mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
1 Commits
ec72b44417
...
jagrit06/c
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
400f8457ea |
@@ -18,17 +18,16 @@ jobs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "26.0.0"
|
||||
resource_class: m4pro.medium
|
||||
xcode: "16.2.0"
|
||||
resource_class: m2pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
brew install python@3.10
|
||||
brew install python@3.9
|
||||
brew install doxygen
|
||||
python3.10 -m venv env
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
@@ -90,8 +89,7 @@ jobs:
|
||||
command: |
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
@@ -120,7 +118,7 @@ jobs:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "26.0.0"
|
||||
default: "16.2.0"
|
||||
macosx_deployment_target:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -128,19 +126,18 @@ jobs:
|
||||
xcode: << parameters.xcode_version >>
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
resource_class: m4pro.medium
|
||||
resource_class: m2pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv --python 3.10
|
||||
uv venv --python 3.9
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
@@ -199,7 +196,7 @@ jobs:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e . -v
|
||||
uv pip install -e .
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
@@ -225,20 +222,15 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libnccl2 libnccl-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Set CCache size
|
||||
command: ccache --max-size 1G
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -246,23 +238,12 @@ jobs:
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=`which nvcc` \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j `nproc`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
@@ -273,10 +254,10 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.10"
|
||||
default: "3.9"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "26.0.0"
|
||||
default: "16.2.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -285,7 +266,7 @@ jobs:
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: m4pro.medium
|
||||
resource_class: m2pro.medium
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
steps:
|
||||
@@ -293,15 +274,11 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
mkdir -p ~/miniconda3
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
source ~/miniconda3/bin/activate
|
||||
conda init --all
|
||||
conda create -n env python=<< parameters.python_version >> -y
|
||||
conda activate env
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
@@ -311,29 +288,29 @@ jobs:
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
conda activate env
|
||||
source env/bin/activate
|
||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
conda activate env
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
conda activate env
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
conda activate env
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
||||
- when:
|
||||
@@ -342,7 +319,7 @@ jobs:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
conda activate env
|
||||
source env/bin/activate
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
@@ -351,7 +328,7 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.10"
|
||||
default: "3.9"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -387,7 +364,7 @@ jobs:
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
@@ -415,7 +392,7 @@ jobs:
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: xlarge
|
||||
resource_class: large
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
@@ -462,7 +439,7 @@ workflows:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
@@ -484,10 +461,71 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
xcode_version: ["26.0.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
@@ -503,7 +541,7 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
@@ -529,7 +567,7 @@ workflows:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
@@ -546,13 +584,59 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
xcode_version: ["26.0.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
@@ -564,14 +648,75 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["26.0.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
|
||||
@@ -19,17 +19,12 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Organizations
|
||||
|
||||
MLX has received contributions from the following companies:
|
||||
- NVIDIA Corporation & Affiliates
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
MLX leverages several third-party software, listed here together with
|
||||
|
||||
@@ -26,7 +26,6 @@ set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# ----------------------------- Configuration -----------------------------
|
||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||
@@ -88,26 +87,22 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
if(METAL_LIB)
|
||||
message(STATUS "Metal found ${METAL_LIB}")
|
||||
else()
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
||||
endif()
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
@@ -116,8 +111,7 @@ if(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
@@ -146,12 +140,6 @@ if(MLX_BUILD_METAL)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
||||
# building on old distributions they need to be explicitly listed.
|
||||
target_link_libraries(mlx PRIVATE dl pthread)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
if(MSVC)
|
||||
# GGUF does not build with MSVC.
|
||||
@@ -179,7 +167,7 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
else()
|
||||
message(STATUS "Accelerate not found, using default backend.")
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
|
||||
38
README.md
38
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
|
||||
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
|
||||
[**Examples**](#examples)
|
||||
[**Examples**](#examples)
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
|
||||
MLX is designed by machine learning researchers for machine learning
|
||||
researchers. The framework is intended to be user-friendly, but still efficient
|
||||
to train and deploy models. The design of the framework itself is also
|
||||
conceptually simple. We intend to make it easy for researchers to extend and
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
|
||||
The design of MLX is inspired by frameworks like
|
||||
[NumPy](https://numpy.org/doc/stable/index.html),
|
||||
@@ -91,7 +91,7 @@ Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
||||
MLX useful in your research and wish to cite it, please use the following
|
||||
BibTex entry:
|
||||
|
||||
```text
|
||||
```
|
||||
@software{mlx2023,
|
||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||
|
||||
@@ -142,7 +142,9 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||
|
||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
||||
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||
np.float32
|
||||
)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
@@ -161,7 +163,7 @@ def get_gflop_count(B, M, N, K):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
dtypes = ("float32", "float16", "complex64")
|
||||
dtypes = ("float32", "float16")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
@@ -185,7 +187,7 @@ if __name__ == "__main__":
|
||||
diff = gflops_mx / gflops_pt - 1.0
|
||||
|
||||
print(
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if gflops_pt >= 2.0 * gflops_mx:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
||||
@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
|
||||
|
||||
for transpose in (False, True):
|
||||
for dtype in ("float32", "float16", "complex64"):
|
||||
for dtype in ("float32", "float16"):
|
||||
fig, axs = plt.subplots(
|
||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||
)
|
||||
@@ -215,7 +215,7 @@ for transpose in (False, True):
|
||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||
fig.savefig(
|
||||
os.path.join(
|
||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
||||
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||
)
|
||||
)
|
||||
plt.close(fig)
|
||||
|
||||
@@ -1,54 +0,0 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
||||
@@ -127,8 +127,7 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source,
|
||||
ensure_row_contiguous=False,
|
||||
source=source
|
||||
)
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
@@ -139,6 +138,7 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
|
||||
@@ -70,7 +70,6 @@ are the CPU and GPU.
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/cuda
|
||||
python/memory_management
|
||||
python/nn
|
||||
python/optimizers
|
||||
|
||||
@@ -16,7 +16,7 @@ silicon computer is
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.10
|
||||
- Using a native Python >= 3.9
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
@@ -39,7 +39,7 @@ requirements:
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.10
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
@@ -55,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.10
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
Troubleshooting
|
||||
@@ -271,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
|
||||
@@ -1,9 +0,0 @@
|
||||
CUDA
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.cuda
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
@@ -13,4 +13,3 @@ Fast
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
metal_kernel
|
||||
cuda_kernel
|
||||
|
||||
@@ -27,7 +27,6 @@ simple functions.
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu2
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
|
||||
@@ -50,7 +50,6 @@ Layers
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU2
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
|
||||
@@ -112,7 +112,6 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
median
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
|
||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(gelu, x)
|
||||
timeit(mx.compile(gelu), x)
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z)
|
||||
return mx.exp(z), state
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
|
||||
@@ -184,7 +184,7 @@ almost identical to the example above:
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
||||
grads = mlx.nn.average_gradients(grads) # <---- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
|
||||
@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array([-1.0]))
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
@@ -107,20 +107,8 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
|
||||
@@ -241,8 +241,8 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
primitive(std::move(primitive)),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
|
||||
@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
if (a.ndim() == 2) {
|
||||
return {Shape{1}, Strides{0}, Strides{0}};
|
||||
return {{1}, {0}, {0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
if (a.ndim() == 2) {
|
||||
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
|
||||
@@ -11,8 +11,6 @@ namespace mlx::core {
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
VectorVectorVector,
|
||||
VectorVectorScalar,
|
||||
VectorScalarVector,
|
||||
General,
|
||||
};
|
||||
|
||||
@@ -27,14 +25,6 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
||||
c.flags().col_contiguous)) {
|
||||
topt = TernaryOpType::VectorVectorVector;
|
||||
} else if (
|
||||
b.data_size() == 1 && a.flags().row_contiguous &&
|
||||
c.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorScalarVector;
|
||||
} else if (
|
||||
c.data_size() == 1 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorVectorScalar;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
@@ -69,8 +59,6 @@ inline void set_ternary_op_output_data(
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case TernaryOpType::VectorVectorScalar:
|
||||
case TernaryOpType::VectorScalarVector:
|
||||
case TernaryOpType::General:
|
||||
// Try to donate an input which is row_contiguous
|
||||
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
||||
|
||||
@@ -228,4 +228,31 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
||||
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -196,6 +196,9 @@ void shared_buffer_reshape(
|
||||
const Strides& out_strides,
|
||||
array& out);
|
||||
|
||||
// Like the swapaxes op but safe to call in eval_gpu.
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
template <typename T>
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
|
||||
@@ -15,7 +15,6 @@
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/version.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -95,11 +94,7 @@ void* compile(
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
auto output_dir =
|
||||
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
|
||||
if (!std::filesystem::exists(output_dir)) {
|
||||
std::filesystem::create_directories(output_dir);
|
||||
}
|
||||
auto output_dir = std::filesystem::temp_directory_path();
|
||||
|
||||
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
|
||||
auto shared_lib_path = (output_dir / shared_lib_name).string();
|
||||
@@ -162,12 +157,10 @@ inline void build_kernel(
|
||||
#endif
|
||||
|
||||
// Start the kernel
|
||||
os << "void " << kernel_name
|
||||
<< "(int* shape, int64_t** strides, void** args) {" << std::endl;
|
||||
os << "void " << kernel_name << "(void** args) {" << std::endl;
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
@@ -182,8 +175,8 @@ inline void build_kernel(
|
||||
<< "];" << std::endl;
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
os << " const int64_t* " << xname << "_strides = strides["
|
||||
<< strides_index++ << "];" << std::endl;
|
||||
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -193,8 +186,10 @@ inline void build_kernel(
|
||||
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
|
||||
<< "*)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
// Add output size
|
||||
if (contiguous) {
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
|
||||
} else {
|
||||
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
|
||||
@@ -293,8 +288,17 @@ void Compiled::eval_cpu(
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Force allocating shape/strides on heap so we can take their data() first
|
||||
// and then std::move them.
|
||||
// TODO: Refactor code to avoid heap allocation.
|
||||
shape.grow();
|
||||
for (auto& s : strides) {
|
||||
s.grow();
|
||||
}
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
@@ -302,6 +306,9 @@ void Compiled::eval_cpu(
|
||||
const auto& x = inputs[i];
|
||||
encoder.set_input_array(x);
|
||||
args.push_back((void*)x.data<void>());
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.push_back(strides[strides_index++].data());
|
||||
}
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
@@ -336,20 +343,16 @@ void Compiled::eval_cpu(
|
||||
args.push_back(x.data<void>());
|
||||
encoder.set_output_array(x);
|
||||
}
|
||||
if (contiguous) {
|
||||
if (!contiguous) {
|
||||
args.push_back((void*)shape.data());
|
||||
} else {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = reinterpret_cast<void (*)(int*, int64_t**, void**)>(fn_ptr);
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
encoder.dispatch([fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
shape = std::move(shape)]() mutable {
|
||||
SmallVector<int64_t*> strides_ptrs;
|
||||
for (auto& s : strides) {
|
||||
strides_ptrs.push_back(s.data());
|
||||
}
|
||||
fun(shape.data(), strides_ptrs.data(), args.data());
|
||||
});
|
||||
shape = std::move(shape)]() mutable { fun(args.data()); });
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -996,6 +996,131 @@ void explicit_gemm_conv_1D_cpu(
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_2D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iW = in.shape(2); // Input spatial dim
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(3); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
const int wW = wt.shape(2); // Weight spatial dim
|
||||
|
||||
auto conv_dtype = out.dtype();
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
// Pad input
|
||||
Shape padded_shape = {
|
||||
N,
|
||||
iH + padding_lo[0] + padding_hi[0],
|
||||
iW + padding_lo[1] + padding_hi[1],
|
||||
C};
|
||||
array in_padded(padded_shape, conv_dtype, nullptr, {});
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
padding_lo[1] * in_padded.strides()[2];
|
||||
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
|
||||
in_padded_slice.copy_shared_buffer(
|
||||
in_padded,
|
||||
in_padded.strides(),
|
||||
in_padded.flags(),
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[2] * wt_strides[1],
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2],
|
||||
in_padded.strides()[3]};
|
||||
auto flags = in_padded.flags();
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
|
||||
temps.push_back(gemm_out);
|
||||
}
|
||||
|
||||
encoder.set_input_array(in_strided);
|
||||
encoder.set_input_array(gemm_wt);
|
||||
encoder.set_output_array(gemm_out);
|
||||
|
||||
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
|
||||
gemm_wt_ptr = gemm_wt.data<float>(),
|
||||
gemm_out_ptr = gemm_out.data<float>(),
|
||||
strided_reshape = std::move(strided_reshape),
|
||||
O]() {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided_ptr,
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt_ptr,
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out_ptr,
|
||||
O // ldc
|
||||
);
|
||||
});
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_ND_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
|
||||
@@ -46,6 +46,7 @@ void eig_impl(
|
||||
int info;
|
||||
{
|
||||
T work;
|
||||
int iwork;
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -48,15 +49,9 @@ void matmul_bnns(
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
if (beta != 1.0 && beta != 0.0) {
|
||||
// scale the output
|
||||
for (auto i = 0; i < batch_size * M * N; ++i) {
|
||||
out[i] *= beta;
|
||||
}
|
||||
beta = 1.0;
|
||||
}
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
|
||||
@@ -88,47 +88,4 @@ void matmul<double>(
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void matmul<complex64_t>(
|
||||
const complex64_t* a,
|
||||
const complex64_t* b,
|
||||
complex64_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
auto calpha = static_cast<complex64_t>(alpha);
|
||||
auto cbeta = static_cast<complex64_t>(beta);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_cgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
&calpha,
|
||||
a + elem_to_loc(M * K * i, a_shape, a_strides),
|
||||
lda,
|
||||
b + elem_to_loc(K * N * i, b_shape, b_strides),
|
||||
ldb,
|
||||
&cbeta,
|
||||
out + M * N * i,
|
||||
ldc);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -47,7 +47,7 @@ INSTANTIATE_LAPACK_REAL(orgqr)
|
||||
INSTANTIATE_LAPACK_REAL(syevd)
|
||||
INSTANTIATE_LAPACK_REAL(geev)
|
||||
INSTANTIATE_LAPACK_REAL(potrf)
|
||||
INSTANTIATE_LAPACK_REAL(gesdd)
|
||||
INSTANTIATE_LAPACK_REAL(gesvdx)
|
||||
INSTANTIATE_LAPACK_REAL(getrf)
|
||||
INSTANTIATE_LAPACK_REAL(getri)
|
||||
INSTANTIATE_LAPACK_REAL(trtri)
|
||||
|
||||
@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
const void* a_mask_ptr = nullptr;
|
||||
const void* b_mask_ptr = nullptr;
|
||||
const void* out_mask_ptr = nullptr;
|
||||
const void* a_mask_ptr;
|
||||
const void* b_mask_ptr;
|
||||
const void* out_mask_ptr;
|
||||
Shape a_mask_shape;
|
||||
Shape b_mask_shape;
|
||||
Shape out_mask_shape;
|
||||
Strides a_mask_strides;
|
||||
Strides b_mask_strides;
|
||||
Strides out_mask_strides;
|
||||
bool a_mask_bool = false;
|
||||
bool b_mask_bool = false;
|
||||
bool out_mask_bool = false;
|
||||
bool a_mask_bool;
|
||||
bool b_mask_bool;
|
||||
bool out_mask_bool;
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[inputs.size() - 2];
|
||||
auto& b_mask = inputs[inputs.size() - 1];
|
||||
@@ -423,6 +423,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
auto batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
auto batch_shape_A = get_batch_dims(a.shape());
|
||||
auto batch_strides_A = get_batch_dims(a.strides());
|
||||
|
||||
@@ -91,6 +91,7 @@ void matmul_general(
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -107,9 +108,6 @@ void matmul_general(
|
||||
} else if (out.dtype() == float64) {
|
||||
matmul_dispatch<double>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else if (out.dtype() == complex64) {
|
||||
matmul_dispatch<complex64_t>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else {
|
||||
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
|
||||
}
|
||||
@@ -130,6 +128,10 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Currently only supports float32.");
|
||||
}
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
|
||||
@@ -1,11 +1,10 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
#include "mlx/backend/cpu/unary.h"
|
||||
#include "mlx/backend/cpu/unary_ops.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
@@ -14,35 +13,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
const static float MXFP4_LUT[16] = {
|
||||
+0.0f,
|
||||
+0.5f,
|
||||
+1.0f,
|
||||
+1.5f,
|
||||
+2.0f,
|
||||
+3.0f,
|
||||
+4.0f,
|
||||
+6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
template <typename T>
|
||||
static inline T dequantize_scale(uint8_t s) {
|
||||
using FOrI = union {
|
||||
bfloat16_t f;
|
||||
uint16_t i;
|
||||
};
|
||||
FOrI out;
|
||||
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
|
||||
return static_cast<T>(out.f);
|
||||
}
|
||||
|
||||
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
@@ -437,229 +407,6 @@ void _qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
std::fill(result, result + N, 0);
|
||||
|
||||
for (int k = 0; k < K; k++) {
|
||||
T* result_local = result;
|
||||
T xi = *x++;
|
||||
|
||||
for (int n = 0; n < N; n += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result += N;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const T* x_local = x;
|
||||
T sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
T gsum = 0;
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
sum += scale * gsum;
|
||||
}
|
||||
*result = sum;
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <int S>
|
||||
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
|
||||
if constexpr (S == 8) {
|
||||
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
|
||||
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
|
||||
auto wi = simd::Simd<uint32_t, S>(*w);
|
||||
wi = wi >> shifts;
|
||||
wi = wi & 0xf;
|
||||
simd::Simd<float, S> w_out;
|
||||
for (int i = 0; i < S; ++i) {
|
||||
w_out[i] = MXFP4_LUT[wi[i]];
|
||||
}
|
||||
return w_out;
|
||||
} else {
|
||||
// Appease compiler.. but should never get here
|
||||
throw std::runtime_error("Unsupported combination for simd qmm.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t_simd(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = 32 / 4;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
constexpr int S = simd::max_size<T>;
|
||||
static_assert(
|
||||
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
|
||||
constexpr int packs_per_simd = S / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
simd::Simd<float, S> acc(0);
|
||||
auto x_local = x;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
simd::Simd<float, S> g_acc(0);
|
||||
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
|
||||
// Extract bits
|
||||
auto wf = mxfp4_extract_bits_simd<S>(w_local);
|
||||
w_local += packs_per_simd;
|
||||
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
|
||||
g_acc = g_acc + x_simd * wf;
|
||||
x_local += S;
|
||||
}
|
||||
acc = acc + scale * g_acc;
|
||||
}
|
||||
|
||||
*result = T(simd::sum(acc));
|
||||
result++;
|
||||
}
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
// the simd size must be a multiple of the number of elements per word
|
||||
if constexpr (simd::max_size<T> % 8 == 0) {
|
||||
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
|
||||
} else {
|
||||
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
} else {
|
||||
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.ndim() > 1 ? x.shape(-2) : 1;
|
||||
int N = out.shape(-1);
|
||||
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
|
||||
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
|
||||
int batch_size = x.size() / (K * M);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
|
||||
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case bfloat16:
|
||||
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float32:
|
||||
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
@@ -766,198 +513,115 @@ void _bs_qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.shape(-1) * w.shape(-2);
|
||||
int g_els = scales.shape(-1) * scales.shape(-2);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < lhs_indices.size(); i++) {
|
||||
int x_idx = lhs_indices_ptr[elem_to_loc(
|
||||
i, lhs_indices.shape(), lhs_indices.strides())];
|
||||
int w_idx = rhs_indices_ptr[elem_to_loc(
|
||||
i, rhs_indices.shape(), rhs_indices.strides())];
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
|
||||
scales_ptr +
|
||||
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_bs_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
mxfp4_bs_qmm_dispatch_typed<float>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_bs_qmm_dispatch_typed<float16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous(x_pre);
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_output_array(out);
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
|
||||
});
|
||||
}
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
}
|
||||
|
||||
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 6);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& lhs_indices = inputs[inputs.size() - 2];
|
||||
auto& rhs_indices = inputs[inputs.size() - 1];
|
||||
auto& biases_pre = inputs[3];
|
||||
auto& lhs_indices = inputs[4];
|
||||
auto& rhs_indices = inputs[5];
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous_last_dims = [s = stream(),
|
||||
&encoder](const array& arr) {
|
||||
&temps](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous_last_dims(x_pre);
|
||||
auto w = ensure_row_contiguous_last_dims(w_pre);
|
||||
auto scales = ensure_row_contiguous_last_dims(scales_pre);
|
||||
auto biases = ensure_row_contiguous_last_dims(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_input_array(lhs_indices);
|
||||
encoder.set_input_array(rhs_indices);
|
||||
encoder.set_output_array(out);
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_bs_qmm_dispatch(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
|
||||
});
|
||||
}
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
@@ -1041,7 +705,7 @@ void dispatch_quantize(
|
||||
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
|
||||
}
|
||||
|
||||
void fast::Quantize::eval_cpu(
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [s = stream()](const array& arr) {
|
||||
@@ -1100,47 +764,7 @@ void fast::Quantize::eval_cpu(
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void fast::ConvertFP8::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& in = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
set_unary_output_data(in, out);
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([in = array::unsafe_weak_copy(in),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
to_fp8 = to_fp8_]() mutable {
|
||||
if (to_fp8) {
|
||||
switch (in.dtype()) {
|
||||
case float16:
|
||||
unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<float, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<uint8_t, float>(in, out, detail::FromFP8());
|
||||
break;
|
||||
}
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
@@ -10,7 +9,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/simd/base_simd.h"
|
||||
|
||||
// There seems to be a bug in simd/base_simd.h
|
||||
// There seems to be a bug in sims/base.h
|
||||
// __XROS_2_0 is not defined, the expression evaluates
|
||||
// to true instead of false setting the SIMD library
|
||||
// higher than it should be even on macOS < 15
|
||||
@@ -201,15 +200,6 @@ SIMD_DEFAULT_COMPARISONS(<=)
|
||||
SIMD_DEFAULT_COMPARISONS(==)
|
||||
SIMD_DEFAULT_COMPARISONS(!=)
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> clz(Simd<T, N> x) {
|
||||
auto a = *(uint32x4_t*)(&x);
|
||||
auto b = *((uint32x4_t*)(&x) + 1);
|
||||
a = vclzq_u32(a);
|
||||
b = vclzq_u32(b);
|
||||
return asd::make_uint8(a, b);
|
||||
}
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
|
||||
return asd::atan2(a.value, b.value);
|
||||
@@ -244,7 +234,6 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
|
||||
|
||||
template <typename MaskT, typename T1, typename T2, int N>
|
||||
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
|
||||
static_assert(std::is_same_v<MaskT, bool>);
|
||||
if constexpr (sizeof(T1) == 1) {
|
||||
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
|
||||
} else if constexpr (sizeof(T1) == 2) {
|
||||
@@ -262,13 +251,9 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
|
||||
return asd::pow(base.value, exp.value);
|
||||
} else {
|
||||
Simd<T, N> res = 1;
|
||||
// Raising an integer to a negative power is undefined
|
||||
if (any(exp < 0)) {
|
||||
return 0;
|
||||
}
|
||||
while (any(exp > 0)) {
|
||||
res = select((exp & 1) != 0, res * base, res);
|
||||
base = select(exp > 0, base * base, base);
|
||||
while (any(exp)) {
|
||||
res = select(exp & 1, res * base, res);
|
||||
base = select(exp, base * base, base);
|
||||
exp = exp >> 1;
|
||||
}
|
||||
return res;
|
||||
|
||||
@@ -171,11 +171,6 @@ DEFAULT_BINARY(&)
|
||||
DEFAULT_BINARY(&&)
|
||||
DEFAULT_BINARY(||)
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> clz(Simd<T, 1> x_) {
|
||||
return __builtin_clz(x_.value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> remainder(Simd<T, 1> a_, Simd<T, 1> b_) {
|
||||
T a = a_.value;
|
||||
|
||||
@@ -15,18 +15,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// NaN-aware comparator that places NaNs at the end
|
||||
template <typename T>
|
||||
bool nan_aware_less(T a, T b) {
|
||||
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
|
||||
if (std::isnan(a))
|
||||
return false;
|
||||
if (std::isnan(b))
|
||||
return true;
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -39,7 +27,7 @@ struct StridedIterator {
|
||||
StridedIterator() = default;
|
||||
|
||||
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
|
||||
: stride_(stride), ptr_(ptr + offset * stride) {}
|
||||
: ptr_(ptr + offset * stride), stride_(stride) {}
|
||||
|
||||
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
|
||||
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
|
||||
@@ -142,7 +130,7 @@ void sort(array& out, int axis) {
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed, nan_aware_less<T>);
|
||||
std::stable_sort(st, ed);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
@@ -196,15 +184,6 @@ void argsort(const array& in, array& out, int axis) {
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -240,7 +219,7 @@ void partition(array& out, int axis, int kth) {
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed, nan_aware_less<T>);
|
||||
std::nth_element(st, md, ed);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -297,15 +276,6 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -81,26 +81,40 @@ void svd_impl(
|
||||
// Vᵀ of shape N x N. (M x M in lapack).
|
||||
const int ldvt = M;
|
||||
|
||||
auto jobz = (u_ptr) ? "A" : "N";
|
||||
auto job_u = (u_ptr) ? "V" : "N";
|
||||
auto job_vt = (u_ptr) ? "V" : "N";
|
||||
static constexpr auto range = "A";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
T workspace_dimension = 0;
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not
|
||||
// used here but required by lapack).
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 8 * K)};
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 12 * K)};
|
||||
|
||||
static const int lwork_query = -1;
|
||||
|
||||
static const int ignored_int = 0;
|
||||
static const T ignored_float = 0;
|
||||
|
||||
int info;
|
||||
|
||||
// Compute workspace size.
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ nullptr,
|
||||
/* u = */ nullptr,
|
||||
/* ldu = */ &ldu,
|
||||
@@ -122,13 +136,20 @@ void svd_impl(
|
||||
|
||||
// Loop over matrices.
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ in_ptr + M * N * i,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ s_ptr + K * i,
|
||||
// According to the identity above, lapack will write Vᵀᵀ as U.
|
||||
/* u = */ vt_ptr ? vt_ptr + N * N * i : nullptr,
|
||||
@@ -146,6 +167,13 @@ void svd_impl(
|
||||
ss << "svd_impl: sgesvdx_ failed with code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
if (ns != K) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: expected " << K << " singular values, but " << ns
|
||||
<< " were computed.";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
});
|
||||
encoder.add_temporary(in);
|
||||
|
||||
@@ -24,9 +24,9 @@ void unary_op(const array& a, array& out, Op) {
|
||||
auto ndim = a.ndim();
|
||||
if (a.flags().contiguous) {
|
||||
auto size = a.data_size();
|
||||
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
|
||||
constexpr int N = simd::max_size<T>;
|
||||
while (size >= N) {
|
||||
simd::store(dst, simd::Simd<U, N>(Op{}(simd::load<T, N>(src))));
|
||||
simd::store(dst, Op{}(simd::load<T, N>(src)));
|
||||
size -= N;
|
||||
src += N;
|
||||
dst += N;
|
||||
|
||||
@@ -77,8 +77,7 @@ struct Real {
|
||||
struct Sigmoid {
|
||||
template <int N, typename T>
|
||||
Simd<T, N> operator()(Simd<T, N> x) {
|
||||
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
|
||||
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
|
||||
return 1.0f / (1.0f + simd::exp(-x));
|
||||
}
|
||||
SINGLE()
|
||||
};
|
||||
@@ -108,73 +107,4 @@ struct Square {
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
template <int N>
|
||||
Simd<float, N> fp32_from_bits(Simd<uint32_t, N> x) {
|
||||
return *(Simd<float, N>*)(&x);
|
||||
}
|
||||
template <int N>
|
||||
Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
|
||||
return *(Simd<uint32_t, N>*)(&x);
|
||||
}
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T, int N>
|
||||
Simd<uint8_t, N> operator()(Simd<T, N> f) {
|
||||
uint32_t fp8_max = 543 << 21;
|
||||
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
|
||||
Simd<uint32_t, N> f_bits;
|
||||
Simd<float, N> f32 = f;
|
||||
f_bits = fp32_to_bits(f32);
|
||||
Simd<uint8_t, N> result = 0u;
|
||||
auto sign = f_bits & 0x80000000;
|
||||
f_bits = f_bits ^ sign;
|
||||
|
||||
auto f_bits_low =
|
||||
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
|
||||
auto result_low = Simd<uint8_t, N>(f_bits_low - denorm_mask);
|
||||
|
||||
auto mant_odd = Simd<uint8_t, N>((f_bits >> 20) & 1);
|
||||
auto f_bits_high = f_bits + (((uint32_t)(7 - 127) << 23) + 0x7FFFF);
|
||||
f_bits_high = f_bits_high + Simd<uint32_t, N>(mant_odd);
|
||||
|
||||
auto result_high = Simd<uint8_t, N>(f_bits_high >> 20);
|
||||
result = select(f_bits < (121 << 23), result_low, result_high);
|
||||
|
||||
auto result_sat = Simd<uint8_t, N>(0x7E);
|
||||
result = select(f_bits >= fp8_max, result_sat, result);
|
||||
return result | Simd<uint8_t, N>(sign >> 24);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
uint8_t operator()(T x) {
|
||||
return (*this)(Simd<T, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
template <int N>
|
||||
Simd<float, N> operator()(Simd<uint8_t, N> x) {
|
||||
auto w = Simd<uint32_t, N>(x) << 24;
|
||||
auto sign = w & 0x80000000;
|
||||
auto nonsign = w & 0x7FFFFFFF;
|
||||
|
||||
auto renorm_shift = clz(nonsign);
|
||||
renorm_shift = simd::select(
|
||||
renorm_shift > Simd<uint32_t, N>{4},
|
||||
renorm_shift - Simd<uint32_t, N>{4},
|
||||
Simd<uint32_t, N>{0});
|
||||
|
||||
Simd<int32_t, N> inf_nan_mask =
|
||||
(Simd<int32_t, N>(nonsign + 0x01000000) >> 8) & 0x7F800000;
|
||||
auto zero_mask = Simd<int32_t, N>(nonsign - 1) >> 31;
|
||||
auto result = sign |
|
||||
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
|
||||
inf_nan_mask) &
|
||||
~zero_mask);
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
float operator()(uint8_t x) {
|
||||
return (*this)(Simd<uint8_t, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
} // namespace mlx::core::detail
|
||||
|
||||
@@ -8,6 +8,7 @@ target_sources(
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||
@@ -16,18 +17,14 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_grouped_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
@@ -49,21 +46,12 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
# fp4 is not available on < 12.8
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
|
||||
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
|
||||
endif()
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
@@ -161,7 +149,7 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.14.0
|
||||
GIT_TAG v1.12.1
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
@@ -177,6 +165,7 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
@@ -30,20 +30,8 @@ SmallSizePool::SmallSizePool() {
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
|
||||
int device_count = 0;
|
||||
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
|
||||
for (int i = 0; i < device_count; ++i) {
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = i;
|
||||
#else
|
||||
int loc = i;
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
|
||||
}
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
@@ -91,7 +79,7 @@ CudaAllocator::CudaAllocator()
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.95;
|
||||
memory_limit_ = total * 0.8;
|
||||
max_pool_size_ = memory_limit_;
|
||||
}
|
||||
|
||||
|
||||
@@ -6,33 +6,23 @@
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
|
||||
template <typename T, typename IdxT, int N_WRITES>
|
||||
__global__ void arange(T* out, IdxT size, T start, T step) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_WRITES > size) {
|
||||
for (IdxT i = index * N_WRITES; i < size; ++i) {
|
||||
out[i] = start + i * step;
|
||||
}
|
||||
} else {
|
||||
AlignedVector<T, N_WRITES> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_WRITES; ++i) {
|
||||
out_vec[i] = start + (index * N_WRITES + i) * step;
|
||||
}
|
||||
|
||||
store_vector<N_WRITES>(out, index, out_vec);
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -46,23 +36,19 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_WRITES = 16 / sizeof(OutType);
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
|
||||
encoder.add_kernel_node(
|
||||
cu::arange<OutType, IdxT, N_WRITES>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
static_cast<CTYPE>(start_),
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
|
||||
});
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@@ -99,89 +99,39 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -259,61 +209,39 @@ void binary_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::binary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
rest,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
@@ -376,4 +304,54 @@ void binary_op_gpu(
|
||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,21 +0,0 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/add.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan2.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_binary.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/divide.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_and.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_or.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log_add_exp.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/minimum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/maximum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/multiply.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/power.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/remainder.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/not_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/subtract.cu)
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Add)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(ArcTan2)
|
||||
} // namespace mlx::core
|
||||
@@ -1,27 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Divide)
|
||||
} // namespace mlx::core
|
||||
@@ -1,15 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Greater)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(GreaterEqual)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Less)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LessEqual)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogAddExp)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalAnd)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalOr)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Maximum)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Minimum)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Multiply)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(NotEqual)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Power)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Remainder)
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Subtract)
|
||||
} // namespace mlx::core
|
||||
@@ -127,99 +127,45 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void binary_two_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_two_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -279,64 +225,42 @@ void binary_two_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out_a.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
rest,
|
||||
out_a.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::binary_two_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
rest,
|
||||
out_a.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
|
||||
@@ -267,8 +267,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_tuple(
|
||||
false, std::move(builder.os), std::move(kernel_names));
|
||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||
});
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
@@ -332,9 +331,9 @@ void Compiled::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
|
||||
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
|
||||
@@ -1,12 +1,18 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
@@ -15,6 +21,9 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Not all engines support it so can not use this API now.
|
||||
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
|
||||
|
||||
// Alias for better readability.
|
||||
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
|
||||
#define CONV_BACKWARD_INPUT \
|
||||
@@ -22,9 +31,6 @@ namespace {
|
||||
#define CONV_BACKWARD_WEIGHT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
|
||||
|
||||
// Custom placeholder representing fallback kernel.
|
||||
#define CONV_FALLBACK static_cast<cudnnBackendDescriptorType_t>(-1)
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnDataType_t cudnn_dtype;
|
||||
@@ -44,13 +50,203 @@ struct ConvCacheKey {
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<
|
||||
ConvCacheKey,
|
||||
std::pair<
|
||||
cudnnBackendDescriptorType_t,
|
||||
std::optional<cudnn_frontend::ExecutionPlan>>>
|
||||
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
|
||||
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
|
||||
cache(/* capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
auto nhwc_to_nchw(const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
auto strides = convert_vector<int64_t>(x.strides());
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigList get_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = false) {
|
||||
cudnn_frontend::GeneratorSource source;
|
||||
if (use_fallback) {
|
||||
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
};
|
||||
} else {
|
||||
source = [](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
};
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigGenerator generator(1, &source);
|
||||
auto configs = generator.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
bool execute_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
|
||||
|
||||
int64_t uids[3] = {'x', 'w', 'y'};
|
||||
void* data_ptrs[3] = {
|
||||
x.data<void>(),
|
||||
w.data<void>(),
|
||||
y.data<void>(),
|
||||
};
|
||||
|
||||
auto variantPack = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(3, data_ptrs)
|
||||
.setUids(3, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
|
||||
cudaGraph_t graph;
|
||||
cudaGraphCreate(&graph, 0);
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
|
||||
if (cudnnBackendPopulateCudaGraph(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
#else
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool try_engines(
|
||||
cu::CommandEncoder& encoder,
|
||||
const ConvCacheKey& cache_key,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
cudnn_frontend::EngineConfigList& configs,
|
||||
const std::string& op_graph_tag,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
for (auto& config : configs) {
|
||||
try {
|
||||
auto plan = cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
if (execute_plan(encoder, plan, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(plan)));
|
||||
return true;
|
||||
}
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
auto get_conv_op_settings(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& x,
|
||||
@@ -95,7 +291,7 @@ auto get_conv_op_settings(
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
|
||||
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
@@ -121,9 +317,9 @@ std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_cudnn_tensor_nchw('x', x))
|
||||
.setwDesc(build_cudnn_tensor_nchw('w', w))
|
||||
.setyDesc(build_cudnn_tensor_nchw('y', y))
|
||||
.setxDesc(build_tensor('x', x))
|
||||
.setwDesc(build_tensor('w', w))
|
||||
.setyDesc(build_tensor('y', y))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
@@ -140,42 +336,6 @@ std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
|
||||
array group_transpose(
|
||||
const array& x,
|
||||
int groups,
|
||||
int group_dim,
|
||||
int axis1,
|
||||
int axis2,
|
||||
Stream s) {
|
||||
if (groups == 1) {
|
||||
return swapaxes_in_eval(x, axis1, axis2);
|
||||
}
|
||||
int ndim = x.ndim();
|
||||
if (group_dim < 0) {
|
||||
group_dim += ndim;
|
||||
}
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
if (group_dim <= axis1) {
|
||||
axis1 += 1;
|
||||
}
|
||||
if (group_dim <= axis2) {
|
||||
axis2 += 1;
|
||||
}
|
||||
auto shape = x.shape();
|
||||
shape.insert(shape.begin() + group_dim, groups);
|
||||
shape[group_dim + 1] = shape[group_dim + 1] / groups;
|
||||
array x_trans = reshape_in_eval(x, std::move(shape), s);
|
||||
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
|
||||
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
|
||||
return x_trans;
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
@@ -185,14 +345,13 @@ std::tuple<array, array, array> prepare_args(
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
int groups,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = group_transpose(wt, groups, 0, 0, -1, s);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = group_transpose(in, groups, -1, 0, -1, s);
|
||||
in = swapaxes_in_eval(in, 0, -1);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
@@ -285,12 +444,12 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
dtype_to_cudnn_type(dtype),
|
||||
vector_key(in.shape()),
|
||||
vector_key(wt.shape()),
|
||||
vector_key(kernel_strides_),
|
||||
vector_key(padding_lo_),
|
||||
vector_key(padding_hi_),
|
||||
vector_key(kernel_dilation_),
|
||||
fixed_vector(in.shape()),
|
||||
fixed_vector(wt.shape()),
|
||||
fixed_vector(kernel_strides_),
|
||||
fixed_vector(padding_lo_),
|
||||
fixed_vector(padding_hi_),
|
||||
fixed_vector(kernel_dilation_),
|
||||
groups_,
|
||||
flip_,
|
||||
get_alignment(in),
|
||||
@@ -298,29 +457,11 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
if (plan) {
|
||||
// Run cached plan.
|
||||
std::tie(in, wt, out) =
|
||||
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
} else {
|
||||
// Run fallback kernel.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!execute_plan(encoder, plan, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
return;
|
||||
}
|
||||
@@ -349,7 +490,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
|
||||
prepare_args(encoder, try_backend, in, wt, out, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
@@ -361,7 +502,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
padding_hi_,
|
||||
kernel_dilation_,
|
||||
input_dilation_);
|
||||
op_graph = build_conv_op_graph(
|
||||
op_graph = build_op_graph(
|
||||
encoder,
|
||||
try_backend,
|
||||
dtype,
|
||||
@@ -380,38 +521,26 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (op_graph) {
|
||||
// Find a plan for the graph and execute it.
|
||||
auto plan = find_cudnn_plan_from_op_graph(
|
||||
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
|
||||
if (plan) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
if (!op_graph) {
|
||||
throw std::runtime_error("[conv] Can not build op graph.");
|
||||
}
|
||||
|
||||
// Use fallback kernel for settings not supported by cuDNN.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
conv_cache().emplace(cache_key, std::make_pair(CONV_FALLBACK, std::nullopt));
|
||||
// Get ready to execute the graph.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Try to run plans based on heuristics.
|
||||
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
auto tag = op_graph->getTag();
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
// Then try fallback plans.
|
||||
configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("[conv] Unable to find a working engine.");
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,126 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <int NDIM>
|
||||
struct ConvParams {
|
||||
int N; // Batch size
|
||||
int C; // In channels
|
||||
int O; // Out channels
|
||||
int strides[NDIM];
|
||||
int padding[NDIM];
|
||||
int kernel_dilation[NDIM];
|
||||
int input_dilation[NDIM];
|
||||
int groups;
|
||||
bool flip;
|
||||
int in_spatial_dims[NDIM];
|
||||
int wt_spatial_dims[NDIM];
|
||||
int out_spatial_dims[NDIM];
|
||||
int64_t in_strides[NDIM + 2];
|
||||
|
||||
ConvParams(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
const array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip)
|
||||
: N(in.shape(0)),
|
||||
C(in.shape(-1)),
|
||||
O(wt.shape(0)),
|
||||
groups(groups),
|
||||
flip(flip) {
|
||||
std::copy_n(strides.begin(), NDIM, this->strides);
|
||||
std::copy_n(padding.begin(), NDIM, this->padding);
|
||||
std::copy_n(kernel_dilation.begin(), NDIM, this->kernel_dilation);
|
||||
std::copy_n(input_dilation.begin(), NDIM, this->input_dilation);
|
||||
std::copy_n(in.shape().begin() + 1, NDIM, this->in_spatial_dims);
|
||||
std::copy_n(wt.shape().begin() + 1, NDIM, this->wt_spatial_dims);
|
||||
std::copy_n(out.shape().begin() + 1, NDIM, this->out_spatial_dims);
|
||||
std::copy_n(in.strides().begin(), NDIM + 2, this->in_strides);
|
||||
}
|
||||
};
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
inline void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
array in,
|
||||
array wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
if (groups == 1) {
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
flip,
|
||||
s);
|
||||
} else {
|
||||
gemm_grouped_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip,
|
||||
s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,217 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_unfold_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + index_wt_spatial * params.C + tid.y;
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array unfold_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = mat_K / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_unfold_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C * H_wt * W_wt
|
||||
int mat_N = params.O; // O
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded =
|
||||
unfold_inputs_nd<NDIM>(encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (C * H_wt * W_wt, O) for gemm.
|
||||
array wt_reshaped({mat_K, mat_N}, wt.dtype(), nullptr, {});
|
||||
wt_reshaped.copy_shared_buffer(
|
||||
wt,
|
||||
{1, mat_K},
|
||||
{false, false, /* col_contiguous */ true},
|
||||
wt.data_size());
|
||||
|
||||
// Single batch.
|
||||
Shape batch_shape{1};
|
||||
Strides a_batch_strides{0};
|
||||
Strides b_batch_strides{0};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
1, // groups
|
||||
flip);
|
||||
gemm_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,231 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_grouped_unfold_transpose_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + tid.y * (filter_size / params.C);
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
int wt_stride = 1;
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
out += index_wt * wt_stride;
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
wt_stride *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array grouped_unfold_transpose_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = (mat_K * params.groups) / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_grouped_unfold_transpose_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_grouped_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int C_per_group = params.C / params.groups;
|
||||
int O_per_group = params.O / params.groups;
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C_per_group * H_wt * W_wt
|
||||
int mat_N = O_per_group; // O_per_group
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded = grouped_unfold_transpose_inputs_nd<NDIM>(
|
||||
encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (O, C_per_group, H_wt * W_wt) for gemm.
|
||||
int wt_spatial_size = (wt.size() / wt.shape(0)) / wt.shape(-1);
|
||||
array wt_view(
|
||||
{params.O, C_per_group, wt_spatial_size}, wt.dtype(), nullptr, {});
|
||||
wt_view.copy_shared_buffer(
|
||||
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
||||
array wt_reshaped = contiguous_copy_gpu(wt_view, s);
|
||||
|
||||
// Batch with size of groups.
|
||||
Shape batch_shape{params.groups};
|
||||
Strides a_batch_strides{mat_K};
|
||||
Strides b_batch_strides{mat_N * mat_K};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K * params.groups, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.set_out(
|
||||
out.dtype(),
|
||||
false, // out_transposed
|
||||
mat_M, // out_rows
|
||||
mat_N, // out_cols
|
||||
mat_N * params.groups, // out_ld
|
||||
params.groups, // batch_count
|
||||
mat_N); // batch_stride
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip);
|
||||
gemm_grouped_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -15,8 +15,8 @@ void copy_gpu_inplace(
|
||||
int64_t offset_out,
|
||||
CopyType ctype,
|
||||
const Stream& s,
|
||||
std::optional<array> dynamic_offset_in,
|
||||
std::optional<array> dynamic_offset_out) {
|
||||
const std::optional<array>& dynamic_offset_in,
|
||||
const std::optional<array>& dynamic_offset_out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -44,16 +44,6 @@ void copy_gpu_inplace(
|
||||
strides_vec[0]);
|
||||
} else {
|
||||
if (dynamic_offset_in || dynamic_offset_out) {
|
||||
if (!dynamic_offset_in) {
|
||||
dynamic_offset_in = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_in);
|
||||
}
|
||||
if (!dynamic_offset_out) {
|
||||
dynamic_offset_out = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_out);
|
||||
}
|
||||
encoder.set_input_array(*dynamic_offset_in);
|
||||
encoder.set_input_array(*dynamic_offset_out);
|
||||
copy_general_dynamic(
|
||||
encoder,
|
||||
ctype,
|
||||
@@ -64,8 +54,8 @@ void copy_gpu_inplace(
|
||||
shape_collapsed,
|
||||
strides_vec[0],
|
||||
strides_vec[1],
|
||||
*dynamic_offset_in,
|
||||
*dynamic_offset_out);
|
||||
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
|
||||
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
|
||||
} else {
|
||||
copy_general(
|
||||
encoder,
|
||||
|
||||
@@ -10,80 +10,37 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void copy_gg_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), strides_in.data(), strides_out.data());
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto in_stride_x = strides_in[NDIM - 1];
|
||||
auto out_stride_x = strides_out[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data());
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
__global__ void copy_gg(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides_out,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto in_stride_x = strides_in[ndim - 1];
|
||||
auto out_stride_x = strides_out[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data(),
|
||||
ndim);
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -112,52 +69,33 @@ void copy_general(
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = data_size / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
data_size,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_gg<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::copy_gg<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
data_size,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
|
||||
@@ -10,67 +10,33 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void copy_g_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto stride_x = strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
__global__ void copy_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size_rest,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
int ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -95,49 +61,30 @@ void copy_general_input(
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
cu::copy_g<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
rest,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
|
||||
@@ -1,275 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Create a cudnn tensor descriptor.
|
||||
template <typename Vec>
|
||||
inline cudnn_frontend::Tensor build_cudnn_tensor(
|
||||
int64_t id,
|
||||
const array& x,
|
||||
const Vec& shape,
|
||||
const Vec& strides) {
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
// In MLX a singleton dim (shape[dim] == 1) can have any stride, but in cuDNN
|
||||
// whether a tensor is contiguous is determined with:
|
||||
// shape[dim] == shape[dim + 1] * strides[dim + 1]
|
||||
// So a contiguous array with singleton dims in MLX may be mistakenly treated
|
||||
// as strided in cuDNN, and we work around it by normalizing the strides.
|
||||
Strides normalized_strides(const array& x) {
|
||||
if (!x.flags().row_contiguous || x.ndim() < 2) {
|
||||
return x.strides();
|
||||
}
|
||||
Strides strides = x.strides();
|
||||
for (int i = x.ndim() - 2; i >= 0; --i) {
|
||||
if (x.shape(i) == 1) {
|
||||
strides[i] = x.shape(i + 1) * strides[i + 1];
|
||||
}
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
// Return the shape and strides after transposing from NHWC to NCHW.
|
||||
auto nhwc_to_nchw(SmallVector<int64_t> shape, SmallVector<int64_t> strides) {
|
||||
assert(shape.size() >= 3);
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline auto nhwc_to_nchw(const array& x) {
|
||||
return nhwc_to_nchw(
|
||||
convert_vector<int64_t>(x.shape()), normalized_strides(x));
|
||||
}
|
||||
|
||||
// Return available engines for a |op_graph|.
|
||||
cudnn_frontend::EngineConfigList get_cudnn_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = true) {
|
||||
SmallVector<cudnn_frontend::GeneratorSource, 2> sources;
|
||||
sources.push_back([](auto& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
});
|
||||
if (use_fallback) {
|
||||
sources.push_back([&backend_type](auto& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
});
|
||||
}
|
||||
|
||||
auto configs =
|
||||
cudnn_frontend::EngineConfigGenerator(sources.size(), sources.data())
|
||||
.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
// Take |engine_configs| and |op_graph| and find a working execution plans
|
||||
// from them.
|
||||
std::optional<cudnn_frontend::ExecutionPlan>
|
||||
find_cudnn_plan_from_engine_configs(
|
||||
cudnnHandle_t handle,
|
||||
const cudnn_frontend::EngineConfigList& engine_configs,
|
||||
const cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto op_graph_tag = op_graph.getTag();
|
||||
for (const auto& config : engine_configs) {
|
||||
try {
|
||||
return cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(handle)
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Prepare workspace and args to execute plan.
|
||||
template <typename F>
|
||||
bool prepare_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs,
|
||||
F&& execute) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(
|
||||
workspace_size > 0 ? allocator::malloc(workspace_size)
|
||||
: allocator::Buffer(nullptr),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
|
||||
auto args = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(num_args, data_ptrs)
|
||||
.setUids(num_args, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
if (!execute(handle, plan.get_raw_desc(), args.get_raw_desc())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
return build_cudnn_tensor(id, x, shape, normalized_strides(x));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x) {
|
||||
if (x.ndim() == 0) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return build_cudnn_tensor(id, x, scalar_dims, scalar_dims);
|
||||
}
|
||||
if (x.ndim() == 1) {
|
||||
int64_t s = x.shape(0);
|
||||
SmallVector<int64_t, 4> shape = {1, x.shape(0), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, 1, s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 2) {
|
||||
int64_t s =
|
||||
x.flags().row_contiguous ? x.shape(1) * x.strides(1) : x.strides(0);
|
||||
SmallVector<int64_t, 4> shape = {x.shape(0), x.shape(1), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, x.strides(1), s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 3 || x.ndim() == 4) {
|
||||
return build_cudnn_tensor_nchw(id, x);
|
||||
}
|
||||
throw std::runtime_error(
|
||||
fmt::format("Unsupported array with {} dims.", x.ndim()));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(scalar_dims.size(), scalar_dims.data())
|
||||
.setStrides(scalar_dims.size(), scalar_dims.data())
|
||||
.setId(id)
|
||||
.setAlignment(16)
|
||||
.setDataType(dtype_to_cudnn_type(dtype))
|
||||
.setByValue(true)
|
||||
.build();
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
|
||||
if (engine_configs.empty()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
|
||||
}
|
||||
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(handle, plan, args) != CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
});
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
if (!graph) {
|
||||
graph = CudaGraph(encoder.device());
|
||||
if (cudnnBackendPopulateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (cudnnBackendUpdateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
return true;
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,164 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
class CommandEncoder;
|
||||
}
|
||||
|
||||
// Return pointer alignment of |x|'s data.
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
// Convert the type of elements in |vec| to |T|.
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
// Return an array that can be used as map key for |vec| with size <= MAX_NDIM.
|
||||
//
|
||||
// There are 2 differences from the const_param util from kernel_utils.cuh:
|
||||
// 1. The rest of array is filled with 0.
|
||||
// 2. This util can be used in .cpp files.
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
// Helpers used by get_data_ptrs to get pointers.
|
||||
inline void* get_data_ptr(const array& arr) {
|
||||
return const_cast<void*>(arr.data<void>());
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>
|
||||
inline void* get_data_ptr(T& scalar) {
|
||||
return &scalar;
|
||||
}
|
||||
|
||||
// Return an array filled with data pointers of args.
|
||||
template <typename... Args>
|
||||
inline std::array<void*, sizeof...(Args)> get_data_ptrs(Args&... args) {
|
||||
return {get_data_ptr(args)...};
|
||||
}
|
||||
|
||||
// Map dtype to cudnn data type.
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
// Create a tensor descriptor from |x|.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, and transpose from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, make sure it is 4D, and transpose it
|
||||
// from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a 4D scalar tensor descriptor, which is passed by value.
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype);
|
||||
|
||||
// Find a working plan for |op_graph|.
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph);
|
||||
|
||||
// Encode the plan to command buffer by capturing.
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
// Encode the plan to command buffer by using native graph api of cudnn. If the
|
||||
// |graph| is empty it will be populated, otherwise it will be updated.
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
#endif
|
||||
|
||||
// Helpers to make calls like encode_cudnn_plan(..., {'x', 'y', 'z'}, x, y, z).
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_capturing(
|
||||
encoder, plan, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_graph_api(
|
||||
encoder, plan, graph, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,379 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/fast.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr const char* default_header = R"(
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
#define inf cuda::std::numeric_limits<float>::infinity()
|
||||
|
||||
)";
|
||||
|
||||
std::string template_arguments_hash(
|
||||
const std::vector<std::pair<std::string, TemplateArg>>& template_args) {
|
||||
if (template_args.empty()) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string hash;
|
||||
hash.reserve(512);
|
||||
|
||||
for (const auto& [name, arg] : template_args) {
|
||||
if (std::holds_alternative<int>(arg)) {
|
||||
hash += fmt::format("_{}", std::get<int>(arg));
|
||||
} else if (std::holds_alternative<bool>(arg)) {
|
||||
hash += (std::get<bool>(arg)) ? "_t" : "_f";
|
||||
} else if (std::holds_alternative<Dtype>(arg)) {
|
||||
hash += "_";
|
||||
hash += get_type_string(std::get<Dtype>(arg));
|
||||
}
|
||||
}
|
||||
|
||||
return hash;
|
||||
}
|
||||
|
||||
std::string build_kernel(
|
||||
const std::string& func_name,
|
||||
const std::string& header,
|
||||
const std::string& source,
|
||||
const std::vector<std::string>& input_names,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<std::string>& output_names,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
const std::vector<std::pair<std::string, TemplateArg>>& template_args,
|
||||
const std::vector<CustomKernelShapeInfo>& shape_infos) {
|
||||
std::string kernel_source;
|
||||
kernel_source.reserve(header.size() + source.size() + 8192);
|
||||
kernel_source += default_header;
|
||||
kernel_source += header;
|
||||
kernel_source +=
|
||||
"namespace mlx::core::cu {\n\n"
|
||||
"namespace cg = cooperative_groups;\n\n";
|
||||
|
||||
kernel_source += "__global__ void ";
|
||||
kernel_source += func_name;
|
||||
kernel_source += "(\n";
|
||||
|
||||
// Add inputs
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
const auto& name = input_names[i];
|
||||
const auto& arr = inputs[i];
|
||||
kernel_source += " const ";
|
||||
kernel_source += dtype_to_cuda_type(arr.dtype());
|
||||
kernel_source += "* ";
|
||||
kernel_source += name;
|
||||
kernel_source += ",\n";
|
||||
// Add input shape, strides and ndim if present in the source
|
||||
if (arr.ndim() > 0) {
|
||||
if (shape_infos[i].shape) {
|
||||
kernel_source += " const __grid_constant__ Shape ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_shape,\n";
|
||||
}
|
||||
if (shape_infos[i].strides) {
|
||||
kernel_source += " const __grid_constant__ Strides ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_strides,\n";
|
||||
}
|
||||
if (shape_infos[i].ndim) {
|
||||
kernel_source += " const __grid_constant__ int ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_ndim,\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add outputs
|
||||
for (int i = 0; i < output_names.size(); ++i) {
|
||||
const auto& name = output_names[i];
|
||||
const auto& dtype = output_dtypes[i];
|
||||
kernel_source += " ";
|
||||
kernel_source += dtype_to_cuda_type(dtype);
|
||||
kernel_source += "* ";
|
||||
kernel_source += name;
|
||||
if (i < output_names.size() - 1) {
|
||||
kernel_source += ",\n";
|
||||
} else {
|
||||
kernel_source += ") {\n";
|
||||
}
|
||||
}
|
||||
|
||||
// Set compile time constants
|
||||
if (!template_args.empty()) {
|
||||
for (const auto& [name, arg] : template_args) {
|
||||
if (std::holds_alternative<int>(arg)) {
|
||||
kernel_source +=
|
||||
fmt::format(" constexpr int {} = {};\n", name, std::get<int>(arg));
|
||||
} else if (std::holds_alternative<bool>(arg)) {
|
||||
kernel_source += fmt::format(
|
||||
" constexpr bool {} = {};\n", name, std::get<bool>(arg));
|
||||
} else {
|
||||
kernel_source += fmt::format(
|
||||
" using {} = {};\n",
|
||||
name,
|
||||
dtype_to_cuda_type(std::get<Dtype>(arg)));
|
||||
}
|
||||
}
|
||||
kernel_source += "\n";
|
||||
}
|
||||
|
||||
kernel_source += source;
|
||||
kernel_source += "\n}\n\n} // namespace mlx::core::cu\n";
|
||||
|
||||
return kernel_source;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CustomKernelFunction cuda_kernel(
|
||||
const std::string& name,
|
||||
const std::vector<std::string>& input_names,
|
||||
const std::vector<std::string>& output_names,
|
||||
const std::string& source,
|
||||
const std::string& header,
|
||||
bool ensure_row_contiguous,
|
||||
int shared_memory) {
|
||||
if (output_names.empty()) {
|
||||
throw std::invalid_argument(
|
||||
"[custom_kernel] Must specify at least one output.");
|
||||
}
|
||||
|
||||
std::vector<CustomKernelShapeInfo> shape_infos;
|
||||
for (auto& n : input_names) {
|
||||
CustomKernelShapeInfo shape_info;
|
||||
shape_info.shape = source.find(n + "_shape") != std::string::npos;
|
||||
shape_info.strides = source.find(n + "_strides") != std::string::npos;
|
||||
shape_info.ndim = source.find(n + "_ndim") != std::string::npos;
|
||||
shape_infos.push_back(shape_info);
|
||||
}
|
||||
|
||||
return [=, shape_infos = std::move(shape_infos)](
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<Shape>& output_shapes,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
std::tuple<int, int, int> grid,
|
||||
std::tuple<int, int, int> threadgroup,
|
||||
const std::vector<std::pair<std::string, TemplateArg>>&
|
||||
template_args = {},
|
||||
std::optional<float> init_value = std::nullopt,
|
||||
bool verbose = false,
|
||||
StreamOrDevice s_ = {}) {
|
||||
if (inputs.size() != input_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `inputs` to have size "
|
||||
<< input_names.size() << " but got size " << inputs.size() << "."
|
||||
<< std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (output_shapes.size() != output_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `output_shapes` to have size "
|
||||
<< output_names.size() << " but got size " << output_shapes.size()
|
||||
<< "." << std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (output_dtypes.size() != output_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `output_dtypes` to have size "
|
||||
<< output_names.size() << " but got size " << output_dtypes.size()
|
||||
<< "." << std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto s = to_stream(s_);
|
||||
if (s.device != Device::gpu) {
|
||||
throw std::invalid_argument("[custom_kernel] Only supports the GPU.");
|
||||
}
|
||||
|
||||
std::string kernel_name =
|
||||
"custom_kernel_" + name + template_arguments_hash(template_args);
|
||||
std::string kernel_source = build_kernel(
|
||||
kernel_name,
|
||||
header,
|
||||
source,
|
||||
input_names,
|
||||
inputs,
|
||||
output_names,
|
||||
output_dtypes,
|
||||
template_args,
|
||||
shape_infos);
|
||||
|
||||
if (verbose) {
|
||||
std::cout << "Generated source code for `" << kernel_name
|
||||
<< "`:" << std::endl
|
||||
<< "```" << std::endl
|
||||
<< kernel_source << std::endl
|
||||
<< "```" << std::endl;
|
||||
}
|
||||
|
||||
return array::make_arrays(
|
||||
std::move(output_shapes),
|
||||
std::move(output_dtypes),
|
||||
std::make_shared<CustomKernel>(
|
||||
s,
|
||||
std::move(kernel_name),
|
||||
std::move(kernel_source),
|
||||
grid,
|
||||
threadgroup,
|
||||
shape_infos,
|
||||
ensure_row_contiguous,
|
||||
init_value,
|
||||
std::vector<ScalarArg>{},
|
||||
false,
|
||||
shared_memory),
|
||||
std::move(inputs));
|
||||
};
|
||||
}
|
||||
|
||||
std::vector<array> precompiled_cuda_kernel(
|
||||
const std::string& name,
|
||||
const std::string& compiled_source,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<Shape>& output_shapes,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
const std::vector<ScalarArg>& scalars,
|
||||
std::tuple<int, int, int> grid,
|
||||
std::tuple<int, int, int> threadgroup,
|
||||
int shared_memory,
|
||||
std::optional<float> init_value,
|
||||
bool ensure_row_contiguous,
|
||||
StreamOrDevice s) {
|
||||
std::vector<CustomKernelShapeInfo> shape_infos(
|
||||
inputs.size(), CustomKernelShapeInfo{false, false, false});
|
||||
return array::make_arrays(
|
||||
output_shapes,
|
||||
output_dtypes,
|
||||
std::make_shared<CustomKernel>(
|
||||
to_stream(s),
|
||||
name,
|
||||
compiled_source,
|
||||
grid,
|
||||
threadgroup,
|
||||
shape_infos,
|
||||
ensure_row_contiguous,
|
||||
init_value,
|
||||
scalars,
|
||||
true,
|
||||
shared_memory),
|
||||
inputs);
|
||||
}
|
||||
|
||||
void CustomKernel::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("CustomKernel::eval_gpu");
|
||||
auto& s = stream();
|
||||
|
||||
std::vector<array> copies;
|
||||
|
||||
// Allocate and initialize the output arrays
|
||||
for (auto& out : outputs) {
|
||||
if (init_value_) {
|
||||
copies.emplace_back(init_value_.value(), out.dtype());
|
||||
fill_gpu(copies.back(), out, s);
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
}
|
||||
}
|
||||
|
||||
// Create the input arrays and copy if needed
|
||||
auto check_input = [&copies, &s, this](const array& x) -> const array {
|
||||
bool no_copy = x.flags().row_contiguous;
|
||||
if (!ensure_row_contiguous_ || no_copy) {
|
||||
return x;
|
||||
} else {
|
||||
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
|
||||
copy_gpu(x, copies.back(), CopyType::General, s);
|
||||
return copies.back();
|
||||
}
|
||||
};
|
||||
std::vector<array> checked_inputs;
|
||||
for (const array& in : inputs) {
|
||||
checked_inputs.push_back(check_input(in));
|
||||
}
|
||||
|
||||
// Compile the custom kernel
|
||||
std::string kernel_name =
|
||||
(is_precompiled_) ? name_ : "mlx::core::cu::" + name_;
|
||||
cu::JitModule& mod = cu::get_jit_module(
|
||||
s.device,
|
||||
name_,
|
||||
[&]() {
|
||||
return std::make_tuple(
|
||||
is_precompiled_, source_, std::vector{kernel_name});
|
||||
},
|
||||
false);
|
||||
|
||||
// Make the arguments
|
||||
cu::KernelArgs args;
|
||||
for (int i = 0; i < checked_inputs.size(); i++) {
|
||||
const array& in = checked_inputs[i];
|
||||
auto& shape_info = shape_infos_[i];
|
||||
args.append(in);
|
||||
if (shape_info.shape) {
|
||||
args.append_ndim(in.shape());
|
||||
}
|
||||
if (shape_info.strides) {
|
||||
args.append_ndim(in.strides());
|
||||
}
|
||||
if (shape_info.ndim) {
|
||||
args.append<int32_t>(in.ndim());
|
||||
}
|
||||
}
|
||||
for (auto& out : outputs) {
|
||||
args.append(out);
|
||||
}
|
||||
for (auto& s : scalar_arguments_) {
|
||||
if (std::holds_alternative<bool>(s)) {
|
||||
args.append(std::get<bool>(s));
|
||||
} else if (std::holds_alternative<int>(s)) {
|
||||
args.append(std::get<int>(s));
|
||||
} else if (std::holds_alternative<float>(s)) {
|
||||
args.append(std::get<float>(s));
|
||||
}
|
||||
}
|
||||
|
||||
// Make the grid
|
||||
const auto [tx, ty, tz] = threadgroup_;
|
||||
const auto [gx, gy, gz] = grid_;
|
||||
dim3 block(std::min(tx, gx), std::min(ty, gy), std::min(tz, gz));
|
||||
dim3 grid((gx + tx - 1) / tx, (gy + ty - 1) / ty, (gz + tz - 1) / tz);
|
||||
|
||||
// Call the kernel
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : checked_inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
for (const auto& out : outputs) {
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
for (const auto& t : copies) {
|
||||
encoder.add_temporary(t);
|
||||
}
|
||||
auto kernel =
|
||||
mod.get_kernel(kernel_name, [smem = shared_memory_](CUfunction kernel) {
|
||||
if (smem > 0 && smem > 48000) {
|
||||
cuFuncSetAttribute(
|
||||
kernel, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem);
|
||||
}
|
||||
});
|
||||
encoder.add_kernel_node(kernel, grid, block, shared_memory_, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core::fast
|
||||
@@ -14,6 +14,10 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
@@ -23,11 +27,11 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
bool use_cuda_graphs() {
|
||||
static bool use_graphs = []() {
|
||||
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
}();
|
||||
return use_graphs;
|
||||
return cache_size;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -64,8 +68,8 @@ Device::~Device() {
|
||||
|
||||
void Device::make_current() {
|
||||
// We need to set/get current CUDA device very frequently, cache it to reduce
|
||||
// actual calls of CUDA APIs.
|
||||
static thread_local int current = 0;
|
||||
// actual calls of CUDA APIs. This function assumes single-thread in host.
|
||||
static int current = 0;
|
||||
if (current != device_) {
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(device_));
|
||||
current = device_;
|
||||
@@ -82,20 +86,14 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
if (!use_cuda_graphs()) {
|
||||
enc.node_count_++;
|
||||
return;
|
||||
}
|
||||
|
||||
graph.end_capture(enc.stream());
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
|
||||
if (discard) {
|
||||
return;
|
||||
}
|
||||
@@ -109,9 +107,6 @@ CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
|
||||
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
|
||||
enc.in_concurrent_ = false;
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Use an empty graph node for synchronization
|
||||
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
|
||||
@@ -190,46 +185,37 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d),
|
||||
stream_(d),
|
||||
graph_(d),
|
||||
worker_(d),
|
||||
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {}
|
||||
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
|
||||
void CommandEncoder::set_input_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::set_output_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
active_outputs_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::maybe_commit() {
|
||||
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
commit();
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cudaLaunchKernel(
|
||||
func, grid_dim, block_dim, params, smem_bytes, stream()));
|
||||
return;
|
||||
}
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
@@ -245,23 +231,6 @@ void CommandEncoder::add_kernel_node(
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cuLaunchKernel(
|
||||
func,
|
||||
grid_dim.x,
|
||||
grid_dim.y,
|
||||
grid_dim.z,
|
||||
block_dim.x,
|
||||
block_dim.y,
|
||||
block_dim.z,
|
||||
smem_bytes,
|
||||
stream(),
|
||||
params,
|
||||
nullptr));
|
||||
return;
|
||||
}
|
||||
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDimX = grid_dim.x;
|
||||
@@ -288,38 +257,20 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CudaGraphExec graph_exec;
|
||||
graph_exec.instantiate(child);
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
|
||||
return;
|
||||
}
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
int CommandEncoder::get_num_ops() {
|
||||
return node_count_;
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
if (use_cuda_graphs() && node_count_ > 0) {
|
||||
if (node_count_ > 0) {
|
||||
if (!from_nodes_.empty()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
|
||||
graph_,
|
||||
from_nodes_.data(),
|
||||
to_nodes_.data(),
|
||||
#if CUDART_VERSION >= 13000
|
||||
nullptr, // edgeData
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
from_nodes_.size()));
|
||||
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
|
||||
}
|
||||
|
||||
graph_key_ += ".";
|
||||
@@ -353,18 +304,19 @@ void CommandEncoder::commit() {
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
to_nodes_.clear();
|
||||
graph_key_.clear();
|
||||
node_map_.clear();
|
||||
graph_ = CudaGraph(device_);
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.commit(stream_);
|
||||
node_count_ = 0;
|
||||
}
|
||||
|
||||
void CommandEncoder::synchronize() {
|
||||
|
||||
@@ -21,7 +21,7 @@ class CommandEncoder {
|
||||
struct CaptureContext {
|
||||
CaptureContext(CommandEncoder& enc);
|
||||
~CaptureContext();
|
||||
CudaGraph graph;
|
||||
cudaGraph_t graph;
|
||||
CommandEncoder& enc;
|
||||
bool discard{false};
|
||||
};
|
||||
@@ -76,6 +76,9 @@ class CommandEncoder {
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
@@ -83,7 +86,7 @@ class CommandEncoder {
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
int get_num_ops();
|
||||
void maybe_commit();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
@@ -98,9 +101,6 @@ class CommandEncoder {
|
||||
void synchronize();
|
||||
|
||||
private:
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
|
||||
struct GraphNode {
|
||||
cudaGraphNode_t node;
|
||||
// K = kernel
|
||||
@@ -115,7 +115,7 @@ class CommandEncoder {
|
||||
|
||||
Device& device_;
|
||||
CudaStream stream_;
|
||||
CudaGraph graph_;
|
||||
cudaGraph_t graph_;
|
||||
Worker worker_;
|
||||
char node_count_{0};
|
||||
char graph_node_count_{0};
|
||||
@@ -140,7 +140,7 @@ class Device {
|
||||
Device(const Device&) = delete;
|
||||
Device& operator=(const Device&) = delete;
|
||||
|
||||
// Make this device the current cuda device, this method is thread-safe.
|
||||
// Make this device the current cuda device, required by some cuda calls.
|
||||
void make_current();
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
@@ -204,12 +204,6 @@ struct Power {
|
||||
__device__ T operator()(T base, T exp) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
T res = 1;
|
||||
// Raising an integer to a negative power is undefined
|
||||
if constexpr (cuda::std::is_signed_v<T>) {
|
||||
if (exp < 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
while (exp) {
|
||||
if (exp & 1) {
|
||||
res *= base;
|
||||
|
||||
@@ -6,6 +6,7 @@
|
||||
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <thrust/iterator/transform_iterator.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
@@ -115,4 +116,15 @@ inline __host__ __device__ auto cast_to(SrcT x) {
|
||||
return CastOp<SrcT, DstT>{}(x);
|
||||
}
|
||||
|
||||
// Return an iterator that cast the value to DstT using CastOp.
|
||||
template <typename DstT, typename Iterator>
|
||||
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
|
||||
if constexpr (std::is_same_v<SrcT, DstT>) {
|
||||
return it;
|
||||
} else {
|
||||
return thrust::make_transform_iterator(it, CastOp<SrcT, DstT>{});
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda_fp8.h>
|
||||
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -259,8 +257,8 @@ struct Round {
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
T y = 1 / (1 + exp(abs(x)));
|
||||
return (x < 0) ? y : 1 - y;
|
||||
T y = 1 / (1 + exp(-abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
}
|
||||
};
|
||||
|
||||
@@ -336,17 +334,4 @@ struct Tanh {
|
||||
}
|
||||
};
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T>
|
||||
__device__ uint8_t operator()(T x) {
|
||||
return __nv_fp8_e4m3(x).__x;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
__device__ float operator()(uint8_t x) {
|
||||
return float(*(__nv_fp8_e4m3*)(&x));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file must not include any host-only code, utilities that work under both
|
||||
// This file must not include any host-only code, utilies that work under both
|
||||
// host and device can be put here.
|
||||
//
|
||||
// See more about the requirements at:
|
||||
@@ -146,23 +146,6 @@ inline __device__ void store_vector(
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ void store_vector(
|
||||
T* ptr,
|
||||
uint32_t offset,
|
||||
const AlignedVector<T, N>& vec,
|
||||
SizeT size,
|
||||
int64_t stride) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size && stride == 1) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
|
||||
ptr[stride * (offset * N + i)] = vec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Type limits utils
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -202,7 +185,7 @@ struct Limits<
|
||||
}
|
||||
};
|
||||
|
||||
// CUDA 11 does not have host side arithmetic operators for half types.
|
||||
// CUDA 11 does not have host side arithmatic operators for half types.
|
||||
template <typename T>
|
||||
struct Limits<
|
||||
T,
|
||||
|
||||
@@ -1,56 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core::distributed {
|
||||
void AllReduce::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto set_input_output =
|
||||
[s = stream()](const array& in, array& out) -> std::pair<array, array> {
|
||||
if (!in.flags().row_contiguous) {
|
||||
copy_gpu(in, out, CopyType::General, s);
|
||||
return {out, out};
|
||||
} else if (in.is_donatable()) {
|
||||
out.copy_shared_buffer(in);
|
||||
return {in, out};
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return {in, out};
|
||||
}
|
||||
};
|
||||
|
||||
auto [input, output] = set_input_output(inputs[0], outputs[0]);
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(output);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
auto& s = stream();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
distributed::detail::all_sum(group(), input, output, s);
|
||||
break;
|
||||
case Max:
|
||||
distributed::detail::all_max(group(), input, output, s);
|
||||
break;
|
||||
case Min:
|
||||
distributed::detail::all_min(group(), input, output, s);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"Only all reduce sum, max, and min are supported.");
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core::distributed
|
||||
@@ -5,24 +5,18 @@
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/available.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core::gpu {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
bool is_available() {
|
||||
return true;
|
||||
}
|
||||
|
||||
void new_stream(Stream s) {
|
||||
// Force initalization of CUDA, so CUDA runtime get destroyed at last.
|
||||
// Force initalization of cuda, so cuda runtime get destroyed at last.
|
||||
cudaFree(nullptr);
|
||||
// Make sure CUDA event pool get destroyed after device and stream.
|
||||
cu::CudaEvent::init_pool();
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
}
|
||||
@@ -40,8 +34,7 @@ void eval(array& arr) {
|
||||
arr.primitive().eval_gpu(arr.inputs(), outputs);
|
||||
}
|
||||
|
||||
auto& stream = arr.primitive().stream();
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
for (auto& in : arr.inputs()) {
|
||||
// Except for the donated one.
|
||||
@@ -52,14 +45,7 @@ void eval(array& arr) {
|
||||
for (auto& s : arr.siblings()) {
|
||||
encoder.add_temporary(s);
|
||||
}
|
||||
|
||||
if (encoder.get_num_ops() >=
|
||||
env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
scheduler::notify_new_task(stream);
|
||||
encoder.add_completed_handler(
|
||||
[stream]() { scheduler::notify_task_completion(stream); });
|
||||
encoder.commit();
|
||||
}
|
||||
encoder.maybe_commit();
|
||||
}
|
||||
|
||||
void finalize(Stream s) {
|
||||
|
||||
@@ -3,12 +3,10 @@
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -19,180 +17,104 @@ namespace cu {
|
||||
// CudaEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace {
|
||||
|
||||
// Manage cached cudaEvent_t objects.
|
||||
class CudaEventPool {
|
||||
// Cuda event managed with RAII.
|
||||
class CudaEventHandle {
|
||||
public:
|
||||
CudaEventHandle create(Device& d, int flags) {
|
||||
if (!on_creation_thread()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
}
|
||||
auto& cache = cache_for(d, flags);
|
||||
if (cache.empty()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
} else {
|
||||
CudaEventHandle ret = std::move(cache.back());
|
||||
cache.pop_back();
|
||||
return ret;
|
||||
}
|
||||
CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
|
||||
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
|
||||
}
|
||||
|
||||
void release(CudaEventHandle event) {
|
||||
if (!on_creation_thread()) {
|
||||
// Event will be destroyed directly instead of getting moved to cache.
|
||||
return;
|
||||
}
|
||||
cache_for(event.device, event.flags).push_back(std::move(event));
|
||||
~CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
|
||||
}
|
||||
|
||||
CudaEventHandle(const CudaEventHandle&) = delete;
|
||||
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
|
||||
|
||||
operator cudaEvent_t() const {
|
||||
return event_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::vector<CudaEventHandle>& cache_for(Device& d, int flags) {
|
||||
return cache_[d.cuda_device()][flags];
|
||||
}
|
||||
|
||||
bool on_creation_thread() {
|
||||
return std::this_thread::get_id() == thread_id_;
|
||||
}
|
||||
|
||||
// The CudaEvent may be created and destroyed on different threads (for
|
||||
// example when waiting on GPU work in CPU stream), we don't want to make
|
||||
// the cache thread-safe as it adds overhead, so we just skip cache when
|
||||
// using events in worker threads.
|
||||
std::thread::id thread_id_{std::this_thread::get_id()};
|
||||
|
||||
// {device: {flags: [events]}}
|
||||
std::map<int, std::map<int, std::vector<CudaEventHandle>>> cache_;
|
||||
cudaEvent_t event_;
|
||||
};
|
||||
|
||||
CudaEventPool& cuda_event_pool() {
|
||||
static CudaEventPool pool;
|
||||
return pool;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CudaEventHandle::CudaEventHandle(Device& d, int flags)
|
||||
: device(d), flags(flags) {
|
||||
device.make_current();
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(&handle_, flags));
|
||||
assert(handle_ != nullptr);
|
||||
}
|
||||
|
||||
CudaEvent::CudaEvent(Device& d, int flags)
|
||||
: event_(cuda_event_pool().create(d, flags)) {}
|
||||
|
||||
CudaEvent::~CudaEvent() {
|
||||
cuda_event_pool().release(std::move(event_));
|
||||
}
|
||||
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
|
||||
|
||||
void CudaEvent::wait() {
|
||||
nvtx3::scoped_range r("cu::CudaEvent::wait");
|
||||
event_.device.make_current();
|
||||
cudaEventSynchronize(event_);
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaEventSynchronize(*event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(cudaStream_t stream) {
|
||||
event_.device.make_current();
|
||||
cudaStreamWaitEvent(stream, event_);
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaStreamWaitEvent(stream, *event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable { wait(); });
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
wait(enc.stream());
|
||||
}
|
||||
}
|
||||
|
||||
void CudaEvent::record(cudaStream_t stream) {
|
||||
event_.device.make_current();
|
||||
cudaEventRecord(event_, stream);
|
||||
cudaEventRecord(*event_, stream);
|
||||
recorded_ = true;
|
||||
}
|
||||
|
||||
void CudaEvent::record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
record(enc.stream());
|
||||
}
|
||||
}
|
||||
|
||||
bool CudaEvent::completed() const {
|
||||
// Note: cudaEventQuery can be safely called from any device.
|
||||
return cudaEventQuery(event_) == cudaSuccess;
|
||||
return cudaEventQuery(*event_) == cudaSuccess;
|
||||
}
|
||||
|
||||
// static
|
||||
void CudaEvent::init_pool() {
|
||||
cuda_event_pool();
|
||||
}
|
||||
|
||||
// Wraps CudaEvent with a few features:
|
||||
// 1. The class can be copied.
|
||||
// 2. Make wait/record work with CPU streams.
|
||||
// 3. Add checks for waiting on un-recorded event.
|
||||
class CopyableCudaEvent {
|
||||
public:
|
||||
explicit CopyableCudaEvent(Device& d)
|
||||
: event_(std::make_shared<CudaEvent>(
|
||||
d,
|
||||
cudaEventDisableTiming | cudaEventBlockingSync)) {}
|
||||
|
||||
void wait() {
|
||||
event_->wait();
|
||||
}
|
||||
|
||||
void wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable {
|
||||
check_recorded();
|
||||
event_->wait();
|
||||
});
|
||||
} else {
|
||||
check_recorded();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->wait(encoder.stream());
|
||||
}
|
||||
}
|
||||
|
||||
void record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on CPU stream.");
|
||||
} else {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->record(encoder.stream());
|
||||
recorded_ = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool is_signaled() const {
|
||||
return recorded_ && event_->completed();
|
||||
}
|
||||
|
||||
private:
|
||||
void check_recorded() const {
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error(
|
||||
"Should not wait on a CudaEvent before recording.");
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<CudaEvent> event_;
|
||||
bool recorded_{false};
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// AtomicEvent implementations
|
||||
// SharedEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__host__ __device__ void event_wait(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
uint64_t current;
|
||||
while ((current = ac->load()) < value) {
|
||||
ac->wait(current);
|
||||
}
|
||||
}
|
||||
|
||||
__host__ __device__ void event_signal(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
ac->store(value);
|
||||
ac->notify_all();
|
||||
}
|
||||
|
||||
__global__ void event_wait_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
event_wait(ac, value);
|
||||
}
|
||||
|
||||
__global__ void event_signal_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
AtomicEvent::AtomicEvent() {
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
@@ -201,17 +123,17 @@ AtomicEvent::AtomicEvent() {
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
}
|
||||
|
||||
void AtomicEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait");
|
||||
event_wait(atomic(), value);
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void AtomicEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void AtomicEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait(s)");
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
|
||||
} else {
|
||||
@@ -222,17 +144,17 @@ void AtomicEvent::wait(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
void AtomicEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal");
|
||||
event_signal(atomic(), value);
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void AtomicEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
}
|
||||
|
||||
void AtomicEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal(s)");
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
// Signal through a GPU stream so the atomic is updated in GPU - updating
|
||||
// the atomic in CPU sometimes does not get GPU notified.
|
||||
@@ -246,14 +168,14 @@ void AtomicEvent::signal(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
bool AtomicEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::is_signaled");
|
||||
return atomic()->load() >= value;
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t AtomicEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::value");
|
||||
return atomic()->load();
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return to_atomic(buf_)->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -266,14 +188,14 @@ namespace {
|
||||
|
||||
struct EventImpl {
|
||||
// CudaEvent is preferred when possible because it is fast, however we have
|
||||
// to fallback to AtomicEvent in following cases:
|
||||
// to fallback to SharedEvent in following cases:
|
||||
// 1. the event is used to wait/signal a cpu stream;
|
||||
// 2. signal value other than 1 has been specified.
|
||||
std::unique_ptr<cu::CopyableCudaEvent> cuda;
|
||||
std::unique_ptr<cu::AtomicEvent> atomic;
|
||||
std::unique_ptr<cu::CudaEvent> cuda;
|
||||
std::unique_ptr<cu::SharedEvent> shared;
|
||||
|
||||
bool is_created() const {
|
||||
return cuda || atomic;
|
||||
return cuda || shared;
|
||||
}
|
||||
|
||||
void ensure_created(Stream s, uint64_t signal_value) {
|
||||
@@ -281,10 +203,10 @@ struct EventImpl {
|
||||
return;
|
||||
}
|
||||
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
|
||||
nvtx3::mark("Using slow AtomicEvent");
|
||||
atomic = std::make_unique<cu::AtomicEvent>();
|
||||
nvtx3::mark("Using slow SharedEvent");
|
||||
shared = std::make_unique<cu::SharedEvent>();
|
||||
} else {
|
||||
cuda = std::make_unique<cu::CopyableCudaEvent>(cu::device(s.device));
|
||||
cuda = std::make_unique<cu::CudaEvent>();
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -303,7 +225,7 @@ void Event::wait() {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait();
|
||||
} else {
|
||||
event->atomic->wait(value());
|
||||
event->shared->wait(value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -314,7 +236,7 @@ void Event::wait(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait(s);
|
||||
} else {
|
||||
event->atomic->wait(s, value());
|
||||
event->shared->wait(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -325,7 +247,7 @@ void Event::signal(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->record(s);
|
||||
} else {
|
||||
event->atomic->signal(s, value());
|
||||
event->shared->signal(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -336,9 +258,9 @@ bool Event::is_signaled() const {
|
||||
}
|
||||
if (event->cuda) {
|
||||
assert(value() == 1);
|
||||
return event->cuda->is_signaled();
|
||||
return event->cuda->recorded() && event->cuda->completed();
|
||||
} else {
|
||||
return event->atomic->is_signaled(value());
|
||||
return event->shared->is_signaled(value());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,60 +3,49 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda/atomic>
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class Device;
|
||||
|
||||
// RAII-managed move-only wrapper of cudaEvent_t.
|
||||
struct CudaEventHandle : public CudaHandle<cudaEvent_t, cudaEventDestroy> {
|
||||
CudaEventHandle(Device& d, int flags);
|
||||
Device& device;
|
||||
int flags;
|
||||
};
|
||||
class CudaEventHandle;
|
||||
|
||||
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
|
||||
// on GPU stream in CPU stream, but can not wait on CPU stream.
|
||||
class CudaEvent {
|
||||
public:
|
||||
CudaEvent(Device& d, int flags);
|
||||
~CudaEvent();
|
||||
|
||||
CudaEvent(CudaEvent&&) = default;
|
||||
CudaEvent& operator=(CudaEvent&&) = default;
|
||||
|
||||
CudaEvent(const CudaEvent&) = delete;
|
||||
CudaEvent& operator=(const CudaEvent&) = delete;
|
||||
CudaEvent();
|
||||
|
||||
void wait();
|
||||
void wait(cudaStream_t stream);
|
||||
void wait(Stream s);
|
||||
void record(cudaStream_t stream);
|
||||
void record(Stream s);
|
||||
|
||||
// Return whether the recorded kernels have completed. Note that this method
|
||||
// returns true if record() has not been called.
|
||||
bool completed() const;
|
||||
|
||||
// Internal: make sure event pool is initialized.
|
||||
static void init_pool();
|
||||
bool recorded() const {
|
||||
return recorded_;
|
||||
}
|
||||
|
||||
private:
|
||||
CudaEventHandle event_;
|
||||
bool recorded_{false};
|
||||
std::shared_ptr<CudaEventHandle> event_;
|
||||
};
|
||||
|
||||
// Event that can synchronize between CPU and GPU. It is much slower than
|
||||
// CudaEvent so the latter should always be preferred when possible.
|
||||
class AtomicEvent {
|
||||
class SharedEvent {
|
||||
public:
|
||||
using Atomic = cuda::atomic<uint64_t>;
|
||||
|
||||
AtomicEvent();
|
||||
SharedEvent();
|
||||
|
||||
void wait(uint64_t value);
|
||||
void wait(cudaStream_t stream, uint64_t value);
|
||||
@@ -68,11 +57,7 @@ class AtomicEvent {
|
||||
uint64_t value() const;
|
||||
|
||||
private:
|
||||
Atomic* atomic() const {
|
||||
return static_cast<AtomicEvent::Atomic*>(buf_->raw_ptr());
|
||||
}
|
||||
|
||||
std::shared_ptr<allocator::Buffer> buf_;
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -7,7 +7,7 @@ namespace mlx::core {
|
||||
|
||||
struct FenceImpl {
|
||||
uint32_t count;
|
||||
cu::AtomicEvent event;
|
||||
cu::SharedEvent event;
|
||||
};
|
||||
|
||||
Fence::Fence(Stream s) {
|
||||
|
||||
@@ -50,10 +50,8 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
case complex64:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
@@ -87,10 +85,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
if (transposed) {
|
||||
std::swap(rows, cols);
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
@@ -128,47 +126,37 @@ CublasGemm::CublasGemm(
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
scale_type_ = dtype_to_cublas_type(dtype);
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type_ = CUDA_R_32F;
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type_));
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
|
||||
// In cublasLt matrices use column-major layout, while it is possible to use
|
||||
// the CUBLASLT_ORDER_ROW option to switch to row-major layout, the bias
|
||||
// epilogue does not work with the option. So instead we swap A and B to make
|
||||
// cublasLt return the row-major result, which works because:
|
||||
// - the data of a matrix in row-major layout is identical to its transpose in
|
||||
// column-major layout
|
||||
// - C^T = (A @ B)^T = B^T @ A^T
|
||||
cublasOperation_t a_op = b_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&a_op,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
cublasOperation_t b_op = a_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&b_op,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, b_cols, b_rows, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, a_cols, a_rows, a_transposed, lda, batch_count, a_batch_stride);
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, b_cols, a_rows, false, b_cols, batch_count, a_rows * b_cols);
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
@@ -203,7 +191,7 @@ CublasGemm::CublasGemm(
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, b_cols, a_rows, false, ldc, batch_count, c_batch_stride);
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
CublasGemm::~CublasGemm() {
|
||||
@@ -214,41 +202,6 @@ CublasGemm::~CublasGemm() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void CublasGemm::set_out(
|
||||
Dtype dtype,
|
||||
bool transposed,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
out_desc_ = create_matrix_layout(
|
||||
dtype_to_cublas_type(dtype),
|
||||
cols,
|
||||
rows,
|
||||
transposed,
|
||||
ld,
|
||||
batch_count,
|
||||
batch_stride);
|
||||
}
|
||||
|
||||
void CublasGemm::set_bias(cu::CommandEncoder& encoder, const array& bias) {
|
||||
encoder.set_input_array(bias);
|
||||
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_BIAS;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_EPILOGUE,
|
||||
&epilogue,
|
||||
sizeof(epilogue)));
|
||||
auto* bias_ptr = bias.data<void>();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_BIAS_POINTER,
|
||||
&bias_ptr,
|
||||
sizeof(bias_ptr)));
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -256,19 +209,11 @@ void CublasGemm::run(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
alpha);
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -276,13 +221,7 @@ void CublasGemm::run(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
nullptr,
|
||||
alpha);
|
||||
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
@@ -355,16 +294,6 @@ void CublasGemm::execute(
|
||||
}
|
||||
}
|
||||
|
||||
const void* alpha_ptr = α
|
||||
const void* beta_ptr = β
|
||||
complex64_t alpha_c, beta_c;
|
||||
if (scale_type_ == CUDA_C_32F) {
|
||||
alpha_c = complex64_t{alpha, 0.0f};
|
||||
beta_c = complex64_t{beta, 0.0f};
|
||||
alpha_ptr = &alpha_c;
|
||||
beta_ptr = &beta_c;
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
// Ensure workspace is 256-byte aligned
|
||||
@@ -381,12 +310,12 @@ void CublasGemm::execute(
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
alpha_ptr,
|
||||
b, // a and b are swapped
|
||||
a_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
beta_ptr,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
|
||||
@@ -44,19 +44,6 @@ class CublasGemm {
|
||||
|
||||
~CublasGemm();
|
||||
|
||||
// The output's descriptor is inferred from inputs by default, use this method
|
||||
// for unusual output.
|
||||
void set_out(
|
||||
Dtype dtype,
|
||||
bool transposed,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride);
|
||||
|
||||
void set_bias(cu::CommandEncoder& encoder, const array& bias);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -64,8 +51,7 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
float alpha = 1.0f);
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -88,8 +74,7 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
float alpha);
|
||||
const Strides& b_batch_strides);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -115,7 +100,6 @@ class CublasGemm {
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cudaDataType_t scale_type_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
|
||||
@@ -13,8 +13,7 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
const Strides& b_batch_strides) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
@@ -28,8 +27,7 @@ void CublasGemm::run_batched(
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr,
|
||||
alpha);
|
||||
nullptr);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
|
||||
@@ -154,8 +154,7 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
const Strides& b_batch_strides) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
@@ -227,8 +226,7 @@ void CublasGemm::run_batched(
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr,
|
||||
alpha);
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
|
||||
@@ -13,37 +13,6 @@ namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
// Accumulator type selection per input element type T.
|
||||
template <typename T>
|
||||
struct GemvAccType {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__half> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__nv_bfloat16> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<float> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<double> {
|
||||
using type = double;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<cu::complex64_t> {
|
||||
using type = cu::complex64_t;
|
||||
};
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
@@ -55,8 +24,7 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
using Acc = typename GemvAccType<T>::type;
|
||||
Acc sum = Acc(0);
|
||||
float sum = 0.0f;
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat =
|
||||
@@ -64,11 +32,12 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum += static_cast<Acc>(local_mat[j]) * static_cast<Acc>(local_vec[j]);
|
||||
sum +=
|
||||
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<Acc>{});
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
@@ -138,7 +107,7 @@ void gemv(
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_inexact_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
|
||||
301
mlx/backend/cuda/gemms/steel_gemm.cu
Normal file
301
mlx/backend/cuda/gemms/steel_gemm.cu
Normal file
@@ -0,0 +1,301 @@
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/gemms/steel_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
#include "mlx/backend/cuda/steel/gemm.cuh"
|
||||
#include "mlx/backend/cuda/steel/mma.cuh"
|
||||
#include "mlx/backend/cuda/steel/tiles.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
struct GemmParams {
|
||||
int M;
|
||||
int N;
|
||||
int K;
|
||||
int lda;
|
||||
int ldb;
|
||||
int ldd;
|
||||
|
||||
int NblockM;
|
||||
int NblockN;
|
||||
int NblockK;
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
int SL,
|
||||
int Nstages>
|
||||
__global__ void kernel_steel_gemm(
|
||||
const T* a,
|
||||
const T* b,
|
||||
T* d,
|
||||
__grid_constant__ const GemmParams params) {
|
||||
const int bM_idx = (blockIdx.y << SL) + (blockIdx.x & ((1 << SL) - 1));
|
||||
const int bN_idx = blockIdx.x >> SL;
|
||||
|
||||
if (params.NblockN <= bN_idx || params.NblockM <= bM_idx) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int d_row = bM_idx * BM;
|
||||
const int d_col = bN_idx * BN;
|
||||
const size_t d_row_long = size_t(d_row);
|
||||
const size_t d_col_long = size_t(d_col);
|
||||
|
||||
a += transpose_a ? d_row_long : d_row_long * params.K;
|
||||
b += transpose_b ? d_col_long * params.K : d_col_long;
|
||||
d += d_row_long * params.ldd + d_col_long;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
|
||||
const int lane_idx = warp.thread_rank();
|
||||
const int warp_idx = warp.meta_group_rank();
|
||||
|
||||
const int wm = warp_idx / WN;
|
||||
const int wn = warp_idx % WN;
|
||||
|
||||
constexpr int SM = BM / WM;
|
||||
constexpr int SN = BN / WN;
|
||||
constexpr int SK = BK;
|
||||
constexpr int TK = SK / 16;
|
||||
|
||||
constexpr int NUM_WARPS = WM * WN;
|
||||
|
||||
// Allocate shared memory
|
||||
extern __shared__ char shmem[];
|
||||
SharedTile<T, BM, BK>(&as)[Nstages] =
|
||||
*(SharedTile<T, BM, BK>(*)[Nstages])(&shmem[0]);
|
||||
SharedTile<T, BN, BK>(&bs)[Nstages] = *(SharedTile<T, BN, BK>(*)[Nstages])(
|
||||
&shmem[sizeof(T) * Nstages * BM * BK]);
|
||||
|
||||
// Allocate registers for the MMA
|
||||
RegisterTile<float, SM, SN> C;
|
||||
RegisterTile<T, SM, 16> A[TK];
|
||||
RegisterTile<T, SN, 16> B[TK];
|
||||
|
||||
// Zero the accumulators
|
||||
C.fill(0);
|
||||
|
||||
// Start gmem -> smem copies
|
||||
int k_block_read = 0;
|
||||
|
||||
MLX_UNROLL
|
||||
for (int bk = 0; bk < (Nstages - 1); bk++) {
|
||||
load_async<NUM_WARPS>(
|
||||
as[bk], as[bk].base_addr(), a + k_block_read, params.K);
|
||||
load_async<NUM_WARPS>(
|
||||
bs[bk], bs[bk].base_addr(), b + k_block_read, params.K);
|
||||
k_block_read += BK;
|
||||
cp_async_commit();
|
||||
}
|
||||
|
||||
int smem_pipe_read = 0;
|
||||
int smem_pipe_write = Nstages - 1;
|
||||
|
||||
// Wait till only 1 remains laoding
|
||||
cp_async_wait<1>();
|
||||
block.sync();
|
||||
|
||||
const int offset_m = wm * SM;
|
||||
const int offset_n = wn * SN;
|
||||
|
||||
// Start smem -> register copy
|
||||
A[0].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
B[0].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
|
||||
// Main loop
|
||||
for (int kb = 0; kb < params.NblockK; kb++) {
|
||||
// Prepare next registers
|
||||
{
|
||||
A[1].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
16 + lane_idx / 16 * 8);
|
||||
B[1].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
16 + lane_idx / 16 * 8);
|
||||
}
|
||||
|
||||
// Prepare next smem
|
||||
if ((kb + Nstages - 1) < params.NblockK) {
|
||||
load_async<NUM_WARPS>(
|
||||
as[smem_pipe_write],
|
||||
as[smem_pipe_write].base_addr(),
|
||||
a + k_block_read,
|
||||
params.K);
|
||||
load_async<NUM_WARPS>(
|
||||
bs[smem_pipe_write],
|
||||
bs[smem_pipe_write].base_addr(),
|
||||
b + k_block_read,
|
||||
params.K);
|
||||
}
|
||||
k_block_read += BK;
|
||||
|
||||
cp_async_commit();
|
||||
|
||||
smem_pipe_write = smem_pipe_read;
|
||||
smem_pipe_read = smem_pipe_read + 1;
|
||||
smem_pipe_read = (smem_pipe_read == Nstages) ? 0 : smem_pipe_read;
|
||||
|
||||
// Do current gemm
|
||||
mma_t(C, A[0], B[0]);
|
||||
|
||||
// Do wait for next register
|
||||
cp_async_wait<1>();
|
||||
block.sync();
|
||||
|
||||
// Prepare next register (smem_pipe_read has moved to the next)
|
||||
{
|
||||
A[0].load(
|
||||
as[smem_pipe_read],
|
||||
as[smem_pipe_read].base_addr(),
|
||||
offset_m + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
B[0].load(
|
||||
bs[smem_pipe_read],
|
||||
bs[smem_pipe_read].base_addr(),
|
||||
offset_n + lane_idx % 16,
|
||||
lane_idx / 16 * 8);
|
||||
}
|
||||
|
||||
// Do current gemm
|
||||
mma_t(C, A[1], B[1]);
|
||||
}
|
||||
|
||||
// Wait and clear
|
||||
cp_async_wait_all();
|
||||
block.sync();
|
||||
|
||||
C.store_global(d, params.ldd, offset_m, offset_n);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void dispatch_steel_gemm(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& d,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int lda,
|
||||
int ldb,
|
||||
int ldd,
|
||||
bool a_transposed,
|
||||
bool b_transposed) {
|
||||
using DataType = cuda_type_t<float16_t>;
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(d);
|
||||
|
||||
constexpr int BM = 128;
|
||||
constexpr int BN = 128;
|
||||
constexpr int BK = 32;
|
||||
|
||||
constexpr int WM = 2;
|
||||
constexpr int WN = 2;
|
||||
|
||||
constexpr int SL = 0;
|
||||
constexpr int Nstages = 3;
|
||||
|
||||
constexpr uint32_t smem_bytes = BK * (BM + BN) * Nstages * sizeof(DataType);
|
||||
|
||||
const int NblockM = (M + BM - 1) / BM;
|
||||
const int NblockN = (N + BN - 1) / BN;
|
||||
const int NblockK = (K + BK - 1) / BK;
|
||||
|
||||
cu::GemmParams params{
|
||||
/* int M = */ M,
|
||||
/* int N = */ N,
|
||||
/* int K = */ K,
|
||||
/* int lda = */ lda,
|
||||
/* int ldb = */ ldb,
|
||||
/* int ldd = */ ldd,
|
||||
|
||||
/* int NblockM = */ NblockM,
|
||||
/* int NblockN = */ NblockN,
|
||||
/* int NblockK = */ NblockK,
|
||||
};
|
||||
|
||||
// Prepare launch grid params
|
||||
int tile = 1 << SL;
|
||||
int tm = (NblockM + tile - 1) / tile;
|
||||
int tn = NblockN * tile;
|
||||
|
||||
dim3 grid_dim(tn, tm, 1);
|
||||
dim3 block_dim(32 * WM * WN, 1, 1);
|
||||
|
||||
dispatch_bool(a_transposed, [&](auto ta_) {
|
||||
dispatch_bool(b_transposed, [&](auto tb_) {
|
||||
constexpr bool ta = ta_.value;
|
||||
constexpr bool tb = tb_.value;
|
||||
|
||||
auto kernel = cu::ab_t_aligned<DataType, BM, BN, BK>;
|
||||
cudaFuncSetAttribute(
|
||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid_dim,
|
||||
block_dim,
|
||||
smem_bytes,
|
||||
a.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
d.data<DataType>(),
|
||||
N,
|
||||
K);
|
||||
|
||||
// auto kernel = cu::kernel_steel_gemm<DataType, BM, BN, BK, WM, WN, ta,
|
||||
// tb, SL, Nstages>;
|
||||
|
||||
// cudaFuncSetAttribute(kernel,
|
||||
// cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
|
||||
|
||||
// encoder.add_kernel_node(
|
||||
// kernel,
|
||||
// grid_dim,
|
||||
// block_dim,
|
||||
// smem_bytes,
|
||||
// a.data<DataType>(),
|
||||
// b.data<DataType>(),
|
||||
// d.data<DataType>(),
|
||||
// params);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
27
mlx/backend/cuda/gemms/steel_gemm.h
Normal file
27
mlx/backend/cuda/gemms/steel_gemm.h
Normal file
@@ -0,0 +1,27 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void dispatch_steel_gemm(
|
||||
const Stream& s,
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& d,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int lda,
|
||||
int ldb,
|
||||
int ldd,
|
||||
bool a_transposed,
|
||||
bool b_transposed);
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -94,7 +94,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
return std::make_tuple(false, jit_source_gather, std::move(kernel_names));
|
||||
return std::make_pair(jit_source_gather, std::move(kernel_names));
|
||||
});
|
||||
|
||||
cu::KernelArgs args;
|
||||
@@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append<int32_t>(src.ndim());
|
||||
args.append_ndim(slice_sizes_);
|
||||
args.append(slice_size);
|
||||
args.append(axes_);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -189,7 +189,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
large ? "int64_t" : "int32_t"));
|
||||
}
|
||||
}
|
||||
return std::make_tuple(false, jit_source_scatter, std::move(kernel_names));
|
||||
return std::make_pair(jit_source_scatter, std::move(kernel_names));
|
||||
});
|
||||
|
||||
cu::KernelArgs args;
|
||||
@@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append_ndim(out.shape());
|
||||
args.append_ndim(out.strides());
|
||||
args.append<int32_t>(out.ndim());
|
||||
args.append(axes_);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -268,8 +268,7 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_tuple(
|
||||
false, jit_source_gather_axis, std::move(kernel_names));
|
||||
return std::make_pair(jit_source_gather_axis, std::move(kernel_names));
|
||||
});
|
||||
|
||||
size_t idx_size_pre = 1;
|
||||
@@ -372,8 +371,7 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::make_tuple(
|
||||
false, jit_source_scatter_axis, std::move(kernel_names));
|
||||
return std::make_pair(jit_source_scatter_axis, std::move(kernel_names));
|
||||
});
|
||||
|
||||
size_t idx_size_pre = 1;
|
||||
|
||||
@@ -67,11 +67,9 @@ const std::string& cccl_dir() {
|
||||
return path.string();
|
||||
}
|
||||
// Finally check the environment variable.
|
||||
if (const char* env = std::getenv("MLX_CCCL_DIR"); env) {
|
||||
path = env;
|
||||
if (!path.empty() && std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
path = std::getenv("MLX_CCCL_DIR");
|
||||
if (!path.empty() && std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
return std::string();
|
||||
}();
|
||||
@@ -99,41 +97,17 @@ const std::filesystem::path& ptx_cache_dir() {
|
||||
return cache;
|
||||
}
|
||||
|
||||
std::filesystem::path get_ptx_path(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name) {
|
||||
#ifdef _WIN32
|
||||
constexpr int max_file_name_length = 140;
|
||||
#else
|
||||
constexpr int max_file_name_length = 245;
|
||||
#endif
|
||||
|
||||
if (module_name.size() <= max_file_name_length) {
|
||||
return cache_dir / (module_name + ".ptx");
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir;
|
||||
int offset = 0;
|
||||
while (module_name.size() - offset > max_file_name_length) {
|
||||
ptx_path /= module_name.substr(offset, max_file_name_length);
|
||||
offset += max_file_name_length;
|
||||
}
|
||||
ptx_path /= module_name.substr(offset) + ".ptx";
|
||||
|
||||
return ptx_path;
|
||||
}
|
||||
|
||||
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
|
||||
bool read_cached_ptx(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name,
|
||||
std::string& ptx,
|
||||
std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||
std::vector<char>* ptx,
|
||||
std::vector<std::pair<std::string, std::string>>* ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
auto ptx_path = cache_dir / (module_name + ".ptx");
|
||||
std::error_code error;
|
||||
auto ptx_size = std::filesystem::file_size(ptx_path, error);
|
||||
if (error) {
|
||||
@@ -143,15 +117,15 @@ bool read_cached_ptx(
|
||||
if (!ptx_file.good()) {
|
||||
return false;
|
||||
}
|
||||
ptx.resize(ptx_size);
|
||||
ptx_file.read(ptx.data(), ptx_size);
|
||||
ptx->resize(ptx_size);
|
||||
ptx_file.read(ptx->data(), ptx_size);
|
||||
|
||||
std::ifstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
std::ifstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
std::string line;
|
||||
while (std::getline(txt_file, line)) {
|
||||
auto tab = line.find('\t');
|
||||
if (tab != std::string::npos) {
|
||||
ptx_kernels.emplace_back(line.substr(0, tab), line.substr(tab + 1));
|
||||
ptx_kernels->emplace_back(line.substr(0, tab), line.substr(tab + 1));
|
||||
}
|
||||
}
|
||||
return true;
|
||||
@@ -161,33 +135,23 @@ bool read_cached_ptx(
|
||||
void write_cached_ptx(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name,
|
||||
const std::string& ptx,
|
||||
const std::vector<char>& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
||||
const std::string& source_code) {
|
||||
if (cache_dir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
|
||||
// Ensure that the directory exists
|
||||
auto parent = ptx_path.parent_path();
|
||||
if (parent != cache_dir) {
|
||||
std::filesystem::create_directories(parent);
|
||||
}
|
||||
|
||||
// Write the compiled code and mangled names
|
||||
std::ofstream ptx_file(ptx_path, std::ios::binary);
|
||||
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
|
||||
if (!ptx.empty()) {
|
||||
ptx_file.write(&ptx.front(), ptx.size());
|
||||
}
|
||||
std::ofstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
std::ofstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
txt_file << name << "\t" << mangled << std::endl;
|
||||
}
|
||||
|
||||
// Write the generated code
|
||||
std::ofstream source_file(ptx_path.replace_extension(".cu"));
|
||||
std::ofstream source_file(cache_dir / (module_name + ".cu"));
|
||||
source_file << source_code;
|
||||
}
|
||||
|
||||
@@ -253,86 +217,85 @@ constexpr const char* g_headers[] = {
|
||||
jit_source_utils,
|
||||
};
|
||||
|
||||
void compile(
|
||||
} // namespace
|
||||
|
||||
JitModule::JitModule(
|
||||
Device& device,
|
||||
const std::string& module_name,
|
||||
const std::string& source,
|
||||
const std::vector<std::string>& kernel_names,
|
||||
std::string& ptx,
|
||||
std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||
// Create the program
|
||||
nvrtcProgram prog;
|
||||
CHECK_NVRTC_ERROR(nvrtcCreateProgram(
|
||||
&prog,
|
||||
source.c_str(),
|
||||
(module_name + ".cu").c_str(),
|
||||
std::size(g_headers),
|
||||
g_headers,
|
||||
g_include_names));
|
||||
std::unique_ptr<nvrtcProgram, void (*)(nvrtcProgram*)> prog_freer(
|
||||
&prog,
|
||||
[](nvrtcProgram* p) { CHECK_NVRTC_ERROR(nvrtcDestroyProgram(p)); });
|
||||
for (const auto& name : kernel_names) {
|
||||
CHECK_NVRTC_ERROR(nvrtcAddNameExpression(prog, name.c_str()));
|
||||
const KernelBuilder& builder) {
|
||||
// Check cache.
|
||||
std::vector<char> ptx;
|
||||
std::vector<std::pair<std::string, std::string>> ptx_kernels;
|
||||
if (!read_cached_ptx(ptx_cache_dir(), module_name, &ptx, &ptx_kernels)) {
|
||||
// Create program.
|
||||
auto [source_code, kernel_names] = builder();
|
||||
nvrtcProgram prog;
|
||||
CHECK_NVRTC_ERROR(nvrtcCreateProgram(
|
||||
&prog,
|
||||
source_code.c_str(),
|
||||
(module_name + ".cu").c_str(),
|
||||
std::size(g_headers),
|
||||
g_headers,
|
||||
g_include_names));
|
||||
std::unique_ptr<nvrtcProgram, void (*)(nvrtcProgram*)> prog_freer(
|
||||
&prog,
|
||||
[](nvrtcProgram* p) { CHECK_NVRTC_ERROR(nvrtcDestroyProgram(p)); });
|
||||
for (const auto& name : kernel_names) {
|
||||
CHECK_NVRTC_ERROR(nvrtcAddNameExpression(prog, name.c_str()));
|
||||
}
|
||||
|
||||
// Compile program.
|
||||
std::vector<const char*> args;
|
||||
bool use_sass = compiler_supports_device_sass(device);
|
||||
std::string compute = fmt::format(
|
||||
"--gpu-architecture={}_{}{}",
|
||||
use_sass ? "sm" : "compute",
|
||||
device.compute_capability_major(),
|
||||
device.compute_capability_minor());
|
||||
args.push_back(compute.c_str());
|
||||
std::string cccl_include = cccl_dir();
|
||||
if (!cccl_include.empty()) {
|
||||
cccl_include = fmt::format("--include-path={}", cccl_include);
|
||||
args.push_back(cccl_include.c_str());
|
||||
}
|
||||
std::string cuda_include =
|
||||
fmt::format("--include-path={}/include", cuda_home());
|
||||
args.push_back(cuda_include.c_str());
|
||||
nvrtcResult compile_result =
|
||||
nvrtcCompileProgram(prog, args.size(), args.data());
|
||||
if (compile_result != NVRTC_SUCCESS) {
|
||||
size_t log_size;
|
||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
|
||||
std::vector<char> log(log_size + 1, 0);
|
||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLog(prog, log.data()));
|
||||
throw std::runtime_error(
|
||||
fmt::format("Failed to compile kernel: {}.", log.data()));
|
||||
}
|
||||
|
||||
// Get mangled names of kernel names.
|
||||
for (const auto& name : kernel_names) {
|
||||
const char* mangled;
|
||||
CHECK_NVRTC_ERROR(nvrtcGetLoweredName(prog, name.c_str(), &mangled));
|
||||
ptx_kernels.emplace_back(name, mangled);
|
||||
}
|
||||
|
||||
// Get ptx data.
|
||||
size_t ptx_size;
|
||||
if (use_sass) {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetCUBINSize(prog, &ptx_size));
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTXSize(prog, &ptx_size));
|
||||
}
|
||||
ptx.resize(ptx_size, 0);
|
||||
if (use_sass) {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetCUBIN(prog, ptx.data()));
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||
}
|
||||
write_cached_ptx(
|
||||
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
|
||||
}
|
||||
|
||||
// Compile program.
|
||||
std::vector<const char*> args;
|
||||
bool use_sass = compiler_supports_device_sass(device);
|
||||
std::string compute = fmt::format(
|
||||
"--gpu-architecture={}_{}{}",
|
||||
use_sass ? "sm" : "compute",
|
||||
device.compute_capability_major(),
|
||||
device.compute_capability_minor());
|
||||
args.push_back(compute.c_str());
|
||||
std::string cccl_include = cccl_dir();
|
||||
if (!cccl_include.empty()) {
|
||||
cccl_include = fmt::format("--include-path={}", cccl_include);
|
||||
args.push_back(cccl_include.c_str());
|
||||
}
|
||||
std::string cuda_include =
|
||||
fmt::format("--include-path={}/include", cuda_home());
|
||||
args.push_back(cuda_include.c_str());
|
||||
nvrtcResult compile_result =
|
||||
nvrtcCompileProgram(prog, args.size(), args.data());
|
||||
if (compile_result != NVRTC_SUCCESS) {
|
||||
size_t log_size;
|
||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
|
||||
std::vector<char> log(log_size + 1, 0);
|
||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLog(prog, log.data()));
|
||||
throw std::runtime_error(
|
||||
fmt::format("Failed to compile kernel: {}.", log.data()));
|
||||
}
|
||||
|
||||
// Get mangled names of kernel names.
|
||||
for (const auto& name : kernel_names) {
|
||||
const char* mangled;
|
||||
CHECK_NVRTC_ERROR(nvrtcGetLoweredName(prog, name.c_str(), &mangled));
|
||||
ptx_kernels.emplace_back(name, mangled);
|
||||
}
|
||||
|
||||
// Get ptx data.
|
||||
size_t ptx_size;
|
||||
if (use_sass) {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetCUBINSize(prog, &ptx_size));
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTXSize(prog, &ptx_size));
|
||||
}
|
||||
ptx.resize(ptx_size);
|
||||
if (use_sass) {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetCUBIN(prog, ptx.data()));
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||
}
|
||||
}
|
||||
|
||||
void load_module(
|
||||
const std::string& module_name,
|
||||
const std::string& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
||||
CUmodule& module_,
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>>&
|
||||
kernels) {
|
||||
// Load module.
|
||||
char jit_log[4089] = {};
|
||||
CUjit_option options[] = {
|
||||
@@ -349,77 +312,21 @@ void load_module(
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
CUfunction kernel;
|
||||
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
|
||||
kernels[name] = std::make_tuple(kernel, false, 0);
|
||||
kernels_[name] = kernel;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
JitModule::JitModule(
|
||||
Device& device,
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder,
|
||||
bool use_disk_cache) {
|
||||
// Will hold the actual device executable source code and kernel names
|
||||
std::string ptx;
|
||||
std::vector<std::pair<std::string, std::string>> ptx_kernels;
|
||||
|
||||
// Try to load them from the file cache
|
||||
if (!read_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels)) {
|
||||
auto [precompiled, source_code, kernel_names] = builder();
|
||||
|
||||
// Get the PTX or cubin
|
||||
if (precompiled) {
|
||||
ptx = std::move(source_code);
|
||||
for (auto& name : kernel_names) {
|
||||
ptx_kernels.emplace_back(name, name);
|
||||
}
|
||||
} else {
|
||||
compile(device, module_name, source_code, kernel_names, ptx, ptx_kernels);
|
||||
}
|
||||
|
||||
// If requested save them in the file cache for the next launch
|
||||
if (use_disk_cache) {
|
||||
write_cached_ptx(
|
||||
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
|
||||
}
|
||||
}
|
||||
|
||||
// Load the module
|
||||
load_module(module_name, ptx, ptx_kernels, module_, kernels_);
|
||||
}
|
||||
|
||||
JitModule::~JitModule() {
|
||||
CHECK_CUDA_ERROR(cuModuleUnload(module_));
|
||||
}
|
||||
|
||||
std::pair<CUfunction, uint> JitModule::get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
CUfunction JitModule::get_kernel(const std::string& kernel_name) {
|
||||
auto it = kernels_.find(kernel_name);
|
||||
if (it == kernels_.end()) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("There is no kernel named {}.", kernel_name));
|
||||
}
|
||||
|
||||
// If it is the first time we run this kernel then configure it. Do it only
|
||||
// once!
|
||||
auto kernel = std::get<0>(it->second);
|
||||
if (!std::get<1>(it->second)) {
|
||||
if (configure_kernel) {
|
||||
configure_kernel(kernel);
|
||||
}
|
||||
std::get<1>(it->second) = true;
|
||||
std::get<2>(it->second) = max_occupancy_block_dim(kernel);
|
||||
}
|
||||
|
||||
return {kernel, std::get<2>(it->second)};
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
return get_kernel_and_dims(kernel_name, std::move(configure_kernel)).first;
|
||||
return it->second;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
@@ -430,12 +337,11 @@ std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
const KernelBuilder& builder,
|
||||
bool cache) {
|
||||
const KernelBuilder& builder) {
|
||||
auto& map = get_jit_module_cache();
|
||||
auto it = map.find(name);
|
||||
if (it == map.end()) {
|
||||
it = map.try_emplace(name, cu::device(device), name, builder, cache).first;
|
||||
it = map.try_emplace(name, cu::device(device), name, builder).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
@@ -19,8 +19,7 @@ namespace mlx::core::cu {
|
||||
|
||||
class Device;
|
||||
|
||||
using KernelBuilderResult = std::tuple<
|
||||
/* precompiled */ bool,
|
||||
using KernelBuilderResult = std::pair<
|
||||
/* source code */ std::string,
|
||||
/* kernel names */ std::vector<std::string>>;
|
||||
using KernelBuilder = std::function<KernelBuilderResult()>;
|
||||
@@ -46,11 +45,6 @@ struct KernelArgs {
|
||||
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(const std::vector<T>& vec) {
|
||||
append(SmallVector<T>(vec.begin(), vec.end()));
|
||||
}
|
||||
|
||||
// Make sure the arg is copied to an array with size of NDIM.
|
||||
template <size_t NDIM = MAX_NDIM, typename T>
|
||||
void append_ndim(SmallVector<T> vec) {
|
||||
@@ -69,16 +63,14 @@ struct KernelArgs {
|
||||
private:
|
||||
std::vector<void*> args_;
|
||||
|
||||
// The cuGraphAddKernelNode API requires passing pointers to arguments so
|
||||
// store temporary values until the node is created.
|
||||
// The cuLaunchKernel API requires passing pointers to arguments so store
|
||||
// temporary values untill kernel is launched.
|
||||
using Arg = std::variant<
|
||||
std::monostate,
|
||||
CUdeviceptr,
|
||||
bool,
|
||||
int32_t,
|
||||
uint32_t,
|
||||
int64_t,
|
||||
float,
|
||||
SmallVector<const void*>,
|
||||
SmallVector<int32_t>,
|
||||
SmallVector<int64_t>>;
|
||||
@@ -90,22 +82,16 @@ class JitModule {
|
||||
JitModule(
|
||||
Device& device,
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder,
|
||||
bool cache);
|
||||
const KernelBuilder& builder);
|
||||
~JitModule();
|
||||
|
||||
JitModule(const JitModule&) = delete;
|
||||
JitModule& operator=(const JitModule&) = delete;
|
||||
CUfunction get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
std::pair<CUfunction, uint> get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
CUfunction get_kernel(const std::string& kernel_name);
|
||||
|
||||
private:
|
||||
CUmodule module_{nullptr};
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>> kernels_;
|
||||
std::unordered_map<std::string, CUfunction> kernels_;
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
@@ -113,7 +99,6 @@ std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
const KernelBuilder& builder,
|
||||
bool use_disk_cache = true);
|
||||
const KernelBuilder& builder);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -35,10 +35,12 @@ std::tuple<dim3, uint> get_launch_args(
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread /* = 1 */,
|
||||
uint max_block_dim /* = 1024 */) {
|
||||
int work_per_thread) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = max_block_dim < nthreads ? max_block_dim : nthreads;
|
||||
uint block_dim = 1024;
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file includes host-only utilities for writing CUDA kernels, the
|
||||
// difference from backend/cuda/device/utils.cuh is that the latter file only
|
||||
// include device-only code.
|
||||
// This file includes host-only utilies for writing CUDA kernels, the difference
|
||||
// from backend/cuda/device/utils.cuh is that the latter file only include
|
||||
// device-only code.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -120,28 +120,19 @@ dim3 get_2d_grid_dims(
|
||||
size_t divisor);
|
||||
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
|
||||
// Get the num_blocks and block_dims assuming each thread handles
|
||||
// |work_per_thread| elements of |arr|.
|
||||
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
|
||||
// assuming each thread handles |work_per_thread| elements of |arr|.
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024);
|
||||
int work_per_thread = 1);
|
||||
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024) {
|
||||
inline std::tuple<dim3, uint>
|
||||
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
|
||||
return get_launch_args(
|
||||
arr.size(),
|
||||
arr.shape(),
|
||||
arr.strides(),
|
||||
large,
|
||||
work_per_thread,
|
||||
max_block_dim);
|
||||
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,15 +2,11 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
@@ -31,14 +27,6 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize with capacity read from |env_name|.
|
||||
LRUCache(const char* env_name, int default_capacity)
|
||||
: LRUCache(env::get_var(env_name, default_capacity)) {
|
||||
if (env::get_var("MLX_ENABLE_CACHE_THRASHING_CHECK", 1)) {
|
||||
env_name_ = env_name;
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
@@ -88,14 +76,6 @@ class LRUCache {
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
if (env_name_ && ++cache_misses_ > 2 * capacity_) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Cache thrashing is happening, please set the environment variable "
|
||||
"{} to a larger value than {} to fix degraded performance.",
|
||||
env_name_,
|
||||
capacity_));
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
@@ -126,9 +106,6 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
const char* env_name_{nullptr};
|
||||
size_t cache_misses_{0};
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
|
||||
@@ -7,11 +7,12 @@
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include "mlx/backend/cuda/gemms/steel_gemm.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
@@ -29,80 +30,6 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
}
|
||||
}
|
||||
|
||||
void gemm_and_bias(
|
||||
cu::CommandEncoder& encoder,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool a_transposed,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
int64_t ldb,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& bias = std::nullopt,
|
||||
float alpha = 1.0f) {
|
||||
// Check and collapse batch dimensions
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
// Use gemmv when possible
|
||||
if (!bias && cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
if (bias) {
|
||||
if (a.dtype() == complex64) {
|
||||
throw std::runtime_error(
|
||||
"[gemm_and_bias] complex64 bias epilogue isn’t supported in cublasLtMatmul.");
|
||||
}
|
||||
gemm.set_bias(encoder, *bias);
|
||||
}
|
||||
gemm.run(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides, alpha);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -123,6 +50,9 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Init checks and prep
|
||||
|
||||
int M = a_pre.shape(-2);
|
||||
int N = b_pre.shape(-1);
|
||||
int K = a_pre.shape(-1);
|
||||
@@ -132,8 +62,76 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
gemm_and_bias(
|
||||
encoder, M, N, K, a_transposed, lda, b_transposed, ldb, out, a, b);
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
if (out.dtype() == float16 && batch_count == 1 && !a_transposed &&
|
||||
b_transposed) {
|
||||
return dispatch_steel_gemm(
|
||||
/* const Stream& s = */ s,
|
||||
/* cu::CommandEncoder& encoder = */ encoder,
|
||||
/* const array& a = */ a,
|
||||
/* const array& b = */ b,
|
||||
/* array& d = */ out,
|
||||
/* int M = */ M,
|
||||
/* int N = */ N,
|
||||
/* int K = */ K,
|
||||
/* int lda = */ lda,
|
||||
/* int ldb = */ ldb,
|
||||
/* int ldd = */ N,
|
||||
/* bool a_transposed = */ a_transposed,
|
||||
/* bool b_transposed = */ b_transposed);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -158,29 +156,6 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Dispatch to GEMM with epilogue or AddMM
|
||||
|
||||
if (beta_ == 1 && a.dtype() != complex64 && c.strides(-1) == 1 &&
|
||||
c.data_size() == out.shape(-1)) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
gemm_and_bias(
|
||||
encoder,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
a_transposed,
|
||||
lda,
|
||||
b_transposed,
|
||||
ldb,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
alpha_);
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t ldc;
|
||||
{
|
||||
auto stx = c.strides()[c.ndim() - 2];
|
||||
@@ -222,7 +197,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt with AddMM settings
|
||||
// Invoke cublasLt
|
||||
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user