Compare commits

...

113 Commits

Author SHA1 Message Date
Awni Hannun
659a51919f patch bump (#2162) 2025-05-09 14:35:14 -07:00
Awni Hannun
6661387066 Fix fft for integer overflow (#2161) 2025-05-09 14:25:12 -07:00
ATurker
a7fae8a176 fix: conv_general differences between gpu, cpu (#2070)
* fix general_conv padding

* fix bugs

* add test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-05-09 10:26:52 -07:00
Cheng
0cae0bdac8 CUDA backend: backbone (#2075) 2025-05-06 21:26:46 -07:00
Awni Hannun
5a1a5d5ed1 fix input coherent kernel launch (#2153) 2025-05-05 17:30:50 -07:00
Cheng
1683975acf Move common gpu primitives to backend/gpu (#2145) 2025-05-05 13:45:29 -07:00
Awni Hannun
af705590ac fix batched vector sdpa (#2152) 2025-05-05 13:13:03 -07:00
Awni Hannun
825124af8f fix bw for elementwise ops (#2151)
* fix bw for elementwise ops

* add compile

* fix

* fix

* fix

* fix
2025-05-05 06:15:04 -07:00
Awni Hannun
9c5e7da507 fix compile merging (#2150) 2025-05-02 15:08:50 -07:00
Angelos Katharopoulos
481349495b GPU Hadamard for large N (#1879) 2025-05-01 17:19:17 -07:00
Awni Hannun
9daa6b003f fix shapeless export (#2148) 2025-05-01 15:02:02 -07:00
Angelos Katharopoulos
a3a632d567 Fix the launcher when ran locally (#2147) 2025-05-01 12:56:09 -07:00
Awni Hannun
e496c5a4b4 fix integer overflow in qmm (#2143) 2025-04-30 09:28:56 -07:00
Cheng
ea890d8710 Remove metal-only tests (#2139) 2025-04-30 09:08:39 -07:00
Awni Hannun
aa5d84f102 Allow quant layer to be unfrozen (#2142) 2025-04-30 09:08:29 -07:00
Awni Hannun
f1606486d2 Generalize gpu backend (#2138)
* generalize gpu backend

* fix no_gpu build

* fix no_gpu build

* generalize gpu backend
2025-04-30 09:08:17 -07:00
Cheng
87720a8908 Fix building with uv (#2141) 2025-04-30 06:04:07 -07:00
Aashiq Dheeraj
bb6565ef14 add fftshift and ifftshift fft helpers (#2135)
* add fftshift and ifftshift fft helpers

* address comments

* axes have to be iterable

* fix fp error in roll + add test

---------

Co-authored-by: Aashiq Dheeraj <aashiq@aashiq-mbp-m4.local>
2025-04-29 22:13:45 -07:00
Awni Hannun
7bb063bcb3 Enable vjp for quantized scale and bias (#2129)
* Enable vjp for quantized scale and bias

* higher tol
2025-04-29 13:03:09 -07:00
Alex Chi Z.
b36dd472bb return library if it is successfully loaded (#2131) 2025-04-29 07:30:36 -07:00
hdeng-apple
167b759a38 Fix typos (#2136) 2025-04-29 07:26:05 -07:00
charan-003
99b9868859 Clarify dimension notation in conv1d, conv2d, and conv3d docstrings (#2123)
* Clarify dimension notation in conv1d, conv2d, and conv3d docstrings

* Updating transposed convs in conv1d, conv2d, and conv3d

---------

Co-authored-by: Sai Charan Arvapally <saicharan@Sais-MacBook-Pro.local>
2025-04-25 12:18:30 -07:00
1ndig0
6b2d5448f2 Fix the error message in mx.right_shift and mx.left_shift (#2121)
* update right_shift and lef_shift

* simplify

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2025-04-25 09:14:28 -07:00
Awni Hannun
eaf709b83e patch (#2119) 2025-04-24 16:11:07 -07:00
Angelos Katharopoulos
f0e70afff0 Fix swift pm load (#2117) 2025-04-24 10:58:29 -07:00
hdeng-apple
86984cad68 Remove static initializers (#2059)
* Remove static initializers in device.cpp, load.cpp, pocketfft.h

* Remove static initializer InTracing::trace_stack

* Remove static initializer of CompilerCache cache

* Revert changes in pocketfft.h

* Remove duplicate private section of thread_pool()
2025-04-24 06:14:49 -07:00
Awni Hannun
fbc89e3ced fix pinv (#2110) 2025-04-23 13:08:28 -07:00
hdeng-apple
38c1e720c2 Search mlx.metallib in macOS framework "Resources" dir (#2061)
---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-04-23 09:53:13 -07:00
Param Thakkar
600e87e03c Added output_padding parameters in conv_transpose (#2092) 2025-04-23 09:26:33 -07:00
Hyunsung Lee
3836445241 Add broadcast_shapes in python API (#2091) 2025-04-22 18:57:39 -07:00
Yury Popov
1d2c9d6a07 Complex scan (#2094) 2025-04-22 18:56:28 -07:00
Awni Hannun
e8ac6bd2f5 irfft throws instead of segfaults on scalars (#2109) 2025-04-22 10:25:55 -07:00
Awni Hannun
fdadc4f22c Add more complex unary ops (#2101) 2025-04-21 13:04:54 -07:00
Awni Hannun
79b527f45f conv vmap (#2102) 2025-04-21 13:04:39 -07:00
Awni Hannun
dc4eada7f0 Use unordered map for kwargs in export/import (#2087)
* use unordered map for kwargs in export/import

* comment
2025-04-21 07:17:22 -07:00
Cheng
70ebc3b598 Return const ref in array::data_shared_ptr (#2100) 2025-04-21 07:17:09 -07:00
Cheng
b13f2aed16 Introduce macros for dispatching dynamic dtypes as static types (#2073) 2025-04-19 06:16:30 -07:00
Param Thakkar
5f04c0f818 Fixed shift operations issue (#2080)
* Fixed shift operations issue

* Added tests and fixes

* Fixed loop syntax error

* Added tests for bool

* Fixed typo
2025-04-18 14:28:33 -07:00
Awni Hannun
55935ccae7 fix py gc edge case (#2079) 2025-04-18 12:46:53 -07:00
Awni Hannun
b529515eb1 minor bump (#2081) 2025-04-17 14:57:11 -07:00
Angelos Katharopoulos
3cde719eb7 Route to gather qmm only for many tokens per expert (#2082) 2025-04-17 14:53:08 -07:00
Angelos Katharopoulos
5de6d94a90 Gather qmm batched kernel and refactoring of quantized (#2078) 2025-04-17 13:53:11 -07:00
Angelos Katharopoulos
99eefd2ec0 Gather mm new kernel and small refactoring (#2040) 2025-04-14 16:37:36 -07:00
Yury Popov
e9e268336b LogCumSumExp (#2069) 2025-04-13 01:27:29 -07:00
Awni Hannun
7275ac7523 Fix release build (#2072) 2025-04-12 20:41:58 -07:00
Angelos Katharopoulos
c4189a38e4 Add float mask to sdpa vector (#2068) 2025-04-11 17:29:40 -07:00
Awni Hannun
68d1b3256b nit: fix exception handling (#2066) 2025-04-11 14:12:08 -07:00
Awni Hannun
9c6953bda7 Fix stubgen (#2065)
* Fix stubgen

* add multi optim to docs
2025-04-11 12:02:54 -07:00
Awni Hannun
ef7ece9851 fix fft bug (#2062) 2025-04-10 19:41:27 -07:00
Angelos Katharopoulos
ddaa4b7dcb Fix the test and add custom min/max reductions for uncommon MPI types (#2060) 2025-04-10 17:01:17 -07:00
Cheng
dfae2c6989 Fix MSVC build due to use of M_LN2 (#2058) 2025-04-10 07:41:41 -07:00
Anastasiia Filippova
515f104926 Min / max reductions (#2041) 2025-04-09 23:22:20 -07:00
Angelos Katharopoulos
9ecefd56db Do not load the default lib if another is requested (#2055) 2025-04-09 13:31:38 -07:00
Awni Hannun
e5d35aa187 no sdpa in grad (#2054) 2025-04-08 19:13:54 -07:00
Awni Hannun
00794c42bc Fix causal mask sdpa vec (#2053)
* fix sdpa vector causal mask

* test
2025-04-08 09:11:23 -07:00
Cheng
08a1bf3f10 Remove Event::Signal() (#2052) 2025-04-08 06:20:27 -07:00
Awni Hannun
60c4154346 Only request residency once (#2051) 2025-04-07 10:47:51 -07:00
Awni Hannun
f2c85308c1 add a half simd gemm fallback (#2046)
* add a half simd gemm fallback

* nit
2025-04-07 09:31:29 -07:00
Awni Hannun
1a28b69ee2 only add to residency set once (#2049) 2025-04-06 17:38:25 -07:00
Cheng
ba09f01ce8 Remove test of converting negative float to uint (#2048) 2025-04-06 06:21:46 -07:00
Cheng
6cf48872b7 wait_for_one should wait for task to finish (#2047) 2025-04-05 20:05:16 -07:00
Angelos Katharopoulos
7b3b8fa000 Fix ci release (#2045) 2025-04-04 20:25:01 -07:00
Awni Hannun
ec5e2aae61 nit in doc (#2044) 2025-04-04 12:04:17 -07:00
Awni Hannun
86389bf970 patch bump (#2043) 2025-04-03 13:15:18 -07:00
Jagrit Digani
3290bfa690 Add new sdpa function overload (#2035)
* Add new sdpa function overload

* Address comments

* Remove std::varaint from cpp sdpa function
2025-04-03 11:58:28 -07:00
Jagrit Digani
8777fd104f Depthwise Conv2D optimization (#2036)
- Add new specialized kernel for small kernel (kernels size <= 7), small strides (strides <= 2) depthwise 2d convolutions
- Add related tests
2025-04-03 09:42:04 -07:00
Awni Hannun
c41f7565ed fix softmax / logsumexp (#2042) 2025-04-03 08:32:59 -07:00
Awni Hannun
9ba81e3da4 tune quant dispatch (#2031) 2025-04-02 20:05:54 -07:00
Awni Hannun
c23888acd7 Fix build warning (#2033) 2025-04-01 14:42:27 -07:00
Awni Hannun
f98ce25ab9 fix residency set for real (#2032) 2025-04-01 12:59:48 -07:00
Awni Hannun
de5f38fd48 Custom logsumexp (#2028)
* initial custom logsumexp

* more tests

* comments + fix
2025-03-31 07:36:55 -07:00
Angelos Katharopoulos
ec2854b13a Swap -inf for finite_minimum value (#2029) 2025-03-30 21:55:04 -07:00
Stephen Panaro
90823d2938 Add missing funcs to docs (#2021) 2025-03-30 18:29:33 -07:00
Jesper Stemann Andersen
5f5770e3a2 Fix CPU sign for unsigned ints (#2024)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2025-03-30 17:56:59 -07:00
Awni Hannun
28f39e9038 Log for complex numbers in Metal (#2025)
* Log for complex numbers in Metal

* fix log2
2025-03-30 17:04:38 -07:00
Awni Hannun
b2d2b37888 fix residency set clearing (#2027) 2025-03-30 16:27:26 -07:00
Awni Hannun
fe597e141c add pinv to doc (#2020) 2025-03-30 15:54:18 -07:00
Yi Wang
72ca1539e0 Remove unused variable in /setup.py (#2026)
This is a follow up of https://github.com/ml-explore/mlx/pull/2011
2025-03-30 12:52:33 -07:00
Awni Hannun
13b26775f1 use minimum deployment target (#2016) 2025-03-28 14:31:53 -07:00
Awni Hannun
05d7118561 causal vector sdpa (#2018)
* causal vector sdpa

* get rid of memory threshold
2025-03-28 12:36:13 -07:00
Awni Hannun
98b901ad66 enable complex gemm (#2017) 2025-03-28 10:45:13 -07:00
Awni Hannun
5580b47291 iinfo and scalar overflow detection (#2009) 2025-03-27 19:54:56 -07:00
Awni Hannun
bc62932984 sdpa specialization for head dim 256 (#2007) 2025-03-27 19:31:25 -07:00
Awni Hannun
a6b5d6e759 revise cmake minimum for doctest (#2014) 2025-03-27 19:30:58 -07:00
Yi Wang
a8931306e1 Remove unused variable in CMakeBuild (#2011)
Fix https://github.com/ml-explore/mlx/issues/2010
2025-03-27 16:00:51 -07:00
Yi Wang
fecdb8717e Polish CONTRIBUTING>md (#2005) 2025-03-25 19:06:34 -07:00
Awni Hannun
916fd273ea wire cache (#2006) 2025-03-25 18:54:01 -07:00
Yi Wang
0da8506552 Update docs for extensions (#2004) 2025-03-25 18:35:03 -07:00
Cheng
eda7a7b43e Do not join threads during process exit on Windows (#1738) 2025-03-25 06:33:08 -07:00
Chunyang Wen
022eabb734 Remove unused import (#1987) 2025-03-24 20:19:32 -07:00
Awni Hannun
aba899cef8 patch bump (#2000) 2025-03-24 12:47:05 -07:00
Jagrit Digani
6a40e1c176 Fix looping limit in causal attention (#1999) 2025-03-24 12:28:00 -07:00
Jesper Stemann Andersen
9307b2ab8b Fixed 32-bit platform support for distributed/ring implementation (#1996)
Replaced unsigned long integer literals with size_t literals in ring implementation, e.g., 1UL with size_t(1).
2025-03-24 08:08:40 -07:00
Jesper Stemann Andersen
522d8d3917 Added missing netinet/in.h include that fixes build on FreeBSD (#1997)
Defines IPPROTO_TCP.
2025-03-24 08:07:34 -07:00
Awni Hannun
a84cc0123f promote mask when needed (#1998) 2025-03-23 19:58:28 -07:00
Andrey Velichkevich
f018e248cd fix(backend): Include algorithm library in Allocator (#1992)
Signed-off-by: Andrey Velichkevich <andrey.velichkevich@gmail.com>
2025-03-22 21:27:51 -07:00
Awni Hannun
cfd7237a80 fix docs (#1991) 2025-03-21 19:58:53 -07:00
Angelos Katharopoulos
4eef8102c9 Distributed layers (#1270) 2025-03-21 13:52:17 -07:00
Angelos Katharopoulos
69e4dd506b Add a ring all gather (#1985) 2025-03-21 13:36:51 -07:00
Angelos Katharopoulos
25814a9458 Disable mpi on version mismatch (#1989) 2025-03-21 13:36:26 -07:00
Awni Hannun
2a980a76ce Add stats and limit to common allocator and enable tests (#1988)
* add stats to common allocator and enable tests

* linux memory and default

* fix
2025-03-21 12:28:36 -07:00
Angelos Katharopoulos
d343782c8b Cross platform libmpi loading (#1975) 2025-03-21 11:23:10 -07:00
Awni Hannun
4e1994e9d7 move memory APIs into top level mlx.core (#1982) 2025-03-21 07:25:12 -07:00
jiyzhang
65a38c452b update the formula of smooth_l1_loss (#1986) 2025-03-21 06:25:23 -07:00
Awni Hannun
7b7e2352cd fix malloc or wait deadlock (#1976) 2025-03-20 16:48:43 -07:00
Awni Hannun
1177d28395 patch bump (#1981) 2025-03-20 15:12:22 -07:00
Awni Hannun
005e7efa64 fix mask in sdpa (#1980)
* fix mask in sdpa

* fix attention mask

* Re-enable routing for array mask

---------

Co-authored-by: Jagrit Digani <digani@apple.com>
2025-03-20 14:53:12 -07:00
Jagrit Digani
b42d13ec84 Update attention tests to show diff, disable array masks (#1978) 2025-03-20 14:25:38 -07:00
Jagrit Digani
9adcd1a650 Support fused masking in Attention (#1924)
* Update API to allow mask='causal' in fast::sdpa

* Add fallback

* Update steel::AttnParams

* Fix typo

* WIP, basic causal

* Update tests

* Update benchmarking

* Update masking loop limits

* Add bool masking and update tests

* Update additive mask

* Update benchmarks

* Update benchmarks

* Update tests

* Update for bfloat error

* Update early exit

* Add random seed to tests
2025-03-20 11:01:32 -07:00
Awni Hannun
3c164fca8c Fix multistream GPU deadlock (#1969)
* fix multistream GPU deadlock

* comments
2025-03-20 07:19:47 -07:00
jiyzhang
95e335db7b Update smooth_l1_loss in losses.py (#1974)
According the definition of smooth_l1_loss, the line 

diff = predictions - targets

Should be updated to 

diff = mx.abs(predictions - targets)

After the modification, the result is consistent with PyTorch smooth_l1_loss
2025-03-19 20:19:02 -07:00
Awni Hannun
f90206ad74 Guard nullptr dereference (#1972)
* guard nullptr dereference

* comment
2025-03-19 16:24:10 -07:00
Chunyang Wen
3779150750 refactor: all use schedule (#1973) 2025-03-19 11:24:04 -07:00
287 changed files with 12496 additions and 3576 deletions

View File

@@ -24,8 +24,8 @@ jobs:
type: boolean
default: false
macos:
xcode: "15.2.0"
resource_class: macos.m1.medium.gen1
xcode: "16.2.0"
resource_class: m2pro.medium
steps:
- checkout
- run:
@@ -89,15 +89,14 @@ jobs:
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
- run:
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF
CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF \
CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
- run:
@@ -110,6 +109,8 @@ jobs:
name: Run Python tests
command: |
python3 -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build CPP only
command: |
@@ -124,10 +125,15 @@ jobs:
parameters:
xcode_version:
type: string
default: "15.2.0"
default: "16.2.0"
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.medium.gen1
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
resource_class: m2pro.medium
steps:
- checkout
- run:
@@ -149,7 +155,7 @@ jobs:
command: |
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="CMAKE_COMPILE_WARNING_AS_ERROR=ON" \
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
pip install -e . -v
- run:
name: Generate package stubs
@@ -213,13 +219,18 @@ jobs:
default: "3.9"
xcode_version:
type: string
default: "15.2.0"
default: "16.2.0"
build_env:
type: string
default: ""
macosx_deployment_target:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.medium.gen1
resource_class: m2pro.medium
environment:
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
steps:
- checkout
- run:
@@ -240,7 +251,7 @@ jobs:
name: Install Python package
command: |
source env/bin/activate
DEV_RELEASE=1 \
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
pip install . -v
- run:
@@ -335,7 +346,7 @@ workflows:
- mac_build_and_test:
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- build_documentation
@@ -355,8 +366,70 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["PYPI_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "PYPI_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "PYPI_RELEASE=1"
- build_documentation:
filters:
tags:
@@ -379,7 +452,7 @@ workflows:
requires: [ hold ]
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
@@ -392,7 +465,54 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
weekly_build:
when:
and:
@@ -403,8 +523,70 @@ workflows:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
macosx_deployment_target: ["13.5", "14.0", "15.0"]
build_env: ["DEV_RELEASE=1"]
xcode_version: ["16.2.0", "15.0.0"]
exclude:
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "13.5"
xcode_version: "16.2.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "14.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.9"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.10"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.11"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.12"
build_env: "DEV_RELEASE=1"
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
linux_test_release:
when:
and:

1
.gitignore vendored
View File

@@ -36,6 +36,7 @@ share/python-wheels/
.installed.cfg
*.egg
MANIFEST
uv.lock
# vim
*.swp

View File

@@ -34,6 +34,7 @@ option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
option(MLX_BUILD_METAL "Build metal backend" ON)
option(MLX_BUILD_CPU "Build cpu backend" ON)
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
@@ -83,6 +84,10 @@ if(MLX_BUILD_METAL)
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if(MLX_BUILD_CUDA)
enable_language(CUDA)
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
@@ -212,24 +217,6 @@ else()
set(MLX_BUILD_ACCELERATE OFF)
endif()
find_package(MPI)
if(MPI_FOUND)
execute_process(
COMMAND zsh "-c" "mpirun --version"
OUTPUT_VARIABLE MPI_VERSION
ERROR_QUIET)
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
elseif(MPI_VERSION STREQUAL "")
set(MPI_FOUND FALSE)
message(
WARNING "MPI found but mpirun is not available. Building without MPI.")
else()
set(MPI_FOUND FALSE)
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
endif()
endif()
message(STATUS "Downloading json")
FetchContent_Declare(
json

View File

@@ -5,26 +5,26 @@ possible.
## Pull Requests
1. Fork and submit pull requests to the repo.
1. Fork and submit pull requests to the repo.
2. If you've added code that should be tested, add tests.
3. If a change is likely to impact efficiency, run some of the benchmarks before
and after the change. Examples of benchmarks can be found in `benchmarks/python/`.
4. If you've changed APIs, update the documentation.
5. Every PR should have passing tests and at least one review.
5. Every PR should have passing tests and at least one review.
6. For code formatting install `pre-commit` using something like `pip install pre-commit` and run `pre-commit install`.
This should install hooks for running `black` and `clang-format` to ensure
consistent style for C++ and python code.
You can also run the formatters manually as follows:
```
clang-format -i file.cpp
```
```
black file.py
```
```shell
clang-format -i file.cpp
```
```shell
black file.py
```
or run `pre-commit run --all-files` to check all files in the repo.
## Issues

View File

@@ -1,4 +1,6 @@
include CMakeLists.txt
include mlx.pc.in
recursive-include mlx/ *
include cmake/*
include python/src/*
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -0,0 +1,74 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate([x[i] @ w[j].T for i, j in enumerate(idx.tolist())], axis=0)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_mm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_mm(x, w1.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
x = mx.gather_mm(x, w2.swapaxes(-1, -2), rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = x @ w1.T
x = x @ w2.T
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_mm()

View File

@@ -0,0 +1,84 @@
# Copyright © 2025 Apple Inc.
import mlx.core as mx
from time_utils import time_fn
N = 1024
D = 1024
M = 1024
E = 32
I = 4
def gather_sort(x, indices):
N, M = indices.shape
indices = indices.flatten()
order = mx.argsort(indices)
inv_order = mx.argsort(order)
return x.flatten(0, -3)[order // M], indices[order], inv_order
def scatter_unsort(x, inv_order, shape=None):
x = x[inv_order]
if shape is not None:
x = mx.unflatten(x, 0, shape)
return x
def gather_mm_simulate(x, w, indices):
x, idx, inv_order = gather_sort(x, indices)
for i in range(2):
y = mx.concatenate(
[
mx.quantized_matmul(x[i], w[0][j], w[1][j], w[2][j], transpose=True)
for i, j in enumerate(idx.tolist())
],
axis=0,
)
x = y[:, None]
x = scatter_unsort(x, inv_order, indices.shape)
return x
def time_gather_qmm():
x = mx.random.normal((N, 1, 1, D)) / 1024**0.5
w1 = mx.random.normal((E, M, D)) / 1024**0.5
w2 = mx.random.normal((E, D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
indices = (mx.random.uniform(shape=(N, I)) * E).astype(mx.uint32)
sorted_indices = mx.sort(indices.flatten()).reshape(N, I)
mx.eval(x, w1, w2, indices, sorted_indices)
def gather_mm(x, w1, w2, indices, sort):
idx = indices
inv_order = None
if sort:
x, idx, inv_order = gather_sort(x, indices)
x = mx.gather_qmm(x, *w1, transpose=True, rhs_indices=idx, sorted_indices=sort)
x = mx.gather_qmm(x, *w2, transpose=True, rhs_indices=idx, sorted_indices=sort)
if sort:
x = scatter_unsort(x, inv_order, indices.shape)
return x
time_fn(gather_mm, x, w1, w2, indices, False)
time_fn(gather_mm, x, w1, w2, sorted_indices, False)
time_fn(gather_mm, x, w1, w2, indices, True)
x = mx.random.normal((N * I, D)) / 1024**0.5
w1 = mx.random.normal((M, D)) / 1024**0.5
w2 = mx.random.normal((D, M)) / 1024**0.5
w1 = mx.quantize(w1)
w2 = mx.quantize(w2)
mx.eval(x, w1, w2)
def equivalent_matmul(x, w1, w2):
x = mx.quantized_matmul(x, *w1, transpose=True)
x = mx.quantized_matmul(x, *w2, transpose=True)
return x
time_fn(equivalent_matmul, x, w1, w2)
if __name__ == "__main__":
time_gather_qmm()

View File

@@ -28,11 +28,34 @@ def bench(f, *args):
return (e - s) * 1e-9
def mlx_sdpa_fused_inner(q, k, v, scale):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
np_dtype = getattr(np, dtype)
shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
scale = 1.0 / math.sqrt(D)
q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype)
k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
q_mx = mx.array(q_np)
k_mx = mx.array(k_np)
v_mx = mx.array(v_np)
if mask is not None:
if mask == "additive":
mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype)
mask = mx.array(mask_np)
elif mask == "bool":
mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
mask = mx.array(mask_np)
return q_mx, k_mx, v_mx, scale, mask
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
q_dtype = q.dtype
q = q * mx.array(scale, q_dtype)
n_q_heads = q.shape[-3]
@@ -41,6 +64,7 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
B = q.shape[0]
L = q.shape[2]
kL = k.shape[2]
if n_repeats > 1:
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
@@ -48,10 +72,27 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
v = mx.expand_dims(v, 2)
scores = q @ mx.swapaxes(k, -1, -2)
if f32softmax:
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
else:
scores = mx.softmax(scores, axis=-1)
if mask is not None:
if mask == "causal":
q_offset = max(0, kL - L)
q_indices = mx.arange(q_offset, q_offset + L)
k_indices = mx.arange(kL)
mask = q_indices[:, None] >= k_indices[None]
if n_repeats > 1 and mask.ndim >= 3:
if mask.shape[-3] == 1:
mask = mx.expand_dims(mask, -3)
else:
mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
if mask.dtype == mx.bool_:
scores = mx.where(mask, scores, -np.float32(np.inf))
else:
scores += mask
scores = mx.softmax(scores, axis=-1, precise=True)
out = scores @ v
if n_repeats > 1:
@@ -60,74 +101,55 @@ def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
return out
def mlx_spda_unfused(q, k, v, scale, transpose):
q_out = q
def mlx_fused_attn(q, k, v, scale, mask):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
def do_attention(f, q, k, v, scale, mask=None, transpose=False):
if transpose:
k = mx.transpose(k, (0, 2, 1, 3))
v = mx.transpose(v, (0, 2, 1, 3))
q_t = mx.transpose(q, (0, 2, 1, 3))
k_t = mx.transpose(k, (0, 2, 1, 3))
v_t = mx.transpose(v, (0, 2, 1, 3))
o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
return mx.transpose(o_t, (0, 2, 1, 3))
else:
return f(q, k, v, scale=scale, mask=mask)
def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False):
q_out = q
for i in range(N_iter_func):
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose)
mx.eval(q_out)
return q_out
def mlx_spda_fused(q, k, v, scale, transpose):
q_out = q
if transpose:
k = mx.transpose(k, (0, 2, 1, 3))
v = mx.transpose(v, (0, 2, 1, 3))
for i in range(N_iter_func):
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
mx.eval(q_out)
return q_out
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
shape_q = (
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
)
shape_kv = (
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
def bench_shape(
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None
):
q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype
)
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
time_mlx_unfused = bench(
do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose
)
time_mlx_fused = bench(
do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
)
scale = math.sqrt(1.0 / head_dim)
o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose)
o_mlx_unfused = do_attention(
mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
)
q_mx = mx.array(q_np)
k_mx = mx.array(k_np)
v_mx = mx.array(v_np)
atol = 1e-5 if dtype == "float32" else 2e-4
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
if transpose:
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
atol = 1e-5 if np_dtype == np.float32 else 1e-4
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol):
print(
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
)
return time_mlx_fused, time_mlx_unfused
@@ -151,39 +173,51 @@ if __name__ == "__main__":
( 1, 128, 128, 64, 32, 32),
( 1, 256, 256, 64, 32, 32),
( 1, 512, 512, 64, 32, 32),
( 1, 1024, 1024, 64, 32, 32),
( 1, 2048, 2048, 64, 32, 32),
( 1, 4096, 4096, 64, 32, 32),
( 1, 1024, 1024, 64, 32, 8),
( 1, 2048, 2048, 64, 32, 8),
( 1, 4096, 4096, 64, 32, 8),
)
shapes_80 = (
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
( 1, 1024, 1024, 80, 32, 32),
( 1, 2048, 2048, 80, 32, 32),
( 1, 4096, 4096, 80, 32, 32),
( 1, 1024, 1024, 80, 32, 8),
( 1, 2048, 2048, 80, 32, 8),
( 1, 4096, 4096, 80, 32, 8),
)
shapes_128 = (
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
( 1, 1024, 1024, 128, 32, 32),
( 1, 2048, 2048, 128, 32, 32),
( 1, 4096, 4096, 128, 32, 32),
( 1, 1024, 1024, 128, 32, 8),
( 1, 2048, 2048, 128, 32, 8),
( 1, 4096, 4096, 128, 32, 8),
)
# fmt: on
shapes = shapes_64 + shapes_80 + shapes_128
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
masks = [None, "bool", "causal"]
print(
" B, qsl, ksl, hdim, n_qh, n_kvh, t, dtype, mask, t_unfs, t_fuse, diff%"
)
for dtype in dtypes:
for transpose in transposes:
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
np_dtype = getattr(np, dtype)
time_mlx_fused, time_mlx_unfused = bench_shape(
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
)
diff = time_mlx_unfused / time_mlx_fused - 1.0
t_str = 1 if transpose else 0
print(
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
)
for mask_in in masks:
time_mlx_fused, time_mlx_unfused = bench_shape(
B,
qsl,
ksl,
head_dim,
n_q_heads,
n_kv_heads,
dtype,
transpose,
mask_in,
)
diff = time_mlx_unfused / time_mlx_fused - 1.0
t_str = 1 if transpose else 0
print(
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
)

View File

@@ -13,7 +13,7 @@ EXCLUDE_PATTERNS = */private/*
CREATE_SUBDIRS = NO
FULL_PATH_NAMES = YES
RECURSIVE = YES
GENERATE_HTML = YES
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_XML = YES
XML_PROGRAMLISTING = YES

View File

@@ -93,9 +93,9 @@ Primitives
^^^^^^^^^^^
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
defines how to create outputs arrays given a input arrays. Further, a
defines how to create output arrays given input arrays. Further, a
:class:`Primitive` has methods to run on the CPU or GPU and for function
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
more concrete:
.. code-block:: C++
@@ -128,7 +128,7 @@ more concrete:
/** The vector-Jacobian product. */
std::vector<array> vjp(
const std::vector<array>& primals,
const array& cotan,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) override;
@@ -247,9 +247,7 @@ point-wise. This is captured in the templated function :meth:`axpby_impl`.
float alpha_,
float beta_,
mx::Stream stream) {
// Allocate the output with `malloc_or_wait` which synchronously allocates
// memory, potentially waiting if the system is under memory pressure
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc(out.nbytes()));
// Get the CPU command encoder and register input and output arrays
auto& encoder = mx::cpu::get_command_encoder(stream);
@@ -393,7 +391,7 @@ below.
auto& d = metal::device(s.device);
// Allocate output memory
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
// Resolve name of kernel
std::ostringstream kname;
@@ -471,7 +469,7 @@ one we just defined:
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the primitive can built with ops
// The jvp transform on the primitive can be built with ops
// that are scheduled on the same stream as the primitive
// If argnums = {0}, we only push along x in which case the
@@ -483,7 +481,7 @@ one we just defined:
auto scale_arr = array(scale, tangents[0].dtype());
return {multiply(scale_arr, tangents[0], stream())};
}
// If, argnums = {0, 1}, we take contributions from both
// If argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
else {
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
@@ -737,7 +735,7 @@ Let's look at a simple script and its results:
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")
print(f"c is correct: {mx.all(c == 6.0).item()}")
Output:
@@ -745,7 +743,7 @@ Output:
c shape: [3, 4]
c dtype: float32
c correctness: True
c is correct: True
Results
^^^^^^^

View File

@@ -70,6 +70,7 @@ are the CPU and GPU.
python/fft
python/linalg
python/metal
python/memory_management
python/nn
python/optimizers
python/distributed

View File

@@ -38,6 +38,7 @@ Array
array.log10
array.log1p
array.log2
array.logcumsumexp
array.logsumexp
array.max
array.mean

View File

@@ -20,3 +20,5 @@ FFT
irfft2
rfftn
irfftn
fftshift
ifftshift

View File

@@ -20,5 +20,6 @@ Linear Algebra
eigh
lu
lu_factor
pinv
solve
solve_triangular

View File

@@ -0,0 +1,16 @@
Memory Management
=================
.. currentmodule:: mlx.core
.. autosummary::
:toctree: _autosummary
get_active_memory
get_peak_memory
reset_peak_memory
get_cache_memory
set_memory_limit
set_cache_limit
set_wired_limit
clear_cache

View File

@@ -8,13 +8,5 @@ Metal
is_available
device_info
get_active_memory
get_peak_memory
reset_peak_memory
get_cache_memory
set_memory_limit
set_cache_limit
set_wired_limit
clear_cache
start_capture
stop_capture

View File

@@ -36,10 +36,12 @@ Operations
bitwise_or
bitwise_xor
block_masked_mm
broadcast_arrays
broadcast_to
ceil
clip
concatenate
contiguous
conj
conjugate
convolve
@@ -101,6 +103,7 @@ Operations
log10
log1p
logaddexp
logcumsumexp
logical_not
logical_and
logical_or

View File

@@ -18,3 +18,4 @@ Common Optimizers
AdamW
Adamax
Lion
MultiOptimizer

View File

@@ -9,6 +9,7 @@ Transforms
:toctree: _autosummary
eval
async_eval
compile
custom_function
disable_compile

View File

@@ -72,9 +72,7 @@ void axpby_impl(
float alpha_,
float beta_,
mx::Stream stream) {
// Allocate the output with `malloc_or_wait` which synchronously allocates
// memory, potentially waiting if the system is under memory pressure
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc(out.nbytes()));
// Get the CPU command encoder and register input and output arrays
auto& encoder = mx::cpu::get_command_encoder(stream);
@@ -160,12 +158,12 @@ void Axpby::eval_gpu(
// Allocate output memory with strides based on specialization
if (contiguous_kernel) {
out.set_data(
mx::allocator::malloc_or_wait(x.data_size() * out.itemsize()),
mx::allocator::malloc(x.data_size() * out.itemsize()),
x.data_size(),
x.strides(),
x.flags());
} else {
out.set_data(mx::allocator::malloc_or_wait(out.nbytes()));
out.set_data(mx::allocator::malloc(out.nbytes()));
}
// Resolve name of kernel (corresponds to axpby.metal)

View File

@@ -5,6 +5,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/export.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
@@ -48,5 +49,16 @@ add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/no_metal.cpp)
endif()
if(MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
endif()
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
endif()

View File

@@ -4,12 +4,11 @@
#include <sstream>
#include "mlx/allocator.h"
#include "mlx/scheduler.h"
namespace mlx::core::allocator {
Buffer malloc(size_t size) {
auto buffer = allocator().malloc(size, /* allow_swap */ true);
auto buffer = allocator().malloc(size);
if (size && !buffer.ptr()) {
std::ostringstream msg;
msg << "[malloc] Unable to allocate " << size << " bytes.";
@@ -22,45 +21,4 @@ void free(Buffer buffer) {
allocator().free(buffer);
}
Buffer CommonAllocator::malloc(size_t size, bool) {
void* ptr = std::malloc(size + sizeof(size_t));
if (ptr != nullptr) {
*static_cast<size_t*>(ptr) = size;
}
return Buffer{ptr};
}
void CommonAllocator::free(Buffer buffer) {
std::free(buffer.ptr());
}
size_t CommonAllocator::size(Buffer buffer) const {
if (buffer.ptr() == nullptr) {
return 0;
}
return *static_cast<size_t*>(buffer.ptr());
}
Buffer malloc_or_wait(size_t size) {
auto buffer = allocator().malloc(size);
while (size && !buffer.ptr() && scheduler::n_active_tasks() > 0) {
scheduler::wait_for_one();
buffer = allocator().malloc(size);
}
// Try swapping if needed
if (size && !buffer.ptr()) {
buffer = allocator().malloc(size, /* allow_swap = */ true);
}
if (size && !buffer.ptr()) {
std::ostringstream msg;
msg << "[malloc_or_wait] Unable to allocate " << size << " bytes.";
throw std::runtime_error(msg.str());
}
return buffer;
}
} // namespace mlx::core::allocator

View File

@@ -32,14 +32,10 @@ Buffer malloc(size_t size);
void free(Buffer buffer);
// Wait for running tasks to finish and free up memory
// if allocation fails
Buffer malloc_or_wait(size_t size);
class Allocator {
/** Abstract base class for a memory allocator. */
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
virtual Buffer malloc(size_t size) = 0;
virtual void free(Buffer buffer) = 0;
virtual size_t size(Buffer buffer) const = 0;
@@ -53,16 +49,4 @@ class Allocator {
Allocator& allocator();
class CommonAllocator : public Allocator {
/** A general CPU allocator. */
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
virtual size_t size(Buffer buffer) const override;
private:
CommonAllocator() = default;
friend Allocator& allocator();
};
} // namespace mlx::core::allocator

View File

@@ -339,11 +339,11 @@ class array {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
// Return the shared pointer to the array::Data struct
const std::shared_ptr<Data>& data_shared_ptr() const {
return array_desc_->data;
}
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
@@ -356,7 +356,7 @@ class array {
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// The output of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,

View File

@@ -1,6 +1,7 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/broadcasting.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp

View File

@@ -44,14 +44,14 @@ inline void set_binary_op_output_data(
switch (bopt) {
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
allocator::malloc(out.itemsize()), 1, a.strides(), a.flags());
break;
case BinaryOpType::ScalarVector:
if (b_donatable) {
out.copy_shared_buffer(b);
} else {
out.set_data(
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
allocator::malloc(b.data_size() * out.itemsize()),
b.data_size(),
b.strides(),
b.flags());
@@ -62,7 +62,7 @@ inline void set_binary_op_output_data(
out.copy_shared_buffer(a);
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
allocator::malloc(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
@@ -75,7 +75,7 @@ inline void set_binary_op_output_data(
out.copy_shared_buffer(b);
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
allocator::malloc(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
@@ -88,7 +88,7 @@ inline void set_binary_op_output_data(
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
break;
}

View File

@@ -0,0 +1,24 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/utils.h"
namespace mlx::core {
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@@ -0,0 +1,11 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/array.h"
namespace mlx::core {
void broadcast(const array& in, array& out);
} // namespace mlx::core

View File

@@ -1,6 +1,7 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/broadcasting.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
@@ -42,23 +43,6 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
}
void broadcast(const array& in, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
broadcast(inputs[0], out);
}
@@ -103,7 +87,7 @@ void ExpandDims::eval(const std::vector<array>& inputs, array& out) {
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
double numel = 1;
for (auto ax : axes_) {

View File

@@ -188,7 +188,7 @@ void compiled_allocate_outputs(
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
allocator::malloc(data_size * outputs[o].itemsize()),
data_size,
strides,
flags);
@@ -211,7 +211,7 @@ void compiled_allocate_outputs(
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
outputs[o].set_data(allocator::malloc(outputs[o].nbytes()));
}
}
}

View File

@@ -31,14 +31,14 @@ inline bool set_copy_output_data(const array& in, array& out, CopyType ctype) {
return true;
} else {
out.set_data(
allocator::malloc_or_wait(in.data_size() * out.itemsize()),
allocator::malloc(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
return false;
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
return false;
}
}

View File

@@ -99,7 +99,11 @@ inline std::pair<int, int> decompose_hadamard(int n) {
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
}
}
if (n > (1 << 26)) {
throw std::invalid_argument(
"[hadamard] Only supports n = m*2^k where k <= 26");
}
return {n, m};
}
} // namespace mlx::core
} // namespace mlx::core

View File

@@ -28,7 +28,7 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
namespace mlx::core {
void Load::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto read_task = [out_ptr = out.data<char>(),
size = out.size(),
itemsize = out.itemsize(),

View File

@@ -48,12 +48,12 @@ inline void set_ternary_op_output_data(
switch (topt) {
case TernaryOpType::ScalarScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, b.strides(), b.flags());
allocator::malloc(out.itemsize()), 1, b.strides(), b.flags());
break;
case TernaryOpType::VectorVectorVector:
if (!(maybe_donate(a) || maybe_donate(b) || maybe_donate(c))) {
out.set_data(
allocator::malloc_or_wait(out.itemsize() * b.data_size()),
allocator::malloc(out.itemsize() * b.data_size()),
b.data_size(),
b.strides(),
b.flags());
@@ -64,7 +64,7 @@ inline void set_ternary_op_output_data(
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
(b.flags().row_contiguous && maybe_donate(b)) ||
(c.flags().row_contiguous && maybe_donate(c)))) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
break;
}

View File

@@ -40,7 +40,8 @@ add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/available.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
@@ -58,6 +59,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
@@ -73,8 +75,8 @@ target_sources(
if(MLX_BUILD_ACCELERATE)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/bnns.cpp)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/no_bf16.cpp)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_fp16.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/simd_bf16.cpp)
endif()
if(IOS)

View File

@@ -68,7 +68,7 @@ void arg_reduce_dispatch(
void ArgReduce::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);
encoder.set_output_array(out);

View File

@@ -0,0 +1,11 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/available.h"
namespace mlx::core::cpu {
bool is_available() {
return true;
}
} // namespace mlx::core::cpu

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cpu {
bool is_available();
} // namespace mlx::core::cpu

View File

@@ -172,9 +172,12 @@ void binary_float(
case bfloat16:
binary_op<bfloat16_t, Op>(a, b, out, bopt);
break;
case complex64:
binary_op<complex64_t, Op>(a, b, out, bopt);
break;
default:
throw std::runtime_error(
"[binary_float] Only supports non-complex floating point types.");
"[binary_float] Only supports floating point types.");
}
});
}

View File

@@ -40,7 +40,10 @@ struct CompilerCache {
std::shared_mutex mtx;
};
static CompilerCache cache{};
static CompilerCache& cache() {
static CompilerCache cache_;
return cache_;
};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
@@ -56,14 +59,16 @@ void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::shared_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
std::unique_lock lock(cache().mtx);
if (auto it = cache().kernels.find(kernel_name);
it != cache().kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
@@ -120,10 +125,10 @@ void* compile(
}
// load library
cache.libs.emplace_back(shared_lib_path);
cache().libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
void* fun = dlsym(cache().libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -131,7 +136,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
cache.kernels.insert({kernel_name, fun});
cache().kernels.insert({kernel_name, fun});
return fun;
}

View File

@@ -22,7 +22,8 @@ void slow_conv_1D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -60,7 +61,8 @@ void slow_conv_1D(
out_stride_O = out.strides()[2],
flip,
padding = padding[0],
padding_lo = padding_lo[0],
padding_hi = padding_hi[0],
wt_stride = wt_strides[0],
wt_dilation = wt_dilation[0],
in_dilation = in_dilation[0]]() mutable {
@@ -77,7 +79,7 @@ void slow_conv_1D(
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
int wh_flip = flip ? (wH - wh - 1) : wh;
int ih = oh * wt_stride - padding + wh_flip * wt_dilation;
int ih = oh * wt_stride - padding_lo + wh_flip * wt_dilation;
auto ih_div = std::div(ih, in_dilation);
@@ -109,7 +111,8 @@ void slow_conv_2D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -120,230 +123,235 @@ void slow_conv_2D(
encoder.set_input_array(wt);
encoder.set_output_array(out);
encoder.dispatch([st_wt_ptr = wt.data<T>(),
st_in_ptr = in.data<T>(),
st_out_ptr = out.data<T>(),
encoder.dispatch(
[st_wt_ptr = wt.data<T>(),
st_in_ptr = in.data<T>(),
st_out_ptr = out.data<T>(),
N = in.shape(
0), // Batch size, should be the same as out.shape(0)
iH = 1 +
in_dilation[0] * (in.shape(1) - 1), // Input spatial dim
iW = 1 +
in_dilation[1] * (in.shape(2) - 1), // Input spatial dim
C = in.shape(3), // In channels
oH = out.shape(1), // Output spatial dim
oW = out.shape(2), // Output spatial dim
O = wt.shape(0), // Out channels
wH = wt.shape(1), // Weight spatial dim
wW = wt.shape(2), // Weight spatial dim
N = in.shape(0), // Batch size, should be the same as out.shape(0)
iH = 1 + in_dilation[0] * (in.shape(1) - 1), // Input spatial dim
iW = 1 + in_dilation[1] * (in.shape(2) - 1), // Input spatial dim
C = in.shape(3), // In channels
oH = out.shape(1), // Output spatial dim
oW = out.shape(2), // Output spatial dim
O = wt.shape(0), // Out channels
wH = wt.shape(1), // Weight spatial dim
wW = wt.shape(2), // Weight spatial dim
groups = in.shape(3) / wt.shape(3),
C_per_group = wt.shape(3),
groups = in.shape(3) / wt.shape(3),
C_per_group = wt.shape(3),
in_stride_N = in.strides()[0],
in_stride_H = in.strides()[1],
in_stride_W = in.strides()[2],
in_stride_C = in.strides()[3],
in_stride_N = in.strides()[0],
in_stride_H = in.strides()[1],
in_stride_W = in.strides()[2],
in_stride_C = in.strides()[3],
wt_stride_O = wt.strides()[0],
wt_stride_H = wt.strides()[1],
wt_stride_W = wt.strides()[2],
wt_stride_C = wt.strides()[3],
wt_stride_O = wt.strides()[0],
wt_stride_H = wt.strides()[1],
wt_stride_W = wt.strides()[2],
wt_stride_C = wt.strides()[3],
out_stride_N = out.strides()[0],
out_stride_H = out.strides()[1],
out_stride_W = out.strides()[2],
out_stride_O = out.strides()[3],
out_stride_N = out.strides()[0],
out_stride_H = out.strides()[1],
out_stride_W = out.strides()[2],
out_stride_O = out.strides()[3],
padding,
wt_strides,
wt_dilation,
in_dilation,
flip]() mutable {
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip]() mutable {
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
const int O_per_group = O / groups;
auto pt_conv_no_checks = [&](const T* in_ptr,
const T* wt_ptr,
T* out_ptr,
int oh,
int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
const int O_per_group = O / groups;
auto pt_conv_no_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding_lo[0];
int iw_base = ow * wt_strides[1] - padding_lo[1];
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt =
in_ptr + ih * in_stride_H + iw * in_stride_W;
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ww
} // wh
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int f_wgt_jump_h =
std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w =
std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_wgt_jump_h =
std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w =
std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_out_jump_h = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
int f_out_jump_h =
std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w =
std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding[0] + init_h;
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding_lo[0] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
base_h[i] = wh_base;
}
base_h[i] = wh_base;
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding[1] + init_w;
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding_lo[1] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
base_w[j] = ww_base;
}
base_w[j] = ww_base;
}
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
int ih_base = oh * wt_strides[0] - padding_lo[0];
int iw_base = ow * wt_strides[1] - padding_lo[1];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
const T* in_ptr_pt =
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
const T* in_ptr_pt = in_ptr + ih_dil * in_stride_H +
iw_dil * in_stride_W;
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ih, iw check
} // ww
} // wh
} // ih, iw check
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int oH_border_0 = 0;
int oH_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oH_border_0 = 0;
int oH_border_1 = is_idil_one
? ((padding_lo[0] + wt_strides[0] - 1) / wt_strides[0])
: oH;
int oH_border_2 = std::max(
oH_border_1,
(iH + padding_lo[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
int oW_border_0 = 0;
int oW_border_1 = is_idil_one
? ((padding_lo[1] + wt_strides[1] - 1) / wt_strides[1])
: oW;
int oW_border_2 = std::max(
oW_border_1,
(iW + padding_lo[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
// Case 1: oh might put us out of bounds
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
for (int n = 0; n < N; ++n) {
// Case 1: oh might put us out of bounds
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
// Case 2: oh in bounds
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
// Case a: ow might put us out of bounds
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case 2: oh in bounds
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
// Case a: ow might put us out of bounds
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case b: ow in bounds
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case b: ow in bounds
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case c: ow might put us out of bounds
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
// Case c: ow might put us out of bounds
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
} // oh
// Case 3: oh might put us out of bounds
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
// Case 3: oh might put us out of bounds
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, oh, ow);
} // ow
} // oh
st_in_ptr += in_stride_N;
st_out_ptr += out_stride_N;
st_in_ptr += in_stride_N;
st_out_ptr += out_stride_N;
} // n
});
} // n
});
}
template <typename T>
@@ -351,7 +359,8 @@ void slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -400,7 +409,8 @@ void slow_conv_3D(
out_stride_H = out.strides()[2],
out_stride_W = out.strides()[3],
out_stride_O = out.strides()[4],
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -415,9 +425,9 @@ void slow_conv_3D(
int oh,
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
int id_base = od * wt_strides[0] - padding_lo[0];
int ih_base = oh * wt_strides[1] - padding_lo[1];
int iw_base = ow * wt_strides[2] - padding_lo[2];
for (int o = 0; o < O; ++o) {
float r = 0.;
@@ -478,7 +488,7 @@ void slow_conv_3D(
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_d; ++i) {
int id_loop = i * wt_strides[0] - padding[0] + init_d;
int id_loop = i * wt_strides[0] - padding_lo[0] + init_d;
int wd_base = 0;
while (wd_base < wD && id_loop % in_dilation[0] != 0) {
@@ -490,7 +500,7 @@ void slow_conv_3D(
}
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[1] - padding[1] + init_h;
int ih_loop = i * wt_strides[1] - padding_lo[1] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[1] != 0) {
@@ -502,7 +512,7 @@ void slow_conv_3D(
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[2] - padding[2] + init_w;
int iw_loop = j * wt_strides[2] - padding_lo[2] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[2] != 0) {
@@ -521,9 +531,9 @@ void slow_conv_3D(
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
int id_base = od * wt_strides[0] - padding_lo[0];
int ih_base = oh * wt_strides[1] - padding_lo[1];
int iw_base = ow * wt_strides[2] - padding_lo[2];
int wd_base = base_d[od % f_out_jump_d];
int wh_base = base_h[oh % f_out_jump_h];
@@ -573,24 +583,30 @@ void slow_conv_3D(
};
int oD_border_0 = 0;
int oD_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oD;
int oD_border_1 = is_idil_one
? ((padding_lo[0] + wt_strides[0] - 1) / wt_strides[0])
: oD;
int oD_border_2 = std::max(
oD_border_1, (iD + padding[0] - wD * wt_dilation[0]) / wt_strides[0]);
oD_border_1,
(iD + padding_lo[0] - wD * wt_dilation[0]) / wt_strides[0]);
int oD_border_3 = oD;
int oH_border_0 = 0;
int oH_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oH;
int oH_border_1 = is_idil_one
? ((padding_lo[1] + wt_strides[1] - 1) / wt_strides[1])
: oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[1] - wH * wt_dilation[1]) / wt_strides[1]);
oH_border_1,
(iH + padding_lo[1] - wH * wt_dilation[1]) / wt_strides[1]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 =
is_idil_one ? ((padding[2] + wt_strides[2] - 1) / wt_strides[2]) : oW;
int oW_border_1 = is_idil_one
? ((padding_lo[2] + wt_strides[2] - 1) / wt_strides[2])
: oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[2] - wW * wt_dilation[2]) / wt_strides[2]);
oW_border_1,
(iW + padding_lo[2] - wW * wt_dilation[2]) / wt_strides[2]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
@@ -658,7 +674,8 @@ void dispatch_slow_conv_1D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -669,7 +686,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -680,7 +698,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -691,7 +710,8 @@ void dispatch_slow_conv_1D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -707,7 +727,8 @@ void dispatch_slow_conv_2D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -718,7 +739,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -729,7 +751,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -740,7 +763,8 @@ void dispatch_slow_conv_2D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -756,7 +780,8 @@ void dispatch_slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -767,7 +792,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -778,7 +804,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -789,7 +816,8 @@ void dispatch_slow_conv_3D(
in,
wt,
out,
padding,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
@@ -829,7 +857,8 @@ void explicit_gemm_conv_1D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
@@ -848,7 +877,7 @@ void explicit_gemm_conv_1D_cpu(
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], C};
Shape padded_shape = {N, iH + padding_lo[0] + padding_hi[0], C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -857,7 +886,7 @@ void explicit_gemm_conv_1D_cpu(
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding[0] * in_padded.strides()[1];
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -921,7 +950,7 @@ void explicit_gemm_conv_1D_cpu(
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
temps.push_back(gemm_out);
}
@@ -971,7 +1000,8 @@ void explicit_gemm_conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
Stream stream) {
@@ -989,7 +1019,11 @@ void explicit_gemm_conv_2D_cpu(
auto& encoder = cpu::get_command_encoder(stream);
// Pad input
Shape padded_shape = {N, iH + 2 * padding[0], iW + 2 * padding[1], C};
Shape padded_shape = {
N,
iH + padding_lo[0] + padding_hi[0],
iW + padding_lo[1] + padding_hi[1],
C};
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
@@ -998,8 +1032,8 @@ void explicit_gemm_conv_2D_cpu(
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset =
padding[0] * in_padded.strides()[1] + padding[1] * in_padded.strides()[2];
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
padding_lo[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -1048,7 +1082,7 @@ void explicit_gemm_conv_2D_cpu(
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
temps.push_back(gemm_out);
}
@@ -1091,7 +1125,8 @@ void explicit_gemm_conv_ND_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const bool flip,
@@ -1114,7 +1149,7 @@ void explicit_gemm_conv_ND_cpu(
Shape padded_shape(in.shape().size());
padded_shape.front() = N;
for (size_t i = 0; i < iDim.size(); i++) {
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
padded_shape[i + 1] = iDim[i] + padding_lo[i] + padding_hi[i];
}
padded_shape.back() = C;
array in_padded(padded_shape, conv_dtype, nullptr, {});
@@ -1125,9 +1160,10 @@ void explicit_gemm_conv_ND_cpu(
// Pick input slice from padded
size_t data_offset = 0;
for (size_t i = 0; i < padding.size(); i++) {
data_offset += padding[i] * in_padded.strides()[i + 1];
for (size_t i = 0; i < padding_lo.size(); i++) {
data_offset += padding_lo[i] * in_padded.strides()[i + 1];
}
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
@@ -1214,7 +1250,7 @@ void explicit_gemm_conv_ND_cpu(
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
temps.push_back(gemm_out);
}
@@ -1261,7 +1297,8 @@ void conv_1D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1270,22 +1307,40 @@ void conv_1D_cpu(
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation, stream);
in, wt, out, padding_lo, padding_hi, wt_strides, wt_dilation, stream);
}
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
void conv_2D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1295,18 +1350,35 @@ void conv_2D_cpu(
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && in_dilation[0] == 1 &&
in_dilation[1] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
void conv_3D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& padding_lo,
const std::vector<int>& padding_hi,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
@@ -1317,17 +1389,34 @@ void conv_3D_cpu(
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1 &&
groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
flip,
stream);
}
return dispatch_slow_conv_3D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip, stream);
in,
wt,
out,
padding_lo,
padding_hi,
wt_strides,
wt_dilation,
in_dilation,
flip,
stream);
}
} // namespace
void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& in = inputs[0];
auto& wt = inputs[1];
@@ -1338,7 +1427,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -1351,7 +1441,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
@@ -1364,7 +1455,8 @@ void Convolution::eval_cpu(const std::vector<array>& inputs, array& out) {
in,
wt,
out,
padding_,
padding_lo_,
padding_hi_,
kernel_strides_,
kernel_dilation_,
input_dilation_,

View File

@@ -30,7 +30,7 @@ void AllReduce::eval_cpu(
if (in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
return in;
} else {
@@ -46,8 +46,15 @@ void AllReduce::eval_cpu(
case Sum:
distributed::detail::all_sum(group(), in, outputs[0], stream());
break;
case Max:
distributed::detail::all_max(group(), in, outputs[0], stream());
break;
case Min:
distributed::detail::all_min(group(), in, outputs[0], stream());
break;
default:
throw std::runtime_error("Only all reduce sum is supported for now");
throw std::runtime_error(
"Only all reduce sum, min and max are supported for now");
}
}
@@ -58,7 +65,7 @@ void AllGather::eval_cpu(
assert(outputs.size() == 1);
auto [in, copied] = ensure_row_contiguous(inputs[0], stream());
outputs[0].set_data(allocator::malloc_or_wait(outputs[0].nbytes()));
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
distributed::detail::all_gather(group(), in, outputs[0], stream());
if (copied) {
auto& enc = cpu::get_command_encoder(stream());
@@ -87,7 +94,7 @@ void Recv::eval_cpu(
assert(inputs.size() == 0);
assert(outputs.size() == 1);
outputs[0].set_data(allocator::malloc_or_wait(outputs[0].nbytes()));
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
distributed::detail::recv(group(), outputs[0], src_, stream());
}

View File

@@ -55,9 +55,8 @@ void eigh_impl(
liwork = iwork;
}
auto work_buf = array::Data{allocator::malloc_or_wait(sizeof(T) * lwork)};
auto iwork_buf =
array::Data{allocator::malloc_or_wait(sizeof(int) * liwork)};
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
auto iwork_buf = array::Data{allocator::malloc(sizeof(int) * liwork)};
for (size_t i = 0; i < size / (N * N); ++i) {
syevd<T>(
&jobz,
@@ -98,7 +97,7 @@ void Eigh::eval_cpu(
? outputs[1]
: array(a.shape(), a.dtype(), nullptr, {});
values.set_data(allocator::malloc_or_wait(values.nbytes()));
values.set_data(allocator::malloc(values.nbytes()));
copy(
a,

View File

@@ -9,6 +9,9 @@
namespace mlx::core::cpu {
// Number of dispatches per scheduler task
constexpr int DISPATCHES_PER_TASK = 10;
struct CommandEncoder {
CommandEncoder(Stream stream) : stream_(stream) {}
@@ -39,13 +42,24 @@ struct CommandEncoder {
template <class F, class... Args>
void dispatch(F&& f, Args&&... args) {
num_ops_ = (num_ops_ + 1) % DISPATCHES_PER_TASK;
auto task = std::bind(std::forward<F>(f), std::forward<Args>(args)...);
scheduler::enqueue(stream_, std::move(task));
if (num_ops_ == 0) {
scheduler::notify_new_task(stream_);
auto task_wrap = [s = stream_, task = std::move(task)]() mutable {
task();
scheduler::notify_task_completion(s);
};
scheduler::enqueue(stream_, std::move(task_wrap));
} else {
scheduler::enqueue(stream_, std::move(task));
}
}
private:
Stream stream_;
std::vector<array> temporaries_;
int num_ops_{0};
};
CommandEncoder& get_command_encoder(Stream stream);

View File

@@ -33,12 +33,8 @@ void eval(array& arr) {
buffers.erase(it);
}
auto& encoder = cpu::get_command_encoder(s);
scheduler::notify_new_task(s);
encoder.dispatch([s,
buffers = std::move(buffers),
temps = std::move(encoder.temporaries())]() {
scheduler::notify_task_completion(s);
});
encoder.dispatch([buffers = std::move(buffers),
temps = std::move(encoder.temporaries())]() {});
}
} // namespace mlx::core::cpu

View File

@@ -22,7 +22,7 @@ void FFT::eval_cpu(const std::vector<array>& inputs, array& out) {
s *= out.itemsize();
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
std::vector<size_t> shape;
if (out.dtype() == float32) {

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t*,
const bfloat16_t*,
bfloat16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] bfloat16 not supported.");
}
} // namespace mlx::core

View File

@@ -1,27 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cpu/gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t*,
const float16_t*,
float16_t*,
bool,
bool,
size_t,
size_t,
size_t,
float,
float,
size_t,
const Shape&,
const Strides&,
const Shape&,
const Strides&) {
throw std::runtime_error("[Matmul::eval_cpu] float16 not supported.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<bfloat16_t>(
const bfloat16_t* a,
const bfloat16_t* b,
bfloat16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<bfloat16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,45 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/gemms/simd_gemm.h"
namespace mlx::core {
template <>
void matmul<float16_t>(
const float16_t* a,
const float16_t* b,
float16_t* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
size_t ldc,
float alpha,
float beta,
size_t batch_size,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides) {
auto ndim = a_shape.size();
size_t M = a_shape[ndim - 2];
size_t N = b_shape[ndim - 1];
size_t K = a_shape[ndim - 1];
for (int i = 0; i < batch_size; ++i) {
simd_gemm<float16_t, float>(
a + elem_to_loc(M * K * i, a_shape, a_strides),
b + elem_to_loc(K * N * i, b_shape, b_strides),
out + M * N * i,
a_transposed,
b_transposed,
M,
N,
K,
alpha,
beta);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,139 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cpu/simd/simd.h"
namespace mlx::core {
inline int ceildiv(int a, int b) {
return (a + b - 1) / b;
}
template <int block_size, typename T, typename AccT>
void load_block(
const T* in,
AccT* out,
int M,
int N,
int i,
int j,
bool transpose) {
if (transpose) {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[jj * block_size + ii] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
} else {
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
out[ii * block_size + jj] =
in[(i * block_size + ii) * N + j * block_size + jj];
}
}
}
}
template <typename T, typename AccT>
void simd_gemm(
const T* a,
const T* b,
T* c,
bool a_trans,
bool b_trans,
int M,
int N,
int K,
float alpha,
float beta) {
constexpr int block_size = 16;
constexpr int simd_size = simd::max_size<AccT>;
static_assert(
(block_size % simd_size) == 0,
"Block size must be divisible by SIMD size");
int last_k_block_size = K - block_size * (K / block_size);
int last_k_simd_block = (last_k_block_size / simd_size) * simd_size;
for (int i = 0; i < ceildiv(M, block_size); i++) {
for (int j = 0; j < ceildiv(N, block_size); j++) {
AccT c_block[block_size * block_size] = {0.0};
AccT a_block[block_size * block_size];
AccT b_block[block_size * block_size];
int k = 0;
for (; k < K / block_size; k++) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
for (int kk = 0; kk < block_size; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
}
}
}
if (last_k_block_size) {
// Load a and b blocks
if (a_trans) {
load_block<block_size>(a, a_block, K, M, k, i, true);
} else {
load_block<block_size>(a, a_block, M, K, i, k, false);
}
if (b_trans) {
load_block<block_size>(b, b_block, N, K, j, k, false);
} else {
load_block<block_size>(b, b_block, K, N, k, j, true);
}
// Multiply and accumulate
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
int kk = 0;
for (; kk < last_k_simd_block; kk += simd_size) {
auto av =
simd::load<AccT, simd_size>(a_block + ii * block_size + kk);
auto bv =
simd::load<AccT, simd_size>(b_block + jj * block_size + kk);
c_block[ii * block_size + jj] += simd::sum(av * bv);
}
for (; kk < last_k_block_size; ++kk) {
c_block[ii * block_size + jj] +=
a_block[ii * block_size + kk] * b_block[jj * block_size + kk];
}
}
}
}
// Store
for (int ii = 0; ii < block_size && i * block_size + ii < M; ++ii) {
for (int jj = 0; jj < block_size && j * block_size + jj < N; ++jj) {
auto c_idx = (i * block_size + ii) * N + j * block_size + jj;
if (beta != 0) {
c[c_idx] = static_cast<T>(
alpha * c_block[ii * block_size + jj] + beta * c[c_idx]);
} else {
c[c_idx] = static_cast<T>(alpha * c_block[ii * block_size + jj]);
}
}
}
}
}
}
} // namespace mlx::core

View File

@@ -197,7 +197,7 @@ void dispatch_gather(
}
void Gather::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& src = inputs[0];
std::vector<array> inds;
@@ -354,7 +354,7 @@ void dispatch_gather_axis(
}
void GatherAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& src = inputs[0];
auto& inds = inputs[1];

View File

@@ -11,7 +11,7 @@ namespace mlx::core {
template <typename T>
void general_inv(T* inv, int N) {
int info;
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
auto ipiv = array::Data{allocator::malloc(sizeof(int) * N)};
// Compute LU factorization.
getrf<T>(
/* m = */ &N,
@@ -49,7 +49,7 @@ void general_inv(T* inv, int N) {
}
const int lwork = workspace_size;
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(T) * lwork)};
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
// Compute inverse.
getri<T>(

View File

@@ -0,0 +1,140 @@
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <cmath>
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
#include "mlx/primitives.h"
#include "mlx/types/limits.h"
namespace mlx::core {
namespace {
using namespace mlx::core::simd;
template <typename T, typename AccT>
void logsumexp(const array& in, array& out, Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(in);
encoder.set_output_array(out);
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
int M = in.shape().back();
int L = in.data_size() / M;
encoder.dispatch([in_ptr, out_ptr, M, L]() mutable {
constexpr int N = std::min(max_size<AccT>, max_size<T>);
const T* current_in_ptr;
for (int i = 0; i < L; i++, in_ptr += M, out_ptr += 1) {
// Find the maximum
current_in_ptr = in_ptr;
Simd<AccT, N> vmaximum(-numeric_limits<AccT>::infinity());
size_t s = M;
while (s >= N) {
Simd<AccT, N> vals = load<T, N>(current_in_ptr);
vmaximum = maximum(vals, vmaximum);
current_in_ptr += N;
s -= N;
}
AccT maximum = max(vmaximum);
while (s-- > 0) {
maximum = std::max(maximum, static_cast<AccT>(*current_in_ptr));
current_in_ptr++;
}
// Compute the normalizer and the exponentials
Simd<AccT, N> vnormalizer(0.0);
current_in_ptr = in_ptr;
s = M;
while (s >= N) {
Simd<AccT, N> vexp = load<T, N>(current_in_ptr);
vexp = exp(vexp - maximum);
vnormalizer = vnormalizer + vexp;
current_in_ptr += N;
s -= N;
}
AccT normalizer = sum(vnormalizer);
while (s-- > 0) {
AccT _exp = std::exp(*current_in_ptr - maximum);
normalizer += _exp;
current_in_ptr++;
}
// Normalize
*out_ptr = std::isinf(maximum)
? static_cast<T>(maximum)
: static_cast<T>(std::log(normalizer) + maximum);
}
});
}
} // namespace
void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// Make sure that the last dimension is contiguous
auto s = stream();
auto& encoder = cpu::get_command_encoder(s);
auto ensure_contiguous = [&s, &encoder](const array& x) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}
};
auto in = ensure_contiguous(inputs[0]);
if (in.flags().row_contiguous) {
out.set_data(allocator::malloc(out.nbytes()));
} else {
auto n = in.shape(-1);
auto flags = in.flags();
auto strides = in.strides();
for (auto& s : strides) {
s /= n;
}
bool col_contig = strides[0] == 1;
for (int i = 1; col_contig && i < strides.size(); ++i) {
col_contig &=
(out.shape(i) == 1 || strides[i - 1] == out.shape(i) * strides[i]);
}
flags.col_contiguous = col_contig;
out.set_data(
allocator::malloc(in.nbytes() / n),
in.data_size() / n,
std::move(strides),
flags);
}
switch (in.dtype()) {
case float32:
logsumexp<float, float>(in, out, stream());
break;
case float16:
logsumexp<float16_t, float>(in, out, stream());
break;
case bfloat16:
logsumexp<bfloat16_t, float>(in, out, stream());
break;
case float64:
logsumexp<double, double>(in, out, stream());
break;
default:
throw std::runtime_error(
"[logsumexp] only supports floating point types");
break;
}
}
} // namespace mlx::core

View File

@@ -30,8 +30,7 @@ void luf_impl(
auto strides = lu.strides();
strides[ndim - 1] = M;
strides[ndim - 2] = 1;
lu.set_data(
allocator::malloc_or_wait(lu.nbytes()), lu.nbytes(), strides, flags);
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_inplace(
a,
lu,
@@ -44,8 +43,8 @@ void luf_impl(
stream);
auto a_ptr = lu.data<T>();
pivots.set_data(allocator::malloc_or_wait(pivots.nbytes()));
row_indices.set_data(allocator::malloc_or_wait(row_indices.nbytes()));
pivots.set_data(allocator::malloc(pivots.nbytes()));
row_indices.set_data(allocator::malloc(row_indices.nbytes()));
auto pivots_ptr = pivots.data<uint32_t>();
auto row_indices_ptr = row_indices.data<uint32_t>();
size_t num_matrices = a.size() / (M * N);

View File

@@ -59,7 +59,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error(
"[BlockMaskedMM::eval] Currently only supports float32.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
@@ -318,7 +318,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error(
"[GatherMM::eval] Currently only supports float32.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];

View File

@@ -115,7 +115,7 @@ void matmul_general(
}
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
if (inputs[0].shape(-1) == 0) {
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);

View File

@@ -21,7 +21,7 @@ namespace mlx::core {
void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
copy_inplace(in, out, CopyType::General, out.primitive().stream());
} else {
shared_buffer_reshape(in, out_strides, out);
@@ -39,7 +39,7 @@ static std::pair<array, bool> compute_dynamic_offset(
if (donate) {
offset.copy_shared_buffer(indices);
} else {
offset.set_data(allocator::malloc_or_wait(offset.itemsize()));
offset.set_data(allocator::malloc(offset.itemsize()));
}
auto& encoder = cpu::get_command_encoder(stream);
@@ -124,7 +124,7 @@ void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
switch (out.dtype()) {
case bool_:
throw std::runtime_error("Bool type unsupported for arange.");
@@ -186,7 +186,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
}
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto strides = out.strides();
auto flags = out.flags();
@@ -205,8 +205,10 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous)) {
constexpr size_t extra_bytes = 16384;
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
(in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General, stream());
@@ -276,7 +278,7 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t elems_per_key = out.size() / num_keys;
size_t bytes_per_key = out.itemsize() * elems_per_key;
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto kptr = inputs[0].data<uint32_t>();
auto cptr = out.data<char>();
@@ -335,7 +337,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
return;
}
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_inplace(
@@ -450,7 +452,7 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
auto tmp = array(
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
tmp.set_data(allocator::malloc(tmp.nbytes()));
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);

View File

@@ -25,12 +25,11 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
auto strides = in.strides();
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(
allocator::malloc_or_wait(in.nbytes()), in.nbytes(), strides, flags);
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc_or_wait(q.nbytes()));
r.set_data(allocator::malloc_or_wait(r.nbytes()));
q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes()));
auto in_ptr = in.data<T>();
auto r_ptr = r.data<T>();
@@ -41,8 +40,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
encoder.set_output_array(r);
encoder.dispatch([in_ptr, q_ptr, r_ptr, M, N, lda, num_matrices]() {
int num_reflectors = std::min(M, N);
auto tau =
allocator::malloc_or_wait(sizeof(T) * num_matrices * num_reflectors);
auto tau = allocator::malloc(sizeof(T) * num_matrices * num_reflectors);
T optimal_work;
int lwork = -1;
@@ -53,7 +51,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
// Update workspace size
lwork = optimal_work;
auto work = allocator::malloc_or_wait(sizeof(T) * lwork);
auto work = allocator::malloc(sizeof(T) * lwork);
// Loop over matrices
for (int i = 0; i < num_matrices; ++i) {
@@ -96,7 +94,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
&lwork,
&info);
lwork = optimal_work;
work = allocator::malloc_or_wait(sizeof(T) * lwork);
work = allocator::malloc(sizeof(T) * lwork);
// Loop over matrices
for (int i = 0; i < num_matrices; ++i) {

View File

@@ -515,7 +515,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
auto scales = ensure_row_contiguous(scales_pre);
auto biases = ensure_row_contiguous(biases_pre);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
@@ -565,7 +565,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.add_temporaries(std::move(temps));
@@ -691,12 +691,12 @@ void fast::AffineQuantize::eval_cpu(
auto [w, copied] = ensure_row_contiguous(inputs[0]);
auto& out = outputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
scales.set_data(allocator::malloc(scales.nbytes()));
biases.set_data(allocator::malloc(biases.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
if (copied) {
encoder.add_temporary(w);

View File

@@ -433,7 +433,7 @@ void reduce_dispatch_min_max(
void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);
encoder.set_output_array(out);

View File

@@ -3,6 +3,7 @@
#include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/binary_ops.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/simd/simd.h"
@@ -226,6 +227,16 @@ void scan_dispatch(
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
case Scan::LogAddExp: {
auto op = [](U a, T b) {
return detail::LogAddExp{}(a, static_cast<U>(b));
};
auto init = (issubdtype(in.dtype(), floating))
? static_cast<U>(-std::numeric_limits<float>::infinity())
: std::numeric_limits<U>::min();
scan_op<T, U>(in, out, axis, reverse, inclusive, op, init);
break;
}
}
}
@@ -244,7 +255,7 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
in = arr_copy;
encoder.add_temporary(arr_copy);
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
encoder.set_input_array(in);
encoder.set_output_array(out);
@@ -319,7 +330,8 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
case complex64:
throw std::runtime_error("Scan ops do not support complex types yet");
scan_dispatch<complex64_t, complex64_t>(
reduce_type_, in, out, axis_, reverse_, inclusive_);
break;
}
});

View File

@@ -17,7 +17,7 @@ struct ScalarT<float16_t, N> {
#endif
template <>
static constexpr int max_size<float16_t> = N;
inline constexpr int max_size<float16_t> = N;
#define SIMD_FP16_DEFAULT_UNARY(op) \
template <> \

View File

@@ -83,25 +83,25 @@ struct Simd {
// Values chosen based on benchmarks on M3 Max
// TODO: consider choosing these more optimally
template <>
static constexpr int max_size<int8_t> = 16;
inline constexpr int max_size<int8_t> = 16;
template <>
static constexpr int max_size<int16_t> = 16;
inline constexpr int max_size<int16_t> = 16;
template <>
static constexpr int max_size<int> = 8;
inline constexpr int max_size<int> = 8;
template <>
static constexpr int max_size<int64_t> = 4;
inline constexpr int max_size<int64_t> = 4;
template <>
static constexpr int max_size<uint8_t> = 16;
inline constexpr int max_size<uint8_t> = 16;
template <>
static constexpr int max_size<uint16_t> = 16;
inline constexpr int max_size<uint16_t> = 16;
template <>
static constexpr int max_size<uint32_t> = 8;
inline constexpr int max_size<uint32_t> = 8;
template <>
static constexpr int max_size<uint64_t> = 4;
inline constexpr int max_size<uint64_t> = 4;
template <>
static constexpr int max_size<float> = 8;
inline constexpr int max_size<float> = 8;
template <>
static constexpr int max_size<double> = 4;
inline constexpr int max_size<double> = 4;
#define SIMD_DEFAULT_UNARY(name, op) \
template <typename T, int N> \

View File

@@ -87,14 +87,45 @@ DEFAULT_UNARY(cosh, std::cosh)
DEFAULT_UNARY(expm1, std::expm1)
DEFAULT_UNARY(floor, std::floor)
DEFAULT_UNARY(log, std::log)
DEFAULT_UNARY(log2, std::log2)
DEFAULT_UNARY(log10, std::log10)
DEFAULT_UNARY(log1p, std::log1p)
DEFAULT_UNARY(sinh, std::sinh)
DEFAULT_UNARY(sqrt, std::sqrt)
DEFAULT_UNARY(tan, std::tan)
DEFAULT_UNARY(tanh, std::tanh)
template <typename T>
Simd<T, 1> log1p(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto x = in.value.real();
auto y = in.value.imag();
auto zabs = std::abs(in.value);
auto theta = std::atan2(y, x + 1);
if (zabs < 0.5) {
auto r = x * (2 + x) + y * y;
if (r == 0) { // handle underflow
return Simd<T, 1>{T{x, theta}};
}
return Simd<T, 1>{T{((typeof(x))(0.5)) * std::log1p(r), theta}};
} else {
auto z0 = std::hypot(x + 1, y);
return Simd<T, 1>{T{std::log(z0), theta}};
}
} else {
return Simd<T, 1>{std::log1p(in.value)};
}
}
template <typename T>
Simd<T, 1> log2(Simd<T, 1> in) {
if constexpr (is_complex<T>) {
auto out = std::log(in.value);
auto scale = decltype(out.real())(M_LN2);
return Simd<T, 1>{T{out.real() / scale, out.imag() / scale}};
} else {
return Simd<T, 1>{std::log2(in.value)};
}
}
template <typename T>
Simd<T, 1> operator~(Simd<T, 1> in) {
return ~in.value;

View File

@@ -119,17 +119,12 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto set_output = [s = stream(), &out](const array& x) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
if (x.is_donatable()) {
out.copy_shared_buffer(x);
} else {
out.set_data(
allocator::malloc_or_wait(x.data_size() * x.itemsize()),
allocator::malloc(x.data_size() * x.itemsize()),
x.data_size(),
x.strides(),
x.flags());
@@ -146,18 +141,6 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
auto in = set_output(inputs[0]);
switch (in.dtype()) {
case bool_:
case uint8:
case uint16:
case uint32:
case uint64:
case int8:
case int16:
case int32:
case int64:
throw std::runtime_error(
"Softmax is defined only for floating point types");
break;
case float32:
softmax<float, float>(in, out, stream());
break;
@@ -178,9 +161,9 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
case float64:
softmax<double, double>(in, out, stream());
break;
case complex64:
throw std::invalid_argument(
"[Softmax] Not yet implemented for complex64");
default:
throw std::runtime_error(
"[softmax] Only defined for floating point types.");
break;
}
}

View File

@@ -288,7 +288,7 @@ void ArgSort::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Allocate output
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);
@@ -379,7 +379,7 @@ void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Allocate output
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(in);

View File

@@ -50,9 +50,9 @@ void svd_impl(
array& s = outputs[1];
array& vt = outputs[2];
u.set_data(allocator::malloc_or_wait(u.nbytes()));
s.set_data(allocator::malloc_or_wait(s.nbytes()));
vt.set_data(allocator::malloc_or_wait(vt.nbytes()));
u.set_data(allocator::malloc(u.nbytes()));
s.set_data(allocator::malloc(s.nbytes()));
vt.set_data(allocator::malloc(vt.nbytes()));
encoder.set_output_array(u);
encoder.set_output_array(s);
@@ -64,7 +64,7 @@ void svd_impl(
} else {
array& s = outputs[0];
s.set_data(allocator::malloc_or_wait(s.nbytes()));
s.set_data(allocator::malloc(s.nbytes()));
encoder.set_output_array(s);
@@ -91,7 +91,7 @@ void svd_impl(
// Will contain the indices of eigenvectors that failed to converge (not
// used here but required by lapack).
auto iwork = array::Data{allocator::malloc_or_wait(sizeof(int) * 12 * K)};
auto iwork = array::Data{allocator::malloc(sizeof(int) * 12 * K)};
static const int lwork_query = -1;
@@ -132,7 +132,7 @@ void svd_impl(
}
const int lwork = workspace_dimension;
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(T) * lwork)};
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
// Loop over matrices.
for (int i = 0; i < num_matrices; i++) {

View File

@@ -1,5 +1,8 @@
// Copyright © 2024 Apple Inc.
// Required for using M_LN2 in MSVC.
#define _USE_MATH_DEFINES
#include <cassert>
#include "mlx/backend/cpu/unary.h"

View File

@@ -18,13 +18,13 @@ void set_unary_output_data(const array& in, array& out) {
} else {
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
allocator::malloc(size * out.itemsize()),
size,
in.strides(),
in.flags());
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
out.set_data(allocator::malloc(out.nbytes()));
}
}

View File

@@ -86,13 +86,14 @@ struct Sign {
template <int N, typename T>
Simd<T, N> operator()(Simd<T, N> x) {
auto z = Simd<T, N>{0};
auto o = Simd<T, N>{1};
auto m = Simd<T, N>{-1};
if constexpr (std::is_unsigned_v<T>) {
return x != z;
return simd::select(x == z, z, o);
} else if constexpr (std::is_same_v<T, complex64_t>) {
return simd::select(x == z, x, Simd<T, N>(x / simd::abs(x)));
} else {
return simd::select(
x < z, Simd<T, N>{-1}, simd::select(x > z, Simd<T, N>{1}, z));
return simd::select(x < z, m, simd::select(x > z, o, z));
}
}
SINGLE()

View File

@@ -0,0 +1,57 @@
# Filename rules in cuda backend:
#
# * Use .cu/.cuh if code contains device code, and .cpp/.h if not.
# * Device-only kernel code should be put in kernels/ subdir.
# * Files in kernels/ subdir should not include files outside.
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
target_compile_definitions(mlx PUBLIC MLX_USE_CUDA)
# Enable defining device lambda functions.
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"75;80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
# Use fixed version of CCCL.
FetchContent_Declare(
cccl
URL "https://github.com/NVIDIA/cccl/releases/download/v2.8.1/cccl-v2.8.1.zip")
FetchContent_MakeAvailable(cccl)
target_include_directories(mlx PRIVATE BEFORE "${cccl_SOURCE_DIR}/include")
# Use fixed version of NVTX.
FetchContent_Declare(
nvtx3
GIT_REPOSITORY https://github.com/NVIDIA/NVTX.git
GIT_TAG v3.1.1
GIT_SHALLOW TRUE
SOURCE_SUBDIR c EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(nvtx3)
target_link_libraries(mlx PUBLIC $<BUILD_INTERFACE:nvtx3-cpp>)
# Make cuda runtime APIs available in non-cuda files.
find_package(CUDAToolkit REQUIRED)
target_include_directories(mlx PRIVATE ${CUDAToolkit_INCLUDE_DIRS})
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)

View File

@@ -0,0 +1,154 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/worker.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
#include <cassert>
namespace mlx::core {
namespace cu {
CudaAllocator::CudaAllocator() {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
memory_limit_ = total * 0.8;
}
Buffer CudaAllocator::malloc(size_t size) {
// TODO: Check memory limit.
auto* buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(
fmt::format("cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
std::lock_guard lock(mutex_);
active_memory_ += size;
peak_memory_ = std::max(active_memory_, peak_memory_);
return Buffer{buf};
}
void CudaAllocator::free(Buffer buffer) {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return;
}
// If free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([buffer]() { allocator().free(buffer); });
worker_->end_batch();
worker_->commit();
return;
}
}
size_t size = buf->size;
cudaFree(buf->data);
delete buf;
std::lock_guard lock(mutex_);
active_memory_ -= size;
}
size_t CudaAllocator::size(Buffer buffer) const {
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
if (!buf) {
return 0;
}
return buf->size;
}
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
size_t CudaAllocator::get_active_memory() const {
return active_memory_;
}
size_t CudaAllocator::get_peak_memory() const {
return peak_memory_;
}
void CudaAllocator::reset_peak_memory() {
std::lock_guard lock(mutex_);
peak_memory_ = 0;
}
size_t CudaAllocator::get_memory_limit() {
return memory_limit_;
}
size_t CudaAllocator::set_memory_limit(size_t limit) {
std::lock_guard lock(mutex_);
std::swap(limit, memory_limit_);
return limit;
}
CudaAllocator& allocator() {
// By creating the |allocator_| on heap, the destructor of CudaAllocator
// will not be called on exit and buffers in the cache will be leaked. This
// can save some time at program exit.
static CudaAllocator* allocator_ = new CudaAllocator;
return *allocator_;
}
} // namespace cu
namespace allocator {
Allocator& allocator() {
return cu::allocator();
}
void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
return static_cast<cu::CudaBuffer*>(ptr_)->data;
}
} // namespace allocator
size_t get_active_memory() {
return cu::allocator().get_active_memory();
}
size_t get_peak_memory() {
return cu::allocator().get_peak_memory();
}
void reset_peak_memory() {
return cu::allocator().reset_peak_memory();
}
size_t set_memory_limit(size_t limit) {
return cu::allocator().set_memory_limit(limit);
}
size_t get_memory_limit() {
return cu::allocator().get_memory_limit();
}
// TODO: Implement buffer cache.
size_t get_cache_memory() {
return 0;
}
size_t set_cache_limit(size_t) {
return 0;
}
size_t set_wired_limit(size_t) {
return 0;
}
void clear_cache() {}
} // namespace mlx::core

View File

@@ -0,0 +1,58 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
struct CudaBuffer {
void* data;
size_t size;
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
size_t get_memory_limit();
size_t set_memory_limit(size_t limit);
private:
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t active_memory_{0};
size_t peak_memory_{0};
};
CudaAllocator& allocator();
} // namespace mlx::core::cu

26
mlx/backend/cuda/copy.cpp Normal file
View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/copy.h"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) {
throw std::runtime_error("copy_gpu_inplace not implemented in CUDA backend.");
}
void fill_gpu(const array& val, array& out, const Stream& s) {
throw std::runtime_error("fill_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

117
mlx/backend/cuda/device.cpp Normal file
View File

@@ -0,0 +1,117 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
Device::Device(int device) : device_(device) {
// Validate the requirements of device.
int attr = 0;
cudaDeviceGetAttribute(&attr, cudaDevAttrConcurrentManagedAccess, device_);
if (attr != 1) {
throw std::runtime_error(fmt::format(
"Device {} does not support synchronization in managed memory.",
device_));
}
}
void Device::make_current() {
// We need to set/get current CUDA device very frequently, cache it to reduce
// actual calls of CUDA APIs. This function assumes single-thread in host.
static int current = 0;
if (current != device_) {
CHECK_CUDA_ERROR(cudaSetDevice(device_));
current = device_;
}
}
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
// Put completion handlers in a batch.
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::commit() {
worker_.commit(stream_.last_cuda_stream());
}
Device& device(mlx::core::Device device) {
static std::unordered_map<int, Device> devices;
auto it = devices.find(device.index);
if (it == devices.end()) {
it = devices.try_emplace(device.index, device.index).first;
}
return it->second;
}
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core

131
mlx/backend/cuda/device.h Normal file
View File

@@ -0,0 +1,131 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
#include <thrust/execution_policy.h>
#include <unordered_map>
namespace mlx::core::cu {
class Device;
class CommandEncoder;
class DeviceStream {
public:
explicit DeviceStream(Device& device);
DeviceStream(const DeviceStream&) = delete;
DeviceStream& operator=(const DeviceStream&) = delete;
// Wait until kernels in the stream complete.
void synchronize();
// Return a cuda stream for launching kernels.
cudaStream_t schedule_cuda_stream();
// Return the last cuda stream used.
cudaStream_t last_cuda_stream();
CommandEncoder& get_encoder();
Device& device() {
return device_;
}
private:
Device& device_;
CudaStream stream_;
std::unique_ptr<CommandEncoder> encoder_;
};
class Device {
public:
explicit Device(int device);
Device(const Device&) = delete;
Device& operator=(const Device&) = delete;
// Make this device the current cuda device, required by some cuda calls.
void make_current();
DeviceStream& get_stream(Stream s);
int cuda_device() const {
return device_;
}
private:
int device_;
std::unordered_map<int, DeviceStream> streams_;
};
class CommandEncoder {
public:
explicit CommandEncoder(DeviceStream& stream);
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
void set_input_array(const array& arr) {}
void set_output_array(const array& arr) {}
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void end_encoding();
void commit();
// Schedule a cuda stream for |fun| to launch kernels, and check error
// afterwards.
template <typename F>
void launch_kernel(F&& fun) {
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
}
template <typename F>
void launch_kernel(cudaStream_t stream, F&& fun) {
device_.make_current();
fun(stream);
check_cuda_error("kernel launch", cudaGetLastError());
has_gpu_work_ = true;
}
Device& device() {
return device_;
}
DeviceStream& stream() {
return stream_;
}
bool has_gpu_work() const {
return has_gpu_work_;
}
private:
Device& device_;
DeviceStream& stream_;
Worker worker_;
bool has_gpu_work_{false};
std::vector<std::shared_ptr<array::Data>> temporaries_;
};
Device& device(mlx::core::Device device);
DeviceStream& get_stream(Stream s);
CommandEncoder& get_command_encoder(Stream s);
// Return an execution policy that does not sync for result.
// Note that not all thrust APIs support async policy, confirm before using.
inline auto thrust_policy(cudaStream_t stream) {
// TODO: Connect thrust's custom allocator with mlx's allocator.
return thrust::cuda::par_nosync.on(stream);
}
} // namespace mlx::core::cu

View File

@@ -0,0 +1,35 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
namespace mlx::core {
// Maps CPU types to CUDA types.
template <typename T>
struct CTypeToCudaType {
using type = T;
};
template <>
struct CTypeToCudaType<float16_t> {
using type = __half;
};
template <>
struct CTypeToCudaType<bfloat16_t> {
using type = __nv_bfloat16;
};
template <>
struct CTypeToCudaType<complex64_t> {
using type = cuComplex;
};
template <typename T>
using cuda_type_t = typename CTypeToCudaType<T>::type;
} // namespace mlx::core

68
mlx/backend/cuda/eval.cpp Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/eval.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/gpu/available.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core::gpu {
bool is_available() {
return true;
}
void new_stream(Stream s) {
// Force initalization of cuda, so cuda runtime get destroyed at last.
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {
nvtx3::scoped_range r("gpu::eval");
auto outputs = arr.outputs();
{
// If the array is a tracer hold a reference
// to its inputs so they don't get donated
std::vector<array> inputs;
if (arr.is_tracer()) {
inputs = arr.inputs();
}
arr.primitive().eval_gpu(arr.inputs(), outputs);
}
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
if (encoder.has_gpu_work()) {
// Keep used buffers alive until kernel finishes running.
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input.
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
}
encoder.end_encoding();
}
void finalize(Stream s) {
nvtx3::scoped_range r("gpu::finalize");
cu::get_command_encoder(s).commit();
}
void synchronize(Stream s) {
nvtx3::scoped_range r("gpu::synchronize");
cu::get_stream(s).synchronize();
}
} // namespace mlx::core::gpu

265
mlx/backend/cuda/event.cu Normal file
View File

@@ -0,0 +1,265 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/event.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
///////////////////////////////////////////////////////////////////////////////
// CudaEvent implementations
///////////////////////////////////////////////////////////////////////////////
// Cuda event managed with RAII.
class CudaEventHandle {
public:
CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
}
~CudaEventHandle() {
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
}
CudaEventHandle(const CudaEventHandle&) = delete;
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
operator cudaEvent_t() const {
return event_;
}
private:
cudaEvent_t event_;
};
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
void CudaEvent::wait() {
nvtx3::scoped_range r("cu::CudaEvent::wait");
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaEventSynchronize(*event_);
}
void CudaEvent::wait(cudaStream_t stream) {
if (!recorded_) {
throw std::runtime_error("Should not wait on a CudaEvent before record.");
}
cudaStreamWaitEvent(stream, *event_);
}
void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
wait(cu::get_stream(s).last_cuda_stream());
}
}
void CudaEvent::record(cudaStream_t stream) {
cudaEventRecord(*event_, stream);
recorded_ = true;
}
void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
record(cu::get_stream(s).last_cuda_stream());
}
}
bool CudaEvent::completed() const {
return cudaEventQuery(*event_) == cudaSuccess;
}
///////////////////////////////////////////////////////////////////////////////
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
ac->wait(current);
}
}
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
ac->store(value);
ac->notify_all();
}
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_wait(ac, value);
}
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
} // namespace
SharedEvent::SharedEvent() {
// Allocate cuda::atomic on managed memory.
allocator::Buffer buffer = allocator::malloc(sizeof(Atomic));
Atomic* ac = static_cast<Atomic*>(buffer.raw_ptr());
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [buffer](Atomic* ptr) {
ptr->~Atomic();
allocator::free(buffer);
});
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { wait(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this, value]() mutable { signal(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { signal(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return ac_->load();
}
} // namespace cu
///////////////////////////////////////////////////////////////////////////////
// Event implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
struct EventImpl {
// CudaEvent is preferred when possible because it is fast, however we have
// to fallback to SharedEvent in following cases:
// 1. the event is used to wait/signal a cpu stream;
// 2. signal value other than 1 has been specified.
std::unique_ptr<cu::CudaEvent> cuda;
std::unique_ptr<cu::SharedEvent> shared;
bool is_created() const {
return cuda || shared;
}
void ensure_created(Stream s, uint64_t signal_value) {
if (is_created()) {
return;
}
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
nvtx3::mark("Using slow SharedEvent");
shared = std::make_unique<cu::SharedEvent>();
} else {
cuda = std::make_unique<cu::CudaEvent>();
}
}
};
} // namespace
Event::Event(Stream s) : stream_(s) {
event_ = std::shared_ptr<void>(
new EventImpl(), [](void* ptr) { delete static_cast<EventImpl*>(ptr); });
}
void Event::wait() {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait();
} else {
event->shared->wait(value());
}
}
void Event::wait(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
assert(event->is_created());
if (event->cuda) {
assert(value() == 1);
event->cuda->wait(s);
} else {
event->shared->wait(s, value());
}
}
void Event::signal(Stream s) {
auto* event = static_cast<EventImpl*>(event_.get());
event->ensure_created(s, value());
if (event->cuda) {
assert(value() == 1);
event->cuda->record(s);
} else {
event->shared->signal(s, value());
}
}
bool Event::is_signaled() const {
auto* event = static_cast<EventImpl*>(event_.get());
if (!event->is_created()) {
return false;
}
if (event->cuda) {
assert(value() == 1);
return event->cuda->recorded() && event->cuda->completed();
} else {
return event->shared->is_signaled(value());
}
}
} // namespace mlx::core

66
mlx/backend/cuda/event.h Normal file
View File

@@ -0,0 +1,66 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/stream.h"
#include <cuda_runtime.h>
#include <cuda/atomic>
#include <memory>
namespace mlx::core::cu {
class CudaEventHandle;
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
// on GPU stream in CPU stream, but can not wait on CPU stream.
class CudaEvent {
public:
CudaEvent();
void wait();
void wait(cudaStream_t stream);
void wait(Stream s);
void record(cudaStream_t stream);
void record(Stream s);
// Return whether the recorded kernels have completed. Note that this method
// returns true if record() has not been called.
bool completed() const;
bool recorded() const {
return recorded_;
}
private:
bool recorded_{false};
std::shared_ptr<CudaEventHandle> event_;
};
// Event that can synchronize between CPU and GPU. It is much slower than
// CudaEvent so the latter should always be preferred when possible.
class SharedEvent {
public:
using Atomic = cuda::atomic<uint64_t>;
SharedEvent();
void wait(uint64_t value);
void wait(cudaStream_t stream, uint64_t value);
void wait(Stream s, uint64_t value);
void signal(uint64_t value);
void signal(cudaStream_t stream, uint64_t value);
void signal(Stream s, uint64_t value);
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

70
mlx/backend/cuda/fence.cu Normal file
View File

@@ -0,0 +1,70 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/event.h"
#include "mlx/fence.h"
#include "mlx/scheduler.h"
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace {
__host__ __device__ void busy_wait(cuda::atomic<uint64_t>* ac, uint64_t value) {
while (true) {
// In theory the atomic_thread_fence is not needed, but for CUDA 11 without
// it the load() may never return new value.
cuda::atomic_thread_fence(cuda::memory_order_seq_cst);
uint64_t current = ac->load();
if (current >= value) {
break;
}
}
}
__global__ void busy_wait_kernel(cuda::atomic<uint64_t>* ac, uint64_t value) {
busy_wait(ac, value);
}
} // namespace
struct FenceImpl {
uint32_t count;
cu::SharedEvent event;
};
Fence::Fence(Stream s) {
fence_ = std::shared_ptr<void>(
new FenceImpl{0}, [](void* ptr) { delete static_cast<FenceImpl*>(ptr); });
}
void Fence::wait(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
// We can't use SharedEvent::wait because it could hang in CUDA 11, see also:
// https://github.com/ml-explore/mlx/issues/2137
const auto& ac = fence->event.atomic();
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [ac, count = fence->count]() {
nvtx3::scoped_range r("Fence::wait()");
busy_wait(ac.get(), count);
});
} else {
nvtx3::scoped_range r("Fence::wait(s)");
auto& encoder = cu::get_command_encoder(s);
encoder.launch_kernel(
encoder.stream().last_cuda_stream(), [&](cudaStream_t stream) {
busy_wait_kernel<<<1, 1, 0>>>(ac.get(), fence->count);
});
encoder.add_completed_handler([ac]() {});
encoder.end_encoding();
}
}
void Fence::update(Stream s, const array&) {
auto* fence = static_cast<FenceImpl*>(fence_.get());
fence->count++;
fence->event.signal(s, fence->count);
}
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,107 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuda_fp16.h>
#include <cuda/std/limits>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
///////////////////////////////////////////////////////////////////////////////
// Missing C++ operator overrides for CUDA 7.
///////////////////////////////////////////////////////////////////////////////
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
#define MLX_DEFINE_BF16_OP(OP) \
__forceinline__ __device__ __nv_bfloat16 operator OP( \
__nv_bfloat16 x, __nv_bfloat16 y) { \
return __float2bfloat16(__bfloat162float(x) OP __bfloat162float(y)); \
}
#define MLX_DEFINE_BF16_CMP(OP) \
__forceinline__ __device__ bool operator OP( \
__nv_bfloat16 x, __nv_bfloat16 y) { \
return __float2bfloat16(__bfloat162float(x) OP __bfloat162float(y)); \
}
MLX_DEFINE_BF16_OP(+)
MLX_DEFINE_BF16_OP(-)
MLX_DEFINE_BF16_OP(*)
MLX_DEFINE_BF16_OP(/)
MLX_DEFINE_BF16_CMP(>)
MLX_DEFINE_BF16_CMP(<)
MLX_DEFINE_BF16_CMP(>=)
MLX_DEFINE_BF16_CMP(<=)
#undef MLX_DEFINE_BF16_OP
#undef MLX_DEFINE_BF16_CMP
#endif // CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
///////////////////////////////////////////////////////////////////////////////
// Additional C++ operator overrides between half types and native types.
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U>
constexpr bool is_integral_except =
cuda::std::is_integral_v<T> && !cuda::std::is_same_v<T, U>;
template <typename T, typename U>
constexpr bool is_arithmetic_except =
cuda::std::is_arithmetic_v<T> && !cuda::std::is_same_v<T, U>;
#define MLX_DEFINE_HALF_OP(HALF, HALF2FLOAT, FLOAT2HALF, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(HALF x, T y) { \
return FLOAT2HALF(HALF2FLOAT(x) OP static_cast<float>(y)); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_integral_except<T, HALF>>> \
__forceinline__ __device__ HALF operator OP(T x, HALF y) { \
return FLOAT2HALF(static_cast<float>(x) OP HALF2FLOAT(y)); \
}
#define MLX_DEFINE_HALF_CMP(HALF, HALF2FLOAT, OP) \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(HALF x, T y) { \
return HALF2FLOAT(x) OP static_cast<float>(y); \
} \
template < \
typename T, \
typename = cuda::std::enable_if_t<is_arithmetic_except<T, HALF>>> \
__forceinline__ __device__ bool operator OP(T x, HALF y) { \
return static_cast<float>(y) OP HALF2FLOAT(x); \
}
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, +)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, -)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, *)
MLX_DEFINE_HALF_OP(__half, __half2float, __float2half, /)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, +)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, -)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, *)
MLX_DEFINE_HALF_OP(__nv_bfloat16, __bfloat162float, __float2bfloat16, /)
MLX_DEFINE_HALF_CMP(__half, __half2float, <)
MLX_DEFINE_HALF_CMP(__half, __half2float, >)
MLX_DEFINE_HALF_CMP(__half, __half2float, <=)
MLX_DEFINE_HALF_CMP(__half, __half2float, >=)
MLX_DEFINE_HALF_CMP(__half, __half2float, ==)
MLX_DEFINE_HALF_CMP(__half, __half2float, !=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, <=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, >=)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, ==)
MLX_DEFINE_HALF_CMP(__nv_bfloat16, __bfloat162float, !=)
#undef MLX_DEFINE_HALF_OP
#undef MLX_DEFINE_HALF_CMP
} // namespace mlx::core::cu

View File

@@ -0,0 +1,163 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/dtype_utils.cuh"
#include "mlx/backend/cuda/kernels/arange.cuh"
#include "mlx/backend/cuda/kernels/fp16_math.cuh"
#include "mlx/distributed/primitives.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cassert>
namespace mlx::core {
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_output_array(out);
encoder.launch_kernel([&, this](cudaStream_t stream) {
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
});
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(Abs)
NO_GPU(Add)
NO_GPU(AddMM)
NO_GPU(ArcCos)
NO_GPU(ArcCosh)
NO_GPU(ArcSin)
NO_GPU(ArcSinh)
NO_GPU(ArcTan)
NO_GPU(ArcTan2)
NO_GPU(ArcTanh)
NO_GPU(ArgPartition)
NO_GPU(ArgReduce)
NO_GPU(ArgSort)
NO_GPU(BitwiseBinary)
NO_GPU(BitwiseInvert)
NO_GPU(BlockMaskedMM)
NO_GPU(Ceil)
NO_GPU_MULTI(Compiled)
NO_GPU(Conjugate)
NO_GPU(Convolution)
NO_GPU(Cos)
NO_GPU(Cosh)
NO_GPU(Divide)
NO_GPU_MULTI(DivMod)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(Remainder)
NO_GPU(Equal)
NO_GPU(Erf)
NO_GPU(ErfInv)
NO_GPU(Exp)
NO_GPU(Expm1)
NO_GPU(FFT)
NO_GPU(Floor)
NO_GPU(Gather)
NO_GPU(GatherAxis)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Greater)
NO_GPU(GreaterEqual)
NO_GPU(Hadamard)
NO_GPU(Imag)
NO_GPU(Less)
NO_GPU(LessEqual)
NO_GPU(Load)
NO_GPU(Log)
NO_GPU(Log1p)
NO_GPU(LogicalNot)
NO_GPU(LogicalAnd)
NO_GPU(LogicalOr)
NO_GPU(LogAddExp)
NO_GPU(LogSumExp)
NO_GPU_MULTI(LUF)
NO_GPU(Matmul)
NO_GPU(Maximum)
NO_GPU(Minimum)
NO_GPU(Multiply)
NO_GPU(Negative)
NO_GPU(NotEqual)
NO_GPU(Partition)
NO_GPU(Power)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(RandomBits)
NO_GPU(Real)
NO_GPU(Reduce)
NO_GPU(Round)
NO_GPU(Scan)
NO_GPU(Scatter)
NO_GPU(ScatterAxis)
NO_GPU(Select)
NO_GPU(Sigmoid)
NO_GPU(Sign)
NO_GPU(Sin)
NO_GPU(Sinh)
NO_GPU(SliceUpdate)
NO_GPU(Softmax)
NO_GPU(Sort)
NO_GPU(Square)
NO_GPU(Sqrt)
NO_GPU(Subtract)
NO_GPU_MULTI(SVD)
NO_GPU(Tan)
NO_GPU(Tanh)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_MULTI(LayerNorm)
NO_GPU_MULTI(LayerNormVJP)
NO_GPU_MULTI(RMSNorm)
NO_GPU_MULTI(RMSNormVJP)
NO_GPU_MULTI(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void concatenate_gpu(
const std::vector<array>& inputs,
array& out,
int axis,
const Stream& s) {
throw std::runtime_error("concatenate_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/utils.h"
#include "mlx/backend/cuda/device.h"
#include <fmt/format.h>
namespace mlx::core {
CudaStream::CudaStream(cu::Device& device) {
device.make_current();
CHECK_CUDA_ERROR(cudaStreamCreateWithFlags(&stream_, cudaStreamNonBlocking));
}
CudaStream::~CudaStream() {
CHECK_CUDA_ERROR(cudaStreamDestroy(stream_));
}
void check_cuda_error(const char* name, cudaError_t err) {
if (err != cudaSuccess) {
throw std::runtime_error(
fmt::format("{} failed: {}", name, cudaGetErrorString(err)));
}
}
} // namespace mlx::core

36
mlx/backend/cuda/utils.h Normal file
View File

@@ -0,0 +1,36 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <cuda_runtime.h>
namespace mlx::core {
namespace cu {
class Device;
}
// Cuda stream managed with RAII.
class CudaStream {
public:
explicit CudaStream(cu::Device& device);
~CudaStream();
CudaStream(const CudaStream&) = delete;
CudaStream& operator=(const CudaStream&) = delete;
operator cudaStream_t() const {
return stream_;
}
private:
cudaStream_t stream_;
};
// Throw exception if the cuda API does not succeed.
void check_cuda_error(const char* name, cudaError_t err);
// The macro version that prints the command that failed.
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
} // namespace mlx::core

View File

@@ -0,0 +1,90 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/worker.h"
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
Worker::Worker()
: signal_stream_(device(mlx::core::Device::gpu)),
worker_(&Worker::thread_fn, this) {}
Worker::~Worker() {
{
std::lock_guard lock(worker_mutex_);
stop_ = true;
}
worker_event_.signal(batch_ + 1);
worker_.join();
}
void Worker::add_task(std::function<void()> task) {
pending_tasks_.push_back(std::move(task));
}
void Worker::consume_in_this_thread() {
for (auto& task : pending_tasks_) {
task();
}
pending_tasks_.clear();
}
void Worker::end_batch() {
batch_++;
{
std::lock_guard lock(worker_mutex_);
worker_tasks_[batch_] = std::move(pending_tasks_);
}
uncommited_batches_++;
}
void Worker::commit() {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
worker_event_.signal(batch_);
}
void Worker::commit(cudaStream_t stream) {
if (uncommited_batches_ == 0) {
return;
}
uncommited_batches_ = 0;
// Signal the |worker_event_| in |signal_stream_| after the kernels in
// |stream_| finish running.
signal_event_.record(stream);
signal_event_.wait(signal_stream_);
worker_event_.signal(signal_stream_, batch_);
}
void Worker::thread_fn() {
// The worker thread is safe to free buffers.
allocator().register_this_thread();
while (!stop_) {
uint64_t batch = worker_event_.value();
Tasks tasks;
{
std::lock_guard lock(worker_mutex_);
// Move tasks in signaled batches.
auto end = worker_tasks_.upper_bound(batch);
for (auto it = worker_tasks_.begin(); it != end; ++it) {
if (tasks.empty()) {
tasks = std::move(it->second);
} else {
std::move(
it->second.begin(), it->second.end(), std::back_inserter(tasks));
}
}
worker_tasks_.erase(worker_tasks_.begin(), end);
}
for (auto& task : tasks) {
task();
}
worker_event_.wait(batch + 1);
}
}
} // namespace mlx::core::cu

68
mlx/backend/cuda/worker.h Normal file
View File

@@ -0,0 +1,68 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/event.h"
#include "mlx/backend/cuda/utils.h"
#include <functional>
#include <map>
#include <mutex>
#include <thread>
namespace mlx::core::cu {
// Run tasks in worker thread, synchronized with cuda stream.
class Worker {
public:
Worker();
~Worker();
Worker(const Worker&) = delete;
Worker& operator=(const Worker&) = delete;
// Add a pending |task| that will run when consumed or commited.
void add_task(std::function<void()> task);
// Run pending tasks immediately in current thread.
void consume_in_this_thread();
// Put pending tasks in a batch.
void end_batch();
// Inform worker thread to run current batches now.
void commit();
// Inform worker thread to run current batches after kernels in |stream|
// finish running.
void commit(cudaStream_t stream);
// Return how many batches have been added but not committed yet.
size_t uncommited_batches() const {
return uncommited_batches_;
}
private:
void thread_fn();
uint64_t batch_{0};
size_t uncommited_batches_{0};
// Cuda stream and event for signaling kernel completion.
CudaStream signal_stream_;
CudaEvent signal_event_;
// Worker thread.
SharedEvent worker_event_;
std::thread worker_;
std::mutex worker_mutex_;
bool stop_{false};
// Tasks are put in |pending_tasks_| first, and then moved to
// |worker_tasks_| when end_batch() is called.
using Tasks = std::vector<std::function<void()>>;
Tasks pending_tasks_;
std::map<uint64_t, Tasks> worker_tasks_;
};
} // namespace mlx::core::cu

View File

@@ -0,0 +1,5 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp)

View File

@@ -0,0 +1,9 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::gpu {
bool is_available();
} // namespace mlx::core::gpu

49
mlx/backend/gpu/copy.cpp Normal file
View File

@@ -0,0 +1,49 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h"
#include <cassert>
namespace mlx::core {
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
bool donated = set_copy_output_data(in, out, ctype);
if (donated && in.dtype() == out.dtype()) {
// If the output has the same type as the input then there is nothing to
// copy, just use the buffer.
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_gpu_inplace(in, out, ctype, s);
}
void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
void copy_gpu_inplace(
const array& in,
array& out,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), in.strides(), out.strides(), 0, 0, ctype, s);
}
void copy_gpu_inplace(
const array& in,
array& out,
const Strides& i_strides,
int64_t i_offset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
return copy_gpu_inplace(
in, out, in.shape(), i_strides, out.strides(), i_offset, 0, ctype, s);
}
} // namespace mlx::core

View File

@@ -5,6 +5,8 @@
#include "mlx/backend/common/copy.h"
#include "mlx/stream.h"
#include <optional>
namespace mlx::core {
// Generic copy inplace

View File

@@ -8,14 +8,11 @@
#include "mlx/array.h"
#include "mlx/stream.h"
namespace mlx::core::metal {
namespace mlx::core::gpu {
void new_stream(Stream stream);
std::unique_ptr<void, std::function<void(void*)>> new_scoped_memory_pool();
void eval(array& arr);
void finalize(Stream s);
void synchronize(Stream s);
} // namespace mlx::core::metal
} // namespace mlx::core::gpu

View File

@@ -0,0 +1,217 @@
// Copyright © 2025 Apple Inc.
#include "mlx/primitives.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
#include <cassert>
#define MLX_PROFILER_RANGE(message)
namespace mlx::core {
namespace {
void reshape(const array& in, array& out, Stream s) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_gpu_inplace(
in,
out,
in.shape(),
in.strides(),
make_contiguous_strides(in.shape()),
0,
0,
CopyType::General,
s);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
} // namespace
void AsStrided::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsStrided::eval_gpu");
eval(inputs, out);
}
void AsType::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("AsType::eval_gpu");
CopyType ctype =
inputs[0].flags().contiguous ? CopyType::Vector : CopyType::General;
copy_gpu(inputs[0], out, ctype);
}
void Broadcast::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Broadcast::eval_gpu");
eval(inputs, out);
}
void BroadcastAxes::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("BroadcastAxes::eval_gpu");
eval(inputs, out);
}
void Concatenate::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Concatenate::eval_gpu");
concatenate_gpu(inputs, out, axis_, stream());
}
void Contiguous::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Contiguous::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
constexpr size_t extra_bytes = 16384;
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
(in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy_gpu(in, out, CopyType::General);
}
}
void Copy::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Copy::eval_gpu");
eval(inputs, out);
}
void CustomTransforms::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("CustomTransforms::eval_gpu");
eval(inputs, outputs);
}
void Depends::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Depends::eval_gpu");
eval(inputs, outputs);
}
void ExpandDims::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("ExpandDims::eval_gpu");
eval(inputs, out);
}
void Full::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Full::eval_gpu");
auto in = inputs[0];
CopyType ctype;
if (in.data_size() == 1) {
ctype = CopyType::Scalar;
} else if (in.flags().contiguous) {
ctype = CopyType::Vector;
} else {
ctype = CopyType::General;
}
copy_gpu(in, out, ctype);
}
void Flatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Flatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void NumberOfElements::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("NumberOfElements::eval_gpu");
eval(inputs, out);
}
void Pad::eval_gpu(const std::vector<array>& inputs, array& out) {
// Inputs must be base input array and scalar val array
assert(inputs.size() == 2);
auto& in = inputs[0];
auto& val = inputs[1];
// Padding value must be a scalar
assert(val.size() == 1);
// Padding value, input and output must be of the same type
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
pad_gpu(in, val, out, axes_, low_pad_size_, stream());
}
void Reshape::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Reshape::eval_gpu");
reshape(inputs[0], out, stream());
}
void Split::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
MLX_PROFILER_RANGE("Split::eval_gpu");
eval(inputs, outputs);
}
void Slice::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Slice::eval_gpu");
assert(inputs.size() == 1);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
slice_gpu(in, out, start_indices_, strides_, stream());
}
void Squeeze::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Squeeze::eval_gpu");
eval(inputs, out);
}
void StopGradient::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("StopGradient::eval_gpu");
eval(inputs, out);
}
void Transpose::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Transpose::eval_gpu");
eval(inputs, out);
}
void Unflatten::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("Unflatten::eval_gpu");
reshape(inputs[0], out, stream());
}
void View::eval_gpu(const std::vector<array>& inputs, array& out) {
MLX_PROFILER_RANGE("View::eval_gpu");
auto& in = inputs[0];
auto ibytes = size_of(in.dtype());
auto obytes = size_of(out.dtype());
// Conditions for buffer copying (disjunction):
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
} else {
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc(tmp.nbytes()));
copy_gpu_inplace(in, tmp, CopyType::General, stream());
auto flags = out.flags();
flags.contiguous = true;
flags.row_contiguous = true;
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
out.copy_shared_buffer(tmp, out.strides(), flags, out.size());
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,44 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/gpu/slicing.h"
namespace mlx::core {
void slice_gpu(
const array& in,
array& out,
const Shape& start_indices,
const Shape& strides,
const Stream& s) {
slice(in, out, start_indices, strides);
}
void pad_gpu(
const array& in,
const array& val,
array& out,
const std::vector<int>& axes,
const Shape& low_pad_size,
const Stream& s) {
// Fill output with val
fill_gpu(val, out, s);
// Find offset for start of input values
size_t data_offset = 0;
for (int i = 0; i < axes.size(); i++) {
auto ax = axes[i] < 0 ? out.ndim() + axes[i] : axes[i];
data_offset += out.strides()[ax] * low_pad_size[i];
}
// Extract slice from output where input will be pasted
array out_slice(in.shape(), out.dtype(), nullptr, {});
out_slice.copy_shared_buffer(
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_gpu_inplace(in, out_slice, CopyType::GeneralGeneral, s);
}
} // namespace mlx::core

View File

@@ -47,6 +47,7 @@ if(MLX_METAL_JIT)
make_jit_source(binary)
make_jit_source(binary_two)
make_jit_source(fft kernels/fft/radix.h kernels/fft/readwrite.h)
make_jit_source(logsumexp)
make_jit_source(ternary)
make_jit_source(softmax)
make_jit_source(scan)
@@ -60,6 +61,7 @@ if(MLX_METAL_JIT)
kernels/steel/gemm/transforms.h)
make_jit_source(steel/gemm/kernels/steel_gemm_fused)
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
make_jit_source(steel/gemm/kernels/steel_gemm_gather)
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
make_jit_source(
steel/conv/conv
@@ -91,10 +93,12 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp

View File

@@ -1,8 +1,8 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/resident.h"
#include "mlx/memory.h"
#include <mach/vm_page_size.h>
#include <unistd.h>
@@ -20,6 +20,9 @@ Allocator& allocator() {
}
void* Buffer::raw_ptr() {
if (!ptr_) {
return nullptr;
}
return static_cast<MTL::Buffer*>(ptr_)->contents();
}
@@ -29,8 +32,11 @@ namespace metal {
namespace {
BufferCache::BufferCache(MTL::Device* device)
: device_(device), head_(nullptr), tail_(nullptr), pool_size_(0) {}
BufferCache::BufferCache(ResidencySet& residency_set)
: head_(nullptr),
tail_(nullptr),
pool_size_(0),
residency_set_(residency_set) {}
BufferCache::~BufferCache() {
auto pool = metal::new_scoped_memory_pool();
@@ -41,6 +47,9 @@ int BufferCache::clear() {
int n_release = 0;
for (auto& [size, holder] : buffer_pool_) {
if (holder->buf) {
if (!holder->buf->heap()) {
residency_set_.erase(holder->buf);
}
holder->buf->release();
n_release++;
}
@@ -98,6 +107,9 @@ int BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
if (tail_->buf) {
total_bytes_freed += tail_->buf->length();
if (!tail_->buf->heap()) {
residency_set_.erase(tail_->buf);
}
tail_->buf->release();
tail_->buf = nullptr;
n_release++;
@@ -152,7 +164,7 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
residency_set_(device_),
buffer_cache_(device_) {
buffer_cache_(residency_set_) {
auto pool = metal::new_scoped_memory_pool();
auto memsize = std::get<size_t>(device_info().at("memory_size"));
auto max_rec_size =
@@ -189,16 +201,19 @@ size_t MetalAllocator::set_cache_limit(size_t limit) {
return limit;
};
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
size_t MetalAllocator::set_memory_limit(size_t limit) {
std::unique_lock lk(mutex_);
std::swap(limit, block_limit_);
relaxed_ = relaxed;
gc_limit_ = std::min(
block_limit_,
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()));
return limit;
};
size_t MetalAllocator::get_memory_limit() {
return block_limit_;
}
size_t MetalAllocator::set_wired_limit(size_t limit) {
std::unique_lock lk(mutex_);
std::swap(limit, wired_limit_);
@@ -206,7 +221,7 @@ size_t MetalAllocator::set_wired_limit(size_t limit) {
return limit;
};
Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
Buffer MetalAllocator::malloc(size_t size) {
// Metal doesn't like empty buffers
if (size == 0) {
return Buffer{nullptr};
@@ -233,11 +248,6 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
if (!buf) {
size_t mem_required = get_active_memory() + get_cache_memory() + size;
// If there is too much memory pressure, fail (likely causes a wait).
if (!(allow_swap && relaxed_) && mem_required >= block_limit_) {
return Buffer{nullptr};
}
auto pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure or are over the maximum cache size,
@@ -261,9 +271,13 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
if (!buf) {
buf = device_->newBuffer(size, resource_options);
}
if (!buf) {
return Buffer{nullptr};
}
lk.lock();
if (buf) {
num_resources_++;
num_resources_++;
if (!buf->heap()) {
residency_set_.insert(buf);
}
}
@@ -277,10 +291,6 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
get_cache_memory() - max_pool_size_);
}
if (!buf->heap()) {
residency_set_.insert(buf);
}
return Buffer{static_cast<void*>(buf)};
}
@@ -296,14 +306,14 @@ void MetalAllocator::free(Buffer buffer) {
return;
}
std::unique_lock lk(mutex_);
if (!buf->heap()) {
residency_set_.erase(buf);
}
active_memory_ -= buf->length();
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
num_resources_--;
if (!buf->heap()) {
residency_set_.erase(buf);
}
lk.unlock();
auto pool = metal::new_scoped_memory_pool();
buf->release();
@@ -322,37 +332,40 @@ MetalAllocator& allocator() {
return *allocator_;
}
} // namespace metal
size_t set_cache_limit(size_t limit) {
return allocator().set_cache_limit(limit);
return metal::allocator().set_cache_limit(limit);
}
size_t set_memory_limit(size_t limit, bool relaxed /* = true */) {
return allocator().set_memory_limit(limit, relaxed);
size_t set_memory_limit(size_t limit) {
return metal::allocator().set_memory_limit(limit);
}
size_t get_memory_limit() {
return metal::allocator().get_memory_limit();
}
size_t set_wired_limit(size_t limit) {
if (limit >
std::get<size_t>(device_info().at("max_recommended_working_set_size"))) {
if (limit > std::get<size_t>(metal::device_info().at(
"max_recommended_working_set_size"))) {
throw std::invalid_argument(
"[metal::set_wired_limit] Setting a wired limit larger than "
"the maximum working set size is not allowed.");
}
return allocator().set_wired_limit(limit);
return metal::allocator().set_wired_limit(limit);
}
size_t get_active_memory() {
return allocator().get_active_memory();
return metal::allocator().get_active_memory();
}
size_t get_peak_memory() {
return allocator().get_peak_memory();
return metal::allocator().get_peak_memory();
}
void reset_peak_memory() {
allocator().reset_peak_memory();
metal::allocator().reset_peak_memory();
}
size_t get_cache_memory() {
return allocator().get_cache_memory();
return metal::allocator().get_cache_memory();
}
void clear_cache() {
return allocator().clear_cache();
return metal::allocator().clear_cache();
}
} // namespace metal
} // namespace mlx::core

Some files were not shown because too many files have changed in this diff Show More