mirror of
https://github.com/ml-explore/mlx.git
synced 2025-08-10 19:26:42 +08:00
Compare commits
1 Commits
c5ecc0c5ab
...
c5be966863
Author | SHA1 | Date | |
---|---|---|---|
![]() |
c5be966863 |
@ -1,4 +1,5 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
@ -112,7 +113,7 @@ __global__ void arg_reduce_general(
|
||||
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T vals[N_READS];
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().x;
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().z;
|
||||
cub::LoadDirectBlocked(
|
||||
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
best = op.reduce_many(best, vals, tid * N_READS);
|
||||
@ -157,7 +158,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims{BLOCK_DIM, 1, 1};
|
||||
dim3 block_dims{1, 1, BLOCK_DIM};
|
||||
auto kernel = &cu::arg_reduce_general<
|
||||
InType,
|
||||
cu::ArgMax<InType>,
|
||||
|
@ -5,7 +5,6 @@
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <fmt/format.h>
|
||||
@ -45,12 +44,9 @@ class MatMul {
|
||||
int64_t b_batch_stride) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cuda_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
@ -69,7 +65,6 @@ class MatMul {
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
@ -192,13 +187,17 @@ class MatMul {
|
||||
private:
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case uint8:
|
||||
case uint16:
|
||||
case int8:
|
||||
case int16:
|
||||
case int32:
|
||||
return CUBLAS_COMPUTE_32I;
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
return CUBLAS_COMPUTE_16F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
@ -210,6 +209,16 @@ class MatMul {
|
||||
|
||||
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case uint8:
|
||||
return CUDA_R_8U;
|
||||
case uint16:
|
||||
return CUDA_R_16U;
|
||||
case int8:
|
||||
return CUDA_R_8I;
|
||||
case int16:
|
||||
return CUDA_R_16I;
|
||||
case int32:
|
||||
return CUDA_R_32I;
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
|
@ -149,11 +149,6 @@ inline bool metal_fast_synch() {
|
||||
return metal_fast_synch;
|
||||
}
|
||||
|
||||
inline bool enable_tf32() {
|
||||
static bool enable_tf32_ = get_var("MLX_ENABLE_TF32", 1);
|
||||
return enable_tf32_;
|
||||
}
|
||||
|
||||
} // namespace env
|
||||
|
||||
} // namespace mlx::core
|
||||
|
Loading…
Reference in New Issue
Block a user