 +161,14 @@ inline std::tuple<dim3, uint> get_launch_args(
|
||||
return std::make_tuple(num_blocks, block_dim);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1) {
|
||||
return get_launch_args(
|
||||
kernel, arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@ -101,10 +101,10 @@ void ternary_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
bool large = a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX ||
|
||||
c.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
|
||||
bool large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
@ -116,7 +116,7 @@ void ternary_op_gpu_inplace(
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides),
|
||||
@ -142,7 +142,8 @@ void ternary_op_gpu_inplace(
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::ternary_v<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, LARGE);
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
|
@ -27,12 +27,14 @@ constexpr bool supports_unary_op() {
|
||||
std::is_same_v<Op, ArcSin> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, ArcTanh> ||
|
||||
std::is_same_v<Op, Erf> || std::is_same_v<Op, ErfInv> ||
|
||||
std::is_same_v<Op, Expm1> || std::is_same_v<Op, Log1p> ||
|
||||
std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Sigmoid> ||
|
||||
std::is_same_v<Op, Expm1> || std::is_same_v<Op, Sigmoid> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Rsqrt>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseInvert>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
@ -91,7 +93,7 @@ void unary_op_gpu_inplace(
|
||||
} else {
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto [in_begin, in_end] = cu::make_general_iterators<int64_t>(
|
||||
in_ptr, in.data_size(), shape, strides);
|
||||
in_ptr, in.size(), shape, strides);
|
||||
thrust::transform(policy, in_begin, in_end, out_ptr, Op());
|
||||
}
|
||||
} else {
|
||||
|
@ -31,6 +31,9 @@ const char* dtype_to_cuda_type(const Dtype& dtype) {
|
||||
if (dtype == bfloat16) {
|
||||
return "__nv_bfloat16";
|
||||
}
|
||||
if (dtype == complex64) {
|
||||
return "cuComplex";
|
||||
}
|
||||
#define SPECIALIZE_DtypeToString(CPP_TYPE, DTYPE) \
|
||||
if (dtype == DTYPE) { \
|
||||
return #CPP_TYPE; \
|
||||
|
@ -1,25 +1,50 @@
|
||||
cuda_skip = {
|
||||
"TestArray.test_api",
|
||||
"TestArray.test_setitem",
|
||||
"TestAutograd.test_cumprod_grad",
|
||||
"TestAutograd.test_slice_grads",
|
||||
"TestAutograd.test_split_against_slice",
|
||||
"TestAutograd.test_stop_gradient",
|
||||
"TestAutograd.test_topk_grad",
|
||||
"TestAutograd.test_update_state",
|
||||
"TestAutograd.test_vjp",
|
||||
"TestBF16.test_arg_reduction_ops",
|
||||
"TestBF16.test_binary_ops",
|
||||
"TestBF16.test_reduction_ops",
|
||||
"TestBlas.test_block_masked_matmul",
|
||||
"TestBlas.test_complex_gemm",
|
||||
"TestCompile.test_compile_dynamic_dims",
|
||||
"TestEinsum.test_ellipses",
|
||||
"TestEinsum.test_opt_einsum_test_cases",
|
||||
"TestLoad.test_load_f8_e4m3",
|
||||
"TestMemory.test_memory_info",
|
||||
"TestLayers.test_group_norm",
|
||||
"TestLayers.test_pooling",
|
||||
"TestLayers.test_quantized_embedding",
|
||||
"TestLayers.test_sin_pe",
|
||||
"TestLayers.test_upsample",
|
||||
"TestOps.test_array_equal",
|
||||
"TestOps.test_complex_ops",
|
||||
"TestOps.test_dynamic_slicing",
|
||||
"TestOps.test_softmax",
|
||||
"TestOps.test_sort",
|
||||
"TestOps.test_tile",
|
||||
"TestReduce.test_axis_permutation_sums",
|
||||
"TestReduce.test_dtypes",
|
||||
"TestReduce.test_expand_sums",
|
||||
"TestReduce.test_many_reduction_axes",
|
||||
"TestUpsample.test_torch_upsample",
|
||||
# DivMod NYI
|
||||
"TestOps.test_divmod",
|
||||
"TestEval.test_multi_output_eval_during_transform",
|
||||
# Partition NYI
|
||||
"TestAutograd.test_topk_grad",
|
||||
"TestOps.test_argpartition",
|
||||
"TestOps.test_partition",
|
||||
# Block masked matmul NYI
|
||||
"TestBlas.test_block_masked_matmul",
|
||||
# Gather matmul NYI
|
||||
"TestBlas.test_gather_matmul",
|
||||
"TestBlas.test_gather_matmul_grad",
|
||||
"TestBlas.test_matmul_batched",
|
||||
"TestBlas.test_matrix_vector_attn",
|
||||
"TestCompile.test_compile_dynamic_dims",
|
||||
"TestCompile.test_compile_inf",
|
||||
"TestCompile.test_inf_constant",
|
||||
# Scan NYI
|
||||
"TestAutograd.test_cumprod_grad",
|
||||
"TestOps.test_scans",
|
||||
"TestOps.test_logcumsumexp",
|
||||
# Hadamard NYI
|
||||
"TestOps.test_hadamard",
|
||||
"TestOps.test_hadamard_grad_vmap",
|
||||
# Convolutions NYI
|
||||
"TestConv.test_1d_conv_with_2d",
|
||||
"TestConv.test_asymmetric_padding",
|
||||
"TestConv.test_basic_grad_shapes",
|
||||
@ -46,12 +71,11 @@ cuda_skip = {
|
||||
"TestConvTranspose.test_torch_conv_transpose_3D",
|
||||
"TestConvTranspose.test_torch_conv_transpose_3D_grad",
|
||||
"TestConvTranspose.test_torch_conv_transpose_3d_output_padding",
|
||||
"TestEinsum.test_attention",
|
||||
"TestEinsum.test_ellipses",
|
||||
"TestEinsum.test_opt_einsum_test_cases",
|
||||
"TestEval.test_multi_output_eval_during_transform",
|
||||
"TestExportImport.test_export_conv",
|
||||
"TestFast.test_rope_grad",
|
||||
"TestLayers.test_conv1d",
|
||||
"TestLayers.test_conv2d",
|
||||
"TestVmap.test_vmap_conv",
|
||||
# FFTs NYI
|
||||
"TestFFT.test_fft",
|
||||
"TestFFT.test_fft_big_powers_of_two",
|
||||
"TestFFT.test_fft_contiguity",
|
||||
@ -61,61 +85,22 @@ cuda_skip = {
|
||||
"TestFFT.test_fft_large_numbers",
|
||||
"TestFFT.test_fft_shared_mem",
|
||||
"TestFFT.test_fftn",
|
||||
"TestInit.test_orthogonal",
|
||||
# Lapack ops NYI
|
||||
"TestLinalg.test_cholesky",
|
||||
"TestLinalg.test_cholesky_inv",
|
||||
"TestLinalg.test_eig",
|
||||
"TestLinalg.test_eigh",
|
||||
"TestLinalg.test_inverse",
|
||||
"TestVmap.test_vmap_inverse",
|
||||
"TestLinalg.test_lu",
|
||||
"TestLinalg.test_lu_factor",
|
||||
"TestLinalg.test_pseudo_inverse",
|
||||
"TestLinalg.test_qr_factorization",
|
||||
"TestInit.test_orthogonal",
|
||||
"TestLinalg.test_svd_decomposition",
|
||||
"TestVmap.test_vmap_svd",
|
||||
"TestLinalg.test_tri_inverse",
|
||||
"TestLoad.test_load_f8_e4m3",
|
||||
"TestLosses.test_binary_cross_entropy",
|
||||
"TestMemory.test_memory_info",
|
||||
"TestLayers.test_conv1d",
|
||||
"TestLayers.test_conv2d",
|
||||
"TestLayers.test_elu",
|
||||
"TestLayers.test_group_norm",
|
||||
"TestLayers.test_hard_shrink",
|
||||
"TestLayers.test_pooling",
|
||||
"TestLayers.test_quantized_embedding",
|
||||
"TestLayers.test_sin_pe",
|
||||
"TestLayers.test_softshrink",
|
||||
"TestLayers.test_upsample",
|
||||
"TestOps.test_argpartition",
|
||||
"TestOps.test_array_equal",
|
||||
"TestOps.test_as_strided",
|
||||
"TestOps.test_atleast_1d",
|
||||
"TestOps.test_atleast_2d",
|
||||
"TestOps.test_atleast_3d",
|
||||
"TestOps.test_binary_ops",
|
||||
"TestOps.test_bitwise_grad",
|
||||
"TestOps.test_complex_ops",
|
||||
"TestOps.test_divmod",
|
||||
"TestOps.test_dynamic_slicing",
|
||||
"TestOps.test_hadamard",
|
||||
"TestOps.test_hadamard_grad_vmap",
|
||||
"TestOps.test_irregular_binary_ops",
|
||||
"TestOps.test_isfinite",
|
||||
"TestOps.test_kron",
|
||||
"TestOps.test_log",
|
||||
"TestOps.test_log10",
|
||||
"TestOps.test_log1p",
|
||||
"TestOps.test_log2",
|
||||
"TestOps.test_logaddexp",
|
||||
"TestOps.test_logcumsumexp",
|
||||
"TestOps.test_partition",
|
||||
"TestOps.test_scans",
|
||||
"TestOps.test_slice_update_reversed",
|
||||
"TestOps.test_softmax",
|
||||
"TestOps.test_sort",
|
||||
"TestOps.test_tensordot",
|
||||
"TestOps.test_tile",
|
||||
"TestOps.test_view",
|
||||
# Quantization NYI
|
||||
"TestQuantized.test_gather_matmul_grad",
|
||||
"TestQuantized.test_gather_qmm",
|
||||
"TestQuantized.test_gather_qmm_sorted",
|
||||
@ -131,13 +116,4 @@ cuda_skip = {
|
||||
"TestQuantized.test_small_matrix",
|
||||
"TestQuantized.test_throw",
|
||||
"TestQuantized.test_vjp_scales_biases",
|
||||
"TestReduce.test_axis_permutation_sums",
|
||||
"TestReduce.test_dtypes",
|
||||
"TestReduce.test_expand_sums",
|
||||
"TestReduce.test_many_reduction_axes",
|
||||
"TestUpsample.test_torch_upsample",
|
||||
"TestVmap.test_unary",
|
||||
"TestVmap.test_vmap_conv",
|
||||
"TestVmap.test_vmap_inverse",
|
||||
"TestVmap.test_vmap_svd",
|
||||
}
|
||||
|
@ -1187,7 +1187,7 @@ class TestArray(mlx_tests.MLXTestCase):
|
||||
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
|
||||
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
|
||||
check_slices(
|
||||
np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 0, 1])
|
||||
np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 2, 1])
|
||||
)
|
||||
|
||||
# Multiple slices
|
||||
|
@ -83,14 +83,14 @@ class TestLosses(mlx_tests.MLXTestCase):
|
||||
logits, targets, reduction="mean"
|
||||
)
|
||||
expected_mean = mx.mean(expected_none)
|
||||
self.assertEqual(losses_mean, expected_mean)
|
||||
self.assertTrue(mx.allclose(losses_mean, expected_mean))
|
||||
|
||||
# Test with reduction 'sum'
|
||||
losses_sum = nn.losses.binary_cross_entropy(
|
||||
logits, targets, reduction="sum"
|
||||
)
|
||||
expected_sum = mx.sum(expected_none)
|
||||
self.assertEqual(losses_sum, expected_sum)
|
||||
self.assertTrue(mx.allclose(losses_sum, expected_sum))
|
||||
|
||||
# With weights, no label smoothing
|
||||
weights = mx.array([1.0, 2.0, 1.0, 2.0])
|
||||
|
@ -2586,17 +2586,6 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
self.assertEqualArray(result, mx.array(expected))
|
||||
|
||||
def test_atleast_1d(self):
|
||||
def compare_nested_lists(x, y):
|
||||
if isinstance(x, list) and isinstance(y, list):
|
||||
if len(x) != len(y):
|
||||
return False
|
||||
for i in range(len(x)):
|
||||
if not compare_nested_lists(x[i], y[i]):
|
||||
return False
|
||||
return True
|
||||
else:
|
||||
return x == y
|
||||
|
||||
# Test 1D input
|
||||
arrays = [
|
||||
[1],
|
||||
@ -2614,23 +2603,11 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
for i, array in enumerate(arrays):
|
||||
mx_res = mx.atleast_1d(mx.array(array))
|
||||
np_res = np.atleast_1d(np.array(array))
|
||||
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
|
||||
self.assertEqual(mx_res.shape, np_res.shape)
|
||||
self.assertEqual(mx_res.ndim, np_res.ndim)
|
||||
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
|
||||
self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
|
||||
|
||||
def test_atleast_2d(self):
|
||||
def compare_nested_lists(x, y):
|
||||
if isinstance(x, list) and isinstance(y, list):
|
||||
if len(x) != len(y):
|
||||
return False
|
||||
for i in range(len(x)):
|
||||
if not compare_nested_lists(x[i], y[i]):
|
||||
return False
|
||||
return True
|
||||
else:
|
||||
return x == y
|
||||
|
||||
# Test 1D input
|
||||
arrays = [
|
||||
[1],
|
||||
@ -2648,23 +2625,11 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
for i, array in enumerate(arrays):
|
||||
mx_res = mx.atleast_2d(mx.array(array))
|
||||
np_res = np.atleast_2d(np.array(array))
|
||||
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
|
||||
self.assertEqual(mx_res.shape, np_res.shape)
|
||||
self.assertEqual(mx_res.ndim, np_res.ndim)
|
||||
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
|
||||
self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
|
||||
|
||||
def test_atleast_3d(self):
|
||||
def compare_nested_lists(x, y):
|
||||
if isinstance(x, list) and isinstance(y, list):
|
||||
if len(x) != len(y):
|
||||
return False
|
||||
for i in range(len(x)):
|
||||
if not compare_nested_lists(x[i], y[i]):
|
||||
return False
|
||||
return True
|
||||
else:
|
||||
return x == y
|
||||
|
||||
# Test 1D input
|
||||
arrays = [
|
||||
[1],
|
||||
@ -2682,10 +2647,9 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
for i, array in enumerate(arrays):
|
||||
mx_res = mx.atleast_3d(mx.array(array))
|
||||
np_res = np.atleast_3d(np.array(array))
|
||||
self.assertTrue(compare_nested_lists(mx_res.tolist(), np_res.tolist()))
|
||||
self.assertEqual(mx_res.shape, np_res.shape)
|
||||
self.assertEqual(mx_res.ndim, np_res.ndim)
|
||||
self.assertTrue(mx.all(mx.equal(mx_res, atleast_arrays[i])))
|
||||
self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
|
||||
|
||||
def test_issubdtype(self):
|
||||
self.assertTrue(mx.issubdtype(mx.bfloat16, mx.inexact))
|
||||
|
Loading…
Reference in New Issue
Block a user