mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
3 Commits
e89e8b4272
...
630350ad3e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
630350ad3e | ||
|
|
380aeb58ae | ||
|
|
f37389d100 |
@@ -131,10 +131,6 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Currently only supports float32.");
|
||||
}
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
|
||||
@@ -77,7 +77,8 @@ struct Real {
|
||||
struct Sigmoid {
|
||||
template <int N, typename T>
|
||||
Simd<T, N> operator()(Simd<T, N> x) {
|
||||
return 1.0f / (1.0f + simd::exp(-x));
|
||||
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
|
||||
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
|
||||
}
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
@@ -257,8 +257,8 @@ struct Round {
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
T y = 1 / (1 + exp(-abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
T y = 1 / (1 + exp(abs(x)));
|
||||
return (x < 0) ? y : 1 - y;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -309,8 +309,8 @@ struct Round {
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
T operator()(T x) {
|
||||
auto y = 1 / (1 + metal::exp(-metal::abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
auto y = 1 / (1 + metal::exp(metal::abs(x)));
|
||||
return (x < 0) ? y : 1 - y;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@
|
||||
|
||||
#define MLX_VERSION_MAJOR 0
|
||||
#define MLX_VERSION_MINOR 29
|
||||
#define MLX_VERSION_PATCH 2
|
||||
#define MLX_VERSION_PATCH 3
|
||||
#define MLX_VERSION_NUMERIC \
|
||||
(100000 * MLX_VERSION_MAJOR + 1000 * MLX_VERSION_MINOR + MLX_VERSION_PATCH)
|
||||
|
||||
|
||||
@@ -712,6 +712,15 @@ class TestBlas(mlx_tests.MLXTestCase):
|
||||
expected = beta * c + alpha * (a @ b)
|
||||
self.assertTrue(mx.allclose(expected, out))
|
||||
|
||||
# Test half precision
|
||||
for t, tol in [(mx.float16, 1e-3), (mx.bfloat16, 1e-2)]:
|
||||
c = mx.ones((32, 32)).astype(t)
|
||||
a = mx.random.uniform(shape=(32, 32)).astype(t)
|
||||
b = mx.random.uniform(shape=(32, 32)).astype(t)
|
||||
out = mx.addmm(c, a, b)
|
||||
expected = a @ b + c
|
||||
self.assertTrue(mx.allclose(out, expected, rtol=tol, atol=tol))
|
||||
|
||||
def test_addmm_grad(self):
|
||||
def make_ref_addmm(alpha, beta):
|
||||
return lambda c, a, b: alpha * (a @ b) + beta * c
|
||||
|
||||
@@ -1041,6 +1041,12 @@ class TestOps(mlx_tests.MLXTestCase):
|
||||
expected = 1 / (1 + np.exp(-a, dtype=np.float32))
|
||||
self.assertTrue(np.allclose(result, expected))
|
||||
|
||||
# Low precision
|
||||
a = mx.array(-8.0).astype(mx.float16)
|
||||
self.assertNotEqual(mx.sigmoid(a).item(), 0.0)
|
||||
a = mx.array(8.0).astype(mx.float16)
|
||||
self.assertNotEqual(mx.sigmoid(a).item(), 1.0)
|
||||
|
||||
def test_allclose(self):
|
||||
a = mx.array(1.0)
|
||||
b = mx.array(1.0)
|
||||
|
||||
Reference in New Issue
Block a user