Compare commits

..

3 Commits

Author SHA1 Message Date
Jagrit Digani
400f8457ea Experimenting with a gemm based on the cuda steel utils 2025-08-14 11:27:50 -07:00
Cheng
dfb5022eab Rename cu::Matmul to CublasGemm (#2488) 2025-08-13 09:37:40 +09:00
Daniel Yeh
ac207ce7aa make code blocks copyable (#2480)
Co-authored-by: Chen-Chen Yeh <ge96noj@mytum.de>
2025-08-12 12:29:02 -07:00
11 changed files with 583 additions and 176 deletions

View File

@@ -1,4 +1,5 @@
sphinx
breathe
sphinx-book-theme
sphinx-copybutton
mlx

View File

@@ -18,6 +18,7 @@ release = version
# -- General configuration ---------------------------------------------------
extensions = [
"sphinx_copybutton",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.intersphinx",

View File

@@ -24,6 +24,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@@ -53,10 +54,10 @@ target_sources(
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)

View File

@@ -7,10 +7,12 @@
#include <fmt/format.h>
namespace mlx::core::cu {
namespace mlx::core {
namespace {
struct CublasPreference {
CublasPreference(Device& device) {
CublasPreference(cu::Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
@@ -33,7 +35,7 @@ struct CublasPreference {
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
cublasLtMatmulPreference_t cublas_preference(cu::Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
@@ -52,7 +54,7 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
}
}
@@ -70,7 +72,7 @@ cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
}
}
@@ -102,8 +104,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
return desc;
}
Matmul::Matmul(
Device& device,
} // namespace
CublasGemm::CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -155,8 +159,8 @@ Matmul::Matmul(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
Matmul::Matmul(
Device& device,
CublasGemm::CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -171,7 +175,7 @@ Matmul::Matmul(
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: Matmul(
: CublasGemm(
device,
dtype,
a_transposed,
@@ -190,7 +194,7 @@ Matmul::Matmul(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
Matmul::~Matmul() {
CublasGemm::~CublasGemm() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
@@ -198,7 +202,73 @@ Matmul::~Matmul() {
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void Matmul::run_impl(
void CublasGemm::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
int batch_count = out.size() / (M_ * N_);
if (batch_count / batch_shape.back() > 1) {
run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
return;
}
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
}
void CublasGemm::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
int batch_count = out.size() / (M_ * N_);
if (batch_count / batch_shape.back() > 1) {
run_batched(
encoder,
out,
a,
b,
c,
batch_shape,
a_batch_strides,
b_batch_strides,
c_batch_strides,
alpha,
beta);
return;
}
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
execute(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c.data<void>(),
alpha,
beta);
}
void CublasGemm::execute(
cu::CommandEncoder& encoder,
void* out,
const void* a,
@@ -256,29 +326,4 @@ void Matmul::run_impl(
encoder.stream()));
}
void Matmul::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c /* = std::nullopt */,
float alpha /* = 1 */,
float beta /* = 0 */) {
encoder.set_input_array(a);
encoder.set_input_array(b);
if (c) {
encoder.set_input_array(*c);
}
encoder.set_output_array(out);
run_impl(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c ? c->data<void>() : nullptr,
alpha,
beta);
}
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -5,13 +5,13 @@
#include "mlx/backend/cuda/device.h"
#include <cublasLt.h>
#include <optional>
namespace mlx::core::cu {
class Matmul {
namespace mlx::core {
class CublasGemm {
public:
Matmul(
Device& device,
CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -25,8 +25,8 @@ class Matmul {
int64_t a_batch_stride,
int64_t b_batch_stride);
Matmul(
Device& device,
CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -42,25 +42,39 @@ class Matmul {
int64_t b_batch_stride,
int64_t c_batch_stride);
~Matmul();
~CublasGemm();
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c = std::nullopt,
float alpha = 1,
float beta = 0);
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides);
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides);
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides);
void run_batched(
cu::CommandEncoder& encoder,
@@ -68,15 +82,14 @@ class Matmul {
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_impl(
void execute(
cu::CommandEncoder& encoder,
void* out,
const void* a,
@@ -97,4 +110,4 @@ class Matmul {
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -4,16 +4,16 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
namespace mlx::core::cu {
namespace mlx::core {
void Matmul::run_batched(
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
@@ -22,7 +22,7 @@ void Matmul::run_batched(
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
execute(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
@@ -33,16 +33,16 @@ void Matmul::run_batched(
}
}
void Matmul::run_batched(
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
encoder.set_input_array(a);
@@ -56,7 +56,7 @@ void Matmul::run_batched(
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
execute(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
@@ -70,4 +70,4 @@ void Matmul::run_batched(
}
}
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -6,7 +6,9 @@
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
@@ -128,6 +130,10 @@ __global__ void set_addmm_device_pointers_g(
out_start + item_size * index * batch_stride;
}
} // namespace cu
namespace {
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
@@ -139,14 +145,16 @@ void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
void Matmul::run_batched(
} // namespace
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
int batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
@@ -213,7 +221,7 @@ void Matmul::run_batched(
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
run_impl(
execute(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
@@ -221,16 +229,16 @@ void Matmul::run_batched(
nullptr);
}
void Matmul::run_batched(
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
int batch_count = out.size() / (M_ * N_);
@@ -306,7 +314,7 @@ void Matmul::run_batched(
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
run_impl(
execute(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
@@ -316,4 +324,4 @@ void Matmul::run_batched(
beta);
}
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -0,0 +1,301 @@
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/utils.cuh"
#include "mlx/backend/cuda/gemms/steel_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
#include <cooperative_groups.h>
#include "mlx/backend/cuda/steel/gemm.cuh"
#include "mlx/backend/cuda/steel/mma.cuh"
#include "mlx/backend/cuda/steel/tiles.cuh"
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
struct GemmParams {
int M;
int N;
int K;
int lda;
int ldb;
int ldd;
int NblockM;
int NblockN;
int NblockK;
};
template <
typename T,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
int SL,
int Nstages>
__global__ void kernel_steel_gemm(
const T* a,
const T* b,
T* d,
__grid_constant__ const GemmParams params) {
const int bM_idx = (blockIdx.y << SL) + (blockIdx.x & ((1 << SL) - 1));
const int bN_idx = blockIdx.x >> SL;
if (params.NblockN <= bN_idx || params.NblockM <= bM_idx) {
return;
}
const int d_row = bM_idx * BM;
const int d_col = bN_idx * BN;
const size_t d_row_long = size_t(d_row);
const size_t d_col_long = size_t(d_col);
a += transpose_a ? d_row_long : d_row_long * params.K;
b += transpose_b ? d_col_long * params.K : d_col_long;
d += d_row_long * params.ldd + d_col_long;
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<32>(block);
const int lane_idx = warp.thread_rank();
const int warp_idx = warp.meta_group_rank();
const int wm = warp_idx / WN;
const int wn = warp_idx % WN;
constexpr int SM = BM / WM;
constexpr int SN = BN / WN;
constexpr int SK = BK;
constexpr int TK = SK / 16;
constexpr int NUM_WARPS = WM * WN;
// Allocate shared memory
extern __shared__ char shmem[];
SharedTile<T, BM, BK>(&as)[Nstages] =
*(SharedTile<T, BM, BK>(*)[Nstages])(&shmem[0]);
SharedTile<T, BN, BK>(&bs)[Nstages] = *(SharedTile<T, BN, BK>(*)[Nstages])(
&shmem[sizeof(T) * Nstages * BM * BK]);
// Allocate registers for the MMA
RegisterTile<float, SM, SN> C;
RegisterTile<T, SM, 16> A[TK];
RegisterTile<T, SN, 16> B[TK];
// Zero the accumulators
C.fill(0);
// Start gmem -> smem copies
int k_block_read = 0;
MLX_UNROLL
for (int bk = 0; bk < (Nstages - 1); bk++) {
load_async<NUM_WARPS>(
as[bk], as[bk].base_addr(), a + k_block_read, params.K);
load_async<NUM_WARPS>(
bs[bk], bs[bk].base_addr(), b + k_block_read, params.K);
k_block_read += BK;
cp_async_commit();
}
int smem_pipe_read = 0;
int smem_pipe_write = Nstages - 1;
// Wait till only 1 remains laoding
cp_async_wait<1>();
block.sync();
const int offset_m = wm * SM;
const int offset_n = wn * SN;
// Start smem -> register copy
A[0].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
lane_idx / 16 * 8);
B[0].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
lane_idx / 16 * 8);
// Main loop
for (int kb = 0; kb < params.NblockK; kb++) {
// Prepare next registers
{
A[1].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
16 + lane_idx / 16 * 8);
B[1].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
16 + lane_idx / 16 * 8);
}
// Prepare next smem
if ((kb + Nstages - 1) < params.NblockK) {
load_async<NUM_WARPS>(
as[smem_pipe_write],
as[smem_pipe_write].base_addr(),
a + k_block_read,
params.K);
load_async<NUM_WARPS>(
bs[smem_pipe_write],
bs[smem_pipe_write].base_addr(),
b + k_block_read,
params.K);
}
k_block_read += BK;
cp_async_commit();
smem_pipe_write = smem_pipe_read;
smem_pipe_read = smem_pipe_read + 1;
smem_pipe_read = (smem_pipe_read == Nstages) ? 0 : smem_pipe_read;
// Do current gemm
mma_t(C, A[0], B[0]);
// Do wait for next register
cp_async_wait<1>();
block.sync();
// Prepare next register (smem_pipe_read has moved to the next)
{
A[0].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
lane_idx / 16 * 8);
B[0].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
lane_idx / 16 * 8);
}
// Do current gemm
mma_t(C, A[1], B[1]);
}
// Wait and clear
cp_async_wait_all();
block.sync();
C.store_global(d, params.ldd, offset_m, offset_n);
}
} // namespace cu
void dispatch_steel_gemm(
const Stream& s,
cu::CommandEncoder& encoder,
const array& a,
const array& b,
array& d,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool a_transposed,
bool b_transposed) {
using DataType = cuda_type_t<float16_t>;
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(d);
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 32;
constexpr int WM = 2;
constexpr int WN = 2;
constexpr int SL = 0;
constexpr int Nstages = 3;
constexpr uint32_t smem_bytes = BK * (BM + BN) * Nstages * sizeof(DataType);
const int NblockM = (M + BM - 1) / BM;
const int NblockN = (N + BN - 1) / BN;
const int NblockK = (K + BK - 1) / BK;
cu::GemmParams params{
/* int M = */ M,
/* int N = */ N,
/* int K = */ K,
/* int lda = */ lda,
/* int ldb = */ ldb,
/* int ldd = */ ldd,
/* int NblockM = */ NblockM,
/* int NblockN = */ NblockN,
/* int NblockK = */ NblockK,
};
// Prepare launch grid params
int tile = 1 << SL;
int tm = (NblockM + tile - 1) / tile;
int tn = NblockN * tile;
dim3 grid_dim(tn, tm, 1);
dim3 block_dim(32 * WM * WN, 1, 1);
dispatch_bool(a_transposed, [&](auto ta_) {
dispatch_bool(b_transposed, [&](auto tb_) {
constexpr bool ta = ta_.value;
constexpr bool tb = tb_.value;
auto kernel = cu::ab_t_aligned<DataType, BM, BN, BK>;
cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
encoder.add_kernel_node(
kernel,
grid_dim,
block_dim,
smem_bytes,
a.data<DataType>(),
b.data<DataType>(),
d.data<DataType>(),
N,
K);
// auto kernel = cu::kernel_steel_gemm<DataType, BM, BN, BK, WM, WN, ta,
// tb, SL, Nstages>;
// cudaFuncSetAttribute(kernel,
// cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
// encoder.add_kernel_node(
// kernel,
// grid_dim,
// block_dim,
// smem_bytes,
// a.data<DataType>(),
// b.data<DataType>(),
// d.data<DataType>(),
// params);
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,27 @@
#pragma once
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
namespace mlx::core {
void dispatch_steel_gemm(
const Stream& s,
cu::CommandEncoder& encoder,
const array& a,
const array& b,
array& d,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool a_transposed,
bool b_transposed);
} // namespace mlx::core

View File

@@ -7,6 +7,8 @@
#include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h"
#include "mlx/backend/cuda/gemms/steel_gemm.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
@@ -95,9 +97,27 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
return;
}
if (out.dtype() == float16 && batch_count == 1 && !a_transposed &&
b_transposed) {
return dispatch_steel_gemm(
/* const Stream& s = */ s,
/* cu::CommandEncoder& encoder = */ encoder,
/* const array& a = */ a,
/* const array& b = */ b,
/* array& d = */ out,
/* int M = */ M,
/* int N = */ N,
/* int K = */ K,
/* int lda = */ lda,
/* int ldb = */ ldb,
/* int ldd = */ N,
/* bool a_transposed = */ a_transposed,
/* bool b_transposed = */ b_transposed);
}
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
CublasGemm gemm(
cu::device(s.device),
a.dtype(),
a_transposed,
@@ -111,14 +131,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
batch_shape.back(),
a_batch_strides.back(),
b_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b);
return;
}
matmul.run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
}
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -186,7 +199,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
CublasGemm gemm(
cu::device(s.device),
a.dtype(),
a_transposed,
@@ -202,12 +215,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
a_batch_strides.back(),
b_batch_strides.back(),
c_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b, c, alpha_, beta_);
return;
}
matmul.run_batched(
gemm.run(
encoder,
out,
a,

View File

@@ -143,85 +143,87 @@ struct Tile16x16 {
}
};
/**
* A simple container of multiple Tile16x16.
*
* Provides utility functions for loading and manipulating collections of basic
* tiles.
*/
template <typename T, int ROWS_, int COLS_>
struct RegisterTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
// /**
// * A simple container of multiple Tile16x16.
// *
// * Provides utility functions for loading and manipulating collections of
// basic
// * tiles.
// */
// template <typename T, int ROWS_, int COLS_>
// struct RegisterTile {
// static constexpr int ROWS = ROWS_;
// static constexpr int COLS = COLS_;
// static constexpr int TILES_X = COLS / 16;
// static constexpr int TILES_Y = ROWS / 16;
Tile16x16<T> data[TILES_X * TILES_Y];
// Tile16x16<T> data[TILES_X * TILES_Y];
__device__ inline void fill(T v) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].fill(v);
}
}
}
// __device__ inline void fill(T v) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].fill(v);
// }
// }
// }
template <typename Tile>
__device__ __forceinline__ void
load(Tile& tile, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].load(
tile.loc(base_address, row + i * 16, col + j * 16));
}
}
}
// template <typename Tile>
// __device__ __forceinline__ void
// load(Tile& tile, uint32_t base_address, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].load(
// tile.loc(base_address, row + i * 16, col + j * 16));
// }
// }
// }
template <typename Tile, typename F>
__device__ __forceinline__ void
load(Tile& tile, F f, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
f(data[i * TILES_X + j],
tile,
base_address,
row + i * 16,
col + j * 16);
}
}
}
// template <typename Tile, typename F>
// __device__ __forceinline__ void
// load(Tile& tile, F f, uint32_t base_address, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// f(data[i * TILES_X + j],
// tile,
// base_address,
// row + i * 16,
// col + j * 16);
// }
// }
// }
template <typename U>
__device__ inline void store_global(U* x, int N, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global(
x + (row + i * 16) * N + col + j * 16, N);
}
}
}
// template <typename U>
// __device__ inline void store_global(U* x, int N, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].store_global(
// x + (row + i * 16) * N + col + j * 16, N);
// }
// }
// }
template <typename U>
__device__ inline void
store_global_safe(U* x, int N, int row, int col, int max_rows) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global_safe(
x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i * 16);
}
}
}
};
// template <typename U>
// __device__ inline void
// store_global_safe(U* x, int N, int row, int col, int max_rows) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].store_global_safe(
// x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i *
// 16);
// }
// }
// }
// };
/**
* A simple container of multiple Tile16x16.