Compare commits

...

263 Commits

Author SHA1 Message Date
Jagrit Digani
400f8457ea Experimenting with a gemm based on the cuda steel utils 2025-08-14 11:27:50 -07:00
Cheng
dfb5022eab Rename cu::Matmul to CublasGemm (#2488) 2025-08-13 09:37:40 +09:00
Daniel Yeh
ac207ce7aa make code blocks copyable (#2480)
Co-authored-by: Chen-Chen Yeh <ge96noj@mytum.de>
2025-08-12 12:29:02 -07:00
Abe Leininger
fce53b61d6 Fix reduce sum/prod overflow (#2477) 2025-08-12 00:05:33 -07:00
Angelos Katharopoulos
8ae4a76308 Use CMake <4.1 to avoid the nvpl error (#2489) 2025-08-12 00:03:42 -07:00
Cheng
7fde1b6a1e Fix logsumexp/softmax not fused for some cases (#2474) 2025-08-08 14:07:17 -07:00
Cheng
aa7b47481a [CUDA] Optimize set_mm_device_pointers for small ndim (#2473) 2025-08-08 15:23:30 +09:00
Awni Hannun
56be773610 version (#2470) 2025-08-07 00:36:04 -07:00
Jagrit Digani
a9bdd67baa Add CUDA sdpa vector (#2468) 2025-08-06 21:40:26 -07:00
Angelos Katharopoulos
f2adb5638d Fix typo in metal command encoder (#2471) 2025-08-06 16:58:23 -07:00
Luca Vivona
728d4db582 Support destination arg in tree flatten/unflatten (#2450) 2025-08-06 15:34:59 -07:00
Awni Hannun
db5c7efcf6 revert default cuda install (#2465)
* revert default cuda install

* revert default cuda install
2025-08-06 06:19:12 -07:00
Awni Hannun
7bb96e4249 fix cublas on h100 (#2466) 2025-08-06 06:18:58 -07:00
Awni Hannun
fa89f0b150 faster gather qmm sorted test (#2463) 2025-08-05 06:27:40 -07:00
Awni Hannun
ca973d1e83 fix install tags (#2464) 2025-08-04 20:01:23 -07:00
Cheng
828c5f1137 Use SmallVector for shapes and strides (#2454)
* Use SmallVector for shapes and strides

* Convert SmallVector to tuple
2025-08-05 09:41:03 +09:00
Gaétan Lepage
7d86a5c108 Feat: add USE_SYSTEM_FMT CMake option (#2219) 2025-08-04 16:36:11 -07:00
Awni Hannun
0b807893a7 fix wraps compile (#2461) 2025-08-04 16:14:18 -07:00
Awni Hannun
6ad0889c8a default install cuda on linux (#2462) 2025-08-04 15:33:05 -07:00
Zamderax
737dd6d1ac Add missing <algorithm> header to jit_compiler.cpp (#2460)
Fixes compilation error on Linux where std::find_if is used on line 121
but the <algorithm> header was not included. While this might work on
some platforms due to transitive includes, it's not guaranteed by the
C++ standard.

Resolves issue #2459
2025-08-04 14:00:46 -07:00
Cheng
aaf78f4c6b Use LRU cache for cuda graph (#2448)
* Use LRU cache for cuda graph

* Remove unused destructor
2025-08-02 21:28:57 +09:00
Angelos Katharopoulos
8831064493 Fix arctan2 grads (#2453) 2025-08-01 21:06:04 -07:00
Angelos Katharopoulos
be9bc96da4 [CUDA] Matmul utils initial commit (#2441) 2025-08-01 14:22:25 -07:00
Angelos Katharopoulos
86258f292f [CUDA] Vectorize generated kernels (#2444) 2025-07-31 18:18:57 -07:00
Cheng
b26d88591c [CUDA] Save primitive inputs faster (#2449)
* Add more nvtx loggings

* [CUDA] Saving primitive inputs faster

* Remove unneeded check
2025-08-01 10:16:06 +09:00
Cheng
86c6a15571 [CUDA] Backward convolution (#2431) 2025-08-01 09:54:05 +09:00
junpeiz
8b25ce62d5 Add tests for export including control flow models and quantized models (#2430)
* Add tests for export, including control flow export and quantized model export.

* Skip quantization related test for CUDA backend.
2025-07-31 11:06:26 -07:00
Awni Hannun
da5912e4f2 fix custom metal extension (#2446) 2025-07-31 06:25:36 -07:00
Cheng
daafee676f Fix wrong graph key when using concurrent context (#2447) 2025-07-31 06:01:05 -07:00
Awni Hannun
d32519c8ee fix gemv regression (#2445) 2025-07-30 14:23:01 -07:00
Awni Hannun
b405591249 fix circular reference (#2443) 2025-07-30 09:37:44 -07:00
Angelos Katharopoulos
3bf81ed1bd [CUDA] Quantized refactoring (#2442) 2025-07-30 08:27:20 -07:00
Cheng
2204182bba Make CI faster (#2440) 2025-07-30 02:26:36 -07:00
Cheng
3628e5d497 Use load_vector in arg_reduce (#2439) 2025-07-30 17:40:26 +09:00
Cheng
a0ae49d397 Move arange to its own file (#2438) 2025-07-30 13:05:51 +09:00
Cheng
254476718b Remove the kernel arg from get_launch_args (#2437) 2025-07-30 11:43:02 +09:00
Awni Hannun
3adba92ebe Cuda faster softmax (#2435)
* faster softmax and logsumexp

* faster softmax and logsumexp

* format
2025-07-29 17:18:12 -07:00
Awni Hannun
ef631d63af faster rms norm (#2433) 2025-07-29 13:12:00 -07:00
Cheng
970dbe8e25 Use ccache in CI (#2414)
* Detect ccache

* Use ccache in CI

* Separate cache for different images

* Test both 12.2 and 12.9 for PRs
2025-07-29 08:43:22 +09:00
Awni Hannun
641be9463b Add more CUDA architectures for PyPi package (#2427)
* add cuda sm 90

* add more archs
2025-07-28 12:35:15 -07:00
Awni Hannun
ab0e608862 [CUDA] More sizes for gemv (#2429)
* route more to gemv

* route more sizes to custom gemv
2025-07-28 12:35:01 -07:00
Awni Hannun
1588659062 no occupancy query for launch params (#2426) 2025-07-28 09:09:41 -07:00
Awni Hannun
b9e88fb976 [CUDA] Fix segfault on exit (#2424)
* fix cuda segfault on exit

* comment
2025-07-27 08:08:13 -07:00
Awni Hannun
4ad53414dd fix cuda pypi package (#2423)
* fix cuda pypi package

* patch bump
2025-07-25 15:20:29 -07:00
Awni Hannun
d1165b215e version (#2420) 2025-07-25 13:29:28 -07:00
Awni Hannun
dcb8319f3d update install docs and requirements (#2419) 2025-07-25 12:13:19 -07:00
Awni Hannun
5597fa089c Fix qvm splitk (#2415) 2025-07-25 11:50:24 -07:00
Awni Hannun
9acec364c2 [CUDA] Always use batched matmul (#2404)
* cuda batched mm

* addmm as well

* comment
2025-07-24 20:46:02 -07:00
Skonor
7d9d6ef456 docs: fix adam and adamw eps placement (#2416)
Co-authored-by: Mikhail Gorbunov <m_gorbunov@apple.com>
2025-07-24 16:40:45 -07:00
Cheng
6f5874a2f2 [CUDA] Initial implementation of Convolution with cuDNN (#2385)
* Link with cuDNN

* Initial implementation

* Remove backend apis

* Fix recording cudnn conv

* More unused backend apis

* Fix C++ conv tests

* include cudnn as python dep

* Install libcudnn9-dev-cuda-12 in CI

* cudnn only accepts contiguous inputs

* Switch to backend apis

* Plan needs to be kept alive

* Turn off tf32

* Add cache

* Test the native cuda graph api

* Set cudnn stream before execution

* Make LRUCache more like a normal container

* Do error check for cublas handle

* Zero-initilizing array

* Use tf32 for conv

* Skip TestConv.test_torch_conv_2D test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-07-25 08:12:10 +09:00
Awni Hannun
70dc336785 Test on cuda 12.2 and 12.9 (#2413) 2025-07-24 06:06:15 -07:00
Awni Hannun
4e504039f5 [Metal] Release metal events (#2412)
* release metal events

* fix

* fix
2025-07-23 19:53:42 -07:00
Awni Hannun
d1f4d291e8 Fix uv install and add dev release (#2411)
* fix uv install and add dev release

* fix docstring

* pin cuda deps

* cuda release on cpu-only machine
2025-07-23 16:54:19 -07:00
Awni Hannun
e1840853ce full row mask in sdpa consistently gives nan (#2406) 2025-07-23 16:37:03 -07:00
Cheng
0f5ce173da [CUDA] --compress-mode requires CUDA 12.8 (#2407) 2025-07-23 06:11:11 -07:00
Cheng
588854195f Remove unused code in Convolution::vjp (#2408) 2025-07-23 06:11:00 -07:00
Fangjun Kuang
28d068bce6 Fix an error in the comment for mx.dequantize (#2409) 2025-07-23 06:10:50 -07:00
Awni Hannun
d107d8d495 add cuda gemv (#2400) 2025-07-22 08:24:13 -07:00
Awni Hannun
1e496ddb82 [CUDA] Simplify allocator (#2392)
* simplify allocator and fixe race with small pool

* Don't use shared event in worker

* use cuda buffer in small pool

* comment

* comment
2025-07-22 08:24:01 -07:00
Awni Hannun
74eccbf3fa use size option in binary (#2399) 2025-07-22 07:00:53 -07:00
Awni Hannun
08638223ca Fix including stubs in wheel (#2398)
* fix including stubs in wheel

* fix bool_
2025-07-22 06:30:17 -07:00
Cheng
56cc858af9 Add contiguous_copy_cpu util for copying array (#2397) 2025-07-21 07:30:35 -07:00
Cheng
f55c4ed1d6 Remove thrust iterators (#2396) 2025-07-21 07:30:27 -07:00
Awni Hannun
93d70419e7 [CUDA] speedup handling scalars (#2389)
* speedup scalars in cuda

* comment
2025-07-18 21:47:31 -07:00
Awni Hannun
63f663d9c6 fix cuda manylinux version to match others (#2388) 2025-07-18 21:02:16 -07:00
Awni Hannun
84b4d96efa fix release build + patch bump (#2387) 2025-07-18 14:47:37 -07:00
Awni Hannun
aec67f2fa6 patch bump (#2386) 2025-07-18 12:25:48 -07:00
Gökdeniz Gülmez
deee214a95 Adding support for the Muon Optimizer (#1914)
* initial commit with workong optmimizer

* update ACKNOWLEDGMENTS.md

* nits and adding it to test

* nits

* G.astype(mx.bfloat16) to G.astype(G.dtype)

* G.ndim >= 2 to assert G.ndim == 2

* remove coments

* replace with  mx.addmm

* remove comments

* format

* nits

* match muon

* fix addmm

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-07-18 12:25:28 -07:00
Cheng
45adec102c Add contiguous_copy_gpu util for copying array (#2379) 2025-07-18 06:44:25 -07:00
Cheng
31fc530c76 [CUDA] Add more ways finding CCCL headers in JIT (#2382) 2025-07-17 15:25:34 -07:00
Awni Hannun
fbb3f65a1a fix resource leaks in matmul and graph (#2383) 2025-07-17 06:50:15 -07:00
Angelos Katharopoulos
6b1b8ea91b [CUDA] Add work per thread to compile (#2368) 2025-07-17 06:47:52 -07:00
Awni Hannun
b2273733ea Test with CUDA 12.2 (#2375)
* Test with CUDA 12.0

* try older image

* fix cpu sort
2025-07-16 13:00:37 -07:00
Awni Hannun
f409b229a4 fix ring distributed test (#2380) 2025-07-16 11:25:24 -07:00
Cheng
30571e2326 Rename the copy util in cpu/copy.h to copy_cpu (#2378) 2025-07-16 07:34:24 -07:00
Awni Hannun
d7734edd9f fix complex reduce + nan propagation in min and max (#2377) 2025-07-15 18:19:47 -07:00
Awni Hannun
2ba69bc8fa lower memory uniform sampling (#2361)
* lower memory uniform

* use fp32

* fix
2025-07-15 14:22:07 -07:00
Cheng
cb349a291c [CUDA] Use cuda::std::complex in place of cuComplex (#2372) 2025-07-15 00:36:13 -07:00
Awni Hannun
f0a0b077a0 Install linux with mlx[cuda] and mlx[cpu] (#2356)
* install linux with mlx[cuda] and mlx[cpu]

* temp for testing

* cleanup circle, fix cuda repair

* update circle

* update circle

* decouple python bindings from core libraries
2025-07-14 17:17:33 -07:00
Awni Hannun
49114f28ab fix flaky test (#2371) 2025-07-14 17:16:18 -07:00
Awni Hannun
e7d2ebadd2 [CUDA] Affine quantize (#2354)
* affine quantize and dequantize kernels

* format

* fix

* format
2025-07-14 15:45:44 -07:00
Awni Hannun
e569803d7c update linux build (#2370) 2025-07-14 15:13:56 -07:00
Cheng
d34f887abc Add Primitive::name and remove Primitive::print (#2365) 2025-07-14 14:06:35 -07:00
Angelos Katharopoulos
5201df5030 Fix imag() vjp (#2367) 2025-07-14 13:11:16 -07:00
Cheng
2d3c26c565 [CUDA] Do not put kernels in annoymous namespace (#2362) 2025-07-12 14:24:45 -07:00
Cheng
6325f60d52 [CUDA] Bundle CCCL for JIT compilation (#2357)
* Ship CCCL for JIT compilation

* Remove cexpf
2025-07-11 18:45:37 -07:00
Awni Hannun
42cc9cfbc7 fix copy dispatch (#2360) 2025-07-11 10:59:35 -07:00
Cheng
8347575ba1 [CUDA] Implement Scan kernel (#2347)
* Contiguous scan

* Strided scan

* Enable tests

* Fix failing logaddexp test

* Use cexpf in Metal
2025-07-10 16:54:12 -07:00
Angelos Katharopoulos
b6eec20260 Fix edge check in qmm_n QuantizedLoader (#2355) 2025-07-10 16:28:50 -07:00
Angelos Katharopoulos
0eb035b4b1 Fix type promotion in Adam with bias correction (#2350) 2025-07-10 11:14:42 -07:00
Cheng
afb9817599 [CUDA] Put version in ptx cache dir path (#2352) 2025-07-10 07:24:21 -07:00
Cheng
8fb3e7a26c [CUDA] Set current device before cudaGraphLaunch (#2351) 2025-07-10 07:24:02 -07:00
jhavukainen
8c7bc30ce4 Align mlx::core::min op nan propagation with NumPy (#2346) 2025-07-10 06:20:43 -07:00
Cheng
85873cb162 [CUDA] Do vectorized store/load in contiguous elementwise ops (#2342)
* Do vectorized store/load in unary ops

* Do vectorized store/load in binary_two ops

* Do vectorized store/load in copy ops

* Do vectorized store/load in ternary ops

* Use int32_t for IdxT

* binary => binary_two in binary_two.cu

* Fix tests on large arrays

* Use uint as index type

* Contig uses uint as index and non-contig uses int
2025-07-09 18:48:43 -07:00
Awni Hannun
e14ee12491 add zero for argsort vjp (#2345) 2025-07-09 14:37:14 -07:00
jhavukainen
8b9a3f3cea Align mlx::core::max op nan propagation with NumPy (#2339)
* Make max op NaN propagation rules align with numpy

* Adding benchmarks and testing for max op nanpropagation

* Pre-commit formatting

* Fix max complex64 nan propagation and add test

* Improve the cpp unittest

* Only check nans on non-integral types in simd_reduce_impl.

* Cleanup using namespace alias

* Add cpu Max nanpropagation. Fix a small fib in cpu max dispatch data types for int8/int16.

* Make the max nanpropagation test more meaningful for integer types

* Remove tuple unpacking syntax to comply with earlier python versions. Add cuda skip to nanpropagation tests, fix cuda implementation in a separate PR.
2025-07-09 11:26:27 -07:00
Awni Hannun
fb4e8b896b patch bump (#2343) 2025-07-08 14:26:07 -07:00
Cheng
2ca533b279 Fix compilation with CUDA 11 (#2331) 2025-07-07 20:00:43 -07:00
Angelos Katharopoulos
4a9b29a875 MoE backward improvements (#2335) 2025-07-07 17:59:53 -07:00
Awni Hannun
a4fcc893cd auto build linux release (#2341) 2025-07-07 09:29:23 -07:00
Cheng
9d10239af7 [CUDA] Do vectorized store/load in binary ops (#2330) 2025-07-07 08:44:14 -07:00
Cheng
19facd4b20 Build with all cpu cores by default (#2336) 2025-07-07 06:06:45 -07:00
Angelos Katharopoulos
f5299f72cd Fix layernorm race condition (#2340) 2025-07-07 06:06:01 -07:00
Cheng
0e0d9ac522 [CUDA] Add MLX_CUDA_GRAPH_CACHE_SIZE env for setting graph cache size (#2329) 2025-07-05 08:33:29 -07:00
Awni Hannun
8917022deb fix graphs for older cuda (#2328) 2025-07-02 19:37:58 -07:00
Awni Hannun
ec0d5db67b [CUDA] Switch to CUDA graphs (#2317)
* cuda graph prototype

fix signal bug + start to add dependencies

capture more

capture more ops

remaining ops

fix reduce and rope deps

add concurrent context

try update, but not working

cosistent topology order

use node api

use node api directly to reduce overhead

fix bug

use kernels in unary

cache graph

format

fix synchronization

format

* comment
2025-07-02 15:59:13 -07:00
Cheng
e76e9b87f0 Fix compilation error from integral_constant (#2326) 2025-07-02 06:04:38 -07:00
Awni Hannun
cfb6a244ea allow parameters to be deleted (#2325) 2025-07-01 21:27:23 -07:00
Awni Hannun
58f3860306 patch bump (#2324) 2025-07-01 12:12:16 -07:00
Awni Hannun
dd4f53db63 use fp32 for testing, add more complex ops (#2322) 2025-07-01 07:30:00 -07:00
Angelos Katharopoulos
3d5e17e507 MLX_SWITCH macros to templates (#2320) 2025-07-01 01:33:44 -07:00
Awni Hannun
33bf1a244b Fix module update in strict mode (#2321)
* fix module update in strict mode

* allow GELU to be pickled
2025-06-29 11:12:29 -07:00
Angelos Katharopoulos
772f471ff2 [CUDA] Fix reductions (#2314) 2025-06-27 12:59:20 -07:00
Angelos Katharopoulos
2c11d10f8d Split broadcast so it is always fused in compile (#2318) 2025-06-26 22:08:18 -07:00
Angelos Katharopoulos
656ed7f780 Fix get 2d grid dims (#2316) 2025-06-25 13:03:09 -07:00
Awni Hannun
81bb9a2a9e Compile float64 functions on CPU (#2311) 2025-06-24 10:18:52 -07:00
Angelos Katharopoulos
5adf185f86 Fix update_modules() when providing a subset (#2308) 2025-06-20 17:19:46 -07:00
Awni Hannun
c9a9180584 Cuda perf tuning (#2307)
* perf tuning

* fix adding inputs arrays in matmul / srot

* format

* fix
2025-06-20 14:50:57 -07:00
Awni Hannun
76831ed83d Build CUDA release in Circle (#2306)
* cuda release

* add license
2025-06-19 15:26:36 -07:00
Angelos Katharopoulos
b3d7b85376 Make ptx cache settable by environment variable (#2304) 2025-06-17 23:55:56 -07:00
Awni Hannun
cad5c0241c [CUDA] synch properly waits for all tasks to finish and clear (#2303)
* cuda synch properly waits for all tasks to finish and clear

* fix copy
2025-06-17 12:03:25 -07:00
Awni Hannun
b8022c578a divmod, partition, sort fixes (#2302) 2025-06-16 18:49:32 -07:00
Awni Hannun
bc53f8293f Cuda bug fixes 2 (#2298)
* more bug fixes

* more bug fixes

* format
2025-06-16 13:14:46 -07:00
Awni Hannun
c552ff2451 [CUDA] Fix back-end bugs and enable corresponding tests (#2296)
* Fix some cuda back-end bugs and enable corresponding tests

* more fixes

* enable more tests

* format
2025-06-16 08:45:40 -07:00
Awni Hannun
4fda5fbdf9 add python testing for cuda with ability to skip list of tests (#2295) 2025-06-15 10:56:48 -07:00
Angelos Katharopoulos
580776559b RoPE for CUDA (#2293)
* First working CUDA rope

* Fix random
2025-06-15 06:08:07 -07:00
Awni Hannun
a14aaa7c9d Fix cuda arg reduce (#2291) 2025-06-14 17:54:00 -07:00
Awni Hannun
a6d780154f fix cuda gemm for bf16 (#2288) 2025-06-13 22:10:46 -07:00
Awni Hannun
6871e2eeb7 fix cuda jit (#2287) 2025-06-13 19:21:46 -07:00
Awni Hannun
8402a2acf4 Fix complex power and print (#2286)
* fix complex power and print

* fix complex matmul shape
2025-06-13 11:13:00 -07:00
Jagrit Digani
fddb6933e1 Collection of refactors (#2274)
* Refactor gemv into a function

* Refactor splitk step 1

* Refactor split k axpby

* Rearrange steel_gemm_regular

* Redirect steel_gemm_regular

* Add axpby routing to steel_matmul_regular

* Refactor AddMM step 1

* Redirect steel_gemm

* Update addmm

* Comments and format

* Some cleanup

* Add architecture gen to device

* Update no copy condition in normalization to account for axis size 1
2025-06-13 10:44:56 -07:00
Cheng
c8b4787e4e CUDA backend: indexing ops (#2277) 2025-06-12 21:44:19 -07:00
Awni Hannun
2188199ff8 [CUDA] ternary with select op (#2283)
* cuda ternary with select op

* comment + fix

* fix
2025-06-12 20:24:43 -07:00
Awni Hannun
aa07429bad Fix cuda build (#2284) 2025-06-12 17:48:05 -07:00
Awni Hannun
918761a25a [CUDA] RMSNorm and VJP (#2280)
* rms norm start

* nit
2025-06-12 17:09:49 -07:00
Cheng
a4fc671d3e CUDA backend: compile (#2276)
* CUDA backend: compile

* Rename kernels/ to device/
2025-06-12 17:08:39 -07:00
Awni Hannun
f5f65ef48c Make sliceUpdate general (#2282)
* Make sliceUpdate general

* fix
2025-06-12 16:48:54 -07:00
Cheng
c2dd81a8aa Fix warnings from latest CUDA toolkit (#2275) 2025-06-12 06:03:01 -07:00
Cheng
d7e680ffe4 CUDA backend: layernorm (#2271) 2025-06-11 15:48:32 -07:00
Cheng
c371baf53a CUDA backend: softmax (#2272) 2025-06-11 13:55:22 -07:00
Cheng
ccf78f566c CUDA backend: argreduce (#2270) 2025-06-11 13:26:17 -07:00
Cheng
c9fa68664a CUDA backend: reduce (#2269) 2025-06-11 11:22:25 -07:00
Awni Hannun
c35f4d089a start cuda circle config (#2256)
* rebase

* fix metal kernel linking issue on cuda

* start cuda circle config
2025-06-10 21:19:47 -07:00
Angelos Katharopoulos
8590c0941e Add load_safe to the general conv loaders (#2258) 2025-06-10 20:58:16 -07:00
Cheng
095163b8d1 Fix building cpp benchmarks on Linux (#2268) 2025-06-10 17:10:24 -07:00
Cheng
99c33d011d rebase + nit (#2260)
Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-10 10:51:51 -07:00
Awni Hannun
62fecf3e13 fix conv export (#2265) 2025-06-10 09:34:01 -07:00
Cheng
7c4eb5d03e CUDA backend: random (#2261) 2025-06-10 08:59:56 -07:00
Cheng
bae9a6b404 CUDA backend: sort (#2262)
Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-10 08:59:47 -07:00
Christopher Fleetwood
004c1d8ef2 Report number of missing parameters (#2264)
* chore: inform

* chore: format

---------

Co-authored-by: FL33TW00D <FL33TW00D@users.noreply.github.com>
2025-06-10 06:37:50 -07:00
Cheng
7ebb2e0193 CUDA backend: binary ops (#2259) 2025-06-10 06:37:40 -07:00
Awni Hannun
9ce77798b1 fix export to work with gather/scatter axis (#2263) 2025-06-09 20:37:27 -07:00
Cheng
f8bad60609 CUDA backend: unary ops (#2158) 2025-06-09 06:45:08 -07:00
Emmanuel Ferdman
5866b3857b Refactor the lu test (#2250)
Signed-off-by: Emmanuel Ferdman <emmanuelferdman@gmail.com>
2025-06-07 06:12:08 -07:00
Awni Hannun
1ca616844b Fix unintuitive metal kernel caching (#2242)
* Fix unintuitive metal kernel caching

* alternative solution
2025-06-06 20:08:15 -07:00
Angelos Katharopoulos
2e8cf0b450 Change layernorms to two pass algorithm (#2246) 2025-06-06 13:34:56 -07:00
Cheng
24f89173d1 CUDA backend: matmul (#2241) 2025-06-06 12:24:04 -07:00
Awni Hannun
c6a20b427a Improve metal elementwise kernels (#2247)
* improve metal elementwise kernels

* compile and copy

* fix jit
2025-06-06 11:37:40 -07:00
Awni Hannun
a5ac9244c4 fix linux linking error (#2248) 2025-06-06 10:41:51 -07:00
Awni Hannun
c763fe1be0 default strict mode for module update and update_modules (#2239) 2025-06-05 15:27:02 -07:00
Cheng
52dc8c8cd5 Add profiler annotations in common primitives for CUDA backend (#2244) 2025-06-04 19:55:12 -07:00
Angelos Katharopoulos
aede70e81d Perf regression fix (#2243) 2025-06-03 17:55:12 -07:00
Cheng
85a8beb5e4 Avoid atomic updates across CPU/GPU in CUDA event (#2231) 2025-06-03 16:49:06 -07:00
Cheng
0bb89e9e5f Share more common code in Compiled (#2240)
* Share more common code in Compiled

* Remove build_lib_name
2025-06-03 16:48:50 -07:00
Cheng
5685ceb3c7 Avoid invoking allocator::malloc when creating CUDA event (#2232) 2025-06-03 16:48:40 -07:00
Suryash Malviya
0408ba0a76 Optimizing Complex Matrix Multiplication using Karatsuba’s Algorithm (#2220)
* Implementing Complex Matmul using Karatsuba Algorithm

* Implemented Karatsuba's Algorithm for complex matmul and pre-commit them

* fix

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-06-02 15:58:46 -07:00
Awni Hannun
cbad6c3093 version (#2237) 2025-06-02 15:58:33 -07:00
Cheng
1b021f6984 Fast primitives decide when to use the fallback (#2216) 2025-06-02 13:26:37 -07:00
Cheng
95b7551d65 Do not check event.is_signaled() in eval_impl (#2230) 2025-06-02 13:23:34 -07:00
Cheng
db5a7c6192 Add memory cache to CUDA backend (#2221)
* Move BufferCache out of allocator

* Add memory cache to cuda backend allocator

* Simplify BufferCache assuming buf can not be null
2025-05-30 12:12:54 -07:00
Awni Hannun
6ef2f67e7f 5bit quants (#2226)
* 5bit quants

* 5bit quants
2025-05-30 12:12:10 -07:00
Cheng
f76ee1ffd2 Move some dims utils to common (#2223) 2025-05-29 06:48:30 -07:00
Cheng
54a71f270a Remove unused defines (#2217) 2025-05-23 06:14:58 -07:00
Awni Hannun
55b4062dd8 copyright in docs (#2214) 2025-05-21 17:13:04 -07:00
Cheng
79071bfba4 Fix out-of-bounds default value in logsumexp/softmax (#2213) 2025-05-21 07:25:16 -07:00
Cheng
7774b87cbd Remove redundant simd_sum in logsumexp (#2210) 2025-05-21 07:25:03 -07:00
Cheng
35c87741cf Build for compute capability 70 instead of 75 (#2209) 2025-05-20 19:42:48 -07:00
Jack Wind
4cbe605214 Feat: Allow per-target Metal debug flags (#2201)
* feat: allow per-target Metal debug flags

* formatting fix
2025-05-20 10:22:26 -07:00
Clement Liaw
ab8883dd55 include mlx::core::version() symbols in the mlx static library (#2207) 2025-05-20 07:39:11 -07:00
Awni Hannun
eebe73001a fix large arg reduce (#2206) 2025-05-19 13:10:44 -07:00
Angelos Katharopoulos
0359bf02c9 Nearest upsample (#2202) 2025-05-19 11:23:38 -07:00
Cheng
237f9e58a8 Fix BEFORE keyword in target_include_directories (#2204) 2025-05-19 06:10:44 -07:00
Awni Hannun
8576e6fe36 fix conv2d bug + faster conv 1d (#2195)
* fix conv2d bug + faster conv 1d

* revert sort + flaky test
2025-05-18 06:05:11 -07:00
Angelos Katharopoulos
0654543dcc Add complex eigh (#2191) 2025-05-18 00:18:43 -07:00
Awni Hannun
48ef3e74e2 reduce vjp for all and any (#2193) 2025-05-16 08:38:49 -07:00
Cheng
7d4b378952 Include cuda_bf16.h for bfloat16 overloads (#2192)
* Include cuda_bf16.h for bfloat16 overloads

* Add NO_GPU_MULTI(Eig) in cuda backend
2025-05-16 06:44:42 -07:00
Jack Wind
7ff5c41e06 Add set_threadgroup_memory_length to CommandEncoder (#2183) 2025-05-16 00:28:03 -07:00
Awni Hannun
602f43e3d1 fix conv grad (#2187) 2025-05-15 19:20:36 -07:00
Awni Hannun
a2cadb8218 real and imag properties (#2189) 2025-05-15 18:17:50 -07:00
Awni Hannun
c1eb9d05d9 non-symmetric eig and eigh (#2188) 2025-05-15 13:01:44 -07:00
Angelos Katharopoulos
cf6c939e86 Fix some complex vjps (#2178) 2025-05-14 23:37:12 -07:00
Angelos Katharopoulos
130df35e1b Add random normal distribution for complex numbers (#2182) 2025-05-13 22:43:45 -07:00
Cheng
0751263dec Fix typo in row_reduce_small (#2179) 2025-05-13 20:19:54 -07:00
Cheng
eca2f3eb97 Add remove_index utility (#2173) 2025-05-13 17:09:56 -07:00
Angelos Katharopoulos
3aa9cf3f9e Fix put_along_axis for empty arrays (#2181) 2025-05-13 14:27:53 -07:00
Awni Hannun
8f3d208dce Close a couple edge case bugs: hadamard and addmm on empty inputs (#2177)
* handle hadamard and addmm on empty inputs

* fix
2025-05-12 10:48:57 -07:00
Ivan Fioravanti
caaa3f1f8c Small typos in mx.metal deprecations (#2176) 2025-05-11 06:03:47 -07:00
Awni Hannun
659a51919f patch bump (#2162) 2025-05-09 14:35:14 -07:00
Awni Hannun
6661387066 Fix fft for integer overflow (#2161) 2025-05-09 14:25:12 -07:00
ATurker
a7fae8a176 fix: conv_general differences between gpu, cpu (#2070)
* fix general_conv padding

* fix bugs

* add test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-05-09 10:26:52 -07:00
Cheng
0cae0bdac8 CUDA backend: backbone (#2075) 2025-05-06 21:26:46 -07:00
Awni Hannun
5a1a5d5ed1 fix input coherent kernel launch (#2153) 2025-05-05 17:30:50 -07:00
Cheng
1683975acf Move common gpu primitives to backend/gpu (#2145) 2025-05-05 13:45:29 -07:00
Awni Hannun
af705590ac fix batched vector sdpa (#2152) 2025-05-05 13:13:03 -07:00
Awni Hannun
825124af8f fix bw for elementwise ops (#2151)
* fix bw for elementwise ops

* add compile

* fix

* fix

* fix

* fix
2025-05-05 06:15:04 -07:00
Awni Hannun
9c5e7da507 fix compile merging (#2150) 2025-05-02 15:08:50 -07:00
Angelos Katharopoulos
481349495b GPU Hadamard for large N (#1879) 2025-05-01 17:19:17 -07:00
Awni Hannun
9daa6b003f fix shapeless export (#2148) 2025-05-01 15:02:02 -07:00
Angelos Katharopoulos
a3a632d567 Fix the launcher when ran locally (#2147) 2025-05-01 12:56:09 -07:00
Awni Hannun
e496c5a4b4 fix integer overflow in qmm (#2143) 2025-04-30 09:28:56 -07:00
Cheng
ea890d8710 Remove metal-only tests (#2139) 2025-04-30 09:08:39 -07:00
Awni Hannun
aa5d84f102 Allow quant layer to be unfrozen (#2142) 2025-04-30 09:08:29 -07:00
Awni Hannun
f1606486d2 Generalize gpu backend (#2138)
* generalize gpu backend

* fix no_gpu build

* fix no_gpu build

* generalize gpu backend
2025-04-30 09:08:17 -07:00
Cheng
87720a8908 Fix building with uv (#2141) 2025-04-30 06:04:07 -07:00
Aashiq Dheeraj
bb6565ef14 add fftshift and ifftshift fft helpers (#2135)
* add fftshift and ifftshift fft helpers

* address comments

* axes have to be iterable

* fix fp error in roll + add test

---------

Co-authored-by: Aashiq Dheeraj <aashiq@aashiq-mbp-m4.local>
2025-04-29 22:13:45 -07:00
Awni Hannun
7bb063bcb3 Enable vjp for quantized scale and bias (#2129)
* Enable vjp for quantized scale and bias

* higher tol
2025-04-29 13:03:09 -07:00
Alex Chi Z.
b36dd472bb return library if it is successfully loaded (#2131) 2025-04-29 07:30:36 -07:00
hdeng-apple
167b759a38 Fix typos (#2136) 2025-04-29 07:26:05 -07:00
charan-003
99b9868859 Clarify dimension notation in conv1d, conv2d, and conv3d docstrings (#2123)
* Clarify dimension notation in conv1d, conv2d, and conv3d docstrings

* Updating transposed convs in conv1d, conv2d, and conv3d

---------

Co-authored-by: Sai Charan Arvapally <saicharan@Sais-MacBook-Pro.local>
2025-04-25 12:18:30 -07:00
1ndig0
6b2d5448f2 Fix the error message in mx.right_shift and mx.left_shift (#2121)
* update right_shift and lef_shift

* simplify

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-04-25 09:14:28 -07:00
Awni Hannun
eaf709b83e patch (#2119) 2025-04-24 16:11:07 -07:00
Angelos Katharopoulos
f0e70afff0 Fix swift pm load (#2117) 2025-04-24 10:58:29 -07:00
hdeng-apple
86984cad68 Remove static initializers (#2059)
* Remove static initializers in device.cpp, load.cpp, pocketfft.h

* Remove static initializer InTracing::trace_stack

* Remove static initializer of CompilerCache cache

* Revert changes in pocketfft.h

* Remove duplicate private section of thread_pool()
2025-04-24 06:14:49 -07:00
Awni Hannun
fbc89e3ced fix pinv (#2110) 2025-04-23 13:08:28 -07:00
hdeng-apple
38c1e720c2 Search mlx.metallib in macOS framework "Resources" dir (#2061)
---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-04-23 09:53:13 -07:00
Param Thakkar
600e87e03c Added output_padding parameters in conv_transpose (#2092) 2025-04-23 09:26:33 -07:00
Hyunsung Lee
3836445241 Add broadcast_shapes in python API (#2091) 2025-04-22 18:57:39 -07:00
Yury Popov
1d2c9d6a07 Complex scan (#2094) 2025-04-22 18:56:28 -07:00
Awni Hannun
e8ac6bd2f5 irfft throws instead of segfaults on scalars (#2109) 2025-04-22 10:25:55 -07:00
Awni Hannun
fdadc4f22c Add more complex unary ops (#2101) 2025-04-21 13:04:54 -07:00
Awni Hannun
79b527f45f conv vmap (#2102) 2025-04-21 13:04:39 -07:00
Awni Hannun
dc4eada7f0 Use unordered map for kwargs in export/import (#2087)
* use unordered map for kwargs in export/import

* comment
2025-04-21 07:17:22 -07:00
Cheng
70ebc3b598 Return const ref in array::data_shared_ptr (#2100) 2025-04-21 07:17:09 -07:00
Cheng
b13f2aed16 Introduce macros for dispatching dynamic dtypes as static types (#2073) 2025-04-19 06:16:30 -07:00
Param Thakkar
5f04c0f818 Fixed shift operations issue (#2080)
* Fixed shift operations issue

* Added tests and fixes

* Fixed loop syntax error

* Added tests for bool

* Fixed typo
2025-04-18 14:28:33 -07:00
Awni Hannun
55935ccae7 fix py gc edge case (#2079) 2025-04-18 12:46:53 -07:00
Awni Hannun
b529515eb1 minor bump (#2081) 2025-04-17 14:57:11 -07:00
Angelos Katharopoulos
3cde719eb7 Route to gather qmm only for many tokens per expert (#2082) 2025-04-17 14:53:08 -07:00
Angelos Katharopoulos
5de6d94a90 Gather qmm batched kernel and refactoring of quantized (#2078) 2025-04-17 13:53:11 -07:00
Angelos Katharopoulos
99eefd2ec0 Gather mm new kernel and small refactoring (#2040) 2025-04-14 16:37:36 -07:00
Yury Popov
e9e268336b LogCumSumExp (#2069) 2025-04-13 01:27:29 -07:00
Awni Hannun
7275ac7523 Fix release build (#2072) 2025-04-12 20:41:58 -07:00
Angelos Katharopoulos
c4189a38e4 Add float mask to sdpa vector (#2068) 2025-04-11 17:29:40 -07:00
Awni Hannun
68d1b3256b nit: fix exception handling (#2066) 2025-04-11 14:12:08 -07:00
Awni Hannun
9c6953bda7 Fix stubgen (#2065)
* Fix stubgen

* add multi optim to docs
2025-04-11 12:02:54 -07:00
Awni Hannun
ef7ece9851 fix fft bug (#2062) 2025-04-10 19:41:27 -07:00
Angelos Katharopoulos
ddaa4b7dcb Fix the test and add custom min/max reductions for uncommon MPI types (#2060) 2025-04-10 17:01:17 -07:00
Cheng
dfae2c6989 Fix MSVC build due to use of M_LN2 (#2058) 2025-04-10 07:41:41 -07:00
Anastasiia Filippova
515f104926 Min / max reductions (#2041) 2025-04-09 23:22:20 -07:00
Angelos Katharopoulos
9ecefd56db Do not load the default lib if another is requested (#2055) 2025-04-09 13:31:38 -07:00
Awni Hannun
e5d35aa187 no sdpa in grad (#2054) 2025-04-08 19:13:54 -07:00
Awni Hannun
00794c42bc Fix causal mask sdpa vec (#2053)
* fix sdpa vector causal mask

* test
2025-04-08 09:11:23 -07:00
Cheng
08a1bf3f10 Remove Event::Signal() (#2052) 2025-04-08 06:20:27 -07:00
Awni Hannun
60c4154346 Only request residency once (#2051) 2025-04-07 10:47:51 -07:00
Awni Hannun
f2c85308c1 add a half simd gemm fallback (#2046)
* add a half simd gemm fallback

* nit
2025-04-07 09:31:29 -07:00
Awni Hannun
1a28b69ee2 only add to residency set once (#2049) 2025-04-06 17:38:25 -07:00
Cheng
ba09f01ce8 Remove test of converting negative float to uint (#2048) 2025-04-06 06:21:46 -07:00
Cheng
6cf48872b7 wait_for_one should wait for task to finish (#2047) 2025-04-05 20:05:16 -07:00
Angelos Katharopoulos
7b3b8fa000 Fix ci release (#2045) 2025-04-04 20:25:01 -07:00
Awni Hannun
ec5e2aae61 nit in doc (#2044) 2025-04-04 12:04:17 -07:00
Awni Hannun
86389bf970 patch bump (#2043) 2025-04-03 13:15:18 -07:00
Jagrit Digani
3290bfa690 Add new sdpa function overload (#2035)
* Add new sdpa function overload

* Address comments

* Remove std::varaint from cpp sdpa function
2025-04-03 11:58:28 -07:00
Jagrit Digani
8777fd104f Depthwise Conv2D optimization (#2036)
- Add new specialized kernel for small kernel (kernels size <= 7), small strides (strides <= 2) depthwise 2d convolutions
- Add related tests
2025-04-03 09:42:04 -07:00
406 changed files with 31819 additions and 6326 deletions

View File

@@ -7,15 +7,9 @@ parameters:
nightly_build:
type: boolean
default: false
weekly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
linux_release:
type: boolean
default: false
jobs:
build_documentation:
@@ -38,7 +32,7 @@ jobs:
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
@@ -70,9 +64,9 @@ jobs:
git push -f origin gh-pages
linux_build_and_test:
docker:
- image: cimg/python:3.9
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
@@ -84,37 +78,36 @@ jobs:
- run:
name: Install dependencies
command: |
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
uv venv
uv pip install cmake
uv pip install -e ".[dev]" -v
- run:
name: Generate package stubs
command: |
echo "stubs"
pip install typing_extensions
python setup.py generate_stubs
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
- run:
name: Run Python tests
command: |
python3 -m unittest discover python/tests -v
source .venv/bin/activate
python -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build CPP only
command: |
mkdir -p build && cd build
source .venv/bin/activate
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
- run:
@@ -139,51 +132,49 @@ jobs:
- run:
name: Install dependencies
command: |
brew install python@3.9
brew install openmpi
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
pip install torch
pip install tensorflow
pip install unittest-xml-reporting
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
brew install openmpi uv
- run:
name: Install Python package
command: |
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
pip install -e . -v
uv venv --python 3.9
uv pip install \
nanobind==2.4.0 \
cmake \
numpy \
torch \
tensorflow \
unittest-xml-reporting
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
uv pip install -e . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
- run:
name: Run Python tests
command: |
source env/bin/activate
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
- run:
name: Build example extension
command: |
source env/bin/activate
source .venv/bin/activate
cd examples/extensions
pip install -r requirements.txt
python setup.py build_ext -j8
uv pip install -r requirements.txt
uv run --no-project setup.py build_ext --inplace
uv run --no-project python test.py
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source env/bin/activate
source .venv/bin/activate
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
- run:
name: Run CPP tests
@@ -192,7 +183,7 @@ jobs:
- run:
name: Build small binary
command: |
source env/bin/activate
source .venv/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
@@ -204,13 +195,60 @@ jobs:
- run:
name: Run Python tests with JIT
command: |
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
pip install -e . -v
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e .
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
uv run --no-project python -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit
cuda_build_and_test:
parameters:
image_date:
type: string
default: "2023.11.1"
machine:
image: "linux-cuda-12:<< parameters.image_date >>"
resource_class: gpu.nvidia.small.gen2
steps:
- checkout
- restore_cache:
keys:
- cuda-<< parameters.image_date >>-{{ arch }}-
- run:
name: Install dependencies
command: |
sudo apt-get update
sudo apt-get install libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
rm -rf ccache-4.11.3-linux-x86_64
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
uv pip install -e ".[dev]" -v
- run:
name: Run Python tests
command: |
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
- run:
name: CCache report
command: |
ccache --show-stats
ccache --zero-stats
ccache --max-size 400MB
ccache --cleanup
- save_cache:
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
paths:
- /home/circleci/.cache/ccache
build_release:
parameters:
@@ -251,22 +289,30 @@ jobs:
name: Install Python package
command: |
source env/bin/activate
DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
pip install . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
python setup.py generate_stubs
- run:
name: Build Python package
command: |
source env/bin/activate
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
python -m build -w
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
- when:
condition: << parameters.build_env >>
steps:
@@ -283,52 +329,100 @@ jobs:
python_version:
type: string
default: "3.9"
extra_env:
build_env:
type: string
default: "DEV_RELEASE=1"
docker:
- image: ubuntu:20.04
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Build wheel
command: |
PYTHON=python<< parameters.python_version >>
apt-get update
apt-get upgrade -y
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
apt-get install -y apt-utils
apt-get install -y software-properties-common
add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get install -y build-essential git
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
TZ=Etc/UTC sudo apt-get -y install tzdata
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
pip install . -v
<< parameters.build_env >> pip install ".[dev]" -v
pip install typing_extensions
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
python setup.py generate_stubs
python setup.py clean --all
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
bash python/scripts/repair_linux.sh
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload packages
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
build_cuda_release:
parameters:
build_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
- run:
name: Upload package
name: Build wheel
command: |
source env/bin/activate
twine upload wheelhouse/*
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install zip
pip install auditwheel
pip install patchelf
pip install build
pip install twine
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build -w
bash python/scripts/repair_cuda.sh
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
@@ -340,7 +434,6 @@ workflows:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
@@ -348,13 +441,16 @@ workflows:
parameters:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- cuda_build_and_test:
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
- build_documentation
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
@@ -368,6 +464,68 @@ workflows:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["PYPI_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- build_documentation:
filters:
tags:
@@ -375,6 +533,25 @@ workflows:
branches:
ignore: /.*/
upload-docs: true
- build_linux_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
build_env: ["PYPI_RELEASE=1"]
prb:
when:
@@ -393,6 +570,11 @@ workflows:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
- cuda_build_and_test:
requires: [ hold ]
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
nightly_build:
when:
and:
@@ -404,11 +586,64 @@ workflows:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
weekly_build:
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.weekly_build >>
- << pipeline.parameters.test_release >>
jobs:
- build_release:
matrix:
@@ -416,14 +651,74 @@ workflows:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.linux_release >>
jobs:
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
extra_env: ["PYPI_RELEASE=1"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:
parameters:
build_env: ["DEV_RELEASE=1"]

1
.gitignore vendored
View File

@@ -36,6 +36,7 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
uv.lock
# vim
*.swp

View File

@@ -19,6 +19,7 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -34,13 +34,16 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
option(MLX_BUILD_METAL "Build metal backend" ON)
option(MLX_BUILD_CPU "Build cpu backend" ON)
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
# --------------------- Processor tests -------------------------
message(
@@ -63,10 +66,17 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
message(WARNING "Building for x86_64 arch is not officially supported.")
endif()
endif()
else()
set(MLX_BUILD_METAL OFF)
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
if(MLX_USE_CCACHE)
find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
endif()
endif()
# ----------------------------- Lib -----------------------------
@@ -83,6 +93,10 @@ if(MLX_BUILD_METAL)
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
@@ -226,12 +240,19 @@ target_include_directories(
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>)
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
# Do not add mlx_EXPORTS define for shared library.
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
if(USE_SYSTEM_FMT)
find_package(fmt REQUIRED)
else()
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
endif()
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
if(MLX_BUILD_PYTHON_BINDINGS)

View File

@@ -1,4 +1,6 @@
include CMakeLists.txt
include mlx.pc.in
recursive-include mlx/ *
include cmake/*
include python/src/*
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
@@ -68,18 +68,23 @@ in the documentation.
## Installation
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
macOS, run:
**With `pip`**:
```
```bash
pip install mlx
```
**With `conda`**:
To install the CUDA backend on Linux, run:
```bash
pip install mlx[cuda]
```
conda install -c conda-forge mlx
To install a CPU-only Linux package, run:
```bash
pip install mlx[cpu]
```
Checkout the

View File

@@ -1,5 +1,6 @@
// Copyright © 2023 Apple Inc.
#include <cstring>
#include <iostream>
#include <sstream>

View File

@@ -192,6 +192,22 @@ void time_reductions() {
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
TIME(argmin_along_1);
auto indices = mx::array({1});
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
std::vector<int> axes{0};
auto b = scatter(a, {indices}, updates, axes);
mx::eval(b);
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
TIME(max_along_0);
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
TIME(max_along_1);
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
TIME(min_along_0);
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
TIME(min_along_1);
}
void time_gather_scatter() {

View File

@@ -5,6 +5,7 @@ import os
import time
import torch
import torch.cuda
import torch.mps
@@ -44,8 +45,10 @@ def bench(f, *args):
def sync_if_needed(x):
if x.device != torch.device("cpu"):
if x.device == torch.device("mps"):
torch.mps.synchronize()
elif x.device == torch.device("cuda"):
torch.cuda.synchronize()
@torch.no_grad()
@@ -99,6 +102,14 @@ def reduction(op, axis, x):
sync_if_needed(x)
@torch.no_grad()
def sum_and_add(axis, x, y):
z = x.sum(axis=axis, keepdims=True)
for i in range(50):
z = (z + y).sum(axis=axis, keepdims=True)
sync_if_needed(x)
@torch.no_grad()
def softmax(axis, x):
ys = []
@@ -340,7 +351,11 @@ if __name__ == "__main__":
args.axis.pop(0)
torch.set_num_threads(1)
device = "cpu" if args.cpu else "mps"
device = "mps"
if torch.cuda.is_available():
device = "cuda"
if args.cpu:
device = "cpu"
types = args.dtype
if not types:
@@ -460,5 +475,8 @@ if __name__ == "__main__":
elif args.benchmark == "selu":
print(bench(selu, x))
elif args.benchmark == "sum_and_add":
print(bench(sum_and_add, axis, *xs))
else:
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")

View File

@@ -0,0 +1,107 @@
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_2D(strides, padding, groups)
f_pt = make_pt_conv_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
dtype = "float32"
shapes = (
(4, 32, 32, 21, 3, 3, 128),
(4, 32, 32, 21, 3, 3, 37),
(4, 32, 32, 370, 3, 3, 370),
(4, 32, 32, 370, 7, 7, 128),
(2, 320, 640, 21, 7, 7, 21),
)
for N, H, W, C, kh, kw, O in shapes:
time_mlx, time_torch = bench_shape(
N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,74 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate([x[i] @ w[j].T for i, j in enumerate(idx.tolist())], axis=0)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_mm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_mm(x, w1.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
x = mx.gather_mm(x, w2.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = x @ w1.T
x = x @ w2.T
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_mm()

View File

@@ -0,0 +1,84 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate(
[
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
for i, j in enumerate(idx.tolist())
],
axis=0,
)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_qmm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = mx.quantized_matmul(x, *w1, transpose=True)
x = mx.quantized_matmul(x, *w2, transpose=True)
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_qmm()

View File

@@ -1,5 +1,7 @@
# Copyright © 2023-2024 Apple Inc.
from functools import partial
import mlx.core as mx
import mlx.nn as nn
from time_utils import time_fn
@@ -18,51 +20,63 @@ def layer_norm(x, w, b, eps):
return y
def time_layer_norm():
def time_layer_norm(N, dt):
L = 1024
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
g1 = mx.grad(f1, argnums=(0, 1, 2))
g2 = mx.grad(f2, argnums=(0, 1, 2))
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
w = mx.random.uniform(shape=(N,)).astype(dt)
b = mx.random.uniform(shape=(N,)).astype(dt)
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
mx.eval(x, w, b, y)
def layer_norm_loop(g, x, w, b):
def layer_norm_loop(f, x, w, b):
for _ in range(32):
x = f(x, w, b)
return x
time_fn(layer_norm_loop, partial(layer_norm, eps=1e-5), x, w, b)
time_fn(layer_norm_loop, partial(mx.fast.layer_norm, eps=1e-5), x, w, b)
def layer_norm_grad_loop(g, x, w, b):
gx, gw, gb = x, w, b
for _ in range(32):
gx, gw, gb = g(gx, gw, gb, y)
return gx, gw, gb
time_fn(layer_norm_loop, g1, x, w, b)
time_fn(layer_norm_loop, g2, x, w, b)
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
time_fn(layer_norm_grad_loop, g1, x, w, b)
time_fn(layer_norm_grad_loop, g2, x, w, b)
time_fn(layer_norm_grad_loop, mx.compile(g1), x, w, b)
time_fn(layer_norm_grad_loop, mx.compile(g2), x, w, b)
f1 = lambda x, y: (layer_norm(x, None, None, 1e-5) * y).sum()
f2 = lambda x, y: (mx.fast.layer_norm(x, None, None, 1e-5) * y).sum()
g1 = mx.grad(f1, argnums=(0,))
g2 = mx.grad(f2, argnums=(0,))
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
x = mx.random.uniform(shape=(8, L, N)).astype(dt)
w = mx.random.uniform(shape=(N,)).astype(dt)
b = mx.random.uniform(shape=(N,)).astype(dt)
y = mx.random.uniform(shape=(8, L, N)).astype(dt)
mx.eval(x, w, b, y)
def layer_norm_loop(g, x):
def layer_norm_grad_x_loop(g, x):
gx = x
for _ in range(32):
gx = g(gx, y)
return gx
time_fn(layer_norm_loop, g1, x)
time_fn(layer_norm_loop, g2, x)
time_fn(layer_norm_loop, mx.compile(g1), x)
time_fn(layer_norm_loop, mx.compile(g2), x)
time_fn(layer_norm_grad_x_loop, g1, x)
time_fn(layer_norm_grad_x_loop, g2, x)
time_fn(layer_norm_grad_x_loop, mx.compile(g1), x)
time_fn(layer_norm_grad_x_loop, mx.compile(g2), x)
if __name__ == "__main__":
time_layer_norm()
for dt in [mx.float32, mx.float16, mx.bfloat16]:
for n in [1024, 2048, 4096, 8192, 8192 + 1024]:
print(dt, n)
time_layer_norm(n, dt)

View File

@@ -51,6 +51,20 @@ def time_maximum():
time_fn(mx.maximum, a, b)
def time_max():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.max, a, 0)
def time_min():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.min, a, 0)
def time_negative():
a = mx.random.uniform(shape=(10000, 1000))
mx.eval(a)
@@ -108,6 +122,8 @@ if __name__ == "__main__":
time_add()
time_matmul()
time_min()
time_max()
time_maximum()
time_exp()
time_negative()

View File

@@ -11,13 +11,14 @@ include(CMakeParseArguments)
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
# files (like headers)
# files (like headers) DEBUG: Boolean, if true, enables debug compile options
# for this specific library. If not provided, uses global MLX_METAL_DEBUG.
#
# clang format on
macro(mlx_build_metallib)
# Parse args
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY DEBUG)
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
@@ -26,6 +27,10 @@ macro(mlx_build_metallib)
# Collect compile options
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math -Wno-c++17-extensions)
if(MLX_METAL_DEBUG OR MTLLIB_DEBUG)
set(MTLLIB_COMPILE_OPTIONS ${MTLLIB_COMPILE_OPTIONS} -gline-tables-only
-frecord-sources)
endif()
# Prepare metallib build command
add_custom_command(

View File

@@ -1,4 +1,5 @@
sphinx
breathe
sphinx-book-theme
sphinx-copybutton
mlx

View File

@@ -10,7 +10,7 @@ import mlx.core as mx
# -- Project information -----------------------------------------------------
project = "MLX"
copyright = "2023, MLX Contributors"
copyright = "2023, Apple"
author = "MLX Contributors"
version = ".".join(mx.__version__.split(".")[:3])
release = version
@@ -18,6 +18,7 @@ release = version
# -- General configuration ---------------------------------------------------
extensions = [
"sphinx_copybutton",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.intersphinx",

View File

@@ -8,23 +8,26 @@ MLX supports writing custom Metal kernels through the Python and C++ APIs.
Simple Example
--------------
.. currentmodule:: mlx.core
Let's write a custom kernel that computes ``exp`` elementwise:
.. code-block:: python
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
def exp_elementwise(a: mx.array):
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
@@ -39,8 +42,13 @@ Let's write a custom kernel that computes ``exp`` elementwise:
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))
Every time you make a kernel, a new Metal library is created and possibly
JIT compiled. To reduce the overhead from that, build the kernel once with
:func:`fast.metal_kernel` and then use it many times.
.. note::
We are only required to pass the body of the Metal kernel in ``source``.
Only pass the body of the Metal kernel in ``source``. The function
signature is generated automatically.
The full function signature will be generated using:
@@ -78,44 +86,51 @@ Putting this all together, the generated function signature for ``myexp`` is as
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into
``threadgroup`` size threadgroups. For optimal performance, each thread group
dimension should be less than or equal to the corresponding grid dimension.
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the
generated code for debugging purposes.
Using Shape/Strides
-------------------
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
when indexing.
:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which
is ``True`` by default. This will copy the array inputs if needed
before the kernel is launched to ensure that the memory layout is row
contiguous. Generally this makes writing the kernel easier, since we don't
have to worry about gaps or the ordering of the dims when indexing.
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
input array ``a`` if any are present in ``source``.
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are
present in ``source``. We can then use MLX's built in indexing utils to fetch
the right elements for each thread.
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
Let's convert ``myexp`` above to support arbitrarily strided arrays without
relying on a copy from ``ensure_row_contiguous``:
.. code-block:: python
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
@@ -142,137 +157,139 @@ We'll start with the following MLX implementation using standard ops:
.. code-block:: python
def grid_sample_ref(x, grid):
N, H_in, W_in, _ = x.shape
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
def grid_sample_ref(x, grid):
N, H_in, W_in, _ = x.shape
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
ix_nw = mx.floor(ix).astype(mx.int32)
iy_nw = mx.floor(iy).astype(mx.int32)
ix_nw = mx.floor(ix).astype(mx.int32)
iy_nw = mx.floor(iy).astype(mx.int32)
ix_ne = ix_nw + 1
iy_ne = iy_nw
ix_ne = ix_nw + 1
iy_ne = iy_nw
ix_sw = ix_nw
iy_sw = iy_nw + 1
ix_sw = ix_nw
iy_sw = iy_nw + 1
ix_se = ix_nw + 1
iy_se = iy_nw + 1
ix_se = ix_nw + 1
iy_se = iy_nw + 1
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
I_nw *= mask_nw[..., None]
I_ne *= mask_ne[..., None]
I_sw *= mask_sw[..., None]
I_se *= mask_se[..., None]
I_nw *= mask_nw[..., None]
I_ne *= mask_ne[..., None]
I_sw *= mask_sw[..., None]
I_se *= mask_se[..., None]
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
return output
return output
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
Now let's use :func:`custom_function` together with :func:`fast.metal_kernel`
to write a fast GPU kernel for both the forward and backward passes.
First we'll implement the forward pass as a fused kernel:
.. code-block:: python
@mx.custom_function
def grid_sample(x, grid):
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
int gH = grid_shape[1];
int gW = grid_shape[2];
assert x.ndim == 4, "`x` must be 4D."
assert grid.ndim == 4, "`grid` must be 4D."
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
out_shape = (B, gN, gM, C)
uint grid_idx = elem / C * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
assert D == 2, "Last dim of `grid` must be size 2."
int ix_nw = floor(ix);
int iy_nw = floor(iy);
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
int gH = grid_shape[1];
int gW = grid_shape[2];
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
uint grid_idx = elem / C * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int batch_idx = elem / C / gH / gW * b_stride;
int channel_idx = elem % C;
int base_idx = batch_idx + channel_idx;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
"""
int batch_idx = elem / C / gH / gW * b_stride;
int channel_idx = elem % C;
int base_idx = batch_idx + channel_idx;
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
@mx.custom_function
def grid_sample(x, grid):
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
assert x.ndim == 4, "`x` must be 4D."
assert grid.ndim == 4, "`grid` must be 4D."
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
"""
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
out_shape = (B, gN, gM, C)
assert D == 2, "Last dim of `grid` must be size 2."
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
For a reasonably sized input such as:
.. code-block:: python
x.shape = (8, 1024, 1024, 64)
grid.shape = (8, 256, 256, 2)
x.shape = (8, 1024, 1024, 64)
grid.shape = (8, 256, 256, 2)
On an M1 Max, we see a big performance improvement:
@@ -281,11 +298,11 @@ On an M1 Max, we see a big performance improvement:
Grid Sample VJP
---------------
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
its custom vjp transform so MLX can differentiate it.
Since we decorated ``grid_sample`` with :func:`custom_function`, we can now
define its custom vjp transform so MLX can differentiate it.
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
requires a few extra ``mx.fast.metal_kernel`` features:
requires a few extra :func:`fast.metal_kernel` features:
* ``init_value=0``
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
@@ -299,128 +316,129 @@ We can then implement the backwards pass as follows:
.. code-block:: python
@grid_sample.vjp
def grid_sample_vjp(primals, cotangent, _):
x, grid = primals
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
// Pad C to the nearest larger simdgroup size multiple
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
assert D == 2, "Last dim of `grid` must be size 2."
int gH = grid_shape[1];
int gW = grid_shape[2];
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
// Pad C to the nearest larger simdgroup size multiple
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int gH = grid_shape[1];
int gW = grid_shape[2];
uint grid_idx = elem / C_padded * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
uint grid_idx = elem / C_padded * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
int batch_idx = elem / C_padded / gH / gW * b_stride;
int channel_idx = elem % C_padded;
int base_idx = batch_idx + channel_idx;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
T gix = T(0);
T giy = T(0);
if (channel_idx < C) {
int cot_index = elem / C_padded * C + channel_idx;
T cot = cotangent[cot_index];
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
int batch_idx = elem / C_padded / gH / gW * b_stride;
int channel_idx = elem % C_padded;
int base_idx = batch_idx + channel_idx;
T I_nw = x[offset];
gix -= I_nw * (iy_se - iy) * cot;
giy -= I_nw * (ix_se - ix) * cot;
}
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
T gix = T(0);
T giy = T(0);
if (channel_idx < C) {
int cot_index = elem / C_padded * C + channel_idx;
T cot = cotangent[cot_index];
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
T I_ne = x[offset];
gix += I_ne * (iy_sw - iy) * cot;
giy -= I_ne * (ix - ix_sw) * cot;
}
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
T I_nw = x[offset];
gix -= I_nw * (iy_se - iy) * cot;
giy -= I_nw * (ix_se - ix) * cot;
}
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
T I_sw = x[offset];
gix -= I_sw * (iy - iy_ne) * cot;
giy += I_sw * (ix_ne - ix) * cot;
}
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
T I_ne = x[offset];
gix += I_ne * (iy_sw - iy) * cot;
giy -= I_ne * (ix - ix_sw) * cot;
}
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
T I_se = x[offset];
gix += I_se * (iy - iy_nw) * cot;
giy += I_se * (ix - ix_nw) * cot;
}
}
T I_sw = x[offset];
gix -= I_sw * (iy - iy_ne) * cot;
giy += I_sw * (ix_ne - ix) * cot;
}
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
T gix_mult = W / 2;
T giy_mult = H / 2;
T I_se = x[offset];
gix += I_se * (iy - iy_nw) * cot;
giy += I_se * (ix - ix_nw) * cot;
}
}
// Reduce across each simdgroup first.
// This is much faster than relying purely on atomics.
gix = simd_sum(gix);
giy = simd_sum(giy);
T gix_mult = W / 2;
T giy_mult = H / 2;
if (thread_index_in_simdgroup == 0) {
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
}
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
// Reduce across each simdgroup first.
// This is much faster than relying purely on atomics.
gix = simd_sum(gix);
giy = simd_sum(giy);
@grid_sample.vjp
def grid_sample_vjp(primals, cotangent, _):
x, grid = primals
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
if (thread_index_in_simdgroup == 0) {
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
}
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
# pad the output channels to simd group size
# so that our `simd_sum`s don't overlap.
simdgroup_size = 32
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
assert D == 2, "Last dim of `grid` must be size 2."
# pad the output channels to simd group size
# so that our `simd_sum`s don't overlap.
simdgroup_size = 32
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
There's an even larger speed up for the vjp:

View File

@@ -138,13 +138,13 @@ more concrete:
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
/** The name of primitive. */
const char* name() const override {
return "Axpby";
}
/** Equivalence check **/
@@ -394,14 +394,14 @@ below.
out.set_data(allocator::malloc(out.nbytes()));
// Resolve name of kernel
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
std::stream kname;
kname = "axpby_general_" + type_to_name(out);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
auto kernel = d.get_kernel(kname, lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -13,7 +13,7 @@ silicon computer is
pip install mlx
To install from PyPI you must meet the following requirements:
To install from PyPI your system must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.9
@@ -23,12 +23,39 @@ To install from PyPI you must meet the following requirements:
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
CUDA
^^^^
MLX is also available on conda-forge. To install MLX with conda do:
MLX has a CUDA backend which you can install with:
.. code-block:: shell
conda install conda-forge::mlx
pip install mlx[cuda]
To install the CUDA package from PyPi your system must meet the following
requirements:
- Nvidia architecture >= SM 7.0 (Volta)
- Nvidia driver >= 550.54.14
- CUDA toolkit >= 12.0
- Linux distribution with glibc >= 2.35
- Python >= 3.9
CPU-only (Linux)
^^^^^^^^^^^^^^^^
For a CPU-only version of MLX that runs on Linux use:
.. code-block:: shell
pip install mlx[cpu]
To install the CPU-only package from PyPi your system must meet the following
requirements:
- Linux distribution with glibc >= 2.35
- Python >= 3.9
Troubleshooting
@@ -65,6 +92,8 @@ Build Requirements
Python API
^^^^^^^^^^
.. _python install:
To build and install the MLX python library from source, first, clone MLX from
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
@@ -76,20 +105,20 @@ Then simply build and install MLX using pip:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
pip install .
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
pip install -e ".[dev]"
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
python setup.py build_ext --inplace
Run the tests with:
@@ -107,6 +136,8 @@ IDE:
C++ API
^^^^^^^
.. _cpp install:
Currently, MLX must be built and installed from source.
Similarly to the python library, to build and install the MLX C++ library start
@@ -185,6 +216,7 @@ should point to the path to the built metal library.
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -213,6 +245,50 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists across reboots.
Linux
^^^^^
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
For example on Ubuntu, run the following:
.. code-block:: shell
apt-get update -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
From here follow the instructions to install either the :ref:`Python <python
install>` or :ref:`C++ <cpp install>` APIs.
CUDA
^^^^
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
and the CUDA toolkit. For example on Ubuntu, run the following:
.. code-block:: shell
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
.. code-block:: shell
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
To build the C++ package run:
.. code-block:: shell
mkdir -p build && cd build
cmake .. -DMLX_BUILD_CUDA=ON && make -j
Troubleshooting
^^^^^^^^^^^^^^^

View File

@@ -19,6 +19,8 @@ Array
array.ndim
array.shape
array.size
array.real
array.imag
array.abs
array.all
array.any
@@ -38,6 +40,7 @@ Array
array.log10
array.log1p
array.log2
array.logcumsumexp
array.logsumexp
array.max
array.mean

View File

@@ -20,3 +20,5 @@ FFT
irfft2
rfftn
irfftn
fftshift
ifftshift

View File

@@ -16,6 +16,8 @@ Linear Algebra
cross
qr
svd
eigvals
eig
eigvalsh
eigh
lu

View File

@@ -103,6 +103,7 @@ Operations
log10
log1p
logaddexp
logcumsumexp
logical_not
logical_and
logical_or

View File

@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
optimizer.update(model, grads)
# Save the state
state = tree_flatten(optimizer.state)
mx.save_safetensors("optimizer.safetensors", dict(state))
state = tree_flatten(optimizer.state, destination={})
mx.save_safetensors("optimizer.safetensors", state)
# Later on, for example when loading from a checkpoint,
# recreate the optimizer and load the state
optimizer = optim.Adam(learning_rate=1e-2)
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
state = tree_unflatten(mx.load("optimizer.safetensors"))
optimizer.state = state
Note, not every optimizer configuation parameter is saved in the state. For

View File

@@ -18,3 +18,5 @@ Common Optimizers
AdamW
Adamax
Lion
MultiOptimizer
Muon

View File

@@ -7,17 +7,17 @@ Exporting Functions
MLX has an API to export and import functions to and from a file. This lets you
run computations written in one MLX front-end (e.g. Python) in another MLX
front-end (e.g. C++).
front-end (e.g. C++).
This guide walks through the basics of the MLX export API with some examples.
To see the full list of functions check-out the :ref:`API documentation
<export>`.
Basics of Exporting
Basics of Exporting
-------------------
Let's start with a simple example:
.. code-block:: python
def fun(x, y):
@@ -67,7 +67,7 @@ specified as variable positional arguments or as a tuple of arrays:
x = mx.array(1.0)
y = mx.array(1.0)
# Both arguments to fun are positional
mx.export_function("add.mlxfn", fun, x, y)
@@ -133,7 +133,7 @@ parameters are also saved to the ``model.mlxfn`` file.
For enclosed arrays inside an exported function, be extra careful to ensure
they are evaluated. The computation graph that gets exported will include
the computation that produces enclosed inputs.
If the above example was missing ``mx.eval(model.parameters()``, the
exported function would include the random initialization of the
:obj:`mlx.nn.Module` parameters.
@@ -150,8 +150,8 @@ parameters, pass them as inputs to the ``call`` wrapper:
# Set the model's parameters to the input parameters
model.update(tree_unflatten(list(params.items())))
return model(x)
params = dict(tree_flatten(model.parameters()))
params = tree_flatten(model.parameters(), destination={})
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)
@@ -169,8 +169,8 @@ to export a function which can be used for inputs with variable shapes:
# Ok
out, = imported_abs(mx.array(-1.0))
# Also ok
# Also ok
out, = imported_abs(mx.array([-1.0, -2.0]))
With ``shapeless=False`` (which is the default), the second call to
@@ -197,7 +197,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
def fun(x, y=None):
constant = mx.array(3.0)
if y is not None:
x += y
x += y
return x + constant
with mx.exporter("fun.mlxfn", fun) as exporter:
@@ -215,7 +215,7 @@ a single file by creating an exporting context manager with :func:`exporter`:
print(out)
In the above example the function constant data, (i.e. ``constant``), is only
saved once.
saved once.
Transformations with Imported Functions
---------------------------------------
@@ -238,7 +238,7 @@ on imported functions just like regular Python functions:
# Prints: array(1, dtype=float32)
print(dfdx(x))
# Compile the imported function
# Compile the imported function
mx.compile(imported_fun)
# Prints: array(0, dtype=float32)
print(compiled_fun(x)[0])
@@ -275,7 +275,7 @@ Import and run the function in C++ with only a few lines of code:
// Prints: array(2, dtype=float32)
std::cout << outputs[0] << std::endl;
Imported functions can be transformed in C++ just like in Python. Use
Imported functions can be transformed in C++ just like in Python. Use
``std::vector<mx::array>`` for positional arguments and ``std::map<std::string,
mx::array>`` for keyword arguments when calling imported functions in C++.

View File

@@ -107,6 +107,16 @@ same array:
>>> a
array([1, 2, 0], dtype=int32)
Note, unlike NumPy, updates to the same location are nondeterministic:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> a[[0, 0]] = mx.array([4, 5])
The first element of ``a`` could be ``4`` or ``5``.
Transformations of functions which use in-place updates are allowed and work as
expected. For example:

View File

@@ -1,5 +1,6 @@
// Copyright © 2023-2025 Apple Inc.
#include <dlfcn.h>
#include <iostream>
#include <sstream>
@@ -16,6 +17,19 @@
namespace my_ext {
// A helper function to find the location of the current binary on disk.
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
std::string current_binary_dir() {
static std::string binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path().string();
}();
return binary_dir;
}
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
///////////////////////////////////////////////////////////////////////////////
@@ -167,16 +181,15 @@ void Axpby::eval_gpu(
}
// Resolve name of kernel (corresponds to axpby.metal)
std::ostringstream kname;
kname << "axpby_";
kname << (contiguous_kernel ? "contiguous_" : "general_");
kname << type_to_name(out);
std::string kname = "axpby_";
kname += (contiguous_kernel ? "contiguous_" : "general_");
kname += type_to_name(out);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
auto kernel = d.get_kernel(kname, lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
const std::vector<mx::array>& inputs,
const std::vector<int>& axes) override;
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
/** The name of primitive. */
const char* name() const override {
return "Axpby";
}
/** Equivalence check **/

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.25
mlx>=0.21.0
nanobind==2.2.0
nanobind==2.4.0

View File

@@ -3,8 +3,10 @@ from mlx_sample_extensions import axpby
a = mx.ones((3, 4))
b = mx.ones((3, 4))
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")
print(f"c shape: {c_cpu.shape}")
print(f"c dtype: {c_cpu.dtype}")
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")

View File

@@ -5,6 +5,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
@@ -20,7 +21,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
# Define MLX_VERSION only in the version.cpp file.
add_library(mlx_version STATIC ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
add_library(mlx_version OBJECT ${CMAKE_CURRENT_SOURCE_DIR}/version.cpp)
target_compile_definitions(mlx_version PRIVATE MLX_VERSION="${MLX_VERSION}")
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:mlx_version>)
@@ -48,5 +49,19 @@ add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
endif()
if(MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
else()
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda/no_cuda.cpp)
endif()
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
endif()

View File

@@ -10,6 +10,7 @@
#include "mlx/allocator.h"
#include "mlx/dtype.h"
#include "mlx/event.h"
#include "mlx/small_vector.h"
namespace mlx::core {
@@ -18,8 +19,8 @@ class Primitive;
using Deleter = std::function<void(allocator::Buffer)>;
using ShapeElem = int32_t;
using Shape = std::vector<ShapeElem>;
using Strides = std::vector<int64_t>;
using Shape = SmallVector<ShapeElem>;
using Strides = SmallVector<int64_t>;
class array {
/* An array is really a node in a graph. It contains a shared ArrayDesc
@@ -224,6 +225,10 @@ class array {
// Not copyable
Data(const Data& d) = delete;
Data& operator=(const Data& d) = delete;
Data(Data&& o) : buffer(o.buffer), d(o.d) {
o.buffer = allocator::Buffer(nullptr);
o.d = [](allocator::Buffer) {};
}
~Data() {
d(buffer);
}
@@ -339,11 +344,11 @@ class array {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
// Return the shared pointer to the array::Data struct
const std::shared_ptr<Data>& data_shared_ptr() const {
return array_desc_->data;
}
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
@@ -356,7 +361,7 @@ class array {
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// The output of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,

View File

@@ -1,6 +1,7 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/broadcasting.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp

View File

@@ -0,0 +1,24 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@@ -0,0 +1,11 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
void broadcast(const array& in, array& out);
} // namespace mlx::core

View File

@@ -0,0 +1,157 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cassert>
#include <functional>
#include <map>
namespace mlx::core {
template <typename T>
class BufferCache {
public:
BufferCache(
size_t page_size,
std::function<size_t(T*)> get_size,
std::function<void(T*)> free)
: page_size_(page_size),
get_size_(std::move(get_size)),
free_(std::move(free)) {}
~BufferCache() {
clear();
}
BufferCache(const BufferCache&) = delete;
BufferCache& operator=(const BufferCache&) = delete;
T* reuse_from_cache(size_t size) {
// Find the closest buffer in pool.
auto it = buffer_pool_.lower_bound(size);
if (it == buffer_pool_.end() ||
it->first >= std::min(2 * size, size + 2 * page_size_)) {
return nullptr;
}
// Collect from the cache.
T* buf = it->second->buf;
pool_size_ -= it->first;
// Remove from record.
remove_from_list(it->second);
buffer_pool_.erase(it);
return buf;
}
void recycle_to_cache(T* buf) {
assert(buf);
// Add to cache.
BufferHolder* bh = new BufferHolder(buf);
add_at_head(bh);
size_t size = get_size_(buf);
pool_size_ += size;
buffer_pool_.emplace(size, bh);
}
int release_cached_buffers(size_t min_bytes_to_free) {
if (min_bytes_to_free >= 0.9 * pool_size_) {
return clear();
} else {
int n_release = 0;
size_t total_bytes_freed = 0;
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
// Release buffer.
size_t size = get_size_(tail_->buf);
total_bytes_freed += size;
free_(tail_->buf);
n_release++;
// Remove from record.
auto its = buffer_pool_.equal_range(size);
auto it = std::find_if(its.first, its.second, [this](const auto& el) {
return el.second == tail_;
});
assert(it != buffer_pool_.end());
buffer_pool_.erase(it);
remove_from_list(tail_);
}
pool_size_ -= total_bytes_freed;
return n_release;
}
}
int clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
free_(holder->buf);
n_release++;
delete holder;
}
buffer_pool_.clear();
pool_size_ = 0;
head_ = nullptr;
tail_ = nullptr;
return n_release;
}
size_t cache_size() const {
return pool_size_;
}
size_t page_size() const {
return page_size_;
}
private:
struct BufferHolder {
public:
explicit BufferHolder(T* buf_) : buf(buf_) {}
BufferHolder* prev{nullptr};
BufferHolder* next{nullptr};
T* buf;
};
void add_at_head(BufferHolder* to_add) {
if (!head_) {
head_ = to_add;
tail_ = to_add;
} else {
head_->prev = to_add;
to_add->next = head_;
head_ = to_add;
}
}
void remove_from_list(BufferHolder* to_remove) {
if (to_remove->prev && to_remove->next) { // if middle
to_remove->prev->next = to_remove->next;
to_remove->next->prev = to_remove->prev;
} else if (to_remove->prev && to_remove == tail_) { // if tail
tail_ = to_remove->prev;
tail_->next = nullptr;
} else if (to_remove == head_ && to_remove->next) { // if head
head_ = to_remove->next;
head_->prev = nullptr;
} else if (to_remove == head_ && to_remove == tail_) { // if only element
head_ = nullptr;
tail_ = nullptr;
}
delete to_remove;
}
std::multimap<size_t, BufferHolder*> buffer_pool_;
BufferHolder* head_{nullptr};
BufferHolder* tail_{nullptr};
size_t pool_size_{0};
const size_t page_size_;
std::function<size_t(T*)> get_size_;
std::function<void(T*)> free_;
};
} // namespace mlx::core

View File

@@ -1,6 +1,7 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/broadcasting.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
@@ -42,23 +43,6 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
}
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}

View File

@@ -1,8 +1,7 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/backend/common/utils.h"
#include "mlx/utils.h"
namespace mlx::core {
@@ -15,6 +14,8 @@ void print_constant(std::ostream& os, const array& x) {
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case float64:
return print_float_constant<double>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
@@ -51,6 +52,8 @@ std::string get_type_string(Dtype d) {
return "float16_t";
case bfloat16:
return "bfloat16_t";
case float64:
return "double";
case complex64:
return "complex64_t";
case bool_:
@@ -79,55 +82,6 @@ std::string get_type_string(Dtype d) {
}
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids) {
NodeNamer namer;
std::ostringstream os;
std::ostringstream constant_hasher;
// Fill the input names. This is not really necessary, I just like having A,
// B, C, ... as the inputs.
for (auto& x : inputs) {
namer.get_name(x);
}
// The primitives describing the tape. For unary and binary primitives this
// must be enough to describe the full computation.
for (auto& a : tape) {
// name and type of output
os << namer.get_name(a) << kindof(a.dtype()) << a.itemsize();
// computation performed
a.primitive().print(os);
// name of inputs to the function
for (auto& inp : a.inputs()) {
os << namer.get_name(inp);
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
os << "C";
print_constant(constant_hasher, x);
} else {
os << (is_scalar(x) ? "S" : "V");
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
continue;
}
os << kindof(x.dtype()) << x.itemsize();
}
os << "_" << std::hash<std::string>{}(constant_hasher.str());
return os.str();
}
bool compiled_check_contiguity(
const std::vector<array>& inputs,
const Shape& shape) {
@@ -159,8 +113,7 @@ bool compiled_check_contiguity(
void compiled_allocate_outputs(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const std::vector<array>& inputs_,
const std::unordered_set<uintptr_t>& constant_ids_,
const std::function<bool(size_t)>& is_constant,
bool contiguous) {
if (contiguous) {
int o = 0;
@@ -175,8 +128,7 @@ void compiled_allocate_outputs(
// - Donatable
// - Not a constant
if (in.itemsize() == outputs[o].itemsize() && !is_scalar(in) &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
in.is_donatable() && is_constant(i)) {
outputs[o++].copy_shared_buffer(in);
}
// Get representative input flags to properly set non-donated outputs
@@ -204,7 +156,7 @@ void compiled_allocate_outputs(
// - Not a constant
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
is_constant(i)) {
outputs[o].copy_shared_buffer(
in, outputs[o].strides(), in.flags(), in.data_size());
o++;
@@ -216,4 +168,74 @@ void compiled_allocate_outputs(
}
}
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
const std::vector<array>& inputs,
const array& out,
const std::function<bool(size_t)>& is_constant) {
const Shape& shape = out.shape();
bool contiguous = compiled_check_contiguity(inputs, shape);
if (contiguous) {
return {true, shape, {}};
}
std::vector<Strides> strides_vec{out.strides()};
for (size_t i = 0; i < inputs.size(); ++i) {
// Skip constants.
if (is_constant(i)) {
continue;
}
// Skip scalar inputs.
const auto& x = inputs[i];
if (is_scalar(x)) {
continue;
}
// Broadcast the inputs to the output shape.
Strides xstrides;
size_t j = 0;
for (; j < shape.size() - x.ndim(); ++j) {
if (shape[j] == 1) {
xstrides.push_back(out.strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
if (x.shape(i) == 1) {
if (shape[j] == 1) {
xstrides.push_back(out.strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
strides_vec.push_back(std::move(xstrides));
}
auto tup = collapse_contiguous_dims(shape, strides_vec, INT32_MAX);
return {false, std::move(std::get<0>(tup)), std::move(std::get<1>(tup))};
}
bool compiled_use_large_index(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
bool contiguous) {
if (contiguous) {
size_t max_size = 0;
for (const auto& in : inputs) {
max_size = std::max(max_size, in.data_size());
}
return max_size > UINT32_MAX;
} else {
size_t max_size = 0;
for (const auto& o : outputs) {
max_size = std::max(max_size, o.size());
}
return max_size > UINT32_MAX;
}
}
} // namespace mlx::core

View File

@@ -1,9 +1,8 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <functional>
#include <iomanip>
#include <sstream>
#include <unordered_set>
#include "mlx/array.h"
#include "mlx/primitives.h"
@@ -14,19 +13,17 @@ inline bool is_static_cast(const Primitive& p) {
return (typeid(p) == typeid(Broadcast) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids);
std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
if constexpr (std::is_same_v<T, double>) {
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
} else {
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
}
os << x.item<T>() << std::setprecision(old_precision);
}
template <typename T>
@@ -60,8 +57,19 @@ bool compiled_check_contiguity(
void compiled_allocate_outputs(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const std::vector<array>& inputs_,
const std::unordered_set<uintptr_t>& constant_ids_,
const std::function<bool(size_t)>& is_constant,
bool contiguous);
// Collapse contiguous dims ignoring scalars and constants.
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
const std::vector<array>& inputs,
const array& out,
const std::function<bool(size_t)>& is_constant);
// Return whether the kernel should use large index.
bool compiled_use_large_index(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
bool contiguous);
} // namespace mlx::core

View File

@@ -2,7 +2,7 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
@@ -26,7 +26,7 @@ inline bool set_copy_output_data(const array& in, array& out, CopyType ctype) {
if (ctype == CopyType::Vector) {
// If the input is donateable, we are doing a vector copy and the types
// have the same size, then the input buffer can hold the output.
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
if (is_donatable(in, out)) {
out.copy_shared_buffer(in);
return true;
} else {

View File

@@ -99,7 +99,11 @@ inline std::pair<int, int> decompose_hadamard(int n) {
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
}
}
if (n > (1 << 26)) {
throw std::invalid_argument(
"[hadamard] Only supports n = m*2^k where k <= 26");
}
return {n, m};
}
} // namespace mlx::core
} // namespace mlx::core

View File

@@ -0,0 +1,67 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/common/utils.h"
#include "mlx/utils.h"
#include <sstream>
namespace mlx::core {
inline std::tuple<Shape, Strides, Strides> collapse_batches(
const array& a,
const array& b) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
auto [batch_shape, batch_strides] =
collapse_contiguous_dims(A_bshape, std::vector{A_bstride, B_bstride});
auto a_batch_strides = batch_strides[0];
auto b_batch_strides = batch_strides[1];
if (batch_shape.empty()) {
batch_shape.push_back(1);
a_batch_strides.push_back(0);
b_batch_strides.push_back(0);
}
return std::make_tuple(batch_shape, a_batch_strides, b_batch_strides);
}
inline std::tuple<Shape, Strides, Strides, Strides>
collapse_batches(const array& a, const array& b, const array& c) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}, {0}};
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
Strides C_bstride{c.strides().begin(), c.strides().end() - 2};
auto [batch_shape, batch_strides] = collapse_contiguous_dims(
A_bshape, std::vector{A_bstride, B_bstride, C_bstride});
auto A_batch_stride = batch_strides[0];
auto B_batch_stride = batch_strides[1];
auto C_batch_stride = batch_strides[2];
if (batch_shape.empty()) {
batch_shape.push_back(1);
A_batch_stride.push_back(0);
B_batch_stride.push_back(0);
C_batch_stride.push_back(0);
}
return std::make_tuple(
batch_shape, A_batch_stride, B_batch_stride, C_batch_stride);
}
} // namespace mlx::core

View File

@@ -5,11 +5,9 @@
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
Shape shape,
Strides strides,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
@@ -19,6 +17,15 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
return std::make_pair(shape, strides);
}
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
return shapes_without_reduction_axes(
std::move(shape), std::move(strides), axes);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&

View File

@@ -51,5 +51,9 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
Shape shape,
Strides strides,
const std::vector<int>& axes);
} // namespace mlx::core

View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
inline void set_unary_output_data(const array& in, array& out) {
if (in.flags().contiguous) {
if (is_donatable(in, out)) {
out.copy_shared_buffer(in);
} else {
out.set_data(
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
}
} // namespace mlx::core

View File

@@ -1,9 +1,22 @@
// Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include "mlx/backend/common/utils.h"
namespace mlx::core {
std::filesystem::path current_binary_dir() {
static std::filesystem::path binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path();
}();
return binary_dir;
}
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
@@ -101,4 +114,145 @@ std::pair<Shape, Strides> collapse_contiguous_dims(
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
}
Dims get_block_dims_common(int dim0, int dim1, int dim2, int pow2 /* = 10 */) {
int pows[3] = {0, 0, 0};
int sum = 0;
while (true) {
int presum = sum;
// Check all the pows
if (dim0 >= (1 << (pows[0] + 1))) {
pows[0]++;
sum++;
}
if (sum == 10) {
break;
}
if (dim1 >= (1 << (pows[1] + 1))) {
pows[1]++;
sum++;
}
if (sum == 10) {
break;
}
if (dim2 >= (1 << (pows[2] + 1))) {
pows[2]++;
sum++;
}
if (sum == presum || sum == pow2) {
break;
}
}
return std::make_tuple(1ul << pows[0], 1ul << pows[1], 1ul << pows[2]);
}
Dims get_2d_grid_dims_common(const Shape& shape, const Strides& strides) {
// Dims with strides of 0 are ignored as they
// correspond to broadcasted dimensions
size_t grid_x = 1;
size_t grid_y = 1;
for (int i = 0; i < shape.size(); ++i) {
if (strides[i] == 0) {
continue;
}
if (grid_x * shape[i] < UINT32_MAX) {
grid_x *= shape[i];
} else {
grid_y *= shape[i];
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
Dims get_2d_grid_dims_common(
const Shape& shape,
const Strides& strides,
size_t divisor) {
// Compute the 2d grid dimensions such that the total size of the grid is
// divided by divisor.
size_t grid_x = 1;
size_t grid_y = 1;
for (int i = 0; i < shape.size(); ++i) {
if (strides[i] == 0) {
continue;
}
// No need to add this shape we can just remove it from the divisor.
if (divisor % shape[i] == 0) {
divisor /= shape[i];
continue;
}
if (grid_x * shape[i] < UINT32_MAX) {
grid_x *= shape[i];
} else {
grid_y *= shape[i];
}
if (divisor > 1) {
if (grid_x % divisor == 0) {
grid_x /= divisor;
divisor = 1;
} else if (grid_y % divisor == 0) {
grid_y /= divisor;
divisor = 1;
}
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
if (divisor > 1) {
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
auto [bx, by, bz] = get_block_dims_common(dim0, dim1, dim2);
auto gx = (dim0 + bx - 1) / bx;
auto gy = (dim1 + by - 1) / by;
auto gz = (dim2 + bz - 1) / bz;
return std::make_pair(
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
}
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
int ndim = x.ndim();
if (axis1 < 0) {
axis1 += ndim;
}
if (axis2 < 0) {
axis2 += ndim;
}
auto shape = x.shape();
std::swap(shape[axis1], shape[axis2]);
auto strides = x.strides();
std::swap(strides[axis1], strides[axis2]);
auto [data_size, row_contiguous, col_contiguous] =
check_contiguity(shape, strides);
bool contiguous = data_size == x.data_size();
array out(std::move(shape), x.dtype(), nullptr, {});
out.copy_shared_buffer(
x,
std::move(strides),
{contiguous, row_contiguous, col_contiguous},
x.data_size());
return out;
}
} // namespace mlx::core

View File

@@ -2,12 +2,17 @@
#pragma once
#include <filesystem>
#include <tuple>
#include <vector>
#include "mlx/array.h"
namespace mlx::core {
// Return the directory that contains current shared library.
std::filesystem::path current_binary_dir();
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
int64_t loc = 0;
@@ -70,6 +75,31 @@ std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
int64_t size_cap = std::numeric_limits<int32_t>::max());
// Compute the thread block dimensions which fit the given
// input dimensions.
// - The thread block dimensions will be powers of two
// - The thread block size will be less than 2^pow2
using Dims = std::tuple<uint32_t, uint32_t, uint32_t>;
Dims get_block_dims_common(int dim0, int dim1, int dim2, int pow2 = 10);
// Computes a 2D grid where each element is < UINT_MAX
// Assumes:
// - overall size (product of non-broadcasted dimensions) is < UINT_MAX^2
// - shape and strides correspond to a contiguous (no holes) but
// possibly broadcasted array
Dims get_2d_grid_dims_common(const Shape& shape, const Strides& strides);
// Same as above but we do an implicit division with divisor.
// Basically, equivalent to factorizing
// Prod(s \forall s in shape if strides[s] > 0) / divisor.
Dims get_2d_grid_dims_common(
const Shape& shape,
const Strides& strides,
size_t divisor);
// Get both the block and a grid of blocks that covers dim0, dim1 and dim2.
std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2);
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
@@ -165,4 +195,14 @@ void shared_buffer_reshape(
const array& in,
const Strides& out_strides,
array& out);
// Like the swapaxes op but safe to call in eval_gpu.
array swapaxes_in_eval(const array& x, int axis1, int axis2);
template <typename T>
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
vec.erase(std::next(vec.begin(), index));
return vec;
}
} // namespace mlx::core

View File

@@ -40,11 +40,13 @@ add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/available.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eig.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/encoder.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
@@ -74,8 +76,8 @@ target_sources(
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_bf16.cpp)
endif()
if(IOS)

View File

@@ -14,10 +14,8 @@ template <typename InT, typename OpT>
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
auto axis_size = in.shape()[axis];
auto axis_stride = in.strides()[axis];
Strides strides = in.strides();
Shape shape = in.shape();
strides.erase(strides.begin() + axis);
shape.erase(shape.begin() + axis);
Strides strides = remove_index(in.strides(), axis);
Shape shape = remove_index(in.shape(), axis);
auto in_ptr = in.data<InT>();
auto out_ptr = out.data<uint32_t>();

View File

@@ -0,0 +1,11 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/available.h"
namespace mlx::core::cpu {
bool is_available() {
return true;
}
} // namespace mlx::core::cpu

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cpu {
bool is_available();
} // namespace mlx::core::cpu

View File

@@ -172,9 +172,12 @@ void binary_float(
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports non-complex floating point types.");
"[binary_float] Only supports floating point types.");
}
});
}

View File

@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// The decomposition is computed in place, so just copy the input to the
// output.
copy(
copy_cpu(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -40,7 +40,10 @@ struct CompilerCache {
std::shared_mutex mtx;
};
static CompilerCache cache{};
static CompilerCache& cache() {
static CompilerCache cache_;
return cache_;
};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
@@ -56,14 +59,16 @@ void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::shared_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::unique_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
@@ -120,10 +125,10 @@ void* compile(
}
// load library
cache.libs.emplace_back(shared_lib_path);
cache().libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
void* fun = dlsym(cache().libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -131,7 +136,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
cache.kernels.insert({kernel_name, fun});
cache().kernels.insert({kernel_name, fun});
return fun;
}
@@ -141,18 +146,9 @@ inline void build_kernel(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
const std::function<bool(size_t)>& is_constant,
bool contiguous,
int ndim) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
#ifdef _MSC_VER
@@ -165,14 +161,15 @@ inline void build_kernel(
// Add the input arguments
int cnt = 0;
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
for (size_t i = 0; i < inputs.size(); ++i) {
// Skip constants from the input list
if (is_constant(x)) {
if (is_constant(i)) {
continue;
}
const auto& x = inputs[i];
auto& xname = namer.get_name(x);
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
<< "];" << std::endl;
@@ -206,10 +203,11 @@ inline void build_kernel(
}
// Read the inputs in tmps
for (auto& x : inputs) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
auto& xname = namer.get_name(x);
if (is_constant(x)) {
if (is_constant(i)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
@@ -233,7 +231,7 @@ inline void build_kernel(
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << x.primitive().name();
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
@@ -259,8 +257,9 @@ inline void build_kernel(
} else {
for (int d = ndim - 1; d >= 0; --d) {
// Update pointers
for (auto& x : inputs) {
if (is_constant(x) || is_scalar(x)) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
if (is_constant(i) || is_scalar(x)) {
continue;
}
auto& xname = namer.get_name(x);
@@ -282,65 +281,45 @@ inline void build_kernel(
void Compiled::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Figure out which kernel we are using
auto& shape = outputs[0].shape();
auto contiguous = compiled_check_contiguity(inputs, shape);
auto& encoder = cpu::get_command_encoder(stream());
// Handle all broadcasting and collect function input arguments
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
auto [contiguous, shape, strides] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Force allocating shape/strides on heap so we can take their data() first
// and then std::move them.
// TODO: Refactor code to avoid heap allocation.
shape.grow();
for (auto& s : strides) {
s.grow();
}
// Collect function input arguments.
std::vector<void*> args;
std::vector<std::vector<size_t>> strides;
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant_(i)) {
continue;
}
auto& x = inputs[i];
const auto& x = inputs[i];
encoder.set_input_array(x);
args.push_back((void*)x.data<void>());
if (contiguous || is_scalar(x)) {
continue;
if (!contiguous && !is_scalar(x)) {
args.push_back(strides[strides_index++].data());
}
// Broadcast the input to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < shape.size() - x.ndim(); j++) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
strides.push_back(std::move(xstrides));
args.push_back(strides.back().data());
}
// Get the kernel name from the lib
int ndim = shape.size();
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
kernel_name += std::to_string(shape.size());
kernel_name += std::to_string(ndim);
}
// Get the function
auto fn_ptr = compile(kernel_name, [&]() {
auto fn_ptr = compile(kernel_name, [&, contiguous = contiguous]() {
std::ostringstream kernel;
kernel << get_kernel_preamble() << std::endl;
kernel << "extern \"C\" {" << std::endl;
@@ -350,7 +329,7 @@ void Compiled::eval_cpu(
inputs_,
outputs_,
tape_,
constant_ids_,
is_constant_,
contiguous,
ndim);
// Close extern "C"
@@ -358,26 +337,22 @@ void Compiled::eval_cpu(
return kernel.str();
});
compiled_allocate_outputs(
inputs, outputs, inputs_, constant_ids_, contiguous);
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
for (auto& x : outputs) {
args.push_back(x.data<void>());
encoder.set_output_array(x);
}
Shape out_shape;
if (!contiguous) {
out_shape = outputs[0].shape();
args.push_back((void*)out_shape.data());
args.push_back((void*)shape.data());
} else {
args.push_back((void*)outputs[0].data_size());
}
auto fun = (void (*)(void**))fn_ptr;
encoder.dispatch(
[fun,
args = std::move(args),
strides = std::move(strides),
out_shape = std::move(out_shape)]() mutable { fun(args.data()); });
encoder.dispatch([fun,
args = std::move(args),
strides = std::move(strides),
shape = std::move(shape)]() mutable { fun(args.data()); });
}
} // namespace mlx::core

File diff suppressed because it is too large Load Diff

View File

@@ -295,7 +295,11 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(src);
encoder.set_output_array(dst);
@@ -305,7 +309,7 @@ void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
}
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
bool donated = set_copy_output_data(src, dst, ctype);
if (donated && src.dtype() == dst.dtype()) {
// If the output has the same type as the input then there is nothing to
@@ -315,10 +319,10 @@ void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_inplace(src, dst, ctype, stream);
copy_cpu_inplace(src, dst, ctype, stream);
}
void copy_inplace(
void copy_cpu_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -373,4 +377,10 @@ void copy_inplace(
});
}
array contiguous_copy_cpu(const array& arr, Stream stream) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return arr_copy;
}
} // namespace mlx::core

View File

@@ -10,10 +10,14 @@
namespace mlx::core {
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream);
void copy_inplace(
void copy_cpu_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -26,4 +30,7 @@ void copy_inplace(
const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_cpu(const array& arr, Stream stream);
} // namespace mlx::core

View File

@@ -13,9 +13,7 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
if (arr.flags().row_contiguous) {
return {arr, false};
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
return {contiguous_copy_cpu(arr, stream), true};
}
};
@@ -34,8 +32,7 @@ void AllReduce::eval_cpu(
}
return in;
} else {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, s);
array arr_copy = contiguous_copy_cpu(in, s);
out.copy_shared_buffer(arr_copy);
return arr_copy;
}
@@ -46,8 +43,15 @@ void AllReduce::eval_cpu(
case Sum:
distributed::detail::all_sum(group(), in, outputs[0], stream());
break;
case Max:
distributed::detail::all_max(group(), in, outputs[0], stream());
break;
case Min:
distributed::detail::all_min(group(), in, outputs[0], stream());
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
throw std::runtime_error(
"Only all reduce sum, min and max are supported for now");
}
}

174
mlx/backend/cpu/eig.cpp Normal file
View File

@@ -0,0 +1,174 @@
// Copyright © 2025 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename T>
void eig_impl(
array& a,
array& vectors,
array& values,
bool compute_eigenvectors,
Stream stream) {
using OT = std::complex<T>;
auto a_ptr = a.data<T>();
auto eig_ptr = values.data<OT>();
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(a);
encoder.set_output_array(values);
OT* vec_ptr = nullptr;
if (compute_eigenvectors) {
encoder.set_output_array(vectors);
vec_ptr = vectors.data<OT>();
}
encoder.dispatch([a_ptr,
vec_ptr,
eig_ptr,
compute_eigenvectors,
N = vectors.shape(-1),
size = vectors.size()]() mutable {
// Work query
char jobr = 'N';
char jobl = compute_eigenvectors ? 'V' : 'N';
int n_vecs_r = 1;
int n_vecs_l = compute_eigenvectors ? N : 1;
int lwork = -1;
int info;
{
T work;
int iwork;
geev<T>(
&jobl,
&jobr,
&N,
nullptr,
&N,
nullptr,
nullptr,
nullptr,
&n_vecs_l,
nullptr,
&n_vecs_r,
&work,
&lwork,
&info);
lwork = static_cast<int>(work);
}
auto eig_tmp_data = array::Data{allocator::malloc(sizeof(T) * N * 2)};
auto vec_tmp_data =
array::Data{allocator::malloc(vec_ptr ? sizeof(T) * N * N * 2 : 0)};
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
for (size_t i = 0; i < size / (N * N); ++i) {
geev<T>(
&jobl,
&jobr,
&N,
a_ptr,
&N,
eig_tmp,
eig_tmp + N,
vec_tmp,
&n_vecs_l,
nullptr,
&n_vecs_r,
static_cast<T*>(work_buf.buffer.raw_ptr()),
&lwork,
&info);
for (int i = 0; i < N; ++i) {
eig_ptr[i] = {eig_tmp[i], eig_tmp[N + i]};
}
if (vec_ptr) {
for (int i = 0; i < N; ++i) {
if (eig_ptr[i].imag() != 0) {
// This vector and the next are a pair
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {
vec_tmp[i * N + j], -vec_tmp[(i + 1) * N + j]};
vec_ptr[(i + 1) * N + j] = {
vec_tmp[i * N + j], vec_tmp[(i + 1) * N + j]};
}
i += 1;
} else {
for (int j = 0; j < N; ++j) {
vec_ptr[i * N + j] = {vec_tmp[i * N + j], 0};
}
}
}
vec_ptr += N * N;
}
a_ptr += N * N;
eig_ptr += N;
if (info != 0) {
std::stringstream msg;
msg << "[Eig::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
}
});
encoder.add_temporary(a);
}
} // namespace
void Eig::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
const auto& a = inputs[0];
auto& values = outputs[0];
auto vectors = compute_eigenvectors_
? outputs[1]
: array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy_cpu(
a,
a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
stream());
values.set_data(allocator::malloc(values.nbytes()));
if (compute_eigenvectors_) {
// Set the strides and flags so the eigenvectors
// are in the columns of the output
auto flags = vectors.flags();
auto strides = vectors.strides();
auto ndim = a.ndim();
std::swap(strides[ndim - 1], strides[ndim - 2]);
if (a.size() > 1) {
flags.row_contiguous = false;
if (ndim > 2) {
flags.col_contiguous = false;
} else {
flags.col_contiguous = true;
}
}
vectors.set_data(
allocator::malloc(vectors.nbytes()), vectors.size(), strides, flags);
}
switch (a.dtype()) {
case float32:
eig_impl<float>(a_copy, vectors, values, compute_eigenvectors_, stream());
break;
default:
throw std::runtime_error("[Eig::eval_cpu] only supports float32.");
}
}
} // namespace mlx::core

View File

@@ -12,6 +12,133 @@ namespace mlx::core {
namespace {
template <typename T, class Enable = void>
struct EighWork {};
template <typename T>
struct EighWork<
T,
typename std::enable_if<std::is_floating_point<T>::value>::type> {
using R = T;
char jobz;
char uplo;
int N;
int lwork;
int liwork;
int info;
std::vector<array::Data> buffers;
EighWork(char jobz_, char uplo_, int N_)
: jobz(jobz_), uplo(uplo_), N(N_), lwork(-1), liwork(-1) {
T work;
int iwork;
syevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work);
liwork = iwork;
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
buffers.emplace_back(allocator::malloc(sizeof(int) * liwork));
}
void run(T* vectors, T* values) {
syevd<T>(
&jobz,
&uplo,
&N,
vectors,
&N,
values,
static_cast<T*>(buffers[0].buffer.raw_ptr()),
&lwork,
static_cast<int*>(buffers[1].buffer.raw_ptr()),
&liwork,
&info);
}
};
template <>
struct EighWork<std::complex<float>> {
using T = std::complex<float>;
using R = float;
char jobz;
char uplo;
int N;
int lwork;
int lrwork;
int liwork;
int info;
std::vector<array::Data> buffers;
EighWork(char jobz_, char uplo_, int N_)
: jobz(jobz_), uplo(uplo_), N(N_), lwork(-1), lrwork(-1), liwork(-1) {
T work;
R rwork;
int iwork;
heevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&rwork,
&lrwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work.real());
lrwork = static_cast<int>(rwork);
liwork = iwork;
buffers.emplace_back(allocator::malloc(sizeof(T) * lwork));
buffers.emplace_back(allocator::malloc(sizeof(R) * lrwork));
buffers.emplace_back(allocator::malloc(sizeof(int) * liwork));
}
void run(T* vectors, R* values) {
heevd<T>(
&jobz,
&uplo,
&N,
vectors,
&N,
values,
static_cast<T*>(buffers[0].buffer.raw_ptr()),
&lwork,
static_cast<R*>(buffers[1].buffer.raw_ptr()),
&lrwork,
static_cast<int*>(buffers[2].buffer.raw_ptr()),
&liwork,
&info);
if (jobz == 'V') {
// We have pre-transposed the vectors but we also must conjugate them
// when they are complex.
//
// We could vectorize this but it is so fast in comparison to heevd that
// it doesn't really matter.
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
*vectors = std::conj(*vectors);
vectors++;
}
}
}
}
};
template <typename T>
void eigh_impl(
array& vectors,
@@ -19,8 +146,10 @@ void eigh_impl(
const std::string& uplo,
bool compute_eigenvectors,
Stream stream) {
using R = typename EighWork<T>::R;
auto vec_ptr = vectors.data<T>();
auto eig_ptr = values.data<T>();
auto eig_ptr = values.data<R>();
char jobz = compute_eigenvectors ? 'V' : 'N';
auto& encoder = cpu::get_command_encoder(stream);
@@ -33,49 +162,17 @@ void eigh_impl(
N = vectors.shape(-1),
size = vectors.size()]() mutable {
// Work query
int lwork = -1;
int liwork = -1;
int info;
{
T work;
int iwork;
syevd<T>(
&jobz,
&uplo,
&N,
nullptr,
&N,
nullptr,
&work,
&lwork,
&iwork,
&liwork,
&info);
lwork = static_cast<int>(work);
liwork = iwork;
}
EighWork<T> work(jobz, uplo, N);
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
auto iwork_buf = array::Data{allocator::malloc(sizeof(int) * liwork)};
// Work loop
for (size_t i = 0; i < size / (N * N); ++i) {
syevd<T>(
&jobz,
&uplo,
&N,
vec_ptr,
&N,
eig_ptr,
static_cast<T*>(work_buf.buffer.raw_ptr()),
&lwork,
static_cast<int*>(iwork_buf.buffer.raw_ptr()),
&liwork,
&info);
work.run(vec_ptr, eig_ptr);
vec_ptr += N * N;
eig_ptr += N;
if (info != 0) {
if (work.info != 0) {
std::stringstream msg;
msg << "[Eigh::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
<< work.info;
throw std::runtime_error(msg.str());
}
}
@@ -99,7 +196,7 @@ void Eigh::eval_cpu(
values.set_data(allocator::malloc(values.nbytes()));
copy(
copy_cpu(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
@@ -131,6 +228,10 @@ void Eigh::eval_cpu(
eigh_impl<double>(
vectors, values, uplo_, compute_eigenvectors_, stream());
break;
case complex64:
eigh_impl<std::complex<float>>(
vectors, values, uplo_, compute_eigenvectors_, stream());
break;
default:
throw std::runtime_error(
"[Eigh::eval_cpu] only supports float32 or float64.");

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t*,
const bfloat16_t*,
bfloat16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] bfloat16 not supported.");
}
} // namespace mlx::core

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t*,
const float16_t*,
float16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] float16 not supported.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t* a,
const bfloat16_t* b,
bfloat16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<bfloat16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t* a,
const float16_t* b,
float16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<float16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,139 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
inline int ceildiv(int a, int b) {
return (a + b - 1) / b;
}
template <int block_size, typename T, typename AccT>
void load_block(
const T* in,
AccT* out,
int M,
int N,
int i,
int j,
bool transpose) {
if (transpose) {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[jj * block_size + ii] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
} else {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[ii * block_size + jj] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
}
}
template <typename T, typename AccT>
void simd_gemm(
const T* a,
const T* b,
T* c,
bool a_trans,
bool b_trans,
int M,
int N,
int K,
float alpha,
float beta) {
constexpr int block_size = 16;
constexpr int simd_size = simd::max_size<AccT>;
static_assert(
(block_size % simd_size) == 0,
"Block size must be divisible by SIMD size");
int last_k_block_size = K - block_size * (K / block_size);
int last_k_simd_block = (last_k_block_size / simd_size) * simd_size;
for (int i = 0; i < ceildiv(M, block_size); i++) {
for (int j = 0; j < ceildiv(N, block_size); j++) {
AccT c_block[block_size * block_size] = {0.0};
AccT a_block[block_size * block_size];
AccT b_block[block_size * block_size];
int k = 0;
for (; k < K / block_size; k++) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
for (int kk = 0; kk < block_size; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
}
}
}
if (last_k_block_size) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
int kk = 0;
for (; kk < last_k_simd_block; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
for (; kk < last_k_block_size; ++kk) {
c_block[ii * block_size + jj] +=
a_block[ii * block_size + kk] * b_block[jj * block_size + kk];
}
}
}
}
// Store
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
auto c_idx = (i * block_size + ii) * N + j * block_size + jj;
if (beta != 0) {
c[c_idx] = static_cast<T>(
alpha * c_block[ii * block_size + jj] + beta * c[c_idx]);
} else {
c[c_idx] = static_cast<T>(alpha * c_block[ii * block_size + jj]);
}
}
}
}
}
}
} // namespace mlx::core

View File

@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
copy(
copy_cpu(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -257,15 +257,11 @@ void gather_axis(
const array& ind,
array& out,
const int axis) {
auto strides = ind.strides();
strides.erase(strides.begin() + axis);
auto shape = ind.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator ind_it(shape, strides, src.ndim() - 1);
strides = src.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator src_it(shape, strides, src.ndim() - 1);
auto shape = remove_index(ind.shape(), axis);
ContiguousIterator ind_it(
shape, remove_index(ind.strides(), axis), src.ndim() - 1);
ContiguousIterator src_it(
shape, remove_index(src.strides(), axis), src.ndim() - 1);
auto ind_ptr = ind.data<IdxT>();
auto src_ptr = src.data<T>();
@@ -521,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream());
copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> inds;
@@ -585,15 +581,11 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
template <typename T, typename IdxT, typename OpT>
void scatter_axis(array& out, const array idx, const array& upd, int axis) {
auto strides = idx.strides();
strides.erase(strides.begin() + axis);
auto shape = idx.shape();
shape.erase(shape.begin() + axis);
ContiguousIterator idx_it(shape, strides, upd.ndim() - 1);
strides = upd.strides();
strides.erase(strides.begin() + axis);
ContiguousIterator upd_it(shape, strides, upd.ndim() - 1);
auto shape = remove_index(idx.shape(), axis);
ContiguousIterator idx_it(
shape, remove_index(idx.strides(), axis), upd.ndim() - 1);
ContiguousIterator upd_it(
shape, remove_index(upd.strides(), axis), upd.ndim() - 1);
auto idx_ptr = idx.data<IdxT>();
auto upd_ptr = upd.data<T>();
@@ -694,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy(src, out, ctype, stream());
copy_cpu(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(idx);

View File

@@ -115,7 +115,7 @@ void inverse_impl(
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy(
copy_cpu(
a,
inv,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -2,6 +2,7 @@
#include "mlx/backend/cpu/jit_compiler.h"
#include <algorithm>
#include <sstream>
#include <vector>

View File

@@ -2,14 +2,14 @@
#pragma once
// Required for Visual Studio.
// https://github.com/OpenMathLib/OpenBLAS/blob/develop/docs/install.md
#ifdef _MSC_VER
#include <complex>
#define LAPACK_COMPLEX_CUSTOM
#define lapack_complex_float std::complex<float>
#define lapack_complex_double std::complex<double>
#endif
#define lapack_complex_float_real(z) ((z).real())
#define lapack_complex_float_imag(z) ((z).imag())
#define lapack_complex_double_real(z) ((z).real())
#define lapack_complex_double_imag(z) ((z).imag())
#ifdef MLX_USE_ACCELERATE
#include <Accelerate/Accelerate.h>
@@ -32,7 +32,7 @@
#endif
#define INSTANTIATE_LAPACK_TYPES(FUNC) \
#define INSTANTIATE_LAPACK_REAL(FUNC) \
template <typename T, typename... Args> \
void FUNC(Args... args) { \
if constexpr (std::is_same_v<T, float>) { \
@@ -42,11 +42,24 @@
} \
}
INSTANTIATE_LAPACK_TYPES(geqrf)
INSTANTIATE_LAPACK_TYPES(orgqr)
INSTANTIATE_LAPACK_TYPES(syevd)
INSTANTIATE_LAPACK_TYPES(potrf)
INSTANTIATE_LAPACK_TYPES(gesvdx)
INSTANTIATE_LAPACK_TYPES(getrf)
INSTANTIATE_LAPACK_TYPES(getri)
INSTANTIATE_LAPACK_TYPES(trtri)
INSTANTIATE_LAPACK_REAL(geqrf)
INSTANTIATE_LAPACK_REAL(orgqr)
INSTANTIATE_LAPACK_REAL(syevd)
INSTANTIATE_LAPACK_REAL(geev)
INSTANTIATE_LAPACK_REAL(potrf)
INSTANTIATE_LAPACK_REAL(gesvdx)
INSTANTIATE_LAPACK_REAL(getrf)
INSTANTIATE_LAPACK_REAL(getri)
INSTANTIATE_LAPACK_REAL(trtri)
#define INSTANTIATE_LAPACK_COMPLEX(FUNC) \
template <typename T, typename... Args> \
void FUNC(Args... args) { \
if constexpr (std::is_same_v<T, std::complex<float>>) { \
MLX_LAPACK_FUNC(c##FUNC)(std::forward<Args>(args)...); \
} else if constexpr (std::is_same_v<T, std::complex<double>>) { \
MLX_LAPACK_FUNC(z##FUNC)(std::forward<Args>(args)...); \
} \
}
INSTANTIATE_LAPACK_COMPLEX(heevd)

View File

@@ -87,8 +87,7 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_cpu(x, s);
encoder.add_temporary(x_copy);
return x_copy;
}

View File

@@ -31,7 +31,7 @@ void luf_impl(
strides[ndim - 1] = M;
strides[ndim - 2] = 1;
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_inplace(
copy_cpu_inplace(
a,
lu,
a.shape(),

View File

@@ -6,6 +6,7 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h"
@@ -52,6 +53,58 @@ inline void mask_matrix(
}
}
template <typename T>
inline void segmented_mm(
const T* a,
const T* b,
const uint32_t* segments,
T* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides,
size_t num_segments,
const Shape& segments_shape,
const Strides& segments_strides) {
int ndim = a_shape.size();
Shape a_copy = a_shape;
Shape b_copy = b_shape;
int32_t M = a_copy[ndim - 2];
int32_t N = b_copy[ndim - 1];
for (int i = 0; i < num_segments; i++) {
uint32_t k_start =
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
uint32_t k_end =
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
if (k_end <= k_start) {
std::fill_n(out + i * M * N, M * N, T(0));
continue;
}
a_copy[ndim - 1] = k_end - k_start;
b_copy[ndim - 2] = k_end - k_start;
matmul<T>(
a + k_start * a_strides[ndim - 1],
b + k_start * b_strides[ndim - 2],
out + i * M * N,
a_transposed,
b_transposed,
lda,
ldb,
N,
1.0,
0.0,
1,
a_copy,
a_strides,
b_copy,
b_strides);
}
}
} // namespace
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -71,21 +124,20 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s);
copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true);
}
return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::Vector, s);
copy_cpu(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true);
}
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
array arr_copy = contiguous_copy_cpu(arr, s);
return std::make_tuple(false, stx, arr_copy, true);
}
};
@@ -333,7 +385,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -437,4 +489,121 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
encoder.add_temporaries(std::move(temps));
}
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& encoder = cpu::get_command_encoder(stream());
auto check_transpose = [&s, &encoder](const array& x) {
auto stx = x.strides()[x.ndim() - 2];
auto sty = x.strides()[x.ndim() - 1];
if (stx == x.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, x);
} else if (stx == 1 && sty == x.shape(-2)) {
return std::make_tuple(true, sty, x);
} else {
array xc(x.shape(), x.dtype(), nullptr, {});
copy_cpu(x, xc, CopyType::General, s);
encoder.add_temporary(xc);
int64_t stx = x.shape(-1);
return std::make_tuple(false, stx, xc);
}
};
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
auto& segments = inputs[2];
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(segments);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
segments = array::unsafe_weak_copy(segments),
out_ptr = out.data<void>(),
a_transposed = a_transposed,
b_transposed = b_transposed,
lda = lda,
ldb = ldb]() {
switch (a.dtype()) {
case float64:
segmented_mm<double>(
a.data<double>(),
b.data<double>(),
segments.data<uint32_t>(),
static_cast<double*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float32:
segmented_mm<float>(
a.data<float>(),
b.data<float>(),
segments.data<uint32_t>(),
static_cast<float*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float16:
segmented_mm<float16_t>(
a.data<float16_t>(),
b.data<float16_t>(),
segments.data<uint32_t>(),
static_cast<float16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case bfloat16:
segmented_mm<bfloat16_t>(
a.data<bfloat16_t>(),
b.data<bfloat16_t>(),
segments.data<uint32_t>(),
static_cast<bfloat16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
default:
throw std::invalid_argument(
"Segmented mm supports only real float types.");
}
});
}
} // namespace mlx::core

View File

@@ -81,7 +81,7 @@ void matmul_general(
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, stream);
copy_cpu(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -132,14 +132,20 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
if (out.size() == 0) {
out.set_data(allocator::malloc(out.nbytes()));
return;
}
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy(c, out, ctype, stream());
copy_cpu(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
}

View File

@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_inplace(in, out, CopyType::General, out.primitive().stream());
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
} else {
shared_buffer_reshape(in, out_strides, out);
}
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
}
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
}
}
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General, stream());
copy_cpu(in, out, CopyType::General, stream());
}
}
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
ctype = CopyType::General;
}
copy(in, out, ctype, stream());
copy_cpu(in, out, ctype, stream());
}
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy(val, out, CopyType::Scalar, stream());
copy_cpu(val, out, CopyType::Scalar, stream());
// Find offset for start of input values
size_t data_offset = 0;
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
}
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
auto [out_offset, donated] =
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_);
// Do copy
copy_inplace(
copy_cpu_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General, stream());
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
} else {
copy_inplace(in, tmp, CopyType::General, stream());
copy_cpu_inplace(in, tmp, CopyType::General, stream());
}
auto flags = out.flags();

View File

@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes()));

View File

@@ -13,9 +13,18 @@ namespace mlx::core {
namespace {
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
}
inline constexpr short get_bytes_per_pack(int bits, int wsize = 8) {
auto power_of_2_bits = (bits & (bits - 1)) == 0;
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
}
template <typename T, int bits>
void extract_bits(const uint8_t* w_in, T* w_out) {
assert(bits == 3 || bits == 6);
static_assert(bits == 3 || bits == 5 || bits == 6);
if (bits == 3) {
w_out[0] = static_cast<T>(w_in[0] & 0x7);
w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
@@ -25,6 +34,16 @@ void extract_bits(const uint8_t* w_in, T* w_out) {
w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
} else if (bits == 5) {
w_out[0] = static_cast<T>(w_in[0] & 0x1f);
w_out[1] = static_cast<T>(((w_in[0] & 0xe0) >> 5) + ((w_in[1] & 0x3) << 3));
w_out[2] = static_cast<T>((w_in[1] & 0x7c) >> 2);
w_out[3] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0xf) << 1));
w_out[4] = static_cast<T>(((w_in[2] & 0xf0) >> 4) + ((w_in[3] & 0x1) << 4));
w_out[5] = static_cast<T>((w_in[3] & 0x3e) >> 1);
w_out[6] = static_cast<T>(((w_in[3] & 0xc0) >> 6) + ((w_in[4] & 0x7) << 2));
w_out[7] = static_cast<T>((w_in[4] & 0xf8) >> 3);
} else if (bits == 6) {
w_out[0] = static_cast<T>(w_in[0] & 0x3f);
w_out[1] =
@@ -46,8 +65,8 @@ void _qmm(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int pack_factor = get_pack_factor(bits, 8);
constexpr int bytes_per_pack = get_bytes_per_pack(bits);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
@@ -65,7 +84,7 @@ void _qmm(
T scale = *scales_local++;
T bias = *biases_local++;
for (int ng = 0; ng < packs_in_group; ng++) {
if (bits == 3 || bits == 6) {
if constexpr (bits == 3 || bits == 5 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
@@ -104,8 +123,9 @@ void _qmm_t(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int pack_factor = get_pack_factor(bits, 8);
constexpr int bytes_per_pack = get_bytes_per_pack(bits);
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
@@ -121,7 +141,7 @@ void _qmm_t(
T bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw++) {
if (bits == 3 || bits == 6) {
if constexpr (bits == 3 || bits == 5 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
@@ -304,6 +324,10 @@ void _qmm_dispatch_typed(
_qmm_dispatch_group<T, 4>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 5:
_qmm_dispatch_group<T, 5>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 6:
_qmm_dispatch_group<T, 6>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
@@ -505,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -555,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy(arr, temps.back(), CopyType::General, s);
copy_cpu(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -613,9 +637,8 @@ void quantize(
float eps = 1e-7;
bool power_of_2_bits = is_power_of_2(bits);
int el_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
// For 3/6 bits we read 3 uint8s at a time instead of 1 uint32
int bytes_per_pack = power_of_2_bits ? 1 : 3;
int el_per_int = get_pack_factor(bits, 32);
int bytes_per_pack = get_bytes_per_pack(bits);
int int_per_group = group_size * bytes_per_pack / el_per_int;
size_t n_groups = w_size / group_size;
@@ -640,15 +663,21 @@ void quantize(
}
size_t out_idx = i * int_per_group;
for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
uint32_t out_el = 0;
uint64_t out_el = 0;
for (int k = 0; k < el_per_int; ++k) {
float w_el = w[w_idx + j * el_per_int + k];
w_el = std::rint((w_el - bias) / scale);
w_el = std::min(std::max(w_el, 0.0f), n_bins);
out_el |= static_cast<uint32_t>(w_el) << (k * bits);
out_el |= static_cast<uint64_t>(w_el) << (k * bits);
}
if (power_of_2_bits) {
out[out_idx + j] = out_el;
} else if (bits == 5) {
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
out[out_idx + bytes_per_pack * j + 3] = (out_el & 0xff000000) >> 24;
out[out_idx + bytes_per_pack * j + 4] = (out_el & 0xff00000000) >> 32;
} else {
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
@@ -683,9 +712,7 @@ void fast::AffineQuantize::eval_cpu(
if (arr.flags().row_contiguous) {
return std::make_pair(arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
return std::make_pair(contiguous_copy_cpu(arr, s), true);
}
};

View File

@@ -325,7 +325,15 @@ struct MaxReduce {
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
return simd::max(x);
};
};
@@ -342,7 +350,15 @@ struct MinReduce {
};
template <int N, typename T>
T operator()(simd::Simd<T, N> x) {
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
return simd::min(x);
};
};
@@ -475,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
switch (in.dtype()) {
case bool_:
case uint8:
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
@@ -527,10 +551,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);

View File

@@ -3,6 +3,7 @@
#include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
@@ -226,6 +227,16 @@ void scan_dispatch(
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
case Scan::LogAddExp: {
auto op = [](U a, T b) {
return detail::LogAddExp{}(a, static_cast<U>(b));
};
auto init = (issubdtype(in.dtype(), floating))
? static_cast<U>(-std::numeric_limits<float>::infinity())
: std::numeric_limits<U>::min();
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
}
}
@@ -239,10 +250,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
// Ensure contiguity
auto in = inputs[0];
if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, stream());
in = arr_copy;
encoder.add_temporary(arr_copy);
in = contiguous_copy_cpu(in, stream());
encoder.add_temporary(in);
}
out.set_data(allocator::malloc(out.nbytes()));
@@ -319,7 +328,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case complex64:
throw std::runtime_error("Scan ops do not support complex types yet");
scan_dispatch<complex64_t, complex64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
}
});

View File

@@ -88,12 +88,33 @@ DEFAULT_UNARY(expm1, std::expm1)
DEFAULT_UNARY(floor, std::floor)
DEFAULT_UNARY(log, std::log)
DEFAULT_UNARY(log10, std::log10)
DEFAULT_UNARY(log1p, std::log1p)
DEFAULT_UNARY(sinh, std::sinh)
DEFAULT_UNARY(sqrt, std::sqrt)
DEFAULT_UNARY(tan, std::tan)
DEFAULT_UNARY(tanh, std::tanh)
template <typename T>
Simd<T, 1> log1p(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto x = in.value.real();
auto y = in.value.imag();
auto zabs = std::abs(in.value);
auto theta = std::atan2(y, x + 1);
if (zabs < 0.5) {
auto r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return Simd<T, 1>{T{x, theta}};
}
return Simd<T, 1>{T{((typeof(x))(0.5)) * std::log1p(r), theta}};
} else {
auto z0 = std::hypot(x + 1, y);
return Simd<T, 1>{T{std::log(z0), theta}};
}
} else {
return Simd<T, 1>{std::log1p(in.value)};
}
}
template <typename T>
Simd<T, 1> log2(Simd<T, 1> in) {
if constexpr (is_complex<T>) {

View File

@@ -131,8 +131,7 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
array x_copy = contiguous_copy_cpu(x, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -8,7 +8,7 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -333,45 +333,24 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
int axis = axis_;
if (axis < 0) {
axis += in.ndim();
}
// Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);
encoder.dispatch(
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
switch (out.dtype()) {
case bool_:
return sort<bool>(out, axis_);
case uint8:
return sort<uint8_t>(out, axis_);
case uint16:
return sort<uint16_t>(out, axis_);
case uint32:
return sort<uint32_t>(out, axis_);
case uint64:
return sort<uint64_t>(out, axis_);
case int8:
return sort<int8_t>(out, axis_);
case int16:
return sort<int16_t>(out, axis_);
case int32:
return sort<int32_t>(out, axis_);
case int64:
return sort<int64_t>(out, axis_);
case float32:
return sort<float>(out, axis_);
case float64:
return sort<double>(out, axis_);
case float16:
return sort<float16_t>(out, axis_);
case bfloat16:
return sort<bfloat16_t>(out, axis_);
case complex64:
return sort<complex64_t>(out, axis_);
}
});
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
dispatch_all_types(out.dtype(), [&](auto type_tag) {
sort<MLX_GET_TYPE(type_tag)>(out, axis);
});
});
}
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -426,8 +405,10 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Copy input to output
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);

View File

@@ -31,7 +31,7 @@ void svd_impl(
// lapack clobbers the input, so we have to make a copy.
array in(a.shape(), a.dtype(), nullptr, {});
copy(
copy_cpu(
a,
in,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -1,5 +1,8 @@
// Copyright © 2024 Apple Inc.
// Required for using M_LN2 in MSVC.
#define _USE_MATH_DEFINES
#include <cassert>
#include "mlx/backend/cpu/unary.h"

View File

@@ -2,32 +2,13 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/common/unary.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/utils.h"
namespace mlx::core {
void set_unary_output_data(const array& in, array& out) {
if (in.flags().contiguous) {
if (is_donatable(in, out)) {
out.copy_shared_buffer(in);
} else {
auto size = in.data_size();
out.set_data(
allocator::malloc(size * out.itemsize()),
size,
in.strides(),
in.flags());
}
} else {
out.set_data(allocator::malloc(out.nbytes()));
}
}
template <typename T, typename U = T, typename Op>
void unary_op(const T* a, U* out, size_t shape, size_t stride) {
for (size_t i = 0; i < shape; i += 1) {

View File

@@ -0,0 +1,171 @@
# Filename rules in cuda backend:
#
# * Use .cu/.cuh if code contains device code, and .cpp/.h if not.
# * Device-only code should be put in device/ subdir.
# * Files in device/ subdir should not include files outside.
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/init_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
# Embed kernel sources in binary for JIT compilation.
file(
GLOB MLX_JIT_SOURCES
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.h"
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.cuh")
string(JOIN ":" MLX_JIT_SOURCES_ARG ${MLX_JIT_SOURCES})
add_custom_command(
OUTPUT gen/cuda_jit_sources.h
COMMAND
${CMAKE_COMMAND} -DMLX_SOURCE_ROOT=${CMAKE_CURRENT_SOURCE_DIR}
-DMLX_JIT_SOURCES=${MLX_JIT_SOURCES_ARG} -P
"${CMAKE_CURRENT_SOURCE_DIR}/bin2h.cmake"
DEPENDS bin2h.cmake ${MLX_JIT_SOURCES})
add_custom_target(cuda_jit_sources DEPENDS gen/cuda_jit_sources.h)
add_dependencies(mlx cuda_jit_sources)
target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
# Enable defining device lambda functions.
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Enable calling host constexpr functions from device. This is needed because
# the constexpr version of isnan is host only.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
# Explicitly pass this flag to suppress the warning, it is safe to set it to
# true but the warning wouldn't be suppressed.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--static-global-template-stub=false>")
endif()
# Suppress warning when building for compute capability 7 used by V100.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
# and requires drivers released after CUDA 12.4.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
endif()
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
# managed memory.
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
set(MLX_CUDA_ARCHITECTURES "native")
endif()
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
# Use fixed version of CCCL.
FetchContent_Declare(
cccl
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
FetchContent_MakeAvailable(cccl)
target_include_directories(mlx BEFORE PRIVATE "${cccl_SOURCE_DIR}/include")
# Use fixed version of NVTX.
FetchContent_Declare(
nvtx3
GIT_REPOSITORY https://github.com/NVIDIA/NVTX.git
GIT_TAG v3.1.1
GIT_SHALLOW TRUE
SOURCE_SUBDIR c EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(nvtx3)
target_link_libraries(mlx PUBLIC $<BUILD_INTERFACE:nvtx3-cpp>)
# Make cuda runtime APIs available in non-cuda files.
find_package(CUDAToolkit REQUIRED)
target_include_directories(mlx PRIVATE ${CUDAToolkit_INCLUDE_DIRS})
# Use cublasLt.
target_link_libraries(mlx PRIVATE CUDA::cublasLt)
# Use NVRTC and driver APIs.
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
# Use the frontend APIs of cuDNN.
FetchContent_Declare(
cudnn
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
GIT_TAG v1.12.1
GIT_SHALLOW TRUE
EXCLUDE_FROM_ALL)
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
FetchContent_MakeAvailable(cudnn)
target_link_libraries(mlx PRIVATE cudnn_frontend)
# Link with the actual cuDNN libraries.
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)

View File

@@ -0,0 +1,258 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/utils.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
#include <unistd.h>
#include <cassert>
namespace mlx::core {
namespace cu {
constexpr int page_size = 16384;
// Any allocations smaller than this will try to use the small pool
constexpr int small_block_size = 8;
// The small pool size in bytes. This should be a multiple of the host page
// size and small_block_size.
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
auto num_blocks = small_pool_size / small_block_size;
buffer_ = new Block[num_blocks];
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
curr->next = buffer_ + i;
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(data_));
delete[] buffer_;
}
CudaBuffer* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
uint64_t i = next_free_ - buffer_;
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
return &b->buf;
}
void SmallSizePool::free(CudaBuffer* buf) {
auto b = reinterpret_cast<Block*>(buf);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(CudaBuffer* buf) {
constexpr int num_blocks = (small_pool_size / small_block_size);
auto b = reinterpret_cast<Block*>(buf);
int64_t block_num = b - buffer_;
return block_num >= 0 && block_num < num_blocks;
}
CudaAllocator::CudaAllocator()
: buffer_cache_(
page_size,
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.8;
max_pool_size_ = memory_limit_;
}
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size <= small_block_size) {
size = 8;
} else if (size < page_size) {
size = next_power_of_2(size);
} else {
size = page_size * ((size + page_size - 1) / page_size);
}
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure try to reclaim memory from the cache.
int64_t mem_to_free =
get_active_memory() + get_cache_memory() + size - memory_limit_;
if (mem_to_free > 0) {
buffer_cache_.release_cached_buffers(mem_to_free);
}
// Try the scalar pool first
if (size <= small_block_size) {
buf = scalar_pool_.malloc();
}
lock.unlock();
if (!buf) {
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
}
lock.lock();
}
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
// Maintain the cache below the requested limit.
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{buf};
}
void CudaAllocator::free(Buffer buffer) {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return;
}
std::unique_lock lock(mutex_);
active_memory_ -= buf->size;
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
cuda_free(buf);
}
}
size_t CudaAllocator::size(Buffer buffer) const {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return 0;
}
return buf->size;
}
// This must be called with mutex_ aquired
void CudaAllocator::cuda_free(CudaBuffer* buf) {
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
cudaFree(buf->data);
delete buf;
}
}
size_t CudaAllocator::get_active_memory() const {
return active_memory_;
}
size_t CudaAllocator::get_peak_memory() const {
return peak_memory_;
}
void CudaAllocator::reset_peak_memory() {
std::lock_guard lock(mutex_);
peak_memory_ = 0;
}
size_t CudaAllocator::get_memory_limit() {
return memory_limit_;
}
size_t CudaAllocator::set_memory_limit(size_t limit) {
std::lock_guard lock(mutex_);
std::swap(limit, memory_limit_);
return limit;
}
size_t CudaAllocator::get_cache_memory() const {
return buffer_cache_.cache_size();
}
size_t CudaAllocator::set_cache_limit(size_t limit) {
std::lock_guard lk(mutex_);
std::swap(limit, max_pool_size_);
return limit;
}
void CudaAllocator::clear_cache() {
std::lock_guard lk(mutex_);
buffer_cache_.clear();
}
CudaAllocator& allocator() {
// By creating the |allocator_| on heap, the destructor of CudaAllocator
// will not be called on exit and buffers in the cache will be leaked. This
// can save some time at program exit.
static CudaAllocator* allocator_ = new CudaAllocator;
return *allocator_;
}
} // namespace cu
namespace allocator {
Allocator& allocator() {
return cu::allocator();
}
void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
return static_cast<cu::CudaBuffer*>(ptr_)->data;
}
} // namespace allocator
size_t get_active_memory() {
return cu::allocator().get_active_memory();
}
size_t get_peak_memory() {
return cu::allocator().get_peak_memory();
}
void reset_peak_memory() {
return cu::allocator().reset_peak_memory();
}
size_t set_memory_limit(size_t limit) {
return cu::allocator().set_memory_limit(limit);
}
size_t get_memory_limit() {
return cu::allocator().get_memory_limit();
}
size_t get_cache_memory() {
return cu::allocator().get_cache_memory();
}
size_t set_cache_limit(size_t limit) {
return cu::allocator().set_cache_limit(limit);
}
void clear_cache() {
cu::allocator().clear_cache();
}
// Not supported in CUDA.
size_t set_wired_limit(size_t) {
return 0;
}
} // namespace mlx::core

View File

@@ -0,0 +1,77 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/backend/common/buffer_cache.h"
#include <mutex>
#include <set>
#include <utility>
namespace mlx::core::cu {
using allocator::Buffer;
// Stores cuda-managed unified memory.
struct CudaBuffer {
void* data;
size_t size;
};
class SmallSizePool {
private:
union Block {
Block* next;
CudaBuffer buf;
};
Block* buffer_{nullptr};
void* data_{nullptr};
Block* next_free_{nullptr};
public:
SmallSizePool();
~SmallSizePool();
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
CudaBuffer* malloc();
void free(CudaBuffer* buf);
bool in_pool(CudaBuffer* buf);
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
size_t get_memory_limit();
size_t set_memory_limit(size_t limit);
size_t get_cache_memory() const;
size_t set_cache_limit(size_t limit);
void clear_cache();
private:
void cuda_free(CudaBuffer* buf);
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex mutex_;
size_t memory_limit_;
size_t max_pool_size_;
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
SmallSizePool scalar_pool_;
};
CudaAllocator& allocator();
} // namespace mlx::core::cu

View File

@@ -0,0 +1,55 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
namespace mlx::core {
namespace cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace cu
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(stream());
encoder.set_output_array(out);
auto capture = encoder.capture_context();
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(encoder.stream()),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,188 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cassert>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T>
struct IndexValPair {
uint32_t index;
T val;
};
template <typename T>
struct ArgMin {
constexpr __device__ T init() {
return Limits<T>::max();
}
__device__ IndexValPair<T> operator()(
const IndexValPair<T>& best,
const IndexValPair<T>& current) {
if (best.val > current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
for (int i = 0; i < N; i++) {
if (vals[i] < best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename T>
struct ArgMax {
constexpr __device__ T init() {
return Limits<T>::min();
}
__device__ IndexValPair<T> operator()(
const IndexValPair<T>& best,
const IndexValPair<T>& current) {
if (best.val < current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
for (int i = 0; i < N; i++) {
if (vals[i] > best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename T, typename Op, int BLOCK_DIM, int N_READS = 4>
__global__ void arg_reduce_general(
const T* in,
uint32_t* out,
size_t size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides in_strides,
const __grid_constant__ Strides out_strides,
int32_t ndim,
int64_t axis_stride,
int32_t axis_size) {
auto block = cg::this_thread_block();
int64_t index = cg::this_grid().block_rank();
if (index >= size) {
return;
}
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
in += in_idx;
Op op;
T init = op.init();
IndexValPair<T> best{0, init};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto tid = r * BLOCK_DIM + block.thread_index().x;
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
best = op.reduce_many(best, vals, tid * N_READS);
}
typedef cub::BlockReduce<IndexValPair<T>, BLOCK_DIM> BlockReduceT;
__shared__ typename BlockReduceT::TempStorage temp;
best = BlockReduceT(temp).Reduce(best, op);
if (block.thread_rank() == 0) {
out[out_idx] = best.index;
}
}
} // namespace cu
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgReduce::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
// Prepare the shapes, strides and axis arguments.
Shape shape = remove_index(in.shape(), axis_);
Strides in_strides = remove_index(in.strides(), axis_);
Strides out_strides = out.ndim() == in.ndim()
? remove_index(out.strides(), axis_)
: out.strides();
int64_t axis_stride = in.strides()[axis_];
int32_t axis_size = in.shape()[axis_];
int32_t ndim = shape.size();
// ArgReduce.
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr uint32_t N_READS = 4;
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
auto kernel =
cu::arg_reduce_general<T, cu::ArgMax<T>, block_dim(), N_READS>;
if (reduce_type_ == ArgReduce::ArgMin) {
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, block_dim(), N_READS>;
}
encoder.add_kernel_node(
kernel,
num_blocks,
block_dim(),
0,
in.data<T>(),
out.data<uint32_t>(),
out.size(),
const_param(shape),
const_param(in_strides),
const_param(out_strides),
ndim,
axis_stride,
axis_size);
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,150 @@
# Based on: https://github.com/sivachandran/cmake-bin2h
#
# Copyright 2020 Sivachandran Paramasivam
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
include(CMakeParseArguments)
# Function to wrap a given string into multiple lines at the given column
# position.
#
# Parameters:
#
# * VARIABLE - The name of the CMake variable holding the string.
# * AT_COLUMN - The column position at which string will be wrapped.
function(WRAP_STRING)
set(oneValueArgs VARIABLE AT_COLUMN)
cmake_parse_arguments(WRAP_STRING "${options}" "${oneValueArgs}" "" ${ARGN})
string(LENGTH ${${WRAP_STRING_VARIABLE}} stringLength)
math(EXPR offset "0")
while(stringLength GREATER 0)
if(stringLength GREATER ${WRAP_STRING_AT_COLUMN})
math(EXPR length "${WRAP_STRING_AT_COLUMN}")
else()
math(EXPR length "${stringLength}")
endif()
string(SUBSTRING ${${WRAP_STRING_VARIABLE}} ${offset} ${length} line)
set(lines "${lines}\n ${line}")
math(EXPR stringLength "${stringLength} - ${length}")
math(EXPR offset "${offset} + ${length}")
endwhile()
set(${WRAP_STRING_VARIABLE}
"${lines}"
PARENT_SCOPE)
endfunction()
# Function to embed contents of a file as byte array in C/C++ header file(.h).
# The header file will contain a byte array and integer variable holding the
# size of the array.
#
# Parameters:
#
# * SOURCE_FILES - The paths of source files whose contents will be embedded in
# the header file.
# * VARIABLE_NAME - The name of the variable for the byte array. The string
# "_SIZE" will be append to this name and will be used a variable name for
# size variable.
# * HEADER_FILE - The path of header file.
# * APPEND - If specified appends to the header file instead of overwriting it
# * HEADER_NAMESPACE - The namespace, where the array should be located in.
# * NULL_TERMINATE - If specified a null byte(zero) will be append to the byte
# array.
#
# Usage:
#
# bin2h(SOURCE_FILE "Logo.png" HEADER_FILE "Logo.h" VARIABLE_NAME "LOGO_PNG")
function(BIN2H)
set(options APPEND NULL_TERMINATE)
set(oneValueArgs VARIABLE_NAME HEADER_FILE HEADER_NAMESPACE)
set(multiValueArgs SOURCE_FILES)
cmake_parse_arguments(BIN2H "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
set(arrayDefinition "")
foreach(SOURCE_FILE IN LISTS BIN2H_SOURCE_FILES)
# get filename without extension
get_filename_component(FILE_NAME_WE ${SOURCE_FILE} NAME_WE)
# convert the filename to a valid C identifier
string(MAKE_C_IDENTIFIER "${FILE_NAME_WE}" VALID_FILE_NAME)
# reads source file contents as hex string
file(READ ${SOURCE_FILE} hexString HEX)
# append null
if(BIN2H_NULL_TERMINATE)
string(APPEND hexString "00")
endif()
# wraps the hex string into multiple lines
wrap_string(VARIABLE hexString AT_COLUMN 24)
# strip the © in source code
string(REGEX REPLACE "c2a9" "2020" arrayValues ${hexString})
string(REGEX REPLACE "([0-9a-f][0-9a-f])" " 0x\\1," arrayValues
${arrayValues})
# make a full variable name for the array
set(FULL_VARIABLE_NAME "${BIN2H_VARIABLE_NAME}_${VALID_FILE_NAME}")
# declares byte array and the length variables
string(APPEND arrayDefinition
"constexpr char ${FULL_VARIABLE_NAME}[] = {${arrayValues}\n};\n\n")
endforeach()
# add namespace wrapper if defined
if(DEFINED BIN2H_HEADER_NAMESPACE)
set(namespaceStart "namespace ${BIN2H_HEADER_NAMESPACE} {")
set(namespaceEnd "} // namespace ${BIN2H_HEADER_NAMESPACE}")
set(declarations "${namespaceStart}\n\n${arrayDefinition}${namespaceEnd}\n")
endif()
set(arrayIncludes "#pragma once")
string(PREPEND declarations "${arrayIncludes}\n\n")
if(BIN2H_APPEND)
file(APPEND ${BIN2H_HEADER_FILE} "${declarations}")
else()
file(WRITE ${BIN2H_HEADER_FILE} "${declarations}")
endif()
endfunction()
# ----------------------------- CLI args -----------------------------
string(REPLACE ":" ";" MLX_JIT_SOURCES_LIST ${MLX_JIT_SOURCES})
foreach(source ${MLX_JIT_SOURCES_LIST})
list(APPEND MLX_JIT_SOURCES_ABS "${MLX_SOURCE_ROOT}/${source}")
endforeach()
bin2h(
SOURCE_FILES
${MLX_JIT_SOURCES_ABS}
NULL_TERMINATE
VARIABLE_NAME
"jit_source"
HEADER_NAMESPACE
"mlx::core"
HEADER_FILE
"${CMAKE_CURRENT_BINARY_DIR}/gen/cuda_jit_sources.h")

357
mlx/backend/cuda/binary.cu Normal file
View File

@@ -0,0 +1,357 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (int i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[i]);
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[0]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[i]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_g_nd(
const In* a,
const In* b,
Out* out,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
out[index] = Op{}(a[a_idx], b[b_idx]);
}
}
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_g(
const In* a,
const In* b,
Out* out,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]);
}
}
template <typename Op, typename In, typename Out>
constexpr bool supports_binary_op() {
if (std::is_same_v<Op, Add> || std::is_same_v<Op, Divide> ||
std::is_same_v<Op, Maximum> || std::is_same_v<Op, Minimum> ||
std::is_same_v<Op, Multiply> || std::is_same_v<Op, Subtract> ||
std::is_same_v<Op, Power> || std::is_same_v<Op, Remainder>) {
return std::is_same_v<In, Out>;
}
if (std::is_same_v<Op, Equal> || std::is_same_v<Op, Greater> ||
std::is_same_v<Op, GreaterEqual> || std::is_same_v<Op, Less> ||
std::is_same_v<Op, LessEqual> || std::is_same_v<Op, NotEqual>) {
return std::is_same_v<Out, bool>;
}
if (std::is_same_v<Op, LogicalAnd> || std::is_same_v<Op, LogicalOr>) {
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
}
if (std::is_same_v<Op, NaNEqual>) {
return std::is_same_v<Out, bool> && is_inexact_v<In>;
}
if (std::is_same_v<Op, LogAddExp>) {
return std::is_same_v<In, Out> && is_inexact_v<In>;
}
if (std::is_same_v<Op, ArcTan2>) {
return std::is_same_v<In, Out> && is_floating_v<In>;
}
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
std::is_same_v<Op, BitwiseXor>) {
return std::is_same_v<In, Out> && std::is_integral_v<In>;
}
if (std::is_same_v<Op, LeftShift> || std::is_same_v<Op, RightShift>) {
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
!std::is_same_v<In, bool>;
}
return false;
}
} // namespace cu
template <typename Op>
void binary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const char* op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
if (out.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] =
get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
} else {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.data_size());
});
}
} else {
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out.dtype())));
}
});
});
}
template <typename Op>
void binary_op_gpu(
const std::vector<array>& inputs,
array& out,
const char* op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
binary_op_gpu_inplace<Op>(inputs, out, op, s);
}
#define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \
binary_op_gpu<cu::func>(inputs, out, name(), s); \
}
BINARY_GPU(Add)
BINARY_GPU(ArcTan2)
BINARY_GPU(Divide)
BINARY_GPU(Remainder)
BINARY_GPU(Greater)
BINARY_GPU(GreaterEqual)
BINARY_GPU(Less)
BINARY_GPU(LessEqual)
BINARY_GPU(LogicalAnd)
BINARY_GPU(LogicalOr)
BINARY_GPU(LogAddExp)
BINARY_GPU(Maximum)
BINARY_GPU(Minimum)
BINARY_GPU(Multiply)
BINARY_GPU(NotEqual)
BINARY_GPU(Power)
BINARY_GPU(Subtract)
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream();
if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
} else {
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
}
}
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream();
switch (op_) {
case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
break;
case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
break;
case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
break;
case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
break;
case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
break;
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,333 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_two_g_nd(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_two_g(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out>
constexpr bool supports_binary_two_op() {
if (std::is_same_v<Op, DivMod>) {
return std::is_same_v<In, Out> &&
(std::is_integral_v<Out> || is_floating_v<Out>);
}
return false;
}
} // namespace cu
template <typename Op>
void binary_two_op_gpu_inplace(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
auto& out_a = outputs[0];
auto& out_b = outputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
if (out_a.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out_a);
encoder.set_output_array(out_b);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out_a.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) =
collapse_contiguous_dims(a, b, out_a);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
} else {
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out_a.data_size(),
out_a.shape(),
out_a.strides(),
large(),
N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.data_size());
});
}
} else {
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out_a.dtype())));
}
});
});
}
template <typename Op>
void binary_two_op_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt);
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
void DivMod::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("DivMod::eval_gpu");
auto& s = outputs[0].primitive().stream();
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
}
} // namespace mlx::core

View File

@@ -0,0 +1,340 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
struct FusedKernelBuilder {
std::string os;
const std::string& kernel_name;
const std::vector<array>& inputs;
const std::vector<array>& outputs;
const std::vector<array>& tape;
const std::function<bool(size_t)>& is_constant;
void build(const char* name, bool contiguous) {
NodeNamer namer;
// Function parameters.
std::vector<std::string> params;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant(i)) {
continue;
}
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
params.push_back(
fmt::format("const {}* {}", dtype_to_cuda_type(x.dtype()), xname));
if (!is_scalar(x) && !contiguous) {
params.push_back(fmt::format(
"const __grid_constant__ cuda::std::array<int64_t, NDIM> {}_strides",
xname));
}
}
for (const auto& x : outputs) {
params.push_back(fmt::format(
"{}* {}", dtype_to_cuda_type(x.dtype()), namer.get_name(x)));
}
if (!contiguous) {
params.push_back(
"const __grid_constant__ cuda::std::array<int32_t, NDIM> shape");
}
params.push_back("IdxT size");
// Build function signature.
if (contiguous) {
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
} else {
os +=
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
}
os += fmt::format("__global__ void {}(\n", kernel_name + name);
for (size_t i = 0; i < params.size(); ++i) {
os += " ";
os += params[i];
if (i != params.size() - 1) {
os += ",\n";
}
}
os += ") {\n";
// Index. For non contiguous kernels we create a separate index
// variable per variable otherwise everyone uses `index`.
os +=
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
" if (index >= size) {\n"
" return;\n"
" }\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " IdxT " + xname + "_idx = 0;\n";
}
os += " {\n";
os += " IdxT loc = index;\n";
os +=
" #pragma unroll\n"
" for (int i = NDIM - 1; i >= 0; i--) {\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
"_strides[i]);\n";
}
os +=
" loc /= shape[i];\n"
" }\n"
" }\n";
}
// Vectorized read loop
if (contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
if (is_scalar(x) || is_constant(i)) {
continue;
}
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
xname,
type);
}
}
// Create some space for the outputs
for (const auto& x : outputs) {
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
}
// Work loop
if (!contiguous) {
os +=
"\n"
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
} else {
os +=
"\n"
" #pragma unroll\n"
" for (int i = 0; i < work_per_thread; i++) {\n";
}
// Read inputs.
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
std::string value;
if (is_constant(i)) {
std::ostringstream ss;
print_constant(ss, x);
value = fmt::format("static_cast<{}>({})", type, ss.str());
} else if (is_scalar(x)) {
value = fmt::format("{}[0]", xname);
} else if (contiguous) {
value = fmt::format("vec_{}[i]", xname);
} else {
value = fmt::format("{}[{}_idx]", xname, xname);
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write tape.
for (const auto& x : tape) {
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
std::string value;
if (is_static_cast(x.primitive())) {
value = fmt::format(
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
} else {
value = x.primitive().name();
value += "{}(";
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
}
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write output.
for (const auto& x : outputs) {
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
}
// End of work loop
if (!contiguous) {
os += "\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
}
}
os += " }\n";
// Store the output to global memory
for (const auto& x : outputs) {
os += fmt::format(
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
namer.get_name(x));
}
os += "}\n";
}
};
} // namespace cu
constexpr const char* g_jit_includes = R"(
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/device/ternary_ops.cuh"
#include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
#define inf cuda::std::numeric_limits<float>::infinity()
)";
void Compiled::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("Compiled::eval_gpu");
auto& s = stream();
// Determine the work per thread for the vectorized reads/writes. We take it
// as 16 over the max itemsize for the outputs. Another heuristic could be
// over the max itemsize of all arrays.
int max_size = 1;
for (const auto& x : outputs) {
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
}
int work_per_thread = 16 / max_size;
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
// Build source code.
cu::FusedKernelBuilder builder{
g_jit_includes, lib_name(), inputs_, outputs_, tape_, is_constant_};
builder.os +=
"namespace mlx::core::cu {\n\n"
"namespace cg = cooperative_groups;\n\n";
builder.build("_contiguous", true);
builder.os += "\n";
builder.build("_strided", false);
builder.os += "\n} // namespace mlx::core::cu\n";
// Build kernel names.
std::vector<std::string> kernel_names;
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
lib_name(),
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<int64_t, {}>",
lib_name(),
work_per_thread));
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
}
}
return std::make_pair(std::move(builder.os), std::move(kernel_names));
});
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
auto [contiguous, shape, strides_vec] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Whether to use large index.
bool large = compiled_use_large_index(inputs, outputs, contiguous);
cu::KernelArgs args;
// Put inputs.
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant_(i)) {
continue;
}
const auto& x = inputs[i];
args.append(x);
if (!contiguous && !is_scalar(x)) {
args.append_ptr(strides_vec[strides_index++].data());
}
}
// Put outputs.
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
for (auto& x : outputs) {
args.append(x);
}
// Put shape and size.
if (!contiguous) {
args.append_ptr(shape.data());
}
if (large) {
args.append<int64_t>(outputs[0].data_size());
} else {
args.append<uint32_t>(outputs[0].data_size());
}
// Choose work per thread
if (!contiguous && shape.back() % work_per_thread != 0) {
work_per_thread = 1;
}
// Launch kernel.
const char* index_type = large ? "int64_t" : "uint32_t";
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
if (contiguous) {
kernel_name +=
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
} else {
kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
}
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
for (const auto& out : outputs) {
encoder.set_output_array(out);
}
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

546
mlx/backend/cuda/conv.cpp Normal file
View File

@@ -0,0 +1,546 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <cudnn_frontend_find_plan.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
namespace mlx::core {
namespace {
// Not all engines support it so can not use this API now.
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
// Alias for better readability.
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
#define CONV_BACKWARD_INPUT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
#define CONV_BACKWARD_WEIGHT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
struct ConvCacheKey {
int device_id;
cudnnDataType_t cudnn_dtype;
std::array<int, MAX_NDIM> input_shape;
std::array<int, MAX_NDIM> weight_shape;
std::array<int, MAX_NDIM> stride;
std::array<int, MAX_NDIM> padding_lo;
std::array<int, MAX_NDIM> padding_hi;
std::array<int, MAX_NDIM> dilation;
int groups;
bool flip;
uint8_t input_alignment;
uint8_t weight_alignment;
uint8_t output_alignment;
};
auto& conv_cache() {
static LRUBytesKeyCache<
ConvCacheKey,
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
cache(/* capacity */ 128);
return cache;
}
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
auto nhwc_to_nchw(const array& x) {
auto shape = convert_vector<int64_t>(x.shape());
shape.insert(shape.begin() + 1, shape.back());
shape.erase(shape.end() - 1);
auto strides = convert_vector<int64_t>(x.strides());
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return CUDNN_DATA_INT8;
case int32:
return CUDNN_DATA_INT32;
case uint8:
return CUDNN_DATA_UINT8;
case float16:
return CUDNN_DATA_HALF;
case bfloat16:
return CUDNN_DATA_BFLOAT16;
case float32:
return CUDNN_DATA_FLOAT;
case float64:
return CUDNN_DATA_DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
}
}
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
auto [shape, strides] = nhwc_to_nchw(x);
return cudnn_frontend::TensorBuilder()
.setDim(shape.size(), shape.data())
.setStrides(strides.size(), strides.data())
.setId(id)
.setAlignment(get_alignment(x))
.setDataType(dtype_to_cudnn_type(x.dtype()))
.build();
}
cudnn_frontend::EngineConfigList get_engine_configs(
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph,
bool use_fallback = false) {
cudnn_frontend::GeneratorSource source;
if (use_fallback) {
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
.setOperationGraph(op_graph)
.setOperation(backend_type)
.build();
return fallback.getFallbackList();
};
} else {
source = [](cudnn_frontend::OperationGraph& op_graph) {
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
.setOperationGraph(op_graph)
.setHeurMode(CUDNN_HEUR_MODE_A)
.build();
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
};
}
cudnn_frontend::EngineConfigGenerator generator(1, &source);
auto configs = generator.generate_engine_config(op_graph);
cudnn_frontend::EngineConfigList filtered_configs;
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
if (cudnn_frontend::hasNumericalNote<
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
return true;
}
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
dtype == float32 && !env::enable_tf32()) {
return true;
}
return false;
});
return filtered_configs;
}
bool execute_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
array& x,
array& w,
array& y) {
int workspace_size = plan.getWorkspaceSize();
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
int64_t uids[3] = {'x', 'w', 'y'};
void* data_ptrs[3] = {
x.data<void>(),
w.data<void>(),
y.data<void>(),
};
auto variantPack = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(3, data_ptrs)
.setUids(3, uids)
.build();
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
cudaGraph_t graph;
cudaGraphCreate(&graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
if (cudnnBackendPopulateCudaGraph(
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
encoder.add_graph_node(graph);
#else
auto capture = encoder.capture_context();
if (cudnnBackendExecute(
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
CUDNN_STATUS_SUCCESS) {
// Discard the captured graph when failed.
capture.discard = true;
return false;
}
#endif
encoder.add_temporary(workspace);
return true;
}
bool try_engines(
cu::CommandEncoder& encoder,
const ConvCacheKey& cache_key,
cudnnBackendDescriptorType_t backend_type,
cudnn_frontend::EngineConfigList& configs,
const std::string& op_graph_tag,
array& x,
array& w,
array& y) {
for (auto& config : configs) {
try {
auto plan = cudnn_frontend::ExecutionPlanBuilder()
.setHandle(encoder.device().cudnn_handle())
.setEngineConfig(config, op_graph_tag)
.build();
if (execute_plan(encoder, plan, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(plan)));
return true;
}
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
throw;
}
}
}
return false;
}
auto get_conv_op_settings(
cudnnBackendDescriptorType_t backend_type,
array& x,
array& w,
array& y,
const std::vector<int>& kernel_strides,
const std::vector<int>& padding_lo_,
const std::vector<int>& padding_hi_,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation) {
auto padding_lo = convert_vector<int64_t>(padding_lo_);
auto padding_hi = convert_vector<int64_t>(padding_hi_);
if (backend_type == CONV_BACKWARD_INPUT) {
for (int i = 0; i < padding_lo.size(); ++i) {
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
padding_lo[i] = wt_size - padding_lo[i] - 1;
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
padding_hi[i] = out_size - in_size + padding_hi[i];
}
return std::make_tuple(
convert_vector<int64_t>(input_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
padding_hi = padding_lo;
return std::make_tuple(
convert_vector<int64_t>(kernel_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_strides));
} else {
return std::make_tuple(
convert_vector<int64_t>(kernel_strides),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
}
}
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
array& x,
array& w,
array& y,
const SmallVector<int64_t>& stride,
const SmallVector<int64_t>& padding_lo,
const SmallVector<int64_t>& padding_hi,
const SmallVector<int64_t>& dilation) {
try {
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
? CUDNN_DATA_FLOAT
: dtype_to_cudnn_type(dtype);
auto conv_desc = cudnn_frontend::ConvDescBuilder()
.setDataType(compute_dtype)
.setMathMode(CUDNN_CROSS_CORRELATION)
.setNDims(stride.size())
.setStrides(stride.size(), stride.data())
.setPrePadding(padding_lo.size(), padding_lo.data())
.setPostPadding(padding_hi.size(), padding_hi.data())
.setDilation(dilation.size(), dilation.data())
.build();
auto op = cudnn_frontend::OperationBuilder(backend_type)
.setxDesc(build_tensor('x', x))
.setwDesc(build_tensor('w', w))
.setyDesc(build_tensor('y', y))
.setcDesc(conv_desc)
.build();
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
return cudnn_frontend::OperationGraphBuilder()
.setHandle(encoder.device().cudnn_handle())
.setOperationGraph(ops.size(), ops.data())
.build();
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
throw;
}
return std::nullopt;
}
}
// Do necessary transposes and copies to prepare the inputs and outputs for
// building the cuDNN conv op. It is safe to be called multiple times in one
// eval_gpu, with cost of possible redundant copies.
std::tuple<array, array, array> prepare_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array in,
array wt,
array out,
Stream s) {
// Transpose the args depending on the backend type.
// TODO: Handle groups.
if (backend_type == CONV_BACKWARD_INPUT) {
wt = swapaxes_in_eval(wt, 0, -1);
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
in = swapaxes_in_eval(in, 0, -1);
wt = swapaxes_in_eval(wt, 0, -1);
// Create a contiguous array that shares the data with |out|, but with dim
// C_in and C_out swapped.
Shape shape(out.shape());
std::swap(shape.front(), shape.back());
Strides strides(shape.size(), 1);
for (int i = shape.size() - 2; i >= 0; --i) {
strides[i] = shape[i + 1] * strides[i + 1];
}
array intermediate(std::move(shape), out.dtype(), nullptr, {});
intermediate.copy_shared_buffer(
out, std::move(strides), {true, true, false}, out.data_size());
out = intermediate;
}
// cuDNN requires contiguous input.
if (!in.flags().row_contiguous) {
in = contiguous_copy_gpu(in, s);
encoder.add_temporary(in);
}
if (!wt.flags().row_contiguous) {
wt = contiguous_copy_gpu(wt, s);
encoder.add_temporary(wt);
}
return {std::move(in), std::move(wt), std::move(out)};
}
// Get the x/w/y args from the in/wt/out args depending on backend type.
inline std::tuple<array&, array&, array&> dispatch_args(
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& out) {
switch (backend_type) {
case CONV_BACKWARD_INPUT:
return {out, wt, in};
case CONV_BACKWARD_WEIGHT:
return {in, out, wt};
default:
return {in, wt, out};
}
}
// Register inputs and outputs before actually running conv op. Can only be
// called once per eval_gpu.
void register_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& intermediate_out,
array& final_out) {
encoder.set_input_array(in);
encoder.set_input_array(wt);
encoder.set_output_array(final_out);
if (backend_type == CONV_BACKWARD_WEIGHT) {
// Turn |out| into a strided array, which will have C_in and C_out swapped
// in vjp and the final |grad_weight| will then be contiguous.
Strides strides = intermediate_out.strides();
std::swap(strides.front(), strides.back());
final_out.copy_shared_buffer(
intermediate_out,
std::move(strides),
{false, false, false},
intermediate_out.data_size());
}
}
} // namespace
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
nvtx3::scoped_range r("Convolution::eval_gpu");
if (out_.size() == 0) {
return;
}
assert(inputs.size() == 2);
array in = inputs[0];
array wt = inputs[1];
array out = out_;
out.set_data(allocator::malloc(out.nbytes()));
Dtype dtype = out.dtype();
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
// Search cache.
ConvCacheKey cache_key{
encoder.device().cuda_device(),
dtype_to_cudnn_type(dtype),
fixed_vector(in.shape()),
fixed_vector(wt.shape()),
fixed_vector(kernel_strides_),
fixed_vector(padding_lo_),
fixed_vector(padding_hi_),
fixed_vector(kernel_dilation_),
groups_,
flip_,
get_alignment(in),
get_alignment(wt),
get_alignment(out)};
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
auto& [backend_type, plan] = it->second;
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (!execute_plan(encoder, plan, x, w, y)) {
throw std::runtime_error("[conv] Cached plan failed to execute.");
}
return;
}
// There is no reliable way to deduce the proper cuDNN backend for the
// convolution, so we make a best guess and then try.
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
if (flip_) {
// When weight is flipped, we assume it is backward input convolution.
try_backends.push_back(CONV_BACKWARD_INPUT);
} else {
// Otherwise it could be backward weight convolution or forward convolution,
// mathematically there is no difference so we have to use heuristics.
// Empirically backward convolutions have large kernel dimensions, and
// usually have |in| and |wt| transposed.
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
wt.shape(2) > out.shape(2)) {
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
} else {
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
}
}
// Try to build op graph.
cudnnBackendDescriptorType_t backend_type;
std::optional<cudnn_frontend::OperationGraph> op_graph;
for (auto try_backend : try_backends) {
auto [in_copy, wt_copy, out_copy] =
prepare_args(encoder, try_backend, in, wt, out, s);
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
try_backend,
x,
w,
y,
kernel_strides_,
padding_lo_,
padding_hi_,
kernel_dilation_,
input_dilation_);
op_graph = build_op_graph(
encoder,
try_backend,
dtype,
x,
w,
y,
stride,
padding_lo,
padding_hi,
dilation);
if (op_graph) {
backend_type = try_backend;
in = std::move(in_copy);
wt = std::move(wt_copy);
out = std::move(out_copy);
break;
}
}
if (!op_graph) {
throw std::runtime_error("[conv] Can not build op graph.");
}
// Get ready to execute the graph.
register_args(encoder, backend_type, in, wt, out, out_);
// Try to run plans based on heuristics.
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
auto tag = op_graph->getTag();
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
// Then try fallback plans.
configs = get_engine_configs(backend_type, dtype, *op_graph);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
throw std::runtime_error("[conv] Unable to find a working engine.");
}
} // namespace mlx::core

87
mlx/backend/cuda/copy.cu Normal file
View File

@@ -0,0 +1,87 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/copy/copy.cuh"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out,
int64_t offset_in,
int64_t offset_out,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_offset_in,
const std::optional<array>& dynamic_offset_out) {
if (out.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
return;
}
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
auto [shape_collapsed, strides_vec] = collapse_contiguous_dims(
shape, std::vector{strides_in, strides_out}, INT32_MAX);
if (ctype == CopyType::General) {
copy_general_input(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0]);
} else {
if (dynamic_offset_in || dynamic_offset_out) {
copy_general_dynamic(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0],
strides_vec[1],
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
} else {
copy_general(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0],
strides_vec[1]);
}
}
return;
}
}
void fill_gpu(const array& in, array& out, const Stream& s) {
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
copy_contiguous(encoder, CopyType::Scalar, in, out, 0, 0);
}
} // namespace mlx::core

View File

@@ -0,0 +1,55 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/cast_op.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
namespace mlx::core {
void copy_contiguous(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out);
void copy_general(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out);
void copy_general_dynamic(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out,
const array& dynamic_offset_in,
const array& dynamic_offset_out);
void copy_general_input(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in);
} // namespace mlx::core

View File

@@ -0,0 +1,88 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_s(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in[0]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_v(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[i]);
}
} else {
auto in_vec = load_vector<N_READS>(in, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
} // namespace cu
void copy_contiguous(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t in_offset,
int64_t out_offset) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
if (ctype == CopyType::Vector) {
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());
});
});
});
}
} // namespace mlx::core

Some files were not shown because too many files have changed in this diff Show More