mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-09 22:44:21 +08:00
Compare commits
173 Commits
cuda-sdpa-
...
batch_rope
Author | SHA1 | Date | |
---|---|---|---|
![]() |
c076794a22 | ||
![]() |
8f163a367d | ||
![]() |
89a3df9014 | ||
![]() |
c5d2937aa5 | ||
![]() |
b61a65e313 | ||
![]() |
04cbb4191c | ||
![]() |
c5460762e7 | ||
![]() |
8ce49cd39e | ||
![]() |
9c68b50853 | ||
![]() |
111f1e71af | ||
![]() |
827003d568 | ||
![]() |
d363a76aa4 | ||
![]() |
70560b6bd5 | ||
![]() |
7ef8a6f2d5 | ||
![]() |
31c6f6e33f | ||
![]() |
584d48458e | ||
![]() |
5cf984ca87 | ||
![]() |
a9bac3d9e5 | ||
![]() |
5458d43247 | ||
![]() |
a4dba65220 | ||
![]() |
3dcb286baf | ||
![]() |
4822c3dbe9 | ||
![]() |
2ca75bb529 | ||
![]() |
db14e29a0b | ||
![]() |
d2f540f4e0 | ||
![]() |
333ffea273 | ||
![]() |
f55b6f1f2f | ||
![]() |
30561229c7 | ||
![]() |
068a4612e9 | ||
![]() |
5722c147de | ||
![]() |
f6819a1f26 | ||
![]() |
f93f87c802 | ||
![]() |
9392fc3f88 | ||
![]() |
e843c4d8d5 | ||
![]() |
0c5fc63a36 | ||
![]() |
e397177f6e | ||
![]() |
f4c8888cbe | ||
![]() |
25c1e03205 | ||
![]() |
512281781c | ||
![]() |
ac85ddfdb7 | ||
![]() |
65d0d40232 | ||
![]() |
cea9369610 | ||
![]() |
e7c6e1db82 | ||
![]() |
c5fcd5b61b | ||
![]() |
1df9887998 | ||
![]() |
73f22d6226 | ||
![]() |
c422050ca7 | ||
![]() |
1ba18ff7d9 | ||
![]() |
37b440faa8 | ||
![]() |
888b13ed63 | ||
![]() |
4abb218d21 | ||
![]() |
6441c21a94 | ||
![]() |
dfb5022eab | ||
![]() |
ac207ce7aa | ||
![]() |
fce53b61d6 | ||
![]() |
8ae4a76308 | ||
![]() |
7fde1b6a1e | ||
![]() |
aa7b47481a | ||
![]() |
56be773610 | ||
![]() |
a9bdd67baa | ||
![]() |
f2adb5638d | ||
![]() |
728d4db582 | ||
![]() |
db5c7efcf6 | ||
![]() |
7bb96e4249 | ||
![]() |
fa89f0b150 | ||
![]() |
ca973d1e83 | ||
![]() |
828c5f1137 | ||
![]() |
7d86a5c108 | ||
![]() |
0b807893a7 | ||
![]() |
6ad0889c8a | ||
![]() |
737dd6d1ac | ||
![]() |
aaf78f4c6b | ||
![]() |
8831064493 | ||
![]() |
be9bc96da4 | ||
![]() |
86258f292f | ||
![]() |
b26d88591c | ||
![]() |
86c6a15571 | ||
![]() |
8b25ce62d5 | ||
![]() |
da5912e4f2 | ||
![]() |
daafee676f | ||
![]() |
d32519c8ee | ||
![]() |
b405591249 | ||
![]() |
3bf81ed1bd | ||
![]() |
2204182bba | ||
![]() |
3628e5d497 | ||
![]() |
a0ae49d397 | ||
![]() |
254476718b | ||
![]() |
3adba92ebe | ||
![]() |
ef631d63af | ||
![]() |
970dbe8e25 | ||
![]() |
641be9463b | ||
![]() |
ab0e608862 | ||
![]() |
1588659062 | ||
![]() |
b9e88fb976 | ||
![]() |
4ad53414dd | ||
![]() |
d1165b215e | ||
![]() |
dcb8319f3d | ||
![]() |
5597fa089c | ||
![]() |
9acec364c2 | ||
![]() |
7d9d6ef456 | ||
![]() |
6f5874a2f2 | ||
![]() |
70dc336785 | ||
![]() |
4e504039f5 | ||
![]() |
d1f4d291e8 | ||
![]() |
e1840853ce | ||
![]() |
0f5ce173da | ||
![]() |
588854195f | ||
![]() |
28d068bce6 | ||
![]() |
d107d8d495 | ||
![]() |
1e496ddb82 | ||
![]() |
74eccbf3fa | ||
![]() |
08638223ca | ||
![]() |
56cc858af9 | ||
![]() |
f55c4ed1d6 | ||
![]() |
93d70419e7 | ||
![]() |
63f663d9c6 | ||
![]() |
84b4d96efa | ||
![]() |
aec67f2fa6 | ||
![]() |
deee214a95 | ||
![]() |
45adec102c | ||
![]() |
31fc530c76 | ||
![]() |
fbb3f65a1a | ||
![]() |
6b1b8ea91b | ||
![]() |
b2273733ea | ||
![]() |
f409b229a4 | ||
![]() |
30571e2326 | ||
![]() |
d7734edd9f | ||
![]() |
2ba69bc8fa | ||
![]() |
cb349a291c | ||
![]() |
f0a0b077a0 | ||
![]() |
49114f28ab | ||
![]() |
e7d2ebadd2 | ||
![]() |
e569803d7c | ||
![]() |
d34f887abc | ||
![]() |
5201df5030 | ||
![]() |
2d3c26c565 | ||
![]() |
6325f60d52 | ||
![]() |
42cc9cfbc7 | ||
![]() |
8347575ba1 | ||
![]() |
b6eec20260 | ||
![]() |
0eb035b4b1 | ||
![]() |
afb9817599 | ||
![]() |
8fb3e7a26c | ||
![]() |
8c7bc30ce4 | ||
![]() |
85873cb162 | ||
![]() |
e14ee12491 | ||
![]() |
8b9a3f3cea | ||
![]() |
fb4e8b896b | ||
![]() |
2ca533b279 | ||
![]() |
4a9b29a875 | ||
![]() |
a4fcc893cd | ||
![]() |
9d10239af7 | ||
![]() |
19facd4b20 | ||
![]() |
f5299f72cd | ||
![]() |
0e0d9ac522 | ||
![]() |
8917022deb | ||
![]() |
ec0d5db67b | ||
![]() |
e76e9b87f0 | ||
![]() |
cfb6a244ea | ||
![]() |
58f3860306 | ||
![]() |
dd4f53db63 | ||
![]() |
3d5e17e507 | ||
![]() |
33bf1a244b | ||
![]() |
772f471ff2 | ||
![]() |
2c11d10f8d | ||
![]() |
656ed7f780 | ||
![]() |
81bb9a2a9e | ||
![]() |
5adf185f86 | ||
![]() |
c9a9180584 | ||
![]() |
76831ed83d | ||
![]() |
b3d7b85376 | ||
![]() |
cad5c0241c | ||
![]() |
b8022c578a |
@@ -7,15 +7,9 @@ parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
weekly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
linux_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
@@ -24,13 +18,14 @@ jobs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "16.2.0"
|
||||
resource_class: m2pro.medium
|
||||
xcode: "26.0.0"
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
brew install python@3.9
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
@@ -38,7 +33,7 @@ jobs:
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install -r docs/requirements.txt
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||
pip install . -v
|
||||
- when:
|
||||
condition:
|
||||
not: << parameters.upload-docs >>
|
||||
@@ -70,9 +65,9 @@ jobs:
|
||||
git push -f origin gh-pages
|
||||
|
||||
linux_build_and_test:
|
||||
docker:
|
||||
- image: cimg/python:3.9
|
||||
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
@@ -84,37 +79,37 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py develop
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
python3 -m unittest discover python/tests -v
|
||||
source .venv/bin/activate
|
||||
python -m unittest discover python/tests -v
|
||||
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
mkdir -p build && cd build
|
||||
source .venv/bin/activate
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j `nproc`
|
||||
- run:
|
||||
@@ -125,7 +120,7 @@ jobs:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
macosx_deployment_target:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -133,57 +128,56 @@ jobs:
|
||||
xcode: << parameters.xcode_version >>
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@3.9
|
||||
brew install openmpi
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
pip install unittest-xml-reporting
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
pip install -e . -v
|
||||
uv venv --python 3.9
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
numpy \
|
||||
torch \
|
||||
tensorflow \
|
||||
unittest-xml-reporting
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
cd examples/extensions
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project python test.py
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
@@ -192,7 +186,7 @@ jobs:
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
@@ -204,37 +198,74 @@ jobs:
|
||||
- run:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
pip install -e . -v
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
|
||||
cuda_build_and_test:
|
||||
parameters:
|
||||
image_date:
|
||||
type: string
|
||||
default: "2023.11.1"
|
||||
machine:
|
||||
image: linux-cuda-12:default
|
||||
image: "linux-cuda-12:<< parameters.image_date >>"
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- restore_cache:
|
||||
keys:
|
||||
- cuda-<< parameters.image_date >>-{{ arch }}-
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libnccl2 libnccl-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
pip install -e ".[dev]"
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=`which nvcc` \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j `nproc`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
paths:
|
||||
- /home/circleci/.cache/ccache
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
@@ -243,7 +274,7 @@ jobs:
|
||||
default: "3.9"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -252,7 +283,7 @@ jobs:
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
steps:
|
||||
@@ -260,11 +291,15 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
mkdir -p ~/miniconda3
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
source ~/miniconda3/bin/activate
|
||||
conda init --all
|
||||
conda create -n env python=<< parameters.python_version >> -y
|
||||
conda activate env
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
@@ -274,30 +309,38 @@ jobs:
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
<< parameters.build_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
python -m build -w
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
@@ -307,52 +350,100 @@ jobs:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
extra_env:
|
||||
build_env:
|
||||
type: string
|
||||
default: "DEV_RELEASE=1"
|
||||
docker:
|
||||
- image: ubuntu:20.04
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
PYTHON=python<< parameters.python_version >>
|
||||
apt-get update
|
||||
apt-get upgrade -y
|
||||
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||
apt-get install -y apt-utils
|
||||
apt-get install -y software-properties-common
|
||||
add-apt-repository -y ppa:deadsnakes/ppa
|
||||
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
apt-get install -y build-essential git
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
sudo apt-get update
|
||||
TZ=Etc/UTC sudo apt-get -y install tzdata
|
||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
$PYTHON -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
pip install . -v
|
||||
<< parameters.build_env >> pip install ".[dev]" -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
python setup.py generate_stubs
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
python -m build -w
|
||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload packages
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
build_cuda_release:
|
||||
parameters:
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: xlarge
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Upload package
|
||||
name: Build wheel
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install zip
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build -w
|
||||
bash python/scripts/repair_cuda.sh
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
@@ -364,22 +455,23 @@ workflows:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
@@ -393,68 +485,7 @@ workflows:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
@@ -462,6 +493,25 @@ workflows:
|
||||
branches:
|
||||
ignore: /.*/
|
||||
upload-docs: true
|
||||
- build_linux_release:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
|
||||
prb:
|
||||
when:
|
||||
@@ -477,11 +527,14 @@ workflows:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
nightly_build:
|
||||
when:
|
||||
and:
|
||||
@@ -493,58 +546,18 @@ workflows:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
weekly_build:
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.weekly_build >>
|
||||
- << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
@@ -552,76 +565,13 @@ workflows:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
linux_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.linux_release >>
|
||||
jobs:
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
|
@@ -19,11 +19,17 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Organizations
|
||||
|
||||
MLX has received contributions from the following companies:
|
||||
- NVIDIA Corporation & Affiliates
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
MLX leverages several third-party software, listed here together with
|
||||
|
@@ -41,7 +41,9 @@ option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
message(
|
||||
@@ -64,10 +66,17 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||
endif()
|
||||
|
||||
if(MLX_USE_CCACHE)
|
||||
find_program(CCACHE_PROGRAM ccache)
|
||||
if(CCACHE_PROGRAM)
|
||||
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
# ----------------------------- Lib -----------------------------
|
||||
@@ -131,6 +140,12 @@ elseif(MLX_BUILD_METAL)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
||||
# building on old distributions they need to be explicitly listed.
|
||||
target_link_libraries(mlx PRIVATE dl pthread)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
if(MSVC)
|
||||
# GGUF does not build with MSVC.
|
||||
@@ -234,12 +249,16 @@ target_include_directories(
|
||||
# Do not add mlx_EXPORTS define for shared library.
|
||||
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
|
||||
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
if(USE_SYSTEM_FMT)
|
||||
find_package(fmt REQUIRED)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
endif()
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
||||
|
||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||
|
21
README.md
21
README.md
@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
@@ -68,18 +68,23 @@ in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
||||
macOS, run:
|
||||
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
```bash
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
**With `conda`**:
|
||||
To install the CUDA backend on Linux, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cuda]
|
||||
```
|
||||
conda install -c conda-forge mlx
|
||||
|
||||
To install a CPU-only Linux package, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cpu]
|
||||
```
|
||||
|
||||
Checkout the
|
||||
|
@@ -192,6 +192,22 @@ void time_reductions() {
|
||||
|
||||
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
|
||||
TIME(argmin_along_1);
|
||||
|
||||
auto indices = mx::array({1});
|
||||
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
|
||||
std::vector<int> axes{0};
|
||||
auto b = scatter(a, {indices}, updates, axes);
|
||||
mx::eval(b);
|
||||
|
||||
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
|
||||
TIME(max_along_0);
|
||||
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
||||
TIME(max_along_1);
|
||||
|
||||
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
|
||||
TIME(min_along_0);
|
||||
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
|
||||
TIME(min_along_1);
|
||||
}
|
||||
|
||||
void time_gather_scatter() {
|
||||
|
@@ -5,6 +5,7 @@ import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
import torch.mps
|
||||
|
||||
|
||||
@@ -44,8 +45,10 @@ def bench(f, *args):
|
||||
|
||||
|
||||
def sync_if_needed(x):
|
||||
if x.device != torch.device("cpu"):
|
||||
if x.device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
elif x.device == torch.device("cuda"):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -99,6 +102,14 @@ def reduction(op, axis, x):
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sum_and_add(axis, x, y):
|
||||
z = x.sum(axis=axis, keepdims=True)
|
||||
for i in range(50):
|
||||
z = (z + y).sum(axis=axis, keepdims=True)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def softmax(axis, x):
|
||||
ys = []
|
||||
@@ -340,7 +351,11 @@ if __name__ == "__main__":
|
||||
args.axis.pop(0)
|
||||
|
||||
torch.set_num_threads(1)
|
||||
device = "cpu" if args.cpu else "mps"
|
||||
device = "mps"
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
if args.cpu:
|
||||
device = "cpu"
|
||||
|
||||
types = args.dtype
|
||||
if not types:
|
||||
@@ -460,5 +475,8 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "selu":
|
||||
print(bench(selu, x))
|
||||
|
||||
elif args.benchmark == "sum_and_add":
|
||||
print(bench(sum_and_add, axis, *xs))
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
||||
|
@@ -51,6 +51,20 @@ def time_maximum():
|
||||
time_fn(mx.maximum, a, b)
|
||||
|
||||
|
||||
def time_max():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.max, a, 0)
|
||||
|
||||
|
||||
def time_min():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.min, a, 0)
|
||||
|
||||
|
||||
def time_negative():
|
||||
a = mx.random.uniform(shape=(10000, 1000))
|
||||
mx.eval(a)
|
||||
@@ -108,6 +122,8 @@ if __name__ == "__main__":
|
||||
|
||||
time_add()
|
||||
time_matmul()
|
||||
time_min()
|
||||
time_max()
|
||||
time_maximum()
|
||||
time_exp()
|
||||
time_negative()
|
||||
|
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
@@ -1,4 +1,5 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
sphinx-copybutton
|
||||
mlx
|
||||
|
@@ -18,6 +18,7 @@ release = version
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
extensions = [
|
||||
"sphinx_copybutton",
|
||||
"sphinx.ext.autodoc",
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
|
@@ -127,7 +127,8 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source
|
||||
source=source,
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
@@ -138,7 +139,6 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
|
@@ -138,13 +138,13 @@ more concrete:
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
@@ -394,14 +394,14 @@ below.
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
std::stream kname;
|
||||
kname = "axpby_general_" + type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
@@ -70,6 +70,7 @@ are the CPU and GPU.
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/cuda
|
||||
python/memory_management
|
||||
python/nn
|
||||
python/optimizers
|
||||
|
@@ -13,7 +13,7 @@ silicon computer is
|
||||
|
||||
pip install mlx
|
||||
|
||||
To install from PyPI you must meet the following requirements:
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
@@ -23,12 +23,39 @@ To install from PyPI you must meet the following requirements:
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX is also available on conda-forge. To install MLX with conda do:
|
||||
MLX has a CUDA backend which you can install with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
conda install conda-forge::mlx
|
||||
pip install mlx[cuda]
|
||||
|
||||
To install the CUDA package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Nvidia architecture >= SM 7.0 (Volta)
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
For a CPU-only version of MLX that runs on Linux use:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install mlx[cpu]
|
||||
|
||||
To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
Troubleshooting
|
||||
@@ -65,6 +92,8 @@ Build Requirements
|
||||
Python API
|
||||
^^^^^^^^^^
|
||||
|
||||
.. _python install:
|
||||
|
||||
To build and install the MLX python library from source, first, clone MLX from
|
||||
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
|
||||
|
||||
@@ -76,20 +105,20 @@ Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||
pip install .
|
||||
|
||||
For developing, install the package with development dependencies, and use an
|
||||
editable install:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||
pip install -e ".[dev]"
|
||||
|
||||
Once the development dependencies are installed, you can build faster with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||
python setup.py build_ext --inplace
|
||||
|
||||
Run the tests with:
|
||||
|
||||
@@ -107,6 +136,8 @@ IDE:
|
||||
C++ API
|
||||
^^^^^^^
|
||||
|
||||
.. _cpp install:
|
||||
|
||||
Currently, MLX must be built and installed from source.
|
||||
|
||||
Similarly to the python library, to build and install the MLX C++ library start
|
||||
@@ -185,6 +216,7 @@ should point to the path to the built metal library.
|
||||
|
||||
xcrun -sdk macosx --show-sdk-version
|
||||
|
||||
|
||||
Binary Size Minimization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@@ -213,6 +245,50 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists across reboots.
|
||||
|
||||
Linux
|
||||
^^^^^
|
||||
|
||||
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
|
||||
For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
apt-get update -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
|
||||
From here follow the instructions to install either the :ref:`Python <python
|
||||
install>` or :ref:`C++ <cpp install>` APIs.
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
|
||||
and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
||||
|
||||
To build the C++ package run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_CUDA=ON && make -j
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
|
9
docs/src/python/cuda.rst
Normal file
9
docs/src/python/cuda.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
CUDA
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.cuda
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
@@ -13,3 +13,4 @@ Fast
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
metal_kernel
|
||||
cuda_kernel
|
||||
|
@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
state = tree_flatten(optimizer.state, destination={})
|
||||
mx.save_safetensors("optimizer.safetensors", state)
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
state = tree_unflatten(mx.load("optimizer.safetensors"))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
|
@@ -19,3 +19,4 @@ Common Optimizers
|
||||
Adamax
|
||||
Lion
|
||||
MultiOptimizer
|
||||
Muon
|
||||
|
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z), state
|
||||
return mx.exp(z)
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
|
@@ -7,17 +7,17 @@ Exporting Functions
|
||||
|
||||
MLX has an API to export and import functions to and from a file. This lets you
|
||||
run computations written in one MLX front-end (e.g. Python) in another MLX
|
||||
front-end (e.g. C++).
|
||||
front-end (e.g. C++).
|
||||
|
||||
This guide walks through the basics of the MLX export API with some examples.
|
||||
To see the full list of functions check-out the :ref:`API documentation
|
||||
<export>`.
|
||||
|
||||
Basics of Exporting
|
||||
Basics of Exporting
|
||||
-------------------
|
||||
|
||||
Let's start with a simple example:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
@@ -67,7 +67,7 @@ specified as variable positional arguments or as a tuple of arrays:
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(1.0)
|
||||
|
||||
|
||||
# Both arguments to fun are positional
|
||||
mx.export_function("add.mlxfn", fun, x, y)
|
||||
|
||||
@@ -133,7 +133,7 @@ parameters are also saved to the ``model.mlxfn`` file.
|
||||
For enclosed arrays inside an exported function, be extra careful to ensure
|
||||
they are evaluated. The computation graph that gets exported will include
|
||||
the computation that produces enclosed inputs.
|
||||
|
||||
|
||||
If the above example was missing ``mx.eval(model.parameters()``, the
|
||||
exported function would include the random initialization of the
|
||||
:obj:`mlx.nn.Module` parameters.
|
||||
@@ -150,8 +150,8 @@ parameters, pass them as inputs to the ``call`` wrapper:
|
||||
# Set the model's parameters to the input parameters
|
||||
model.update(tree_unflatten(list(params.items())))
|
||||
return model(x)
|
||||
|
||||
params = dict(tree_flatten(model.parameters()))
|
||||
|
||||
params = tree_flatten(model.parameters(), destination={})
|
||||
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
|
||||
|
||||
|
||||
@@ -169,8 +169,8 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
|
||||
# Also ok
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
With ``shapeless=False`` (which is the default), the second call to
|
||||
@@ -197,7 +197,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
def fun(x, y=None):
|
||||
constant = mx.array(3.0)
|
||||
if y is not None:
|
||||
x += y
|
||||
x += y
|
||||
return x + constant
|
||||
|
||||
with mx.exporter("fun.mlxfn", fun) as exporter:
|
||||
@@ -215,7 +215,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
|
||||
print(out)
|
||||
|
||||
In the above example the function constant data, (i.e. ``constant``), is only
|
||||
saved once.
|
||||
saved once.
|
||||
|
||||
Transformations with Imported Functions
|
||||
---------------------------------------
|
||||
@@ -238,7 +238,7 @@ on imported functions just like regular Python functions:
|
||||
# Prints: array(1, dtype=float32)
|
||||
print(dfdx(x))
|
||||
|
||||
# Compile the imported function
|
||||
# Compile the imported function
|
||||
mx.compile(imported_fun)
|
||||
# Prints: array(0, dtype=float32)
|
||||
print(compiled_fun(x)[0])
|
||||
@@ -275,7 +275,7 @@ Import and run the function in C++ with only a few lines of code:
|
||||
// Prints: array(2, dtype=float32)
|
||||
std::cout << outputs[0] << std::endl;
|
||||
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
Imported functions can be transformed in C++ just like in Python. Use
|
||||
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
|
||||
mx::array>`` for keyword arguments when calling imported functions in C++.
|
||||
|
||||
|
@@ -107,8 +107,20 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
|
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@@ -16,6 +17,19 @@
|
||||
|
||||
namespace my_ext {
|
||||
|
||||
// A helper function to find the location of the current binary on disk.
|
||||
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
||||
std::string current_binary_dir() {
|
||||
static std::string binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path().string();
|
||||
}();
|
||||
return binary_dir;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Operation Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -167,16 +181,15 @@ void Axpby::eval_gpu(
|
||||
}
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_";
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
std::string kname = "axpby_";
|
||||
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname += type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
|
||||
const std::vector<mx::array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
|
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.25
|
||||
mlx>=0.21.0
|
||||
nanobind==2.2.0
|
||||
nanobind==2.4.0
|
||||
|
@@ -3,8 +3,10 @@ from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
print(f"c shape: {c_cpu.shape}")
|
||||
print(f"c dtype: {c_cpu.dtype}")
|
||||
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
|
||||
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
|
||||
|
@@ -10,6 +10,7 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/small_vector.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -18,8 +19,8 @@ class Primitive;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using ShapeElem = int32_t;
|
||||
using Shape = std::vector<ShapeElem>;
|
||||
using Strides = std::vector<int64_t>;
|
||||
using Shape = SmallVector<ShapeElem>;
|
||||
using Strides = SmallVector<int64_t>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
|
@@ -14,6 +14,8 @@ void print_constant(std::ostream& os, const array& x) {
|
||||
return print_float_constant<float16_t>(os, x);
|
||||
case bfloat16:
|
||||
return print_float_constant<bfloat16_t>(os, x);
|
||||
case float64:
|
||||
return print_float_constant<double>(os, x);
|
||||
case complex64:
|
||||
return print_complex_constant<complex64_t>(os, x);
|
||||
case int8:
|
||||
@@ -50,6 +52,8 @@ std::string get_type_string(Dtype d) {
|
||||
return "float16_t";
|
||||
case bfloat16:
|
||||
return "bfloat16_t";
|
||||
case float64:
|
||||
return "double";
|
||||
case complex64:
|
||||
return "complex64_t";
|
||||
case bool_:
|
||||
|
@@ -18,8 +18,12 @@ std::string get_type_string(Dtype d);
|
||||
template <typename T>
|
||||
void print_float_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< x.item<T>() << std::setprecision(old_precision);
|
||||
if constexpr (std::is_same_v<T, double>) {
|
||||
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
|
||||
} else {
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
|
||||
}
|
||||
os << x.item<T>() << std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
@@ -12,16 +12,11 @@ namespace mlx::core {
|
||||
inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
// Get and check the shape for the batched dims
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
|
||||
if (A_bshape != B_bshape) {
|
||||
std::ostringstream msg;
|
||||
msg << "[matmul] Got matrices with incorrectly broadcasted shapes: " << "A "
|
||||
<< a.shape() << ", B " << b.shape() << ".";
|
||||
throw std::runtime_error(msg.str());
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
|
||||
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
|
||||
|
||||
@@ -42,17 +37,11 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
// Get and check the shape for the batched dims
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
|
||||
Shape C_bshape{c.shape().begin(), c.shape().end() - 2};
|
||||
if (A_bshape != B_bshape || A_bshape != C_bshape) {
|
||||
std::ostringstream msg;
|
||||
msg << "[addmm] Got matrices with incorrectly broadcasted shapes: " << "A "
|
||||
<< a.shape() << ", B " << b.shape() << ", B " << c.shape() << ".";
|
||||
throw std::runtime_error(msg.str());
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
|
||||
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
|
||||
Strides C_bstride{c.strides().begin(), c.strides().end() - 2};
|
||||
|
@@ -5,11 +5,9 @@
|
||||
namespace mlx::core {
|
||||
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
Shape shape,
|
||||
Strides strides,
|
||||
const std::vector<int>& axes) {
|
||||
auto shape = x.shape();
|
||||
auto strides = x.strides();
|
||||
|
||||
for (int i = axes.size() - 1; i >= 0; i--) {
|
||||
int a = axes[i];
|
||||
shape.erase(shape.begin() + a);
|
||||
@@ -19,6 +17,15 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
return std::make_pair(shape, strides);
|
||||
}
|
||||
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
auto shape = x.shape();
|
||||
auto strides = x.strides();
|
||||
return shapes_without_reduction_axes(
|
||||
std::move(shape), std::move(strides), axes);
|
||||
}
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
|
@@ -51,5 +51,9 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes);
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
Shape shape,
|
||||
Strides strides,
|
||||
const std::vector<int>& axes);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,14 +1,20 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::string get_primitive_string(Primitive* primitive) {
|
||||
std::ostringstream op_t;
|
||||
primitive->print(op_t);
|
||||
return op_t.str();
|
||||
std::filesystem::path current_binary_dir() {
|
||||
static std::filesystem::path binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path();
|
||||
}();
|
||||
return binary_dir;
|
||||
}
|
||||
|
||||
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
@@ -199,12 +205,15 @@ Dims get_2d_grid_dims_common(
|
||||
}
|
||||
}
|
||||
}
|
||||
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX || divisor > 1) {
|
||||
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
|
||||
throw std::runtime_error("Unable to safely factor shape.");
|
||||
}
|
||||
if (grid_y > grid_x) {
|
||||
std::swap(grid_x, grid_y);
|
||||
}
|
||||
if (divisor > 1) {
|
||||
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
|
||||
}
|
||||
return std::make_tuple(
|
||||
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
|
||||
}
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <filesystem>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
@@ -9,7 +10,8 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::string get_primitive_string(Primitive* primitive);
|
||||
// Return the directory that contains current shared library.
|
||||
std::filesystem::path current_binary_dir();
|
||||
|
||||
inline int64_t
|
||||
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
|
||||
@@ -195,7 +197,7 @@ void shared_buffer_reshape(
|
||||
array& out);
|
||||
|
||||
template <typename T>
|
||||
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
return vec;
|
||||
}
|
||||
|
@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
||||
|
||||
// The decomposition is computed in place, so just copy the input to the
|
||||
// output.
|
||||
copy(
|
||||
copy_cpu(
|
||||
a,
|
||||
factor,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
@@ -15,6 +15,7 @@
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/version.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -94,7 +95,11 @@ void* compile(
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
auto output_dir = std::filesystem::temp_directory_path();
|
||||
auto output_dir =
|
||||
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
|
||||
if (!std::filesystem::exists(output_dir)) {
|
||||
std::filesystem::create_directories(output_dir);
|
||||
}
|
||||
|
||||
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
|
||||
auto shared_lib_path = (output_dir / shared_lib_name).string();
|
||||
@@ -157,10 +162,12 @@ inline void build_kernel(
|
||||
#endif
|
||||
|
||||
// Start the kernel
|
||||
os << "void " << kernel_name << "(void** args) {" << std::endl;
|
||||
os << "void " << kernel_name
|
||||
<< "(int* shape, int64_t** strides, void** args) {" << std::endl;
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
@@ -175,8 +182,8 @@ inline void build_kernel(
|
||||
<< "];" << std::endl;
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
os << " const int64_t* " << xname << "_strides = strides["
|
||||
<< strides_index++ << "];" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -186,10 +193,8 @@ inline void build_kernel(
|
||||
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
|
||||
<< "*)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
|
||||
} else {
|
||||
// Add output size
|
||||
if (contiguous) {
|
||||
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
|
||||
@@ -231,7 +236,7 @@ inline void build_kernel(
|
||||
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
||||
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
|
||||
} else {
|
||||
x.primitive().print(os);
|
||||
os << x.primitive().name();
|
||||
os << "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
@@ -290,7 +295,6 @@ void Compiled::eval_cpu(
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
@@ -298,9 +302,6 @@ void Compiled::eval_cpu(
|
||||
const auto& x = inputs[i];
|
||||
encoder.set_input_array(x);
|
||||
args.push_back((void*)x.data<void>());
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.push_back(strides[strides_index++].data());
|
||||
}
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
@@ -335,16 +336,20 @@ void Compiled::eval_cpu(
|
||||
args.push_back(x.data<void>());
|
||||
encoder.set_output_array(x);
|
||||
}
|
||||
if (!contiguous) {
|
||||
args.push_back((void*)shape.data());
|
||||
} else {
|
||||
if (contiguous) {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
auto fun = reinterpret_cast<void (*)(int*, int64_t**, void**)>(fn_ptr);
|
||||
encoder.dispatch([fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
shape = std::move(shape)]() mutable { fun(args.data()); });
|
||||
shape = std::move(shape)]() mutable {
|
||||
SmallVector<int64_t*> strides_ptrs;
|
||||
for (auto& s : strides) {
|
||||
strides_ptrs.push_back(s.data());
|
||||
}
|
||||
fun(shape.data(), strides_ptrs.data(), args.data());
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
|
||||
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
// Copy input values into the slice
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Make strided view
|
||||
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH, wH * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
|
||||
wt.size(),
|
||||
0);
|
||||
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
||||
copy(wt_transpose, gemm_wt, CopyType::General, stream);
|
||||
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps = {array(0, conv_dtype)};
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = 0;
|
||||
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
data_offset);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Make strided view
|
||||
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
}
|
||||
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (flip) {
|
||||
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
|
||||
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
||||
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
||||
temps.push_back(gemm_wt_);
|
||||
|
||||
// Calculate the total size of the spatial dimensions
|
||||
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
@@ -295,7 +295,11 @@ inline void copy_inplace_dispatch(
|
||||
|
||||
} // namespace
|
||||
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Stream stream) {
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(src);
|
||||
encoder.set_output_array(dst);
|
||||
@@ -305,7 +309,7 @@ void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
|
||||
}
|
||||
|
||||
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
bool donated = set_copy_output_data(src, dst, ctype);
|
||||
if (donated && src.dtype() == dst.dtype()) {
|
||||
// If the output has the same type as the input then there is nothing to
|
||||
@@ -315,10 +319,10 @@ void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
if (ctype == CopyType::GeneralGeneral) {
|
||||
ctype = CopyType::General;
|
||||
}
|
||||
copy_inplace(src, dst, ctype, stream);
|
||||
copy_cpu_inplace(src, dst, ctype, stream);
|
||||
}
|
||||
|
||||
void copy_inplace(
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const Shape& data_shape,
|
||||
@@ -373,4 +377,10 @@ void copy_inplace(
|
||||
});
|
||||
}
|
||||
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -10,10 +10,14 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Stream stream);
|
||||
|
||||
void copy_inplace(
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const Shape& data_shape,
|
||||
@@ -26,4 +30,7 @@ void copy_inplace(
|
||||
const std::optional<array>& dynamic_i_offset = std::nullopt,
|
||||
const std::optional<array>& dynamic_o_offset = std::nullopt);
|
||||
|
||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -13,9 +13,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return {arr, false};
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, stream);
|
||||
return {arr_copy, true};
|
||||
return {contiguous_copy_cpu(arr, stream), true};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -34,8 +32,7 @@ void AllReduce::eval_cpu(
|
||||
}
|
||||
return in;
|
||||
} else {
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy(in, arr_copy, CopyType::General, s);
|
||||
array arr_copy = contiguous_copy_cpu(in, s);
|
||||
out.copy_shared_buffer(arr_copy);
|
||||
return arr_copy;
|
||||
}
|
||||
|
@@ -135,7 +135,7 @@ void Eig::eval_cpu(
|
||||
: array(a.shape(), complex64, nullptr, {});
|
||||
|
||||
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
|
||||
copy(
|
||||
copy_cpu(
|
||||
a,
|
||||
a_copy,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
|
||||
|
||||
values.set_data(allocator::malloc(values.nbytes()));
|
||||
|
||||
copy(
|
||||
copy_cpu(
|
||||
a,
|
||||
vectors,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (in.flags().row_contiguous && in.is_donatable()) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy(
|
||||
copy_cpu(
|
||||
in,
|
||||
out,
|
||||
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Copy src into out (copy allocates memory for out)
|
||||
auto ctype =
|
||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(src, out, ctype, stream());
|
||||
copy_cpu(src, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
std::vector<array> inds;
|
||||
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Copy src into out (copy allocates memory for out)
|
||||
auto ctype =
|
||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(src, out, ctype, stream());
|
||||
copy_cpu(src, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(idx);
|
||||
|
@@ -115,7 +115,7 @@ void inverse_impl(
|
||||
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
||||
|
||||
// The inverse is computed in place, so just copy the input to the output.
|
||||
copy(
|
||||
copy_cpu(
|
||||
a,
|
||||
inv,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
@@ -2,6 +2,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
|
@@ -47,7 +47,7 @@ INSTANTIATE_LAPACK_REAL(orgqr)
|
||||
INSTANTIATE_LAPACK_REAL(syevd)
|
||||
INSTANTIATE_LAPACK_REAL(geev)
|
||||
INSTANTIATE_LAPACK_REAL(potrf)
|
||||
INSTANTIATE_LAPACK_REAL(gesvdx)
|
||||
INSTANTIATE_LAPACK_REAL(gesdd)
|
||||
INSTANTIATE_LAPACK_REAL(getrf)
|
||||
INSTANTIATE_LAPACK_REAL(getri)
|
||||
INSTANTIATE_LAPACK_REAL(trtri)
|
||||
|
@@ -87,8 +87,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||
return x;
|
||||
} else {
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, x_copy, CopyType::General, s);
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
@@ -31,7 +31,7 @@ void luf_impl(
|
||||
strides[ndim - 1] = M;
|
||||
strides[ndim - 2] = 1;
|
||||
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
|
||||
copy_inplace(
|
||||
copy_cpu_inplace(
|
||||
a,
|
||||
lu,
|
||||
a.shape(),
|
||||
|
@@ -6,6 +6,7 @@
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/gemm.h"
|
||||
#include "mlx/backend/cpu/lapack.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -52,6 +53,58 @@ inline void mask_matrix(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void segmented_mm(
|
||||
const T* a,
|
||||
const T* b,
|
||||
const uint32_t* segments,
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides,
|
||||
size_t num_segments,
|
||||
const Shape& segments_shape,
|
||||
const Strides& segments_strides) {
|
||||
int ndim = a_shape.size();
|
||||
Shape a_copy = a_shape;
|
||||
Shape b_copy = b_shape;
|
||||
int32_t M = a_copy[ndim - 2];
|
||||
int32_t N = b_copy[ndim - 1];
|
||||
for (int i = 0; i < num_segments; i++) {
|
||||
uint32_t k_start =
|
||||
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
|
||||
uint32_t k_end =
|
||||
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
|
||||
if (k_end <= k_start) {
|
||||
std::fill_n(out + i * M * N, M * N, T(0));
|
||||
continue;
|
||||
}
|
||||
a_copy[ndim - 1] = k_end - k_start;
|
||||
b_copy[ndim - 2] = k_end - k_start;
|
||||
matmul<T>(
|
||||
a + k_start * a_strides[ndim - 1],
|
||||
b + k_start * b_strides[ndim - 2],
|
||||
out + i * M * N,
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
N,
|
||||
1.0,
|
||||
0.0,
|
||||
1,
|
||||
a_copy,
|
||||
a_strides,
|
||||
b_copy,
|
||||
b_strides);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -71,21 +124,20 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector, s);
|
||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
return std::make_tuple(false, stx, arr, false);
|
||||
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::Vector, s);
|
||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
||||
return std::make_tuple(true, sty, arr_copy, true);
|
||||
}
|
||||
return std::make_tuple(true, sty, arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
array arr_copy = contiguous_copy_cpu(arr, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
};
|
||||
@@ -333,7 +385,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, temps.back());
|
||||
}
|
||||
@@ -437,4 +489,121 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto check_transpose = [&s, &encoder](const array& x) {
|
||||
auto stx = x.strides()[x.ndim() - 2];
|
||||
auto sty = x.strides()[x.ndim() - 1];
|
||||
if (stx == x.shape(-1) && sty == 1) {
|
||||
return std::make_tuple(false, stx, x);
|
||||
} else if (stx == 1 && sty == x.shape(-2)) {
|
||||
return std::make_tuple(true, sty, x);
|
||||
} else {
|
||||
array xc(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, xc, CopyType::General, s);
|
||||
encoder.add_temporary(xc);
|
||||
int64_t stx = x.shape(-1);
|
||||
return std::make_tuple(false, stx, xc);
|
||||
}
|
||||
};
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
|
||||
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
|
||||
auto& segments = inputs[2];
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(segments);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
segments = array::unsafe_weak_copy(segments),
|
||||
out_ptr = out.data<void>(),
|
||||
a_transposed = a_transposed,
|
||||
b_transposed = b_transposed,
|
||||
lda = lda,
|
||||
ldb = ldb]() {
|
||||
switch (a.dtype()) {
|
||||
case float64:
|
||||
segmented_mm<double>(
|
||||
a.data<double>(),
|
||||
b.data<double>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<double*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case float32:
|
||||
segmented_mm<float>(
|
||||
a.data<float>(),
|
||||
b.data<float>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<float*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case float16:
|
||||
segmented_mm<float16_t>(
|
||||
a.data<float16_t>(),
|
||||
b.data<float16_t>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<float16_t*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case bfloat16:
|
||||
segmented_mm<bfloat16_t>(
|
||||
a.data<bfloat16_t>(),
|
||||
b.data<bfloat16_t>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<bfloat16_t*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"Segmented mm supports only real float types.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -81,7 +81,7 @@ void matmul_general(
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy(arr, temps.back(), CopyType::General, stream);
|
||||
copy_cpu(arr, temps.back(), CopyType::General, stream);
|
||||
stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, temps.back());
|
||||
}
|
||||
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy(c, out, ctype, stream());
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
return;
|
||||
}
|
||||
|
@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
copy_inplace(in, out, CopyType::General, out.primitive().stream());
|
||||
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(in, out, ctype, stream());
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
}
|
||||
|
||||
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
size_t data_offset = strides[axis_] * sizes[i];
|
||||
out_slice.copy_shared_buffer(
|
||||
out, strides, flags, out_slice.size(), data_offset);
|
||||
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy(in, out, CopyType::General, stream());
|
||||
copy_cpu(in, out, CopyType::General, stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
} else {
|
||||
ctype = CopyType::General;
|
||||
}
|
||||
copy(in, out, ctype, stream());
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
}
|
||||
|
||||
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
|
||||
|
||||
// Fill output with val
|
||||
copy(val, out, CopyType::Scalar, stream());
|
||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
||||
|
||||
// Find offset for start of input values
|
||||
size_t data_offset = 0;
|
||||
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out, out.strides(), out.flags(), out_slice.size(), data_offset);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
||||
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
||||
}
|
||||
|
||||
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto [in_offset, donated] =
|
||||
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
|
||||
copy_inplace(
|
||||
copy_cpu_inplace(
|
||||
/* const array& src = */ in,
|
||||
/* array& dst = */ out,
|
||||
/* const Shape& data_shape = */ out.shape(),
|
||||
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
|
||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
|
||||
auto [out_offset, donated] =
|
||||
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
|
||||
copy_inplace(
|
||||
copy_cpu_inplace(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [data_offset, out_strides] =
|
||||
prepare_slice(out, start_indices_, strides_);
|
||||
|
||||
// Do copy
|
||||
copy_inplace(
|
||||
copy_cpu_inplace(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (in.dtype() == bool_) {
|
||||
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
||||
in_tmp.copy_shared_buffer(in);
|
||||
copy_inplace(in_tmp, tmp, CopyType::General, stream());
|
||||
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
|
||||
} else {
|
||||
copy_inplace(in, tmp, CopyType::General, stream());
|
||||
copy_cpu_inplace(in, tmp, CopyType::General, stream());
|
||||
}
|
||||
|
||||
auto flags = out.flags();
|
||||
|
@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
strides[in.ndim() - 2] = 1;
|
||||
strides[in.ndim() - 1] = M;
|
||||
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
|
||||
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
|
||||
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
q.set_data(allocator::malloc(q.nbytes()));
|
||||
r.set_data(allocator::malloc(r.nbytes()));
|
||||
|
@@ -1,7 +1,5 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
@@ -13,6 +11,35 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
const static float MXFP4_LUT[16] = {
|
||||
+0.0f,
|
||||
+0.5f,
|
||||
+1.0f,
|
||||
+1.5f,
|
||||
+2.0f,
|
||||
+3.0f,
|
||||
+4.0f,
|
||||
+6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
template <typename T>
|
||||
static inline T dequantize_scale(uint8_t s) {
|
||||
using FOrI = union {
|
||||
bfloat16_t f;
|
||||
uint16_t i;
|
||||
};
|
||||
FOrI out;
|
||||
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
|
||||
return static_cast<T>(out.f);
|
||||
}
|
||||
|
||||
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
@@ -407,6 +434,231 @@ void _qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack(4);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
std::fill(result, result + N, 0);
|
||||
|
||||
for (int k = 0; k < K; k++) {
|
||||
T* result_local = result;
|
||||
T xi = *x++;
|
||||
|
||||
for (int n = 0; n < N; n += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result += N;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack(4);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const T* x_local = x;
|
||||
T sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
T gsum = 0;
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
sum += scale * gsum;
|
||||
}
|
||||
*result = sum;
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <int S>
|
||||
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
|
||||
if constexpr (S == 8) {
|
||||
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
|
||||
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
|
||||
auto wi = simd::Simd<uint32_t, S>(*w);
|
||||
wi = wi >> shifts;
|
||||
wi = wi & 0xf;
|
||||
simd::Simd<float, S> w_out;
|
||||
for (int i = 0; i < S; ++i) {
|
||||
w_out[i] = MXFP4_LUT[wi[i]];
|
||||
}
|
||||
return w_out;
|
||||
} else {
|
||||
// Appease compiler.. but should never get here
|
||||
throw std::runtime_error("Unsupported combination for simd qmm.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t_simd(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = 32 / 4;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
constexpr int S = simd::max_size<T>;
|
||||
static_assert(
|
||||
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
|
||||
constexpr int packs_per_simd = S / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
simd::Simd<float, S> acc(0);
|
||||
auto x_local = x;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
simd::Simd<float, S> g_acc(0);
|
||||
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
|
||||
// Extract bits
|
||||
auto wf = mxfp4_extract_bits_simd<S>(w_local);
|
||||
w_local += packs_per_simd;
|
||||
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
|
||||
g_acc = g_acc + x_simd * wf;
|
||||
x_local += S;
|
||||
}
|
||||
acc = acc + scale * g_acc;
|
||||
}
|
||||
|
||||
*result = T(simd::sum(acc));
|
||||
result++;
|
||||
}
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
// the simd size must be a multiple of the number of elements per word
|
||||
if constexpr (simd::max_size<T> % 8 == 0) {
|
||||
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
|
||||
} else {
|
||||
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
} else {
|
||||
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.ndim() > 1 ? x.shape(-2) : 1;
|
||||
int N = out.shape(-1);
|
||||
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
|
||||
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
|
||||
int batch_size = x.size() / (K * M);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
|
||||
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case bfloat16:
|
||||
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float32:
|
||||
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
@@ -513,115 +765,198 @@ void _bs_qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.shape(-1) * w.shape(-2);
|
||||
int g_els = scales.shape(-1) * scales.shape(-2);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < lhs_indices.size(); i++) {
|
||||
int x_idx = lhs_indices_ptr[elem_to_loc(
|
||||
i, lhs_indices.shape(), lhs_indices.strides())];
|
||||
int w_idx = rhs_indices_ptr[elem_to_loc(
|
||||
i, rhs_indices.shape(), rhs_indices.strides())];
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
|
||||
scales_ptr +
|
||||
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_bs_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
mxfp4_bs_qmm_dispatch_typed<float>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_bs_qmm_dispatch_typed<float16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous(x_pre);
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 6);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
auto& lhs_indices = inputs[4];
|
||||
auto& rhs_indices = inputs[5];
|
||||
auto& lhs_indices = inputs[inputs.size() - 2];
|
||||
auto& rhs_indices = inputs[inputs.size() - 1];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous_last_dims = [s = stream(),
|
||||
&temps](const array& arr) {
|
||||
&encoder](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous_last_dims(x_pre);
|
||||
auto w = ensure_row_contiguous_last_dims(w_pre);
|
||||
auto scales = ensure_row_contiguous_last_dims(scales_pre);
|
||||
auto biases = ensure_row_contiguous_last_dims(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_input_array(lhs_indices);
|
||||
encoder.set_input_array(rhs_indices);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_bs_qmm_dispatch(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
@@ -705,16 +1040,14 @@ void dispatch_quantize(
|
||||
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
void fast::Quantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [s = stream()](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return std::make_pair(arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, s);
|
||||
return std::make_pair(arr_copy, true);
|
||||
return std::make_pair(contiguous_copy_cpu(arr, s), true);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -766,7 +1099,7 @@ void fast::AffineQuantize::eval_cpu(
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
@@ -325,7 +325,15 @@ struct MaxReduce {
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
T operator()(simd::Simd<T, N> x) {
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
return simd::max(x);
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
if (simd::any(x != x)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
return simd::max(x);
|
||||
};
|
||||
};
|
||||
@@ -342,7 +350,15 @@ struct MinReduce {
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
T operator()(simd::Simd<T, N> x) {
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
return simd::min(x);
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
if (simd::any(x != x)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
return simd::min(x);
|
||||
};
|
||||
};
|
||||
@@ -475,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
@@ -527,10 +551,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
|
||||
|
@@ -250,10 +250,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Ensure contiguity
|
||||
auto in = inputs[0];
|
||||
if (!in.flags().row_contiguous) {
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy(in, arr_copy, CopyType::General, stream());
|
||||
in = arr_copy;
|
||||
encoder.add_temporary(arr_copy);
|
||||
in = contiguous_copy_cpu(in, stream());
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
|
@@ -234,6 +234,7 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
|
||||
|
||||
template <typename MaskT, typename T1, typename T2, int N>
|
||||
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
|
||||
static_assert(std::is_same_v<MaskT, bool>);
|
||||
if constexpr (sizeof(T1) == 1) {
|
||||
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
|
||||
} else if constexpr (sizeof(T1) == 2) {
|
||||
@@ -251,9 +252,13 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
|
||||
return asd::pow(base.value, exp.value);
|
||||
} else {
|
||||
Simd<T, N> res = 1;
|
||||
while (any(exp)) {
|
||||
res = select(exp & 1, res * base, res);
|
||||
base = select(exp, base * base, base);
|
||||
// Raising an integer to a negative power is undefined
|
||||
if (any(exp < 0)) {
|
||||
return 0;
|
||||
}
|
||||
while (any(exp > 0)) {
|
||||
res = select((exp & 1) != 0, res * base, res);
|
||||
base = select(exp > 0, base * base, base);
|
||||
exp = exp >> 1;
|
||||
}
|
||||
return res;
|
||||
|
@@ -131,8 +131,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, x_copy, CopyType::General, s);
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
@@ -8,7 +8,7 @@
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -333,45 +333,24 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
int axis = axis_;
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
|
||||
// Copy input to output
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(in, out, ctype, stream());
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch(
|
||||
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
return sort<bool>(out, axis_);
|
||||
case uint8:
|
||||
return sort<uint8_t>(out, axis_);
|
||||
case uint16:
|
||||
return sort<uint16_t>(out, axis_);
|
||||
case uint32:
|
||||
return sort<uint32_t>(out, axis_);
|
||||
case uint64:
|
||||
return sort<uint64_t>(out, axis_);
|
||||
case int8:
|
||||
return sort<int8_t>(out, axis_);
|
||||
case int16:
|
||||
return sort<int16_t>(out, axis_);
|
||||
case int32:
|
||||
return sort<int32_t>(out, axis_);
|
||||
case int64:
|
||||
return sort<int64_t>(out, axis_);
|
||||
case float32:
|
||||
return sort<float>(out, axis_);
|
||||
case float64:
|
||||
return sort<double>(out, axis_);
|
||||
case float16:
|
||||
return sort<float16_t>(out, axis_);
|
||||
case bfloat16:
|
||||
return sort<bfloat16_t>(out, axis_);
|
||||
case complex64:
|
||||
return sort<complex64_t>(out, axis_);
|
||||
}
|
||||
});
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
|
||||
dispatch_all_types(out.dtype(), [&](auto type_tag) {
|
||||
sort<MLX_GET_TYPE(type_tag)>(out, axis);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -426,8 +405,10 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Copy input to output
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(in, out, ctype, stream());
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
@@ -31,7 +31,7 @@ void svd_impl(
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
copy(
|
||||
copy_cpu(
|
||||
a,
|
||||
in,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
@@ -81,9 +81,7 @@ void svd_impl(
|
||||
// Vᵀ of shape N x N. (M x M in lapack).
|
||||
const int ldvt = M;
|
||||
|
||||
auto job_u = (u_ptr) ? "V" : "N";
|
||||
auto job_vt = (u_ptr) ? "V" : "N";
|
||||
static constexpr auto range = "A";
|
||||
auto jobz = (u_ptr) ? "A" : "N";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
@@ -91,30 +89,20 @@ void svd_impl(
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not
|
||||
// used here but required by lapack).
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 12 * K)};
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 8 * K)};
|
||||
|
||||
static const int lwork_query = -1;
|
||||
|
||||
static const int ignored_int = 0;
|
||||
static const T ignored_float = 0;
|
||||
|
||||
int info;
|
||||
|
||||
// Compute workspace size.
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ nullptr,
|
||||
/* u = */ nullptr,
|
||||
/* ldu = */ &ldu,
|
||||
@@ -136,20 +124,13 @@ void svd_impl(
|
||||
|
||||
// Loop over matrices.
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ in_ptr + M * N * i,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ s_ptr + K * i,
|
||||
// According to the identity above, lapack will write Vᵀᵀ as U.
|
||||
/* u = */ vt_ptr ? vt_ptr + N * N * i : nullptr,
|
||||
@@ -167,13 +148,6 @@ void svd_impl(
|
||||
ss << "svd_impl: sgesvdx_ failed with code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
if (ns != K) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: expected " << K << " singular values, but " << ns
|
||||
<< " were computed.";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
});
|
||||
encoder.add_temporary(in);
|
||||
|
@@ -6,41 +6,65 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_grouped_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/init_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/segmented_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
else()
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||
|
||||
# Embed kernel sources in binary for JIT compilation.
|
||||
@@ -65,6 +89,11 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
|
||||
target_compile_options(mlx
|
||||
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
|
||||
|
||||
# Enable calling host constexpr functions from device. This is needed because
|
||||
# the constexpr version of isnan is host only.
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
|
||||
|
||||
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
|
||||
# Explicitly pass this flag to suppress the warning, it is safe to set it to
|
||||
# true but the warning wouldn't be suppressed.
|
||||
@@ -78,11 +107,18 @@ endif()
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
|
||||
|
||||
# Compute capability 7 is required for synchronization between CPU/GPU with
|
||||
# managed memory. TODO: Add more architectures for potential performance gain.
|
||||
set(MLX_CUDA_ARCHITECTURES
|
||||
"70;80"
|
||||
CACHE STRING "CUDA architectures")
|
||||
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
|
||||
# and requires drivers released after CUDA 12.4.
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
|
||||
endif()
|
||||
|
||||
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
|
||||
# managed memory.
|
||||
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
|
||||
set(MLX_CUDA_ARCHITECTURES "native")
|
||||
endif()
|
||||
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
|
||||
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
|
||||
"${MLX_CUDA_ARCHITECTURES}")
|
||||
@@ -114,6 +150,27 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
|
||||
# Use NVRTC and driver APIs.
|
||||
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
|
||||
# Use the frontend APIs of cuDNN.
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.14.0
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
|
||||
FetchContent_MakeAvailable(cudnn)
|
||||
target_link_libraries(mlx PRIVATE cudnn_frontend)
|
||||
# Link with the actual cuDNN libraries.
|
||||
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
|
||||
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
@@ -2,7 +2,7 @@
|
||||
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <fmt/format.h>
|
||||
@@ -14,14 +14,75 @@ namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
constexpr int page_size = 16384;
|
||||
|
||||
// Any allocations smaller than this will try to use the small pool
|
||||
constexpr int small_block_size = 8;
|
||||
|
||||
// The small pool size in bytes. This should be a multiple of the host page
|
||||
// size and small_block_size.
|
||||
constexpr int small_pool_size = 4 * page_size;
|
||||
|
||||
SmallSizePool::SmallSizePool() {
|
||||
auto num_blocks = small_pool_size / small_block_size;
|
||||
buffer_ = new Block[num_blocks];
|
||||
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = 0;
|
||||
#else
|
||||
int loc = 0;
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, loc));
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
curr->next = buffer_ + i;
|
||||
curr = curr->next;
|
||||
}
|
||||
curr->next = nullptr;
|
||||
}
|
||||
|
||||
SmallSizePool::~SmallSizePool() {
|
||||
CHECK_CUDA_ERROR(cudaFree(data_));
|
||||
delete[] buffer_;
|
||||
}
|
||||
|
||||
CudaBuffer* SmallSizePool::malloc() {
|
||||
if (next_free_ == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
Block* b = next_free_;
|
||||
uint64_t i = next_free_ - buffer_;
|
||||
next_free_ = next_free_->next;
|
||||
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
|
||||
b->buf.size = small_block_size;
|
||||
return &b->buf;
|
||||
}
|
||||
|
||||
void SmallSizePool::free(CudaBuffer* buf) {
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
b->next = next_free_;
|
||||
next_free_ = b;
|
||||
}
|
||||
|
||||
bool SmallSizePool::in_pool(CudaBuffer* buf) {
|
||||
constexpr int num_blocks = (small_pool_size / small_block_size);
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
int64_t block_num = b - buffer_;
|
||||
return block_num >= 0 && block_num < num_blocks;
|
||||
}
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
getpagesize(),
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}) {
|
||||
[this](CudaBuffer* buf) { cuda_free(buf); }) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
@@ -31,22 +92,37 @@ CudaAllocator::CudaAllocator()
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size <= small_block_size) {
|
||||
size = 8;
|
||||
} else if (size < page_size) {
|
||||
size = next_power_of_2(size);
|
||||
} else {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
}
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache.
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
if (mem_required >= memory_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache.
|
||||
int64_t mem_to_free =
|
||||
get_active_memory() + get_cache_memory() + size - memory_limit_;
|
||||
if (mem_to_free > 0) {
|
||||
buffer_cache_.release_cached_buffers(mem_to_free);
|
||||
}
|
||||
|
||||
// Try the scalar pool first
|
||||
if (size <= small_block_size) {
|
||||
buf = scalar_pool_.malloc();
|
||||
}
|
||||
lock.unlock();
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
if (!buf) {
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
@@ -57,7 +133,6 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
@@ -72,9 +147,7 @@ void CudaAllocator::free(Buffer buffer) {
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
lock.unlock();
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
cuda_free(buf);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -86,28 +159,14 @@ size_t CudaAllocator::size(Buffer buffer) const {
|
||||
return buf->size;
|
||||
}
|
||||
|
||||
void CudaAllocator::register_this_thread() {
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
allowed_threads_.insert(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
void CudaAllocator::cuda_free(void* buf) {
|
||||
// If cuda_free() is called from a unregistered thread, reschedule the call to
|
||||
// worker.
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
|
||||
if (!worker_) {
|
||||
worker_.reset(new Worker);
|
||||
}
|
||||
worker_->add_task([this, buf]() { this->cuda_free(buf); });
|
||||
worker_->end_batch();
|
||||
worker_->commit();
|
||||
return;
|
||||
}
|
||||
// This must be called with mutex_ aquired
|
||||
void CudaAllocator::cuda_free(CudaBuffer* buf) {
|
||||
if (scalar_pool_.in_pool(buf)) {
|
||||
scalar_pool_.free(buf);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
delete buf;
|
||||
}
|
||||
|
||||
cudaFree(buf);
|
||||
}
|
||||
|
||||
size_t CudaAllocator::get_active_memory() const {
|
||||
|
@@ -7,13 +7,10 @@
|
||||
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class Worker;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores cuda-managed unified memory.
|
||||
@@ -22,21 +19,35 @@ struct CudaBuffer {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
class SmallSizePool {
|
||||
private:
|
||||
union Block {
|
||||
Block* next;
|
||||
CudaBuffer buf;
|
||||
};
|
||||
|
||||
Block* buffer_{nullptr};
|
||||
void* data_{nullptr};
|
||||
Block* next_free_{nullptr};
|
||||
|
||||
public:
|
||||
SmallSizePool();
|
||||
~SmallSizePool();
|
||||
|
||||
SmallSizePool(const SmallSizePool&) = delete;
|
||||
SmallSizePool& operator=(const SmallSizePool&) = delete;
|
||||
|
||||
CudaBuffer* malloc();
|
||||
void free(CudaBuffer* buf);
|
||||
bool in_pool(CudaBuffer* buf);
|
||||
};
|
||||
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
// Register current thread as safe to free buffers.
|
||||
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
|
||||
// that may be waited by gpu stream (for example cpu stream threads), freeing
|
||||
// buffers there would result in dead lock.
|
||||
void register_this_thread();
|
||||
|
||||
// Call cudaFree in the safe thread.
|
||||
void cuda_free(void* buf);
|
||||
|
||||
size_t get_active_memory() const;
|
||||
size_t get_peak_memory() const;
|
||||
void reset_peak_memory();
|
||||
@@ -47,19 +58,18 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
friend CudaAllocator& allocator();
|
||||
|
||||
std::mutex worker_mutex_;
|
||||
std::unique_ptr<Worker> worker_;
|
||||
std::set<std::thread::id> allowed_threads_;
|
||||
|
||||
std::mutex mutex_;
|
||||
size_t memory_limit_;
|
||||
size_t max_pool_size_;
|
||||
BufferCache<CudaBuffer> buffer_cache_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
SmallSizePool scalar_pool_;
|
||||
};
|
||||
|
||||
CudaAllocator& allocator();
|
||||
|
69
mlx/backend/cuda/arange.cu
Normal file
69
mlx/backend/cuda/arange.cu
Normal file
@@ -0,0 +1,69 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, typename IdxT, int N_WRITES>
|
||||
__global__ void arange(T* out, IdxT size, T start, T step) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_WRITES > size) {
|
||||
for (IdxT i = index * N_WRITES; i < size; ++i) {
|
||||
out[i] = start + i * step;
|
||||
}
|
||||
} else {
|
||||
AlignedVector<T, N_WRITES> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_WRITES; ++i) {
|
||||
out_vec[i] = start + (index * N_WRITES + i) * step;
|
||||
}
|
||||
|
||||
store_vector<N_WRITES>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Arange::eval_gpu");
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_WRITES = 16 / sizeof(OutType);
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
|
||||
encoder.add_kernel_node(
|
||||
cu::arange<OutType, IdxT, N_WRITES>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
static_cast<CTYPE>(start_),
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -1,7 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -43,8 +44,11 @@ struct ArgMin {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] < best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -73,8 +77,11 @@ struct ArgMax {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] > best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -105,16 +112,15 @@ __global__ void arg_reduce_general(
|
||||
|
||||
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
|
||||
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
|
||||
in += in_idx;
|
||||
|
||||
Op op;
|
||||
T init = op.init();
|
||||
IndexValPair<T> best{0, init};
|
||||
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T vals[N_READS];
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().x;
|
||||
cub::LoadDirectBlocked(
|
||||
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
|
||||
best = op.reduce_many(best, vals, tid * N_READS);
|
||||
}
|
||||
|
||||
@@ -151,36 +157,30 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims{BLOCK_DIM, 1, 1};
|
||||
auto kernel = &cu::arg_reduce_general<
|
||||
InType,
|
||||
cu::ArgMax<InType>,
|
||||
BLOCK_DIM,
|
||||
N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = &cu::arg_reduce_general<
|
||||
InType,
|
||||
cu::ArgMin<InType>,
|
||||
BLOCK_DIM,
|
||||
N_READS>;
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
});
|
||||
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
auto kernel =
|
||||
cu::arg_reduce_general<T, cu::ArgMax<T>, block_dim(), N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, block_dim(), N_READS>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
@@ -1,317 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_binary_op() {
|
||||
if (std::is_same_v<Op, Add> || std::is_same_v<Op, Divide> ||
|
||||
std::is_same_v<Op, Maximum> || std::is_same_v<Op, Minimum> ||
|
||||
std::is_same_v<Op, Multiply> || std::is_same_v<Op, Subtract> ||
|
||||
std::is_same_v<Op, Power> || std::is_same_v<Op, Remainder>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, Equal> || std::is_same_v<Op, Greater> ||
|
||||
std::is_same_v<Op, GreaterEqual> || std::is_same_v<Op, Less> ||
|
||||
std::is_same_v<Op, LessEqual> || std::is_same_v<Op, NotEqual>) {
|
||||
return std::is_same_v<Out, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalAnd> || std::is_same_v<Op, LogicalOr>) {
|
||||
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, NaNEqual>) {
|
||||
return std::is_same_v<Out, bool> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogAddExp>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcTan2>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
|
||||
std::is_same_v<Op, BitwiseXor>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LeftShift> || std::is_same_v<Op, RightShift>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(a.dtype(), CTYPE_IN, {
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
|
||||
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel =
|
||||
&cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
std::vector<array> outputs{out};
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
#define BINARY_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = outputs[0].primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, outputs, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, op, s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, op, s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/add.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan2.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_binary.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/divide.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_and.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_or.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log_add_exp.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/minimum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/maximum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/multiply.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/power.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/remainder.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/not_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/subtract.cu)
|
7
mlx/backend/cuda/binary/add.cu
Normal file
7
mlx/backend/cuda/binary/add.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Add)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(ArcTan2)
|
||||
} // namespace mlx::core
|
379
mlx/backend/cuda/binary/binary.cuh
Normal file
379
mlx/backend/cuda/binary/binary.cuh
Normal file
@@ -0,0 +1,379 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (int i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[0], b[i]);
|
||||
}
|
||||
} else {
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a[0], b_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[i], b[0]);
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[i], b[i]);
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_binary_op() {
|
||||
if (std::is_same_v<Op, Add> || std::is_same_v<Op, Divide> ||
|
||||
std::is_same_v<Op, Maximum> || std::is_same_v<Op, Minimum> ||
|
||||
std::is_same_v<Op, Multiply> || std::is_same_v<Op, Subtract> ||
|
||||
std::is_same_v<Op, Power> || std::is_same_v<Op, Remainder>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, Equal> || std::is_same_v<Op, Greater> ||
|
||||
std::is_same_v<Op, GreaterEqual> || std::is_same_v<Op, Less> ||
|
||||
std::is_same_v<Op, LessEqual> || std::is_same_v<Op, NotEqual>) {
|
||||
return std::is_same_v<Out, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalAnd> || std::is_same_v<Op, LogicalOr>) {
|
||||
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, NaNEqual>) {
|
||||
return std::is_same_v<Out, bool> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogAddExp>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcTan2>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
|
||||
std::is_same_v<Op, BitwiseXor>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LeftShift> || std::is_same_v<Op, RightShift>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
@@ -0,0 +1,27 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/divide.cu
Normal file
7
mlx/backend/cuda/binary/divide.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Divide)
|
||||
} // namespace mlx::core
|
15
mlx/backend/cuda/binary/equal.cu
Normal file
15
mlx/backend/cuda/binary/equal.cu
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/greater.cu
Normal file
7
mlx/backend/cuda/binary/greater.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Greater)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(GreaterEqual)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/less.cu
Normal file
7
mlx/backend/cuda/binary/less.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Less)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LessEqual)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogAddExp)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalAnd)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalOr)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/maximum.cu
Normal file
7
mlx/backend/cuda/binary/maximum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Maximum)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/minimum.cu
Normal file
7
mlx/backend/cuda/binary/minimum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Minimum)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/multiply.cu
Normal file
7
mlx/backend/cuda/binary/multiply.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Multiply)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(NotEqual)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/power.cu
Normal file
7
mlx/backend/cuda/binary/power.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Power)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/remainder.cu
Normal file
7
mlx/backend/cuda/binary/remainder.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Remainder)
|
||||
} // namespace mlx::core
|
7
mlx/backend/cuda/binary/subtract.cu
Normal file
7
mlx/backend/cuda/binary/subtract.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Subtract)
|
||||
} // namespace mlx::core
|
409
mlx/backend/cuda/binary_two.cu
Normal file
409
mlx/backend/cuda/binary_two.cu
Normal file
@@ -0,0 +1,409 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[0], b[i]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[i], b[0]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b[0]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[i], b[i]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_two_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_two_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_binary_two_op() {
|
||||
if (std::is_same_v<Op, DivMod>) {
|
||||
return std::is_same_v<In, Out> &&
|
||||
(std::is_integral_v<Out> || is_floating_v<Out>);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void binary_two_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
auto& out_a = outputs[0];
|
||||
auto& out_b = outputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out_a, bopt);
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
|
||||
if (out_a.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out_a);
|
||||
encoder.set_output_array(out_b);
|
||||
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out_a.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) =
|
||||
collapse_contiguous_dims(a, b, out_a);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out_a.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out_a.data_size(),
|
||||
out_a.shape(),
|
||||
out_a.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out_a.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_two_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const char* op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
void DivMod::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("DivMod::eval_gpu");
|
||||
auto& s = outputs[0].primitive().stream();
|
||||
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -3,6 +3,7 @@
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -52,9 +53,10 @@ struct FusedKernelBuilder {
|
||||
|
||||
// Build function signature.
|
||||
if (contiguous) {
|
||||
os += "template <typename IdxT = uint32_t>\n";
|
||||
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
||||
} else {
|
||||
os += "template <int NDIM, typename IdxT = uint32_t>\n";
|
||||
os +=
|
||||
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
||||
}
|
||||
os += fmt::format("__global__ void {}(\n", kernel_name + name);
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
@@ -66,12 +68,77 @@ struct FusedKernelBuilder {
|
||||
}
|
||||
os += ") {\n";
|
||||
|
||||
// Index.
|
||||
// Index. For non contiguous kernels we create a separate index
|
||||
// variable per variable otherwise everyone uses `index`.
|
||||
os +=
|
||||
" IdxT index = cg::this_grid().thread_rank();\n"
|
||||
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
|
||||
" if (index >= size) {\n"
|
||||
" return;\n"
|
||||
" }\n";
|
||||
if (!contiguous) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += " IdxT " + xname + "_idx = 0;\n";
|
||||
}
|
||||
os += " {\n";
|
||||
os += " IdxT loc = index;\n";
|
||||
os +=
|
||||
" #pragma unroll\n"
|
||||
" for (int i = NDIM - 1; i >= 0; i--) {\n";
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
|
||||
"_strides[i]);\n";
|
||||
}
|
||||
os +=
|
||||
" loc /= shape[i];\n"
|
||||
" }\n"
|
||||
" }\n";
|
||||
}
|
||||
|
||||
// Vectorized read loop
|
||||
if (contiguous) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
|
||||
xname,
|
||||
type);
|
||||
}
|
||||
}
|
||||
|
||||
// Create some space for the outputs
|
||||
for (const auto& x : outputs) {
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
|
||||
}
|
||||
|
||||
// Work loop
|
||||
if (!contiguous) {
|
||||
os +=
|
||||
"\n"
|
||||
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
|
||||
} else {
|
||||
os +=
|
||||
"\n"
|
||||
" #pragma unroll\n"
|
||||
" for (int i = 0; i < work_per_thread; i++) {\n";
|
||||
}
|
||||
|
||||
// Read inputs.
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
@@ -86,14 +153,11 @@ struct FusedKernelBuilder {
|
||||
} else if (is_scalar(x)) {
|
||||
value = fmt::format("{}[0]", xname);
|
||||
} else if (contiguous) {
|
||||
value = fmt::format("{}[index]", xname);
|
||||
value = fmt::format("vec_{}[i]", xname);
|
||||
} else {
|
||||
std::string index = fmt::format(
|
||||
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
|
||||
xname);
|
||||
value = fmt::format("{}[{}]", xname, index);
|
||||
value = fmt::format("{}[{}_idx]", xname, xname);
|
||||
}
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
}
|
||||
|
||||
// Write tape.
|
||||
@@ -105,21 +169,40 @@ struct FusedKernelBuilder {
|
||||
value = fmt::format(
|
||||
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
|
||||
} else {
|
||||
std::ostringstream ss;
|
||||
x.primitive().print(ss);
|
||||
value = ss.str();
|
||||
value = x.primitive().name();
|
||||
value += "{}(";
|
||||
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
|
||||
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
|
||||
}
|
||||
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
|
||||
}
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
}
|
||||
|
||||
// Write output.
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
||||
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
|
||||
}
|
||||
|
||||
// End of work loop
|
||||
if (!contiguous) {
|
||||
os += "\n";
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
|
||||
}
|
||||
}
|
||||
os += " }\n";
|
||||
|
||||
// Store the output to global memory
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(
|
||||
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
|
||||
namer.get_name(x));
|
||||
}
|
||||
|
||||
os += "}\n";
|
||||
@@ -145,6 +228,15 @@ void Compiled::eval_gpu(
|
||||
nvtx3::scoped_range r("Compiled::eval_gpu");
|
||||
auto& s = stream();
|
||||
|
||||
// Determine the work per thread for the vectorized reads/writes. We take it
|
||||
// as 16 over the max itemsize for the outputs. Another heuristic could be
|
||||
// over the max itemsize of all arrays.
|
||||
int max_size = 1;
|
||||
for (const auto& x : outputs) {
|
||||
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
|
||||
}
|
||||
int work_per_thread = 16 / max_size;
|
||||
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
|
||||
// Build source code.
|
||||
cu::FusedKernelBuilder builder{
|
||||
@@ -157,17 +249,26 @@ void Compiled::eval_gpu(
|
||||
builder.build("_strided", false);
|
||||
builder.os += "\n} // namespace mlx::core::cu\n";
|
||||
// Build kernel names.
|
||||
std::vector<std::string> kernel_names = {
|
||||
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()),
|
||||
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
|
||||
};
|
||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i));
|
||||
kernel_names.push_back(
|
||||
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i));
|
||||
std::vector<std::string> kernel_names;
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<int64_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
|
||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
|
||||
}
|
||||
}
|
||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||
|
||||
return std::make_tuple(
|
||||
false, std::move(builder.os), std::move(kernel_names));
|
||||
});
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
@@ -178,6 +279,7 @@ void Compiled::eval_gpu(
|
||||
// Whether to use large index.
|
||||
bool large = compiled_use_large_index(inputs, outputs, contiguous);
|
||||
|
||||
cu::KernelArgs args;
|
||||
// Put inputs.
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
@@ -185,35 +287,42 @@ void Compiled::eval_gpu(
|
||||
continue;
|
||||
}
|
||||
const auto& x = inputs[i];
|
||||
mod.append_arg(x);
|
||||
args.append(x);
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
mod.append_arg(strides_vec[strides_index++]);
|
||||
args.append_ptr(strides_vec[strides_index++].data());
|
||||
}
|
||||
}
|
||||
|
||||
// Put outputs.
|
||||
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
|
||||
for (auto& x : outputs) {
|
||||
mod.append_arg(x);
|
||||
args.append(x);
|
||||
}
|
||||
|
||||
// Put shape and size.
|
||||
if (!contiguous) {
|
||||
mod.append_arg(shape);
|
||||
args.append_ptr(shape.data());
|
||||
}
|
||||
if (large) {
|
||||
mod.append_arg<int64_t>(outputs[0].data_size());
|
||||
args.append<int64_t>(outputs[0].data_size());
|
||||
} else {
|
||||
mod.append_arg<uint32_t>(outputs[0].data_size());
|
||||
args.append<uint32_t>(outputs[0].data_size());
|
||||
}
|
||||
|
||||
// Choose work per thread
|
||||
if (!contiguous && shape.back() % work_per_thread != 0) {
|
||||
work_per_thread = 1;
|
||||
}
|
||||
|
||||
// Launch kernel.
|
||||
const char* index_type = large ? "int64_t" : "uint32_t";
|
||||
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
|
||||
if (contiguous) {
|
||||
kernel_name += fmt::format("_contiguous<{}>", index_type);
|
||||
kernel_name +=
|
||||
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
|
||||
} else {
|
||||
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type);
|
||||
kernel_name += fmt::format(
|
||||
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
@@ -222,9 +331,11 @@ void Compiled::eval_gpu(
|
||||
for (const auto& out : outputs) {
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, outputs[0], large);
|
||||
});
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
418
mlx/backend/cuda/conv.cpp
Normal file
418
mlx/backend/cuda/conv.cpp
Normal file
@@ -0,0 +1,418 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Alias for better readability.
|
||||
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
|
||||
#define CONV_BACKWARD_INPUT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
|
||||
#define CONV_BACKWARD_WEIGHT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
|
||||
|
||||
// Custom placeholder representing fallback kernel.
|
||||
#define CONV_FALLBACK static_cast<cudnnBackendDescriptorType_t>(-1)
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnDataType_t cudnn_dtype;
|
||||
std::array<int, MAX_NDIM> input_shape;
|
||||
std::array<int, MAX_NDIM> weight_shape;
|
||||
std::array<int, MAX_NDIM> stride;
|
||||
std::array<int, MAX_NDIM> padding_lo;
|
||||
std::array<int, MAX_NDIM> padding_hi;
|
||||
std::array<int, MAX_NDIM> dilation;
|
||||
int groups;
|
||||
bool flip;
|
||||
uint8_t input_alignment;
|
||||
uint8_t weight_alignment;
|
||||
uint8_t output_alignment;
|
||||
};
|
||||
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<
|
||||
ConvCacheKey,
|
||||
std::pair<
|
||||
cudnnBackendDescriptorType_t,
|
||||
std::optional<cudnn_frontend::ExecutionPlan>>>
|
||||
cache(/* capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
auto get_conv_op_settings(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const std::vector<int>& kernel_strides,
|
||||
const std::vector<int>& padding_lo_,
|
||||
const std::vector<int>& padding_hi_,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation) {
|
||||
auto padding_lo = convert_vector<int64_t>(padding_lo_);
|
||||
auto padding_hi = convert_vector<int64_t>(padding_hi_);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
for (int i = 0; i < padding_lo.size(); ++i) {
|
||||
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
|
||||
padding_lo[i] = wt_size - padding_lo[i] - 1;
|
||||
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
|
||||
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + padding_hi[i];
|
||||
}
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(input_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
padding_hi = padding_lo;
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_strides));
|
||||
|
||||
} else {
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_strides),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const SmallVector<int64_t>& stride,
|
||||
const SmallVector<int64_t>& padding_lo,
|
||||
const SmallVector<int64_t>& padding_hi,
|
||||
const SmallVector<int64_t>& dilation) {
|
||||
try {
|
||||
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
|
||||
? CUDNN_DATA_FLOAT
|
||||
: dtype_to_cudnn_type(dtype);
|
||||
auto conv_desc = cudnn_frontend::ConvDescBuilder()
|
||||
.setDataType(compute_dtype)
|
||||
.setMathMode(CUDNN_CROSS_CORRELATION)
|
||||
.setNDims(stride.size())
|
||||
.setStrides(stride.size(), stride.data())
|
||||
.setPrePadding(padding_lo.size(), padding_lo.data())
|
||||
.setPostPadding(padding_hi.size(), padding_hi.data())
|
||||
.setDilation(dilation.size(), dilation.data())
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_cudnn_tensor_nchw('x', x))
|
||||
.setwDesc(build_cudnn_tensor_nchw('w', w))
|
||||
.setyDesc(build_cudnn_tensor_nchw('y', y))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
|
||||
return cudnn_frontend::OperationGraphBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setOperationGraph(ops.size(), ops.data())
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
|
||||
throw;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
|
||||
array group_transpose(
|
||||
const array& x,
|
||||
int groups,
|
||||
int group_dim,
|
||||
int axis1,
|
||||
int axis2,
|
||||
Stream s) {
|
||||
if (groups == 1) {
|
||||
return swapaxes_in_eval(x, axis1, axis2);
|
||||
}
|
||||
int ndim = x.ndim();
|
||||
if (group_dim < 0) {
|
||||
group_dim += ndim;
|
||||
}
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
if (group_dim <= axis1) {
|
||||
axis1 += 1;
|
||||
}
|
||||
if (group_dim <= axis2) {
|
||||
axis2 += 1;
|
||||
}
|
||||
auto shape = x.shape();
|
||||
shape.insert(shape.begin() + group_dim, groups);
|
||||
shape[group_dim + 1] = shape[group_dim + 1] / groups;
|
||||
array x_trans = reshape_in_eval(x, std::move(shape), s);
|
||||
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
|
||||
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
|
||||
return x_trans;
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
std::tuple<array, array, array> prepare_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
int groups,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = group_transpose(wt, groups, 0, 0, -1, s);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = group_transpose(in, groups, -1, 0, -1, s);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
Shape shape(out.shape());
|
||||
std::swap(shape.front(), shape.back());
|
||||
Strides strides(shape.size(), 1);
|
||||
for (int i = shape.size() - 2; i >= 0; --i) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
array intermediate(std::move(shape), out.dtype(), nullptr, {});
|
||||
intermediate.copy_shared_buffer(
|
||||
out, std::move(strides), {true, true, false}, out.data_size());
|
||||
out = intermediate;
|
||||
}
|
||||
|
||||
// cuDNN requires contiguous input.
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
return {std::move(in), std::move(wt), std::move(out)};
|
||||
}
|
||||
|
||||
// Get the x/w/y args from the in/wt/out args depending on backend type.
|
||||
inline std::tuple<array&, array&, array&> dispatch_args(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& out) {
|
||||
switch (backend_type) {
|
||||
case CONV_BACKWARD_INPUT:
|
||||
return {out, wt, in};
|
||||
case CONV_BACKWARD_WEIGHT:
|
||||
return {in, out, wt};
|
||||
default:
|
||||
return {in, wt, out};
|
||||
}
|
||||
}
|
||||
|
||||
// Register inputs and outputs before actually running conv op. Can only be
|
||||
// called once per eval_gpu.
|
||||
void register_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& intermediate_out,
|
||||
array& final_out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_input_array(wt);
|
||||
encoder.set_output_array(final_out);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
// Turn |out| into a strided array, which will have C_in and C_out swapped
|
||||
// in vjp and the final |grad_weight| will then be contiguous.
|
||||
Strides strides = intermediate_out.strides();
|
||||
std::swap(strides.front(), strides.back());
|
||||
final_out.copy_shared_buffer(
|
||||
intermediate_out,
|
||||
std::move(strides),
|
||||
{false, false, false},
|
||||
intermediate_out.data_size());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
nvtx3::scoped_range r("Convolution::eval_gpu");
|
||||
if (out_.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(inputs.size() == 2);
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
array out = out_;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
Dtype dtype = out.dtype();
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Search cache.
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
dtype_to_cudnn_type(dtype),
|
||||
vector_key(in.shape()),
|
||||
vector_key(wt.shape()),
|
||||
vector_key(kernel_strides_),
|
||||
vector_key(padding_lo_),
|
||||
vector_key(padding_hi_),
|
||||
vector_key(kernel_dilation_),
|
||||
groups_,
|
||||
flip_,
|
||||
get_alignment(in),
|
||||
get_alignment(wt),
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
if (plan) {
|
||||
// Run cached plan.
|
||||
std::tie(in, wt, out) =
|
||||
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
} else {
|
||||
// Run fallback kernel.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// There is no reliable way to deduce the proper cuDNN backend for the
|
||||
// convolution, so we make a best guess and then try.
|
||||
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
|
||||
if (flip_) {
|
||||
// When weight is flipped, we assume it is backward input convolution.
|
||||
try_backends.push_back(CONV_BACKWARD_INPUT);
|
||||
} else {
|
||||
// Otherwise it could be backward weight convolution or forward convolution,
|
||||
// mathematically there is no difference so we have to use heuristics.
|
||||
// Empirically backward convolutions have large kernel dimensions, and
|
||||
// usually have |in| and |wt| transposed.
|
||||
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
|
||||
wt.shape(2) > out.shape(2)) {
|
||||
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
|
||||
} else {
|
||||
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
|
||||
}
|
||||
}
|
||||
|
||||
// Try to build op graph.
|
||||
cudnnBackendDescriptorType_t backend_type;
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
padding_hi_,
|
||||
kernel_dilation_,
|
||||
input_dilation_);
|
||||
op_graph = build_conv_op_graph(
|
||||
encoder,
|
||||
try_backend,
|
||||
dtype,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
stride,
|
||||
padding_lo,
|
||||
padding_hi,
|
||||
dilation);
|
||||
if (op_graph) {
|
||||
backend_type = try_backend;
|
||||
in = std::move(in_copy);
|
||||
wt = std::move(wt_copy);
|
||||
out = std::move(out_copy);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (op_graph) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Find a plan for the graph and execute it.
|
||||
auto plan = find_cudnn_plan_from_op_graph(
|
||||
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
|
||||
if (!plan) {
|
||||
throw std::runtime_error("[conv] Unable to find an execution plan.");
|
||||
}
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// Use fallback kernel for settings not supported by cuDNN.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
conv_cache().emplace(cache_key, std::make_pair(CONV_FALLBACK, std::nullopt));
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
126
mlx/backend/cuda/conv/conv.h
Normal file
126
mlx/backend/cuda/conv/conv.h
Normal file
@@ -0,0 +1,126 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <int NDIM>
|
||||
struct ConvParams {
|
||||
int N; // Batch size
|
||||
int C; // In channels
|
||||
int O; // Out channels
|
||||
int strides[NDIM];
|
||||
int padding[NDIM];
|
||||
int kernel_dilation[NDIM];
|
||||
int input_dilation[NDIM];
|
||||
int groups;
|
||||
bool flip;
|
||||
int in_spatial_dims[NDIM];
|
||||
int wt_spatial_dims[NDIM];
|
||||
int out_spatial_dims[NDIM];
|
||||
int64_t in_strides[NDIM + 2];
|
||||
|
||||
ConvParams(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
const array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip)
|
||||
: N(in.shape(0)),
|
||||
C(in.shape(-1)),
|
||||
O(wt.shape(0)),
|
||||
groups(groups),
|
||||
flip(flip) {
|
||||
std::copy_n(strides.begin(), NDIM, this->strides);
|
||||
std::copy_n(padding.begin(), NDIM, this->padding);
|
||||
std::copy_n(kernel_dilation.begin(), NDIM, this->kernel_dilation);
|
||||
std::copy_n(input_dilation.begin(), NDIM, this->input_dilation);
|
||||
std::copy_n(in.shape().begin() + 1, NDIM, this->in_spatial_dims);
|
||||
std::copy_n(wt.shape().begin() + 1, NDIM, this->wt_spatial_dims);
|
||||
std::copy_n(out.shape().begin() + 1, NDIM, this->out_spatial_dims);
|
||||
std::copy_n(in.strides().begin(), NDIM + 2, this->in_strides);
|
||||
}
|
||||
};
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
inline void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
array in,
|
||||
array wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
if (groups == 1) {
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
flip,
|
||||
s);
|
||||
} else {
|
||||
gemm_grouped_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip,
|
||||
s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
217
mlx/backend/cuda/conv/gemm_conv.cu
Normal file
217
mlx/backend/cuda/conv/gemm_conv.cu
Normal file
@@ -0,0 +1,217 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_unfold_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + index_wt_spatial * params.C + tid.y;
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array unfold_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = mat_K / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_unfold_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C * H_wt * W_wt
|
||||
int mat_N = params.O; // O
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded =
|
||||
unfold_inputs_nd<NDIM>(encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (C * H_wt * W_wt, O) for gemm.
|
||||
array wt_reshaped({mat_K, mat_N}, wt.dtype(), nullptr, {});
|
||||
wt_reshaped.copy_shared_buffer(
|
||||
wt,
|
||||
{1, mat_K},
|
||||
{false, false, /* col_contiguous */ true},
|
||||
wt.data_size());
|
||||
|
||||
// Single batch.
|
||||
Shape batch_shape{1};
|
||||
Strides a_batch_strides{0};
|
||||
Strides b_batch_strides{0};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
1, // groups
|
||||
flip);
|
||||
gemm_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
231
mlx/backend/cuda/conv/gemm_grouped_conv.cu
Normal file
231
mlx/backend/cuda/conv/gemm_grouped_conv.cu
Normal file
@@ -0,0 +1,231 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_grouped_unfold_transpose_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + tid.y * (filter_size / params.C);
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
int wt_stride = 1;
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
out += index_wt * wt_stride;
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
wt_stride *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array grouped_unfold_transpose_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = (mat_K * params.groups) / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_grouped_unfold_transpose_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_grouped_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int C_per_group = params.C / params.groups;
|
||||
int O_per_group = params.O / params.groups;
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C_per_group * H_wt * W_wt
|
||||
int mat_N = O_per_group; // O_per_group
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded = grouped_unfold_transpose_inputs_nd<NDIM>(
|
||||
encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (O, C_per_group, H_wt * W_wt) for gemm.
|
||||
int wt_spatial_size = (wt.size() / wt.shape(0)) / wt.shape(-1);
|
||||
array wt_view(
|
||||
{params.O, C_per_group, wt_spatial_size}, wt.dtype(), nullptr, {});
|
||||
wt_view.copy_shared_buffer(
|
||||
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
||||
array wt_reshaped = contiguous_copy_gpu(wt_view, s);
|
||||
|
||||
// Batch with size of groups.
|
||||
Shape batch_shape{params.groups};
|
||||
Strides a_batch_strides{mat_K};
|
||||
Strides b_batch_strides{mat_N * mat_K};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K * params.groups, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.set_out(
|
||||
out.dtype(),
|
||||
false, // out_transposed
|
||||
mat_M, // out_rows
|
||||
mat_N, // out_cols
|
||||
mat_N * params.groups, // out_ld
|
||||
params.groups, // batch_count
|
||||
mat_N); // batch_stride
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip);
|
||||
gemm_grouped_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -15,8 +15,8 @@ void copy_gpu_inplace(
|
||||
int64_t offset_out,
|
||||
CopyType ctype,
|
||||
const Stream& s,
|
||||
const std::optional<array>& dynamic_offset_in,
|
||||
const std::optional<array>& dynamic_offset_out) {
|
||||
std::optional<array> dynamic_offset_in,
|
||||
std::optional<array> dynamic_offset_out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -24,7 +24,6 @@ void copy_gpu_inplace(
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
|
||||
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
|
||||
return;
|
||||
@@ -45,6 +44,16 @@ void copy_gpu_inplace(
|
||||
strides_vec[0]);
|
||||
} else {
|
||||
if (dynamic_offset_in || dynamic_offset_out) {
|
||||
if (!dynamic_offset_in) {
|
||||
dynamic_offset_in = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_in);
|
||||
}
|
||||
if (!dynamic_offset_out) {
|
||||
dynamic_offset_out = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_out);
|
||||
}
|
||||
encoder.set_input_array(*dynamic_offset_in);
|
||||
encoder.set_input_array(*dynamic_offset_out);
|
||||
copy_general_dynamic(
|
||||
encoder,
|
||||
ctype,
|
||||
@@ -55,8 +64,8 @@ void copy_gpu_inplace(
|
||||
shape_collapsed,
|
||||
strides_vec[0],
|
||||
strides_vec[1],
|
||||
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
|
||||
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
|
||||
*dynamic_offset_in,
|
||||
*dynamic_offset_out);
|
||||
} else {
|
||||
copy_general(
|
||||
encoder,
|
||||
|
@@ -10,15 +10,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, ...) \
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, { \
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, { \
|
||||
using InType = cuda_type_t<CTYPE_IN>; \
|
||||
using OutType = cuda_type_t<CTYPE_OUT>; \
|
||||
__VA_ARGS__; \
|
||||
}); \
|
||||
})
|
||||
|
||||
void copy_contiguous(
|
||||
cu::CommandEncoder& encoder,
|
||||
CopyType ctype,
|
||||
|
@@ -10,19 +10,43 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_s(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = CastOp<In, Out>{}(in[0]);
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = CastOp<In, Out>{}(in[index]);
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = cast_to<Out>(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = cast_to<Out>(in_vec[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -35,17 +59,24 @@ void copy_contiguous(
|
||||
array& out,
|
||||
int64_t in_offset,
|
||||
int64_t out_offset) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT>;
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT>;
|
||||
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
out.data_size());
|
||||
|
@@ -10,37 +10,80 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_gg_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), strides_in.data(), strides_out.data());
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto in_stride_x = strides_in[NDIM - 1];
|
||||
auto out_stride_x = strides_out[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data());
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_gg(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides_out,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto in_stride_x = strides_in[ndim - 1];
|
||||
auto out_stride_x = strides_out[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data(),
|
||||
ndim);
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -55,39 +98,72 @@ void copy_general(
|
||||
const Shape& shape,
|
||||
const Strides& strides_in,
|
||||
const Strides& strides_out) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out));
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = data_size / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_gg<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
|
||||
const int64_t* offset_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
|
||||
}
|
||||
@@ -61,43 +61,56 @@ void copy_general_dynamic(
|
||||
const Strides& strides_out,
|
||||
const array& dynamic_offset_in,
|
||||
const array& dynamic_offset_out) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_dynamic_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_dynamic_nd<
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in),
|
||||
const_param<dims_constant()>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_dynamic<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
@@ -10,33 +10,67 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_g_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto stride_x = strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -50,37 +84,65 @@ void copy_general_input(
|
||||
int64_t offset_out,
|
||||
const Shape& shape,
|
||||
const Strides& strides_in) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_g_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in));
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
272
mlx/backend/cuda/cudnn_utils.cpp
Normal file
272
mlx/backend/cuda/cudnn_utils.cpp
Normal file
@@ -0,0 +1,272 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Create a cudnn tensor descriptor.
|
||||
template <typename Vec>
|
||||
inline cudnn_frontend::Tensor build_cudnn_tensor(
|
||||
int64_t id,
|
||||
const array& x,
|
||||
const Vec& shape,
|
||||
const Vec& strides) {
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
// In MLX a singleton dim (shape[dim] == 1) can have any stride, but in cuDNN
|
||||
// whether a tensor is contiguous is determined with:
|
||||
// shape[dim] == shape[dim + 1] * strides[dim + 1]
|
||||
// So a contiguous array with singleton dims in MLX may be mistakenly treated
|
||||
// as strided in cuDNN, and we work around it by normalizing the strides.
|
||||
Strides normalized_strides(const array& x) {
|
||||
if (!x.flags().row_contiguous || x.ndim() < 2) {
|
||||
return x.strides();
|
||||
}
|
||||
Strides strides = x.strides();
|
||||
for (int i = x.ndim() - 2; i >= 0; --i) {
|
||||
if (x.shape(i) == 1) {
|
||||
strides[i] = x.shape(i + 1) * strides[i + 1];
|
||||
}
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
// Return the shape and strides after transposing from NHWC to NCHW.
|
||||
auto nhwc_to_nchw(SmallVector<int64_t> shape, SmallVector<int64_t> strides) {
|
||||
assert(shape.size() >= 3);
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline auto nhwc_to_nchw(const array& x) {
|
||||
return nhwc_to_nchw(
|
||||
convert_vector<int64_t>(x.shape()), normalized_strides(x));
|
||||
}
|
||||
|
||||
// Return available engines for a |op_graph|.
|
||||
cudnn_frontend::EngineConfigList get_cudnn_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = true) {
|
||||
SmallVector<cudnn_frontend::GeneratorSource, 2> sources;
|
||||
sources.push_back([](auto& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
});
|
||||
if (use_fallback) {
|
||||
sources.push_back([&backend_type](auto& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
});
|
||||
}
|
||||
|
||||
auto configs =
|
||||
cudnn_frontend::EngineConfigGenerator(sources.size(), sources.data())
|
||||
.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
// Take |engine_configs| and |op_graph| and find a working execution plans
|
||||
// from them.
|
||||
std::optional<cudnn_frontend::ExecutionPlan>
|
||||
find_cudnn_plan_from_engine_configs(
|
||||
cudnnHandle_t handle,
|
||||
const cudnn_frontend::EngineConfigList& engine_configs,
|
||||
const cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto op_graph_tag = op_graph.getTag();
|
||||
for (const auto& config : engine_configs) {
|
||||
try {
|
||||
return cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(handle)
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Prepare workspace and args to execute plan.
|
||||
template <typename F>
|
||||
bool prepare_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs,
|
||||
F&& execute) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(
|
||||
workspace_size > 0 ? allocator::malloc(workspace_size)
|
||||
: allocator::Buffer(nullptr),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
|
||||
auto args = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(num_args, data_ptrs)
|
||||
.setUids(num_args, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
if (!execute(handle, plan.get_raw_desc(), args.get_raw_desc())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
return build_cudnn_tensor(id, x, shape, normalized_strides(x));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x) {
|
||||
if (x.ndim() == 0) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return build_cudnn_tensor(id, x, scalar_dims, scalar_dims);
|
||||
}
|
||||
if (x.ndim() == 1) {
|
||||
int64_t s = x.shape(0);
|
||||
SmallVector<int64_t, 4> shape = {1, x.shape(0), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, 1, s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 2) {
|
||||
int64_t s =
|
||||
x.flags().row_contiguous ? x.shape(1) * x.strides(1) : x.strides(0);
|
||||
SmallVector<int64_t, 4> shape = {x.shape(0), x.shape(1), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, x.strides(1), s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 3 || x.ndim() == 4) {
|
||||
return build_cudnn_tensor_nchw(id, x);
|
||||
}
|
||||
throw std::runtime_error(
|
||||
fmt::format("Unsupported array with {} dims.", x.ndim()));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(scalar_dims.size(), scalar_dims.data())
|
||||
.setStrides(scalar_dims.size(), scalar_dims.data())
|
||||
.setId(id)
|
||||
.setAlignment(16)
|
||||
.setDataType(dtype_to_cudnn_type(dtype))
|
||||
.setByValue(true)
|
||||
.build();
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
|
||||
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
|
||||
}
|
||||
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(handle, plan, args) != CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
});
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
if (!graph) {
|
||||
graph = CudaGraph(encoder.device());
|
||||
if (cudnnBackendPopulateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (cudnnBackendUpdateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
return true;
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
164
mlx/backend/cuda/cudnn_utils.h
Normal file
164
mlx/backend/cuda/cudnn_utils.h
Normal file
@@ -0,0 +1,164 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
class CommandEncoder;
|
||||
}
|
||||
|
||||
// Return pointer alignment of |x|'s data.
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
// Convert the type of elements in |vec| to |T|.
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
// Return an array that can be used as map key for |vec| with size <= MAX_NDIM.
|
||||
//
|
||||
// There are 2 differences from the const_param util from kernel_utils.cuh:
|
||||
// 1. The rest of array is filled with 0.
|
||||
// 2. This util can be used in .cpp files.
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
// Helpers used by get_data_ptrs to get pointers.
|
||||
inline void* get_data_ptr(const array& arr) {
|
||||
return const_cast<void*>(arr.data<void>());
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>
|
||||
inline void* get_data_ptr(T& scalar) {
|
||||
return &scalar;
|
||||
}
|
||||
|
||||
// Return an array filled with data pointers of args.
|
||||
template <typename... Args>
|
||||
inline std::array<void*, sizeof...(Args)> get_data_ptrs(Args&... args) {
|
||||
return {get_data_ptr(args)...};
|
||||
}
|
||||
|
||||
// Map dtype to cudnn data type.
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
// Create a tensor descriptor from |x|.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, and transpose from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, make sure it is 4D, and transpose it
|
||||
// from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a 4D scalar tensor descriptor, which is passed by value.
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype);
|
||||
|
||||
// Find a working plan for |op_graph|.
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph);
|
||||
|
||||
// Encode the plan to command buffer by capturing.
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
// Encode the plan to command buffer by using native graph api of cudnn. If the
|
||||
// |graph| is empty it will be populated, otherwise it will be updated.
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
#endif
|
||||
|
||||
// Helpers to make calls like encode_cudnn_plan(..., {'x', 'y', 'z'}, x, y, z).
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_capturing(
|
||||
encoder, plan, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_graph_api(
|
||||
encoder, plan, graph, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user