Compare commits

..

6 Commits

Author SHA1 Message Date
Angelos Katharopoulos
8269c9d02d Support unaligned M 2025-07-23 00:40:27 -07:00
Angelos Katharopoulos
903b40627c Add dynamic shared memory and improve qmm 2025-07-22 23:36:53 -07:00
Angelos Katharopoulos
700f7dcf01 Refactor the matmul a bit 2025-07-21 23:38:21 -07:00
Angelos Katharopoulos
6c60bd1cbf Fixed mma and working dequant 2025-07-21 04:47:42 -07:00
Angelos Katharopoulos
a64cc02a0c Somewhat working matmul primitives 2025-07-21 04:47:42 -07:00
Angelos Katharopoulos
346ae5fdb5 Refactor quantized 2025-07-21 04:47:41 -07:00
63 changed files with 1569 additions and 655 deletions

View File

@@ -7,9 +7,6 @@ parameters:
nightly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
jobs:
build_documentation:
@@ -369,27 +366,22 @@ jobs:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
image: linux-cuda-12:2024.11.1
resource_class: gpu.nvidia.small.gen2
steps:
- checkout
- run:
name: Build wheel
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt install cuda-toolkit-12-9
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install zip
python -m venv env
source env/bin/activate
pip install auditwheel
pip install patchelf
pip install build
pip install twine
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build -w
@@ -400,6 +392,7 @@ jobs:
- run:
name: Upload package
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
@@ -412,7 +405,6 @@ workflows:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
matrix:
@@ -426,7 +418,6 @@ workflows:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
filters:
@@ -610,87 +601,3 @@ workflows:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
jobs:
- build_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:
parameters:
build_env: ["DEV_RELEASE=1"]

View File

@@ -22,7 +22,7 @@ project(
# ----------------------------- Setup -----------------------------
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
set(CMAKE_INSTALL_MESSAGE NEVER)

View File

@@ -377,10 +377,4 @@ void copy_cpu_inplace(
});
}
array contiguous_copy_cpu(const array& arr, Stream stream) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return arr_copy;
}
} // namespace mlx::core

View File

@@ -30,7 +30,4 @@ void copy_cpu_inplace(
const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_cpu(const array& arr, Stream stream);
} // namespace mlx::core

View File

@@ -13,7 +13,9 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
if (arr.flags().row_contiguous) {
return {arr, false};
} else {
return {contiguous_copy_cpu(arr, stream), true};
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
}
};
@@ -32,7 +34,8 @@ void AllReduce::eval_cpu(
}
return in;
} else {
array arr_copy = contiguous_copy_cpu(in, s);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_cpu(in, arr_copy, CopyType::General, s);
out.copy_shared_buffer(arr_copy);
return arr_copy;
}

View File

@@ -87,7 +87,8 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy_cpu(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}

View File

@@ -136,8 +136,9 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
}
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
array arr_copy = contiguous_copy_cpu(arr, s);
return std::make_tuple(false, stx, arr_copy, true);
}
};

View File

@@ -712,7 +712,9 @@ void fast::AffineQuantize::eval_cpu(
if (arr.flags().row_contiguous) {
return std::make_pair(arr, false);
} else {
return std::make_pair(contiguous_copy_cpu(arr, s), true);
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
}
};

View File

@@ -250,8 +250,10 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
// Ensure contiguity
auto in = inputs[0];
if (!in.flags().row_contiguous) {
in = contiguous_copy_cpu(in, stream());
encoder.add_temporary(in);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_cpu(in, arr_copy, CopyType::General, stream());
in = arr_copy;
encoder.add_temporary(arr_copy);
}
out.set_data(allocator::malloc(out.nbytes()));

View File

@@ -131,7 +131,8 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy_cpu(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -20,7 +20,6 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@@ -43,7 +42,9 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/qmm.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cu
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
@@ -88,17 +89,10 @@ endif()
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
# and requires drivers released after CUDA 12.4.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
endif()
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"70;80"
"80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
@@ -138,3 +132,12 @@ target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
# Make Thunderkittens available
FetchContent_Declare(
kittens
GIT_REPOSITORY https://github.com/HazyResearch/ThunderKittens.git
GIT_TAG aaab847f430ed313ed466e64b25b9177babd1db8
GIT_SHALLOW TRUE)
FetchContent_MakeAvailable(kittens)
target_include_directories(mlx BEFORE PRIVATE "${kittens_SOURCE_DIR}/include")

View File

@@ -2,6 +2,7 @@
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/utils.h"
#include <cuda_runtime.h>
@@ -24,58 +25,52 @@ constexpr int small_block_size = 8;
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
CHECK_CUDA_ERROR(cudaMallocManaged(&buffer_, small_pool_size));
end_ = reinterpret_cast<void*>(
reinterpret_cast<char*>(buffer_) + small_pool_size);
next_free_ = reinterpret_cast<Block*>(buffer_);
auto num_blocks = small_pool_size / small_block_size;
buffer_ = new Block[num_blocks];
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
curr->next = buffer_ + i;
for (size_t i = 0; i < num_blocks - 1; ++i) {
curr->next = reinterpret_cast<Block*>(
reinterpret_cast<char*>(buffer_) + (i + 1) * small_block_size);
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(data_));
delete[] buffer_;
CHECK_CUDA_ERROR(cudaFree(buffer_));
}
CudaBuffer* SmallSizePool::malloc() {
void* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
uint64_t i = next_free_ - buffer_;
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
return &b->buf;
return static_cast<void*>(b);
}
void SmallSizePool::free(CudaBuffer* buf) {
auto b = reinterpret_cast<Block*>(buf);
void SmallSizePool::free(void* p) {
auto b = static_cast<Block*>(p);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(CudaBuffer* buf) {
constexpr int num_blocks = (small_pool_size / small_block_size);
auto b = reinterpret_cast<Block*>(buf);
int64_t block_num = b - buffer_;
return block_num >= 0 && block_num < num_blocks;
bool SmallSizePool::in_pool(void* p) {
return (p >= buffer_) && (p < end_);
}
CudaAllocator::CudaAllocator()
: buffer_cache_(
page_size,
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
[this](CudaBuffer* buf) {
cuda_free(buf->data);
delete buf;
}) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
@@ -97,26 +92,28 @@ Buffer CudaAllocator::malloc(size_t size) {
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure try to reclaim memory from the cache.
int64_t mem_to_free =
get_active_memory() + get_cache_memory() + size - memory_limit_;
if (mem_to_free > 0) {
buffer_cache_.release_cached_buffers(mem_to_free);
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache.
size_t mem_required = get_active_memory() + get_cache_memory() + size;
if (mem_required >= memory_limit_) {
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
}
lock.unlock();
buf = new CudaBuffer{nullptr, size};
// Try the scalar pool first
if (size <= small_block_size) {
buf = scalar_pool_.malloc();
buf->data = scalar_pool_.malloc();
}
lock.unlock();
if (!buf) {
buf = new CudaBuffer{nullptr, size};
if (!buf->data) {
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
}
lock.lock();
}
active_memory_ += size;
@@ -126,6 +123,7 @@ Buffer CudaAllocator::malloc(size_t size) {
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{buf};
}
@@ -140,7 +138,9 @@ void CudaAllocator::free(Buffer buffer) {
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
cuda_free(buf);
lock.unlock();
cuda_free(buf->data);
delete buf;
}
}
@@ -152,13 +152,30 @@ size_t CudaAllocator::size(Buffer buffer) const {
return buf->size;
}
// This must be called with mutex_ aquired
void CudaAllocator::cuda_free(CudaBuffer* buf) {
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
void CudaAllocator::cuda_free(void* buf) {
// If cuda_free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([this, buf]() { this->cuda_free(buf); });
worker_->end_batch();
worker_->commit();
return;
}
}
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
cudaFree(buf->data);
delete buf;
cudaFree(buf);
}
}

View File

@@ -7,10 +7,13 @@
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
@@ -21,14 +24,13 @@ struct CudaBuffer {
class SmallSizePool {
private:
union Block {
struct Block {
Block* next;
CudaBuffer buf;
};
Block* buffer_{nullptr};
void* data_{nullptr};
void* buffer_{nullptr};
Block* next_free_{nullptr};
void* end_{nullptr};
public:
SmallSizePool();
@@ -37,9 +39,9 @@ class SmallSizePool {
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
CudaBuffer* malloc();
void free(CudaBuffer* buf);
bool in_pool(CudaBuffer* buf);
void* malloc();
void free(void* p);
bool in_pool(void* p);
};
class CudaAllocator : public allocator::Allocator {
@@ -48,6 +50,15 @@ class CudaAllocator : public allocator::Allocator {
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
// Call cudaFree in the safe thread.
void cuda_free(void* buf);
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
@@ -58,11 +69,13 @@ class CudaAllocator : public allocator::Allocator {
void clear_cache();
private:
void cuda_free(CudaBuffer* buf);
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t max_pool_size_;

View File

@@ -1,8 +1,8 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -115,7 +115,7 @@ __global__ void arg_reduce_general(
T vals[N_READS];
auto tid = r * BLOCK_DIM + block.thread_index().x;
cub::LoadDirectBlocked(
tid, StridedIterator(in + in_idx, axis_stride), vals, axis_size, init);
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
best = op.reduce_many(best, vals, tid * N_READS);
}
@@ -166,6 +166,7 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
num_blocks,
block_dim(),
0,
in.data<T>(),
out.data<uint32_t>(),
out.size(),

View File

@@ -128,7 +128,7 @@ __global__ void binary_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
auto [a_idx, b_idx] = elem_to_loc_4d(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]);
}
@@ -219,6 +219,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -235,6 +236,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
@@ -269,6 +271,7 @@ void binary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),

View File

@@ -160,7 +160,7 @@ __global__ void binary_two_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
auto [a_idx, b_idx] = elem_to_loc_4d(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
@@ -239,6 +239,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
@@ -256,6 +257,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
@@ -291,6 +293,7 @@ void binary_two_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),

View File

@@ -295,7 +295,7 @@ void Compiled::eval_gpu(
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(kernel, outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -82,6 +82,7 @@ void copy_contiguous(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());

View File

@@ -37,7 +37,7 @@ __global__ void copy_gg(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
auto [idx_in, idx_out] = elem_to_loc_4d(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
@@ -79,6 +79,7 @@ void copy_general(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,
@@ -94,6 +95,7 @@ void copy_general(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,

View File

@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
const int64_t* offset_out) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
auto [idx_in, idx_out] = elem_to_loc_4d(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
}
@@ -82,6 +82,7 @@ void copy_general_dynamic(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
@@ -99,6 +100,7 @@ void copy_general_dynamic(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),

View File

@@ -34,7 +34,7 @@ __global__ void copy_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
}
@@ -71,6 +71,7 @@ void copy_general_input(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
@@ -85,6 +86,7 @@ void copy_general_input(
kernel,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),

View File

@@ -215,12 +215,14 @@ void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
kernel_params.blockDim = block_dim;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
cudaGraphNode_t node;
CHECK_CUDA_ERROR(
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
@@ -231,6 +233,7 @@ void CommandEncoder::add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
@@ -241,6 +244,7 @@ void CommandEncoder::add_kernel_node(
kernel_params.blockDimY = block_dim.y;
kernel_params.blockDimZ = block_dim.z;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
CUgraphNode node;
CHECK_CUDA_ERROR(
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
@@ -306,6 +310,7 @@ void CommandEncoder::commit() {
}
// Put completion handlers in a batch.
worker_.end_batch();
worker_.commit(stream_);
}
@@ -314,6 +319,7 @@ void CommandEncoder::synchronize() {
auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); });
worker_.end_batch();
commit();
f.wait();
}

View File

@@ -45,25 +45,34 @@ class CommandEncoder {
void set_output_array(const array& arr);
template <typename F, typename... Params>
void
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
void add_kernel_node(
F* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
Params&&... params) {
constexpr size_t num = sizeof...(Params);
void* ptrs[num];
size_t i = 0;
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
std::forward<Params>(params)),
...);
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
}
void add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
void add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());

View File

@@ -49,20 +49,6 @@ store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
to[offset] = vec;
}
// Helper for accessing strided data.
template <typename T>
struct StridedIterator {
T it;
int64_t stride;
__host__ __device__ StridedIterator(T it, int64_t stride)
: it(it), stride(stride) {}
__host__ __device__ auto operator[](int i) const {
return it[i * stride];
}
};
///////////////////////////////////////////////////////////////////////////////
// Type limits utils
///////////////////////////////////////////////////////////////////////////////
@@ -218,8 +204,20 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
// Optimized version when ndim is larger than 4.
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
inline __host__ __device__ IdxT
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
IdxT loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
loc += (elem % shape[i]) * IdxT(strides[i]);
elem /= shape[i];
}
return loc;
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
IdxT elem,
const int* shape,
const int64_t* a_strides,
@@ -237,7 +235,7 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
IdxT elem,
const int* shape,
const int64_t* a_strides,

View File

@@ -19,6 +19,8 @@ void new_stream(Stream s) {
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {

View File

@@ -110,26 +110,24 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
SharedEvent::SharedEvent() {
buf_ = std::shared_ptr<Buffer>(
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
allocator().free(*ptr);
delete ptr;
});
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
// Allocate cuda::atomic on managed memory.
Atomic* ac;
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
ptr->~Atomic();
allocator().cuda_free(ptr);
});
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(to_atomic(buf_), value);
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
@@ -140,17 +138,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
auto& encoder = get_command_encoder(s);
encoder.commit();
wait(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.add_completed_handler([ac = ac_]() {});
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(to_atomic(buf_), value);
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
@@ -164,18 +162,18 @@ void SharedEvent::signal(Stream s, uint64_t value) {
auto& encoder = get_command_encoder(s);
encoder.commit();
signal(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.add_completed_handler([ac = ac_]() {});
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return to_atomic(buf_)->load() >= value;
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return to_atomic(buf_)->load();
return ac_->load();
}
} // namespace cu

View File

@@ -2,7 +2,6 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/stream.h"
#include <cuda_runtime.h>
@@ -56,8 +55,12 @@ class SharedEvent {
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

View File

@@ -1,147 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
static constexpr int n_per_thread = 4;
static constexpr int rows_per_block = 8;
template <typename T, int rows_per_block, int n_per_thread>
__device__ void
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
auto g_idx = block.group_index();
auto t_idx = block.thread_index();
int row = g_idx.x * rows_per_block + t_idx.y;
if (row < rows) {
float sum = 0.0f;
for (int col = n_per_thread * warp.thread_rank(); col < cols;
col += (WARP_SIZE * n_per_thread)) {
auto local_mat = load_vector<n_per_thread>(mat + row * cols + col, 0);
auto local_vec = load_vector<n_per_thread>(vec + col, 0);
#pragma unroll
for (int j = 0; j < n_per_thread; ++j) {
sum += static_cast<float>(local_mat.val[j]) *
static_cast<float>(local_vec.val[j]);
}
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
if (warp.thread_rank() == 0) {
out[row] = static_cast<T>(sum);
}
}
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void gemv_batched(
const T* mat,
const T* vec,
T* out,
int rows,
int cols,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides mat_batch_strides,
const __grid_constant__ Strides vec_batch_strides,
int batch_ndim) {
auto block = cg::this_thread_block();
auto batch_idx = block.group_index().y;
auto [vec_offset, mat_offset] = elem_to_loc(
batch_idx,
batch_shape.data(),
vec_batch_strides.data(),
mat_batch_strides.data(),
batch_ndim);
gemv_impl<T, rows_per_block, n_per_thread>(
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
}
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
return K % (WARP_SIZE * n_per_thread) == 0 &&
((M == 1 && b_transposed) || (N == 1 && !a_transposed));
}
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
dim3 block_dims{WARP_SIZE, rows_per_block};
const DataType* mat;
const DataType* vec;
int rows;
int cols = K;
auto mat_strides = const_param(a_batch_strides);
auto vec_strides = const_param(b_batch_strides);
if (M == 1) {
mat = b.data<DataType>();
vec = a.data<DataType>();
rows = N;
std::swap(mat_strides, vec_strides);
} else {
mat = a.data<DataType>();
vec = b.data<DataType>();
rows = M;
}
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
if (batch_count == 1) {
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread>;
encoder.add_kernel_node(
kernel,
num_blocks_x,
block_dims,
mat,
vec,
out.data<DataType>(),
rows,
cols);
} else {
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread>;
encoder.add_kernel_node(
kernel,
dim3{num_blocks_x, batch_count},
block_dims,
mat,
vec,
out.data<DataType>(),
rows,
cols,
const_param(batch_shape),
mat_strides,
vec_strides,
batch_shape.size());
}
});
}
} // namespace mlx::core::cu

View File

@@ -1,24 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder);
} // namespace mlx::core::cu

View File

@@ -129,7 +129,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -230,7 +230,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -318,7 +318,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -422,7 +422,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -0,0 +1,121 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <cuda/std/utility>
#include "mlx/backend/cuda/kernel_utils.cuh"
namespace mlx::core::cu {
// Iterating non-contiguous array.
template <typename Iterator, typename IdxT = int64_t>
class general_iterator
: public thrust::
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides)
: super_t(it),
index_(index),
ndim_(ndim),
shape_(cuda::std::move(shape)),
strides_(cuda::std::move(strides)) {}
__host__ __device__ IdxT index() const {
return index_;
}
__host__ __device__ const Shape& shape() const {
return shape_;
}
__host__ __device__ const Strides& strides() const {
return strides_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const general_iterator& other) const {
return this->base() == other.base() && this->index() == other.index();
}
__host__ __device__ void advance(difference_type n) {
this->index_ += n;
}
__host__ __device__ void increment() {
this->index_ += 1;
}
__host__ __device__ void decrement() {
this->index_ -= 1;
}
__host__ __device__ difference_type
distance_to(const general_iterator& other) const {
_CCCL_ASSERT(
this->base() == other.base(),
"Underlying iterator must point to same base iterator");
return other.index() - this->index();
}
// The dereference is device-only to avoid accidental running in host.
__device__ typename super_t::reference dereference() const {
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
return *(this->base() + offset);
}
IdxT index_;
int ndim_;
Shape shape_;
Strides strides_;
};
template <typename IdxT, typename Iterator>
__host__ __device__ auto make_general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides) {
return general_iterator<Iterator, IdxT>(
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterator(
Iterator it,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
return make_general_iterator<IdxT>(
it, 0, shape.size(), const_param(shape), const_param(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterators(
Iterator it,
IdxT size,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
auto ndim = shape.size();
auto shape_arg = const_param(shape);
auto strides_arg = const_param(strides);
return std::make_pair(
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,60 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <thrust/iterator/iterator_facade.h>
namespace mlx::core::cu {
// RandomAccessIterator for strided access to array entries.
template <typename Iterator, typename Stride = int64_t>
class strided_iterator
: public thrust::
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ strided_iterator(Iterator it, Stride stride)
: super_t(it), stride_(stride) {}
__host__ __device__ Stride stride() const {
return stride_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const strided_iterator& other) const {
return this->base() == other.base();
}
__host__ __device__ void advance(difference_type n) {
this->base_reference() += n * stride_;
}
__host__ __device__ void increment() {
this->base_reference() += stride_;
}
__host__ __device__ void decrement() {
this->base_reference() -= stride_;
}
__host__ __device__ difference_type
distance_to(const strided_iterator& other) const {
const difference_type dist = other.base() - this->base();
_CCCL_ASSERT(
dist % stride() == 0,
"Underlying iterator difference must be divisible by the stride");
return dist / stride();
}
Stride stride_;
};
} // namespace mlx::core::cu

View File

@@ -1,6 +1,7 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h"
@@ -104,8 +105,8 @@ __global__ void layer_norm(
T wn[N_READS];
T bn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(b, b_stride), bn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size);
for (int i = 0; i < N_READS; ++i) {
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
@@ -161,7 +162,7 @@ __global__ void layer_norm_vjp(
auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]) - mean;
float wi = wn[i];
@@ -184,7 +185,7 @@ __global__ void layer_norm_vjp(
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
float wi = wn[i];
@@ -265,6 +266,7 @@ void LayerNorm::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
b.data<DataType>(),
@@ -377,6 +379,7 @@ void LayerNormVJP::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),

View File

@@ -151,6 +151,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
n_rows,
block_dim(),
0,
in.data<DataType>(),
out.data<DataType>(),
axis_size);

View File

@@ -2,7 +2,6 @@
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemv.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -354,22 +353,6 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
batch_shape = {1};
}
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
cu::gemv(
a,
b,
out,
M,
N,
K,
batch_count,
batch_shape,
a_batch_strides,
b_batch_strides,
encoder);
return;
}
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt

View File

@@ -0,0 +1,108 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/matmul/tiles.cuh"
namespace mlx::core::cu {
template <typename U, typename T>
__device__ inline void
mma_t(Tile16x16<U>& C, Tile16x16<T>& A, Tile16x16<T>& B) {}
/**
* Multiply the 16x16 bfloat16 tiles and accumulate the result in one 16x16
* float tile.
*
* We actually perform C += A @ B.T
*/
__device__ inline void mma_t(
Tile16x16<float>& C,
Tile16x16<__nv_bfloat16>& A,
Tile16x16<__nv_bfloat16>& B) {
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
"{%0, %1, %2, %3}, "
"{%4, %5, %6, %7}, "
"{%8, %9}, "
"{%10, %11, %12, %13};"
// D matrix
: "+f"(C.values[0].x),
"+f"(C.values[0].y),
"+f"(C.values[1].x),
"+f"(C.values[1].y)
// A matrix
: "r"(*(uint32_t*)(&A.values[0])),
"r"(*(uint32_t*)(&A.values[1])),
"r"(*(uint32_t*)(&A.values[2])),
"r"(*(uint32_t*)(&A.values[3])),
// B matrix
"r"(*(uint32_t*)(&B.values[0])),
"r"(*(uint32_t*)(&B.values[2])),
// C matrix
"f"(C.values[0].x),
"f"(C.values[0].y),
"f"(C.values[1].x),
"f"(C.values[1].y));
asm volatile(
"mma.sync.aligned.m16n8k16.row.col.f32.bf16.bf16.f32 "
"{%0, %1, %2, %3}, "
"{%4, %5, %6, %7}, "
"{%8, %9}, "
"{%10, %11, %12, %13};"
// D matrix
: "+f"(C.values[2].x),
"+f"(C.values[2].y),
"+f"(C.values[3].x),
"+f"(C.values[3].y)
// A matrix
: "r"(*(uint32_t*)(&A.values[0])),
"r"(*(uint32_t*)(&A.values[1])),
"r"(*(uint32_t*)(&A.values[2])),
"r"(*(uint32_t*)(&A.values[3])),
// B matrix
"r"(*(uint32_t*)(&B.values[1])),
"r"(*(uint32_t*)(&B.values[3])),
// C matrix
"f"(C.values[2].x),
"f"(C.values[2].y),
"f"(C.values[3].x),
"f"(C.values[3].y));
}
/**
* Multiply larger register tiles by delegating to mma_t.
*/
template <typename U, typename T, int M, int N, int K>
__device__ inline void mma_t(
RegisterTile<U, M, N>& C,
RegisterTile<T, M, K>& A,
RegisterTile<T, N, K>& B) {
constexpr int TILES_M = RegisterTile<T, M, K>::TILES_Y;
constexpr int TILES_K = RegisterTile<T, M, K>::TILES_X;
constexpr int TILES_N = RegisterTile<T, N, K>::TILES_Y;
MLX_UNROLL
for (int k = 0; k < TILES_K; k++) {
MLX_UNROLL
for (int m = 0; m < TILES_M; m++) {
MLX_UNROLL
for (int n = 0; n < TILES_N; n++) {
mma_t(
C.data[m * TILES_N + n],
A.data[m * TILES_K + k],
B.data[n * TILES_K + k]);
}
}
}
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,419 @@
// Copyright © 2025 Apple Inc.
#pragma once
#define MLX_UNROLL _Pragma("unroll")
namespace mlx::core::cu {
// Map types to their vector of 2 type float -> float2, double -> double2 etc
template <typename T>
struct Vector2;
template <>
struct Vector2<double> {
using type = double2;
};
template <>
struct Vector2<float> {
using type = float2;
};
template <>
struct Vector2<__half> {
using type = __half2;
};
template <>
struct Vector2<__nv_bfloat16> {
using type = __nv_bfloat162;
};
template <typename T>
using Vector2_t = typename Vector2<T>::type;
/**
* The basic building block for Ampere mmas. A 16x16 tile distributed across
* the warp.
*
* Each thread holds 8 values. They are distributed according to
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-fragment-mma-16816-float
*
* For use instructions see the individual methods eg load().
*/
template <typename T>
struct Tile16x16 {
using T2 = Vector2_t<T>;
T2 values[4];
__device__ inline void fill(T v) {
T2 v2 = {v, v};
for (int i = 0; i < 4; i++) {
values[i] = v2;
}
}
/**
* Load a 16x16 tile from shared memory.
*
* The instruction is a bit weird in the sense that the address provided by
* each thread and the elements loaded are not the same.
*
* We load 4 8x8 tiles. The tile rows are stored contiguously in memory. As a
* result the warp provides 4*8 = 32 addresses one per row.
*
* Threads 0-7 provide the addresses for the first tile, 8-15 for the second
* and so on. For instance to load a non swizzled tile we would do
*
* base_addr + (laneid % 16) * BK + (laneid / 2) * 8
*
* See
* https://docs.nvidia.com/cuda/parallel-thread-execution/#warp-level-matrix-instructions-ldmatrix
*/
__device__ inline void load(uint32_t row_address) {
if constexpr (
std::is_same_v<T2, __nv_bfloat162> || std::is_same_v<T2, __half2>) {
asm volatile(
"ldmatrix.sync.aligned.m8n8.x4.shared::cta.b16 {%0, %1, %2, %3}, [%4];\n"
: "=r"(*(uint32_t*)&(values[0])),
"=r"(*(uint32_t*)&(values[1])),
"=r"(*(uint32_t*)&(values[2])),
"=r"(*(uint32_t*)&(values[3]))
: "r"(row_address));
}
}
/**
* Store the tile to the address pointed to by `x`.
*
* The provided pointer is a generic pointer but this is meant to be used to
* store to global memory. For storing to shared memory we should use
* `stmatrix`.
*
* This also showcases the format of the tile quite nicely. Each register is
* holding to adjacent values. The indices are
*
* row + 0, col + 0
* row + 8, col + 0
* row + 0, col + 8
* row + 8, col + 8
*
* Given that we are dealing with Vector2_t<U> the column offsets are 4
* instead of 8.
*/
template <typename U>
__device__ inline void store_global(U* x, int N) {
using U2 = Vector2_t<U>;
U2* x2 = reinterpret_cast<U2*>(x);
const int laneid = threadIdx.x % 32;
const int row = laneid / 4;
const int col = laneid % 4;
if constexpr (std::is_same_v<U2, T2>) {
x2[(row + 0) * (N / 2) + col + 0] = values[0];
x2[(row + 0) * (N / 2) + col + 4] = values[2];
x2[(row + 8) * (N / 2) + col + 0] = values[1];
x2[(row + 8) * (N / 2) + col + 4] = values[3];
} else if constexpr (
std::is_same_v<T2, float2> && std::is_same_v<U, __nv_bfloat16>) {
x2[(row + 0) * (N / 2) + col + 0] =
__floats2bfloat162_rn(values[0].x, values[0].y);
x2[(row + 0) * (N / 2) + col + 4] =
__floats2bfloat162_rn(values[2].x, values[2].y);
x2[(row + 8) * (N / 2) + col + 0] =
__floats2bfloat162_rn(values[1].x, values[1].y);
x2[(row + 8) * (N / 2) + col + 4] =
__floats2bfloat162_rn(values[3].x, values[3].y);
}
}
template <typename U>
__device__ inline void store_global_safe(U* x, int N, int max_rows) {
const int laneid = threadIdx.x % 32;
const int row = laneid / 4;
const int col = laneid % 4;
if (row < max_rows) {
x[(row + 0) * N + 2 * col + 0] = static_cast<U>(values[0].x);
x[(row + 0) * N + 2 * col + 1] = static_cast<U>(values[0].y);
x[(row + 0) * N + 2 * col + 8] = static_cast<U>(values[2].x);
x[(row + 0) * N + 2 * col + 9] = static_cast<U>(values[2].y);
}
if (row + 8 < max_rows) {
x[(row + 8) * N + 2 * col + 0] = static_cast<U>(values[1].x);
x[(row + 8) * N + 2 * col + 1] = static_cast<U>(values[1].y);
x[(row + 8) * N + 2 * col + 8] = static_cast<U>(values[3].x);
x[(row + 8) * N + 2 * col + 9] = static_cast<U>(values[3].y);
}
}
};
/**
* A simple container of multiple Tile16x16.
*
* Provides utility functions for loading and manipulating collections of basic
* tiles.
*/
template <typename T, int ROWS_, int COLS_>
struct RegisterTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
Tile16x16<T> data[TILES_X * TILES_Y];
__device__ inline void fill(T v) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].fill(v);
}
}
}
template <typename Tile>
__device__ inline void
load(Tile& tile, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].load(
tile.loc(base_address, row + i * 16, col + j * 16));
}
}
}
template <typename U>
__device__ inline void store_global(U* x, int N, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global(
x + (row + i * 16) * N + col + j * 16, N);
}
}
}
template <typename U>
__device__ inline void
store_global_safe(U* x, int N, int row, int col, int max_rows) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global_safe(
x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i * 16);
}
}
}
};
template <typename T, int ROWS_, int COLS_>
struct SharedTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
static constexpr int NUMEL = ROWS * COLS;
// Swizzle taken from ThunderKittens.
//
// See inludes/types/shared/st.cuh
//
// I do feel that it is too math heavy and can be improved. Also the math is
// done every time although the addresses don't change from load to load. I
// guess we are expecting the compiler to figure that out.
static constexpr int swizzle_bytes =
(sizeof(T) == 2 ? (TILES_X % 4 == 0 ? 128 : (TILES_X % 2 == 0 ? 64 : 32))
: (sizeof(T) == 4 ? (TILES_X % 2 == 0 ? 128 : 64) : 0));
T data[ROWS * COLS];
// Return a pointer to the element at (row, col) using the swizzle.
__device__ static inline T* ptr(T* ptr, int row, int col) {
if constexpr (swizzle_bytes > 0) {
static constexpr int swizzle_repeat = swizzle_bytes * 8;
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
const int outer_idx = col / subtile_cols;
const uint64_t addr =
(uint64_t)(&ptr
[outer_idx * ROWS * subtile_cols + row * subtile_cols +
col % subtile_cols]);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (T*)(addr ^ swizzle);
} else {
return ptr + row * COLS + col;
}
}
// Return the location of the element at (row, col) using the swizzle.
__device__ static inline uint32_t loc(uint32_t ptr, int row, int col) {
if constexpr (swizzle_bytes > 0) {
static constexpr int swizzle_repeat = swizzle_bytes * 8;
static constexpr int subtile_cols = swizzle_bytes / sizeof(T);
const int outer_idx = col / subtile_cols;
const uint32_t addr = ptr +
sizeof(T) *
(outer_idx * ROWS * subtile_cols + row * subtile_cols +
col % subtile_cols);
const int swizzle = ((addr % swizzle_repeat) >> 7) << 4;
return (addr ^ swizzle);
} else {
return ptr + sizeof(T) * (row * COLS + col);
}
}
// Convenience functions to edit elements going through the swizzle.
__device__ inline T& operator()(int row, int col) {
return *ptr(data, row, col);
}
__device__ inline void store(float4& v, int row, int col) {
*(reinterpret_cast<float4*>(ptr(data, row, col))) = v;
}
__device__ inline void store(float2& v, int row, int col) {
*(reinterpret_cast<float2*>(ptr(data, row, col))) = v;
}
__device__ inline void store(float& v, int row, int col) {
*(reinterpret_cast<float*>(ptr(data, row, col))) = v;
}
template <int N>
__device__ inline void store(T (&v)[N], int row, int col) {
if constexpr (sizeof(T) * N == 4) {
store(*(reinterpret_cast<float*>(&v[0])), row, col);
} else if constexpr (sizeof(T) * N == 8) {
store(*(reinterpret_cast<float2*>(&v[0])), row, col);
} else if constexpr (sizeof(T) * N == 16) {
store(*(reinterpret_cast<float4*>(&v[0])), row, col);
} else {
MLX_UNROLL
for (int i = 0; i < N; i++) {
*ptr(data, row, col + i) = v[i];
}
}
}
};
/**
* Load the tile from global memory by loading 16 bytes at a time and storing
* them immediately.
*/
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void load(Tile& tile, const T* x, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
float4 tmp;
tmp = *(reinterpret_cast<const float4*>(&x[i * STEP_ROWS * N]));
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
/**
* Copy 16 bytes from the globale memory address pointed to by x to the smem
* address pointed to by row_address.
*
* A simple wrapper over the PTX.
*/
template <typename T>
__device__ inline void cp_async_16(uint32_t row_address, const T* x) {
asm volatile(
"cp.async.ca.shared::cta.global [%0], [%1], 16;\n" ::"r"(row_address),
"l"(reinterpret_cast<const int4*>(x)));
}
/**
* Submit all the previous async copies to be executed.
*/
__device__ inline void cp_async_commit() {
asm volatile("cp.async.commit_group;\n" ::);
}
/**
* Wait for all the async copies to finish.
*/
__device__ inline void cp_async_wait_all() {
asm volatile("cp.async.wait_all;\n" ::);
}
/**
* The asynchronous equivalent of load.
*
* Loads the tile from global memory by submitting a bunch of async copy
* instructions. The copy won't start until commit is called and we don't have
* a guarantee it will finish until wait is called.
*
* It should be used as follows
*
* load(...)
* load(...)
* cp_async_commit()
* do_other_stuff()
* cp_async_wait_all()
* do_stuff_with_shmem()
*/
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void
load_async(Tile& tile, uint32_t base_address, const T* x, int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
cp_async_16(
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
x + i * STEP_ROWS * N);
}
}
template <int NUM_WARPS, typename T, typename Tile>
__device__ inline void load_async_safe(
Tile& tile,
uint32_t base_address,
const T* x,
int N,
int max_rows) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(float4) / sizeof(T);
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
x += row * N + col * ELEMENTS_PER_LOAD;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
if (row + i * STEP_ROWS < max_rows) {
cp_async_16(
tile.loc(base_address, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD),
x + i * STEP_ROWS * N);
} else {
float4 tmp = {0, 0, 0, 0};
tile.store(tmp, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
}
} // namespace mlx::core::cu

View File

@@ -81,7 +81,6 @@ NO_GPU(Hadamard)
NO_GPU(Load)
NO_GPU_MULTI(LUF)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(SegmentedMM)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)

View File

@@ -2,30 +2,17 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, int group_size, int bits>
__global__ void
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
@@ -240,144 +227,102 @@ __global__ void affine_dequantize(
}
} // namespace cu
namespace {
inline array ensure_row_contiguous(
const array& x,
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
} // namespace
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& w_pre = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
auto w = ensure_row_contiguous(w_pre, enc, s);
enc.set_input_array(w);
if (dequantize_) {
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(out);
} else {
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
enc.set_output_array(out);
enc.set_output_array(scales);
enc.set_output_array(biases);
}
auto dtype = dequantize_ ? outputs[0].dtype() : inputs[0].dtype();
// Treat uint32 as uint8 in kernel
int uint8_per_uint32 = 4;
int packs_per_int = (bits_ == 3 || bits_ == 5) ? 8
: bits_ == 6 ? 4
: 8 / bits_;
int per_thread = dequantize_ ? packs_per_int : group_size_ / WARP_SIZE;
size_t size =
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
// Calculate the number of elements per thread
int per_thread = group_size_ / WARP_SIZE;
size_t size = w.size() / per_thread;
// Calculate the thread grid that we need to launch
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() /= per_thread;
if (dequantize_) {
grid_shape.back() *= uint8_per_uint32;
} else {
grid_shape.back() /= per_thread;
}
dispatch_float_types(dtype, "affine_quantize", [&](auto type_tag) {
enc.set_input_array(w);
enc.set_output_array(wq);
enc.set_output_array(scales);
enc.set_output_array(biases);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
if (dequantize_) {
auto kernel =
cu::affine_dequantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<uint8_t>(),
inputs[1].data<DataType>(),
inputs[2].data<DataType>(),
out.data<DataType>(),
out.size());
} else {
auto kernel =
cu::affine_quantize<DataType, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
w.data<DataType>(),
out.data<uint8_t>(),
outputs[1].data<DataType>(),
outputs[2].data<DataType>(),
w.size());
}
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
w.data<T>(),
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.size());
});
});
});
}
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s) {
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
constexpr int uint8_per_uint32 = 4;
int packs_per_int;
switch (bits_) {
case 3:
case 5:
packs_per_int = 8;
break;
case 6:
packs_per_int = 4;
break;
default:
packs_per_int = 8 / bits_;
}
size_t size = w.size() / packs_per_int;
bool large = size > UINT_MAX;
auto grid_shape = w.shape();
grid_shape.back() *= uint8_per_uint32;
enc.set_input_array(wq);
enc.set_input_array(scales);
enc.set_input_array(biases);
enc.set_output_array(w);
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, size, grid_shape, w.strides(), large);
enc.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
wq.data<uint8_t>(),
scales.data<T>(),
biases.data<T>(),
w.data<T>(),
w.size());
});
});
});

View File

@@ -0,0 +1,228 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/matmul/mma.cuh"
#include "mlx/backend/cuda/matmul/tiles.cuh"
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
#include "mlx/dtype_utils.h"
namespace mlx::core {
namespace cu {
template <int NUM_WARPS, int group_size, int bits, typename T, typename Tile>
__device__ inline void load_quantized(
Tile& tile,
const uint8_t* x,
const T* scales,
const T* biases,
int N) {
constexpr int NUM_THREADS = NUM_WARPS * 32;
constexpr int ELEMENTS_PER_LOAD = sizeof(uint32_t) * get_pack_factor<bits>();
constexpr int NUM_LOADS = Tile::NUMEL / ELEMENTS_PER_LOAD;
constexpr int NUM_LOADS_PER_THREAD = NUM_LOADS / NUM_THREADS;
constexpr int NUM_LOADS_PER_ROW = Tile::COLS / ELEMENTS_PER_LOAD;
constexpr int STEP_ROWS = NUM_THREADS / NUM_LOADS_PER_ROW;
constexpr int MASK = (1 << bits) - 1;
const int row = threadIdx.x / NUM_LOADS_PER_ROW;
const int col = threadIdx.x % NUM_LOADS_PER_ROW;
const int Nx = N / get_pack_factor<bits>();
const int Ng = N / group_size;
x += row * Nx + col * (ELEMENTS_PER_LOAD / get_pack_factor<bits>());
scales += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
biases += row * Ng + col * ELEMENTS_PER_LOAD / group_size;
MLX_UNROLL
for (int i = 0; i < NUM_LOADS_PER_THREAD; i++) {
T vs[ELEMENTS_PER_LOAD];
uint32_t w = *reinterpret_cast<const uint32_t*>(x + i * STEP_ROWS * Nx);
T s = scales[i * STEP_ROWS * Ng];
T b = biases[i * STEP_ROWS * Ng];
MLX_UNROLL
for (int j = 0; j < ELEMENTS_PER_LOAD; j++) {
vs[j] = static_cast<T>((w >> (j * bits)) & MASK) * s + b;
}
tile.store(vs, row + i * STEP_ROWS, col * ELEMENTS_PER_LOAD);
}
}
template <
typename T,
int BM,
int BN,
int BK,
int group_size,
int bits,
bool aligned_M>
__global__ void qmm_t(
const T* x,
const uint8_t* w,
const T* scales,
const T* biases,
T* y,
int M,
int N,
int K) {
constexpr int WARPS_M = 2;
constexpr int WARPS_N = 4;
constexpr int NUM_WARPS = WARPS_M * WARPS_N;
constexpr int WARP_STEP_M = BM / WARPS_M;
constexpr int WARP_STEP_N = BN / WARPS_N;
const int warpid = threadIdx.x / 32;
const int laneid = threadIdx.x % 32;
const int wm = warpid / WARPS_N;
const int wn = warpid % WARPS_N;
const int offset_m = wm * WARP_STEP_M;
const int offset_n = wn * WARP_STEP_N;
extern __shared__ char shmem[];
SharedTile<T, BM, BK>(&xs)[1] = *(SharedTile<T, BM, BK>(*)[1])(&shmem[0]);
SharedTile<T, BN, BK>(&ws)[1] =
*(SharedTile<T, BN, BK>(*)[1])(&shmem[1 * sizeof(T) * BM * BK]);
RegisterTile<float, BM / WARPS_M, BN / WARPS_N> C;
RegisterTile<T, BM / WARPS_M, 16> A;
RegisterTile<T, BN / WARPS_N, 16> B;
const int max_rows = M - blockIdx.y * BM;
x += blockIdx.y * BM * K;
w += blockIdx.x * BN * K / get_pack_factor<bits>();
scales += blockIdx.x * BN * K / group_size;
biases += blockIdx.x * BN * K / group_size;
y += blockIdx.y * BM * N + blockIdx.x * BN;
C.fill(0);
int tic = 0;
uint32_t base_addr_xs[1], base_addr_ws[1];
base_addr_xs[0] = __cvta_generic_to_shared(&xs[0].data[0]);
base_addr_ws[0] = __cvta_generic_to_shared(&ws[0].data[0]);
if (aligned_M || max_rows >= BM) {
for (int k_block = 0; k_block < K; k_block += BK) {
load_async<NUM_WARPS>(xs[tic], base_addr_xs[tic], x + k_block, K);
cp_async_commit();
load_quantized<NUM_WARPS, group_size, bits>(
ws[tic],
w + k_block / get_pack_factor<bits>(),
scales + k_block / group_size,
biases + k_block / group_size,
K);
cp_async_wait_all();
__syncthreads();
MLX_UNROLL
for (int k = 0; k < BK / 16; k++) {
A.load(
xs[tic],
base_addr_xs[tic],
offset_m + laneid % 16,
k * 16 + laneid / 16 * 8);
B.load(
ws[tic],
base_addr_ws[tic],
offset_n + laneid % 16,
k * 16 + laneid / 16 * 8);
mma_t(C, A, B);
}
}
C.store_global(y, N, offset_m, offset_n);
} else {
for (int k_block = 0; k_block < K; k_block += BK) {
load_async_safe<NUM_WARPS>(
xs[tic], base_addr_xs[tic], x + k_block, K, max_rows);
cp_async_commit();
load_quantized<NUM_WARPS, group_size, bits>(
ws[tic],
w + k_block / get_pack_factor<bits>(),
scales + k_block / group_size,
biases + k_block / group_size,
K);
cp_async_wait_all();
__syncthreads();
MLX_UNROLL
for (int k = 0; k < BK / 16; k++) {
A.load(
xs[tic],
base_addr_xs[tic],
offset_m + laneid % 16,
k * 16 + laneid / 16 * 8);
B.load(
ws[tic],
base_addr_ws[tic],
offset_n + laneid % 16,
k * 16 + laneid / 16 * 8);
mma_t(C, A, B);
}
}
C.store_global_safe(y, N, offset_m, offset_n, max_rows);
}
}
} // namespace cu
void qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
array& out,
bool transpose_,
int group_size_,
int bits_,
int M,
int N,
int K,
cu::CommandEncoder& enc,
const Stream& s) {
if (x.dtype() != bfloat16) {
throw std::invalid_argument("[qmm] Only bfloat16 is supported for now");
}
if (!transpose_) {
throw std::invalid_argument(
"[qmm] Only transposed matmul is supported for now");
}
dispatch_float_types(x.dtype(), "qmm", [&](auto type_tag) {
dispatch_groups(group_size_, [&](auto group_size) {
dispatch_bits(bits_, [&](auto bits) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 32;
auto kernel =
cu::qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, true>;
if (M % BM != 0) {
kernel = cu::
qmm_t<DataType, BM, BN, BK, group_size.value, bits.value, false>;
}
dim3 grid((N + BN - 1) / BN, (M + BM - 1) / BM);
enc.add_kernel_node(
kernel,
grid,
2 * 4 * 32,
1 * sizeof(DataType) * (BM * BK + BN * BK),
x.data<DataType>(),
w.data<uint8_t>(),
scales.data<DataType>(),
biases.data<DataType>(),
out.data<DataType>(),
M,
N,
K);
});
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,113 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/quantized/quantized.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
inline array ensure_row_contiguous(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
if (!x.flags().row_contiguous) {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
} else {
return x;
}
}
inline array ensure_row_contiguous_matrix(
const array& x,
cu::CommandEncoder& enc,
const Stream& s) {
auto stride_0 = x.strides()[x.ndim() - 2];
auto stride_1 = x.strides()[x.ndim() - 1];
if (stride_0 == x.shape(-1) && stride_1 == 1) {
return x;
} else {
array x_copy = contiguous_copy_gpu(x, s);
enc.add_temporary(x_copy);
return x_copy;
}
}
} // namespace
void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
out.set_data(allocator::malloc(out.nbytes()));
// Make sure the last two dims of x and w, s, b are contiguous. This should
// be relaxed for x.
array x = ensure_row_contiguous_matrix(inputs[0], enc, s);
array w = ensure_row_contiguous_matrix(inputs[1], enc, s);
array scales = ensure_row_contiguous_matrix(inputs[2], enc, s);
array biases = ensure_row_contiguous_matrix(inputs[3], enc, s);
// Extract the matmul shapes
bool non_batched = w.ndim() == 2 && x.flags().row_contiguous;
int K = x.shape(-1);
int M = non_batched ? x.size() / K : x.shape(-2);
int N = out.shape(-1);
qmm(x,
w,
scales,
biases,
out,
transpose_,
group_size_,
bits_,
M,
N,
K,
enc,
s);
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& s = stream();
auto& d = cu::device(s.device);
auto& enc = d.get_command_encoder(s);
if (dequantize_) {
auto wq = ensure_row_contiguous(inputs[0], enc, s);
auto scales = ensure_row_contiguous(inputs[1], enc, s);
auto biases = ensure_row_contiguous(inputs[2], enc, s);
auto& w = outputs[0];
w.set_data(allocator::malloc(w.nbytes()));
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
} else {
auto w = ensure_row_contiguous(inputs[0], enc, s);
auto& wq = outputs[0];
auto& scales = outputs[1];
auto& biases = outputs[2];
wq.set_data(allocator::malloc(wq.nbytes()));
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,42 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
namespace mlx::core {
void affine_quantize(
const array& w,
array& wq,
array& scales,
array& biases,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
void affine_dequantize(
const array& wq,
const array& scales,
const array& biases,
array& w,
int group_size_,
int bits_,
cu::CommandEncoder& enc,
const Stream& s);
void qmm(
const array& x,
const array& w,
const array& scales,
const array& biases,
array& out,
bool transpose_,
int group_size_,
int bits_,
int M,
int N,
int K,
cu::CommandEncoder& enc,
const Stream& s);
} // namespace mlx::core

View File

@@ -0,0 +1,59 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core {
namespace cu {
template <int bits, int wsize = 8>
inline constexpr __device__ short get_pack_factor() {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
template <int bits, int wsize = 8>
inline constexpr __device__ short get_bytes_per_pack() {
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
} // namespace cu
template <typename F>
void dispatch_groups(int group_size, F&& f) {
switch (group_size) {
case 32:
f(std::integral_constant<int, 32>{});
break;
case 64:
f(std::integral_constant<int, 64>{});
break;
case 128:
f(std::integral_constant<int, 128>{});
break;
}
}
template <typename F>
void dispatch_bits(int bits, F&& f) {
switch (bits) {
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
case 5:
f(std::integral_constant<int, 5>{});
break;
case 6:
f(std::integral_constant<int, 6>{});
break;
case 8:
f(std::integral_constant<int, 8>{});
break;
}
}
} // namespace mlx::core

View File

@@ -170,6 +170,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
cu::rbitsc,
grid,
block,
0,
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dims,
@@ -180,6 +181,7 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
cu::rbits,
grid,
block,
0,
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dims,

View File

@@ -120,6 +120,7 @@ void all_reduce(
kernel,
blocks,
threads,
0,
static_cast<T*>(indata),
intermediate.data<U>(),
block_step,
@@ -146,6 +147,7 @@ void all_reduce(
kernel,
blocks,
threads,
0,
static_cast<T*>(indata),
out.data<U>(),
block_step,

View File

@@ -230,7 +230,7 @@ void col_reduce_looped(
auto kernel =
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
encoder.add_kernel_node(
kernel, grid, blocks, indata, out.data<U>(), args);
kernel, grid, blocks, 0, indata, out.data<U>(), args);
});
});
});

View File

@@ -41,7 +41,8 @@ void init_reduce(
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
grid.x = (grid.x + 1023) / 1024;
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
encoder.add_kernel_node(
kernel, grid, block, 0, out.data<U>(), out.size());
});
});
}

View File

@@ -269,7 +269,7 @@ void row_reduce_simple(
int size = plan.shape.back();
encoder.add_kernel_node(
kernel, grid, block, indata, out.data<U>(), out.size(), size);
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
});
});
}
@@ -322,7 +322,7 @@ void row_reduce_looped(
});
encoder.add_kernel_node(
kernel, grid, block, indata, out.data<U>(), out.size(), args);
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
});
});
}

View File

@@ -1,6 +1,7 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/reduce/reduce.cuh"
#include "mlx/backend/gpu/copy.h"
@@ -88,7 +89,7 @@ __global__ void rms_norm(
T xn[N_READS];
T wn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; ++i) {
float norm = static_cast<float>(xn[i]) * normalizer;
xn[i] = wn[i] * static_cast<T>(norm);
@@ -131,7 +132,7 @@ __global__ void rms_norm_vjp(
auto index = r * BLOCK_DIM + block.thread_rank();
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float t = static_cast<float>(xn[i]);
float wi = wn[i];
@@ -153,7 +154,7 @@ __global__ void rms_norm_vjp(
T gn[N_READS];
cub::LoadDirectBlocked(index, x, xn, axis_size);
cub::LoadDirectBlocked(index, g, gn, axis_size);
cub::LoadDirectBlocked(index, StridedIterator(w, w_stride), wn, axis_size);
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
for (int i = 0; i < N_READS; i++) {
float xi = xn[i];
float wi = wn[i];
@@ -231,6 +232,7 @@ void RMSNorm::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
out.data<DataType>(),
@@ -326,6 +328,7 @@ void RMSNormVJP::eval_gpu(
kernel,
n_rows,
block_dim(),
0,
x.data<DataType>(),
w.data<DataType>(),
g.data<DataType>(),

View File

@@ -325,6 +325,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -341,6 +342,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -360,6 +362,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),
@@ -381,6 +384,7 @@ void RoPE::eval_gpu(
kernel,
grid,
block,
0,
(donated ? out : in).data<DataType>(),
out.data<DataType>(),
offset.data<int32_t>(),

View File

@@ -414,6 +414,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
in.data_size() / axis_size,
block_dim,
0,
in.data<T>(),
out.data<U>(),
axis_size);
@@ -443,6 +444,7 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
num_blocks,
block_dim,
0,
in.data<T>(),
out.data<U>(),
axis_size,

View File

@@ -152,6 +152,7 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel,
n_rows,
block_dim(),
0,
in.data<DataType>(),
out.data<DataType>(),
axis_size);

View File

@@ -76,7 +76,7 @@ __global__ void ternary_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx, c_idx] = elem_to_loc(
auto [a_idx, b_idx, c_idx] = elem_to_loc_4d(
index,
shape.data(),
a_strides.data(),
@@ -133,6 +133,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
@@ -151,6 +152,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),
@@ -180,6 +182,7 @@ void ternary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
a.data<bool>(),
b.data<DType>(),
c.data<DType>(),

View File

@@ -3,6 +3,7 @@
#include "mlx/backend/common/unary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/iterators/general_iterator.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -47,7 +48,7 @@ __global__ void unary_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto idx = elem_to_loc(index, shape.data(), strides.data(), ndim);
auto idx = elem_to_loc_4d(index, shape.data(), strides.data(), ndim);
out[index] = Op{}(in[idx]);
}
}
@@ -141,6 +142,7 @@ void unary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>(),
out.data<OutType>(),
out.data_size());
@@ -153,6 +155,7 @@ void unary_op_gpu_inplace(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>(),
out.data<OutType>(),
out.data_size(),

View File

@@ -1,6 +1,7 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
@@ -11,10 +12,10 @@ Worker::Worker()
Worker::~Worker() {
{
std::lock_guard lock(mtx_);
std::lock_guard lock(worker_mutex_);
stop_ = true;
}
cond_.notify_one();
worker_event_.signal(batch_ + 1);
worker_.join();
}
@@ -22,41 +23,53 @@ void Worker::add_task(std::function<void()> task) {
pending_tasks_.push_back(std::move(task));
}
void Worker::signal(void* data) {
auto w = static_cast<Worker*>(data);
{
std::lock_guard lock(w->mtx_);
w->signaled_batch_++;
void Worker::consume_in_this_thread() {
for (auto& task : pending_tasks_) {
task();
}
w->cond_.notify_one();
pending_tasks_.clear();
}
void Worker::end_batch() {
batch_++;
{
std::lock_guard lock(worker_mutex_);
worker_tasks_[batch_] = std::move(pending_tasks_);
}
uncommited_batches_++;
}
void Worker::commit() {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
worker_event_.signal(batch_);
}
void Worker::commit(cudaStream_t stream) {
// Move pending tasks into tasks
if (pending_tasks_.empty()) {
if (uncommited_batches_ == 0) {
return;
}
{
std::lock_guard lock(mtx_);
// Move pending tasks into ready tasks
worker_tasks_[++committed_batch_] = std::move(pending_tasks_);
}
uncommited_batches_ = 0;
// Signal the |worker_event_| in |signal_stream_| after the kernels in
// |stream_| finish running.
signal_event_.record(stream);
signal_event_.wait(signal_stream_);
cudaLaunchHostFunc(signal_stream_, signal, this);
worker_event_.signal(signal_stream_, batch_);
}
void Worker::thread_fn() {
// The worker thread is safe to free buffers.
allocator().register_this_thread();
while (!stop_) {
uint64_t current_batch = 0;
uint64_t batch = worker_event_.value();
Tasks tasks;
{
std::unique_lock<std::mutex> lk(mtx_);
cond_.wait(lk, [this, &current_batch] {
return this->signaled_batch_ > current_batch || this->stop_;
});
current_batch = signaled_batch_;
auto end = worker_tasks_.upper_bound(current_batch);
std::lock_guard lock(worker_mutex_);
// Move tasks in signaled batches.
auto end = worker_tasks_.upper_bound(batch);
for (auto it = worker_tasks_.begin(); it != end; ++it) {
if (tasks.empty()) {
tasks = std::move(it->second);
@@ -72,6 +85,7 @@ void Worker::thread_fn() {
auto task = std::move(tasks[i]);
task();
}
worker_event_.wait(batch + 1);
}
}

View File

@@ -5,7 +5,6 @@
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include <condition_variable>
#include <functional>
#include <map>
#include <mutex>
@@ -25,24 +24,38 @@ class Worker {
// Add a pending |task| that will run when consumed or commited.
void add_task(std::function<void()> task);
// Run pending tasks immediately in current thread.
void consume_in_this_thread();
// Put pending tasks in a batch.
void end_batch();
// Inform worker thread to run current batches now.
void commit();
// Inform worker thread to run current batches after kernels in |stream|
// finish running.
void commit(cudaStream_t stream);
// Return how many batches have been added but not committed yet.
size_t uncommited_batches() const {
return uncommited_batches_;
}
private:
static void signal(void*);
void thread_fn();
std::mutex mtx_;
std::condition_variable cond_;
uint64_t committed_batch_{0};
uint64_t signaled_batch_{0};
uint64_t batch_{0};
size_t uncommited_batches_{0};
// Cuda stream and event for signaling kernel completion.
CudaStream signal_stream_;
CudaEvent signal_event_;
// Worker thread.
SharedEvent worker_event_;
std::thread worker_;
std::mutex worker_mutex_;
bool stop_{false};
// Tasks are put in |pending_tasks_| first, and then moved to
@@ -50,7 +63,6 @@ class Worker {
using Tasks = std::vector<std::function<void()>>;
Tasks pending_tasks_;
std::map<uint64_t, Tasks> worker_tasks_;
std::thread worker_;
};
} // namespace mlx::core::cu

View File

@@ -128,7 +128,8 @@ Buffer MetalAllocator::malloc(size_t size) {
auto pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure try to reclaim memory from the cache
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache
if (mem_required >= gc_limit_ || num_resources_ >= resource_limit_) {
num_resources_ -=
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);

View File

@@ -708,10 +708,7 @@ array scaled_dot_product_attention(
}
if (mask.dtype() == bool_) {
scores = where(
mask,
scores,
array(-std::numeric_limits<float>::infinity(), scores.dtype()),
s);
mask, scores, array(finfo(scores.dtype()).min, scores.dtype()));
} else {
scores = add(scores, mask, s);
}

View File

@@ -1271,6 +1271,19 @@ std::vector<array> Convolution::vjp(
has_neg_padding |= (pd < 0);
}
auto padding_lo_ = std::vector<int>(padding_lo);
auto padding_hi_ = std::vector<int>(padding_hi);
// Use negative padding on the gradient output
if (has_neg_padding) {
for (auto& p : padding_lo_) {
p = std::max(0, p);
}
for (auto& p : padding_hi_) {
p = std::max(0, p);
}
}
auto wt_trans = group_transpose(wt, 0, 1, -1);
auto grad = conv_general(
/* const array& input = */ cotan,
@@ -1292,9 +1305,12 @@ std::vector<array> Convolution::vjp(
for (int i = 0; i < grad.ndim() - 2; i++) {
if (padding_lo[i] < 0) {
starts[i + 1] -= padding_lo[i];
padding_lo[i] = 0;
}
if (padding_hi[i] < 0) {
stops[i + 1] += padding_hi[i];
padding_hi[i] = 0;
}
}

View File

@@ -4,7 +4,6 @@ auditwheel repair dist/* \
--plat manylinux_2_35_x86_64 \
--exclude libcublas* \
--exclude libnvrtc* \
--exclude libcuda* \
-w wheel_tmp

View File

@@ -4022,9 +4022,8 @@ void init_ops(nb::module_& m) {
Args:
file (file, str): File in which the array is saved.
arrays (dict(str, array)): The dictionary of names to arrays to
be saved.
metadata (dict(str, str), optional): The dictionary of
metadata to be saved.
be saved. metadata (dict(str, str), optional): The dictionary of
metadata to be saved.
)pbdoc");
m.def(
"save_gguf",
@@ -4259,7 +4258,7 @@ void init_ops(nb::module_& m) {
.. math::
w_i = s \hat{w_i} + \beta
w_i = s \hat{w_i} - \beta
Args:
w (array): Matrix to be quantized

View File

@@ -398,18 +398,6 @@ class TestFastSDPA(mlx_tests.MLXTestCase):
)
self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
def test_fully_masked(self):
Lkv = 8
mask = mx.array(False)
for D in [4, 128]:
for Lq in [1, 8]:
q = mx.random.normal(shape=(1, 4, Lq, D))
k = mx.random.normal(shape=(1, 4, Lkv, D))
v = mx.random.normal(shape=(1, 4, Lkv, D))
out = mx.fast.scaled_dot_product_attention(q, k, v, mask=mask, scale=1)
self.assertTrue(mx.all(mx.isnan(out)))
def test_fast_sdpa_few_query(self):
D = 64
L = 43

View File

@@ -9,7 +9,7 @@ from functools import partial
from pathlib import Path
from subprocess import run
from setuptools import Command, Extension, find_namespace_packages, setup
from setuptools import Command, Extension, setup
from setuptools.command.bdist_wheel import bdist_wheel
from setuptools.command.build_ext import build_ext
@@ -166,10 +166,6 @@ class GenerateStubs(Command):
# Run again without recursive to specify output file name
subprocess.run(["rm", f"{out_path}/mlx.pyi"])
subprocess.run(stub_cmd + ["-o", f"{out_path}/__init__.pyi"])
# mx.bool_ gets filtered by nanobind because of the trailing
# underscore, add it manually:
with open(f"{out_path}/__init__.pyi", "a") as fid:
fid.write("\nbool_: Dtype = ...")
class MLXBdistWheel(bdist_wheel):
@@ -188,23 +184,19 @@ with open(Path(__file__).parent / "README.md", encoding="utf-8") as f:
if __name__ == "__main__":
package_dir = {"": "python"}
packages = find_namespace_packages(
where="python",
exclude=[
"src",
"tests",
"scripts",
"mlx.lib",
"mlx.include",
"mlx.share",
"mlx.share.**",
"mlx.include.**",
],
)
packages = [
"mlx",
"mlx.nn",
"mlx.nn.layers",
"mlx.optimizers",
]
build_macos = platform.system() == "Darwin"
build_cuda = "MLX_BUILD_CUDA=ON" in os.environ.get("CMAKE_ARGS", "")
install_requires = []
if build_cuda:
install_requires = ["nvidia-cublas-cu12", "nvidia-cuda-nvrtc-cu12"]
version = get_version()
_setup = partial(
@@ -229,7 +221,7 @@ if __name__ == "__main__":
},
)
package_data = {"mlx.core": ["*.pyi"]}
package_data = {"mlx": ["lib/*", "include/*", "share/*"], "mlx.core": ["*.pyi"]}
extras = {
"dev": [
@@ -247,7 +239,6 @@ if __name__ == "__main__":
"mlx.distributed_config = mlx.distributed_run:distributed_config",
]
}
install_requires = []
# Release builds for PyPi are in two stages.
# Each stage should be run from a clean build:
@@ -267,11 +258,11 @@ if __name__ == "__main__":
# - Package name is back-end specific, e.g mlx-metal
if build_stage != 2:
if build_stage == 1:
install_requires.append(
f'mlx-metal=={version}; platform_system == "Darwin"'
)
extras["cuda"] = [f'mlx-cuda=={version}; platform_system == "Linux"']
extras["cpu"] = [f'mlx-cpu=={version}; platform_system == "Linux"']
if build_macos:
install_requires += [f"mlx-metal=={version}"]
else:
extras["cuda"] = [f"mlx-cuda=={version}"]
extras["cpu"] = [f"mlx-cpu=={version}"]
_setup(
name="mlx",
@@ -286,14 +277,9 @@ if __name__ == "__main__":
name = "mlx-metal"
elif build_cuda:
name = "mlx-cuda"
install_requires += [
"nvidia-cublas-cu12==12.9.*",
"nvidia-cuda-nvrtc-cu12==12.9.*",
]
else:
name = "mlx-cpu"
_setup(
name=name,
packages=["mlx"],
install_requires=install_requires,
)