mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
573 Commits
cpp20
...
27ff069175
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
27ff069175 | ||
|
|
3b2ffcefc3 | ||
|
|
b65f882df3 | ||
|
|
b704e9e77a | ||
|
|
66519fb348 | ||
|
|
8973550ff3 | ||
|
|
3f866be665 | ||
|
|
23f81ed1c1 | ||
|
|
3fe2250c00 | ||
|
|
047114b988 | ||
|
|
9320eb89a8 | ||
|
|
75819d70ea | ||
|
|
60d80a3728 | ||
|
|
eba6a9d163 | ||
|
|
be9e2aebd6 | ||
|
|
df58b4133a | ||
|
|
27778156dc | ||
|
|
761f901a41 | ||
|
|
6ece97f69b | ||
|
|
d3bc6a9bff | ||
|
|
26ceb507eb | ||
|
|
910b3e3299 | ||
|
|
50fa315d18 | ||
|
|
1ff2b713b6 | ||
|
|
50514a6146 | ||
|
|
93d76b0f30 | ||
|
|
78678de0cd | ||
|
|
ed9c6b1117 | ||
|
|
39b04ce638 | ||
|
|
d9e6349657 | ||
|
|
b901a9f311 | ||
|
|
68c5fa1c95 | ||
|
|
793a31eeb6 | ||
|
|
74c1ed25bb | ||
|
|
ec72b44417 | ||
|
|
460691a0e8 | ||
|
|
969924cc69 | ||
|
|
d1e06117e8 | ||
|
|
539d8322d1 | ||
|
|
c4767d110f | ||
|
|
895217f25b | ||
|
|
0cfeeb60ca | ||
|
|
8f8af61a37 | ||
|
|
233384161e | ||
|
|
5bcf3a6794 | ||
|
|
7707196297 | ||
|
|
7e3471c987 | ||
|
|
9f0ba3ddf1 | ||
|
|
4bce5f9b2d | ||
|
|
e9eab527eb | ||
|
|
36ca62dba8 | ||
|
|
9cbb1b0148 | ||
|
|
9bfc476d72 | ||
|
|
25e2356316 | ||
|
|
226a1d24e0 | ||
|
|
630350ad3e | ||
|
|
380aeb58ae | ||
|
|
f37389d100 | ||
|
|
e89e8b4272 | ||
|
|
85a8824a8c | ||
|
|
f5d4397e5c | ||
|
|
343e33b6d5 | ||
|
|
0073096dd1 | ||
|
|
e3d004fed9 | ||
|
|
a393435d28 | ||
|
|
a7a94b29d7 | ||
|
|
22a5da76c8 | ||
|
|
287c63a093 | ||
|
|
1c9ae1eaa1 | ||
|
|
c2c3e0b0a2 | ||
|
|
b0cc71ae71 | ||
|
|
e88f2d4a8e | ||
|
|
9cee557423 | ||
|
|
bbf1423953 | ||
|
|
eb24267b56 | ||
|
|
dc371ae7a5 | ||
|
|
e76a8dd5c5 | ||
|
|
b466dea982 | ||
|
|
7a6adda1e6 | ||
|
|
1a9f820af6 | ||
|
|
d4f4ff3c5e | ||
|
|
7c7e48dbd1 | ||
|
|
fbbf3b9b3e | ||
|
|
bf01ad9367 | ||
|
|
ae438d05fa | ||
|
|
711a645807 | ||
|
|
aa9d44b3d4 | ||
|
|
ec2ab42888 | ||
|
|
787c0d90cd | ||
|
|
e8b604a6a3 | ||
|
|
50cc09887f | ||
|
|
3f730e77aa | ||
|
|
caecbe876a | ||
|
|
8afb6d62f2 | ||
|
|
6ccfa603cd | ||
|
|
36cad99a11 | ||
|
|
ee18e1cbf0 | ||
|
|
af120c2bc0 | ||
|
|
6a3acf2301 | ||
|
|
d6977f2a57 | ||
|
|
db5443e831 | ||
|
|
52b8384d10 | ||
|
|
44cc5da4bc | ||
|
|
dde3682b69 | ||
|
|
17310d91a6 | ||
|
|
b194d65a6a | ||
|
|
a44b27f5f8 | ||
|
|
e5a33f2223 | ||
|
|
c1e3340b23 | ||
|
|
8f163a367d | ||
|
|
89a3df9014 | ||
|
|
c5d2937aa5 | ||
|
|
b61a65e313 | ||
|
|
04cbb4191c | ||
|
|
c5460762e7 | ||
|
|
8ce49cd39e | ||
|
|
9c68b50853 | ||
|
|
111f1e71af | ||
|
|
827003d568 | ||
|
|
d363a76aa4 | ||
|
|
70560b6bd5 | ||
|
|
7ef8a6f2d5 | ||
|
|
31c6f6e33f | ||
|
|
584d48458e | ||
|
|
5cf984ca87 | ||
|
|
a9bac3d9e5 | ||
|
|
5458d43247 | ||
|
|
a4dba65220 | ||
|
|
3dcb286baf | ||
|
|
4822c3dbe9 | ||
|
|
2ca75bb529 | ||
|
|
db14e29a0b | ||
|
|
d2f540f4e0 | ||
|
|
333ffea273 | ||
|
|
f55b6f1f2f | ||
|
|
30561229c7 | ||
|
|
068a4612e9 | ||
|
|
5722c147de | ||
|
|
f6819a1f26 | ||
|
|
f93f87c802 | ||
|
|
9392fc3f88 | ||
|
|
e843c4d8d5 | ||
|
|
0c5fc63a36 | ||
|
|
e397177f6e | ||
|
|
f4c8888cbe | ||
|
|
25c1e03205 | ||
|
|
512281781c | ||
|
|
ac85ddfdb7 | ||
|
|
65d0d40232 | ||
|
|
cea9369610 | ||
|
|
e7c6e1db82 | ||
|
|
c5fcd5b61b | ||
|
|
1df9887998 | ||
|
|
73f22d6226 | ||
|
|
c422050ca7 | ||
|
|
1ba18ff7d9 | ||
|
|
37b440faa8 | ||
|
|
888b13ed63 | ||
|
|
4abb218d21 | ||
|
|
6441c21a94 | ||
|
|
dfb5022eab | ||
|
|
ac207ce7aa | ||
|
|
fce53b61d6 | ||
|
|
8ae4a76308 | ||
|
|
7fde1b6a1e | ||
|
|
aa7b47481a | ||
|
|
56be773610 | ||
|
|
a9bdd67baa | ||
|
|
f2adb5638d | ||
|
|
728d4db582 | ||
|
|
db5c7efcf6 | ||
|
|
7bb96e4249 | ||
|
|
fa89f0b150 | ||
|
|
ca973d1e83 | ||
|
|
828c5f1137 | ||
|
|
7d86a5c108 | ||
|
|
0b807893a7 | ||
|
|
6ad0889c8a | ||
|
|
737dd6d1ac | ||
|
|
aaf78f4c6b | ||
|
|
8831064493 | ||
|
|
be9bc96da4 | ||
|
|
86258f292f | ||
|
|
b26d88591c | ||
|
|
86c6a15571 | ||
|
|
8b25ce62d5 | ||
|
|
da5912e4f2 | ||
|
|
daafee676f | ||
|
|
d32519c8ee | ||
|
|
b405591249 | ||
|
|
3bf81ed1bd | ||
|
|
2204182bba | ||
|
|
3628e5d497 | ||
|
|
a0ae49d397 | ||
|
|
254476718b | ||
|
|
3adba92ebe | ||
|
|
ef631d63af | ||
|
|
970dbe8e25 | ||
|
|
641be9463b | ||
|
|
ab0e608862 | ||
|
|
1588659062 | ||
|
|
b9e88fb976 | ||
|
|
4ad53414dd | ||
|
|
d1165b215e | ||
|
|
dcb8319f3d | ||
|
|
5597fa089c | ||
|
|
9acec364c2 | ||
|
|
7d9d6ef456 | ||
|
|
6f5874a2f2 | ||
|
|
70dc336785 | ||
|
|
4e504039f5 | ||
|
|
d1f4d291e8 | ||
|
|
e1840853ce | ||
|
|
0f5ce173da | ||
|
|
588854195f | ||
|
|
28d068bce6 | ||
|
|
d107d8d495 | ||
|
|
1e496ddb82 | ||
|
|
74eccbf3fa | ||
|
|
08638223ca | ||
|
|
56cc858af9 | ||
|
|
f55c4ed1d6 | ||
|
|
93d70419e7 | ||
|
|
63f663d9c6 | ||
|
|
84b4d96efa | ||
|
|
aec67f2fa6 | ||
|
|
deee214a95 | ||
|
|
45adec102c | ||
|
|
31fc530c76 | ||
|
|
fbb3f65a1a | ||
|
|
6b1b8ea91b | ||
|
|
b2273733ea | ||
|
|
f409b229a4 | ||
|
|
30571e2326 | ||
|
|
d7734edd9f | ||
|
|
2ba69bc8fa | ||
|
|
cb349a291c | ||
|
|
f0a0b077a0 | ||
|
|
49114f28ab | ||
|
|
e7d2ebadd2 | ||
|
|
e569803d7c | ||
|
|
d34f887abc | ||
|
|
5201df5030 | ||
|
|
2d3c26c565 | ||
|
|
6325f60d52 | ||
|
|
42cc9cfbc7 | ||
|
|
8347575ba1 | ||
|
|
b6eec20260 | ||
|
|
0eb035b4b1 | ||
|
|
afb9817599 | ||
|
|
8fb3e7a26c | ||
|
|
8c7bc30ce4 | ||
|
|
85873cb162 | ||
|
|
e14ee12491 | ||
|
|
8b9a3f3cea | ||
|
|
fb4e8b896b | ||
|
|
2ca533b279 | ||
|
|
4a9b29a875 | ||
|
|
a4fcc893cd | ||
|
|
9d10239af7 | ||
|
|
19facd4b20 | ||
|
|
f5299f72cd | ||
|
|
0e0d9ac522 | ||
|
|
8917022deb | ||
|
|
ec0d5db67b | ||
|
|
e76e9b87f0 | ||
|
|
cfb6a244ea | ||
|
|
58f3860306 | ||
|
|
dd4f53db63 | ||
|
|
3d5e17e507 | ||
|
|
33bf1a244b | ||
|
|
772f471ff2 | ||
|
|
2c11d10f8d | ||
|
|
656ed7f780 | ||
|
|
81bb9a2a9e | ||
|
|
5adf185f86 | ||
|
|
c9a9180584 | ||
|
|
76831ed83d | ||
|
|
b3d7b85376 | ||
|
|
cad5c0241c | ||
|
|
b8022c578a | ||
|
|
bc53f8293f | ||
|
|
c552ff2451 | ||
|
|
4fda5fbdf9 | ||
|
|
580776559b | ||
|
|
a14aaa7c9d | ||
|
|
a6d780154f | ||
|
|
6871e2eeb7 | ||
|
|
8402a2acf4 | ||
|
|
fddb6933e1 | ||
|
|
c8b4787e4e | ||
|
|
2188199ff8 | ||
|
|
aa07429bad | ||
|
|
918761a25a | ||
|
|
a4fc671d3e | ||
|
|
f5f65ef48c | ||
|
|
c2dd81a8aa | ||
|
|
d7e680ffe4 | ||
|
|
c371baf53a | ||
|
|
ccf78f566c | ||
|
|
c9fa68664a | ||
|
|
c35f4d089a | ||
|
|
8590c0941e | ||
|
|
095163b8d1 | ||
|
|
99c33d011d | ||
|
|
62fecf3e13 | ||
|
|
7c4eb5d03e | ||
|
|
bae9a6b404 | ||
|
|
004c1d8ef2 | ||
|
|
7ebb2e0193 | ||
|
|
9ce77798b1 | ||
|
|
f8bad60609 | ||
|
|
5866b3857b | ||
|
|
1ca616844b | ||
|
|
2e8cf0b450 | ||
|
|
24f89173d1 | ||
|
|
c6a20b427a | ||
|
|
a5ac9244c4 | ||
|
|
c763fe1be0 | ||
|
|
52dc8c8cd5 | ||
|
|
aede70e81d | ||
|
|
85a8beb5e4 | ||
|
|
0bb89e9e5f | ||
|
|
5685ceb3c7 | ||
|
|
0408ba0a76 | ||
|
|
cbad6c3093 | ||
|
|
1b021f6984 | ||
|
|
95b7551d65 | ||
|
|
db5a7c6192 | ||
|
|
6ef2f67e7f | ||
|
|
f76ee1ffd2 | ||
|
|
54a71f270a | ||
|
|
55b4062dd8 | ||
|
|
79071bfba4 | ||
|
|
7774b87cbd | ||
|
|
35c87741cf | ||
|
|
4cbe605214 | ||
|
|
ab8883dd55 | ||
|
|
eebe73001a | ||
|
|
0359bf02c9 | ||
|
|
237f9e58a8 | ||
|
|
8576e6fe36 | ||
|
|
0654543dcc | ||
|
|
48ef3e74e2 | ||
|
|
7d4b378952 | ||
|
|
7ff5c41e06 | ||
|
|
602f43e3d1 | ||
|
|
a2cadb8218 | ||
|
|
c1eb9d05d9 | ||
|
|
cf6c939e86 | ||
|
|
130df35e1b | ||
|
|
0751263dec | ||
|
|
eca2f3eb97 | ||
|
|
3aa9cf3f9e | ||
|
|
8f3d208dce | ||
|
|
caaa3f1f8c | ||
|
|
659a51919f | ||
|
|
6661387066 | ||
|
|
a7fae8a176 | ||
|
|
0cae0bdac8 | ||
|
|
5a1a5d5ed1 | ||
|
|
1683975acf | ||
|
|
af705590ac | ||
|
|
825124af8f | ||
|
|
9c5e7da507 | ||
|
|
481349495b | ||
|
|
9daa6b003f | ||
|
|
a3a632d567 | ||
|
|
e496c5a4b4 | ||
|
|
ea890d8710 | ||
|
|
aa5d84f102 | ||
|
|
f1606486d2 | ||
|
|
87720a8908 | ||
|
|
bb6565ef14 | ||
|
|
7bb063bcb3 | ||
|
|
b36dd472bb | ||
|
|
167b759a38 | ||
|
|
99b9868859 | ||
|
|
6b2d5448f2 | ||
|
|
eaf709b83e | ||
|
|
f0e70afff0 | ||
|
|
86984cad68 | ||
|
|
fbc89e3ced | ||
|
|
38c1e720c2 | ||
|
|
600e87e03c | ||
|
|
3836445241 | ||
|
|
1d2c9d6a07 | ||
|
|
e8ac6bd2f5 | ||
|
|
fdadc4f22c | ||
|
|
79b527f45f | ||
|
|
dc4eada7f0 | ||
|
|
70ebc3b598 | ||
|
|
b13f2aed16 | ||
|
|
5f04c0f818 | ||
|
|
55935ccae7 | ||
|
|
b529515eb1 | ||
|
|
3cde719eb7 | ||
|
|
5de6d94a90 | ||
|
|
99eefd2ec0 | ||
|
|
e9e268336b | ||
|
|
7275ac7523 | ||
|
|
c4189a38e4 | ||
|
|
68d1b3256b | ||
|
|
9c6953bda7 | ||
|
|
ef7ece9851 | ||
|
|
ddaa4b7dcb | ||
|
|
dfae2c6989 | ||
|
|
515f104926 | ||
|
|
9ecefd56db | ||
|
|
e5d35aa187 | ||
|
|
00794c42bc | ||
|
|
08a1bf3f10 | ||
|
|
60c4154346 | ||
|
|
f2c85308c1 | ||
|
|
1a28b69ee2 | ||
|
|
ba09f01ce8 | ||
|
|
6cf48872b7 | ||
|
|
7b3b8fa000 | ||
|
|
ec5e2aae61 | ||
|
|
86389bf970 | ||
|
|
3290bfa690 | ||
|
|
8777fd104f | ||
|
|
c41f7565ed | ||
|
|
9ba81e3da4 | ||
|
|
c23888acd7 | ||
|
|
f98ce25ab9 | ||
|
|
de5f38fd48 | ||
|
|
ec2854b13a | ||
|
|
90823d2938 | ||
|
|
5f5770e3a2 | ||
|
|
28f39e9038 | ||
|
|
b2d2b37888 | ||
|
|
fe597e141c | ||
|
|
72ca1539e0 | ||
|
|
13b26775f1 | ||
|
|
05d7118561 | ||
|
|
98b901ad66 | ||
|
|
5580b47291 | ||
|
|
bc62932984 | ||
|
|
a6b5d6e759 | ||
|
|
a8931306e1 | ||
|
|
fecdb8717e | ||
|
|
916fd273ea | ||
|
|
0da8506552 | ||
|
|
eda7a7b43e | ||
|
|
022eabb734 | ||
|
|
aba899cef8 | ||
|
|
6a40e1c176 | ||
|
|
9307b2ab8b | ||
|
|
522d8d3917 | ||
|
|
a84cc0123f | ||
|
|
f018e248cd | ||
|
|
cfd7237a80 | ||
|
|
4eef8102c9 | ||
|
|
69e4dd506b | ||
|
|
25814a9458 | ||
|
|
2a980a76ce | ||
|
|
d343782c8b | ||
|
|
4e1994e9d7 | ||
|
|
65a38c452b | ||
|
|
7b7e2352cd | ||
|
|
1177d28395 | ||
|
|
005e7efa64 | ||
|
|
b42d13ec84 | ||
|
|
9adcd1a650 | ||
|
|
3c164fca8c | ||
|
|
95e335db7b | ||
|
|
f90206ad74 | ||
|
|
3779150750 | ||
|
|
0a9777aa5c | ||
|
|
45ad06aac8 | ||
|
|
c6ea2ba329 | ||
|
|
2770a10240 | ||
|
|
d2a94f9e6a | ||
|
|
32da94507a | ||
|
|
736a340478 | ||
|
|
117e1355a2 | ||
|
|
3c3e558c60 | ||
|
|
cffceda6ee | ||
|
|
048805ad2c | ||
|
|
d14c9fe7ea | ||
|
|
5db90ce822 | ||
|
|
d699cc1330 | ||
|
|
c4230747a1 | ||
|
|
5245f12a46 | ||
|
|
a198b2787e | ||
|
|
04edad8c59 | ||
|
|
392b3060b0 | ||
|
|
85b34d59bc | ||
|
|
f599c11bc8 | ||
|
|
0792ff02ff | ||
|
|
fd0d63ba5b | ||
|
|
3835a428c5 | ||
|
|
9680f72cca | ||
|
|
a0737273d3 | ||
|
|
e613d0eaf0 | ||
|
|
6bcd6bcf70 | ||
|
|
ba12e4999a | ||
|
|
4e7cd31d12 | ||
|
|
5e6c130d93 | ||
|
|
5d68082881 | ||
|
|
607181644f | ||
|
|
89d327075f | ||
|
|
6bf00ef631 | ||
|
|
7d042f17fe | ||
|
|
28b8079e30 | ||
|
|
7face5d9fd | ||
|
|
a44dc4bdb0 | ||
|
|
2d0f384b6f | ||
|
|
8ff84b5c43 | ||
|
|
10b271d963 | ||
|
|
0ebc8a3d25 | ||
|
|
bbda0fdbdb | ||
|
|
c86422bdd4 | ||
|
|
c707b2b0a6 | ||
|
|
78ba24c37d | ||
|
|
1a2cb72030 | ||
|
|
344a29506e | ||
|
|
71de73a668 | ||
|
|
4c1dfa58b7 | ||
|
|
5274c3c43f | ||
|
|
1762793989 | ||
|
|
6cec78d8f2 | ||
|
|
2dc307f2e6 | ||
|
|
7aea5b1895 | ||
|
|
9733e16496 | ||
|
|
7f2d1024f3 | ||
|
|
428f589364 | ||
|
|
5cd97f7ffe | ||
|
|
e425dc00c0 | ||
|
|
d274ae77f2 | ||
|
|
55c5ac7820 | ||
|
|
0145911bea | ||
|
|
0a5215693e | ||
|
|
2a45056ba8 | ||
|
|
142b77751d | ||
|
|
a5ededf1c3 | ||
|
|
7df3f792a2 | ||
|
|
9eb7d7362f | ||
|
|
1c0c118f7c | ||
|
|
1a1b2108ec | ||
|
|
b6c6552d20 | ||
|
|
83a0340fa7 | ||
|
|
a62fc1b39f | ||
|
|
af1b725fda | ||
|
|
9174606d4c | ||
|
|
ca305afdbe | ||
|
|
fe5987b81d | ||
|
|
a229c8cef0 | ||
|
|
f6c0499b8d | ||
|
|
1156c84e86 | ||
|
|
ec7c7def40 | ||
|
|
2d8e667400 | ||
|
|
80c863b972 | ||
|
|
f5cc1eea72 | ||
|
|
b7c9f1d38f | ||
|
|
c6fc07f1f4 | ||
|
|
ded914f442 | ||
|
|
4758c8baa1 | ||
|
|
7064fed1b1 | ||
|
|
1017ac4a9e | ||
|
|
ccb61d7aae | ||
|
|
2235dee906 | ||
|
|
28091aa1ff | ||
|
|
121d9a0702 | ||
|
|
0cea88bcc5 | ||
|
|
72146fc4cd | ||
|
|
e6a7ab9675 | ||
|
|
1f4c127fb9 | ||
|
|
90532b1f37 | ||
|
|
a8666a757a | ||
|
|
a4667da1eb | ||
|
|
0c259961ac |
@@ -1,413 +0,0 @@
|
||||
version: 2.1
|
||||
|
||||
orbs:
|
||||
apple: ml-explore/pr-approval@0.1.0
|
||||
|
||||
parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
weekly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
linux_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
parameters:
|
||||
upload-docs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "15.2.0"
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install -r docs/requirements.txt
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||
- when:
|
||||
condition:
|
||||
not: << parameters.upload-docs >>
|
||||
steps:
|
||||
- run:
|
||||
name: Build documentation
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd docs && doxygen && make html O=-W
|
||||
- when:
|
||||
condition: << parameters.upload-docs >>
|
||||
steps:
|
||||
- add_ssh_keys:
|
||||
fingerprints:
|
||||
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
|
||||
- run:
|
||||
name: Upload documentation
|
||||
command: |
|
||||
source env/bin/activate
|
||||
git config user.email "mlx@group.apple.com"
|
||||
git config user.name "CircleCI Docs"
|
||||
git checkout gh-pages
|
||||
git rebase main
|
||||
cd docs
|
||||
git rm -rf build/html
|
||||
doxygen && make html O=-W
|
||||
git add -f build/html
|
||||
git commit -m "rebase"
|
||||
git push -f origin gh-pages
|
||||
|
||||
linux_build_and_test:
|
||||
docker:
|
||||
- image: cimg/python:3.9
|
||||
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Run style checks
|
||||
command: |
|
||||
pip install pre-commit
|
||||
pre-commit run --all
|
||||
if ! git diff --quiet; then echo 'Style checks failed, please install pre-commit and run pre-commit run --all and push the change'; exit 1; fi
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py develop
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
python3 -m unittest discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j `nproc`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests
|
||||
|
||||
mac_build_and_test:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "15.2.0"
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install openmpi
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
pip install unittest-xml-reporting
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd examples/extensions
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source env/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: |
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "15.2.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install twine
|
||||
pip install build
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEV_RELEASE=1 \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
<< parameters.build_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
|
||||
build_linux_release:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
extra_env:
|
||||
type: string
|
||||
default: "DEV_RELEASE=1"
|
||||
docker:
|
||||
- image: ubuntu:20.04
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
PYTHON=python<< parameters.python_version >>
|
||||
apt-get update
|
||||
apt-get upgrade -y
|
||||
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||
apt-get install -y apt-utils
|
||||
apt-get install -y software-properties-common
|
||||
add-apt-repository -y ppa:deadsnakes/ppa
|
||||
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
apt-get install -y build-essential git
|
||||
$PYTHON -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
pip install . -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
workflows:
|
||||
build_and_test:
|
||||
when:
|
||||
and:
|
||||
- matches:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
- linux_build_and_test
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
upload-docs: true
|
||||
|
||||
prb:
|
||||
when:
|
||||
matches:
|
||||
pattern: "^pull/\\d+(/head)?$"
|
||||
value: << pipeline.git.branch >>
|
||||
jobs:
|
||||
- hold:
|
||||
type: approval
|
||||
- apple/authenticate:
|
||||
context: pr-approval
|
||||
- mac_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
nightly_build:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.nightly_build >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
weekly_build:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.weekly_build >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
linux_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.linux_release >>
|
||||
jobs:
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
20
.github/actions/build-cuda-release/action.yml
vendored
Normal file
20
.github/actions/build-cuda-release/action.yml
vendored
Normal file
@@ -0,0 +1,20 @@
|
||||
name: 'Build CUDA wheel'
|
||||
description: 'Build CUDA wheel'
|
||||
|
||||
inputs:
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build package
|
||||
shell: bash
|
||||
env:
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: |
|
||||
pip install auditwheel build patchelf setuptools
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 python -m build -w
|
||||
bash python/scripts/repair_cuda.sh
|
||||
45
.github/actions/build-cuda/action.yml
vendored
Normal file
45
.github/actions/build-cuda/action.yml
vendored
Normal file
@@ -0,0 +1,45 @@
|
||||
name: 'Build and Test with CUDA'
|
||||
description: 'Build and test MLX with CUDA'
|
||||
|
||||
inputs:
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
default: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Python package
|
||||
shell: bash
|
||||
env:
|
||||
DEBUG: 1
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Run Python tests - CPU
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: cpu
|
||||
run: python -m unittest discover python/tests -v
|
||||
|
||||
- name: Run Python tests - GPU
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
run: python -m tests discover python/tests -v
|
||||
|
||||
- name: Build CPP only
|
||||
shell: bash
|
||||
run: |
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }} \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
shell: bash
|
||||
run: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
44
.github/actions/build-docs/action.yml
vendored
Normal file
44
.github/actions/build-docs/action.yml
vendored
Normal file
@@ -0,0 +1,44 @@
|
||||
name: 'Build Documentation'
|
||||
description: 'Build documentation on a mac'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Setup machine
|
||||
uses: ./.github/actions/setup-macos
|
||||
|
||||
- name: Setup uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: "3.10"
|
||||
activate-environment: true
|
||||
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
run: |
|
||||
brew install doxygen
|
||||
uv pip install --upgrade pip cmake
|
||||
uv pip install -r docs/requirements.txt
|
||||
uv pip install . -v
|
||||
|
||||
- name: Build documentation
|
||||
shell: bash
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
cd docs
|
||||
doxygen
|
||||
make html O=-W
|
||||
|
||||
- name: Create artifact tar
|
||||
shell: sh
|
||||
run: tar -cf artifact.tar --cd docs --dereference build/html index.html
|
||||
|
||||
# Do it manually because upload-pages-artifact requires gtar
|
||||
- name: Upload artifact
|
||||
id: upload-artifact
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: github-pages
|
||||
path: artifact.tar
|
||||
retention-days: 1
|
||||
if-no-files-found: error
|
||||
40
.github/actions/build-linux-release/action.yml
vendored
Normal file
40
.github/actions/build-linux-release/action.yml
vendored
Normal file
@@ -0,0 +1,40 @@
|
||||
name: 'Build Linux wheel'
|
||||
description: 'Build Linux wheel'
|
||||
|
||||
inputs:
|
||||
build-backend:
|
||||
description: 'Build the backend mlx-cpu package'
|
||||
type: boolean
|
||||
required: false
|
||||
default: false
|
||||
arch:
|
||||
description: 'Platform architecture tag'
|
||||
required: true
|
||||
type: choice
|
||||
options:
|
||||
- x86_64
|
||||
- aarch64
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Generate package stubs
|
||||
shell: bash
|
||||
run: |
|
||||
pip install -e ".[dev]" -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- name: Build Python package
|
||||
shell: bash
|
||||
run: |
|
||||
pip install auditwheel patchelf build
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 python -m build -w
|
||||
bash python/scripts/repair_linux.sh ${{ inputs.arch }}
|
||||
- name: Build backend package
|
||||
if: ${{ inputs.build-backend }}
|
||||
shell: bash
|
||||
run: |
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 python -m build -w
|
||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_${{ inputs.arch }}
|
||||
41
.github/actions/build-linux/action.yml
vendored
Normal file
41
.github/actions/build-linux/action.yml
vendored
Normal file
@@ -0,0 +1,41 @@
|
||||
name: 'Build and Test on Linux'
|
||||
description: 'Build and test MLX on Linux'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Python package
|
||||
shell: sh
|
||||
env:
|
||||
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
DEBUG: 1
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: sh
|
||||
run: |
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
|
||||
- name: Run Python tests
|
||||
shell: bash
|
||||
run: |
|
||||
python -m unittest discover python/tests -v
|
||||
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if grep -Fq '[WARN]' stderr.log ; then
|
||||
grep -F '[WARN]' stderr.log
|
||||
echo "Distributed ring test failed";
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
- name: Build CPP only
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
shell: sh
|
||||
run: ./build/tests/tests
|
||||
36
.github/actions/build-macos-release/action.yml
vendored
Normal file
36
.github/actions/build-macos-release/action.yml
vendored
Normal file
@@ -0,0 +1,36 @@
|
||||
name: 'Build macOS release'
|
||||
description: 'Build MLX releases macOS'
|
||||
|
||||
inputs:
|
||||
macos-target:
|
||||
description: 'macOS build target'
|
||||
required: false
|
||||
default: '15.0'
|
||||
build-backend:
|
||||
description: 'Build the backend mlx-metal package'
|
||||
type: boolean
|
||||
required: false
|
||||
default: false
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build Python package
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
conda activate env
|
||||
pip install build
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 python -m build -w
|
||||
|
||||
- name: Build backend package
|
||||
if: ${{ inputs.build-backend }}
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 python -m build -w
|
||||
113
.github/actions/build-macos/action.yml
vendored
Normal file
113
.github/actions/build-macos/action.yml
vendored
Normal file
@@ -0,0 +1,113 @@
|
||||
name: 'Build and Test on macOS'
|
||||
description: 'Build and test MLX on macOS'
|
||||
|
||||
inputs:
|
||||
python-version:
|
||||
description: 'Python version to use'
|
||||
required: false
|
||||
default: '3.10'
|
||||
macos-target:
|
||||
description: 'macOS target to build and test for'
|
||||
required: false
|
||||
default: '14.0'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Setup uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
activate-environment: true
|
||||
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
env:
|
||||
DEBUG: 1
|
||||
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
uv pip install --upgrade pip
|
||||
uv pip install cmake setuptools nanobind==2.4.0
|
||||
uv pip install -e . -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: bash
|
||||
run: |
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
|
||||
- name: Install tests dependencies
|
||||
shell: sh
|
||||
run: |
|
||||
uv pip install numpy torch tensorflow unittest-xml-reporting
|
||||
|
||||
- name: Run Python tests
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
DEVICE=cpu uv run -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 uv run -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
|
||||
- name: Build example extension
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
cd examples/extensions
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project test.py
|
||||
|
||||
- name: Build CPP only
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake ..
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run CPP tests
|
||||
shell: bash
|
||||
env:
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
run: ./build/tests/tests
|
||||
|
||||
- name: Build small binary with JIT
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run Python tests with JIT
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e . -v
|
||||
uv run -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
83
.github/actions/setup-linux/action.yml
vendored
Normal file
83
.github/actions/setup-linux/action.yml
vendored
Normal file
@@ -0,0 +1,83 @@
|
||||
name: 'Setup Linux Environment'
|
||||
description: 'Install dependencies for Linux builds'
|
||||
|
||||
inputs:
|
||||
runner-type:
|
||||
description: 'Whether to set this up as a linux or CUDA runner'
|
||||
required: false
|
||||
default: 'linux'
|
||||
type: choice
|
||||
options:
|
||||
- linux
|
||||
- cuda
|
||||
python-version:
|
||||
description: 'Version of python to set up'
|
||||
required: false
|
||||
default: '3.10'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Free disk space
|
||||
shell: sh
|
||||
if: inputs.runner-type == 'linux'
|
||||
run: sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
|
||||
- name: Install common dependencies
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev tzdata zip
|
||||
sudo apt autoremove -y
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache: 'pip'
|
||||
|
||||
- name: setup python venv
|
||||
shell: bash
|
||||
run: |
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
echo PATH=$PATH >> $GITHUB_ENV
|
||||
pip install --upgrade pip cmake
|
||||
|
||||
- name: Install MPI
|
||||
if: inputs.runner-type == 'linux'
|
||||
shell: bash
|
||||
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
|
||||
|
||||
- name: Network CUDA installation from packages
|
||||
id: install-cuda
|
||||
if: inputs.runner-type == 'cuda'
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash ## Specific to Ubuntu 22.04 & Architecture x86_64
|
||||
run: |
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libcudnn9-dev-cuda-12 libnccl2 libnccl-dev cuda-toolkit-12-9
|
||||
# Note: This installs CUDA 12.9, which is the latest supported by cuDNN 9.x and works with the NVidia 570 drivers
|
||||
# cuda-toolkit by itself installs version 13 (+) and requires updated drives (580+), which require a reboot to function properly.
|
||||
# Compatibility matrix: https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
|
||||
# This also drops `nvcc` into `/usr/local/cuda-12.9/bin/nvcc` - but it's *not* on the default PATH
|
||||
|
||||
- name: Package and Driver Report
|
||||
if: inputs.runner-type == 'cuda'
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get install -y ubuntu-drivers-common dkms
|
||||
echo "NVIDIA Driver Packages Available:"
|
||||
sudo ubuntu-drivers list --gpgpu
|
||||
echo "NVIDIA Driver Version:"
|
||||
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
|
||||
echo "Installed NVIDIA and CUDA packages:"
|
||||
dpkg -l | egrep "cuda|nvidia" -i
|
||||
echo "DKMS Status:"
|
||||
dkms status || echo "dkms not found"
|
||||
echo "NVIDIA-SMI Status:"
|
||||
nvidia-smi || echo "nvidia-smi not found"
|
||||
13
.github/actions/setup-macos/action.yml
vendored
Normal file
13
.github/actions/setup-macos/action.yml
vendored
Normal file
@@ -0,0 +1,13 @@
|
||||
name: 'Setup macOS Environment'
|
||||
description: 'Install dependencies for macOS builds'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Homebrew packages
|
||||
shell: sh
|
||||
run: /opt/homebrew/bin/brew install openmpi
|
||||
|
||||
- name: Verify MetalToolchain installed
|
||||
shell: bash
|
||||
run: xcodebuild -showComponent MetalToolchain
|
||||
6
.github/dependabot.yml
vendored
Normal file
6
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "github-actions"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
27
.github/scripts/setup+build-cpp-linux-fedora-container.sh
vendored
Executable file
27
.github/scripts/setup+build-cpp-linux-fedora-container.sh
vendored
Executable file
@@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
# [Setup] Install dependencies inside the container.
|
||||
dnf update -y
|
||||
dnf install -y \
|
||||
blas-devel \
|
||||
lapack-devel \
|
||||
openblas-devel \
|
||||
make \
|
||||
cmake \
|
||||
clang \
|
||||
git
|
||||
dnf clean all
|
||||
|
||||
# [C++] CI Build Sanity Check: Verifies code compilation, not for release.
|
||||
export CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
export DEBUG=1
|
||||
export CMAKE_C_COMPILER=/usr/bin/clang
|
||||
export CMAKE_CXX_COMPILER=/usr/bin/clang++
|
||||
|
||||
mkdir -p build
|
||||
pushd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j $(nproc)
|
||||
./tests/tests
|
||||
popd
|
||||
28
.github/workflows/documentation.yml
vendored
Normal file
28
.github/workflows/documentation.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
name: Documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy:
|
||||
needs: build
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
128
.github/workflows/nightly.yml
vendored
Normal file
128
.github/workflows/nightly.yml
vendored
Normal file
@@ -0,0 +1,128 @@
|
||||
name: Nightly Build
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 33 6 * * 1-5
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build_linux_release:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux-release
|
||||
with:
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
arch: "x86_64"
|
||||
- name: Upload mlx artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
retention-days: 7
|
||||
- name: Upload mlx-cpu artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
retention-days: 7
|
||||
|
||||
build_linux_with_tests:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runner:
|
||||
- ubuntu-22.04
|
||||
- ubuntu-22.04-arm
|
||||
runs-on: ${{ matrix.runner }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
build_mac_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.13"]
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: ./.github/actions/build-macos
|
||||
|
||||
- name: Build macOS 15 package
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 15.0
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
- name: Build macOS 14 package
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 14.0
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
|
||||
build_cuda_with_tests:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: gpu-t4-4-core
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_cuda_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: ubuntu-22-large
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
retention-days: 7
|
||||
|
||||
linux_fedora_build_cpp:
|
||||
name: Linux Fedora CPP Build (${{ matrix.arch }})
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- host: ubuntu-22.04
|
||||
arch: x86_64
|
||||
- host: ubuntu-22.04-arm
|
||||
arch: aarch64
|
||||
|
||||
runs-on: ${{ matrix.host }}
|
||||
container:
|
||||
image: fedora:42
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: CPP Build Test - No Release
|
||||
run: |
|
||||
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
|
||||
90
.github/workflows/pull_request.yml
vendored
90
.github/workflows/pull_request.yml
vendored
@@ -1,20 +1,82 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
name: Build and Test
|
||||
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
check_lint:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v4
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
|
||||
linux_build_and_test:
|
||||
strategy:
|
||||
matrix:
|
||||
runner:
|
||||
- ubuntu-22.04
|
||||
- ubuntu-22.04-arm
|
||||
fail-fast: false
|
||||
runs-on: ${{ matrix.runner }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
mac_build_and_test:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
macos-target: ["14.0", "15.0"]
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
- uses: ./.github/actions/build-macos
|
||||
with:
|
||||
python-version: 3.8
|
||||
- name: Install dependencies
|
||||
macos-target: ${{ matrix.macos-target }}
|
||||
|
||||
cuda_build_and_test:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: gpu-t4-4-core
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_documentation:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
linux_fedora_build_cpp:
|
||||
name: Linux Fedora CPP Build (${{ matrix.arch }})
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- host: ubuntu-22.04
|
||||
arch: x86_64
|
||||
- host: ubuntu-22.04-arm
|
||||
arch: aarch64
|
||||
|
||||
runs-on: ${{ matrix.host }}
|
||||
container:
|
||||
image: fedora:42
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: CPP Build Test - No Release
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pre-commit black isort clang-format
|
||||
- name: Run lint
|
||||
run: |
|
||||
pre-commit run --all-files
|
||||
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
|
||||
|
||||
240
.github/workflows/release.yml
vendored
Normal file
240
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,240 @@
|
||||
name: PyPI Release
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
dev_release:
|
||||
description: "Do a dev release or regular release"
|
||||
required: true
|
||||
default: "false"
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Set publishing variables
|
||||
run: echo "Publishing setup complete"
|
||||
|
||||
build_documentation:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy_documentation:
|
||||
needs: build_documentation
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
|
||||
build_linux_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
include:
|
||||
- runner: ubuntu-24.04
|
||||
arch: x64
|
||||
- runner: ubuntu-24.04-arm64
|
||||
arch: arm64
|
||||
runs-on: ${{ matrix.runner }}
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux-release
|
||||
with:
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
arch: ${{ matrix.arch }}
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
- name: Upload CPU artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
|
||||
build_mac_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: [self-hosted, macos]
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
- uses: conda-incubator/setup-miniconda@v3
|
||||
with:
|
||||
miniconda-version: "latest"
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
run: |
|
||||
pip install --upgrade pip
|
||||
pip install cmake setuptools nanobind==2.4.0
|
||||
pip install -e . -v
|
||||
- name: Generate package stubs
|
||||
shell: bash
|
||||
run: |
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- name: Build macOS 14 package
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 14.0
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
- name: Build macOS 15 package
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 15.0
|
||||
build-backend: ${{ matrix.python-version == '3.10' }}
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mac-wheels-${{ matrix.python-version }}
|
||||
path: dist/mlx-*.whl
|
||||
- name: Upload Metal artifacts
|
||||
if: matrix.python-version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: dist/mlx_metal-*.whl
|
||||
|
||||
build_cuda_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: ubuntu-22-large
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
DEV_RELEASE: ${{ github.event.inputs.dev_release == 'true' && 1 || 0 }}
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
|
||||
pypi-publish:
|
||||
name: Upload release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_linux_release, build_mac_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: linux-wheels-*
|
||||
merge-multiple: true
|
||||
path: dist
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: mac-wheels-*
|
||||
merge-multiple: true
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: https://upload.pypi.org/legacy/
|
||||
|
||||
pypi-publish-cuda:
|
||||
name: Upload CUDA release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_cuda_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-cuda
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: https://upload.pypi.org/legacy/
|
||||
|
||||
pypi-publish-cpu:
|
||||
name: Upload CPU release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_linux_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-cpu
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: https://upload.pypi.org/legacy/
|
||||
|
||||
pypi-publish-metal:
|
||||
name: Upload Metal release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_mac_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: pypi
|
||||
url: https://pypi.org/p/mlx-metal
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: https://upload.pypi.org/legacy/
|
||||
1
.gitignore
vendored
1
.gitignore
vendored
@@ -36,6 +36,7 @@ share/python-wheels/
|
||||
.installed.cfg
|
||||
*.egg
|
||||
MANIFEST
|
||||
uv.lock
|
||||
|
||||
# vim
|
||||
*.swp
|
||||
|
||||
@@ -1,16 +1,22 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v6.0.0
|
||||
hooks:
|
||||
- id: check-yaml
|
||||
# - id: end-of-file-fixer
|
||||
# - id: trailing-whitespace
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.4
|
||||
rev: v19.1.7
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.10.0
|
||||
rev: 25.1.0
|
||||
hooks:
|
||||
- id: black
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.13.2
|
||||
rev: 6.0.0
|
||||
hooks:
|
||||
- id: isort
|
||||
args:
|
||||
|
||||
@@ -19,11 +19,17 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Organizations
|
||||
|
||||
MLX has received contributions from the following companies:
|
||||
- NVIDIA Corporation & Affiliates
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
MLX leverages several third-party software, listed here together with
|
||||
|
||||
130
CMakeLists.txt
130
CMakeLists.txt
@@ -1,6 +1,24 @@
|
||||
cmake_minimum_required(VERSION 3.25)
|
||||
|
||||
project(mlx LANGUAGES C CXX)
|
||||
if(NOT MLX_VERSION)
|
||||
file(STRINGS "mlx/version.h" _mlx_h_version REGEX "^#define MLX_VERSION_.*$")
|
||||
string(REGEX MATCH "#define MLX_VERSION_MAJOR ([0-9]+)" _ "${_mlx_h_version}")
|
||||
set(_major ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "#define MLX_VERSION_MINOR ([0-9]+)" _ "${_mlx_h_version}")
|
||||
set(_minor ${CMAKE_MATCH_1})
|
||||
string(REGEX MATCH "#define MLX_VERSION_PATCH ([0-9]+)" _ "${_mlx_h_version}")
|
||||
set(_patch ${CMAKE_MATCH_1})
|
||||
set(MLX_PROJECT_VERSION "${_major}.${_minor}.${_patch}")
|
||||
set(MLX_VERSION ${MLX_PROJECT_VERSION})
|
||||
else()
|
||||
string(REGEX REPLACE "^([0-9]+\.[0-9]+\.[0-9]+).*" "\\1" MLX_PROJECT_VERSION
|
||||
${MLX_VERSION})
|
||||
endif()
|
||||
|
||||
project(
|
||||
mlx
|
||||
LANGUAGES C CXX
|
||||
VERSION ${MLX_PROJECT_VERSION})
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
@@ -8,6 +26,7 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# ----------------------------- Configuration -----------------------------
|
||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||
@@ -16,21 +35,18 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
|
||||
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
||||
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
|
||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.22.0)
|
||||
endif()
|
||||
add_compile_definitions("MLX_VERSION=${MLX_VERSION}")
|
||||
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
|
||||
message(
|
||||
STATUS
|
||||
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
|
||||
@@ -51,10 +67,17 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||
endif()
|
||||
|
||||
if(MLX_USE_CCACHE)
|
||||
find_program(CCACHE_PROGRAM ccache)
|
||||
if(CCACHE_PROGRAM)
|
||||
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# ----------------------------- Lib -----------------------------
|
||||
@@ -65,18 +88,26 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
if(MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
if(METAL_LIB)
|
||||
message(STATUS "Metal found ${METAL_LIB}")
|
||||
else()
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
||||
endif()
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
@@ -85,7 +116,8 @@ elseif(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
@@ -95,9 +127,12 @@ elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_26.zip)
|
||||
|
||||
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
||||
if(${CMAKE_OSX_DEPLOYMENT_TARGET} LESS 14.0)
|
||||
message(FATAL_ERROR "MLX requires macOS >= 14.0")
|
||||
endif()
|
||||
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
||||
endif()
|
||||
execute_process(
|
||||
@@ -106,7 +141,6 @@ elseif(MLX_BUILD_METAL)
|
||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
target_include_directories(
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||
@@ -114,6 +148,12 @@ elseif(MLX_BUILD_METAL)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
||||
# building on old distributions they need to be explicitly listed.
|
||||
target_link_libraries(mlx PRIVATE dl pthread)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
if(MSVC)
|
||||
# GGUF does not build with MSVC.
|
||||
@@ -141,12 +181,13 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
message(STATUS "Accelerate not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_ACCELERATE)
|
||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||
add_compile_definitions(MLX_USE_ACCELERATE)
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
elseif(MLX_BUILD_BLAS_FROM_SOURCE)
|
||||
# Download and build OpenBLAS from source code.
|
||||
@@ -199,23 +240,13 @@ else()
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
find_package(MPI)
|
||||
if(MPI_FOUND)
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "mpirun --version"
|
||||
OUTPUT_VARIABLE MPI_VERSION
|
||||
ERROR_QUIET)
|
||||
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||
elseif(MPI_VERSION STREQUAL "")
|
||||
set(MPI_FOUND FALSE)
|
||||
message(
|
||||
WARNING "MPI found but mpirun is not available. Building without MPI.")
|
||||
else()
|
||||
set(MPI_FOUND FALSE)
|
||||
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
|
||||
endif()
|
||||
endif()
|
||||
message(STATUS "Downloading json")
|
||||
FetchContent_Declare(
|
||||
json
|
||||
URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
|
||||
FetchContent_MakeAvailable(json)
|
||||
target_include_directories(
|
||||
mlx PRIVATE $<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||
|
||||
@@ -223,12 +254,19 @@ target_include_directories(
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
||||
$<INSTALL_INTERFACE:include>)
|
||||
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
# Do not add mlx_EXPORTS define for shared library.
|
||||
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
|
||||
|
||||
if(USE_SYSTEM_FMT)
|
||||
find_package(fmt REQUIRED)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
endif()
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
||||
|
||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||
|
||||
@@ -5,26 +5,26 @@ possible.
|
||||
|
||||
## Pull Requests
|
||||
|
||||
1. Fork and submit pull requests to the repo.
|
||||
1. Fork and submit pull requests to the repo.
|
||||
2. If you've added code that should be tested, add tests.
|
||||
3. If a change is likely to impact efficiency, run some of the benchmarks before
|
||||
and after the change. Examples of benchmarks can be found in `benchmarks/python/`.
|
||||
4. If you've changed APIs, update the documentation.
|
||||
5. Every PR should have passing tests and at least one review.
|
||||
5. Every PR should have passing tests and at least one review.
|
||||
6. For code formatting install `pre-commit` using something like `pip install pre-commit` and run `pre-commit install`.
|
||||
This should install hooks for running `black` and `clang-format` to ensure
|
||||
consistent style for C++ and python code.
|
||||
|
||||
|
||||
You can also run the formatters manually as follows:
|
||||
|
||||
```
|
||||
clang-format -i file.cpp
|
||||
```
|
||||
|
||||
```
|
||||
black file.py
|
||||
```
|
||||
|
||||
|
||||
```shell
|
||||
clang-format -i file.cpp
|
||||
```
|
||||
|
||||
```shell
|
||||
black file.py
|
||||
```
|
||||
|
||||
or run `pre-commit run --all-files` to check all files in the repo.
|
||||
|
||||
## Issues
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
include CMakeLists.txt
|
||||
include mlx.pc.in
|
||||
recursive-include mlx/ *
|
||||
include cmake/*
|
||||
include python/src/*
|
||||
include python/mlx/py.typed # support type hinting as in PEP-561
|
||||
|
||||
57
README.md
57
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
|
||||
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
|
||||
[**Examples**](#examples)
|
||||
[**Examples**](#examples)
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
|
||||
MLX is designed by machine learning researchers for machine learning
|
||||
researchers. The framework is intended to be user-friendly, but still efficient
|
||||
to train and deploy models. The design of the framework itself is also
|
||||
conceptually simple. We intend to make it easy for researchers to extend and
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
|
||||
The design of MLX is inspired by frameworks like
|
||||
[NumPy](https://numpy.org/doc/stable/index.html),
|
||||
@@ -68,25 +68,30 @@ in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
||||
macOS, run:
|
||||
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
```bash
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
**With `conda`**:
|
||||
To install the CUDA backend on Linux, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cuda]
|
||||
```
|
||||
conda install -c conda-forge mlx
|
||||
|
||||
To install a CPU-only Linux package, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cpu]
|
||||
```
|
||||
|
||||
Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
@@ -105,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
||||
MLX useful in your research and wish to cite it, please use the following
|
||||
BibTex entry:
|
||||
|
||||
```
|
||||
```text
|
||||
@software{mlx2023,
|
||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cstring>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@@ -74,7 +75,7 @@ void time_irregular_binary_ops_3D() {
|
||||
|
||||
void time_irregular_binary_ops_4D() {
|
||||
auto device = mx::default_device();
|
||||
std::vector<int> shape = {8, 8, 512, 512};
|
||||
mx::Shape shape = {8, 8, 512, 512};
|
||||
auto a = mx::random::uniform(shape);
|
||||
auto b = mx::random::uniform(shape);
|
||||
|
||||
@@ -114,7 +115,7 @@ void time_irregular_binary_ops_4D() {
|
||||
|
||||
void time_irregular_reshape() {
|
||||
auto device = mx::default_device();
|
||||
std::vector<int> shape;
|
||||
mx::Shape shape;
|
||||
auto reshape_fn = [&shape, device](const mx::array& a) {
|
||||
return mx::reshape(a, shape, device);
|
||||
};
|
||||
@@ -169,7 +170,7 @@ void time_irregular_astype_1D() {
|
||||
void time_irregular_astype_2D() {
|
||||
auto device = mx::default_device();
|
||||
int size = 2048;
|
||||
std::vector<int> shape = {size, size};
|
||||
mx::Shape shape = {size, size};
|
||||
|
||||
auto a = mx::random::uniform(shape);
|
||||
TIMEM("2D regular", mx::astype, a, mx::int32, device);
|
||||
|
||||
@@ -192,6 +192,22 @@ void time_reductions() {
|
||||
|
||||
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
|
||||
TIME(argmin_along_1);
|
||||
|
||||
auto indices = mx::array({1});
|
||||
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
|
||||
std::vector<int> axes{0};
|
||||
auto b = scatter(a, {indices}, updates, axes);
|
||||
mx::eval(b);
|
||||
|
||||
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
|
||||
TIME(max_along_0);
|
||||
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
||||
TIME(max_along_1);
|
||||
|
||||
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
|
||||
TIME(min_along_0);
|
||||
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
|
||||
TIME(min_along_1);
|
||||
}
|
||||
|
||||
void time_gather_scatter() {
|
||||
|
||||
@@ -142,9 +142,7 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||
|
||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||
np.float32
|
||||
)
|
||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
@@ -163,7 +161,7 @@ def get_gflop_count(B, M, N, K):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
dtypes = ("float32", "float16")
|
||||
dtypes = ("float32", "float16", "complex64")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
@@ -187,7 +185,7 @@ if __name__ == "__main__":
|
||||
diff = gflops_mx / gflops_pt - 1.0
|
||||
|
||||
print(
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
||||
)
|
||||
if gflops_pt >= 2.0 * gflops_mx:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
||||
@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
|
||||
|
||||
for transpose in (False, True):
|
||||
for dtype in ("float32", "float16"):
|
||||
for dtype in ("float32", "float16", "complex64"):
|
||||
fig, axs = plt.subplots(
|
||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||
)
|
||||
@@ -215,7 +215,7 @@ for transpose in (False, True):
|
||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||
fig.savefig(
|
||||
os.path.join(
|
||||
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
||||
)
|
||||
)
|
||||
plt.close(fig)
|
||||
|
||||
@@ -5,6 +5,7 @@ import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
import torch.mps
|
||||
|
||||
|
||||
@@ -44,8 +45,10 @@ def bench(f, *args):
|
||||
|
||||
|
||||
def sync_if_needed(x):
|
||||
if x.device != torch.device("cpu"):
|
||||
if x.device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
elif x.device == torch.device("cuda"):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -99,6 +102,14 @@ def reduction(op, axis, x):
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sum_and_add(axis, x, y):
|
||||
z = x.sum(axis=axis, keepdims=True)
|
||||
for i in range(50):
|
||||
z = (z + y).sum(axis=axis, keepdims=True)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def softmax(axis, x):
|
||||
ys = []
|
||||
@@ -340,7 +351,11 @@ if __name__ == "__main__":
|
||||
args.axis.pop(0)
|
||||
|
||||
torch.set_num_threads(1)
|
||||
device = "cpu" if args.cpu else "mps"
|
||||
device = "mps"
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
if args.cpu:
|
||||
device = "cpu"
|
||||
|
||||
types = args.dtype
|
||||
if not types:
|
||||
@@ -460,5 +475,8 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "selu":
|
||||
print(bench(selu, x))
|
||||
|
||||
elif args.benchmark == "sum_and_add":
|
||||
print(bench(sum_and_add, axis, *xs))
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
||||
|
||||
107
benchmarks/python/conv_unaligned_bench.py
Normal file
107
benchmarks/python/conv_unaligned_bench.py
Normal file
@@ -0,0 +1,107 @@
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_2D
|
||||
|
||||
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
dtype = "float32"
|
||||
shapes = (
|
||||
(4, 32, 32, 21, 3, 3, 128),
|
||||
(4, 32, 32, 21, 3, 3, 37),
|
||||
(4, 32, 32, 370, 3, 3, 370),
|
||||
(4, 32, 32, 370, 7, 7, 128),
|
||||
(2, 320, 640, 21, 7, 7, 21),
|
||||
)
|
||||
for N, H, W, C, kh, kw, O in shapes:
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
@@ -1,7 +1,6 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
from time import time
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
|
||||
74
benchmarks/python/gather_mm_bench.py
Normal file
74
benchmarks/python/gather_mm_bench.py
Normal file
@@ -0,0 +1,74 @@
|
||||
# Copyright © 2025 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
N = 1024
|
||||
D = 1024
|
||||
M = 1024
|
||||
E = 32
|
||||
I = 4
|
||||
|
||||
|
||||
def gather_sort(x, indices):
|
||||
N, M = indices.shape
|
||||
indices = indices.flatten()
|
||||
order = mx.argsort(indices)
|
||||
inv_order = mx.argsort(order)
|
||||
return x.flatten(0, -3)[order // M], indices[order], inv_order
|
||||
|
||||
|
||||
def scatter_unsort(x, inv_order, shape=None):
|
||||
x = x[inv_order]
|
||||
if shape is not None:
|
||||
x = mx.unflatten(x, 0, shape)
|
||||
return x
|
||||
|
||||
|
||||
def gather_mm_simulate(x, w, indices):
|
||||
x, idx, inv_order = gather_sort(x, indices)
|
||||
for i in range(2):
|
||||
y = mx.concatenate([x[i] @ w[j].T for i, j in enumerate(idx.tolist())], axis=0)
|
||||
x = y[:, None]
|
||||
x = scatter_unsort(x, inv_order, indices.shape)
|
||||
return x
|
||||
|
||||
|
||||
def time_gather_mm():
|
||||
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
|
||||
w1 = mx.random.normal((E, M, D)) / 1024**0.5
|
||||
w2 = mx.random.normal((E, D, M)) / 1024**0.5
|
||||
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
|
||||
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
|
||||
mx.eval(x, w1, w2, indices, sorted_indices)
|
||||
|
||||
def gather_mm(x, w1, w2, indices, sort):
|
||||
idx = indices
|
||||
inv_order = None
|
||||
if sort:
|
||||
x, idx, inv_order = gather_sort(x, indices)
|
||||
x = mx.gather_mm(x, w1.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
|
||||
x = mx.gather_mm(x, w2.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
|
||||
if sort:
|
||||
x = scatter_unsort(x, inv_order, indices.shape)
|
||||
return x
|
||||
|
||||
time_fn(gather_mm, x, w1, w2, indices, False)
|
||||
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
|
||||
time_fn(gather_mm, x, w1, w2, indices, True)
|
||||
|
||||
x = mx.random.normal((N * I, D)) / 1024**0.5
|
||||
w1 = mx.random.normal((M, D)) / 1024**0.5
|
||||
w2 = mx.random.normal((D, M)) / 1024**0.5
|
||||
mx.eval(x, w1, w2)
|
||||
|
||||
def equivalent_matmul(x, w1, w2):
|
||||
x = x @ w1.T
|
||||
x = x @ w2.T
|
||||
return x
|
||||
|
||||
time_fn(equivalent_matmul, x, w1, w2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_gather_mm()
|
||||
84
benchmarks/python/gather_qmm_bench.py
Normal file
84
benchmarks/python/gather_qmm_bench.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# Copyright © 2025 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
N = 1024
|
||||
D = 1024
|
||||
M = 1024
|
||||
E = 32
|
||||
I = 4
|
||||
|
||||
|
||||
def gather_sort(x, indices):
|
||||
N, M = indices.shape
|
||||
indices = indices.flatten()
|
||||
order = mx.argsort(indices)
|
||||
inv_order = mx.argsort(order)
|
||||
return x.flatten(0, -3)[order // M], indices[order], inv_order
|
||||
|
||||
|
||||
def scatter_unsort(x, inv_order, shape=None):
|
||||
x = x[inv_order]
|
||||
if shape is not None:
|
||||
x = mx.unflatten(x, 0, shape)
|
||||
return x
|
||||
|
||||
|
||||
def gather_mm_simulate(x, w, indices):
|
||||
x, idx, inv_order = gather_sort(x, indices)
|
||||
for i in range(2):
|
||||
y = mx.concatenate(
|
||||
[
|
||||
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
|
||||
for i, j in enumerate(idx.tolist())
|
||||
],
|
||||
axis=0,
|
||||
)
|
||||
x = y[:, None]
|
||||
x = scatter_unsort(x, inv_order, indices.shape)
|
||||
return x
|
||||
|
||||
|
||||
def time_gather_qmm():
|
||||
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
|
||||
w1 = mx.random.normal((E, M, D)) / 1024**0.5
|
||||
w2 = mx.random.normal((E, D, M)) / 1024**0.5
|
||||
w1 = mx.quantize(w1)
|
||||
w2 = mx.quantize(w2)
|
||||
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
|
||||
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
|
||||
mx.eval(x, w1, w2, indices, sorted_indices)
|
||||
|
||||
def gather_mm(x, w1, w2, indices, sort):
|
||||
idx = indices
|
||||
inv_order = None
|
||||
if sort:
|
||||
x, idx, inv_order = gather_sort(x, indices)
|
||||
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
||||
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
|
||||
if sort:
|
||||
x = scatter_unsort(x, inv_order, indices.shape)
|
||||
return x
|
||||
|
||||
time_fn(gather_mm, x, w1, w2, indices, False)
|
||||
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
|
||||
time_fn(gather_mm, x, w1, w2, indices, True)
|
||||
|
||||
x = mx.random.normal((N * I, D)) / 1024**0.5
|
||||
w1 = mx.random.normal((M, D)) / 1024**0.5
|
||||
w2 = mx.random.normal((D, M)) / 1024**0.5
|
||||
w1 = mx.quantize(w1)
|
||||
w2 = mx.quantize(w2)
|
||||
mx.eval(x, w1, w2)
|
||||
|
||||
def equivalent_matmul(x, w1, w2):
|
||||
x = mx.quantized_matmul(x, *w1, transpose=True)
|
||||
x = mx.quantized_matmul(x, *w2, transpose=True)
|
||||
return x
|
||||
|
||||
time_fn(equivalent_matmul, x, w1, w2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_gather_qmm()
|
||||
@@ -1,5 +1,7 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
@@ -10,32 +12,71 @@ def layer_norm(x, w, b, eps):
|
||||
x = x.astype(mx.float32)
|
||||
mu = mx.mean(x, -1, keepdims=True)
|
||||
v = mx.var(x, -1, keepdims=True)
|
||||
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||||
y = (x - mu) * mx.rsqrt(v + eps)
|
||||
if w is not None:
|
||||
y = y * w
|
||||
if b is not None:
|
||||
y = y + b
|
||||
return y
|
||||
|
||||
|
||||
def time_layer_norm():
|
||||
def time_layer_norm(N, dt):
|
||||
L = 1024
|
||||
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||||
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
||||
w = mx.random.uniform(shape=(N,)).astype(dt)
|
||||
b = mx.random.uniform(shape=(N,)).astype(dt)
|
||||
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
||||
mx.eval(x, w, b, y)
|
||||
|
||||
def layer_norm_loop(g, x, w, b):
|
||||
def layer_norm_loop(f, x, w, b):
|
||||
for _ in range(32):
|
||||
x = f(x, w, b)
|
||||
return x
|
||||
|
||||
time_fn(layer_norm_loop, partial(layer_norm, eps=1e-5), x, w, b)
|
||||
time_fn(layer_norm_loop, partial(mx.fast.layer_norm, eps=1e-5), x, w, b)
|
||||
|
||||
def layer_norm_grad_loop(g, x, w, b):
|
||||
gx, gw, gb = x, w, b
|
||||
for _ in range(32):
|
||||
gx, gw, gb = g(gx, gw, gb, y)
|
||||
return gx, gw, gb
|
||||
|
||||
time_fn(layer_norm_loop, g1, x, w, b)
|
||||
time_fn(layer_norm_loop, g2, x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||||
time_fn(layer_norm_grad_loop, g1, x, w, b)
|
||||
time_fn(layer_norm_grad_loop, g2, x, w, b)
|
||||
time_fn(layer_norm_grad_loop, mx.compile(g1), x, w, b)
|
||||
time_fn(layer_norm_grad_loop, mx.compile(g2), x, w, b)
|
||||
|
||||
f1 = lambda x, y: (layer_norm(x, None, None, 1e-5) * y).sum()
|
||||
f2 = lambda x, y: (mx.fast.layer_norm(x, None, None, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0,))
|
||||
g2 = mx.grad(f2, argnums=(0,))
|
||||
|
||||
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
||||
w = mx.random.uniform(shape=(N,)).astype(dt)
|
||||
b = mx.random.uniform(shape=(N,)).astype(dt)
|
||||
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
|
||||
mx.eval(x, w, b, y)
|
||||
|
||||
def layer_norm_grad_x_loop(g, x):
|
||||
gx = x
|
||||
for _ in range(32):
|
||||
gx = g(gx, y)
|
||||
return gx
|
||||
|
||||
time_fn(layer_norm_grad_x_loop, g1, x)
|
||||
time_fn(layer_norm_grad_x_loop, g2, x)
|
||||
time_fn(layer_norm_grad_x_loop, mx.compile(g1), x)
|
||||
time_fn(layer_norm_grad_x_loop, mx.compile(g2), x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_layer_norm()
|
||||
for dt in [mx.float32, mx.float16, mx.bfloat16]:
|
||||
for n in [1024, 2048, 4096, 8192, 8192 + 1024]:
|
||||
print(dt, n)
|
||||
time_layer_norm(n, dt)
|
||||
|
||||
@@ -9,7 +9,10 @@ def rms_norm(x, w, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
||||
return (x * n).astype(ot) * w
|
||||
y = (x * n).astype(ot)
|
||||
if w is not None:
|
||||
y = y * w
|
||||
return y
|
||||
|
||||
|
||||
def time_rms_norm():
|
||||
@@ -34,6 +37,27 @@ def time_rms_norm():
|
||||
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
||||
|
||||
f1 = lambda x, y: (rms_norm(x, None, 1e-5) * y).sum()
|
||||
f2 = lambda x, y: (mx.fast.rms_norm(x, None, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0,))
|
||||
g2 = mx.grad(f2, argnums=(0,))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, y)
|
||||
|
||||
def rms_norm_loop(g, x):
|
||||
gx = x
|
||||
for _ in range(32):
|
||||
gx = g(gx, y)
|
||||
return gx
|
||||
|
||||
time_fn(rms_norm_loop, g1, x)
|
||||
time_fn(rms_norm_loop, g2, x)
|
||||
time_fn(rms_norm_loop, mx.compile(g1), x)
|
||||
time_fn(rms_norm_loop, mx.compile(g2), x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_rms_norm()
|
||||
|
||||
@@ -28,11 +28,34 @@ def bench(f, *args):
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def mlx_sdpa_fused_inner(q, k, v, scale):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
|
||||
def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
|
||||
np_dtype = getattr(np, dtype)
|
||||
|
||||
shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
|
||||
shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
|
||||
|
||||
scale = 1.0 / math.sqrt(D)
|
||||
|
||||
q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype)
|
||||
k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
||||
v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
||||
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
|
||||
if mask is not None:
|
||||
if mask == "additive":
|
||||
mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype)
|
||||
mask = mx.array(mask_np)
|
||||
elif mask == "bool":
|
||||
mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
|
||||
mask = mx.array(mask_np)
|
||||
|
||||
return q_mx, k_mx, v_mx, scale, mask
|
||||
|
||||
|
||||
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
||||
q_dtype = q.dtype
|
||||
q = q * mx.array(scale, q_dtype)
|
||||
n_q_heads = q.shape[-3]
|
||||
@@ -41,6 +64,7 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
|
||||
B = q.shape[0]
|
||||
L = q.shape[2]
|
||||
kL = k.shape[2]
|
||||
|
||||
if n_repeats > 1:
|
||||
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
||||
@@ -48,10 +72,27 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
v = mx.expand_dims(v, 2)
|
||||
|
||||
scores = q @ mx.swapaxes(k, -1, -2)
|
||||
if f32softmax:
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
|
||||
else:
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
|
||||
if mask is not None:
|
||||
|
||||
if mask == "causal":
|
||||
q_offset = max(0, kL - L)
|
||||
q_indices = mx.arange(q_offset, q_offset + L)
|
||||
k_indices = mx.arange(kL)
|
||||
mask = q_indices[:, None] >= k_indices[None]
|
||||
|
||||
if n_repeats > 1 and mask.ndim >= 3:
|
||||
if mask.shape[-3] == 1:
|
||||
mask = mx.expand_dims(mask, -3)
|
||||
else:
|
||||
mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
|
||||
|
||||
if mask.dtype == mx.bool_:
|
||||
scores = mx.where(mask, scores, -np.float32(np.inf))
|
||||
else:
|
||||
scores += mask
|
||||
|
||||
scores = mx.softmax(scores, axis=-1, precise=True)
|
||||
|
||||
out = scores @ v
|
||||
if n_repeats > 1:
|
||||
@@ -60,74 +101,55 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
return out
|
||||
|
||||
|
||||
def mlx_spda_unfused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
def mlx_fused_attn(q, k, v, scale, mask):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
||||
|
||||
|
||||
def do_attention(f, q, k, v, scale, mask=None, transpose=False):
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
q_t = mx.transpose(q, (0, 2, 1, 3))
|
||||
k_t = mx.transpose(k, (0, 2, 1, 3))
|
||||
v_t = mx.transpose(v, (0, 2, 1, 3))
|
||||
o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
|
||||
return mx.transpose(o_t, (0, 2, 1, 3))
|
||||
else:
|
||||
return f(q, k, v, scale=scale, mask=mask)
|
||||
|
||||
|
||||
def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False):
|
||||
q_out = q
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose)
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def mlx_spda_fused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
|
||||
shape_q = (
|
||||
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
|
||||
)
|
||||
shape_kv = (
|
||||
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
|
||||
def bench_shape(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None
|
||||
):
|
||||
q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype
|
||||
)
|
||||
|
||||
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
|
||||
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
time_mlx_unfused = bench(
|
||||
do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
||||
)
|
||||
time_mlx_fused = bench(
|
||||
do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
||||
)
|
||||
|
||||
scale = math.sqrt(1.0 / head_dim)
|
||||
o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose)
|
||||
o_mlx_unfused = do_attention(
|
||||
mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
||||
)
|
||||
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
atol = 1e-5 if dtype == "float32" else 2e-4
|
||||
|
||||
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
|
||||
if transpose:
|
||||
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
|
||||
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
|
||||
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
|
||||
|
||||
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
|
||||
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
|
||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol):
|
||||
print(
|
||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||
)
|
||||
|
||||
return time_mlx_fused, time_mlx_unfused
|
||||
@@ -151,39 +173,51 @@ if __name__ == "__main__":
|
||||
( 1, 128, 128, 64, 32, 32),
|
||||
( 1, 256, 256, 64, 32, 32),
|
||||
( 1, 512, 512, 64, 32, 32),
|
||||
( 1, 1024, 1024, 64, 32, 32),
|
||||
( 1, 2048, 2048, 64, 32, 32),
|
||||
( 1, 4096, 4096, 64, 32, 32),
|
||||
( 1, 1024, 1024, 64, 32, 8),
|
||||
( 1, 2048, 2048, 64, 32, 8),
|
||||
( 1, 4096, 4096, 64, 32, 8),
|
||||
)
|
||||
|
||||
shapes_80 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 80, 32, 32),
|
||||
( 1, 2048, 2048, 80, 32, 32),
|
||||
( 1, 4096, 4096, 80, 32, 32),
|
||||
( 1, 1024, 1024, 80, 32, 8),
|
||||
( 1, 2048, 2048, 80, 32, 8),
|
||||
( 1, 4096, 4096, 80, 32, 8),
|
||||
)
|
||||
|
||||
shapes_128 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 128, 32, 32),
|
||||
( 1, 2048, 2048, 128, 32, 32),
|
||||
( 1, 4096, 4096, 128, 32, 32),
|
||||
( 1, 1024, 1024, 128, 32, 8),
|
||||
( 1, 2048, 2048, 128, 32, 8),
|
||||
( 1, 4096, 4096, 128, 32, 8),
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
shapes = shapes_64 + shapes_80 + shapes_128
|
||||
|
||||
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
|
||||
masks = [None, "bool", "causal"]
|
||||
|
||||
print(
|
||||
" B, qsl, ksl, hdim, n_qh, n_kvh, t, dtype, mask, t_unfs, t_fuse, diff%"
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
for transpose in transposes:
|
||||
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
|
||||
)
|
||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||
t_str = 1 if transpose else 0
|
||||
print(
|
||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
for mask_in in masks:
|
||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||
B,
|
||||
qsl,
|
||||
ksl,
|
||||
head_dim,
|
||||
n_q_heads,
|
||||
n_kv_heads,
|
||||
dtype,
|
||||
transpose,
|
||||
mask_in,
|
||||
)
|
||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||
t_str = 1 if transpose else 0
|
||||
print(
|
||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
||||
@@ -8,14 +8,23 @@ L = 16384
|
||||
H = 32
|
||||
H_k = H // 4
|
||||
D = 128
|
||||
V = 128
|
||||
dtype = mx.float16
|
||||
loops = 10
|
||||
|
||||
|
||||
def attention(q, k, v, mask=None):
|
||||
def upproject(x, w):
|
||||
if w is None:
|
||||
return x
|
||||
else:
|
||||
return x @ w.T
|
||||
|
||||
|
||||
def attention(q, k, v, mask=None, w=None):
|
||||
def _sdpa(q, k, v):
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
_, _, _, V = v.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
k = k[:, :, None, :, :]
|
||||
v = v[:, :, None, :, :]
|
||||
@@ -25,16 +34,18 @@ def attention(q, k, v, mask=None):
|
||||
s = mx.where(m, s, mx.finfo(s.dtype).min)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ v
|
||||
return o.reshape(B, Hq, L, D)
|
||||
return o.reshape(B, Hq, L, V)
|
||||
|
||||
for i in range(loops):
|
||||
q = _sdpa(q, k, v)
|
||||
q = upproject(q, w)
|
||||
return q
|
||||
|
||||
|
||||
def sdpa(q, k, v, mask=None):
|
||||
def sdpa(q, k, v, mask=None, w=None):
|
||||
for i in range(loops):
|
||||
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=mask)
|
||||
q = upproject(q, w)
|
||||
return q
|
||||
|
||||
|
||||
@@ -42,34 +53,37 @@ def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(attention, q, k, v)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
||||
mx.eval(q, k, v, w)
|
||||
time_fn(attention, q, k, v, w=w)
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(sdpa, q, k, v)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
||||
mx.eval(q, k, v, w)
|
||||
time_fn(sdpa, q, k, v, w=w)
|
||||
|
||||
|
||||
def time_self_attention_sdpa_with_mask():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, V)).astype(dtype)
|
||||
w = mx.random.uniform(shape=(D, V)).astype(dtype) if V != D else None
|
||||
mask = mx.full((L,), True)
|
||||
mask[L // 2 :] = False
|
||||
mx.eval(q, k, v, mask)
|
||||
mx.eval(q, k, v, mask, w)
|
||||
|
||||
def sdpa_mask(*args):
|
||||
return sdpa(*args, mask=mask)
|
||||
return sdpa(*args, mask=mask, w=w)
|
||||
|
||||
def attention_mask(*args):
|
||||
return attention(*args, mask=mask)
|
||||
return attention(*args, mask=mask, w=w)
|
||||
|
||||
time_fn(attention_mask, q, k, v)
|
||||
time_fn(sdpa_mask, q, k, v)
|
||||
|
||||
@@ -51,6 +51,20 @@ def time_maximum():
|
||||
time_fn(mx.maximum, a, b)
|
||||
|
||||
|
||||
def time_max():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.max, a, 0)
|
||||
|
||||
|
||||
def time_min():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.min, a, 0)
|
||||
|
||||
|
||||
def time_negative():
|
||||
a = mx.random.uniform(shape=(10000, 1000))
|
||||
mx.eval(a)
|
||||
@@ -108,6 +122,8 @@ if __name__ == "__main__":
|
||||
|
||||
time_add()
|
||||
time_matmul()
|
||||
time_min()
|
||||
time_max()
|
||||
time_maximum()
|
||||
time_exp()
|
||||
time_negative()
|
||||
|
||||
55
benchmarks/python/synchronize_bench.py
Normal file
55
benchmarks/python/synchronize_bench.py
Normal file
@@ -0,0 +1,55 @@
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
rank = mx.distributed.init().rank()
|
||||
|
||||
|
||||
def timeit(fn, a):
|
||||
|
||||
# warmup
|
||||
for _ in range(5):
|
||||
mx.eval(fn(a))
|
||||
|
||||
its = 10
|
||||
tic = time.perf_counter()
|
||||
for _ in range(its):
|
||||
mx.eval(fn(a))
|
||||
toc = time.perf_counter()
|
||||
ms = 1000 * (toc - tic) / its
|
||||
return ms
|
||||
|
||||
|
||||
def all_reduce_benchmark():
|
||||
a = mx.ones((5, 5), mx.int32)
|
||||
|
||||
its_per_eval = 100
|
||||
|
||||
def fn(x):
|
||||
for _ in range(its_per_eval):
|
||||
x = mx.distributed.all_sum(x)
|
||||
x = x - 1
|
||||
return x
|
||||
|
||||
ms = timeit(fn, a) / its_per_eval
|
||||
if rank == 0:
|
||||
print(f"All Reduce: time per iteration {ms:.6f} (ms)")
|
||||
|
||||
|
||||
def all_gather_benchmark():
|
||||
a = mx.ones((5, 5), mx.int32)
|
||||
its_per_eval = 100
|
||||
|
||||
def fn(x):
|
||||
for _ in range(its_per_eval):
|
||||
x = mx.distributed.all_gather(x)[0]
|
||||
return x
|
||||
|
||||
ms = timeit(fn, a) / its_per_eval
|
||||
if rank == 0:
|
||||
print(f"All gather: time per iteration {ms:.6f} (ms)")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
all_reduce_benchmark()
|
||||
all_gather_benchmark()
|
||||
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
||||
@@ -1,5 +1,7 @@
|
||||
include(CMakeParseArguments)
|
||||
|
||||
# clang format off
|
||||
#
|
||||
# ##############################################################################
|
||||
# Build metal library
|
||||
#
|
||||
@@ -9,11 +11,14 @@ include(CMakeParseArguments)
|
||||
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
|
||||
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
|
||||
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
|
||||
# files (like headers)
|
||||
# files (like headers) DEBUG: Boolean, if true, enables debug compile options
|
||||
# for this specific library. If not provided, uses global MLX_METAL_DEBUG.
|
||||
#
|
||||
# clang format on
|
||||
|
||||
macro(mlx_build_metallib)
|
||||
# Parse args
|
||||
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
|
||||
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY DEBUG)
|
||||
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
|
||||
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
|
||||
|
||||
@@ -21,7 +26,11 @@ macro(mlx_build_metallib)
|
||||
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
|
||||
|
||||
# Collect compile options
|
||||
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
|
||||
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math -Wno-c++17-extensions)
|
||||
if(MLX_METAL_DEBUG OR MTLLIB_DEBUG)
|
||||
set(MTLLIB_COMPILE_OPTIONS ${MTLLIB_COMPILE_OPTIONS} -gline-tables-only
|
||||
-frecord-sources)
|
||||
endif()
|
||||
|
||||
# Prepare metallib build command
|
||||
add_custom_command(
|
||||
|
||||
@@ -13,7 +13,7 @@ EXCLUDE_PATTERNS = */private/*
|
||||
CREATE_SUBDIRS = NO
|
||||
FULL_PATH_NAMES = YES
|
||||
RECURSIVE = YES
|
||||
GENERATE_HTML = YES
|
||||
GENERATE_HTML = NO
|
||||
GENERATE_LATEX = NO
|
||||
GENERATE_XML = YES
|
||||
XML_PROGRAMLISTING = YES
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
sphinx-copybutton
|
||||
mlx
|
||||
|
||||
@@ -10,7 +10,7 @@ import mlx.core as mx
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "MLX"
|
||||
copyright = "2023, MLX Contributors"
|
||||
copyright = "2023, Apple"
|
||||
author = "MLX Contributors"
|
||||
version = ".".join(mx.__version__.split(".")[:3])
|
||||
release = version
|
||||
@@ -18,6 +18,7 @@ release = version
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
extensions = [
|
||||
"sphinx_copybutton",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
|
||||
@@ -8,23 +8,26 @@ MLX supports writing custom Metal kernels through the Python and C++ APIs.
|
||||
Simple Example
|
||||
--------------
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Let's write a custom kernel that computes ``exp`` elementwise:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
T tmp = inp[elem];
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
T tmp = inp[elem];
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
outputs = kernel(
|
||||
inputs=[a],
|
||||
template=[("T", mx.float32)],
|
||||
@@ -39,8 +42,13 @@ Let's write a custom kernel that computes ``exp`` elementwise:
|
||||
b = exp_elementwise(a)
|
||||
assert mx.allclose(b, mx.exp(a))
|
||||
|
||||
Every time you make a kernel, a new Metal library is created and possibly
|
||||
JIT compiled. To reduce the overhead from that, build the kernel once with
|
||||
:func:`fast.metal_kernel` and then use it many times.
|
||||
|
||||
.. note::
|
||||
We are only required to pass the body of the Metal kernel in ``source``.
|
||||
Only pass the body of the Metal kernel in ``source``. The function
|
||||
signature is generated automatically.
|
||||
|
||||
The full function signature will be generated using:
|
||||
|
||||
@@ -78,44 +86,52 @@ Putting this all together, the generated function signature for ``myexp`` is as
|
||||
|
||||
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
|
||||
|
||||
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
|
||||
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
|
||||
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
|
||||
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads
|
||||
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_
|
||||
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into
|
||||
``threadgroup`` size threadgroups. For optimal performance, each thread group
|
||||
dimension should be less than or equal to the corresponding grid dimension.
|
||||
|
||||
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
|
||||
Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the
|
||||
generated code for debugging purposes.
|
||||
|
||||
Using Shape/Strides
|
||||
-------------------
|
||||
|
||||
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
|
||||
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
|
||||
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
|
||||
when indexing.
|
||||
:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which
|
||||
is ``True`` by default. This will copy the array inputs if needed
|
||||
before the kernel is launched to ensure that the memory layout is row
|
||||
contiguous. Generally this makes writing the kernel easier, since we don't
|
||||
have to worry about gaps or the ordering of the dims when indexing.
|
||||
|
||||
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
|
||||
input array ``a`` if any are present in ``source``.
|
||||
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
|
||||
If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes
|
||||
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are
|
||||
present in ``source``. We can then use MLX's built in indexing utils to fetch
|
||||
the right elements for each thread.
|
||||
|
||||
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
|
||||
Let's convert ``myexp`` above to support arbitrarily strided arrays without
|
||||
relying on a copy from ``ensure_row_contiguous``:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
||||
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
|
||||
T tmp = inp[loc];
|
||||
// Output arrays are always row contiguous
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
||||
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
|
||||
T tmp = inp[loc];
|
||||
// Output arrays are always row contiguous
|
||||
out[elem] = metal::exp(tmp);
|
||||
"""
|
||||
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source
|
||||
)
|
||||
outputs = kernel(
|
||||
inputs=[a],
|
||||
template=[("T", mx.float32)],
|
||||
@@ -123,7 +139,6 @@ Let's convert ``myexp`` above to support arbitrarily strided arrays without rely
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
@@ -142,137 +157,139 @@ We'll start with the following MLX implementation using standard ops:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def grid_sample_ref(x, grid):
|
||||
N, H_in, W_in, _ = x.shape
|
||||
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
|
||||
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
|
||||
def grid_sample_ref(x, grid):
|
||||
N, H_in, W_in, _ = x.shape
|
||||
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
|
||||
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
|
||||
|
||||
ix_nw = mx.floor(ix).astype(mx.int32)
|
||||
iy_nw = mx.floor(iy).astype(mx.int32)
|
||||
ix_nw = mx.floor(ix).astype(mx.int32)
|
||||
iy_nw = mx.floor(iy).astype(mx.int32)
|
||||
|
||||
ix_ne = ix_nw + 1
|
||||
iy_ne = iy_nw
|
||||
ix_ne = ix_nw + 1
|
||||
iy_ne = iy_nw
|
||||
|
||||
ix_sw = ix_nw
|
||||
iy_sw = iy_nw + 1
|
||||
ix_sw = ix_nw
|
||||
iy_sw = iy_nw + 1
|
||||
|
||||
ix_se = ix_nw + 1
|
||||
iy_se = iy_nw + 1
|
||||
ix_se = ix_nw + 1
|
||||
iy_se = iy_nw + 1
|
||||
|
||||
nw = (ix_se - ix) * (iy_se - iy)
|
||||
ne = (ix - ix_sw) * (iy_sw - iy)
|
||||
sw = (ix_ne - ix) * (iy - iy_ne)
|
||||
se = (ix - ix_nw) * (iy - iy_nw)
|
||||
nw = (ix_se - ix) * (iy_se - iy)
|
||||
ne = (ix - ix_sw) * (iy_sw - iy)
|
||||
sw = (ix_ne - ix) * (iy - iy_ne)
|
||||
se = (ix - ix_nw) * (iy - iy_nw)
|
||||
|
||||
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
|
||||
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
|
||||
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
|
||||
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
|
||||
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
|
||||
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
|
||||
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
|
||||
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
|
||||
|
||||
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
|
||||
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
|
||||
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
|
||||
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
|
||||
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
|
||||
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
|
||||
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
|
||||
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
|
||||
|
||||
I_nw *= mask_nw[..., None]
|
||||
I_ne *= mask_ne[..., None]
|
||||
I_sw *= mask_sw[..., None]
|
||||
I_se *= mask_se[..., None]
|
||||
I_nw *= mask_nw[..., None]
|
||||
I_ne *= mask_ne[..., None]
|
||||
I_sw *= mask_sw[..., None]
|
||||
I_se *= mask_se[..., None]
|
||||
|
||||
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
|
||||
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
|
||||
|
||||
return output
|
||||
return output
|
||||
|
||||
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
|
||||
Now let's use :func:`custom_function` together with :func:`fast.metal_kernel`
|
||||
to write a fast GPU kernel for both the forward and backward passes.
|
||||
|
||||
First we'll implement the forward pass as a fused kernel:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@mx.custom_function
|
||||
def grid_sample(x, grid):
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
|
||||
assert x.ndim == 4, "`x` must be 4D."
|
||||
assert grid.ndim == 4, "`grid` must be 4D."
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
out_shape = (B, gN, gM, C)
|
||||
uint grid_idx = elem / C * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
|
||||
uint grid_idx = elem / C * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
int batch_idx = elem / C / gH / gW * b_stride;
|
||||
int channel_idx = elem % C;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
|
||||
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
|
||||
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
|
||||
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
|
||||
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
|
||||
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
|
||||
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
|
||||
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
|
||||
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
||||
"""
|
||||
|
||||
int batch_idx = elem / C / gH / gW * b_stride;
|
||||
int channel_idx = elem % C;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample",
|
||||
input_names=["x", "grid"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
|
||||
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
|
||||
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
|
||||
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
|
||||
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
|
||||
@mx.custom_function
|
||||
def grid_sample(x, grid):
|
||||
|
||||
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
|
||||
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
|
||||
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
|
||||
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
|
||||
assert x.ndim == 4, "`x` must be 4D."
|
||||
assert grid.ndim == 4, "`grid` must be 4D."
|
||||
|
||||
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
||||
"""
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample",
|
||||
input_names=["x", "grid"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
)
|
||||
outputs = kernel(
|
||||
inputs=[x, grid],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[out_shape],
|
||||
output_dtypes=[x.dtype],
|
||||
grid=(np.prod(out_shape), 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
)
|
||||
return outputs[0]
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
out_shape = (B, gN, gM, C)
|
||||
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
|
||||
outputs = kernel(
|
||||
inputs=[x, grid],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[out_shape],
|
||||
output_dtypes=[x.dtype],
|
||||
grid=(np.prod(out_shape), 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
For a reasonably sized input such as:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
x.shape = (8, 1024, 1024, 64)
|
||||
grid.shape = (8, 256, 256, 2)
|
||||
x.shape = (8, 1024, 1024, 64)
|
||||
grid.shape = (8, 256, 256, 2)
|
||||
|
||||
On an M1 Max, we see a big performance improvement:
|
||||
|
||||
@@ -281,11 +298,11 @@ On an M1 Max, we see a big performance improvement:
|
||||
Grid Sample VJP
|
||||
---------------
|
||||
|
||||
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
|
||||
its custom vjp transform so MLX can differentiate it.
|
||||
Since we decorated ``grid_sample`` with :func:`custom_function`, we can now
|
||||
define its custom vjp transform so MLX can differentiate it.
|
||||
|
||||
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
|
||||
requires a few extra ``mx.fast.metal_kernel`` features:
|
||||
requires a few extra :func:`fast.metal_kernel` features:
|
||||
|
||||
* ``init_value=0``
|
||||
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
|
||||
@@ -299,128 +316,129 @@ We can then implement the backwards pass as follows:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@grid_sample.vjp
|
||||
def grid_sample_vjp(primals, cotangent, _):
|
||||
x, grid = primals
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
// Pad C to the nearest larger simdgroup size multiple
|
||||
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
|
||||
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
|
||||
source = """
|
||||
uint elem = thread_position_in_grid.x;
|
||||
int H = x_shape[1];
|
||||
int W = x_shape[2];
|
||||
int C = x_shape[3];
|
||||
// Pad C to the nearest larger simdgroup size multiple
|
||||
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
|
||||
int gH = grid_shape[1];
|
||||
int gW = grid_shape[2];
|
||||
uint grid_idx = elem / C_padded * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
|
||||
int w_stride = C;
|
||||
int h_stride = W * w_stride;
|
||||
int b_stride = H * h_stride;
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
|
||||
uint grid_idx = elem / C_padded * 2;
|
||||
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
||||
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
|
||||
int ix_nw = floor(ix);
|
||||
int iy_nw = floor(iy);
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
|
||||
int ix_ne = ix_nw + 1;
|
||||
int iy_ne = iy_nw;
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
|
||||
int ix_sw = ix_nw;
|
||||
int iy_sw = iy_nw + 1;
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
|
||||
int ix_se = ix_nw + 1;
|
||||
int iy_se = iy_nw + 1;
|
||||
int batch_idx = elem / C_padded / gH / gW * b_stride;
|
||||
int channel_idx = elem % C_padded;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
|
||||
T nw = (ix_se - ix) * (iy_se - iy);
|
||||
T ne = (ix - ix_sw) * (iy_sw - iy);
|
||||
T sw = (ix_ne - ix) * (iy - iy_ne);
|
||||
T se = (ix - ix_nw) * (iy - iy_nw);
|
||||
T gix = T(0);
|
||||
T giy = T(0);
|
||||
if (channel_idx < C) {
|
||||
int cot_index = elem / C_padded * C + channel_idx;
|
||||
T cot = cotangent[cot_index];
|
||||
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
|
||||
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
|
||||
|
||||
int batch_idx = elem / C_padded / gH / gW * b_stride;
|
||||
int channel_idx = elem % C_padded;
|
||||
int base_idx = batch_idx + channel_idx;
|
||||
T I_nw = x[offset];
|
||||
gix -= I_nw * (iy_se - iy) * cot;
|
||||
giy -= I_nw * (ix_se - ix) * cot;
|
||||
}
|
||||
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
|
||||
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
|
||||
|
||||
T gix = T(0);
|
||||
T giy = T(0);
|
||||
if (channel_idx < C) {
|
||||
int cot_index = elem / C_padded * C + channel_idx;
|
||||
T cot = cotangent[cot_index];
|
||||
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
|
||||
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
|
||||
T I_ne = x[offset];
|
||||
gix += I_ne * (iy_sw - iy) * cot;
|
||||
giy -= I_ne * (ix - ix_sw) * cot;
|
||||
}
|
||||
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
|
||||
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
|
||||
|
||||
T I_nw = x[offset];
|
||||
gix -= I_nw * (iy_se - iy) * cot;
|
||||
giy -= I_nw * (ix_se - ix) * cot;
|
||||
}
|
||||
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
|
||||
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
|
||||
T I_sw = x[offset];
|
||||
gix -= I_sw * (iy - iy_ne) * cot;
|
||||
giy += I_sw * (ix_ne - ix) * cot;
|
||||
}
|
||||
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
|
||||
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
|
||||
|
||||
T I_ne = x[offset];
|
||||
gix += I_ne * (iy_sw - iy) * cot;
|
||||
giy -= I_ne * (ix - ix_sw) * cot;
|
||||
}
|
||||
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
|
||||
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
|
||||
T I_se = x[offset];
|
||||
gix += I_se * (iy - iy_nw) * cot;
|
||||
giy += I_se * (ix - ix_nw) * cot;
|
||||
}
|
||||
}
|
||||
|
||||
T I_sw = x[offset];
|
||||
gix -= I_sw * (iy - iy_ne) * cot;
|
||||
giy += I_sw * (ix_ne - ix) * cot;
|
||||
}
|
||||
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
|
||||
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
|
||||
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
|
||||
T gix_mult = W / 2;
|
||||
T giy_mult = H / 2;
|
||||
|
||||
T I_se = x[offset];
|
||||
gix += I_se * (iy - iy_nw) * cot;
|
||||
giy += I_se * (ix - ix_nw) * cot;
|
||||
}
|
||||
}
|
||||
// Reduce across each simdgroup first.
|
||||
// This is much faster than relying purely on atomics.
|
||||
gix = simd_sum(gix);
|
||||
giy = simd_sum(giy);
|
||||
|
||||
T gix_mult = W / 2;
|
||||
T giy_mult = H / 2;
|
||||
if (thread_index_in_simdgroup == 0) {
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
|
||||
}
|
||||
"""
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample_grad",
|
||||
input_names=["x", "grid", "cotangent"],
|
||||
output_names=["x_grad", "grid_grad"],
|
||||
source=source,
|
||||
atomic_outputs=True,
|
||||
)
|
||||
|
||||
// Reduce across each simdgroup first.
|
||||
// This is much faster than relying purely on atomics.
|
||||
gix = simd_sum(gix);
|
||||
giy = simd_sum(giy);
|
||||
@grid_sample.vjp
|
||||
def grid_sample_vjp(primals, cotangent, _):
|
||||
x, grid = primals
|
||||
B, _, _, C = x.shape
|
||||
_, gN, gM, D = grid.shape
|
||||
|
||||
if (thread_index_in_simdgroup == 0) {
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
|
||||
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
|
||||
}
|
||||
"""
|
||||
kernel = mx.fast.metal_kernel(
|
||||
name="grid_sample_grad",
|
||||
input_names=["x", "grid", "cotangent"],
|
||||
output_names=["x_grad", "grid_grad"],
|
||||
source=source,
|
||||
atomic_outputs=True,
|
||||
)
|
||||
# pad the output channels to simd group size
|
||||
# so that our `simd_sum`s don't overlap.
|
||||
simdgroup_size = 32
|
||||
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
|
||||
grid_size = B * gN * gM * C_padded
|
||||
outputs = kernel(
|
||||
inputs=[x, grid, cotangent],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[x.shape, grid.shape],
|
||||
output_dtypes=[x.dtype, x.dtype],
|
||||
grid=(grid_size, 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
init_value=0,
|
||||
)
|
||||
return outputs[0], outputs[1]
|
||||
assert D == 2, "Last dim of `grid` must be size 2."
|
||||
|
||||
# pad the output channels to simd group size
|
||||
# so that our `simd_sum`s don't overlap.
|
||||
simdgroup_size = 32
|
||||
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
|
||||
grid_size = B * gN * gM * C_padded
|
||||
outputs = kernel(
|
||||
inputs=[x, grid, cotangent],
|
||||
template=[("T", x.dtype)],
|
||||
output_shapes=[x.shape, grid.shape],
|
||||
output_dtypes=[x.dtype, x.dtype],
|
||||
grid=(grid_size, 1, 1),
|
||||
threadgroup=(256, 1, 1),
|
||||
init_value=0,
|
||||
)
|
||||
return outputs[0], outputs[1]
|
||||
|
||||
There's an even larger speed up for the vjp:
|
||||
|
||||
|
||||
@@ -22,12 +22,12 @@ You can do that in MLX directly:
|
||||
This function performs that operation while leaving the implementation and
|
||||
function transformations to MLX.
|
||||
|
||||
However you may need to customize the underlying implementation, perhaps to
|
||||
make it faster or for custom differentiation. In this tutorial we will go
|
||||
through adding custom extensions. It will cover:
|
||||
However, you may want to customize the underlying implementation, perhaps to
|
||||
make it faster. In this tutorial we will go through adding custom extensions.
|
||||
It will cover:
|
||||
|
||||
* The structure of the MLX library.
|
||||
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||
* Implementing a CPU operation.
|
||||
* Implementing a GPU operation using metal.
|
||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||
* Building a custom extension and binding it to python.
|
||||
@@ -45,7 +45,7 @@ Operations
|
||||
Operations are the front-end functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||
We would like an operation :meth:`axpby` that takes in two arrays, ``x`` and
|
||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||
C++:
|
||||
|
||||
@@ -55,7 +55,7 @@ C++:
|
||||
* Scale and sum two vectors element-wise
|
||||
* z = alpha * x + beta * y
|
||||
*
|
||||
* Follow numpy style broadcasting between x and y
|
||||
* Use NumPy-style broadcasting between x and y
|
||||
* Inputs are upcasted to floats if needed
|
||||
**/
|
||||
array axpby(
|
||||
@@ -66,7 +66,7 @@ C++:
|
||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||
);
|
||||
|
||||
The simplest way to this operation is in terms of existing operations:
|
||||
The simplest way to implement this is with existing operations:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -93,9 +93,9 @@ Primitives
|
||||
^^^^^^^^^^^
|
||||
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create outputs arrays given a input arrays. Further, a
|
||||
defines how to create output arrays given input arrays. Further, a
|
||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
|
||||
more concrete:
|
||||
|
||||
.. code-block:: C++
|
||||
@@ -128,7 +128,7 @@ more concrete:
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
@@ -138,13 +138,13 @@ more concrete:
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
@@ -153,9 +153,6 @@ more concrete:
|
||||
private:
|
||||
float alpha_;
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
};
|
||||
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||
@@ -188,7 +185,7 @@ Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||
|
||||
// Upcast to float32 for non-floating point inputs x and y
|
||||
auto out_dtype = is_floating_point(promoted_dtype)
|
||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
||||
? promoted_dtype
|
||||
: promote_types(promoted_dtype, float32);
|
||||
|
||||
@@ -234,49 +231,57 @@ the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
||||
Implementing the CPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Let's start by implementing a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
Let's start by implementing :meth:`Axpby::eval_cpu`.
|
||||
|
||||
Our naive method will go over each element of the output array, find the
|
||||
The method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
template <typename T>
|
||||
void axpby_impl(
|
||||
const array& x,
|
||||
const array& y,
|
||||
array& out,
|
||||
float alpha_,
|
||||
float beta_) {
|
||||
// We only allocate memory when we are ready to fill the output
|
||||
// malloc_or_wait synchronously allocates available memory
|
||||
// There may be a wait executed here if the allocation is requested
|
||||
// under memory-pressured conditions
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
template <typename T>
|
||||
void axpby_impl(
|
||||
const mx::array& x,
|
||||
const mx::array& y,
|
||||
mx::array& out,
|
||||
float alpha_,
|
||||
float beta_,
|
||||
mx::Stream stream) {
|
||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
||||
|
||||
// Collect input and output data pointers
|
||||
const T* x_ptr = x.data<T>();
|
||||
const T* y_ptr = y.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
// Get the CPU command encoder and register input and output arrays
|
||||
auto& encoder = mx::cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(y);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
// Cast alpha and beta to the relevant types
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
// Launch the CPU kernel
|
||||
encoder.dispatch([x_ptr = x.data<T>(),
|
||||
y_ptr = y.data<T>(),
|
||||
out_ptr = out.data<T>(),
|
||||
size = out.size(),
|
||||
shape = out.shape(),
|
||||
x_strides = x.strides(),
|
||||
y_strides = y.strides(),
|
||||
alpha_,
|
||||
beta_]() {
|
||||
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
|
||||
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
|
||||
// Cast alpha and beta to the relevant types
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
}
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
||||
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
||||
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
Our implementation should work for all incoming floating point arrays.
|
||||
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
@@ -284,112 +289,32 @@ Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
return axpby_impl<float>(x, y, out, alpha_, beta_);
|
||||
} else if (out.dtype() == float16) {
|
||||
return axpby_impl<float16_t>(x, y, out, alpha_, beta_);
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
return axpby_impl<bfloat16_t>(x, y, out, alpha_, beta_);
|
||||
} else if (out.dtype() == complex64) {
|
||||
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[Axpby] Only supports floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||
provided by the Accelerate_ framework for a faster implementation in certain
|
||||
cases:
|
||||
|
||||
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||
floats. We can only use it for ``float32`` types.
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||
elements have fixed strides between them. We only direct to Accelerate
|
||||
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||
MLX expects to write the output to a new array. We must copy the elements
|
||||
of ``y`` into the output and use that as an input to ``axpby``.
|
||||
|
||||
Let's write an implementation that uses Accelerate in the right conditions.
|
||||
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||
:func:`catlas_saxpby` from accelerate.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
template <typename T>
|
||||
void axpby_impl_accelerate(
|
||||
const array& x,
|
||||
const array& y,
|
||||
array& out,
|
||||
float alpha_,
|
||||
float beta_) {
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
|
||||
// Get x and y pointers for catlas_saxpby
|
||||
const T* x_ptr = x.data<T>();
|
||||
T* y_ptr = out.data<T>();
|
||||
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// Call the inplace accelerate operator
|
||||
catlas_saxpby(
|
||||
/* N = */ out.size(),
|
||||
/* ALPHA = */ alpha,
|
||||
/* X = */ x_ptr,
|
||||
/* INCX = */ 1,
|
||||
/* BETA = */ beta,
|
||||
/* Y = */ y_ptr,
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||
:meth:`Axpby::eval_cpu`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
((x.flags().row_contiguous && y.flags().row_contiguous) ||
|
||||
(x.flags().col_contiguous && y.flags().col_contiguous))) {
|
||||
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common back-end if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == mx::float32) {
|
||||
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::float16) {
|
||||
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::bfloat16) {
|
||||
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::complex64) {
|
||||
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||
you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
primitive here.
|
||||
|
||||
Implementing the GPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
@@ -466,17 +391,17 @@ below.
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
// Allocate output memory
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
std::stream kname;
|
||||
kname = "axpby_general_" + type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
@@ -544,7 +469,7 @@ one we just defined:
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
// Forward mode diff that pushes along the tangents
|
||||
// The jvp transform on the primitive can built with ops
|
||||
// The jvp transform on the primitive can be built with ops
|
||||
// that are scheduled on the same stream as the primitive
|
||||
|
||||
// If argnums = {0}, we only push along x in which case the
|
||||
@@ -556,7 +481,7 @@ one we just defined:
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// If argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
@@ -810,7 +735,7 @@ Let's look at a simple script and its results:
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
print(f"c is correct: {mx.all(c == 6.0).item()}")
|
||||
|
||||
Output:
|
||||
|
||||
@@ -818,13 +743,13 @@ Output:
|
||||
|
||||
c shape: [3, 4]
|
||||
c dtype: float32
|
||||
c correctness: True
|
||||
c is correct: True
|
||||
|
||||
Results
|
||||
^^^^^^^
|
||||
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
with the naive :meth:`simple_axpby` we first defined.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -832,13 +757,11 @@ with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
from mlx_sample_extensions import axpby
|
||||
import time
|
||||
|
||||
mx.set_default_device(mx.cpu)
|
||||
|
||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||
return alpha * x + beta * y
|
||||
|
||||
M = 256
|
||||
N = 512
|
||||
M = 4096
|
||||
N = 4096
|
||||
|
||||
x = mx.random.normal((M, N))
|
||||
y = mx.random.normal((M, N))
|
||||
@@ -849,24 +772,24 @@ with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
|
||||
def bench(f):
|
||||
# Warm up
|
||||
for i in range(100):
|
||||
for i in range(5):
|
||||
z = f(x, y, alpha, beta)
|
||||
mx.eval(z)
|
||||
|
||||
# Timed run
|
||||
s = time.time()
|
||||
for i in range(5000):
|
||||
for i in range(100):
|
||||
z = f(x, y, alpha, beta)
|
||||
mx.eval(z)
|
||||
e = time.time()
|
||||
return e - s
|
||||
return 1000 * (e - s) / 100
|
||||
|
||||
simple_time = bench(simple_axpby)
|
||||
custom_time = bench(axpby)
|
||||
|
||||
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||
print(f"Simple axpby: {simple_time:.3f} ms | Custom axpby: {custom_time:.3f} ms")
|
||||
|
||||
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||
The results are ``Simple axpby: 1.559 ms | Custom axpby: 0.774 ms``. We see
|
||||
modest improvements right away!
|
||||
|
||||
This operation is now good to be used to build other operations, in
|
||||
|
||||
@@ -70,6 +70,8 @@ are the CPU and GPU.
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/cuda
|
||||
python/memory_management
|
||||
python/nn
|
||||
python/optimizers
|
||||
python/distributed
|
||||
|
||||
@@ -13,22 +13,48 @@ silicon computer is
|
||||
|
||||
pip install mlx
|
||||
|
||||
To install from PyPI you must meet the following requirements:
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
- macOS >= 13.5
|
||||
- Using a native Python >= 3.10
|
||||
- macOS >= 14.0
|
||||
|
||||
.. note::
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
MLX is only available on devices running macOS >= 14.0 and higher.
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX is also available on conda-forge. To install MLX with conda do:
|
||||
MLX has a CUDA backend which you can install with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
conda install conda-forge::mlx
|
||||
pip install mlx[cuda]
|
||||
|
||||
To install the CUDA package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Nvidia architecture >= SM 7.0 (Volta)
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
For a CPU-only version of MLX that runs on Linux use:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install mlx[cpu]
|
||||
|
||||
To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
Troubleshooting
|
||||
@@ -65,6 +91,8 @@ Build Requirements
|
||||
Python API
|
||||
^^^^^^^^^^
|
||||
|
||||
.. _python install:
|
||||
|
||||
To build and install the MLX python library from source, first, clone MLX from
|
||||
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
|
||||
|
||||
@@ -76,20 +104,20 @@ Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||
pip install .
|
||||
|
||||
For developing, install the package with development dependencies, and use an
|
||||
editable install:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||
pip install -e ".[dev]"
|
||||
|
||||
Once the development dependencies are installed, you can build faster with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||
python setup.py build_ext --inplace
|
||||
|
||||
Run the tests with:
|
||||
|
||||
@@ -107,6 +135,8 @@ IDE:
|
||||
C++ API
|
||||
^^^^^^^
|
||||
|
||||
.. _cpp install:
|
||||
|
||||
Currently, MLX must be built and installed from source.
|
||||
|
||||
Similarly to the python library, to build and install the MLX C++ library start
|
||||
@@ -185,6 +215,7 @@ should point to the path to the built metal library.
|
||||
|
||||
xcrun -sdk macosx --show-sdk-version
|
||||
|
||||
|
||||
Binary Size Minimization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@@ -213,6 +244,50 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists across reboots.
|
||||
|
||||
Linux
|
||||
^^^^^
|
||||
|
||||
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
|
||||
For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
apt-get update -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
|
||||
From here follow the instructions to install either the :ref:`Python <python
|
||||
install>` or :ref:`C++ <cpp install>` APIs.
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
|
||||
and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
||||
|
||||
To build the C++ package run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_CUDA=ON && make -j
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
|
||||
@@ -19,6 +19,8 @@ Array
|
||||
array.ndim
|
||||
array.shape
|
||||
array.size
|
||||
array.real
|
||||
array.imag
|
||||
array.abs
|
||||
array.all
|
||||
array.any
|
||||
@@ -38,6 +40,7 @@ Array
|
||||
array.log10
|
||||
array.log1p
|
||||
array.log2
|
||||
array.logcumsumexp
|
||||
array.logsumexp
|
||||
array.max
|
||||
array.mean
|
||||
|
||||
9
docs/src/python/cuda.rst
Normal file
9
docs/src/python/cuda.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
CUDA
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.cuda
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
@@ -51,11 +51,20 @@ The default floating point type is ``float32`` and the default integer type is
|
||||
* - ``float32``
|
||||
- 4
|
||||
- 32-bit float
|
||||
* - ``float64``
|
||||
- 4
|
||||
- 64-bit double
|
||||
* - ``complex64``
|
||||
- 8
|
||||
- 64-bit complex float
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
Arrays with type ``float64`` only work with CPU operations. Using
|
||||
``float64`` arrays on the GPU will result in an exception.
|
||||
|
||||
|
||||
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
||||
documentation for more information. Use :func:`issubdtype` to determine if one
|
||||
``dtype`` (or category) is a subtype of another category.
|
||||
|
||||
@@ -13,3 +13,4 @@ Fast
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
metal_kernel
|
||||
cuda_kernel
|
||||
|
||||
@@ -20,3 +20,5 @@ FFT
|
||||
irfft2
|
||||
rfftn
|
||||
irfftn
|
||||
fftshift
|
||||
ifftshift
|
||||
|
||||
@@ -5,8 +5,8 @@ Linear Algebra
|
||||
|
||||
.. currentmodule:: mlx.core.linalg
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
inv
|
||||
tri_inv
|
||||
@@ -16,5 +16,12 @@ Linear Algebra
|
||||
cross
|
||||
qr
|
||||
svd
|
||||
eigvals
|
||||
eig
|
||||
eigvalsh
|
||||
eigh
|
||||
lu
|
||||
lu_factor
|
||||
pinv
|
||||
solve
|
||||
solve_triangular
|
||||
|
||||
16
docs/src/python/memory_management.rst
Normal file
16
docs/src/python/memory_management.rst
Normal file
@@ -0,0 +1,16 @@
|
||||
Memory Management
|
||||
=================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
get_active_memory
|
||||
get_peak_memory
|
||||
reset_peak_memory
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
set_wired_limit
|
||||
clear_cache
|
||||
@@ -8,13 +8,5 @@ Metal
|
||||
|
||||
is_available
|
||||
device_info
|
||||
get_active_memory
|
||||
get_peak_memory
|
||||
reset_peak_memory
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
set_wired_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
||||
|
||||
@@ -174,6 +174,7 @@ In detail:
|
||||
|
||||
value_and_grad
|
||||
quantize
|
||||
average_gradients
|
||||
|
||||
.. toctree::
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ simple functions.
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu2
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
|
||||
@@ -50,6 +50,7 @@ Layers
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU2
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
|
||||
@@ -32,13 +32,16 @@ Operations
|
||||
atleast_2d
|
||||
atleast_3d
|
||||
bitwise_and
|
||||
bitwise_invert
|
||||
bitwise_or
|
||||
bitwise_xor
|
||||
block_masked_mm
|
||||
broadcast_arrays
|
||||
broadcast_to
|
||||
ceil
|
||||
clip
|
||||
concatenate
|
||||
contiguous
|
||||
conj
|
||||
conjugate
|
||||
convolve
|
||||
@@ -100,6 +103,7 @@ Operations
|
||||
log10
|
||||
log1p
|
||||
logaddexp
|
||||
logcumsumexp
|
||||
logical_not
|
||||
logical_and
|
||||
logical_or
|
||||
@@ -108,6 +112,7 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
median
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
|
||||
@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
state = tree_flatten(optimizer.state, destination={})
|
||||
mx.save_safetensors("optimizer.safetensors", state)
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
state = tree_unflatten(mx.load("optimizer.safetensors"))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
|
||||
@@ -18,3 +18,5 @@ Common Optimizers
|
||||
AdamW
|
||||
Adamax
|
||||
Lion
|
||||
MultiOptimizer
|
||||
Muon
|
||||
|
||||
@@ -9,6 +9,7 @@ Transforms
|
||||
:toctree: _autosummary
|
||||
|
||||
eval
|
||||
async_eval
|
||||
compile
|
||||
custom_function
|
||||
disable_compile
|
||||
|
||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
timeit(gelu, x)
|
||||
timeit(mx.compile(gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z), state
|
||||
return mx.exp(z)
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
|
||||
@@ -5,21 +5,28 @@ Distributed Communication
|
||||
|
||||
.. currentmodule:: mlx.core.distributed
|
||||
|
||||
MLX utilizes `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ to
|
||||
provide distributed communication operations that allow the computational cost
|
||||
of training or inference to be shared across many physical machines. You can
|
||||
see a list of the supported operations in the :ref:`API docs<distributed>`.
|
||||
MLX supports distributed communication operations that allow the computational cost
|
||||
of training or inference to be shared across many physical machines. At the
|
||||
moment we support three different communication backends:
|
||||
|
||||
* `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ a
|
||||
full-featured and mature distributed communications library
|
||||
* A **ring** backend of our own that uses native TCP sockets. It should be
|
||||
faster for thunderbolt connections, but it also works over Ethernet.
|
||||
* `nccl <https://developer.nvidia.com/nccl>`_, for use in CUDA environments.
|
||||
|
||||
The list of all currently supported operations and their documentation can be
|
||||
seen in the :ref:`API docs<distributed>`.
|
||||
|
||||
.. note::
|
||||
A lot of operations may not be supported or not as fast as they should be.
|
||||
Some operations may not be supported or not as fast as they should be.
|
||||
We are adding more and tuning the ones we have as we are figuring out the
|
||||
best way to do distributed computing on Macs using MLX.
|
||||
|
||||
Getting Started
|
||||
---------------
|
||||
|
||||
MLX already comes with the ability to "talk" to MPI if it is installed on the
|
||||
machine. The minimal distributed program in MLX is as simple as:
|
||||
A distributed program in MLX is as simple as:
|
||||
|
||||
.. code:: python
|
||||
|
||||
@@ -30,74 +37,78 @@ machine. The minimal distributed program in MLX is as simple as:
|
||||
print(world.rank(), x)
|
||||
|
||||
The program above sums the array ``mx.ones(10)`` across all
|
||||
distributed processes. If simply run with ``python``, however, only one
|
||||
process is launched and no distributed communication takes place.
|
||||
distributed processes. However, when this script is run with ``python`` only
|
||||
one process is launched and no distributed communication takes place. Namely,
|
||||
all operations in ``mx.distributed`` are noops when the distributed group has a
|
||||
size of one. This property allows us to avoid code that checks if we are in a
|
||||
distributed setting similar to the one below:
|
||||
|
||||
To launch the program in distributed mode we need to use ``mpirun`` or
|
||||
``mpiexec`` depending on the MPI installation. The simplest possible way is the
|
||||
following:
|
||||
.. code:: python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
x = ...
|
||||
world = mx.distributed.init()
|
||||
# No need for the check we can simply do x = mx.distributed.all_sum(x)
|
||||
if world.size() > 1:
|
||||
x = mx.distributed.all_sum(x)
|
||||
|
||||
Running Distributed Programs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
MLX provides ``mlx.launch`` a helper script to launch distributed programs.
|
||||
Continuing with our initial example we can run it on localhost with 4 processes using
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mpirun -np 2 python test.py
|
||||
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
$ mlx.launch -n 4 my_script.py
|
||||
3 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
2 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
1 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
0 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
|
||||
The above launches two processes on the same (local) machine and we can see
|
||||
both standard output streams. The processes send the array of 1s to each other
|
||||
and compute the sum which is printed. Launching with ``mpirun -np 4 ...`` would
|
||||
print 4 etc.
|
||||
|
||||
Installing MPI
|
||||
---------------
|
||||
|
||||
MPI can be installed with Homebrew, using the Anaconda package manager or
|
||||
compiled from source. Most of our testing is done using ``openmpi`` installed
|
||||
with the Anaconda package manager as follows:
|
||||
We can also run it on some remote hosts by providing their IPs (provided that
|
||||
the script exists on all hosts and they are reachable by ssh)
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ conda install openmpi
|
||||
$ mlx.launch --hosts ip1,ip2,ip3,ip4 my_script.py
|
||||
3 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
2 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
1 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
0 array([4, 4, 4, ..., 4, 4, 4], dtype=float32)
|
||||
|
||||
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
|
||||
so that MLX can find it and load it at runtime. This can simply be achieved by
|
||||
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun``.
|
||||
Consult the dedicated :doc:`usage guide<launching_distributed>` for more
|
||||
information on using ``mlx.launch``.
|
||||
|
||||
.. code:: shell
|
||||
Selecting Backend
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
|
||||
|
||||
Setting up Remote Hosts
|
||||
-----------------------
|
||||
|
||||
MPI can automatically connect to remote hosts and set up the communication over
|
||||
the network if the remote hosts can be accessed via ssh. A good checklist to
|
||||
debug connectivity issues is the following:
|
||||
|
||||
* ``ssh hostname`` works from all machines to all machines without asking for
|
||||
password or host confirmation
|
||||
* ``mpirun`` is accessible on all machines. You can call ``mpirun`` using its
|
||||
full path to force all machines to use a specific path.
|
||||
* Ensure that the ``hostname`` used by MPI is the one that you have configured
|
||||
in the ``.ssh/config`` files on all machines.
|
||||
You can select the backend you want to use when calling :func:`init` by passing
|
||||
one of ``{'any', 'ring', 'mpi', 'nccl'}``. When passing ``any``, MLX will try all
|
||||
available backends. If they all fail then a singleton group is created.
|
||||
|
||||
.. note::
|
||||
For an example hostname ``foo.bar.com`` MPI can use only ``foo`` as
|
||||
the hostname passed to ssh if the current hostname matches ``*.bar.com``.
|
||||
After a distributed backend is successfully initialized :func:`init` will
|
||||
return **the same backend** if called without arguments or with backend set to
|
||||
``any``.
|
||||
|
||||
An easy way to pass the host names to MPI is using a host file. A host file
|
||||
looks like the following, where ``host1`` and ``host2`` should be the fully
|
||||
qualified domain names or IPs for these hosts.
|
||||
The following examples aim to clarify the backend initialization logic in MLX:
|
||||
|
||||
.. code::
|
||||
.. code:: python
|
||||
|
||||
host1 slots=1
|
||||
host2 slots=1
|
||||
# Case 1: Initialize MPI regardless if it was possible to initialize the ring backend
|
||||
world = mx.distributed.init(backend="mpi")
|
||||
world2 = mx.distributed.init() # subsequent calls return the MPI backend!
|
||||
|
||||
When using MLX, it is very likely that you want to use 1 slot per host, ie one
|
||||
process per host. The hostfile also needs to contain the current
|
||||
host if you want to run on the local host. Passing the host file to
|
||||
``mpirun`` is simply done using the ``--hostfile`` command line argument.
|
||||
# Case 2: Initialize any backend
|
||||
world = mx.distributed.init(backend="any") # equivalent to no arguments
|
||||
world2 = mx.distributed.init() # same as above
|
||||
|
||||
# Case 3: Initialize both backends at the same time
|
||||
world_mpi = mx.distributed.init(backend="mpi")
|
||||
world_ring = mx.distributed.init(backend="ring")
|
||||
world_any = mx.distributed.init() # same as MPI because it was initialized first!
|
||||
|
||||
Training Example
|
||||
----------------
|
||||
@@ -155,13 +166,181 @@ everything else remaining the same.
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
Tuning All Reduce
|
||||
-----------------
|
||||
Utilizing ``nn.average_gradients``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We are working on improving the performance of all reduce on MLX but for now
|
||||
the two main things one can do to extract the most out of distributed training with MLX are:
|
||||
Although the code example above works correctly; it performs one communication
|
||||
per gradient. It is significantly more efficient to aggregate several gradients
|
||||
together and perform fewer communication steps.
|
||||
|
||||
1. Perform a few large reductions instead of many small ones to improve
|
||||
bandwidth and latency
|
||||
2. Pass ``--mca btl_tcp_links 4`` to ``mpirun`` to configure it to use 4 tcp
|
||||
connections between each host to improve bandwidth
|
||||
This is the purpose of :func:`mlx.nn.average_gradients`. The final code looks
|
||||
almost identical to the example above:
|
||||
|
||||
.. code:: python
|
||||
|
||||
model = ...
|
||||
optimizer = ...
|
||||
dataset = ...
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
for x, y in dataset:
|
||||
loss = step(model, x, y)
|
||||
mx.eval(loss, model.parameters())
|
||||
|
||||
|
||||
Getting Started with MPI
|
||||
------------------------
|
||||
|
||||
MLX already comes with the ability to "talk" to MPI if it is installed on the
|
||||
machine. Launching distributed MLX programs that use MPI can be done with
|
||||
``mpirun`` as expected. However, in the following examples we will be using
|
||||
``mlx.launch --backend mpi`` which takes care of some nuisances such as setting
|
||||
absolute paths for the ``mpirun`` executable and the ``libmpi.dyld`` shared
|
||||
library.
|
||||
|
||||
The simplest possible usage is the following which, assuming the minimal
|
||||
example in the beginning of this page, should result in:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mlx.launch --backend mpi -n 2 test.py
|
||||
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
|
||||
|
||||
The above launches two processes on the same (local) machine and we can see
|
||||
both standard output streams. The processes send the array of 1s to each other
|
||||
and compute the sum which is printed. Launching with ``mlx.launch -n 4 ...`` would
|
||||
print 4 etc.
|
||||
|
||||
Installing MPI
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
MPI can be installed with Homebrew, pip, using the Anaconda package manager, or
|
||||
compiled from source. Most of our testing is done using ``openmpi`` installed
|
||||
with the Anaconda package manager as follows:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ conda install conda-forge::openmpi
|
||||
|
||||
Installing with Homebrew or pip requires specifying the location of ``libmpi.dyld``
|
||||
so that MLX can find it and load it at runtime. This can simply be achieved by
|
||||
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun`` and it is
|
||||
done automatically by ``mlx.launch``. Some environments use a non-standard
|
||||
library filename that can be specified using the ``MPI_LIBNAME`` environment
|
||||
variable. This is automatically taken care of by ``mlx.launch`` as well.
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ -x MPI_LIBNAME=libmpi.40.dylib python test.py
|
||||
$ # or simply
|
||||
$ mlx.launch -n 2 test.py
|
||||
|
||||
Setting up Remote Hosts
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
MPI can automatically connect to remote hosts and set up the communication over
|
||||
the network if the remote hosts can be accessed via ssh. A good checklist to
|
||||
debug connectivity issues is the following:
|
||||
|
||||
* ``ssh hostname`` works from all machines to all machines without asking for
|
||||
password or host confirmation
|
||||
* ``mpirun`` is accessible on all machines.
|
||||
* Ensure that the ``hostname`` used by MPI is the one that you have configured
|
||||
in the ``.ssh/config`` files on all machines.
|
||||
|
||||
Tuning MPI All Reduce
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
.. note::
|
||||
|
||||
For faster all reduce consider using the ring backend either with Thunderbolt
|
||||
connections or over Ethernet.
|
||||
|
||||
Configure MPI to use N tcp connections between each host to improve bandwidth
|
||||
by passing ``--mca btl_tcp_links N``.
|
||||
|
||||
Force MPI to use the most performant network interface by setting ``--mca
|
||||
btl_tcp_if_include <iface>`` where ``<iface>`` should be the interface you want
|
||||
to use.
|
||||
|
||||
Getting Started with Ring
|
||||
-------------------------
|
||||
|
||||
The ring backend does not depend on any third party library so it is always
|
||||
available. It uses TCP sockets so the nodes need to be reachable via a network.
|
||||
As the name suggests the nodes are connected in a ring which means that rank 1
|
||||
can only communicate with rank 0 and rank 2, rank 2 only with rank 1 and rank 3
|
||||
and so on and so forth. As a result :func:`send` and :func:`recv` with
|
||||
arbitrary sender and receiver is not supported in the ring backend.
|
||||
|
||||
Defining a Ring
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
The easiest way to define and use a ring is via a JSON hostfile and the
|
||||
``mlx.launch`` :doc:`helper script <launching_distributed>`. For each node one
|
||||
defines a hostname to ssh into to run commands on this node and one or more IPs
|
||||
that this node will listen to for connections.
|
||||
|
||||
For example the hostfile below defines a 4 node ring. ``hostname1`` will be
|
||||
rank 0, ``hostname2`` rank 1 etc.
|
||||
|
||||
.. code:: json
|
||||
|
||||
[
|
||||
{"ssh": "hostname1", "ips": ["123.123.123.1"]},
|
||||
{"ssh": "hostname2", "ips": ["123.123.123.2"]},
|
||||
{"ssh": "hostname3", "ips": ["123.123.123.3"]},
|
||||
{"ssh": "hostname4", "ips": ["123.123.123.4"]}
|
||||
]
|
||||
|
||||
Running ``mlx.launch --hostfile ring-4.json my_script.py`` will ssh into each
|
||||
node, run the script which will listen for connections in each of the provided
|
||||
IPs. Specifically, ``hostname1`` will connect to ``123.123.123.2`` and accept a
|
||||
connection from ``123.123.123.4`` and so on and so forth.
|
||||
|
||||
Thunderbolt Ring
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
Although the ring backend can have benefits over MPI even for Ethernet, its
|
||||
main purpose is to use Thunderbolt rings for higher bandwidth communication.
|
||||
Setting up such thunderbolt rings can be done manually, but is a relatively
|
||||
tedious process. To simplify this, we provide the utility ``mlx.distributed_config``.
|
||||
|
||||
To use ``mlx.distributed_config`` your computers need to be accessible by ssh via
|
||||
Ethernet or Wi-Fi. Subsequently, connect them via thunderbolt cables and then call the
|
||||
utility as follows:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
mlx.distributed_config --verbose --hosts host1,host2,host3,host4
|
||||
|
||||
By default the script will attempt to discover the thunderbolt ring and provide
|
||||
you with the commands to configure each node as well as the ``hostfile.json``
|
||||
to use with ``mlx.launch``. If password-less ``sudo`` is available on the nodes
|
||||
then ``--auto-setup`` can be used to configure them automatically.
|
||||
|
||||
To validate your connection without configuring anything
|
||||
``mlx.distributed_config`` can also plot the ring using DOT format.
|
||||
|
||||
.. code:: shell
|
||||
|
||||
mlx.distributed_config --verbose --hosts host1,host2,host3,host4 --dot >ring.dot
|
||||
dot -Tpng ring.dot >ring.png
|
||||
open ring.png
|
||||
|
||||
If you want to go through the process manually, the steps are as follows:
|
||||
|
||||
* Disable the thunderbolt bridge interface
|
||||
* For the cable connecting rank ``i`` to rank ``i + 1`` find the interfaces
|
||||
corresponding to that cable in nodes ``i`` and ``i + 1``.
|
||||
* Set up a unique subnetwork connecting the two nodes for the corresponding
|
||||
interfaces. For instance if the cable corresponds to ``en2`` on node ``i``
|
||||
and ``en2`` also on node ``i + 1`` then we may assign IPs ``192.168.0.1`` and
|
||||
``192.168.0.2`` respectively to the two nodes. For more details you can see
|
||||
the commands prepared by the utility script.
|
||||
|
||||
@@ -7,17 +7,17 @@ Exporting Functions
|
||||
|
||||
MLX has an API to export and import functions to and from a file. This lets you
|
||||
run computations written in one MLX front-end (e.g. Python) in another MLX
|
||||
front-end (e.g. C++).
|
||||
front-end (e.g. C++).
|
||||
|
||||
This guide walks through the basics of the MLX export API with some examples.
|
||||
To see the full list of functions check-out the :ref:`API documentation
|
||||
<export>`.
|
||||
|
||||
Basics of Exporting
|
||||
Basics of Exporting
|
||||
-------------------
|
||||
|
||||
Let's start with a simple example:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
@@ -67,7 +67,7 @@ specified as variable positional arguments or as a tuple of arrays:
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
|
||||
|
||||
# Both arguments to fun are positional
|
||||
mx.export_function("add.mlxfn", fun, x, y)
|
||||
|
||||
@@ -133,7 +133,7 @@ parameters are also saved to the ``model.mlxfn`` file.
|
||||
For enclosed arrays inside an exported function, be extra careful to ensure
|
||||
they are evaluated. The computation graph that gets exported will include
|
||||
the computation that produces enclosed inputs.
|
||||
|
||||
|
||||
If the above example was missing ``mx.eval(model.parameters()``, the
|
||||
exported function would include the random initialization of the
|
||||
:obj:`mlx.nn.Module` parameters.
|
||||
@@ -150,8 +150,8 @@ parameters, pass them as inputs to the ``call`` wrapper:
|
||||
# Set the model's parameters to the input parameters
|
||||
model.update(tree_unflatten(list(params.items())))
|
||||
return model(x)
|
||||
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
|
||||
params = tree_flatten(model.parameters(), destination={})
|
||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||
|
||||
|
||||
@@ -164,13 +164,13 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0]))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
With ``shapeless=False`` (which is the default), the second call to
|
||||
@@ -197,7 +197,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
def fun(x, y=None):
|
||||
constant = mx.array(3.0)
|
||||
if y is not None:
|
||||
x += y
|
||||
x += y
|
||||
return x + constant
|
||||
|
||||
with mx.exporter("fun.mlxfn", fun) as exporter:
|
||||
@@ -215,7 +215,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
print(out)
|
||||
|
||||
In the above example the function constant data, (i.e. ``constant``), is only
|
||||
saved once.
|
||||
saved once.
|
||||
|
||||
Transformations with Imported Functions
|
||||
---------------------------------------
|
||||
@@ -238,7 +238,7 @@ on imported functions just like regular Python functions:
|
||||
# Prints: array(1, dtype=float32)
|
||||
print(dfdx(x))
|
||||
|
||||
# Compile the imported function
|
||||
# Compile the imported function
|
||||
mx.compile(imported_fun)
|
||||
# Prints: array(0, dtype=float32)
|
||||
print(compiled_fun(x)[0])
|
||||
@@ -275,7 +275,7 @@ Import and run the function in C++ with only a few lines of code:
|
||||
// Prints: array(2, dtype=float32)
|
||||
std::cout << outputs[0] << std::endl;
|
||||
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
|
||||
mx::array>`` for keyword arguments when calling imported functions in C++.
|
||||
|
||||
|
||||
@@ -107,6 +107,28 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> a[[0, 0]] = mx.array([4, 5])
|
||||
|
||||
The first element of ``a`` could be ``4`` or ``5``.
|
||||
|
||||
Transformations of functions which use in-place updates are allowed and work as
|
||||
expected. For example:
|
||||
|
||||
|
||||
105
docs/src/usage/launching_distributed.rst
Normal file
105
docs/src/usage/launching_distributed.rst
Normal file
@@ -0,0 +1,105 @@
|
||||
:orphan:
|
||||
|
||||
.. _usage_launch_distributed:
|
||||
|
||||
Launching Distributed Programs
|
||||
==============================
|
||||
|
||||
.. currentmodule:: mlx.core.distributed
|
||||
|
||||
Installing the MLX python package provides a helper script ``mlx.launch`` that
|
||||
can be used to run python scripts distributed on several nodes. It allows
|
||||
launching using either the MPI backend or the ring backend. See the
|
||||
:doc:`distributed docs <distributed>` for the different backends.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
The minimal usage example of ``mlx.launch`` is simply
|
||||
|
||||
.. code:: shell
|
||||
|
||||
mlx.launch --hosts ip1,ip2 my_script.py
|
||||
|
||||
or for testing on localhost
|
||||
|
||||
.. code:: shell
|
||||
|
||||
mlx.launch -n 2 my_script.py
|
||||
|
||||
The ``mlx.launch`` command connects to the provided host and launches the input
|
||||
script on each host. It monitors each of the launched processes and terminates
|
||||
the rest if one of them fails unexpectedly or if ``mlx.launch`` is terminated.
|
||||
It also takes care of forwarding the output of each remote process to stdout
|
||||
and stderr respectively.
|
||||
|
||||
Providing Hosts
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
Hosts can be provided as command line arguments, like above, but the way that
|
||||
allows to fully define a list of hosts is via a JSON hostfile. The hostfile has
|
||||
a very simple schema. It is simply a list of objects that define each host via
|
||||
a hostname to ssh to and a list of IPs to utilize for the communication.
|
||||
|
||||
.. code:: json
|
||||
|
||||
[
|
||||
{"ssh": "hostname1", "ips": ["123.123.1.1", "123.123.2.1"]},
|
||||
{"ssh": "hostname2", "ips": ["123.123.1.2", "123.123.2.2"]}
|
||||
]
|
||||
|
||||
You can use ``mlx.distributed_config --over ethernet`` to create a hostfile
|
||||
with IPs corresponding to the ``en0`` interface.
|
||||
|
||||
Setting up Remote Hosts
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In order to be able to launch the script on each host we need to be able to
|
||||
connect via ssh. Moreover the input script and python binary need to be on each
|
||||
host and on the same path. A good checklist to debug errors is the following:
|
||||
|
||||
* ``ssh hostname`` works without asking for password or host confirmation
|
||||
* the python binary is available on all hosts at the same path. You can use
|
||||
``mlx.launch --print-python`` to see what that path is.
|
||||
* the script you want to run is available on all hosts at the same path
|
||||
|
||||
.. _mpi_specifics:
|
||||
|
||||
MPI Specifics
|
||||
-------------
|
||||
|
||||
One can use MPI by passing ``--backend mpi`` to ``mlx.launch``. In that case,
|
||||
``mlx.launch`` is a thin wrapper over ``mpirun``. Moreover,
|
||||
|
||||
* The IPs in the hostfile are ignored
|
||||
* The ssh connectivity requirement is stronger as every node needs to be able
|
||||
to connect to every other node
|
||||
* ``mpirun`` needs to be available on every node at the same path
|
||||
|
||||
Finally, one can pass arguments to ``mpirun`` using ``--mpi-arg``. For instance
|
||||
to choose a specific interface for the byte-transfer-layer of MPI we can call
|
||||
``mlx.launch`` as follows:
|
||||
|
||||
.. code:: shell
|
||||
|
||||
mlx.launch --backend mpi --mpi-arg '--mca btl_tcp_if_include en0' --hostfile hosts.json my_script.py
|
||||
|
||||
|
||||
.. _ring_specifics:
|
||||
|
||||
Ring Specifics
|
||||
--------------
|
||||
|
||||
The ring backend, which is also the default backend, can be explicitly selected
|
||||
with the argument ``--backend ring``. The ring backend has some specific
|
||||
requirements and arguments that are different to MPI:
|
||||
|
||||
* The argument ``--hosts`` only accepts IPs and not hostnames. If we need to
|
||||
ssh to a hostname that does not correspond to the IP we want to bind to we
|
||||
have to provide a hostfile.
|
||||
* ``--starting-port`` defines the port to bind to on the remote hosts.
|
||||
Specifically rank 0 for the first IP will use this port and each subsequent
|
||||
IP or rank will add 1 to this port.
|
||||
* ``--connections-per-ip`` allows us to increase the number of connections
|
||||
between neighboring nodes. This corresponds to ``--mca btl_tcp_links 2`` for
|
||||
``mpirun``.
|
||||
@@ -21,11 +21,13 @@ Let's convert an array to NumPy and back.
|
||||
|
||||
.. note::
|
||||
|
||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
|
||||
``np.array(a.astype(mx.float32))``.
|
||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
|
||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert
|
||||
to ``float16`` or ``float32`` first: ``np.array(a.astype(mx.float32))``.
|
||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118
|
||||
buffer format string does not match the dtype V item size 0.``
|
||||
|
||||
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
|
||||
By default, NumPy copies data to a new array. This can be prevented by creating
|
||||
an array view:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -35,10 +37,16 @@ By default, NumPy copies data to a new array. This can be prevented by creating
|
||||
a_view[0] = 1
|
||||
print(a[0].item()) # 1
|
||||
|
||||
A NumPy array view is a normal NumPy array, except that it does not own its memory.
|
||||
This means writing to the view is reflected in the original array.
|
||||
.. note::
|
||||
|
||||
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
|
||||
NumPy arrays with type ``float64`` will be default converted to MLX arrays
|
||||
with type ``float32``.
|
||||
|
||||
A NumPy array view is a normal NumPy array, except that it does not own its
|
||||
memory. This means writing to the view is reflected in the original array.
|
||||
|
||||
While this is quite powerful to prevent copying arrays, it should be noted that
|
||||
external changes to the memory of arrays cannot be reflected in gradients.
|
||||
|
||||
Let's demonstrate this in an example:
|
||||
|
||||
@@ -56,11 +64,12 @@ Let's demonstrate this in an example:
|
||||
|
||||
|
||||
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
||||
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
|
||||
representing the gradient of the sum operation alone.
|
||||
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
|
||||
It's important to note that a similar issue arises during array conversion and copying.
|
||||
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||
However, this modification is not reflected in the gradient, as seen in the
|
||||
last line outputting ``1.0``, representing the gradient of the sum operation
|
||||
alone. The squaring of ``x`` occurs externally to MLX, meaning that no
|
||||
gradient is incorporated. It's important to note that a similar issue arises
|
||||
during array conversion and copying. For instance, a function defined as
|
||||
``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||
even though no in-place operations on MLX memory are executed.
|
||||
|
||||
PyTorch
|
||||
@@ -71,7 +80,8 @@ PyTorch
|
||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||
|
||||
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
PyTorch supports the buffer protocol, but it requires an explicit
|
||||
:obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -82,7 +92,8 @@ PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryvi
|
||||
b = torch.tensor(memoryview(a))
|
||||
c = mx.array(b.numpy())
|
||||
|
||||
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
|
||||
Conversion from PyTorch tensors back to arrays must be done via intermediate
|
||||
NumPy arrays with ``numpy()``.
|
||||
|
||||
JAX
|
||||
---
|
||||
@@ -100,7 +111,8 @@ JAX fully supports the buffer protocol.
|
||||
TensorFlow
|
||||
----------
|
||||
|
||||
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
TensorFlow supports the buffer protocol, but it requires an explicit
|
||||
:obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
@@ -10,7 +10,6 @@ set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(
|
||||
Python 3.8
|
||||
COMPONENTS Interpreter Development.Module
|
||||
@@ -21,6 +20,12 @@ execute_process(
|
||||
OUTPUT_VARIABLE nanobind_ROOT)
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m mlx --cmake-dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE
|
||||
OUTPUT_VARIABLE MLX_ROOT)
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
|
||||
# ----------------------------- Extensions -----------------------------
|
||||
|
||||
# Add library
|
||||
|
||||
@@ -1,19 +1,15 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <dlfcn.h>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include "axpby/axpby.h"
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <vecLib/cblas_new.h>
|
||||
#endif
|
||||
|
||||
#ifdef _METAL_
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
@@ -21,6 +17,19 @@
|
||||
|
||||
namespace my_ext {
|
||||
|
||||
// A helper function to find the location of the current binary on disk.
|
||||
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
||||
std::string current_binary_dir() {
|
||||
static std::string binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path().string();
|
||||
}();
|
||||
return binary_dir;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Operation Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -75,136 +84,65 @@ void axpby_impl(
|
||||
const mx::array& y,
|
||||
mx::array& out,
|
||||
float alpha_,
|
||||
float beta_) {
|
||||
// We only allocate memory when we are ready to fill the output
|
||||
// malloc_or_wait synchronously allocates available memory
|
||||
// There may be a wait executed here if the allocation is requested
|
||||
// under memory-pressured conditions
|
||||
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||
float beta_,
|
||||
mx::Stream stream) {
|
||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
||||
|
||||
// Collect input and output data pointers
|
||||
const T* x_ptr = x.data<T>();
|
||||
const T* y_ptr = y.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
// Get the CPU command encoder and register input and output arrays
|
||||
auto& encoder = mx::cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(y);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
// Cast alpha and beta to the relevant types
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
// Launch the CPU kernel
|
||||
encoder.dispatch([x_ptr = x.data<T>(),
|
||||
y_ptr = y.data<T>(),
|
||||
out_ptr = out.data<T>(),
|
||||
size = out.size(),
|
||||
shape = out.shape(),
|
||||
x_strides = x.strides(),
|
||||
y_strides = y.strides(),
|
||||
alpha_,
|
||||
beta_]() {
|
||||
// Cast alpha and beta to the relevant types
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = mx::elem_to_loc(out_idx, x.shape(), x.strides());
|
||||
auto y_offset = mx::elem_to_loc(out_idx, y.shape(), y.strides());
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < size; out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
|
||||
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
|
||||
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == mx::float32) {
|
||||
return axpby_impl<float>(x, y, out, alpha_, beta_);
|
||||
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::float16) {
|
||||
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_);
|
||||
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::bfloat16) {
|
||||
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_);
|
||||
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else if (out.dtype() == mx::complex64) {
|
||||
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_);
|
||||
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Primitive Accelerate Backend Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
|
||||
template <typename T>
|
||||
void axpby_impl_accelerate(
|
||||
const mx::array& x,
|
||||
const mx::array& y,
|
||||
mx::array& out,
|
||||
float alpha_,
|
||||
float beta_) {
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
|
||||
// This specialization requires both x and y be contiguous in the same mode
|
||||
// i.e: corresponding linear indices in both point to corresponding elements
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, mx::CopyType::Vector);
|
||||
|
||||
// Get x and y pointers for catlas_saxpby
|
||||
const T* x_ptr = x.data<T>();
|
||||
T* y_ptr = out.data<T>();
|
||||
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// Call the inplace accelerate operator
|
||||
catlas_saxpby(
|
||||
/* N = */ out.size(),
|
||||
/* ALPHA = */ alpha,
|
||||
/* X = */ x_ptr,
|
||||
/* INCX = */ 1,
|
||||
/* BETA = */ beta,
|
||||
/* Y = */ y_ptr,
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == mx::float32 &&
|
||||
((x.flags().row_contiguous && y.flags().row_contiguous) ||
|
||||
(x.flags().col_contiguous && y.flags().col_contiguous))) {
|
||||
axpby_impl_accelerate<float>(x, y, out, alpha_, beta_);
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#else // Accelerate not available
|
||||
|
||||
/** Evaluate primitive on CPU falling back to common backend */
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Primitive Metal Backend Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -216,7 +154,6 @@ void Axpby::eval_gpu(
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
@@ -235,25 +172,24 @@ void Axpby::eval_gpu(
|
||||
// Allocate output memory with strides based on specialization
|
||||
if (contiguous_kernel) {
|
||||
out.set_data(
|
||||
mx::allocator::malloc_or_wait(x.data_size() * out.itemsize()),
|
||||
mx::allocator::malloc(x.data_size() * out.itemsize()),
|
||||
x.data_size(),
|
||||
x.strides(),
|
||||
x.flags());
|
||||
} else {
|
||||
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
|
||||
out.set_data(mx::allocator::malloc(out.nbytes()));
|
||||
}
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_";
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
std::string kname = "axpby_";
|
||||
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname += type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
|
||||
const std::vector<mx::array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
@@ -85,11 +85,6 @@ class Axpby : public mx::Primitive {
|
||||
private:
|
||||
float alpha_;
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(
|
||||
const std::vector<mx::array>& inputs,
|
||||
std::vector<mx::array>& outputs);
|
||||
};
|
||||
|
||||
} // namespace my_ext
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#include <metal_stdlib>
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.25
|
||||
mlx>=0.21.0
|
||||
nanobind==2.2.0
|
||||
nanobind==2.4.0
|
||||
|
||||
@@ -3,8 +3,10 @@ from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
print(f"c shape: {c_cpu.shape}")
|
||||
print(f"c dtype: {c_cpu.dtype}")
|
||||
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
|
||||
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
|
||||
|
||||
@@ -5,6 +5,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||
@@ -19,6 +20,11 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
|
||||
|
||||
# Define MLX_VERSION only in the version.cpp file.
|
||||
add_library(mlx_version OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
|
||||
target_compile_definitions(mlx_version PRIVATE MLX_VERSION="${MLX_VERSION}")
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:mlx_version>)
|
||||
|
||||
if(MSVC)
|
||||
# Disable some MSVC warnings to speed up compilation.
|
||||
target_compile_options(mlx PUBLIC /wd4068 /wd4244 /wd4267 /wd4804)
|
||||
@@ -29,24 +35,33 @@ if(WIN32)
|
||||
set_target_properties(mlx PROPERTIES WINDOWS_EXPORT_ALL_SYMBOLS TRUE)
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
|
||||
if(MLX_BUILD_CPU)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cpu)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
||||
if(MLX_BUILD_ACCELERATE)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||
elseif(MLX_BUILD_CPU)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
|
||||
target_sources(mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
|
||||
else()
|
||||
target_sources(mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda/no_cuda.cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
|
||||
endif()
|
||||
|
||||
@@ -4,12 +4,11 @@
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
namespace mlx::core::allocator {
|
||||
|
||||
Buffer malloc(size_t size) {
|
||||
auto buffer = allocator().malloc(size, /* allow_swap */ true);
|
||||
auto buffer = allocator().malloc(size);
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc] Unable to allocate " << size << " bytes.";
|
||||
@@ -22,45 +21,4 @@ void free(Buffer buffer) {
|
||||
allocator().free(buffer);
|
||||
}
|
||||
|
||||
Buffer CommonAllocator::malloc(size_t size, bool) {
|
||||
void* ptr = std::malloc(size + sizeof(size_t));
|
||||
if (ptr != nullptr) {
|
||||
*static_cast<size_t*>(ptr) = size;
|
||||
}
|
||||
return Buffer{ptr};
|
||||
}
|
||||
|
||||
void CommonAllocator::free(Buffer buffer) {
|
||||
std::free(buffer.ptr());
|
||||
}
|
||||
|
||||
size_t CommonAllocator::size(Buffer buffer) const {
|
||||
if (buffer.ptr() == nullptr) {
|
||||
return 0;
|
||||
}
|
||||
return *static_cast<size_t*>(buffer.ptr());
|
||||
}
|
||||
|
||||
Buffer malloc_or_wait(size_t size) {
|
||||
auto buffer = allocator().malloc(size);
|
||||
|
||||
while (size && !buffer.ptr() && scheduler::n_active_tasks() > 0) {
|
||||
scheduler::wait_for_one();
|
||||
buffer = allocator().malloc(size);
|
||||
}
|
||||
|
||||
// Try swapping if needed
|
||||
if (size && !buffer.ptr()) {
|
||||
buffer = allocator().malloc(size, /* allow_swap = */ true);
|
||||
}
|
||||
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc_or_wait] Unable to allocate " << size << " bytes.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
return buffer;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::allocator
|
||||
|
||||
@@ -14,7 +14,7 @@ class Buffer {
|
||||
void* ptr_;
|
||||
|
||||
public:
|
||||
Buffer(void* ptr) : ptr_(ptr) {};
|
||||
explicit Buffer(void* ptr) : ptr_(ptr) {};
|
||||
|
||||
// Get the raw data pointer from the buffer
|
||||
void* raw_ptr();
|
||||
@@ -32,14 +32,10 @@ Buffer malloc(size_t size);
|
||||
|
||||
void free(Buffer buffer);
|
||||
|
||||
// Wait for running tasks to finish and free up memory
|
||||
// if allocation fails
|
||||
Buffer malloc_or_wait(size_t size);
|
||||
|
||||
class Allocator {
|
||||
/** Abstract base class for a memory allocator. */
|
||||
public:
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
|
||||
virtual Buffer malloc(size_t size) = 0;
|
||||
virtual void free(Buffer buffer) = 0;
|
||||
virtual size_t size(Buffer buffer) const = 0;
|
||||
|
||||
@@ -53,16 +49,4 @@ class Allocator {
|
||||
|
||||
Allocator& allocator();
|
||||
|
||||
class CommonAllocator : public Allocator {
|
||||
/** A general CPU allocator. */
|
||||
public:
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
|
||||
virtual void free(Buffer buffer) override;
|
||||
virtual size_t size(Buffer buffer) const override;
|
||||
|
||||
private:
|
||||
CommonAllocator() = default;
|
||||
friend Allocator& allocator();
|
||||
};
|
||||
|
||||
} // namespace mlx::core::allocator
|
||||
|
||||
@@ -25,7 +25,18 @@ array::array(
|
||||
std::move(shape),
|
||||
dtype,
|
||||
std::move(primitive),
|
||||
std::move(inputs))) {}
|
||||
std::move(inputs))) {
|
||||
if (has_primitive() && this->primitive().stream().device == Device::gpu) {
|
||||
for (auto& in : this->inputs()) {
|
||||
if (in.dtype() == float64) {
|
||||
throw std::invalid_argument("float64 is not supported on the GPU");
|
||||
}
|
||||
}
|
||||
if (this->dtype() == float64) {
|
||||
throw std::invalid_argument("float64 is not supported on the GPU");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<array> array::make_arrays(
|
||||
std::vector<Shape> shapes,
|
||||
@@ -45,6 +56,18 @@ std::vector<array> array::make_arrays(
|
||||
return outputs;
|
||||
}
|
||||
|
||||
array array::unsafe_weak_copy(const array& other) {
|
||||
auto cpy = array(other.shape(), other.dtype(), nullptr, {});
|
||||
cpy.set_data(
|
||||
other.buffer(),
|
||||
other.data_size(),
|
||||
other.strides(),
|
||||
other.flags(),
|
||||
[](auto) {});
|
||||
cpy.array_desc_->offset = other.array_desc_->offset;
|
||||
return cpy;
|
||||
}
|
||||
|
||||
array::array(std::initializer_list<float> data)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
Shape{static_cast<ShapeElem>(data.size())},
|
||||
@@ -66,22 +89,26 @@ array::array(allocator::Buffer data, Shape shape, Dtype dtype, Deleter deleter)
|
||||
}
|
||||
|
||||
void array::detach() {
|
||||
array_desc_->primitive = nullptr;
|
||||
for (auto& s : array_desc_->siblings) {
|
||||
s.array_desc_->primitive = nullptr;
|
||||
}
|
||||
for (auto& s : array_desc_->siblings) {
|
||||
s.array_desc_->inputs.clear();
|
||||
s.array_desc_->siblings.clear();
|
||||
s.array_desc_->position = 0;
|
||||
s.array_desc_->primitive = nullptr;
|
||||
}
|
||||
array_desc_->inputs.clear();
|
||||
array_desc_->siblings.clear();
|
||||
array_desc_->position = 0;
|
||||
array_desc_->primitive = nullptr;
|
||||
}
|
||||
|
||||
bool array::is_available() const {
|
||||
if (status() == Status::available) {
|
||||
return true;
|
||||
} else if (status() == Status::evaluated && event().is_signaled()) {
|
||||
} else if (
|
||||
status() == Status::evaluated &&
|
||||
(!event().valid() || event().is_signaled())) {
|
||||
set_status(Status::available);
|
||||
return true;
|
||||
}
|
||||
@@ -90,7 +117,10 @@ bool array::is_available() const {
|
||||
|
||||
void array::wait() {
|
||||
if (!is_available()) {
|
||||
event().wait();
|
||||
if (event().valid()) {
|
||||
event().wait();
|
||||
detach_event();
|
||||
}
|
||||
set_status(Status::available);
|
||||
}
|
||||
}
|
||||
@@ -111,7 +141,7 @@ bool array::is_tracer() const {
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->offset = 0;
|
||||
array_desc_->data_size = size();
|
||||
array_desc_->flags.contiguous = true;
|
||||
array_desc_->flags.row_contiguous = true;
|
||||
@@ -126,7 +156,7 @@ void array::set_data(
|
||||
Flags flags,
|
||||
Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->offset = 0;
|
||||
array_desc_->data_size = data_size;
|
||||
array_desc_->strides = std::move(strides);
|
||||
array_desc_->flags = flags;
|
||||
@@ -137,48 +167,26 @@ void array::copy_shared_buffer(
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
int64_t offset /* = 0 */) {
|
||||
array_desc_->data = other.array_desc_->data;
|
||||
array_desc_->strides = strides;
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
array_desc_->data_ptr = static_cast<void*>(
|
||||
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||
array_desc_->offset =
|
||||
sizeof(char) * itemsize() * offset + other.array_desc_->offset;
|
||||
}
|
||||
|
||||
void array::copy_shared_buffer(const array& other) {
|
||||
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
void array::move_shared_buffer(
|
||||
array other,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
array_desc_->data = std::move(other.array_desc_->data);
|
||||
array_desc_->strides = strides;
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
auto data_ptr = other.array_desc_->data_ptr;
|
||||
other.array_desc_->data_ptr = nullptr;
|
||||
array_desc_->data_ptr =
|
||||
static_cast<void*>(static_cast<char*>(data_ptr) + char_offset);
|
||||
}
|
||||
|
||||
void array::move_shared_buffer(array other) {
|
||||
move_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
array::~array() {
|
||||
if (array_desc_ == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Ignore arrays that might be detached during eval
|
||||
if (status() == array::Status::scheduled) {
|
||||
// Detached/detaching
|
||||
if (array_desc_->primitive == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -232,8 +240,8 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
status(Status::unscheduled),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
|
||||
70
mlx/array.h
70
mlx/array.h
@@ -10,6 +10,7 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/small_vector.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -18,8 +19,8 @@ class Primitive;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using ShapeElem = int32_t;
|
||||
using Shape = std::vector<ShapeElem>;
|
||||
using Strides = std::vector<int64_t>;
|
||||
using Shape = SmallVector<ShapeElem>;
|
||||
using Strides = SmallVector<int64_t>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
@@ -199,6 +200,13 @@ class array {
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs);
|
||||
|
||||
/**
|
||||
* Get a new array that refers to the same data as the input but with a
|
||||
* non-owning pointer to it. Note the array is detached from the graph and has
|
||||
* no inputs, siblings or primitive.
|
||||
*/
|
||||
static array unsafe_weak_copy(const array& other);
|
||||
|
||||
/** A unique identifier for an array. */
|
||||
std::uintptr_t id() const {
|
||||
return reinterpret_cast<std::uintptr_t>(array_desc_.get());
|
||||
@@ -217,6 +225,10 @@ class array {
|
||||
// Not copyable
|
||||
Data(const Data& d) = delete;
|
||||
Data& operator=(const Data& d) = delete;
|
||||
Data(Data&& o) : buffer(o.buffer), d(o.d) {
|
||||
o.buffer = allocator::Buffer(nullptr);
|
||||
o.d = [](allocator::Buffer) {};
|
||||
}
|
||||
~Data() {
|
||||
d(buffer);
|
||||
}
|
||||
@@ -282,6 +294,11 @@ class array {
|
||||
return array_desc_->siblings;
|
||||
}
|
||||
|
||||
/** The array's position in the sibling list. */
|
||||
int sibling_position() const {
|
||||
return array_desc_->position;
|
||||
}
|
||||
|
||||
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
||||
array_desc_->siblings = std::move(siblings);
|
||||
array_desc_->position = position;
|
||||
@@ -332,32 +349,35 @@ class array {
|
||||
return allocator::allocator().size(buffer());
|
||||
}
|
||||
|
||||
// Return a copy of the shared pointer
|
||||
// to the array::Data struct
|
||||
std::shared_ptr<Data> data_shared_ptr() const {
|
||||
// Return the shared pointer to the array::Data struct
|
||||
const std::shared_ptr<Data>& data_shared_ptr() const {
|
||||
return array_desc_->data;
|
||||
}
|
||||
// Return a raw pointer to the arrays data
|
||||
|
||||
// Return a raw pointer to the arrays data. This function may do a copy if
|
||||
// the underlying buffer is not accessible on the CPU. When accessing the
|
||||
// data for GPU kernels, be sure to use the correct method / function for the
|
||||
// given backend to access the GPU pointer.
|
||||
template <typename T>
|
||||
T* data() {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
return reinterpret_cast<T*>(
|
||||
(static_cast<char*>(buffer().raw_ptr()) + array_desc_->offset));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* data() const {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
return const_cast<array&>(*this).data<T>();
|
||||
}
|
||||
|
||||
int64_t offset() const {
|
||||
return array_desc_->offset;
|
||||
}
|
||||
|
||||
enum Status {
|
||||
// The ouptut of a computation which has not been scheduled.
|
||||
// The output of a computation which has not been scheduled.
|
||||
// For example, the status of `x` in `auto x = a + b`.
|
||||
unscheduled,
|
||||
|
||||
// The ouptut of a computation which has been scheduled but `eval_*` has
|
||||
// not yet been called on the array's primitive. A possible
|
||||
// status of `x` in `auto x = a + b; eval(x);`
|
||||
scheduled,
|
||||
|
||||
// The array's `eval_*` function has been run, but the computation is not
|
||||
// necessarily complete. The array will have memory allocated and if it is
|
||||
// not a tracer then it will be detached from the graph.
|
||||
@@ -394,6 +414,10 @@ class array {
|
||||
array_desc_->event = std::move(e);
|
||||
}
|
||||
|
||||
void detach_event() const {
|
||||
array_desc_->event = Event{};
|
||||
}
|
||||
|
||||
// Mark the array as a tracer array (true) or not.
|
||||
void set_tracer(bool is_tracer) {
|
||||
array_desc_->is_tracer = is_tracer;
|
||||
@@ -415,19 +439,10 @@ class array {
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
int64_t offset = 0);
|
||||
|
||||
void copy_shared_buffer(const array& other);
|
||||
|
||||
void move_shared_buffer(
|
||||
array other,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
|
||||
void move_shared_buffer(array other);
|
||||
|
||||
void overwrite_descriptor(const array& other) {
|
||||
array_desc_ = other.array_desc_;
|
||||
}
|
||||
@@ -459,8 +474,8 @@ class array {
|
||||
// can share the underlying data buffer.
|
||||
std::shared_ptr<Data> data;
|
||||
|
||||
// Properly offset data pointer
|
||||
void* data_ptr{nullptr};
|
||||
// Offset from beginning of data pointer
|
||||
int64_t offset{0};
|
||||
|
||||
// The size in elements of the data buffer the array accesses
|
||||
size_t data_size;
|
||||
@@ -594,6 +609,9 @@ void array::init(It src) {
|
||||
case float32:
|
||||
std::copy(src, src + size(), data<float>());
|
||||
break;
|
||||
case float64:
|
||||
std::copy(src, src + size(), data<double>());
|
||||
break;
|
||||
case bfloat16:
|
||||
std::copy(src, src + size(), data<bfloat16_t>());
|
||||
break;
|
||||
|
||||
@@ -1,8 +0,0 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)
|
||||
@@ -1,20 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
eval(inputs, out);
|
||||
|
||||
// TODO: Add accelerate based optimizations for CPU conv
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,253 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/backend/accelerate/utils.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, size_t, array> check_transpose(const array& arr) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (stx == arr.shape(-1) && sty == 1) {
|
||||
return std::make_tuple(false, stx, arr);
|
||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
}
|
||||
|
||||
inline void matmul_cblas_general(
|
||||
const array& a_pre,
|
||||
const array& b_pre,
|
||||
array& out,
|
||||
float alpha = 1.0f,
|
||||
float beta = 0.0f) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[matmul_cblas] on CPU currently only supports float32");
|
||||
}
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
alpha, // alpha
|
||||
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
|
||||
lda,
|
||||
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
|
||||
ldb,
|
||||
beta, // beta
|
||||
out.data<float>() + M * N * i,
|
||||
out.shape(-1) // ldc
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[matmul_cblas] on CPU currently only supports float32");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
return matmul_cblas_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
inline void matmul_bnns_general(
|
||||
const array& a_pre,
|
||||
const array& b_pre,
|
||||
array& out,
|
||||
float alpha = 1.0f,
|
||||
float beta = 0.0f) {
|
||||
// TODO: Update to utilize BNNS broadcasting
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
|
||||
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
/* bool transA = */ a_transposed,
|
||||
/* bool transB = */ b_transposed,
|
||||
/* bool quadratic = */ false,
|
||||
/* bool a_is_weights = */ false,
|
||||
/* bool b_is_weights = */ false,
|
||||
/* BNNSNDArrayDescriptor iA_desc = */
|
||||
BNNSNDArrayDescriptor{
|
||||
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||
|
||||
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{lda, (M * K) / lda, 0, 0, 0, 0, 0, 0},
|
||||
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{1, lda, 0, 0, 0, 0, 0, 0},
|
||||
|
||||
/* void * _Nullable data = */ nullptr,
|
||||
/* BNNSDataType data_type = */ bnns_dtype,
|
||||
|
||||
/* void * _Nullable table_data = */ nullptr,
|
||||
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||
|
||||
/* float data_scale = */ 1.0,
|
||||
/* float data_bias = */ 0.0,
|
||||
},
|
||||
/* BNNSNDArrayDescriptor iB_desc = */
|
||||
BNNSNDArrayDescriptor{
|
||||
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||
|
||||
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{ldb, (K * N) / ldb, 0, 0, 0, 0, 0, 0},
|
||||
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{1, ldb, 0, 0, 0, 0, 0, 0},
|
||||
|
||||
/* void * _Nullable data = */ nullptr,
|
||||
/* BNNSDataType data_type = */ bnns_dtype,
|
||||
|
||||
/* void * _Nullable table_data = */ nullptr,
|
||||
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||
|
||||
/* float data_scale = */ 1.0,
|
||||
/* float data_bias = */ 0.0,
|
||||
},
|
||||
/* BNNSNDArrayDescriptor o_desc = */
|
||||
BNNSNDArrayDescriptor{
|
||||
/* BNNSNDArrayFlags flags = */ BNNSNDArrayFlagBackpropSet,
|
||||
/* BNNSDataLayout layout = */ BNNSDataLayoutRowMajorMatrix,
|
||||
|
||||
/* size_t size[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{N, M, 0, 0, 0, 0, 0, 0},
|
||||
/* size_t stride[BNNS_MAX_TENSOR_DIMENSION] = */
|
||||
{1, N, 0, 0, 0, 0, 0, 0},
|
||||
|
||||
/* void * _Nullable data = */ nullptr,
|
||||
/* BNNSDataType data_type = */ bnns_dtype,
|
||||
|
||||
/* void * _Nullable table_data = */ nullptr,
|
||||
/* BNNSDataType table_data_type = */ bnns_dtype,
|
||||
|
||||
/* float data_scale = */ 1.0,
|
||||
/* float data_bias = */ 0.0,
|
||||
},
|
||||
};
|
||||
|
||||
auto bnns_filter =
|
||||
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
||||
|
||||
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||
BNNSFilterApplyTwoInput(
|
||||
bnns_filter,
|
||||
a.data<uint8_t>() +
|
||||
elem_to_loc(M * K * i, a.shape(), a.strides()) * a.itemsize(),
|
||||
b.data<uint8_t>() +
|
||||
elem_to_loc(K * N * i, b.shape(), b.strides()) * b.itemsize(),
|
||||
out.data<uint8_t>() + M * N * i * out.itemsize());
|
||||
}
|
||||
|
||||
BNNSFilterDestroy(bnns_filter);
|
||||
}
|
||||
|
||||
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
// TODO: Update to utilize BNNS broadcasting
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
return matmul_bnns_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const bool* mask,
|
||||
int tile_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str) {
|
||||
int tX = (X + tile_size - 1) / tile_size;
|
||||
int tY = (Y + tile_size - 1) / tile_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||
if (!do_mask) {
|
||||
int loc_x = i * tile_size;
|
||||
int loc_y = j * tile_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(tile_size, X - loc_x);
|
||||
int size_y = std::min(tile_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() == float32) {
|
||||
return matmul_cblas(inputs[0], inputs[1], out);
|
||||
}
|
||||
return matmul_bnns(inputs[0], inputs[1], out);
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Fill output with C
|
||||
auto& c = inputs[2];
|
||||
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
|
||||
copy(c, out, ctype);
|
||||
|
||||
if (out.dtype() == float32) {
|
||||
return matmul_cblas_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||
}
|
||||
return matmul_bnns_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,603 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#define DEFAULT(primitive) \
|
||||
void primitive::eval_cpu(const std::vector<array>& inputs, array& out) { \
|
||||
primitive::eval(inputs, out); \
|
||||
}
|
||||
|
||||
#define DEFAULT_MULTI(primitive) \
|
||||
void primitive::eval_cpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
primitive::eval(inputs, outputs); \
|
||||
}
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Use the default implementation for the following primitives
|
||||
DEFAULT(Arange)
|
||||
DEFAULT(ArgPartition)
|
||||
DEFAULT(ArgReduce)
|
||||
DEFAULT(ArgSort)
|
||||
DEFAULT(AsStrided)
|
||||
DEFAULT(BlockMaskedMM)
|
||||
DEFAULT(Broadcast)
|
||||
DEFAULT(BroadcastAxes)
|
||||
DEFAULT(Ceil)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Conjugate)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT_MULTI(CustomTransforms)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(NumberOfElements)
|
||||
DEFAULT(Equal)
|
||||
DEFAULT(Erf)
|
||||
DEFAULT(ErfInv)
|
||||
DEFAULT(ExpandDims)
|
||||
DEFAULT(FFT)
|
||||
DEFAULT(Floor)
|
||||
DEFAULT(Gather)
|
||||
DEFAULT(GatherMM)
|
||||
DEFAULT(GatherQMM)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Hadamard)
|
||||
DEFAULT(Less)
|
||||
DEFAULT(LessEqual)
|
||||
DEFAULT(Load)
|
||||
DEFAULT(LogicalNot)
|
||||
DEFAULT(LogicalAnd)
|
||||
DEFAULT(LogicalOr)
|
||||
DEFAULT(LogAddExp)
|
||||
DEFAULT(Maximum)
|
||||
DEFAULT(Minimum)
|
||||
DEFAULT(NotEqual)
|
||||
DEFAULT(Pad)
|
||||
DEFAULT(Partition)
|
||||
DEFAULT_MULTI(QRF)
|
||||
DEFAULT(RandomBits)
|
||||
DEFAULT(Remainder)
|
||||
DEFAULT(Round)
|
||||
DEFAULT(Scatter)
|
||||
DEFAULT(Select)
|
||||
DEFAULT(Sigmoid)
|
||||
DEFAULT(Sign)
|
||||
DEFAULT(Slice)
|
||||
DEFAULT(SliceUpdate)
|
||||
DEFAULT_MULTI(Split)
|
||||
DEFAULT(Sort)
|
||||
DEFAULT(Squeeze)
|
||||
DEFAULT(StopGradient)
|
||||
DEFAULT_MULTI(SVD)
|
||||
DEFAULT(Transpose)
|
||||
DEFAULT(Inverse)
|
||||
DEFAULT(Cholesky)
|
||||
DEFAULT_MULTI(Eigh)
|
||||
|
||||
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||
} else if (in.dtype() == int32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x + y; },
|
||||
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x + y; },
|
||||
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||
},
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcCos::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvacosf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcCosh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvacoshf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcSin::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvasinf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcSinh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvasinhf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvatanf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (out.dtype() == float32 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
if (a.is_donatable()) {
|
||||
out.copy_shared_buffer(a);
|
||||
} else if (b.is_donatable()) {
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
}
|
||||
int size = a.data_size();
|
||||
vvatan2f(out.data<float>(), a.data<float>(), b.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvatanhf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
if (in.flags().contiguous) {
|
||||
// Use accelerate functions if possible
|
||||
if (in.dtype() == float32 && out.dtype() == uint32) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vfixu32(
|
||||
in.data<float>(), 1, out.data<uint32_t>(), 1, in.data_size());
|
||||
return;
|
||||
} else if (in.dtype() == float32 && out.dtype() == int32) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vfix32(in.data<float>(), 1, out.data<int32_t>(), 1, in.data_size());
|
||||
return;
|
||||
} else if (in.dtype() == uint32 && out.dtype() == float32) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vfltu32(
|
||||
in.data<uint32_t>(), 1, out.data<float>(), 1, in.data_size());
|
||||
return;
|
||||
} else if (in.dtype() == int32 && out.dtype() == float32) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vflt32(in.data<int32_t>(), 1, out.data<float>(), 1, in.data_size());
|
||||
return;
|
||||
}
|
||||
}
|
||||
eval(inputs, out);
|
||||
}
|
||||
|
||||
void Cos::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvcosf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Cosh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvcoshf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x / y; },
|
||||
UseDefaultBinaryOp(),
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
vDSP_vsdivi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x / y; },
|
||||
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||
vDSP_svdiv((const float*)s, (const float*)vec, 1, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
vDSP_vsdiv((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Expm1::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpm1f(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
assert(in.dtype() == out.dtype());
|
||||
if (in.data_size() == 1 && out.dtype() == float32) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
vDSP_vfill(in.data<float>(), out.data<float>(), 1, out.size());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Log::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
switch (base_) {
|
||||
case Base::e:
|
||||
vvlogf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
break;
|
||||
case Base::two:
|
||||
vvlog2f(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
break;
|
||||
case Base::ten:
|
||||
vvlog10f(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvlog1pf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x * y; },
|
||||
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (out.dtype() == float32 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
int size = a.size();
|
||||
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
|
||||
out.copy_shared_buffer(a);
|
||||
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
}
|
||||
vvpowf(out.data<float>(), b.data<float>(), a.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (reduce_type_ == Scan::Sum && out.dtype() == float32 &&
|
||||
in.flags().row_contiguous && in.strides()[axis_] == 1 && !inclusive_) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
int stride = in.shape(axis_);
|
||||
int count = in.size() / stride;
|
||||
const float* input = in.data<float>();
|
||||
float* output = out.data<float>();
|
||||
float s = 1.0;
|
||||
if (!reverse_) {
|
||||
for (int i = 0; i < count; i++) {
|
||||
vDSP_vrsum(input - 1, 1, &s, output, 1, stride);
|
||||
input += stride;
|
||||
output += stride;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < count; i++) {
|
||||
input += stride - 1;
|
||||
output += stride - 1;
|
||||
vDSP_vrsum(input + 1, -1, &s, output, -1, stride);
|
||||
input++;
|
||||
output++;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Sin::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvsinf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Sinh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvsinhf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Sqrt::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
if (recip_) {
|
||||
vvrsqrtf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
vvsqrtf(out.data<float>(), in.data<float>(), &size);
|
||||
}
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x - y; },
|
||||
[](const auto* s, const auto* vec, auto* o, auto n) {
|
||||
float minus_1 = -1;
|
||||
vDSP_vsmsa(
|
||||
(const float*)vec, 1, &minus_1, (const float*)s, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
float val = -(*s);
|
||||
vDSP_vsadd((const float*)vec, 1, &val, (float*)o, 1, n);
|
||||
},
|
||||
[](const auto* a, const auto* b, auto* o, auto n) {
|
||||
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
[](auto x, auto y) { return x - y; },
|
||||
UseDefaultBinaryOp(),
|
||||
[](const auto* vec, const auto* s, auto* o, auto n) {
|
||||
int val = -(*s);
|
||||
vDSP_vsaddi((const int*)vec, 1, &val, (int*)o, 1, n);
|
||||
},
|
||||
UseDefaultBinaryOp());
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Tan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvtanf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
void Tanh::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
if (out.dtype() == float32 && in.flags().contiguous) {
|
||||
set_unary_output_data(in, out);
|
||||
int size = in.data_size();
|
||||
vvtanhf(out.data<float>(), in.data<float>(), &size);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,117 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <simd/vector.h>
|
||||
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
void _qmm_t_4_64(
|
||||
float* result,
|
||||
const float* x,
|
||||
const uint32_t* w,
|
||||
const float* scales,
|
||||
const float* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int B,
|
||||
bool batched_w) {
|
||||
constexpr int bits = 4;
|
||||
constexpr int group_size = 64;
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
int w_els = N * K / pack_factor;
|
||||
int g_els = w_els * pack_factor / group_size;
|
||||
|
||||
for (int i = 0; i < B; i++) {
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const float* scales_local = scales;
|
||||
const float* biases_local = biases;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const simd_float16* x_local = (simd_float16*)x;
|
||||
simd_float16 sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
float scale = *scales_local++;
|
||||
float bias = *biases_local++;
|
||||
|
||||
for (int kw = 0; kw < packs_in_group; kw += 2) {
|
||||
// TODO: vectorize this properly
|
||||
simd_uint16 wi;
|
||||
for (int e = 0; e < 2; e++) {
|
||||
uint32_t wii = *w_local++;
|
||||
for (int p = 0; p < 8; p++) {
|
||||
wi[e * 8 + p] = wii & bitmask;
|
||||
wii >>= bits;
|
||||
}
|
||||
}
|
||||
simd_float16 wf = simd_float(wi);
|
||||
wf *= scale;
|
||||
wf += bias;
|
||||
|
||||
sum += (*x_local) * wf;
|
||||
x_local++;
|
||||
}
|
||||
}
|
||||
|
||||
*result = simd_reduce_add(sum);
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
if (batched_w) {
|
||||
w += w_els;
|
||||
scales += g_els;
|
||||
biases += g_els;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x = inputs[0];
|
||||
auto& w = inputs[1];
|
||||
auto& scales = inputs[2];
|
||||
auto& biases = inputs[3];
|
||||
|
||||
bool condition =
|
||||
(transpose_ && x.flags().row_contiguous && w.flags().row_contiguous &&
|
||||
scales.flags().row_contiguous && biases.flags().row_contiguous &&
|
||||
x.dtype() == float32 && bits_ == 4 && group_size_ == 64);
|
||||
|
||||
if (condition) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
int B = x.size() / K / M;
|
||||
bool batched_w = w.ndim() > 2;
|
||||
_qmm_t_4_64(
|
||||
out.data<float>(),
|
||||
x.data<float>(),
|
||||
w.data<uint32_t>(),
|
||||
scales.data<float>(),
|
||||
biases.data<float>(),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
B,
|
||||
batched_w);
|
||||
} else {
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,139 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct MinReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return std::min(a, b);
|
||||
}
|
||||
|
||||
VT operator()(VT a, VT b) {
|
||||
return simd_min(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct MaxReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return std::max(a, b);
|
||||
}
|
||||
|
||||
VT operator()(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct SumReduction {
|
||||
T operator()(const T& a, const T& b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
VT operator()(VT a, VT b) {
|
||||
return a + b;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT, int N, typename Reduction>
|
||||
struct StridedReduce {
|
||||
void operator()(const T* x, T* accum, int size, size_t stride) {
|
||||
Reduction op;
|
||||
|
||||
for (int i = 0; i < size; i++) {
|
||||
size_t s = stride;
|
||||
T* a = accum;
|
||||
while (s >= N) {
|
||||
*(VT*)a = op((*(VT*)x), (*(VT*)a));
|
||||
x += N;
|
||||
a += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
*a = op(*a, *x);
|
||||
a++;
|
||||
x++;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace
|
||||
|
||||
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
if (in.dtype() == float32) {
|
||||
if (reduce_type_ == Reduce::Sum) {
|
||||
reduction_op<float, float>(
|
||||
in,
|
||||
out,
|
||||
axes_,
|
||||
0,
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
SumReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float acc;
|
||||
vDSP_sve((const float*)x, 1, &acc, size);
|
||||
(*accum) += acc;
|
||||
},
|
||||
[](auto* accum, auto x) { *accum += x; });
|
||||
return;
|
||||
} else if (reduce_type_ == Reduce::Max) {
|
||||
reduction_op<float, float>(
|
||||
in,
|
||||
out,
|
||||
axes_,
|
||||
-std::numeric_limits<float>::infinity(),
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
MaxReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float max;
|
||||
vDSP_maxv((const float*)x, 1, &max, size);
|
||||
(*accum) = (*accum < max) ? max : *accum;
|
||||
},
|
||||
[](auto* accum, auto x) { (*accum) = (*accum < x) ? x : *accum; });
|
||||
return;
|
||||
} else if (reduce_type_ == Reduce::Min) {
|
||||
reduction_op<float, float>(
|
||||
in,
|
||||
out,
|
||||
axes_,
|
||||
std::numeric_limits<float>::infinity(),
|
||||
StridedReduce<
|
||||
float,
|
||||
simd_float16,
|
||||
16,
|
||||
MinReduction<float, simd_float16>>(),
|
||||
[](const auto* x, auto* accum, int size) {
|
||||
float min;
|
||||
vDSP_minv((const float*)x, 1, &min, size);
|
||||
(*accum) = (*accum > min) ? min : *accum;
|
||||
},
|
||||
[](auto* accum, auto x) { (*accum) = (*accum > x) ? x : *accum; });
|
||||
return;
|
||||
}
|
||||
}
|
||||
// TODO: Add integer addition and min/max using the templates above and
|
||||
// simd_int16 and friends.
|
||||
eval(inputs, out);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,393 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
/**
|
||||
* Compute exp(x) in an optimizer friendly way as follows:
|
||||
*
|
||||
* First change the problem to computing 2**y where y = x / ln(2).
|
||||
*
|
||||
* Now we will compute 2**y as 2**y1 * 2**y2 where y1 is the integer part
|
||||
* `ipart` and y2 is fractional part. For the integer part we perform bit
|
||||
* shifting and for the fractional part we use a polynomial approximation.
|
||||
*
|
||||
* The algorithm and constants of the polynomial taken from
|
||||
* https://github.com/akohlmey/fastermath/blob/master/src/exp.c which took them
|
||||
* from Cephes math library.
|
||||
*
|
||||
* Note: The implementation below is a general fast exp. There could be faster
|
||||
* implementations for numbers strictly < 0.
|
||||
*/
|
||||
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
|
||||
auto x = x_init * 1.442695; // multiply with log_2(e)
|
||||
simd_float16 ipart, fpart;
|
||||
simd_int16 epart;
|
||||
x = simd_clamp(x, -80, 80);
|
||||
ipart = simd::floor(x + 0.5);
|
||||
fpart = x - ipart;
|
||||
|
||||
x = 1.535336188319500e-4f;
|
||||
x = x * fpart + 1.339887440266574e-3f;
|
||||
x = x * fpart + 9.618437357674640e-3f;
|
||||
x = x * fpart + 5.550332471162809e-2f;
|
||||
x = x * fpart + 2.402264791363012e-1f;
|
||||
x = x * fpart + 6.931472028550421e-1f;
|
||||
x = x * fpart + 1.000000000000000f;
|
||||
|
||||
// generate 2**ipart in the floating point representation using integer
|
||||
// bitshifting
|
||||
epart = (simd_int(ipart) + 127) << 23;
|
||||
|
||||
// Avoid supressing NaNs
|
||||
simd_int16 eq = (x_init == x_init);
|
||||
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
|
||||
}
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
/**
|
||||
* The ARM neon equivalent of the fast exp above.
|
||||
*/
|
||||
inline float16x8_t neon_fast_exp(float16x8_t x) {
|
||||
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
|
||||
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
|
||||
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
|
||||
|
||||
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
|
||||
float16x8_t fpart = vsubq_f16(x, ipart);
|
||||
|
||||
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
|
||||
|
||||
// generate 2**ipart in the floating point representation using integer
|
||||
// bitshifting
|
||||
int16x8_t epart = vcvtq_s16_f16(ipart);
|
||||
epart = vaddq_s16(epart, vdupq_n_s16(15));
|
||||
epart = vshlq_n_s16(epart, 10);
|
||||
|
||||
return vmulq_f16(vreinterpretq_f16_s16(epart), x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of folding maximum for ARM neon. This should possibly be
|
||||
* refactored out of softmax.cpp at some point.
|
||||
*/
|
||||
inline float16_t neon_reduce_max(float16x8_t x) {
|
||||
float16x4_t y;
|
||||
y = vpmax_f16(vget_low_f16(x), vget_high_f16(x));
|
||||
y = vpmax_f16(y, y);
|
||||
y = vpmax_f16(y, y);
|
||||
return vget_lane_f16(y, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of folding sum for ARM neon. This should possibly be
|
||||
* refactored out of softmax.cpp at some point.
|
||||
*/
|
||||
inline float16_t neon_reduce_add(float16x8_t x) {
|
||||
float16x4_t y;
|
||||
float16x4_t zero = vdup_n_f16(0);
|
||||
y = vpadd_f16(vget_low_f16(x), vget_high_f16(x));
|
||||
y = vpadd_f16(y, zero);
|
||||
y = vpadd_f16(y, zero);
|
||||
return vget_lane_f16(y, 0);
|
||||
}
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct NeonFp16SimdOps {
|
||||
VT init(T a) {
|
||||
return vdupq_n_f16(a);
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return vld1q_f16(a);
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
vst1q_f16(dst, x);
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return vmaxq_f16(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return neon_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return vaddq_f16(a, b);
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return vsubq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return vmulq_f16(a, b);
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return vmulq_f16(a, vdupq_n_f16(b));
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return neon_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return neon_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct AccelerateSimdOps {
|
||||
VT init(T a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return *(VT*)a;
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
*(VT*)dst = x;
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return simd_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return simd_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return simd_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||
void softmax(const array& in, array& out) {
|
||||
Ops ops;
|
||||
|
||||
const T* in_ptr = in.data<T>();
|
||||
T* out_ptr = out.data<T>();
|
||||
int M = in.shape().back();
|
||||
int L = in.data_size() / M;
|
||||
const T* current_in_ptr;
|
||||
T* current_out_ptr;
|
||||
|
||||
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += M) {
|
||||
// Find the maximum
|
||||
current_in_ptr = in_ptr;
|
||||
VT vmaximum = ops.init(-std::numeric_limits<float>::infinity());
|
||||
size_t s = M;
|
||||
while (s >= N) {
|
||||
VT vals;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vals = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vals[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vmaximum = ops.max(vals, vmaximum);
|
||||
current_in_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
AccT maximum = ops.reduce_max(vmaximum);
|
||||
while (s-- > 0) {
|
||||
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
|
||||
current_in_ptr++;
|
||||
}
|
||||
|
||||
// Compute the normalizer and the exponentials
|
||||
VT vnormalizer = ops.init(0.0);
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
VT vexp;
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
vexp = ops.load(current_in_ptr);
|
||||
} else {
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
}
|
||||
vexp = ops.exp(ops.sub(vexp, maximum));
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, vexp);
|
||||
}
|
||||
vnormalizer = ops.add(vnormalizer, vexp);
|
||||
current_in_ptr += N;
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
AccT normalizer = ops.reduce_add(vnormalizer);
|
||||
while (s-- > 0) {
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
if (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr = _exp;
|
||||
}
|
||||
normalizer += _exp;
|
||||
current_in_ptr++;
|
||||
current_out_ptr++;
|
||||
}
|
||||
normalizer = 1 / normalizer;
|
||||
|
||||
// Normalize
|
||||
current_out_ptr = out_ptr;
|
||||
current_in_ptr = in_ptr;
|
||||
s = M;
|
||||
while (s >= N) {
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
ops.store(current_out_ptr, ops.mul(*(VT*)current_out_ptr, normalizer));
|
||||
} else {
|
||||
VT vexp;
|
||||
for (int i = 0; i < N; ++i) {
|
||||
vexp[i] = static_cast<AccT>(current_in_ptr[i]);
|
||||
}
|
||||
vexp = ops.mul(ops.exp(ops.sub(vexp, maximum)), normalizer);
|
||||
for (int i = 0; i < N; ++i) {
|
||||
current_out_ptr[i] = vexp[i];
|
||||
}
|
||||
current_in_ptr += N;
|
||||
}
|
||||
current_out_ptr += N;
|
||||
s -= N;
|
||||
}
|
||||
while (s-- > 0) {
|
||||
if constexpr (std::is_same<T, AccT>::value) {
|
||||
*current_out_ptr *= normalizer;
|
||||
} else {
|
||||
AccT _exp = std::exp(*current_in_ptr - maximum);
|
||||
*current_out_ptr = static_cast<T>(_exp * normalizer);
|
||||
current_in_ptr++;
|
||||
}
|
||||
current_out_ptr++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
|
||||
// Make sure that the last dimension is contiguous
|
||||
auto check_input = [](array x) {
|
||||
bool no_copy = x.strides()[x.ndim() - 1] == 1;
|
||||
if (x.ndim() > 1) {
|
||||
auto s = x.strides()[x.ndim() - 2];
|
||||
no_copy &= (s == 0 || s == x.shape().back());
|
||||
}
|
||||
if (no_copy) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, x_copy, CopyType::General);
|
||||
return x_copy;
|
||||
}
|
||||
};
|
||||
array in = check_input(std::move(inputs[0]));
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(in.data_size() * in.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
case uint16:
|
||||
case uint32:
|
||||
case uint64:
|
||||
case int8:
|
||||
case int16:
|
||||
case int32:
|
||||
case int64:
|
||||
throw std::invalid_argument(
|
||||
"Softmax is defined only for floating point types");
|
||||
break;
|
||||
case float32:
|
||||
softmax<
|
||||
float,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
break;
|
||||
case float16:
|
||||
if (precise_) {
|
||||
softmax<
|
||||
float16_t,
|
||||
float,
|
||||
simd_float16,
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
} else {
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
softmax<
|
||||
float16_t,
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
eval(inputs, out); // Redirect to common backend for consistency
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
eval(inputs, out);
|
||||
break;
|
||||
case complex64:
|
||||
eval(inputs, out);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,28 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include "mlx/dtype.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
BNNSDataType to_bnns_dtype(Dtype mlx_dtype) {
|
||||
uint32_t size_bits = size_of(mlx_dtype) * 8;
|
||||
switch (kindof(mlx_dtype)) {
|
||||
case Dtype::Kind::b:
|
||||
return BNNSDataTypeBoolean;
|
||||
case Dtype::Kind::u:
|
||||
return BNNSDataType(BNNSDataTypeUIntBit | size_bits);
|
||||
case Dtype::Kind::i:
|
||||
return BNNSDataType(BNNSDataTypeIntBit | size_bits);
|
||||
case Dtype::Kind::f:
|
||||
return BNNSDataType(BNNSDataTypeFloatBit | size_bits);
|
||||
case Dtype::Kind::V:
|
||||
return BNNSDataTypeBFloat16;
|
||||
case Dtype::Kind::c:
|
||||
throw std::invalid_argument("BNNS does not support complex types");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,71 +1,9 @@
|
||||
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
set(COMPILER ${CMAKE_C_COMPILER})
|
||||
set(CLANG TRUE)
|
||||
else()
|
||||
set(COMPILER ${CMAKE_CXX_COMPILER})
|
||||
endif()
|
||||
|
||||
if(MSVC)
|
||||
set(SHELL_EXT ps1)
|
||||
set(SHELL_CMD powershell -ExecutionPolicy Bypass -File)
|
||||
else()
|
||||
set(SHELL_EXT sh)
|
||||
set(SHELL_CMD /bin/bash)
|
||||
endif()
|
||||
|
||||
add_custom_command(
|
||||
OUTPUT compiled_preamble.cpp
|
||||
COMMAND
|
||||
${SHELL_CMD} ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.${SHELL_EXT}
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
|
||||
${PROJECT_SOURCE_DIR} ${CLANG} ${CMAKE_SYSTEM_PROCESSOR}
|
||||
DEPENDS make_compiled_preamble.${SHELL_EXT}
|
||||
compiled_preamble.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
|
||||
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
|
||||
ops.h)
|
||||
|
||||
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
|
||||
|
||||
add_dependencies(mlx cpu_compiled_preamble)
|
||||
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/broadcasting.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
|
||||
|
||||
if(IOS)
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
|
||||
else()
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_compiler.cpp)
|
||||
endif()
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)
|
||||
|
||||
@@ -1,74 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
void arange(T start, T next, array& out, size_t size) {
|
||||
auto ptr = out.data<T>();
|
||||
auto step_size = next - start;
|
||||
for (int i = 0; i < size; ++i) {
|
||||
ptr[i] = start;
|
||||
start += step_size;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void arange(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
double start,
|
||||
double step) {
|
||||
assert(inputs.size() == 0);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
throw std::runtime_error("Bool type unsupported for arange.");
|
||||
break;
|
||||
case uint8:
|
||||
arange<uint8_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case uint16:
|
||||
arange<uint16_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case uint32:
|
||||
arange<uint32_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case uint64:
|
||||
arange<uint64_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case int8:
|
||||
arange<int8_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case int16:
|
||||
arange<int16_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case int32:
|
||||
arange<int32_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case int64:
|
||||
arange<int64_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case float16:
|
||||
arange<float16_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case float32:
|
||||
arange<float>(start, start + step, out, out.size());
|
||||
break;
|
||||
case bfloat16:
|
||||
arange<bfloat16_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
case complex64:
|
||||
arange<complex64_t>(start, start + step, out, out.size());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,112 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/primitives.h"
|
||||
#include "utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename InT, typename OpT>
|
||||
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||
auto axis_size = in.shape()[axis];
|
||||
auto axis_stride = in.strides()[axis];
|
||||
Strides strides = in.strides();
|
||||
Shape shape = in.shape();
|
||||
strides.erase(strides.begin() + axis);
|
||||
shape.erase(shape.begin() + axis);
|
||||
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||
auto loc = elem_to_loc(i, shape, strides);
|
||||
auto in_ptr = in.data<InT>() + loc;
|
||||
uint32_t ind_v = 0;
|
||||
InT v = (*in_ptr);
|
||||
for (uint32_t j = 0; j < axis_size; ++j, in_ptr += axis_stride) {
|
||||
op(j, (*in_ptr), &ind_v, &v);
|
||||
}
|
||||
out.data<uint32_t>()[i] = ind_v;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InT>
|
||||
void arg_reduce_dispatch(
|
||||
const array& in,
|
||||
array& out,
|
||||
ArgReduce::ReduceType rtype,
|
||||
int axis) {
|
||||
switch (rtype) {
|
||||
case ArgReduce::ArgMin: {
|
||||
auto op = [](auto ind_x, auto x, auto ind_y, auto y) {
|
||||
if (x < (*y)) {
|
||||
(*y) = x;
|
||||
(*ind_y) = ind_x;
|
||||
}
|
||||
};
|
||||
arg_reduce<InT>(in, out, op, axis);
|
||||
break;
|
||||
}
|
||||
case ArgReduce::ArgMax: {
|
||||
auto op = [](auto ind_x, auto x, auto ind_y, auto y) {
|
||||
if (x > (*y)) {
|
||||
(*y) = x;
|
||||
(*ind_y) = ind_x;
|
||||
}
|
||||
};
|
||||
arg_reduce<InT>(in, out, op, axis);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void ArgReduce::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
arg_reduce_dispatch<bool>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case uint8:
|
||||
arg_reduce_dispatch<uint8_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case uint16:
|
||||
arg_reduce_dispatch<uint16_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case uint32:
|
||||
arg_reduce_dispatch<uint32_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case uint64:
|
||||
arg_reduce_dispatch<uint64_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case int8:
|
||||
arg_reduce_dispatch<int8_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case int16:
|
||||
arg_reduce_dispatch<int16_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case int32:
|
||||
arg_reduce_dispatch<int32_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case int64:
|
||||
arg_reduce_dispatch<int64_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case float16:
|
||||
arg_reduce_dispatch<float16_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case float32:
|
||||
arg_reduce_dispatch<float>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case bfloat16:
|
||||
arg_reduce_dispatch<bfloat16_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
case complex64:
|
||||
arg_reduce_dispatch<complex64_t>(in, out, reduce_type_, axis_);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,331 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/binary_two.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
void comparison_op(const array& a, const array& b, array& out, Op op) {
|
||||
DefaultScalarVector<T, U, Op> opsv(op);
|
||||
DefaultVectorScalar<T, U, Op> opvs(op);
|
||||
DefaultVectorVector<T, U, Op> opvv(op);
|
||||
binary_op<T, U>(a, b, out, op, opsv, opvs, opvv);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void comparison_op(const array& a, const array& b, array& out, Op op) {
|
||||
switch (a.dtype()) {
|
||||
case bool_:
|
||||
comparison_op<bool, bool>(a, b, out, op);
|
||||
break;
|
||||
case uint8:
|
||||
comparison_op<uint8_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
comparison_op<uint16_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
comparison_op<uint32_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
comparison_op<uint64_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case int8:
|
||||
comparison_op<int8_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case int16:
|
||||
comparison_op<int16_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case int32:
|
||||
comparison_op<int32_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case int64:
|
||||
comparison_op<int64_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case float16:
|
||||
comparison_op<float16_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case float32:
|
||||
comparison_op<float, bool>(a, b, out, op);
|
||||
break;
|
||||
case bfloat16:
|
||||
comparison_op<bfloat16_t, bool>(a, b, out, op);
|
||||
break;
|
||||
case complex64:
|
||||
comparison_op<complex64_t, bool>(a, b, out, op);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Add::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Add());
|
||||
}
|
||||
|
||||
void DivMod::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto integral_op = [](auto x, auto y) {
|
||||
return std::make_pair(x / y, x % y);
|
||||
};
|
||||
auto float_op = [](auto x, auto y) {
|
||||
return std::make_pair(std::trunc(x / y), std::fmod(x, y));
|
||||
};
|
||||
switch (outputs[0].dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, outputs, integral_op);
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, outputs, integral_op);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t>(a, b, outputs, float_op);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float>(a, b, outputs, float_op);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t>(a, b, outputs, float_op);
|
||||
break;
|
||||
case complex64:
|
||||
// Should never get here
|
||||
throw std::runtime_error("[DivMod] Complex type not supported");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void Divide::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Divide());
|
||||
}
|
||||
|
||||
void Remainder::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Remainder());
|
||||
}
|
||||
|
||||
void Equal::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (equal_nan_) {
|
||||
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
|
||||
} else {
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Equal());
|
||||
}
|
||||
}
|
||||
|
||||
void Greater::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Greater());
|
||||
}
|
||||
|
||||
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
|
||||
}
|
||||
|
||||
void Less::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Less());
|
||||
}
|
||||
|
||||
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
|
||||
}
|
||||
|
||||
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
std::ostringstream err;
|
||||
err << "[logaddexp] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[logaddexp] Cannot compute logaddexp for arrays with"
|
||||
" non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalAnd());
|
||||
}
|
||||
|
||||
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalOr());
|
||||
}
|
||||
|
||||
void Maximum::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Maximum());
|
||||
}
|
||||
|
||||
void Minimum::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Minimum());
|
||||
}
|
||||
|
||||
void Multiply::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Multiply());
|
||||
}
|
||||
|
||||
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
|
||||
}
|
||||
|
||||
void Power::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Power());
|
||||
}
|
||||
|
||||
void Subtract::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Subtract());
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto dispatch_type = [&a, &b, &out](auto op) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, out, op);
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, out, op);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, out, op);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, out, op);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, out, op);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, out, op);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, out, op);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, out, op);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, out, op);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[BitwiseBinary::eval_cpu] Type not supported");
|
||||
break;
|
||||
}
|
||||
};
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
dispatch_type(detail::BitwiseAnd());
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
dispatch_type(detail::BitwiseOr());
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
dispatch_type(detail::BitwiseXor());
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
dispatch_type(detail::LeftShift());
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
dispatch_type(detail::RightShift());
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void ArcTan2::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
if (out.dtype() == float32) {
|
||||
binary_op<float>(a, b, out, detail::ArcTan2());
|
||||
} else if (out.dtype() == float16) {
|
||||
binary_op<float16_t>(a, b, out, detail::ArcTan2());
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
binary_op<bfloat16_t>(a, b, out, detail::ArcTan2());
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
std::ostringstream err;
|
||||
err << "[arctan2] Does not support " << out.dtype();
|
||||
throw std::invalid_argument(err.str());
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[arctan2] Cannot compute inverse tangent for arrays"
|
||||
" with non floating point type.");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/array.h"
|
||||
@@ -9,8 +8,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
enum class BinaryOpType {
|
||||
ScalarScalar,
|
||||
ScalarVector,
|
||||
@@ -19,7 +16,7 @@ enum class BinaryOpType {
|
||||
General,
|
||||
};
|
||||
|
||||
BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
||||
inline BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
||||
BinaryOpType bopt;
|
||||
if (a.data_size() == 1 && b.data_size() == 1) {
|
||||
bopt = BinaryOpType::ScalarScalar;
|
||||
@@ -37,29 +34,24 @@ BinaryOpType get_binary_op_type(const array& a, const array& b) {
|
||||
return bopt;
|
||||
}
|
||||
|
||||
void set_binary_op_output_data(
|
||||
inline void set_binary_op_output_data(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
BinaryOpType bopt,
|
||||
bool donate_with_move = false) {
|
||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
||||
bool b_donatable = is_donatable(b, out);
|
||||
bool a_donatable = is_donatable(a, out);
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
|
||||
out.set_data(mallocfn(out.itemsize()), 1, a.strides(), a.flags());
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
if (b_donatable) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
out.copy_shared_buffer(b);
|
||||
}
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
|
||||
mallocfn(b.data_size() * out.itemsize()),
|
||||
b.data_size(),
|
||||
b.strides(),
|
||||
b.flags());
|
||||
@@ -67,14 +59,10 @@ void set_binary_op_output_data(
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
if (a_donatable) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
out.copy_shared_buffer(a);
|
||||
}
|
||||
out.copy_shared_buffer(a);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
|
||||
mallocfn(a.data_size() * out.itemsize()),
|
||||
a.data_size(),
|
||||
a.strides(),
|
||||
a.flags());
|
||||
@@ -82,20 +70,12 @@ void set_binary_op_output_data(
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
if (a_donatable) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
out.copy_shared_buffer(a);
|
||||
}
|
||||
out.copy_shared_buffer(a);
|
||||
} else if (b_donatable) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
out.copy_shared_buffer(b);
|
||||
}
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
|
||||
mallocfn(a.data_size() * out.itemsize()),
|
||||
a.data_size(),
|
||||
a.strides(),
|
||||
a.flags());
|
||||
@@ -103,428 +83,15 @@ void set_binary_op_output_data(
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(a);
|
||||
} else {
|
||||
out.copy_shared_buffer(a);
|
||||
}
|
||||
out.copy_shared_buffer(a);
|
||||
} else if (
|
||||
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
|
||||
if (donate_with_move) {
|
||||
out.move_shared_buffer(b);
|
||||
} else {
|
||||
out.copy_shared_buffer(b);
|
||||
}
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
out.set_data(mallocfn(out.nbytes()));
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
struct UseDefaultBinaryOp {};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
struct DefaultVectorScalar {
|
||||
Op op;
|
||||
|
||||
DefaultVectorScalar(Op op_) : op(op_) {}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
T scalar = *b;
|
||||
while (size-- > 0) {
|
||||
*dst = op(*a, scalar);
|
||||
dst++;
|
||||
a++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
struct DefaultScalarVector {
|
||||
Op op;
|
||||
|
||||
DefaultScalarVector(Op op_) : op(op_) {}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
T scalar = *a;
|
||||
while (size-- > 0) {
|
||||
*dst = op(scalar, *b);
|
||||
dst++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
struct DefaultVectorVector {
|
||||
Op op;
|
||||
|
||||
DefaultVectorVector(Op op_) : op(op_) {}
|
||||
|
||||
void operator()(const T* a, const T* b, U* dst, int size) {
|
||||
while (size-- > 0) {
|
||||
*dst = op(*a, *b);
|
||||
dst++;
|
||||
a++;
|
||||
b++;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op, int D, bool Strided>
|
||||
void binary_op_dims(
|
||||
const T* a,
|
||||
const T* b,
|
||||
U* out,
|
||||
Op op,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
auto stride_out = out_strides[axis];
|
||||
auto N = shape[axis];
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
binary_op_dims<T, U, Op, D - 1, Strided>(
|
||||
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
|
||||
} else {
|
||||
if constexpr (Strided) {
|
||||
op(a, b, out, stride_out);
|
||||
} else {
|
||||
*out = op(*a, *b);
|
||||
}
|
||||
}
|
||||
out += stride_out;
|
||||
a += stride_a;
|
||||
b += stride_b;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, bool Strided, typename Op>
|
||||
void binary_op_dispatch_dims(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
int dim,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
switch (dim) {
|
||||
case 1:
|
||||
binary_op_dims<T, U, Op, 1, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 2:
|
||||
binary_op_dims<T, U, Op, 2, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
case 3:
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr,
|
||||
b_ptr,
|
||||
out_ptr,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
0);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
||||
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
||||
auto stride = out_strides[dim - 4];
|
||||
for (int64_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
out_ptr + elem,
|
||||
op,
|
||||
shape,
|
||||
a_strides,
|
||||
b_strides,
|
||||
out_strides,
|
||||
dim - 3);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename OpSV,
|
||||
typename OpVS,
|
||||
typename OpVV>
|
||||
void binary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
OpSV opsv,
|
||||
OpVS opvs,
|
||||
OpVV opvv) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
// The full computation is scalar scalar so call the base op once
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is scalar vector so delegate to the op
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector scalar so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorScalar) {
|
||||
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
|
||||
return;
|
||||
}
|
||||
|
||||
// The full computation is vector vector so delegate to the op
|
||||
if (bopt == BinaryOpType::VectorVector) {
|
||||
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
|
||||
return;
|
||||
}
|
||||
|
||||
// General computation so let's try to optimize
|
||||
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||
a.shape(), {a.strides(), b.strides(), out.strides()});
|
||||
const auto& a_strides = new_strides[0];
|
||||
const auto& b_strides = new_strides[1];
|
||||
const auto& strides = new_strides[2];
|
||||
|
||||
// Get the left-most dim such that the array is row contiguous after
|
||||
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
||||
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
||||
|
||||
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||
auto leftmost_s_dim = [](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
||||
}
|
||||
return d + 1;
|
||||
};
|
||||
auto a_s_dim = leftmost_s_dim(a_strides);
|
||||
auto b_s_dim = leftmost_s_dim(b_strides);
|
||||
|
||||
auto ndim = new_shape.size();
|
||||
|
||||
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
|
||||
int dim = ndim;
|
||||
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorVector;
|
||||
dim = d;
|
||||
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
||||
bopt = BinaryOpType::VectorScalar;
|
||||
dim = d;
|
||||
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
||||
// contiguous
|
||||
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
||||
bopt = BinaryOpType::ScalarVector;
|
||||
dim = d;
|
||||
}
|
||||
|
||||
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
||||
// contiguous methods above. Except for the case that the flags do not
|
||||
// correspond to the underlying contiguity.
|
||||
if (dim == 0 || strides[dim - 1] < 16) {
|
||||
bopt = BinaryOpType::General;
|
||||
dim = ndim;
|
||||
}
|
||||
|
||||
switch (bopt) {
|
||||
case BinaryOpType::VectorVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
binary_op_dispatch_dims<T, U, true>(
|
||||
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
|
||||
break;
|
||||
default:
|
||||
binary_op_dispatch_dims<T, U, false>(
|
||||
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
|
||||
void binary_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
OpSV opsv,
|
||||
OpVS opvs,
|
||||
OpVV opvv) {
|
||||
// TODO: The following mess of constexpr evaluations can probably be achieved
|
||||
// with template specializations and overloading. Would it be simpler?
|
||||
|
||||
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
|
||||
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
|
||||
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opsv and opvs were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
// opsv and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
op,
|
||||
DefaultScalarVector<T, T, Op>(op),
|
||||
opvs,
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opsv was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
|
||||
// opvs and opvv were UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
op,
|
||||
opsv,
|
||||
DefaultVectorScalar<T, T, Op>(op),
|
||||
DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// opvs was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
|
||||
}
|
||||
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
|
||||
value) {
|
||||
// opvv was UseDefaultBinaryOp
|
||||
binary_op<T, T>(
|
||||
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));
|
||||
} else {
|
||||
// All ops provided
|
||||
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
void binary_op(const array& a, const array& b, array& out, Op op) {
|
||||
DefaultScalarVector<T, T, Op> opsv(op);
|
||||
DefaultVectorScalar<T, T, Op> opvs(op);
|
||||
DefaultVectorVector<T, T, Op> opvv(op);
|
||||
binary_op<T, T>(a, b, out, op, opsv, opvs, opvv);
|
||||
}
|
||||
|
||||
template <typename... Ops>
|
||||
void binary(const array& a, const array& b, array& out, Ops... ops) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool>(a, b, out, ops...);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t>(a, b, out, ops...);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t>(a, b, out, ops...);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t>(a, b, out, ops...);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t>(a, b, out, ops...);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t>(a, b, out, ops...);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t>(a, b, out, ops...);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t>(a, b, out, ops...);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t>(a, b, out, ops...);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t>(a, b, out, ops...);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float>(a, b, out, ops...);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t>(a, b, out, ops...);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t>(a, b, out, ops...);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
24
mlx/backend/common/broadcasting.cpp
Normal file
24
mlx/backend/common/broadcasting.cpp
Normal file
@@ -0,0 +1,24 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void broadcast(const array& in, array& out) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
Strides strides(out.ndim(), 0);
|
||||
int diff = out.ndim() - in.ndim();
|
||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,10 +1,11 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void encode_wait(Event e);
|
||||
|
||||
void encode_signal(Event e);
|
||||
void broadcast(const array& in, array& out);
|
||||
|
||||
} // namespace mlx::core
|
||||
157
mlx/backend/common/buffer_cache.h
Normal file
157
mlx/backend/common/buffer_cache.h
Normal file
@@ -0,0 +1,157 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cassert>
|
||||
#include <functional>
|
||||
#include <map>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T>
|
||||
class BufferCache {
|
||||
public:
|
||||
BufferCache(
|
||||
size_t page_size,
|
||||
std::function<size_t(T*)> get_size,
|
||||
std::function<void(T*)> free)
|
||||
: page_size_(page_size),
|
||||
get_size_(std::move(get_size)),
|
||||
free_(std::move(free)) {}
|
||||
|
||||
~BufferCache() {
|
||||
clear();
|
||||
}
|
||||
|
||||
BufferCache(const BufferCache&) = delete;
|
||||
BufferCache& operator=(const BufferCache&) = delete;
|
||||
|
||||
T* reuse_from_cache(size_t size) {
|
||||
// Find the closest buffer in pool.
|
||||
auto it = buffer_pool_.lower_bound(size);
|
||||
if (it == buffer_pool_.end() ||
|
||||
it->first >= std::min(2 * size, size + 2 * page_size_)) {
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// Collect from the cache.
|
||||
T* buf = it->second->buf;
|
||||
pool_size_ -= it->first;
|
||||
|
||||
// Remove from record.
|
||||
remove_from_list(it->second);
|
||||
buffer_pool_.erase(it);
|
||||
return buf;
|
||||
}
|
||||
|
||||
void recycle_to_cache(T* buf) {
|
||||
assert(buf);
|
||||
// Add to cache.
|
||||
BufferHolder* bh = new BufferHolder(buf);
|
||||
add_at_head(bh);
|
||||
size_t size = get_size_(buf);
|
||||
pool_size_ += size;
|
||||
buffer_pool_.emplace(size, bh);
|
||||
}
|
||||
|
||||
int release_cached_buffers(size_t min_bytes_to_free) {
|
||||
if (min_bytes_to_free >= 0.9 * pool_size_) {
|
||||
return clear();
|
||||
} else {
|
||||
int n_release = 0;
|
||||
size_t total_bytes_freed = 0;
|
||||
|
||||
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
|
||||
// Release buffer.
|
||||
size_t size = get_size_(tail_->buf);
|
||||
total_bytes_freed += size;
|
||||
free_(tail_->buf);
|
||||
n_release++;
|
||||
|
||||
// Remove from record.
|
||||
auto its = buffer_pool_.equal_range(size);
|
||||
auto it = std::find_if(its.first, its.second, [this](const auto& el) {
|
||||
return el.second == tail_;
|
||||
});
|
||||
assert(it != buffer_pool_.end());
|
||||
buffer_pool_.erase(it);
|
||||
remove_from_list(tail_);
|
||||
}
|
||||
|
||||
pool_size_ -= total_bytes_freed;
|
||||
return n_release;
|
||||
}
|
||||
}
|
||||
|
||||
int clear() {
|
||||
int n_release = 0;
|
||||
for (auto& [size, holder] : buffer_pool_) {
|
||||
free_(holder->buf);
|
||||
n_release++;
|
||||
delete holder;
|
||||
}
|
||||
buffer_pool_.clear();
|
||||
pool_size_ = 0;
|
||||
head_ = nullptr;
|
||||
tail_ = nullptr;
|
||||
return n_release;
|
||||
}
|
||||
|
||||
size_t cache_size() const {
|
||||
return pool_size_;
|
||||
}
|
||||
|
||||
size_t page_size() const {
|
||||
return page_size_;
|
||||
}
|
||||
|
||||
private:
|
||||
struct BufferHolder {
|
||||
public:
|
||||
explicit BufferHolder(T* buf_) : buf(buf_) {}
|
||||
|
||||
BufferHolder* prev{nullptr};
|
||||
BufferHolder* next{nullptr};
|
||||
T* buf;
|
||||
};
|
||||
|
||||
void add_at_head(BufferHolder* to_add) {
|
||||
if (!head_) {
|
||||
head_ = to_add;
|
||||
tail_ = to_add;
|
||||
} else {
|
||||
head_->prev = to_add;
|
||||
to_add->next = head_;
|
||||
head_ = to_add;
|
||||
}
|
||||
}
|
||||
|
||||
void remove_from_list(BufferHolder* to_remove) {
|
||||
if (to_remove->prev && to_remove->next) { // if middle
|
||||
to_remove->prev->next = to_remove->next;
|
||||
to_remove->next->prev = to_remove->prev;
|
||||
} else if (to_remove->prev && to_remove == tail_) { // if tail
|
||||
tail_ = to_remove->prev;
|
||||
tail_->next = nullptr;
|
||||
} else if (to_remove == head_ && to_remove->next) { // if head
|
||||
head_ = to_remove->next;
|
||||
head_->prev = nullptr;
|
||||
} else if (to_remove == head_ && to_remove == tail_) { // if only element
|
||||
head_ = nullptr;
|
||||
tail_ = nullptr;
|
||||
}
|
||||
|
||||
delete to_remove;
|
||||
}
|
||||
|
||||
std::multimap<size_t, BufferHolder*> buffer_pool_;
|
||||
BufferHolder* head_{nullptr};
|
||||
BufferHolder* tail_{nullptr};
|
||||
size_t pool_size_{0};
|
||||
|
||||
const size_t page_size_;
|
||||
std::function<size_t(T*)> get_size_;
|
||||
std::function<void(T*)> free_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,74 +0,0 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/lapack.h"
|
||||
#include "mlx/linalg.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void cholesky_impl(const array& a, array& factor, bool upper) {
|
||||
// Lapack uses the column-major convention. We take advantage of the fact that
|
||||
// the matrix should be symmetric:
|
||||
// (A)ᵀ = A
|
||||
// and that a column-major lower triangular matrix is a row-major upper
|
||||
// triangular matrix, so uplo is the opposite of what we would expect from
|
||||
// upper
|
||||
|
||||
char uplo = (upper) ? 'L' : 'U';
|
||||
|
||||
// The decomposition is computed in place, so just copy the input to the
|
||||
// output.
|
||||
copy(
|
||||
a,
|
||||
factor,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
float* matrix = factor.data<float>();
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info;
|
||||
MLX_LAPACK_FUNC(spotrf)
|
||||
(
|
||||
/* uplo = */ &uplo,
|
||||
/* n = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
|
||||
// TODO: We do nothing when the matrix is not positive semi-definite
|
||||
// because throwing an error would result in a crash. If we figure out how
|
||||
// to catch errors from the implementation we should throw.
|
||||
if (info < 0) {
|
||||
std::stringstream msg;
|
||||
msg << "[cholesky] Cholesky decomposition failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
// Zero out the upper/lower triangle while advancing the pointer to the
|
||||
// next matrix at the same time.
|
||||
for (int row = 0; row < N; row++) {
|
||||
if (upper) {
|
||||
std::fill(matrix, matrix + row, 0);
|
||||
} else {
|
||||
std::fill(matrix + row + 1, matrix + N, 0);
|
||||
}
|
||||
matrix += N;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Cholesky::eval(const std::vector<array>& inputs, array& output) {
|
||||
if (inputs[0].dtype() != float32) {
|
||||
throw std::runtime_error("[Cholesky::eval] only supports float32.");
|
||||
}
|
||||
cholesky_impl(inputs[0], output, upper_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/broadcasting.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -39,24 +40,7 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
// rely on data_size anyway.
|
||||
size_t data_size = out.size();
|
||||
|
||||
return move_or_copy(in, out, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void broadcast(const array& in, array& out) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
Strides strides(out.ndim(), 0);
|
||||
int diff = out.ndim() - in.ndim();
|
||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||
}
|
||||
auto flags = in.flags();
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
move_or_copy(in, out, strides, flags, in.data_size());
|
||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -69,7 +53,7 @@ void BroadcastAxes::eval(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
move_or_copy(inputs[0], out);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void CustomTransforms::eval(
|
||||
@@ -78,7 +62,7 @@ void CustomTransforms::eval(
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
move_or_copy(inputs[j], outputs[i]);
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -87,7 +71,7 @@ void Depends::eval(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
move_or_copy(inputs[i], outputs[i]);
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -98,12 +82,12 @@ void ExpandDims::eval(const std::vector<array>& inputs, array& out) {
|
||||
for (auto ax : axes_) {
|
||||
strides.insert(strides.begin() + ax, 1);
|
||||
}
|
||||
move_or_copy(in, out, strides, in.flags(), in.data_size());
|
||||
out.copy_shared_buffer(in, strides, in.flags(), in.data_size());
|
||||
}
|
||||
|
||||
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
double numel = 1;
|
||||
for (auto ax : axes_) {
|
||||
@@ -151,6 +135,9 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
case bfloat16:
|
||||
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
|
||||
break;
|
||||
case float64:
|
||||
*out.data<double>() = static_cast<double>(numel);
|
||||
break;
|
||||
case complex64:
|
||||
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
|
||||
break;
|
||||
@@ -207,7 +194,7 @@ void shared_buffer_reshape(
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
}
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
@@ -273,12 +260,12 @@ void Squeeze::eval(const std::vector<array>& inputs, array& out) {
|
||||
strides.push_back(in.strides(i));
|
||||
}
|
||||
}
|
||||
move_or_copy(in, out, strides, in.flags(), in.data_size());
|
||||
out.copy_shared_buffer(in, strides, in.flags(), in.data_size());
|
||||
}
|
||||
|
||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
move_or_copy(inputs[0], out);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -312,7 +299,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
b_stride *= out.shape(ri);
|
||||
}
|
||||
}
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -15,6 +14,8 @@ void print_constant(std::ostream& os, const array& x) {
|
||||
return print_float_constant<float16_t>(os, x);
|
||||
case bfloat16:
|
||||
return print_float_constant<bfloat16_t>(os, x);
|
||||
case float64:
|
||||
return print_float_constant<double>(os, x);
|
||||
case complex64:
|
||||
return print_complex_constant<complex64_t>(os, x);
|
||||
case int8:
|
||||
@@ -51,6 +52,8 @@ std::string get_type_string(Dtype d) {
|
||||
return "float16_t";
|
||||
case bfloat16:
|
||||
return "bfloat16_t";
|
||||
case float64:
|
||||
return "double";
|
||||
case complex64:
|
||||
return "complex64_t";
|
||||
case bool_:
|
||||
@@ -79,55 +82,6 @@ std::string get_type_string(Dtype d) {
|
||||
}
|
||||
}
|
||||
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids) {
|
||||
NodeNamer namer;
|
||||
std::ostringstream os;
|
||||
std::ostringstream constant_hasher;
|
||||
|
||||
// Fill the input names. This is not really necessary, I just like having A,
|
||||
// B, C, ... as the inputs.
|
||||
for (auto& x : inputs) {
|
||||
namer.get_name(x);
|
||||
}
|
||||
|
||||
// The primitives describing the tape. For unary and binary primitives this
|
||||
// must be enough to describe the full computation.
|
||||
for (auto& a : tape) {
|
||||
// name and type of output
|
||||
os << namer.get_name(a) << kindof(a.dtype()) << a.itemsize();
|
||||
// computation performed
|
||||
a.primitive().print(os);
|
||||
// name of inputs to the function
|
||||
for (auto& inp : a.inputs()) {
|
||||
os << namer.get_name(inp);
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
os << "C";
|
||||
print_constant(constant_hasher, x);
|
||||
} else {
|
||||
os << (is_scalar(x) ? "S" : "V");
|
||||
}
|
||||
}
|
||||
os << "_";
|
||||
for (auto& x : inputs) {
|
||||
if (constant_ids.find(x.id()) != constant_ids.end()) {
|
||||
continue;
|
||||
}
|
||||
os << kindof(x.dtype()) << x.itemsize();
|
||||
}
|
||||
os << "_" << std::hash<std::string>{}(constant_hasher.str());
|
||||
|
||||
return os.str();
|
||||
}
|
||||
|
||||
bool compiled_check_contiguity(
|
||||
const std::vector<array>& inputs,
|
||||
const Shape& shape) {
|
||||
@@ -159,10 +113,10 @@ bool compiled_check_contiguity(
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous,
|
||||
bool move_buffers /* = false */) {
|
||||
const std::function<allocator::Buffer(size_t)>&
|
||||
mallocfn /* = allocator::malloc */) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
Strides strides;
|
||||
@@ -176,13 +130,8 @@ void compiled_allocate_outputs(
|
||||
// - Donatable
|
||||
// - Not a constant
|
||||
if (in.itemsize() == outputs[o].itemsize() && !is_scalar(in) &&
|
||||
in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o++].move_shared_buffer(in);
|
||||
} else {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
in.is_donatable() && is_constant(i)) {
|
||||
outputs[o++].copy_shared_buffer(in);
|
||||
}
|
||||
// Get representative input flags to properly set non-donated outputs
|
||||
if (strides.empty() && in.size() == outputs[0].size()) {
|
||||
@@ -193,7 +142,7 @@ void compiled_allocate_outputs(
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
|
||||
mallocfn(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
strides,
|
||||
flags);
|
||||
@@ -209,21 +158,86 @@ void compiled_allocate_outputs(
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
|
||||
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o].move_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
} else {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
}
|
||||
is_constant(i)) {
|
||||
outputs[o].copy_shared_buffer(
|
||||
in, outputs[o].strides(), in.flags(), in.data_size());
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
|
||||
outputs[o].set_data(mallocfn(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
const std::vector<array>& inputs,
|
||||
const array& out,
|
||||
const std::function<bool(size_t)>& is_constant) {
|
||||
const Shape& shape = out.shape();
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
if (contiguous) {
|
||||
return {true, shape, {}};
|
||||
}
|
||||
|
||||
std::vector<Strides> strides_vec{out.strides()};
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants.
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Skip scalar inputs.
|
||||
const auto& x = inputs[i];
|
||||
if (is_scalar(x)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
size_t j = 0;
|
||||
for (; j < shape.size() - x.ndim(); ++j) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
} else {
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
} else {
|
||||
xstrides.push_back(x.strides()[i]);
|
||||
}
|
||||
}
|
||||
strides_vec.push_back(std::move(xstrides));
|
||||
}
|
||||
|
||||
auto tup = collapse_contiguous_dims(shape, strides_vec, INT32_MAX);
|
||||
return {false, std::move(std::get<0>(tup)), std::move(std::get<1>(tup))};
|
||||
}
|
||||
|
||||
bool compiled_use_large_index(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
for (const auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
for (const auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include <functional>
|
||||
#include <iomanip>
|
||||
#include <sstream>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -14,19 +13,17 @@ inline bool is_static_cast(const Primitive& p) {
|
||||
return (typeid(p) == typeid(Broadcast) || typeid(p) == typeid(AsType));
|
||||
}
|
||||
|
||||
std::string build_lib_name(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
const std::vector<array>& tape,
|
||||
const std::unordered_set<uintptr_t>& constant_ids);
|
||||
|
||||
std::string get_type_string(Dtype d);
|
||||
|
||||
template <typename T>
|
||||
void print_float_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< x.item<T>() << std::setprecision(old_precision);
|
||||
if constexpr (std::is_same_v<T, double>) {
|
||||
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
|
||||
} else {
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
|
||||
}
|
||||
os << x.item<T>() << std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
@@ -60,9 +57,21 @@ bool compiled_check_contiguity(
|
||||
void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::vector<array>& inputs_,
|
||||
const std::unordered_set<uintptr_t>& constant_ids_,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous,
|
||||
bool move_buffers = false);
|
||||
const std::function<allocator::Buffer(size_t)>& mallocfn =
|
||||
allocator::malloc);
|
||||
|
||||
// Collapse contiguous dims ignoring scalars and constants.
|
||||
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
const std::vector<array>& inputs,
|
||||
const array& out,
|
||||
const std::function<bool(size_t)>& is_constant);
|
||||
|
||||
// Return whether the kernel should use large index.
|
||||
bool compiled_use_large_index(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user