mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
153 Commits
jagrit06/c
...
sign-warns
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
24828b1b2f | ||
|
|
9f649b5658 | ||
|
|
18aa921388 | ||
|
|
8d13a0bc6b | ||
|
|
ac75c87fd7 | ||
|
|
7107802e09 | ||
|
|
c5913131cf | ||
|
|
19ab7911f6 | ||
|
|
4a1b1796b7 | ||
|
|
b48d298205 | ||
|
|
8277e71ea9 | ||
|
|
b0d985416a | ||
|
|
8d10f3ec75 | ||
|
|
6343622c67 | ||
|
|
979abf462b | ||
|
|
981d2fdaf0 | ||
|
|
5a306d3495 | ||
|
|
5baa361779 | ||
|
|
1bac0db7e3 | ||
|
|
a1212b4e44 | ||
|
|
45a8b226af | ||
|
|
76ef1e98f3 | ||
|
|
63d91557e0 | ||
|
|
310e501e6a | ||
|
|
cacc3ab7fd | ||
|
|
53525cba23 | ||
|
|
3d67b717a0 | ||
|
|
953b2f5be2 | ||
|
|
26f7155537 | ||
|
|
66fcb9fe94 | ||
|
|
d1e06117e8 | ||
|
|
539d8322d1 | ||
|
|
c4767d110f | ||
|
|
895217f25b | ||
|
|
0cfeeb60ca | ||
|
|
8f8af61a37 | ||
|
|
233384161e | ||
|
|
5bcf3a6794 | ||
|
|
7707196297 | ||
|
|
7e3471c987 | ||
|
|
9f0ba3ddf1 | ||
|
|
4bce5f9b2d | ||
|
|
e9eab527eb | ||
|
|
36ca62dba8 | ||
|
|
9cbb1b0148 | ||
|
|
9bfc476d72 | ||
|
|
25e2356316 | ||
|
|
226a1d24e0 | ||
|
|
630350ad3e | ||
|
|
380aeb58ae | ||
|
|
f37389d100 | ||
|
|
e89e8b4272 | ||
|
|
85a8824a8c | ||
|
|
f5d4397e5c | ||
|
|
343e33b6d5 | ||
|
|
0073096dd1 | ||
|
|
e3d004fed9 | ||
|
|
a393435d28 | ||
|
|
a7a94b29d7 | ||
|
|
22a5da76c8 | ||
|
|
287c63a093 | ||
|
|
1c9ae1eaa1 | ||
|
|
c2c3e0b0a2 | ||
|
|
b0cc71ae71 | ||
|
|
e88f2d4a8e | ||
|
|
9cee557423 | ||
|
|
bbf1423953 | ||
|
|
eb24267b56 | ||
|
|
dc371ae7a5 | ||
|
|
e76a8dd5c5 | ||
|
|
b466dea982 | ||
|
|
7a6adda1e6 | ||
|
|
1a9f820af6 | ||
|
|
d4f4ff3c5e | ||
|
|
7c7e48dbd1 | ||
|
|
fbbf3b9b3e | ||
|
|
bf01ad9367 | ||
|
|
ae438d05fa | ||
|
|
711a645807 | ||
|
|
aa9d44b3d4 | ||
|
|
ec2ab42888 | ||
|
|
787c0d90cd | ||
|
|
e8b604a6a3 | ||
|
|
50cc09887f | ||
|
|
3f730e77aa | ||
|
|
caecbe876a | ||
|
|
8afb6d62f2 | ||
|
|
6ccfa603cd | ||
|
|
36cad99a11 | ||
|
|
ee18e1cbf0 | ||
|
|
af120c2bc0 | ||
|
|
6a3acf2301 | ||
|
|
d6977f2a57 | ||
|
|
db5443e831 | ||
|
|
52b8384d10 | ||
|
|
44cc5da4bc | ||
|
|
dde3682b69 | ||
|
|
17310d91a6 | ||
|
|
b194d65a6a | ||
|
|
a44b27f5f8 | ||
|
|
e5a33f2223 | ||
|
|
c1e3340b23 | ||
|
|
8f163a367d | ||
|
|
89a3df9014 | ||
|
|
c5d2937aa5 | ||
|
|
b61a65e313 | ||
|
|
04cbb4191c | ||
|
|
c5460762e7 | ||
|
|
8ce49cd39e | ||
|
|
9c68b50853 | ||
|
|
111f1e71af | ||
|
|
827003d568 | ||
|
|
d363a76aa4 | ||
|
|
70560b6bd5 | ||
|
|
7ef8a6f2d5 | ||
|
|
31c6f6e33f | ||
|
|
584d48458e | ||
|
|
5cf984ca87 | ||
|
|
a9bac3d9e5 | ||
|
|
5458d43247 | ||
|
|
a4dba65220 | ||
|
|
3dcb286baf | ||
|
|
4822c3dbe9 | ||
|
|
2ca75bb529 | ||
|
|
db14e29a0b | ||
|
|
d2f540f4e0 | ||
|
|
333ffea273 | ||
|
|
f55b6f1f2f | ||
|
|
30561229c7 | ||
|
|
068a4612e9 | ||
|
|
5722c147de | ||
|
|
f6819a1f26 | ||
|
|
f93f87c802 | ||
|
|
9392fc3f88 | ||
|
|
e843c4d8d5 | ||
|
|
0c5fc63a36 | ||
|
|
e397177f6e | ||
|
|
f4c8888cbe | ||
|
|
25c1e03205 | ||
|
|
512281781c | ||
|
|
ac85ddfdb7 | ||
|
|
65d0d40232 | ||
|
|
cea9369610 | ||
|
|
e7c6e1db82 | ||
|
|
c5fcd5b61b | ||
|
|
1df9887998 | ||
|
|
73f22d6226 | ||
|
|
c422050ca7 | ||
|
|
1ba18ff7d9 | ||
|
|
37b440faa8 | ||
|
|
888b13ed63 | ||
|
|
4abb218d21 | ||
|
|
6441c21a94 |
@@ -18,16 +18,17 @@ jobs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "16.2.0"
|
||||
resource_class: m2pro.medium
|
||||
xcode: "26.0.0"
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
brew install python@3.9
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
brew install python@3.10
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
python3.10 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
@@ -89,7 +90,8 @@ jobs:
|
||||
command: |
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
uv pip install -e ".[dev]" -v
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
@@ -118,7 +120,7 @@ jobs:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
macosx_deployment_target:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -126,18 +128,19 @@ jobs:
|
||||
xcode: << parameters.xcode_version >>
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv --python 3.9
|
||||
uv venv --python 3.10
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
@@ -196,7 +199,7 @@ jobs:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e .
|
||||
uv pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
@@ -222,15 +225,20 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libnccl2 libnccl-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Set CCache size
|
||||
command: ccache --max-size 1G
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -238,12 +246,23 @@ jobs:
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=`which nvcc` \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j `nproc`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
@@ -254,10 +273,10 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -266,7 +285,7 @@ jobs:
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
steps:
|
||||
@@ -274,11 +293,15 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
mkdir -p ~/miniconda3
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
source ~/miniconda3/bin/activate
|
||||
conda init --all
|
||||
conda create -n env python=<< parameters.python_version >> -y
|
||||
conda activate env
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
@@ -288,29 +311,29 @@ jobs:
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
||||
- when:
|
||||
@@ -319,7 +342,7 @@ jobs:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
@@ -328,7 +351,7 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -364,7 +387,7 @@ jobs:
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
@@ -392,7 +415,7 @@ jobs:
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
resource_class: xlarge
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
@@ -439,7 +462,7 @@ workflows:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
@@ -461,71 +484,10 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
@@ -541,7 +503,7 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
@@ -567,7 +529,7 @@ workflows:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
@@ -584,59 +546,13 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
@@ -648,75 +564,14 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
|
||||
@@ -19,12 +19,17 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Organizations
|
||||
|
||||
MLX has received contributions from the following companies:
|
||||
- NVIDIA Corporation & Affiliates
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
MLX leverages several third-party software, listed here together with
|
||||
|
||||
@@ -20,12 +20,17 @@ project(
|
||||
LANGUAGES C CXX
|
||||
VERSION ${MLX_PROJECT_VERSION})
|
||||
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang")
|
||||
add_compile_options(-Wall -Wextra)
|
||||
endif()
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# ----------------------------- Configuration -----------------------------
|
||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||
@@ -87,22 +92,21 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
if(MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
if(METAL_LIB)
|
||||
message(STATUS "Metal found ${METAL_LIB}")
|
||||
else()
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
||||
endif()
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
@@ -111,7 +115,8 @@ elseif(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
@@ -140,6 +145,12 @@ elseif(MLX_BUILD_METAL)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
||||
# building on old distributions they need to be explicitly listed.
|
||||
target_link_libraries(mlx PRIVATE dl pthread)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
if(MSVC)
|
||||
# GGUF does not build with MSVC.
|
||||
@@ -167,7 +178,7 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
message(STATUS "Accelerate not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
|
||||
38
README.md
38
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
|
||||
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
|
||||
[**Examples**](#examples)
|
||||
[**Examples**](#examples)
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
|
||||
MLX is designed by machine learning researchers for machine learning
|
||||
researchers. The framework is intended to be user-friendly, but still efficient
|
||||
to train and deploy models. The design of the framework itself is also
|
||||
conceptually simple. We intend to make it easy for researchers to extend and
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
|
||||
The design of MLX is inspired by frameworks like
|
||||
[NumPy](https://numpy.org/doc/stable/index.html),
|
||||
@@ -91,7 +91,7 @@ Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
||||
MLX useful in your research and wish to cite it, please use the following
|
||||
BibTex entry:
|
||||
|
||||
```
|
||||
```text
|
||||
@software{mlx2023,
|
||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||
|
||||
@@ -142,9 +142,7 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||
|
||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||
np.float32
|
||||
)
|
||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
@@ -163,7 +161,7 @@ def get_gflop_count(B, M, N, K):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
dtypes = ("float32", "float16")
|
||||
dtypes = ("float32", "float16", "complex64")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
@@ -187,7 +185,7 @@ if __name__ == "__main__":
|
||||
diff = gflops_mx / gflops_pt - 1.0
|
||||
|
||||
print(
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
||||
)
|
||||
if gflops_pt >= 2.0 * gflops_mx:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
||||
@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
|
||||
|
||||
for transpose in (False, True):
|
||||
for dtype in ("float32", "float16"):
|
||||
for dtype in ("float32", "float16", "complex64"):
|
||||
fig, axs = plt.subplots(
|
||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||
)
|
||||
@@ -215,7 +215,7 @@ for transpose in (False, True):
|
||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||
fig.savefig(
|
||||
os.path.join(
|
||||
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
||||
)
|
||||
)
|
||||
plt.close(fig)
|
||||
|
||||
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
||||
@@ -127,7 +127,8 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source
|
||||
source=source,
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
|
||||
def exp_elementwise(a: mx.array):
|
||||
@@ -138,7 +139,6 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
threadgroup=(256, 1, 1),
|
||||
output_shapes=[a.shape],
|
||||
output_dtypes=[a.dtype],
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
return outputs[0]
|
||||
|
||||
|
||||
@@ -70,6 +70,7 @@ are the CPU and GPU.
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/cuda
|
||||
python/memory_management
|
||||
python/nn
|
||||
python/optimizers
|
||||
|
||||
@@ -16,7 +16,7 @@ silicon computer is
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
- Using a native Python >= 3.10
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
@@ -39,7 +39,7 @@ requirements:
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
@@ -55,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
Troubleshooting
|
||||
@@ -271,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
|
||||
9
docs/src/python/cuda.rst
Normal file
9
docs/src/python/cuda.rst
Normal file
@@ -0,0 +1,9 @@
|
||||
CUDA
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.cuda
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
@@ -13,3 +13,4 @@ Fast
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
metal_kernel
|
||||
cuda_kernel
|
||||
|
||||
@@ -27,6 +27,7 @@ simple functions.
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu2
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
|
||||
@@ -50,6 +50,7 @@ Layers
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU2
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
|
||||
@@ -112,6 +112,7 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
median
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
|
||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
timeit(gelu, x)
|
||||
timeit(mx.compile(gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
@@ -225,7 +225,7 @@ In some cases returning updated state can be pretty inconvenient. Hence,
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z), state
|
||||
return mx.exp(z)
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
|
||||
@@ -184,7 +184,7 @@ almost identical to the example above:
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = mlx.nn.average_gradients(grads) # <---- This line was added
|
||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
|
||||
@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
out, = imported_abs(mx.array([-1.0]))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
@@ -107,8 +107,20 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
|
||||
@@ -14,14 +14,17 @@ void array_basics() {
|
||||
// Get the value out of it:
|
||||
auto s = x.item<float>();
|
||||
assert(s == 1.0);
|
||||
(void)s;
|
||||
|
||||
// Scalars have a size of 1:
|
||||
size_t size = x.size();
|
||||
int64_t size = x.size();
|
||||
assert(size == 1);
|
||||
(void)size;
|
||||
|
||||
// Scalars have 0 dimensions:
|
||||
int ndim = x.ndim();
|
||||
assert(ndim == 0);
|
||||
(void)ndim;
|
||||
|
||||
// The shape should be an empty vector:
|
||||
auto shape = x.shape();
|
||||
@@ -30,6 +33,7 @@ void array_basics() {
|
||||
// The datatype should be float32:
|
||||
auto dtype = x.dtype();
|
||||
assert(dtype == mx::float32);
|
||||
(void)dtype;
|
||||
|
||||
// Specify the dtype when constructing the array:
|
||||
x = mx::array(1, mx::int32);
|
||||
|
||||
@@ -44,11 +44,11 @@ std::vector<array> array::make_arrays(
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
std::vector<array> outputs;
|
||||
for (size_t i = 0; i < shapes.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(shapes); ++i) {
|
||||
outputs.emplace_back(std::move(shapes[i]), dtypes[i], primitive, inputs);
|
||||
}
|
||||
// For each node in |outputs|, its siblings are the other nodes.
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(outputs); ++i) {
|
||||
auto siblings = outputs;
|
||||
siblings.erase(siblings.begin() + i);
|
||||
outputs[i].set_siblings(std::move(siblings), i);
|
||||
@@ -145,8 +145,9 @@ void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
array_desc_->data_size = size();
|
||||
array_desc_->flags.contiguous = true;
|
||||
array_desc_->flags.row_contiguous = true;
|
||||
auto max_dim = std::max_element(shape().begin(), shape().end());
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == *max_dim;
|
||||
auto max_dim =
|
||||
static_cast<int64_t>(*std::max_element(shape().begin(), shape().end()));
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == max_dim;
|
||||
}
|
||||
|
||||
void array::set_data(
|
||||
@@ -192,7 +193,7 @@ array::~array() {
|
||||
}
|
||||
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
if (auto n = std::ssize(siblings()); n > 0) {
|
||||
bool do_detach = true;
|
||||
// If all siblings have siblings.size() references except
|
||||
// the one we are currently destroying (which has siblings.size() + 1)
|
||||
@@ -241,8 +242,8 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
status(Status::unscheduled),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
@@ -274,7 +275,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
ad.inputs.clear();
|
||||
for (auto& [_, a] : input_map) {
|
||||
bool is_deletable =
|
||||
(a.array_desc_.use_count() <= a.siblings().size() + 1);
|
||||
(a.array_desc_.use_count() <= std::ssize(a.siblings()) + 1);
|
||||
// An array with siblings is deletable only if all of its siblings
|
||||
// are deletable
|
||||
for (auto& s : a.siblings()) {
|
||||
@@ -283,7 +284,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
}
|
||||
int is_input = (input_map.find(s.id()) != input_map.end());
|
||||
is_deletable &=
|
||||
s.array_desc_.use_count() <= a.siblings().size() + is_input;
|
||||
s.array_desc_.use_count() <= std::ssize(a.siblings()) + is_input;
|
||||
}
|
||||
if (is_deletable) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
|
||||
14
mlx/array.h
14
mlx/array.h
@@ -81,22 +81,22 @@ class array {
|
||||
}
|
||||
|
||||
/** The size of the array's datatype in bytes. */
|
||||
size_t itemsize() const {
|
||||
int itemsize() const {
|
||||
return size_of(dtype());
|
||||
}
|
||||
|
||||
/** The number of elements in the array. */
|
||||
size_t size() const {
|
||||
int64_t size() const {
|
||||
return array_desc_->size;
|
||||
}
|
||||
|
||||
/** The number of bytes in the array. */
|
||||
size_t nbytes() const {
|
||||
int64_t nbytes() const {
|
||||
return size() * itemsize();
|
||||
}
|
||||
|
||||
/** The number of dimensions of the array. */
|
||||
size_t ndim() const {
|
||||
int ndim() const {
|
||||
return array_desc_->shape.size();
|
||||
}
|
||||
|
||||
@@ -329,7 +329,7 @@ class array {
|
||||
* corresponding to ``arr[-1, -1, ...]``) then ``data_size = last - first``.
|
||||
* Note, ``data_size`` is in units of ``item_size`` (not bytes).
|
||||
**/
|
||||
size_t data_size() const {
|
||||
int64_t data_size() const {
|
||||
return array_desc_->data_size;
|
||||
}
|
||||
|
||||
@@ -340,7 +340,7 @@ class array {
|
||||
return array_desc_->data->buffer;
|
||||
}
|
||||
|
||||
size_t buffer_size() const {
|
||||
int64_t buffer_size() const {
|
||||
return allocator::allocator().size(buffer());
|
||||
}
|
||||
|
||||
@@ -530,7 +530,7 @@ array::array(
|
||||
Shape shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
if (std::ssize(data) != size()) {
|
||||
throw std::invalid_argument(
|
||||
"Data size and provided shape mismatch in array construction.");
|
||||
}
|
||||
|
||||
@@ -21,8 +21,8 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Compute the flags given the shape and strides
|
||||
bool row_contiguous = true, col_contiguous = true;
|
||||
size_t r = 1, c = 1;
|
||||
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
|
||||
int64_t r = 1, c = 1;
|
||||
for (int i = std::ssize(strides_) - 1, j = 0; i >= 0; i--, j++) {
|
||||
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
|
||||
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
|
||||
r *= shape_[i];
|
||||
@@ -60,7 +60,8 @@ void CustomTransforms::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
for (int i = 0, j = std::ssize(inputs) - std::ssize(outputs);
|
||||
i < std::ssize(outputs);
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
@@ -70,7 +71,7 @@ void Depends::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(outputs); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
@@ -206,11 +207,11 @@ void Split::eval(
|
||||
|
||||
auto compute_new_flags = [](const auto& shape,
|
||||
const auto& strides,
|
||||
size_t in_data_size,
|
||||
int64_t in_data_size,
|
||||
auto flags) {
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
int64_t data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
@@ -240,7 +241,7 @@ void Split::eval(
|
||||
|
||||
std::vector<int> indices(1, 0);
|
||||
indices.insert(indices.end(), indices_.begin(), indices_.end());
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(indices); i++) {
|
||||
size_t offset = indices[i] * in.strides()[axis_];
|
||||
auto [new_flags, data_size] = compute_new_flags(
|
||||
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
|
||||
@@ -254,7 +255,7 @@ void Squeeze::eval(const std::vector<array>& inputs, array& out) {
|
||||
const auto& in = inputs[0];
|
||||
Strides strides;
|
||||
for (int i = 0, j = 0; i < in.ndim(); ++i) {
|
||||
if (j < axes_.size() && i == axes_[j]) {
|
||||
if (j < std::ssize(axes_) && i == axes_[j]) {
|
||||
j++;
|
||||
} else {
|
||||
strides.push_back(in.strides(i));
|
||||
@@ -272,7 +273,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
Strides out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
for (int ax = 0; ax < std::ssize(axes_); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
}
|
||||
|
||||
|
||||
@@ -120,7 +120,7 @@ void compiled_allocate_outputs(
|
||||
Strides strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Correct size
|
||||
@@ -138,7 +138,7 @@ void compiled_allocate_outputs(
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
@@ -147,7 +147,7 @@ void compiled_allocate_outputs(
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
@@ -162,7 +162,7 @@ void compiled_allocate_outputs(
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
outputs[o].set_data(allocator::malloc(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
@@ -193,7 +193,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
size_t j = 0;
|
||||
int j = 0;
|
||||
for (; j < shape.size() - x.ndim(); ++j) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -201,7 +201,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
|
||||
for (int i = 0; i < x.ndim(); ++i, ++j) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -224,13 +224,13 @@ bool compiled_use_large_index(
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
int64_t max_size = 0;
|
||||
for (const auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
int64_t max_size = 0;
|
||||
for (const auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Load::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Load::eval_cpu(const std::vector<array>& /* inputs */, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto read_task = [out_ptr = out.data<char>(),
|
||||
size = out.size(),
|
||||
|
||||
@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
|
||||
@@ -28,7 +28,7 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
if (x.size() == x.data_size() && std::ssize(axes) == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
return ContiguousAllReduce;
|
||||
}
|
||||
@@ -38,7 +38,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// Merge consecutive axes
|
||||
Shape shape = {x.shape(axes[0])};
|
||||
Strides strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
for (int i = 1; i < std::ssize(axes); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
|
||||
@@ -24,8 +24,8 @@ std::tuple<int64_t, Strides> prepare_slice(
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const Strides& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
int64_t data_offset,
|
||||
int64_t data_size,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [no_bsx_size, is_row_contiguous, is_col_contiguous] =
|
||||
@@ -61,7 +61,7 @@ void slice(
|
||||
if (data_end < 0) {
|
||||
data_end += in.data_size();
|
||||
}
|
||||
size_t data_size = (data_end - data_offset);
|
||||
int64_t data_size = (data_end - data_offset);
|
||||
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
|
||||
}
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@ namespace mlx::core {
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
VectorVectorVector,
|
||||
VectorVectorScalar,
|
||||
VectorScalarVector,
|
||||
General,
|
||||
};
|
||||
|
||||
@@ -25,6 +27,14 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
||||
c.flags().col_contiguous)) {
|
||||
topt = TernaryOpType::VectorVectorVector;
|
||||
} else if (
|
||||
b.data_size() == 1 && a.flags().row_contiguous &&
|
||||
c.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorScalarVector;
|
||||
} else if (
|
||||
c.data_size() == 1 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorVectorScalar;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
@@ -59,6 +69,8 @@ inline void set_ternary_op_output_data(
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case TernaryOpType::VectorVectorScalar:
|
||||
case TernaryOpType::VectorScalarVector:
|
||||
case TernaryOpType::General:
|
||||
// Try to donate an input which is row_contiguous
|
||||
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
||||
|
||||
@@ -28,7 +28,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
if (shape[0] != 1) {
|
||||
to_collapse.push_back(0);
|
||||
}
|
||||
size_t size = shape[0];
|
||||
int64_t size = shape[0];
|
||||
for (int i = 1; i < shape.size(); i++) {
|
||||
bool contiguous = true;
|
||||
size *= shape[i];
|
||||
@@ -64,7 +64,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
current_shape *= shape[to_collapse[k]];
|
||||
}
|
||||
out_shape.push_back(current_shape);
|
||||
for (int j = 0; j < strides.size(); j++) {
|
||||
for (int j = 0; j < std::ssize(strides); j++) {
|
||||
const auto& st = strides[j];
|
||||
out_strides[j].push_back(st[to_collapse[k - 1]]);
|
||||
}
|
||||
@@ -228,31 +228,4 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
||||
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -162,7 +162,7 @@ struct ContiguousIterator {
|
||||
};
|
||||
|
||||
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
size_t no_broadcast_data_size = 1;
|
||||
int64_t no_broadcast_data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
bool is_row_contiguous = true;
|
||||
@@ -183,7 +183,7 @@ inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
}
|
||||
|
||||
inline bool is_donatable(const array& in, const array& out) {
|
||||
constexpr size_t donation_extra = 16384;
|
||||
constexpr int64_t donation_extra = 16384;
|
||||
|
||||
return in.is_donatable() && in.itemsize() == out.itemsize() &&
|
||||
in.buffer_size() <= out.nbytes() + donation_extra;
|
||||
@@ -196,9 +196,6 @@ void shared_buffer_reshape(
|
||||
const Strides& out_strides,
|
||||
array& out);
|
||||
|
||||
// Like the swapaxes op but safe to call in eval_gpu.
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
template <typename T>
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
|
||||
@@ -10,7 +10,7 @@ namespace mlx::core {
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
void arange(T start, T next, array& out, size_t size, Stream stream) {
|
||||
void arange(T start, T next, array& out, int64_t size, Stream stream) {
|
||||
auto ptr = out.data<T>();
|
||||
auto step_size = next - start;
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
@@ -19,12 +19,12 @@ void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||
auto in_ptr = in.data<InT>();
|
||||
auto out_ptr = out.data<uint32_t>();
|
||||
|
||||
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
auto loc = elem_to_loc(i, shape, strides);
|
||||
auto local_in_ptr = in_ptr + loc;
|
||||
uint32_t ind_v = 0;
|
||||
InT v = (*local_in_ptr);
|
||||
for (uint32_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
for (int64_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
op(j, (*local_in_ptr), &ind_v, &v);
|
||||
}
|
||||
out_ptr[i] = ind_v;
|
||||
|
||||
@@ -17,7 +17,12 @@ namespace mlx::core {
|
||||
namespace {
|
||||
|
||||
template <typename Op>
|
||||
void binary(const array& a, const array& b, array& out, Op op, Stream stream) {
|
||||
void binary(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
@@ -81,7 +86,7 @@ void comparison_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
@@ -146,7 +151,7 @@ void binary_float(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
@@ -187,7 +192,7 @@ void binary_int(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
@@ -99,7 +99,7 @@ void binary_op_dispatch_dims(
|
||||
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
||||
auto stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
for (int64_t elem = 0; elem < std::ssize(a); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
@@ -137,21 +137,21 @@ void binary_op(
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
} else if (bopt == BinaryOpType::ScalarVector) {
|
||||
for (size_t i = 0; i < b.data_size(); ++i) {
|
||||
for (int64_t i = 0; i < b.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
for (size_t i = 0; i < a.data_size(); ++i) {
|
||||
for (int64_t i = 0; i < a.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
a_ptr++;
|
||||
}
|
||||
} else { // VectorVector
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
for (int64_t i = 0; i < a.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
|
||||
@@ -33,8 +33,8 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
||||
N = a.shape(-1),
|
||||
size = a.size()]() mutable {
|
||||
char uplo = (upper) ? 'L' : 'U';
|
||||
size_t num_matrices = size / (N * N);
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
int64_t num_matrices = size / (N * N);
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info;
|
||||
potrf<T>(
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/version.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -48,7 +49,7 @@ static CompilerCache& cache() {
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
bool compile_available_for_device(const Device& /* device */) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -94,7 +95,11 @@ void* compile(
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
auto output_dir = std::filesystem::temp_directory_path();
|
||||
auto output_dir =
|
||||
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
|
||||
if (!std::filesystem::exists(output_dir)) {
|
||||
std::filesystem::create_directories(output_dir);
|
||||
}
|
||||
|
||||
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
|
||||
auto shared_lib_path = (output_dir / shared_lib_name).string();
|
||||
@@ -157,11 +162,13 @@ inline void build_kernel(
|
||||
#endif
|
||||
|
||||
// Start the kernel
|
||||
os << "void " << kernel_name << "(void** args) {" << std::endl;
|
||||
os << "void " << kernel_name
|
||||
<< "(int* shape, int64_t** strides, void** args) {" << std::endl;
|
||||
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
int strides_index = 1;
|
||||
for (int i = 0; i < std::ssize(inputs); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
@@ -175,8 +182,8 @@ inline void build_kernel(
|
||||
<< "];" << std::endl;
|
||||
// Scalars and contiguous need no strides
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
|
||||
<< "];" << std::endl;
|
||||
os << " const int64_t* " << xname << "_strides = strides["
|
||||
<< strides_index++ << "];" << std::endl;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -186,10 +193,8 @@ inline void build_kernel(
|
||||
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
|
||||
<< "*)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
|
||||
} else {
|
||||
// Add output size
|
||||
if (contiguous) {
|
||||
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
|
||||
}
|
||||
|
||||
@@ -233,7 +238,7 @@ inline void build_kernel(
|
||||
} else {
|
||||
os << x.primitive().name();
|
||||
os << "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
for (int i = 0; i < std::ssize(x.inputs()) - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
}
|
||||
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
|
||||
@@ -288,17 +293,8 @@ void Compiled::eval_cpu(
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Force allocating shape/strides on heap so we can take their data() first
|
||||
// and then std::move them.
|
||||
// TODO: Refactor code to avoid heap allocation.
|
||||
shape.grow();
|
||||
for (auto& s : strides) {
|
||||
s.grow();
|
||||
}
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
if (is_constant_(i)) {
|
||||
continue;
|
||||
@@ -306,9 +302,6 @@ void Compiled::eval_cpu(
|
||||
const auto& x = inputs[i];
|
||||
encoder.set_input_array(x);
|
||||
args.push_back((void*)x.data<void>());
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.push_back(strides[strides_index++].data());
|
||||
}
|
||||
}
|
||||
|
||||
// Get the kernel name from the lib
|
||||
@@ -343,16 +336,20 @@ void Compiled::eval_cpu(
|
||||
args.push_back(x.data<void>());
|
||||
encoder.set_output_array(x);
|
||||
}
|
||||
if (!contiguous) {
|
||||
args.push_back((void*)shape.data());
|
||||
} else {
|
||||
if (contiguous) {
|
||||
args.push_back((void*)outputs[0].data_size());
|
||||
}
|
||||
auto fun = (void (*)(void**))fn_ptr;
|
||||
auto fun = reinterpret_cast<void (*)(int*, int64_t**, void**)>(fn_ptr);
|
||||
encoder.dispatch([fun,
|
||||
args = std::move(args),
|
||||
strides = std::move(strides),
|
||||
shape = std::move(shape)]() mutable { fun(args.data()); });
|
||||
shape = std::move(shape)]() mutable {
|
||||
SmallVector<int64_t*> strides_ptrs;
|
||||
for (auto& s : strides) {
|
||||
strides_ptrs.push_back(s.data());
|
||||
}
|
||||
fun(shape.data(), strides_ptrs.data(), args.data());
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -860,7 +860,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
@@ -996,131 +996,6 @@ void explicit_gemm_conv_1D_cpu(
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_2D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iW = in.shape(2); // Input spatial dim
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(3); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
const int wW = wt.shape(2); // Weight spatial dim
|
||||
|
||||
auto conv_dtype = out.dtype();
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
// Pad input
|
||||
Shape padded_shape = {
|
||||
N,
|
||||
iH + padding_lo[0] + padding_hi[0],
|
||||
iW + padding_lo[1] + padding_hi[1],
|
||||
C};
|
||||
array in_padded(padded_shape, conv_dtype, nullptr, {});
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
padding_lo[1] * in_padded.strides()[2];
|
||||
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
|
||||
in_padded_slice.copy_shared_buffer(
|
||||
in_padded,
|
||||
in_padded.strides(),
|
||||
in_padded.flags(),
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[2] * wt_strides[1],
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2],
|
||||
in_padded.strides()[3]};
|
||||
auto flags = in_padded.flags();
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
|
||||
temps.push_back(gemm_out);
|
||||
}
|
||||
|
||||
encoder.set_input_array(in_strided);
|
||||
encoder.set_input_array(gemm_wt);
|
||||
encoder.set_output_array(gemm_out);
|
||||
|
||||
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
|
||||
gemm_wt_ptr = gemm_wt.data<float>(),
|
||||
gemm_out_ptr = gemm_out.data<float>(),
|
||||
strided_reshape = std::move(strided_reshape),
|
||||
O]() {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided_ptr,
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt_ptr,
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out_ptr,
|
||||
O // ldc
|
||||
);
|
||||
});
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_ND_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
@@ -1128,7 +1003,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
const bool flip,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
@@ -1148,7 +1023,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Pad input
|
||||
Shape padded_shape(in.shape().size());
|
||||
padded_shape.front() = N;
|
||||
for (size_t i = 0; i < iDim.size(); i++) {
|
||||
for (int i = 0; i < iDim.size(); i++) {
|
||||
padded_shape[i + 1] = iDim[i] + padding_lo[i] + padding_hi[i];
|
||||
}
|
||||
padded_shape.back() = C;
|
||||
@@ -1179,20 +1054,20 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Make strided view
|
||||
Shape strided_shape(oDim.size() + wDim.size() + 2);
|
||||
strided_shape.front() = N;
|
||||
for (size_t i = 0; i < oDim.size(); i++) {
|
||||
for (int i = 0; i < oDim.size(); i++) {
|
||||
strided_shape[i + 1] = oDim[i];
|
||||
}
|
||||
for (size_t i = 0; i < wDim.size(); i++) {
|
||||
for (int i = 0; i < wDim.size(); i++) {
|
||||
strided_shape[i + 1 + oDim.size()] = wDim[i];
|
||||
}
|
||||
strided_shape.back() = C;
|
||||
|
||||
Strides strided_strides(in.shape().size() * 2 - 2);
|
||||
strided_strides[0] = in_padded.strides()[0];
|
||||
for (size_t i = 0; i < wt_strides.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(wt_strides); i++) {
|
||||
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
|
||||
}
|
||||
for (size_t i = 1; i < in_padded.strides().size(); i++) {
|
||||
for (int i = 1; i < std::ssize(in_padded.strides()); i++) {
|
||||
strided_strides[i + wt_strides.size()] = in_padded.strides()[i];
|
||||
}
|
||||
|
||||
|
||||
@@ -90,6 +90,7 @@ void Recv::eval_cpu(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 0);
|
||||
assert(outputs.size() == 1);
|
||||
(void)inputs;
|
||||
|
||||
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
|
||||
distributed::detail::recv(group(), outputs[0], src_, stream());
|
||||
|
||||
@@ -46,7 +46,6 @@ void eig_impl(
|
||||
int info;
|
||||
{
|
||||
T work;
|
||||
int iwork;
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
@@ -71,7 +70,7 @@ void eig_impl(
|
||||
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
|
||||
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
|
||||
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
|
||||
@@ -165,7 +165,7 @@ void eigh_impl(
|
||||
EighWork<T> work(jobz, uplo, N);
|
||||
|
||||
// Work loop
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
work.run(vec_ptr, eig_ptr);
|
||||
vec_ptr += N * N;
|
||||
eig_ptr += N;
|
||||
|
||||
@@ -20,8 +20,8 @@ struct CommandEncoder {
|
||||
CommandEncoder(CommandEncoder&&) = delete;
|
||||
CommandEncoder& operator=(CommandEncoder&&) = delete;
|
||||
|
||||
void set_input_array(const array& a) {}
|
||||
void set_output_array(array& a) {}
|
||||
void set_input_array(const array& /* a */) {}
|
||||
void set_output_array(array& /* a */) {}
|
||||
|
||||
// Hold onto a temporary until any already scheduled tasks which use it as
|
||||
// an input are complete.
|
||||
|
||||
@@ -12,12 +12,12 @@ void matmul(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -35,7 +34,7 @@ void matmul_bnns(
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
size_t /* ldc */,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
@@ -49,9 +48,15 @@ void matmul_bnns(
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
if (beta != 1.0 && beta != 0.0) {
|
||||
// scale the output
|
||||
for (size_t i = 0; i < batch_size * M * N; ++i) {
|
||||
out[i] *= beta;
|
||||
}
|
||||
beta = 1.0;
|
||||
}
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
@@ -122,7 +127,7 @@ void matmul_bnns(
|
||||
auto bnns_filter =
|
||||
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
BNNSFilterApplyTwoInput(
|
||||
bnns_filter,
|
||||
reinterpret_cast<const uint8_t*>(
|
||||
@@ -143,12 +148,12 @@ void matmul<float16_t>(
|
||||
float16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
@@ -178,12 +183,12 @@ void matmul<bfloat16_t>(
|
||||
bfloat16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -13,20 +13,20 @@ void matmul<float>(
|
||||
float* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_sgemm(
|
||||
@@ -54,20 +54,20 @@ void matmul<double>(
|
||||
double* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_dgemm(
|
||||
@@ -88,4 +88,47 @@ void matmul<double>(
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void matmul<complex64_t>(
|
||||
const complex64_t* a,
|
||||
const complex64_t* b,
|
||||
complex64_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
auto calpha = static_cast<complex64_t>(alpha);
|
||||
auto cbeta = static_cast<complex64_t>(beta);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_cgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
&calpha,
|
||||
a + elem_to_loc(M * K * i, a_shape, a_strides),
|
||||
lda,
|
||||
b + elem_to_loc(K * N * i, b_shape, b_strides),
|
||||
ldb,
|
||||
&cbeta,
|
||||
out + M * N * i,
|
||||
ldc);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -11,9 +11,9 @@ namespace mlx::core {
|
||||
|
||||
// n = 2^k component
|
||||
template <typename T>
|
||||
void hadamard_n(T* out, int n, int m, float scale, size_t size) {
|
||||
void hadamard_n(T* out, int n, int /* m */, float scale, int64_t size) {
|
||||
for (int b = 0; b < size / n; b++) {
|
||||
size_t loc = b * n;
|
||||
int64_t loc = b * n;
|
||||
T* data_ptr = out + loc;
|
||||
int h = 1;
|
||||
int n_over_2 = n / 2;
|
||||
@@ -37,7 +37,7 @@ void hadamard_n(T* out, int n, int m, float scale, size_t size) {
|
||||
|
||||
// m component
|
||||
template <typename T>
|
||||
void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
void hadamard_m(T* out, int n, int m, float scale, int64_t size) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
auto start = 1;
|
||||
@@ -45,7 +45,7 @@ void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
std::vector<bool> hmat_vec;
|
||||
while (end != std::string_view::npos) {
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
for (int i = 0; i < std::ssize(row); i++) {
|
||||
hmat_vec.push_back(row[i] == '+');
|
||||
}
|
||||
start = end + 1;
|
||||
@@ -53,7 +53,7 @@ void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
}
|
||||
|
||||
for (int b = 0; b < size / m / n; b++) {
|
||||
size_t loc = b * n * m;
|
||||
int64_t loc = b * n * m;
|
||||
T* data_ptr = out + loc;
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<float> out(m);
|
||||
|
||||
@@ -78,7 +78,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore leading 1s
|
||||
int i = 0;
|
||||
int64_t i = 0;
|
||||
for (; i < slice_sizes.size() && slice_sizes[i] == 1; ++i)
|
||||
;
|
||||
|
||||
@@ -91,7 +91,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore trailing 1s
|
||||
int i = slice_sizes.size() - 1;
|
||||
int64_t i = slice_sizes.size() - 1;
|
||||
for (; i >= 0 && slice_sizes[i] == 1; --i)
|
||||
;
|
||||
|
||||
@@ -101,11 +101,11 @@ void gather(
|
||||
can_copy = (src.shape(i) == slice_sizes[i]);
|
||||
}
|
||||
}
|
||||
size_t slice_size = 1;
|
||||
int64_t slice_size = 1;
|
||||
for (auto s : slice_sizes) {
|
||||
slice_size *= s;
|
||||
}
|
||||
size_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
int64_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
const T* src_ptr = src.data<T>();
|
||||
T* dst_ptr = out.data<T>();
|
||||
|
||||
@@ -115,10 +115,10 @@ void gather(
|
||||
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
|
||||
}
|
||||
|
||||
size_t out_idx = 0;
|
||||
for (int idx = 0; idx < ind_size; idx++) {
|
||||
size_t src_idx = 0;
|
||||
for (int ii = 0; ii < inds.size(); ++ii) {
|
||||
int64_t out_idx = 0;
|
||||
for (int64_t idx = 0; idx < ind_size; idx++) {
|
||||
int64_t src_idx = 0;
|
||||
for (int ii = 0; ii < std::ssize(inds); ++ii) {
|
||||
auto ax = axes[ii];
|
||||
auto idx_loc = its[ii].loc;
|
||||
its[ii].step();
|
||||
@@ -134,7 +134,7 @@ void gather(
|
||||
src_ptr + src_idx, src_ptr + src_idx + slice_size, dst_ptr + out_idx);
|
||||
out_idx += slice_size;
|
||||
} else {
|
||||
for (int jj = 0; jj < slice_size; jj++) {
|
||||
for (int64_t jj = 0; jj < slice_size; jj++) {
|
||||
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
|
||||
src_it.step();
|
||||
}
|
||||
@@ -403,11 +403,11 @@ void scatter(
|
||||
const std::vector<int>& axes) {
|
||||
int nind = inds.size();
|
||||
auto inds_ndim = updates.ndim() - out.ndim();
|
||||
size_t n_updates = nind ? inds[0].size() : 1;
|
||||
int64_t n_updates = nind ? inds[0].size() : 1;
|
||||
|
||||
Shape update_shape(
|
||||
updates.shape().begin() + inds_ndim, updates.shape().end());
|
||||
size_t update_size = 1;
|
||||
int64_t update_size = 1;
|
||||
for (auto us : update_shape) {
|
||||
update_size *= us;
|
||||
}
|
||||
@@ -418,9 +418,9 @@ void scatter(
|
||||
|
||||
auto out_ptr = out.data<InT>();
|
||||
auto upd_ptr = updates.data<InT>();
|
||||
for (int i = 0; i < n_updates; ++i) {
|
||||
size_t out_offset = 0;
|
||||
for (int j = 0; j < inds.size(); ++j) {
|
||||
for (int64_t i = 0; i < n_updates; ++i) {
|
||||
int64_t out_offset = 0;
|
||||
for (int j = 0; j < std::ssize(inds); ++j) {
|
||||
auto ax = axes[j];
|
||||
auto idx_loc = its[j].loc;
|
||||
its[j].step();
|
||||
@@ -429,7 +429,7 @@ void scatter(
|
||||
out_offset += (idx_val * out.strides()[ax]);
|
||||
}
|
||||
update_it.seek(i * update_size);
|
||||
for (int j = 0; j < update_size; ++j) {
|
||||
for (int64_t j = 0; j < update_size; ++j) {
|
||||
OpT{}(upd_ptr[update_it.loc], out_ptr + out_offset + out_it.loc);
|
||||
update_it.step();
|
||||
out_it.step();
|
||||
|
||||
@@ -122,7 +122,7 @@ void inverse_impl(
|
||||
stream);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
const int64_t num_matrices = a.size() / (N * N);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_output_array(inv);
|
||||
@@ -130,13 +130,13 @@ void inverse_impl(
|
||||
auto inv_ptr = inv.data<T>();
|
||||
if (tri) {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices, upper]() {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
tri_inv<T>(inv_ptr + N * N * i, N, upper);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices]() {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
general_inv<T>(inv_ptr + N * N * i, N);
|
||||
}
|
||||
});
|
||||
|
||||
@@ -47,7 +47,7 @@ INSTANTIATE_LAPACK_REAL(orgqr)
|
||||
INSTANTIATE_LAPACK_REAL(syevd)
|
||||
INSTANTIATE_LAPACK_REAL(geev)
|
||||
INSTANTIATE_LAPACK_REAL(potrf)
|
||||
INSTANTIATE_LAPACK_REAL(gesvdx)
|
||||
INSTANTIATE_LAPACK_REAL(gesdd)
|
||||
INSTANTIATE_LAPACK_REAL(getrf)
|
||||
INSTANTIATE_LAPACK_REAL(getri)
|
||||
INSTANTIATE_LAPACK_REAL(trtri)
|
||||
|
||||
@@ -25,7 +25,7 @@ inline void mask_matrix(
|
||||
const int64_t Y_data_str,
|
||||
const int64_t X_mask_str,
|
||||
const int64_t Y_mask_str,
|
||||
const size_t mask_offset) {
|
||||
const int64_t mask_offset) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
|
||||
@@ -61,13 +61,13 @@ inline void segmented_mm(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides,
|
||||
size_t num_segments,
|
||||
int64_t num_segments,
|
||||
const Shape& segments_shape,
|
||||
const Strides& segments_strides) {
|
||||
int ndim = a_shape.size();
|
||||
@@ -149,9 +149,9 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [b_transposed, ldb, b, b_copied] =
|
||||
check_transpose(b_pre, has_op_mask, inputs.back().dtype() != bool_);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -172,8 +172,8 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
int batch_idx,
|
||||
int X,
|
||||
int Y,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str,
|
||||
int64_t X_data_str,
|
||||
int64_t Y_data_str,
|
||||
const Shape& mask_shape,
|
||||
const Strides& mask_strides,
|
||||
bool is_bool) {
|
||||
@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
const void* a_mask_ptr;
|
||||
const void* b_mask_ptr;
|
||||
const void* out_mask_ptr;
|
||||
const void* a_mask_ptr = nullptr;
|
||||
const void* b_mask_ptr = nullptr;
|
||||
const void* out_mask_ptr = nullptr;
|
||||
Shape a_mask_shape;
|
||||
Shape b_mask_shape;
|
||||
Shape out_mask_shape;
|
||||
Strides a_mask_strides;
|
||||
Strides b_mask_strides;
|
||||
Strides out_mask_strides;
|
||||
bool a_mask_bool;
|
||||
bool b_mask_bool;
|
||||
bool out_mask_bool;
|
||||
bool a_mask_bool = false;
|
||||
bool b_mask_bool = false;
|
||||
bool out_mask_bool = false;
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[inputs.size() - 2];
|
||||
auto& b_mask = inputs[inputs.size() - 1];
|
||||
@@ -253,7 +253,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto a_ptr = a.data<float>();
|
||||
auto b_ptr = b.data<float>();
|
||||
auto out_ptr = out.data<float>();
|
||||
size_t num_matrices = out.size() / (M * size_t(N));
|
||||
int64_t num_matrices = out.size() / (M * int64_t(N));
|
||||
auto ldc = out.shape(-1);
|
||||
|
||||
encoder.dispatch([a_ptr,
|
||||
@@ -394,9 +394,9 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -413,7 +413,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Get batch dims
|
||||
auto batch_size_out = out.size() / (M * N);
|
||||
size_t matrix_stride_out = M * N;
|
||||
int64_t matrix_stride_out = M * N;
|
||||
|
||||
auto get_batch_dims = [](const auto& v) {
|
||||
return decltype(v){v.begin(), v.end() - 2};
|
||||
@@ -423,7 +423,6 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
auto batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
auto batch_shape_A = get_batch_dims(a.shape());
|
||||
auto batch_strides_A = get_batch_dims(a.strides());
|
||||
|
||||
@@ -91,7 +91,6 @@ void matmul_general(
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -108,6 +107,9 @@ void matmul_general(
|
||||
} else if (out.dtype() == float64) {
|
||||
matmul_dispatch<double>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else if (out.dtype() == complex64) {
|
||||
matmul_dispatch<complex64_t>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else {
|
||||
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
|
||||
}
|
||||
@@ -128,10 +130,6 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Currently only supports float32.");
|
||||
}
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
|
||||
@@ -48,7 +48,7 @@ static std::pair<array, bool> compute_dynamic_offset(
|
||||
auto compute_offset =
|
||||
[strides, axes, offset = offset.data<int64_t>()](const auto* indices) {
|
||||
int64_t offset_ = 0;
|
||||
for (int i = 0; i < axes.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(axes); ++i) {
|
||||
offset_ += indices[i] * strides[axes[i]];
|
||||
}
|
||||
offset[0] = offset_;
|
||||
@@ -124,6 +124,7 @@ void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 0);
|
||||
(void)inputs;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
@@ -193,9 +194,9 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
flags.row_contiguous = false;
|
||||
flags.col_contiguous = false;
|
||||
flags.contiguous = false;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(inputs); i++) {
|
||||
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
||||
size_t data_offset = strides[axis_] * sizes[i];
|
||||
int64_t data_offset = strides[axis_] * sizes[i];
|
||||
out_slice.copy_shared_buffer(
|
||||
out, strides, flags, out_slice.size(), data_offset);
|
||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
@@ -205,7 +206,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
constexpr size_t extra_bytes = 16384;
|
||||
constexpr int64_t extra_bytes = 16384;
|
||||
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
|
||||
(in.flags().row_contiguous ||
|
||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||
@@ -254,8 +255,8 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
||||
|
||||
// Find offset for start of input values
|
||||
size_t data_offset = 0;
|
||||
for (int i = 0; i < axes_.size(); i++) {
|
||||
int64_t data_offset = 0;
|
||||
for (int i = 0; i < std::ssize(axes_); i++) {
|
||||
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
|
||||
data_offset += out.strides()[ax] * low_pad_size_[i];
|
||||
}
|
||||
@@ -274,10 +275,10 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// keys has shape (N1, ..., NK, 2)
|
||||
// out has shape (N1, ..., NK, M1, M2, ...)
|
||||
auto& keys = inputs[0];
|
||||
size_t num_keys = keys.size() / 2;
|
||||
int64_t num_keys = keys.size() / 2;
|
||||
|
||||
size_t elems_per_key = out.size() / num_keys;
|
||||
size_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
int64_t elems_per_key = out.size() / num_keys;
|
||||
int64_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto kptr = inputs[0].data<uint32_t>();
|
||||
@@ -291,8 +292,8 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
num_keys,
|
||||
kshape = keys.shape(),
|
||||
kstrides = keys.strides()]() mutable {
|
||||
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
auto half_size = out_skip / 2;
|
||||
int64_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
uintptr_t half_size = out_skip / 2;
|
||||
bool even = out_skip % 2 == 0;
|
||||
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
|
||||
auto ptr = reinterpret_cast<uint32_t*>(cptr);
|
||||
|
||||
@@ -13,7 +13,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
const int M = a.shape(-2);
|
||||
const int N = a.shape(-1);
|
||||
const int lda = M;
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// Copy A to inplace input and make it col-contiguous
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
auto work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// Solve
|
||||
geqrf<T>(
|
||||
&M,
|
||||
@@ -68,7 +68,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
}
|
||||
allocator::free(work);
|
||||
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
/// num_reflectors x N
|
||||
for (int j = 0; j < num_reflectors; ++j) {
|
||||
for (int k = 0; k < j; ++k) {
|
||||
@@ -97,7 +97,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// Compute Q
|
||||
orgqr<T>(
|
||||
&M,
|
||||
@@ -111,7 +111,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
&info);
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// M x num_reflectors
|
||||
for (int j = 0; j < M; ++j) {
|
||||
for (int k = 0; k < num_reflectors; ++k) {
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
@@ -13,6 +11,35 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
const static float MXFP4_LUT[16] = {
|
||||
+0.0f,
|
||||
+0.5f,
|
||||
+1.0f,
|
||||
+1.5f,
|
||||
+2.0f,
|
||||
+3.0f,
|
||||
+4.0f,
|
||||
+6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
template <typename T>
|
||||
static inline T dequantize_scale(uint8_t s) {
|
||||
using FOrI = union {
|
||||
bfloat16_t f;
|
||||
uint16_t i;
|
||||
};
|
||||
FOrI out;
|
||||
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
|
||||
return static_cast<T>(out.f);
|
||||
}
|
||||
|
||||
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
@@ -407,6 +434,229 @@ void _qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
std::fill(result, result + N, 0);
|
||||
|
||||
for (int k = 0; k < K; k++) {
|
||||
T* result_local = result;
|
||||
T xi = *x++;
|
||||
|
||||
for (int n = 0; n < N; n += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result += N;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const T* x_local = x;
|
||||
T sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
T gsum = 0;
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
sum += scale * gsum;
|
||||
}
|
||||
*result = sum;
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <int S>
|
||||
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
|
||||
if constexpr (S == 8) {
|
||||
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
|
||||
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
|
||||
auto wi = simd::Simd<uint32_t, S>(*w);
|
||||
wi = wi >> shifts;
|
||||
wi = wi & 0xf;
|
||||
simd::Simd<float, S> w_out;
|
||||
for (int i = 0; i < S; ++i) {
|
||||
w_out[i] = MXFP4_LUT[wi[i]];
|
||||
}
|
||||
return w_out;
|
||||
} else {
|
||||
// Appease compiler.. but should never get here
|
||||
throw std::runtime_error("Unsupported combination for simd qmm.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t_simd(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = 32 / 4;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
constexpr int S = simd::max_size<T>;
|
||||
static_assert(
|
||||
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
|
||||
constexpr int packs_per_simd = S / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
simd::Simd<float, S> acc(0);
|
||||
auto x_local = x;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
simd::Simd<float, S> g_acc(0);
|
||||
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
|
||||
// Extract bits
|
||||
auto wf = mxfp4_extract_bits_simd<S>(w_local);
|
||||
w_local += packs_per_simd;
|
||||
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
|
||||
g_acc = g_acc + x_simd * wf;
|
||||
x_local += S;
|
||||
}
|
||||
acc = acc + scale * g_acc;
|
||||
}
|
||||
|
||||
*result = T(simd::sum(acc));
|
||||
result++;
|
||||
}
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
// the simd size must be a multiple of the number of elements per word
|
||||
if constexpr (simd::max_size<T> % 8 == 0) {
|
||||
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
|
||||
} else {
|
||||
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
} else {
|
||||
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.ndim() > 1 ? x.shape(-2) : 1;
|
||||
int N = out.shape(-1);
|
||||
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
|
||||
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
|
||||
int batch_size = x.size() / (K * M);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
|
||||
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case bfloat16:
|
||||
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float32:
|
||||
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
@@ -513,115 +763,198 @@ void _bs_qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.shape(-1) * w.shape(-2);
|
||||
int g_els = scales.shape(-1) * scales.shape(-2);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < lhs_indices.size(); i++) {
|
||||
int x_idx = lhs_indices_ptr[elem_to_loc(
|
||||
i, lhs_indices.shape(), lhs_indices.strides())];
|
||||
int w_idx = rhs_indices_ptr[elem_to_loc(
|
||||
i, rhs_indices.shape(), rhs_indices.strides())];
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
|
||||
scales_ptr +
|
||||
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_bs_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
mxfp4_bs_qmm_dispatch_typed<float>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_bs_qmm_dispatch_typed<float16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous(x_pre);
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 6);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
auto& lhs_indices = inputs[4];
|
||||
auto& rhs_indices = inputs[5];
|
||||
auto& lhs_indices = inputs[inputs.size() - 2];
|
||||
auto& rhs_indices = inputs[inputs.size() - 1];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous_last_dims = [s = stream(),
|
||||
&temps](const array& arr) {
|
||||
&encoder](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous_last_dims(x_pre);
|
||||
auto w = ensure_row_contiguous_last_dims(w_pre);
|
||||
auto scales = ensure_row_contiguous_last_dims(scales_pre);
|
||||
auto biases = ensure_row_contiguous_last_dims(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_input_array(lhs_indices);
|
||||
encoder.set_input_array(rhs_indices);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_bs_qmm_dispatch(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
@@ -705,7 +1038,7 @@ void dispatch_quantize(
|
||||
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
void fast::Quantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [s = stream()](const array& arr) {
|
||||
@@ -764,7 +1097,7 @@ void fast::AffineQuantize::eval_cpu(
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/simd/base_simd.h"
|
||||
|
||||
// There seems to be a bug in sims/base.h
|
||||
// There seems to be a bug in simd/base_simd.h
|
||||
// __XROS_2_0 is not defined, the expression evaluates
|
||||
// to true instead of false setting the SIMD library
|
||||
// higher than it should be even on macOS < 15
|
||||
@@ -234,6 +234,7 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
|
||||
|
||||
template <typename MaskT, typename T1, typename T2, int N>
|
||||
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
|
||||
static_assert(std::is_same_v<MaskT, bool>);
|
||||
if constexpr (sizeof(T1) == 1) {
|
||||
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
|
||||
} else if constexpr (sizeof(T1) == 2) {
|
||||
@@ -251,9 +252,13 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
|
||||
return asd::pow(base.value, exp.value);
|
||||
} else {
|
||||
Simd<T, N> res = 1;
|
||||
while (any(exp)) {
|
||||
res = select(exp & 1, res * base, res);
|
||||
base = select(exp, base * base, base);
|
||||
// Raising an integer to a negative power is undefined
|
||||
if (any(exp < static_cast<T>(0))) {
|
||||
return 0;
|
||||
}
|
||||
while (any(exp > static_cast<T>(0))) {
|
||||
res = select((exp & 1) != 0, res * base, res);
|
||||
base = select(exp > static_cast<T>(0), base * base, base);
|
||||
exp = exp >> 1;
|
||||
}
|
||||
return res;
|
||||
|
||||
@@ -79,7 +79,8 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
|
||||
// Get the polynom selection mask. There is one polynom for 0 <= x <= Pi/4
|
||||
// and another one for Pi/4<x<=Pi/2. Both branches will be computed.
|
||||
auto poly_mask = (emm2 & 2) != 0;
|
||||
auto poly_mask =
|
||||
(emm2 & static_cast<uint32_t>(2)) != static_cast<uint32_t>(0);
|
||||
|
||||
// The magic pass: "Extended precision modular arithmetic"
|
||||
// x = ((x - y * DP1) - y * DP2) - y * DP3
|
||||
@@ -87,8 +88,8 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
x = fma(y, Simd<float, N>(-2.4187564849853515625e-4f), x);
|
||||
x = fma(y, Simd<float, N>(-3.77489497744594108e-8f), x);
|
||||
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != 0);
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != 0;
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != static_cast<uint32_t>(0));
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != static_cast<uint32_t>(0);
|
||||
|
||||
// Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
// and the second polynom (Pi/4 <= x <= 0) in y2
|
||||
|
||||
@@ -15,6 +15,18 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// NaN-aware comparator that places NaNs at the end
|
||||
template <typename T>
|
||||
bool nan_aware_less(T a, T b) {
|
||||
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
|
||||
if (std::isnan(a))
|
||||
return false;
|
||||
if (std::isnan(b))
|
||||
return true;
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -27,7 +39,7 @@ struct StridedIterator {
|
||||
StridedIterator() = default;
|
||||
|
||||
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
|
||||
: ptr_(ptr + offset * stride), stride_(stride) {}
|
||||
: stride_(stride), ptr_(ptr + offset * stride) {}
|
||||
|
||||
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
|
||||
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
|
||||
@@ -108,8 +120,8 @@ template <typename T>
|
||||
void sort(array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -124,13 +136,13 @@ void sort(array& out, int axis) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed);
|
||||
std::stable_sort(st, ed, nan_aware_less<T>);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
@@ -139,7 +151,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argsort(const array& in, array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -164,7 +176,7 @@ void argsort(const array& in, array& out, int axis) {
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
|
||||
@@ -184,6 +196,15 @@ void argsort(const array& in, array& out, int axis) {
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -193,8 +214,8 @@ template <typename T>
|
||||
void partition(array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -211,7 +232,7 @@ void partition(array& out, int axis, int kth) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
src_it.step();
|
||||
|
||||
@@ -219,7 +240,7 @@ void partition(array& out, int axis, int kth) {
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed);
|
||||
std::nth_element(st, md, ed, nan_aware_less<T>);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -227,7 +248,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -256,7 +277,7 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
in_it.step();
|
||||
@@ -276,6 +297,15 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ void svd_impl(
|
||||
const int N = a.shape(-1);
|
||||
const int K = std::min(M, N);
|
||||
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -81,40 +81,26 @@ void svd_impl(
|
||||
// Vᵀ of shape N x N. (M x M in lapack).
|
||||
const int ldvt = M;
|
||||
|
||||
auto job_u = (u_ptr) ? "V" : "N";
|
||||
auto job_vt = (u_ptr) ? "V" : "N";
|
||||
static constexpr auto range = "A";
|
||||
auto jobz = (u_ptr) ? "A" : "N";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
T workspace_dimension = 0;
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not
|
||||
// used here but required by lapack).
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 12 * K)};
|
||||
auto iwork = array::Data{allocator::malloc(sizeof(int) * 8 * K)};
|
||||
|
||||
static const int lwork_query = -1;
|
||||
|
||||
static const int ignored_int = 0;
|
||||
static const T ignored_float = 0;
|
||||
|
||||
int info;
|
||||
|
||||
// Compute workspace size.
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ nullptr,
|
||||
/* u = */ nullptr,
|
||||
/* ldu = */ &ldu,
|
||||
@@ -135,21 +121,14 @@ void svd_impl(
|
||||
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
|
||||
// Loop over matrices.
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
gesvdx<T>(
|
||||
/* jobu = */ job_u,
|
||||
/* jobvt = */ job_vt,
|
||||
/* range = */ range,
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
/* m = */ &N,
|
||||
/* n = */ &M,
|
||||
/* a = */ in_ptr + M * N * i,
|
||||
/* lda = */ &lda,
|
||||
/* vl = */ &ignored_float,
|
||||
/* vu = */ &ignored_float,
|
||||
/* il = */ &ignored_int,
|
||||
/* iu = */ &ignored_int,
|
||||
/* ns = */ &ns,
|
||||
/* s = */ s_ptr + K * i,
|
||||
// According to the identity above, lapack will write Vᵀᵀ as U.
|
||||
/* u = */ vt_ptr ? vt_ptr + N * N * i : nullptr,
|
||||
@@ -167,13 +146,6 @@ void svd_impl(
|
||||
ss << "svd_impl: sgesvdx_ failed with code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
if (ns != K) {
|
||||
std::stringstream ss;
|
||||
ss << "svd_impl: expected " << K << " singular values, but " << ns
|
||||
<< " were computed.";
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
});
|
||||
encoder.add_temporary(in);
|
||||
@@ -181,10 +153,10 @@ void svd_impl(
|
||||
|
||||
template <typename T>
|
||||
void compute_svd(
|
||||
const array& a,
|
||||
bool compute_uv,
|
||||
std::vector<array>& outputs,
|
||||
Stream stream) {}
|
||||
const array& /* a */,
|
||||
bool /* compute_uv */,
|
||||
std::vector<array>& /* outputs */,
|
||||
Stream /* stream */) {}
|
||||
|
||||
void SVD::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
|
||||
@@ -136,7 +136,7 @@ void ternary_op(
|
||||
if (topt == TernaryOpType::ScalarScalarScalar) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
} else if (topt == TernaryOpType::VectorVectorVector) {
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
|
||||
@@ -10,8 +10,8 @@
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T, typename U = T, typename Op>
|
||||
void unary_op(const T* a, U* out, size_t shape, size_t stride) {
|
||||
for (size_t i = 0; i < shape; i += 1) {
|
||||
void unary_op(const T* a, U* out, int64_t shape, int64_t stride) {
|
||||
for (int64_t i = 0; i < shape; i += 1) {
|
||||
out[i] = Op{}(*a);
|
||||
a += stride;
|
||||
}
|
||||
@@ -38,14 +38,14 @@ void unary_op(const array& a, array& out, Op) {
|
||||
src++;
|
||||
}
|
||||
} else {
|
||||
size_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
size_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
int64_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
int64_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
if (ndim <= 1) {
|
||||
unary_op<T, U, Op>(src, dst, shape, stride);
|
||||
return;
|
||||
}
|
||||
auto it = ContiguousIterator(a.shape(), a.strides(), ndim - 1);
|
||||
for (size_t elem = 0; elem < a.size(); elem += shape) {
|
||||
for (int64_t elem = 0; elem < a.size(); elem += shape) {
|
||||
unary_op<T, U, Op>(src + it.loc, dst + elem, shape, stride);
|
||||
it.step();
|
||||
}
|
||||
|
||||
@@ -77,7 +77,8 @@ struct Real {
|
||||
struct Sigmoid {
|
||||
template <int N, typename T>
|
||||
Simd<T, N> operator()(Simd<T, N> x) {
|
||||
return 1.0f / (1.0f + simd::exp(-x));
|
||||
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
|
||||
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
|
||||
}
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
@@ -8,7 +8,6 @@ target_sources(
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||
@@ -17,14 +16,18 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv/gemm_grouped_conv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
@@ -46,12 +49,14 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
@@ -149,7 +154,7 @@ target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.12.1
|
||||
GIT_TAG v1.14.0
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
@@ -165,6 +170,10 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
|
||||
@@ -30,8 +30,20 @@ SmallSizePool::SmallSizePool() {
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
int device_count = 0;
|
||||
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
|
||||
for (int i = 0; i < device_count; ++i) {
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = i;
|
||||
#else
|
||||
int loc = i;
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
|
||||
}
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
@@ -79,7 +91,7 @@ CudaAllocator::CudaAllocator()
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.8;
|
||||
memory_limit_ = total * 0.95;
|
||||
max_pool_size_ = memory_limit_;
|
||||
}
|
||||
|
||||
|
||||
@@ -6,23 +6,33 @@
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
template <typename T, typename IdxT, int N_WRITES>
|
||||
__global__ void arange(T* out, IdxT size, T start, T step) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_WRITES > size) {
|
||||
for (IdxT i = index * N_WRITES; i < size; ++i) {
|
||||
out[i] = start + i * step;
|
||||
}
|
||||
} else {
|
||||
AlignedVector<T, N_WRITES> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_WRITES; ++i) {
|
||||
out_vec[i] = start + (index * N_WRITES + i) * step;
|
||||
}
|
||||
|
||||
store_vector<N_WRITES>(out, index, out_vec);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -36,19 +46,23 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
constexpr int N_WRITES = 16 / sizeof(OutType);
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
|
||||
encoder.add_kernel_node(
|
||||
cu::arange<OutType, IdxT, N_WRITES>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
static_cast<CTYPE>(start_),
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
21
mlx/backend/cuda/binary/CMakeLists.txt
Normal file
@@ -0,0 +1,21 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/add.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arctan2.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/bitwise_binary.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/divide.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/greater_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/less_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_and.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/logical_or.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/log_add_exp.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/minimum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/maximum.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/multiply.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/power.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/remainder.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/not_equal.cu
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/subtract.cu)
|
||||
7
mlx/backend/cuda/binary/add.cu
Normal file
7
mlx/backend/cuda/binary/add.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Add)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
7
mlx/backend/cuda/binary/arctan2.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(ArcTan2)
|
||||
} // namespace mlx::core
|
||||
@@ -99,39 +99,89 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -209,39 +259,61 @@ void binary_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out, large());
|
||||
auto kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
@@ -304,54 +376,4 @@ void binary_op_gpu(
|
||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
27
mlx/backend/cuda/binary/bitwise_binary.cu
Normal file
@@ -0,0 +1,27 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/divide.cu
Normal file
7
mlx/backend/cuda/binary/divide.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Divide)
|
||||
} // namespace mlx::core
|
||||
15
mlx/backend/cuda/binary/equal.cu
Normal file
15
mlx/backend/cuda/binary/equal.cu
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/greater.cu
Normal file
7
mlx/backend/cuda/binary/greater.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Greater)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
7
mlx/backend/cuda/binary/greater_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(GreaterEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/less.cu
Normal file
7
mlx/backend/cuda/binary/less.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Less)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
7
mlx/backend/cuda/binary/less_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LessEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
7
mlx/backend/cuda/binary/log_add_exp.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogAddExp)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
7
mlx/backend/cuda/binary/logical_and.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalAnd)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
7
mlx/backend/cuda/binary/logical_or.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(LogicalOr)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/maximum.cu
Normal file
7
mlx/backend/cuda/binary/maximum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Maximum)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/minimum.cu
Normal file
7
mlx/backend/cuda/binary/minimum.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Minimum)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/multiply.cu
Normal file
7
mlx/backend/cuda/binary/multiply.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Multiply)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
7
mlx/backend/cuda/binary/not_equal.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(NotEqual)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/power.cu
Normal file
7
mlx/backend/cuda/binary/power.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Power)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/remainder.cu
Normal file
7
mlx/backend/cuda/binary/remainder.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Remainder)
|
||||
} // namespace mlx::core
|
||||
7
mlx/backend/cuda/binary/subtract.cu
Normal file
7
mlx/backend/cuda/binary/subtract.cu
Normal file
@@ -0,0 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/binary/binary.cuh"
|
||||
|
||||
namespace mlx::core {
|
||||
BINARY_GPU(Subtract)
|
||||
} // namespace mlx::core
|
||||
@@ -127,45 +127,99 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <
|
||||
typename Op,
|
||||
typename In,
|
||||
typename Out,
|
||||
typename IdxT,
|
||||
int NDIM,
|
||||
int N_READS>
|
||||
__global__ void binary_two_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto a_stride_x = a_strides[NDIM - 1];
|
||||
auto b_stride_x = b_strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void binary_two_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto a_stride_x = a_strides[ndim - 1];
|
||||
auto b_stride_x = b_strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
a_strides.data(),
|
||||
b_strides.data(),
|
||||
ndim);
|
||||
auto a_vec =
|
||||
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
||||
auto b_vec =
|
||||
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec_a;
|
||||
AlignedVector<Out, N_READS> out_vec_b;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec_a[i] = out[0];
|
||||
out_vec_b[i] = out[1];
|
||||
}
|
||||
store_vector(out_a + shape_x * index_rest, index_x, out_vec_a, shape_x);
|
||||
store_vector(out_b + shape_x * index_rest, index_x, out_vec_b, shape_x);
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
@@ -225,42 +279,64 @@ void binary_two_op_gpu_inplace(
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out_a.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant(),
|
||||
4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::binary_two_g<Op, InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g<Op, InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
|
||||
@@ -267,7 +267,8 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||
return std::make_tuple(
|
||||
false, std::move(builder.os), std::move(kernel_names));
|
||||
});
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
@@ -331,9 +332,9 @@ void Compiled::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
|
||||
@@ -1,18 +1,12 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
@@ -21,9 +15,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Not all engines support it so can not use this API now.
|
||||
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
|
||||
|
||||
// Alias for better readability.
|
||||
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
|
||||
#define CONV_BACKWARD_INPUT \
|
||||
@@ -31,6 +22,9 @@ namespace {
|
||||
#define CONV_BACKWARD_WEIGHT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
|
||||
|
||||
// Custom placeholder representing fallback kernel.
|
||||
#define CONV_FALLBACK static_cast<cudnnBackendDescriptorType_t>(-1)
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnDataType_t cudnn_dtype;
|
||||
@@ -50,203 +44,13 @@ struct ConvCacheKey {
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<
|
||||
ConvCacheKey,
|
||||
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
|
||||
cache(/* capacity */ 128);
|
||||
std::pair<
|
||||
cudnnBackendDescriptorType_t,
|
||||
std::optional<cudnn_frontend::ExecutionPlan>>>
|
||||
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
auto nhwc_to_nchw(const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
auto strides = convert_vector<int64_t>(x.strides());
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigList get_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = false) {
|
||||
cudnn_frontend::GeneratorSource source;
|
||||
if (use_fallback) {
|
||||
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
};
|
||||
} else {
|
||||
source = [](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
};
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigGenerator generator(1, &source);
|
||||
auto configs = generator.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
bool execute_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
|
||||
|
||||
int64_t uids[3] = {'x', 'w', 'y'};
|
||||
void* data_ptrs[3] = {
|
||||
x.data<void>(),
|
||||
w.data<void>(),
|
||||
y.data<void>(),
|
||||
};
|
||||
|
||||
auto variantPack = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(3, data_ptrs)
|
||||
.setUids(3, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
|
||||
cudaGraph_t graph;
|
||||
cudaGraphCreate(&graph, 0);
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
|
||||
if (cudnnBackendPopulateCudaGraph(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
#else
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool try_engines(
|
||||
cu::CommandEncoder& encoder,
|
||||
const ConvCacheKey& cache_key,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
cudnn_frontend::EngineConfigList& configs,
|
||||
const std::string& op_graph_tag,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
for (auto& config : configs) {
|
||||
try {
|
||||
auto plan = cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
if (execute_plan(encoder, plan, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(plan)));
|
||||
return true;
|
||||
}
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
auto get_conv_op_settings(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& x,
|
||||
@@ -291,7 +95,7 @@ auto get_conv_op_settings(
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
std::optional<cudnn_frontend::OperationGraph> build_conv_op_graph(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
@@ -317,9 +121,9 @@ std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_tensor('x', x))
|
||||
.setwDesc(build_tensor('w', w))
|
||||
.setyDesc(build_tensor('y', y))
|
||||
.setxDesc(build_cudnn_tensor_nchw('x', x))
|
||||
.setwDesc(build_cudnn_tensor_nchw('w', w))
|
||||
.setyDesc(build_cudnn_tensor_nchw('y', y))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
@@ -336,6 +140,42 @@ std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
}
|
||||
}
|
||||
|
||||
// Transpose from (C_out, H, W, C_in / groups) to (C_in, H, W, C_out / groups).
|
||||
array group_transpose(
|
||||
const array& x,
|
||||
int groups,
|
||||
int group_dim,
|
||||
int axis1,
|
||||
int axis2,
|
||||
Stream s) {
|
||||
if (groups == 1) {
|
||||
return swapaxes_in_eval(x, axis1, axis2);
|
||||
}
|
||||
int ndim = x.ndim();
|
||||
if (group_dim < 0) {
|
||||
group_dim += ndim;
|
||||
}
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
if (group_dim <= axis1) {
|
||||
axis1 += 1;
|
||||
}
|
||||
if (group_dim <= axis2) {
|
||||
axis2 += 1;
|
||||
}
|
||||
auto shape = x.shape();
|
||||
shape.insert(shape.begin() + group_dim, groups);
|
||||
shape[group_dim + 1] = shape[group_dim + 1] / groups;
|
||||
array x_trans = reshape_in_eval(x, std::move(shape), s);
|
||||
x_trans = swapaxes_in_eval(x_trans, axis1, axis2);
|
||||
x_trans = flatten_in_eval(x_trans, group_dim, group_dim + 1, s);
|
||||
return x_trans;
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
@@ -345,13 +185,14 @@ std::tuple<array, array, array> prepare_args(
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
int groups,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
wt = group_transpose(wt, groups, 0, 0, -1, s);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = swapaxes_in_eval(in, 0, -1);
|
||||
in = group_transpose(in, groups, -1, 0, -1, s);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
@@ -444,12 +285,12 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
dtype_to_cudnn_type(dtype),
|
||||
fixed_vector(in.shape()),
|
||||
fixed_vector(wt.shape()),
|
||||
fixed_vector(kernel_strides_),
|
||||
fixed_vector(padding_lo_),
|
||||
fixed_vector(padding_hi_),
|
||||
fixed_vector(kernel_dilation_),
|
||||
vector_key(in.shape()),
|
||||
vector_key(wt.shape()),
|
||||
vector_key(kernel_strides_),
|
||||
vector_key(padding_lo_),
|
||||
vector_key(padding_hi_),
|
||||
vector_key(kernel_dilation_),
|
||||
groups_,
|
||||
flip_,
|
||||
get_alignment(in),
|
||||
@@ -457,11 +298,29 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!execute_plan(encoder, plan, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
if (plan) {
|
||||
// Run cached plan.
|
||||
std::tie(in, wt, out) =
|
||||
prepare_args(encoder, backend_type, in, wt, out, groups_, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
} else {
|
||||
// Run fallback kernel.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
}
|
||||
return;
|
||||
}
|
||||
@@ -490,7 +349,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, s);
|
||||
prepare_args(encoder, try_backend, in, wt, out, groups_, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
@@ -502,7 +361,7 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
padding_hi_,
|
||||
kernel_dilation_,
|
||||
input_dilation_);
|
||||
op_graph = build_op_graph(
|
||||
op_graph = build_conv_op_graph(
|
||||
encoder,
|
||||
try_backend,
|
||||
dtype,
|
||||
@@ -521,26 +380,38 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!op_graph) {
|
||||
throw std::runtime_error("[conv] Can not build op graph.");
|
||||
|
||||
if (op_graph) {
|
||||
// Find a plan for the graph and execute it.
|
||||
auto plan = find_cudnn_plan_from_op_graph(
|
||||
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
|
||||
if (plan) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Get ready to execute the graph.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Try to run plans based on heuristics.
|
||||
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
auto tag = op_graph->getTag();
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
// Then try fallback plans.
|
||||
configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("[conv] Unable to find a working engine.");
|
||||
// Use fallback kernel for settings not supported by cuDNN.
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
kernel_dilation_,
|
||||
input_dilation_,
|
||||
groups_,
|
||||
flip_,
|
||||
s);
|
||||
conv_cache().emplace(cache_key, std::make_pair(CONV_FALLBACK, std::nullopt));
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
126
mlx/backend/cuda/conv/conv.h
Normal file
126
mlx/backend/cuda/conv/conv.h
Normal file
@@ -0,0 +1,126 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <int NDIM>
|
||||
struct ConvParams {
|
||||
int N; // Batch size
|
||||
int C; // In channels
|
||||
int O; // Out channels
|
||||
int strides[NDIM];
|
||||
int padding[NDIM];
|
||||
int kernel_dilation[NDIM];
|
||||
int input_dilation[NDIM];
|
||||
int groups;
|
||||
bool flip;
|
||||
int in_spatial_dims[NDIM];
|
||||
int wt_spatial_dims[NDIM];
|
||||
int out_spatial_dims[NDIM];
|
||||
int64_t in_strides[NDIM + 2];
|
||||
|
||||
ConvParams(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
const array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip)
|
||||
: N(in.shape(0)),
|
||||
C(in.shape(-1)),
|
||||
O(wt.shape(0)),
|
||||
groups(groups),
|
||||
flip(flip) {
|
||||
std::copy_n(strides.begin(), NDIM, this->strides);
|
||||
std::copy_n(padding.begin(), NDIM, this->padding);
|
||||
std::copy_n(kernel_dilation.begin(), NDIM, this->kernel_dilation);
|
||||
std::copy_n(input_dilation.begin(), NDIM, this->input_dilation);
|
||||
std::copy_n(in.shape().begin() + 1, NDIM, this->in_spatial_dims);
|
||||
std::copy_n(wt.shape().begin() + 1, NDIM, this->wt_spatial_dims);
|
||||
std::copy_n(out.shape().begin() + 1, NDIM, this->out_spatial_dims);
|
||||
std::copy_n(in.strides().begin(), NDIM + 2, this->in_strides);
|
||||
}
|
||||
};
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s);
|
||||
|
||||
inline void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
array in,
|
||||
array wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
if (groups == 1) {
|
||||
gemm_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
flip,
|
||||
s);
|
||||
} else {
|
||||
gemm_grouped_conv(
|
||||
encoder,
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip,
|
||||
s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
217
mlx/backend/cuda/conv/gemm_conv.cu
Normal file
217
mlx/backend/cuda/conv/gemm_conv.cu
Normal file
@@ -0,0 +1,217 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_unfold_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + index_wt_spatial * params.C + tid.y;
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array unfold_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = mat_K / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_unfold_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C * H_wt * W_wt
|
||||
int mat_N = params.O; // O
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded =
|
||||
unfold_inputs_nd<NDIM>(encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (C * H_wt * W_wt, O) for gemm.
|
||||
array wt_reshaped({mat_K, mat_N}, wt.dtype(), nullptr, {});
|
||||
wt_reshaped.copy_shared_buffer(
|
||||
wt,
|
||||
{1, mat_K},
|
||||
{false, false, /* col_contiguous */ true},
|
||||
wt.data_size());
|
||||
|
||||
// Single batch.
|
||||
Shape batch_shape{1};
|
||||
Strides a_batch_strides{0};
|
||||
Strides b_batch_strides{0};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
1, // groups
|
||||
flip);
|
||||
gemm_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
231
mlx/backend/cuda/conv/gemm_grouped_conv.cu
Normal file
231
mlx/backend/cuda/conv/gemm_grouped_conv.cu
Normal file
@@ -0,0 +1,231 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/conv/conv.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int NDIM>
|
||||
__global__ void naive_grouped_unfold_transpose_nd(
|
||||
const T* in,
|
||||
T* out,
|
||||
int filter_size,
|
||||
int out_pixels,
|
||||
const __grid_constant__ ConvParams<NDIM> params) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto tid = block.group_index();
|
||||
auto lid = block.thread_index();
|
||||
|
||||
int index_batch = tid.z / out_pixels; // [0, N)
|
||||
int index_out_spatial = tid.z % out_pixels; // [0, H_out * W_out)
|
||||
int index_wt_spatial =
|
||||
tid.x * block.dim_threads().x + lid.x; // [0, H_wt * W_wt)
|
||||
|
||||
if (index_wt_spatial >= filter_size / params.C) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += tid.y; // [0, C)
|
||||
out += tid.z * filter_size + tid.y * (filter_size / params.C);
|
||||
|
||||
bool valid = index_batch < params.N;
|
||||
|
||||
// Get the coordinates in input.
|
||||
int index_in[NDIM] = {};
|
||||
int wt_stride = 1;
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int index_out = index_out_spatial % params.out_spatial_dims[i];
|
||||
int index_wt = index_wt_spatial % params.wt_spatial_dims[i];
|
||||
out += index_wt * wt_stride;
|
||||
|
||||
if (params.flip) {
|
||||
index_wt = params.wt_spatial_dims[i] - index_wt - 1;
|
||||
}
|
||||
|
||||
int index = index_out * params.strides[i] - params.padding[i] +
|
||||
index_wt * params.kernel_dilation[i];
|
||||
int index_max =
|
||||
1 + params.input_dilation[i] * (params.in_spatial_dims[i] - 1);
|
||||
|
||||
valid &= (index >= 0) && (index < index_max) &&
|
||||
(index % params.input_dilation[i] == 0);
|
||||
|
||||
index_in[i] = index / params.input_dilation[i];
|
||||
|
||||
index_out_spatial /= params.out_spatial_dims[i];
|
||||
index_wt_spatial /= params.wt_spatial_dims[i];
|
||||
wt_stride *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
if (valid) {
|
||||
int in_offset = index_batch * params.in_strides[0];
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
in_offset += index_in[i] * params.in_strides[i + 1];
|
||||
}
|
||||
*out = in[in_offset];
|
||||
} else {
|
||||
*out = T{0};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <int NDIM>
|
||||
array grouped_unfold_transpose_inputs_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
int mat_M,
|
||||
int mat_K,
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
filter_size *= params.wt_spatial_dims[i];
|
||||
}
|
||||
|
||||
int out_pixels = 1;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NDIM; ++i) {
|
||||
out_pixels *= params.out_spatial_dims[i];
|
||||
}
|
||||
|
||||
int wt_spatial_size = (mat_K * params.groups) / params.C;
|
||||
dim3 block_dims;
|
||||
block_dims.x = std::min(std::max(wt_spatial_size, 32), 1024);
|
||||
dim3 num_blocks;
|
||||
num_blocks.x = cuda::ceil_div(wt_spatial_size, block_dims.x);
|
||||
num_blocks.y = params.C;
|
||||
num_blocks.z = mat_M;
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(unfolded);
|
||||
dispatch_float_types(in.dtype(), "unfold", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.add_kernel_node(
|
||||
cu::naive_grouped_unfold_transpose_nd<DataType, NDIM>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
});
|
||||
|
||||
return unfolded;
|
||||
}
|
||||
|
||||
template <int NDIM>
|
||||
void gemm_grouped_conv_nd(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
ConvParams<NDIM>& params,
|
||||
Stream s) {
|
||||
// Get gemm shapes.
|
||||
int C_per_group = params.C / params.groups;
|
||||
int O_per_group = params.O / params.groups;
|
||||
int mat_M = out.size() / params.O; // N * H_out * W_out
|
||||
int mat_K = wt.size() / params.O; // C_per_group * H_wt * W_wt
|
||||
int mat_N = O_per_group; // O_per_group
|
||||
|
||||
// Unfold input to (N * H_out * W_out, C * H_wt * W_wt) for gemm.
|
||||
array in_unfolded = grouped_unfold_transpose_inputs_nd<NDIM>(
|
||||
encoder, in, mat_M, mat_K, mat_N, params);
|
||||
|
||||
// Reshape weight to (O, C_per_group, H_wt * W_wt) for gemm.
|
||||
int wt_spatial_size = (wt.size() / wt.shape(0)) / wt.shape(-1);
|
||||
array wt_view(
|
||||
{params.O, C_per_group, wt_spatial_size}, wt.dtype(), nullptr, {});
|
||||
wt_view.copy_shared_buffer(
|
||||
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
||||
array wt_reshaped = contiguous_copy_gpu(wt_view, s);
|
||||
|
||||
// Batch with size of groups.
|
||||
Shape batch_shape{params.groups};
|
||||
Strides a_batch_strides{mat_K};
|
||||
Strides b_batch_strides{mat_N * mat_K};
|
||||
|
||||
// Run matmul.
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
in.dtype(),
|
||||
false, // a_transposed
|
||||
mat_M, // a_rows
|
||||
mat_K, // a_cols
|
||||
mat_K * params.groups, // lda
|
||||
true, // b_transposed
|
||||
mat_K, // b_rows
|
||||
mat_N, // b_cols
|
||||
mat_K, // ldb
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.set_out(
|
||||
out.dtype(),
|
||||
false, // out_transposed
|
||||
mat_M, // out_rows
|
||||
mat_N, // out_cols
|
||||
mat_N * params.groups, // out_ld
|
||||
params.groups, // batch_count
|
||||
mat_N); // batch_stride
|
||||
gemm.run(
|
||||
encoder,
|
||||
out,
|
||||
in_unfolded,
|
||||
wt_reshaped,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides);
|
||||
}
|
||||
|
||||
void gemm_grouped_conv(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array& out,
|
||||
const std::vector<int>& strides,
|
||||
const std::vector<int>& padding,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation,
|
||||
int groups,
|
||||
bool flip,
|
||||
Stream s) {
|
||||
int conv_ndim = in.ndim() - 2;
|
||||
if (conv_ndim < 1 || conv_ndim > 3) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("[conv] Unsupported gemm_conv for {}D conv.", conv_ndim));
|
||||
}
|
||||
dispatch_1_2_3(conv_ndim, [&](auto ndim_constant) {
|
||||
ConvParams<ndim_constant()> params(
|
||||
in,
|
||||
wt,
|
||||
out,
|
||||
strides,
|
||||
padding,
|
||||
kernel_dilation,
|
||||
input_dilation,
|
||||
groups,
|
||||
flip);
|
||||
gemm_grouped_conv_nd<ndim_constant()>(encoder, in, wt, out, params, s);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -15,8 +15,8 @@ void copy_gpu_inplace(
|
||||
int64_t offset_out,
|
||||
CopyType ctype,
|
||||
const Stream& s,
|
||||
const std::optional<array>& dynamic_offset_in,
|
||||
const std::optional<array>& dynamic_offset_out) {
|
||||
std::optional<array> dynamic_offset_in,
|
||||
std::optional<array> dynamic_offset_out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -44,6 +44,16 @@ void copy_gpu_inplace(
|
||||
strides_vec[0]);
|
||||
} else {
|
||||
if (dynamic_offset_in || dynamic_offset_out) {
|
||||
if (!dynamic_offset_in) {
|
||||
dynamic_offset_in = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_in);
|
||||
}
|
||||
if (!dynamic_offset_out) {
|
||||
dynamic_offset_out = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_out);
|
||||
}
|
||||
encoder.set_input_array(*dynamic_offset_in);
|
||||
encoder.set_input_array(*dynamic_offset_out);
|
||||
copy_general_dynamic(
|
||||
encoder,
|
||||
ctype,
|
||||
@@ -54,8 +64,8 @@ void copy_gpu_inplace(
|
||||
shape_collapsed,
|
||||
strides_vec[0],
|
||||
strides_vec[1],
|
||||
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
|
||||
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
|
||||
*dynamic_offset_in,
|
||||
*dynamic_offset_out);
|
||||
} else {
|
||||
copy_general(
|
||||
encoder,
|
||||
|
||||
@@ -10,37 +10,80 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_gg_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), strides_in.data(), strides_out.data());
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto in_stride_x = strides_in[NDIM - 1];
|
||||
auto out_stride_x = strides_out[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data());
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_gg(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides_out,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto in_stride_x = strides_in[ndim - 1];
|
||||
auto out_stride_x = strides_out[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
index_rest * shape_x,
|
||||
shape.data(),
|
||||
strides_in.data(),
|
||||
strides_out.data(),
|
||||
ndim);
|
||||
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx_in, index_x, shape_x, in_stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + idx_out, index_x, out_vec, shape_x, out_stride_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -69,33 +112,52 @@ void copy_general(
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = data_size / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
rest,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_gg<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
|
||||
@@ -10,33 +10,67 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int NDIM>
|
||||
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
|
||||
__global__ void copy_g_nd(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[NDIM - 1];
|
||||
auto stride_x = strides[NDIM - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void copy_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
IdxT size_rest,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides_in,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
auto block = cg::this_thread_block();
|
||||
auto grid = cg::this_grid();
|
||||
IdxT index_rest =
|
||||
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
||||
if (index_rest >= size_rest) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto shape_x = shape[ndim - 1];
|
||||
auto stride_x = strides[ndim - 1];
|
||||
IdxT index_x =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
auto idx =
|
||||
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
|
||||
auto in_vec =
|
||||
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
|
||||
}
|
||||
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -61,30 +95,49 @@ void copy_general_input(
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
auto rest = out.size() / dim0;
|
||||
if (dim0 >= 4) {
|
||||
work_per_thread = 4;
|
||||
}
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
auto block_dims = get_block_dims(dim0, rest, 1);
|
||||
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
||||
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
||||
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
|
||||
if (work_per_thread == 4) {
|
||||
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g<InType, OutType, IdxT>,
|
||||
num_blocks,
|
||||
kernel,
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
|
||||
275
mlx/backend/cuda/cudnn_utils.cpp
Normal file
275
mlx/backend/cuda/cudnn_utils.cpp
Normal file
@@ -0,0 +1,275 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/cudnn_utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Create a cudnn tensor descriptor.
|
||||
template <typename Vec>
|
||||
inline cudnn_frontend::Tensor build_cudnn_tensor(
|
||||
int64_t id,
|
||||
const array& x,
|
||||
const Vec& shape,
|
||||
const Vec& strides) {
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
// In MLX a singleton dim (shape[dim] == 1) can have any stride, but in cuDNN
|
||||
// whether a tensor is contiguous is determined with:
|
||||
// shape[dim] == shape[dim + 1] * strides[dim + 1]
|
||||
// So a contiguous array with singleton dims in MLX may be mistakenly treated
|
||||
// as strided in cuDNN, and we work around it by normalizing the strides.
|
||||
Strides normalized_strides(const array& x) {
|
||||
if (!x.flags().row_contiguous || x.ndim() < 2) {
|
||||
return x.strides();
|
||||
}
|
||||
Strides strides = x.strides();
|
||||
for (int i = x.ndim() - 2; i >= 0; --i) {
|
||||
if (x.shape(i) == 1) {
|
||||
strides[i] = x.shape(i + 1) * strides[i + 1];
|
||||
}
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
// Return the shape and strides after transposing from NHWC to NCHW.
|
||||
auto nhwc_to_nchw(SmallVector<int64_t> shape, SmallVector<int64_t> strides) {
|
||||
assert(shape.size() >= 3);
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline auto nhwc_to_nchw(const array& x) {
|
||||
return nhwc_to_nchw(
|
||||
convert_vector<int64_t>(x.shape()), normalized_strides(x));
|
||||
}
|
||||
|
||||
// Return available engines for a |op_graph|.
|
||||
cudnn_frontend::EngineConfigList get_cudnn_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = true) {
|
||||
SmallVector<cudnn_frontend::GeneratorSource, 2> sources;
|
||||
sources.push_back([](auto& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
});
|
||||
if (use_fallback) {
|
||||
sources.push_back([&backend_type](auto& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
});
|
||||
}
|
||||
|
||||
auto configs =
|
||||
cudnn_frontend::EngineConfigGenerator(sources.size(), sources.data())
|
||||
.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
// Take |engine_configs| and |op_graph| and find a working execution plans
|
||||
// from them.
|
||||
std::optional<cudnn_frontend::ExecutionPlan>
|
||||
find_cudnn_plan_from_engine_configs(
|
||||
cudnnHandle_t handle,
|
||||
const cudnn_frontend::EngineConfigList& engine_configs,
|
||||
const cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto op_graph_tag = op_graph.getTag();
|
||||
for (const auto& config : engine_configs) {
|
||||
try {
|
||||
return cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(handle)
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
// Prepare workspace and args to execute plan.
|
||||
template <typename F>
|
||||
bool prepare_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs,
|
||||
F&& execute) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(
|
||||
workspace_size > 0 ? allocator::malloc(workspace_size)
|
||||
: allocator::Buffer(nullptr),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
|
||||
auto args = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(num_args, data_ptrs)
|
||||
.setUids(num_args, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
if (!execute(handle, plan.get_raw_desc(), args.get_raw_desc())) {
|
||||
return false;
|
||||
}
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
return build_cudnn_tensor(id, x, shape, normalized_strides(x));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x) {
|
||||
if (x.ndim() == 0) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return build_cudnn_tensor(id, x, scalar_dims, scalar_dims);
|
||||
}
|
||||
if (x.ndim() == 1) {
|
||||
int64_t s = x.shape(0);
|
||||
SmallVector<int64_t, 4> shape = {1, x.shape(0), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, 1, s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 2) {
|
||||
int64_t s =
|
||||
x.flags().row_contiguous ? x.shape(1) * x.strides(1) : x.strides(0);
|
||||
SmallVector<int64_t, 4> shape = {x.shape(0), x.shape(1), 1, 1};
|
||||
SmallVector<int64_t, 4> strides = {s, x.strides(1), s, s};
|
||||
return build_cudnn_tensor(id, x, shape, strides);
|
||||
}
|
||||
if (x.ndim() == 3 || x.ndim() == 4) {
|
||||
return build_cudnn_tensor_nchw(id, x);
|
||||
}
|
||||
throw std::runtime_error(
|
||||
fmt::format("Unsupported array with {} dims.", x.ndim()));
|
||||
}
|
||||
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype) {
|
||||
SmallVector<int64_t, 4> scalar_dims = {1, 1, 1, 1};
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(scalar_dims.size(), scalar_dims.data())
|
||||
.setStrides(scalar_dims.size(), scalar_dims.data())
|
||||
.setId(id)
|
||||
.setAlignment(16)
|
||||
.setDataType(dtype_to_cudnn_type(dtype))
|
||||
.setByValue(true)
|
||||
.build();
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
|
||||
if (engine_configs.empty()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
|
||||
}
|
||||
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(handle, plan, args) != CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
});
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs) {
|
||||
return prepare_cudnn_plan(
|
||||
encoder,
|
||||
plan,
|
||||
num_args,
|
||||
uids,
|
||||
data_ptrs,
|
||||
[&](auto handle, auto plan, auto args) {
|
||||
if (!graph) {
|
||||
graph = CudaGraph(encoder.device());
|
||||
if (cudnnBackendPopulateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (cudnnBackendUpdateCudaGraph(handle, plan, args, graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
return true;
|
||||
});
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
||||
164
mlx/backend/cuda/cudnn_utils.h
Normal file
164
mlx/backend/cuda/cudnn_utils.h
Normal file
@@ -0,0 +1,164 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
class CommandEncoder;
|
||||
}
|
||||
|
||||
// Return pointer alignment of |x|'s data.
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
// Convert the type of elements in |vec| to |T|.
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
// Return an array that can be used as map key for |vec| with size <= MAX_NDIM.
|
||||
//
|
||||
// There are 2 differences from the const_param util from kernel_utils.cuh:
|
||||
// 1. The rest of array is filled with 0.
|
||||
// 2. This util can be used in .cpp files.
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
// Helpers used by get_data_ptrs to get pointers.
|
||||
inline void* get_data_ptr(const array& arr) {
|
||||
return const_cast<void*>(arr.data<void>());
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>
|
||||
inline void* get_data_ptr(T& scalar) {
|
||||
return &scalar;
|
||||
}
|
||||
|
||||
// Return an array filled with data pointers of args.
|
||||
template <typename... Args>
|
||||
inline std::array<void*, sizeof...(Args)> get_data_ptrs(Args&... args) {
|
||||
return {get_data_ptr(args)...};
|
||||
}
|
||||
|
||||
// Map dtype to cudnn data type.
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
// Create a tensor descriptor from |x|.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, and transpose from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a tensor descriptor from |x|, make sure it is 4D, and transpose it
|
||||
// from NHWC to NCHW.
|
||||
cudnn_frontend::Tensor build_cudnn_tensor_4d_nchw(int64_t id, const array& x);
|
||||
|
||||
// Create a 4D scalar tensor descriptor, which is passed by value.
|
||||
cudnn_frontend::Tensor build_cudnn_scalar_4d(int64_t id, Dtype dtype);
|
||||
|
||||
// Find a working plan for |op_graph|.
|
||||
std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
cudnnHandle_t handle,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph);
|
||||
|
||||
// Encode the plan to command buffer by capturing.
|
||||
bool encode_cudnn_plan_with_capturing(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
// Encode the plan to command buffer by using native graph api of cudnn. If the
|
||||
// |graph| is empty it will be populated, otherwise it will be updated.
|
||||
bool encode_cudnn_plan_with_graph_api(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
int num_args,
|
||||
const int64_t* uids,
|
||||
void** data_ptrs);
|
||||
#endif
|
||||
|
||||
// Helpers to make calls like encode_cudnn_plan(..., {'x', 'y', 'z'}, x, y, z).
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_capturing(
|
||||
encoder, plan, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
|
||||
#if CUDNN_VERSION >= 90500
|
||||
template <typename... Args>
|
||||
bool encode_cudnn_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
CudaGraph& graph,
|
||||
std::initializer_list<int64_t> uids,
|
||||
Args&... args) {
|
||||
assert(uids.size() == sizeof...(args));
|
||||
auto data_ptrs = get_data_ptrs(args...);
|
||||
return encode_cudnn_plan_with_graph_api(
|
||||
encoder, plan, graph, uids.size(), uids.begin(), data_ptrs.data());
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core
|
||||
379
mlx/backend/cuda/custom_kernel.cpp
Normal file
379
mlx/backend/cuda/custom_kernel.cpp
Normal file
@@ -0,0 +1,379 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/fast.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr const char* default_header = R"(
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
#define inf cuda::std::numeric_limits<float>::infinity()
|
||||
|
||||
)";
|
||||
|
||||
std::string template_arguments_hash(
|
||||
const std::vector<std::pair<std::string, TemplateArg>>& template_args) {
|
||||
if (template_args.empty()) {
|
||||
return "";
|
||||
}
|
||||
|
||||
std::string hash;
|
||||
hash.reserve(512);
|
||||
|
||||
for (const auto& [name, arg] : template_args) {
|
||||
if (std::holds_alternative<int>(arg)) {
|
||||
hash += fmt::format("_{}", std::get<int>(arg));
|
||||
} else if (std::holds_alternative<bool>(arg)) {
|
||||
hash += (std::get<bool>(arg)) ? "_t" : "_f";
|
||||
} else if (std::holds_alternative<Dtype>(arg)) {
|
||||
hash += "_";
|
||||
hash += get_type_string(std::get<Dtype>(arg));
|
||||
}
|
||||
}
|
||||
|
||||
return hash;
|
||||
}
|
||||
|
||||
std::string build_kernel(
|
||||
const std::string& func_name,
|
||||
const std::string& header,
|
||||
const std::string& source,
|
||||
const std::vector<std::string>& input_names,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<std::string>& output_names,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
const std::vector<std::pair<std::string, TemplateArg>>& template_args,
|
||||
const std::vector<CustomKernelShapeInfo>& shape_infos) {
|
||||
std::string kernel_source;
|
||||
kernel_source.reserve(header.size() + source.size() + 8192);
|
||||
kernel_source += default_header;
|
||||
kernel_source += header;
|
||||
kernel_source +=
|
||||
"namespace mlx::core::cu {\n\n"
|
||||
"namespace cg = cooperative_groups;\n\n";
|
||||
|
||||
kernel_source += "__global__ void ";
|
||||
kernel_source += func_name;
|
||||
kernel_source += "(\n";
|
||||
|
||||
// Add inputs
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
const auto& name = input_names[i];
|
||||
const auto& arr = inputs[i];
|
||||
kernel_source += " const ";
|
||||
kernel_source += dtype_to_cuda_type(arr.dtype());
|
||||
kernel_source += "* ";
|
||||
kernel_source += name;
|
||||
kernel_source += ",\n";
|
||||
// Add input shape, strides and ndim if present in the source
|
||||
if (arr.ndim() > 0) {
|
||||
if (shape_infos[i].shape) {
|
||||
kernel_source += " const __grid_constant__ Shape ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_shape,\n";
|
||||
}
|
||||
if (shape_infos[i].strides) {
|
||||
kernel_source += " const __grid_constant__ Strides ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_strides,\n";
|
||||
}
|
||||
if (shape_infos[i].ndim) {
|
||||
kernel_source += " const __grid_constant__ int ";
|
||||
kernel_source += name;
|
||||
kernel_source += "_ndim,\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Add outputs
|
||||
for (int i = 0; i < output_names.size(); ++i) {
|
||||
const auto& name = output_names[i];
|
||||
const auto& dtype = output_dtypes[i];
|
||||
kernel_source += " ";
|
||||
kernel_source += dtype_to_cuda_type(dtype);
|
||||
kernel_source += "* ";
|
||||
kernel_source += name;
|
||||
if (i < output_names.size() - 1) {
|
||||
kernel_source += ",\n";
|
||||
} else {
|
||||
kernel_source += ") {\n";
|
||||
}
|
||||
}
|
||||
|
||||
// Set compile time constants
|
||||
if (!template_args.empty()) {
|
||||
for (const auto& [name, arg] : template_args) {
|
||||
if (std::holds_alternative<int>(arg)) {
|
||||
kernel_source +=
|
||||
fmt::format(" constexpr int {} = {};\n", name, std::get<int>(arg));
|
||||
} else if (std::holds_alternative<bool>(arg)) {
|
||||
kernel_source += fmt::format(
|
||||
" constexpr bool {} = {};\n", name, std::get<bool>(arg));
|
||||
} else {
|
||||
kernel_source += fmt::format(
|
||||
" using {} = {};\n",
|
||||
name,
|
||||
dtype_to_cuda_type(std::get<Dtype>(arg)));
|
||||
}
|
||||
}
|
||||
kernel_source += "\n";
|
||||
}
|
||||
|
||||
kernel_source += source;
|
||||
kernel_source += "\n}\n\n} // namespace mlx::core::cu\n";
|
||||
|
||||
return kernel_source;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CustomKernelFunction cuda_kernel(
|
||||
const std::string& name,
|
||||
const std::vector<std::string>& input_names,
|
||||
const std::vector<std::string>& output_names,
|
||||
const std::string& source,
|
||||
const std::string& header,
|
||||
bool ensure_row_contiguous,
|
||||
int shared_memory) {
|
||||
if (output_names.empty()) {
|
||||
throw std::invalid_argument(
|
||||
"[custom_kernel] Must specify at least one output.");
|
||||
}
|
||||
|
||||
std::vector<CustomKernelShapeInfo> shape_infos;
|
||||
for (auto& n : input_names) {
|
||||
CustomKernelShapeInfo shape_info;
|
||||
shape_info.shape = source.find(n + "_shape") != std::string::npos;
|
||||
shape_info.strides = source.find(n + "_strides") != std::string::npos;
|
||||
shape_info.ndim = source.find(n + "_ndim") != std::string::npos;
|
||||
shape_infos.push_back(shape_info);
|
||||
}
|
||||
|
||||
return [=, shape_infos = std::move(shape_infos)](
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<Shape>& output_shapes,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
std::tuple<int, int, int> grid,
|
||||
std::tuple<int, int, int> threadgroup,
|
||||
const std::vector<std::pair<std::string, TemplateArg>>&
|
||||
template_args = {},
|
||||
std::optional<float> init_value = std::nullopt,
|
||||
bool verbose = false,
|
||||
StreamOrDevice s_ = {}) {
|
||||
if (inputs.size() != input_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `inputs` to have size "
|
||||
<< input_names.size() << " but got size " << inputs.size() << "."
|
||||
<< std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (output_shapes.size() != output_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `output_shapes` to have size "
|
||||
<< output_names.size() << " but got size " << output_shapes.size()
|
||||
<< "." << std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (output_dtypes.size() != output_names.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[custom_kernel] Expected `output_dtypes` to have size "
|
||||
<< output_names.size() << " but got size " << output_dtypes.size()
|
||||
<< "." << std::endl;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto s = to_stream(s_);
|
||||
if (s.device != Device::gpu) {
|
||||
throw std::invalid_argument("[custom_kernel] Only supports the GPU.");
|
||||
}
|
||||
|
||||
std::string kernel_name =
|
||||
"custom_kernel_" + name + template_arguments_hash(template_args);
|
||||
std::string kernel_source = build_kernel(
|
||||
kernel_name,
|
||||
header,
|
||||
source,
|
||||
input_names,
|
||||
inputs,
|
||||
output_names,
|
||||
output_dtypes,
|
||||
template_args,
|
||||
shape_infos);
|
||||
|
||||
if (verbose) {
|
||||
std::cout << "Generated source code for `" << kernel_name
|
||||
<< "`:" << std::endl
|
||||
<< "```" << std::endl
|
||||
<< kernel_source << std::endl
|
||||
<< "```" << std::endl;
|
||||
}
|
||||
|
||||
return array::make_arrays(
|
||||
std::move(output_shapes),
|
||||
std::move(output_dtypes),
|
||||
std::make_shared<CustomKernel>(
|
||||
s,
|
||||
std::move(kernel_name),
|
||||
std::move(kernel_source),
|
||||
grid,
|
||||
threadgroup,
|
||||
shape_infos,
|
||||
ensure_row_contiguous,
|
||||
init_value,
|
||||
std::vector<ScalarArg>{},
|
||||
false,
|
||||
shared_memory),
|
||||
std::move(inputs));
|
||||
};
|
||||
}
|
||||
|
||||
std::vector<array> precompiled_cuda_kernel(
|
||||
const std::string& name,
|
||||
const std::string& compiled_source,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<Shape>& output_shapes,
|
||||
const std::vector<Dtype>& output_dtypes,
|
||||
const std::vector<ScalarArg>& scalars,
|
||||
std::tuple<int, int, int> grid,
|
||||
std::tuple<int, int, int> threadgroup,
|
||||
int shared_memory,
|
||||
std::optional<float> init_value,
|
||||
bool ensure_row_contiguous,
|
||||
StreamOrDevice s) {
|
||||
std::vector<CustomKernelShapeInfo> shape_infos(
|
||||
inputs.size(), CustomKernelShapeInfo{false, false, false});
|
||||
return array::make_arrays(
|
||||
output_shapes,
|
||||
output_dtypes,
|
||||
std::make_shared<CustomKernel>(
|
||||
to_stream(s),
|
||||
name,
|
||||
compiled_source,
|
||||
grid,
|
||||
threadgroup,
|
||||
shape_infos,
|
||||
ensure_row_contiguous,
|
||||
init_value,
|
||||
scalars,
|
||||
true,
|
||||
shared_memory),
|
||||
inputs);
|
||||
}
|
||||
|
||||
void CustomKernel::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("CustomKernel::eval_gpu");
|
||||
auto& s = stream();
|
||||
|
||||
std::vector<array> copies;
|
||||
|
||||
// Allocate and initialize the output arrays
|
||||
for (auto& out : outputs) {
|
||||
if (init_value_) {
|
||||
copies.emplace_back(init_value_.value(), out.dtype());
|
||||
fill_gpu(copies.back(), out, s);
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
}
|
||||
}
|
||||
|
||||
// Create the input arrays and copy if needed
|
||||
auto check_input = [&copies, &s, this](const array& x) -> const array {
|
||||
bool no_copy = x.flags().row_contiguous;
|
||||
if (!ensure_row_contiguous_ || no_copy) {
|
||||
return x;
|
||||
} else {
|
||||
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
|
||||
copy_gpu(x, copies.back(), CopyType::General, s);
|
||||
return copies.back();
|
||||
}
|
||||
};
|
||||
std::vector<array> checked_inputs;
|
||||
for (const array& in : inputs) {
|
||||
checked_inputs.push_back(check_input(in));
|
||||
}
|
||||
|
||||
// Compile the custom kernel
|
||||
std::string kernel_name =
|
||||
(is_precompiled_) ? name_ : "mlx::core::cu::" + name_;
|
||||
cu::JitModule& mod = cu::get_jit_module(
|
||||
s.device,
|
||||
name_,
|
||||
[&]() {
|
||||
return std::make_tuple(
|
||||
is_precompiled_, source_, std::vector{kernel_name});
|
||||
},
|
||||
false);
|
||||
|
||||
// Make the arguments
|
||||
cu::KernelArgs args;
|
||||
for (int i = 0; i < checked_inputs.size(); i++) {
|
||||
const array& in = checked_inputs[i];
|
||||
auto& shape_info = shape_infos_[i];
|
||||
args.append(in);
|
||||
if (shape_info.shape) {
|
||||
args.append_ndim(in.shape());
|
||||
}
|
||||
if (shape_info.strides) {
|
||||
args.append_ndim(in.strides());
|
||||
}
|
||||
if (shape_info.ndim) {
|
||||
args.append<int32_t>(in.ndim());
|
||||
}
|
||||
}
|
||||
for (auto& out : outputs) {
|
||||
args.append(out);
|
||||
}
|
||||
for (auto& s : scalar_arguments_) {
|
||||
if (std::holds_alternative<bool>(s)) {
|
||||
args.append(std::get<bool>(s));
|
||||
} else if (std::holds_alternative<int>(s)) {
|
||||
args.append(std::get<int>(s));
|
||||
} else if (std::holds_alternative<float>(s)) {
|
||||
args.append(std::get<float>(s));
|
||||
}
|
||||
}
|
||||
|
||||
// Make the grid
|
||||
const auto [tx, ty, tz] = threadgroup_;
|
||||
const auto [gx, gy, gz] = grid_;
|
||||
dim3 block(std::min(tx, gx), std::min(ty, gy), std::min(tz, gz));
|
||||
dim3 grid((gx + tx - 1) / tx, (gy + ty - 1) / ty, (gz + tz - 1) / tz);
|
||||
|
||||
// Call the kernel
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : checked_inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
for (const auto& out : outputs) {
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
for (const auto& t : copies) {
|
||||
encoder.add_temporary(t);
|
||||
}
|
||||
auto kernel =
|
||||
mod.get_kernel(kernel_name, [smem = shared_memory_](CUfunction kernel) {
|
||||
if (smem > 0 && smem > 48000) {
|
||||
cuFuncSetAttribute(
|
||||
kernel, CU_FUNC_ATTRIBUTE_MAX_DYNAMIC_SHARED_SIZE_BYTES, smem);
|
||||
}
|
||||
});
|
||||
encoder.add_kernel_node(kernel, grid, block, shared_memory_, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core::fast
|
||||
@@ -14,10 +14,6 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
@@ -27,11 +23,11 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
bool use_cuda_graphs() {
|
||||
static bool use_graphs = []() {
|
||||
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
|
||||
}();
|
||||
return cache_size;
|
||||
return use_graphs;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -68,8 +64,8 @@ Device::~Device() {
|
||||
|
||||
void Device::make_current() {
|
||||
// We need to set/get current CUDA device very frequently, cache it to reduce
|
||||
// actual calls of CUDA APIs. This function assumes single-thread in host.
|
||||
static int current = 0;
|
||||
// actual calls of CUDA APIs.
|
||||
static thread_local int current = 0;
|
||||
if (current != device_) {
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(device_));
|
||||
current = device_;
|
||||
@@ -86,14 +82,20 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
|
||||
if (!use_cuda_graphs()) {
|
||||
enc.node_count_++;
|
||||
return;
|
||||
}
|
||||
|
||||
graph.end_capture(enc.stream());
|
||||
if (discard) {
|
||||
return;
|
||||
}
|
||||
@@ -107,6 +109,9 @@ CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
|
||||
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
|
||||
enc.in_concurrent_ = false;
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Use an empty graph node for synchronization
|
||||
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
|
||||
@@ -185,37 +190,46 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
: device_(d),
|
||||
stream_(d),
|
||||
graph_(d),
|
||||
worker_(d),
|
||||
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
|
||||
void CommandEncoder::set_input_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::set_output_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
active_outputs_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::maybe_commit() {
|
||||
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
commit();
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cudaLaunchKernel(
|
||||
func, grid_dim, block_dim, params, smem_bytes, stream()));
|
||||
return;
|
||||
}
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
@@ -231,6 +245,23 @@ void CommandEncoder::add_kernel_node(
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cuLaunchKernel(
|
||||
func,
|
||||
grid_dim.x,
|
||||
grid_dim.y,
|
||||
grid_dim.z,
|
||||
block_dim.x,
|
||||
block_dim.y,
|
||||
block_dim.z,
|
||||
smem_bytes,
|
||||
stream(),
|
||||
params,
|
||||
nullptr));
|
||||
return;
|
||||
}
|
||||
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDimX = grid_dim.x;
|
||||
@@ -257,20 +288,38 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CudaGraphExec graph_exec;
|
||||
graph_exec.instantiate(child);
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
|
||||
return;
|
||||
}
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
int CommandEncoder::get_num_ops() {
|
||||
return node_count_;
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
if (node_count_ > 0) {
|
||||
if (use_cuda_graphs() && node_count_ > 0) {
|
||||
if (!from_nodes_.empty()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
|
||||
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
|
||||
graph_,
|
||||
from_nodes_.data(),
|
||||
to_nodes_.data(),
|
||||
#if CUDART_VERSION >= 13000
|
||||
nullptr, // edgeData
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
from_nodes_.size()));
|
||||
}
|
||||
|
||||
graph_key_ += ".";
|
||||
@@ -304,19 +353,18 @@ void CommandEncoder::commit() {
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
to_nodes_.clear();
|
||||
graph_key_.clear();
|
||||
node_map_.clear();
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
graph_ = CudaGraph(device_);
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.commit(stream_);
|
||||
node_count_ = 0;
|
||||
}
|
||||
|
||||
void CommandEncoder::synchronize() {
|
||||
|
||||
@@ -21,7 +21,7 @@ class CommandEncoder {
|
||||
struct CaptureContext {
|
||||
CaptureContext(CommandEncoder& enc);
|
||||
~CaptureContext();
|
||||
cudaGraph_t graph;
|
||||
CudaGraph graph;
|
||||
CommandEncoder& enc;
|
||||
bool discard{false};
|
||||
};
|
||||
@@ -76,9 +76,6 @@ class CommandEncoder {
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
@@ -86,7 +83,7 @@ class CommandEncoder {
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void maybe_commit();
|
||||
int get_num_ops();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
@@ -101,6 +98,9 @@ class CommandEncoder {
|
||||
void synchronize();
|
||||
|
||||
private:
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
|
||||
struct GraphNode {
|
||||
cudaGraphNode_t node;
|
||||
// K = kernel
|
||||
@@ -115,7 +115,7 @@ class CommandEncoder {
|
||||
|
||||
Device& device_;
|
||||
CudaStream stream_;
|
||||
cudaGraph_t graph_;
|
||||
CudaGraph graph_;
|
||||
Worker worker_;
|
||||
char node_count_{0};
|
||||
char graph_node_count_{0};
|
||||
@@ -140,7 +140,7 @@ class Device {
|
||||
Device(const Device&) = delete;
|
||||
Device& operator=(const Device&) = delete;
|
||||
|
||||
// Make this device the current cuda device, required by some cuda calls.
|
||||
// Make this device the current cuda device, this method is thread-safe.
|
||||
void make_current();
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
@@ -204,6 +204,12 @@ struct Power {
|
||||
__device__ T operator()(T base, T exp) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
T res = 1;
|
||||
// Raising an integer to a negative power is undefined
|
||||
if constexpr (cuda::std::is_signed_v<T>) {
|
||||
if (exp < 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
while (exp) {
|
||||
if (exp & 1) {
|
||||
res *= base;
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user