mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
3 Commits
ring-init
...
cc4de6a607
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
cc4de6a607 | ||
|
|
ac5adfa963 | ||
|
|
8bb8b76ae4 |
@@ -16,9 +16,6 @@ parameters:
|
||||
linux_release:
|
||||
type: boolean
|
||||
default: false
|
||||
cuda_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
@@ -41,7 +38,7 @@ jobs:
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install -r docs/requirements.txt
|
||||
pip install . -v
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
|
||||
- when:
|
||||
condition:
|
||||
not: << parameters.upload-docs >>
|
||||
@@ -97,15 +94,17 @@ jobs:
|
||||
name: Install Python package
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python3 setup.py develop
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
@@ -155,14 +154,15 @@ jobs:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
@@ -205,7 +205,8 @@ jobs:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
@@ -222,9 +223,11 @@ jobs:
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
pip install -e ".[dev]"
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -273,18 +276,21 @@ jobs:
|
||||
command: |
|
||||
source env/bin/activate
|
||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
<< parameters.build_env >> python -m build -w
|
||||
<< parameters.build_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
|
||||
python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
@@ -332,10 +338,14 @@ jobs:
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.extra_env >> pip install . -v
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
pip install . -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> python -m build --wheel
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
|
||||
python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
- run:
|
||||
@@ -346,46 +356,6 @@ jobs:
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
build_cuda_release:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
extra_env:
|
||||
type: string
|
||||
default: "DEV_RELEASE=1"
|
||||
machine:
|
||||
image: linux-cuda-12:default
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
pip install ".[dev]" -v
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build --wheel
|
||||
bash python/scripts/repair_cuda.sh
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
workflows:
|
||||
build_and_test:
|
||||
when:
|
||||
@@ -492,16 +462,6 @@ workflows:
|
||||
branches:
|
||||
ignore: /.*/
|
||||
upload-docs: true
|
||||
- build_linux_release:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
||||
prb:
|
||||
when:
|
||||
@@ -665,14 +625,3 @@ workflows:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
cuda_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.cuda_release >>
|
||||
jobs:
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
||||
@@ -35,6 +35,7 @@ option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
||||
option(MLX_BUILD_CUDA "Build cuda backend" OFF)
|
||||
option(MLX_BUILD_ROCM "Build ROCm backend" OFF)
|
||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
@@ -88,6 +89,10 @@ if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_ROCM)
|
||||
enable_language(HIP)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
|
||||
@@ -192,22 +192,6 @@ void time_reductions() {
|
||||
|
||||
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
|
||||
TIME(argmin_along_1);
|
||||
|
||||
auto indices = mx::array({1});
|
||||
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
|
||||
std::vector<int> axes{0};
|
||||
auto b = scatter(a, {indices}, updates, axes);
|
||||
mx::eval(b);
|
||||
|
||||
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
|
||||
TIME(max_along_0);
|
||||
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
|
||||
TIME(max_along_1);
|
||||
|
||||
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
|
||||
TIME(min_along_0);
|
||||
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
|
||||
TIME(min_along_1);
|
||||
}
|
||||
|
||||
void time_gather_scatter() {
|
||||
|
||||
@@ -5,7 +5,6 @@ import os
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.cuda
|
||||
import torch.mps
|
||||
|
||||
|
||||
@@ -45,10 +44,8 @@ def bench(f, *args):
|
||||
|
||||
|
||||
def sync_if_needed(x):
|
||||
if x.device == torch.device("mps"):
|
||||
if x.device != torch.device("cpu"):
|
||||
torch.mps.synchronize()
|
||||
elif x.device == torch.device("cuda"):
|
||||
torch.cuda.synchronize()
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
@@ -102,14 +99,6 @@ def reduction(op, axis, x):
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def sum_and_add(axis, x, y):
|
||||
z = x.sum(axis=axis, keepdims=True)
|
||||
for i in range(50):
|
||||
z = (z + y).sum(axis=axis, keepdims=True)
|
||||
sync_if_needed(x)
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def softmax(axis, x):
|
||||
ys = []
|
||||
@@ -351,11 +340,7 @@ if __name__ == "__main__":
|
||||
args.axis.pop(0)
|
||||
|
||||
torch.set_num_threads(1)
|
||||
device = "mps"
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
if args.cpu:
|
||||
device = "cpu"
|
||||
device = "cpu" if args.cpu else "mps"
|
||||
|
||||
types = args.dtype
|
||||
if not types:
|
||||
@@ -475,8 +460,5 @@ if __name__ == "__main__":
|
||||
elif args.benchmark == "selu":
|
||||
print(bench(selu, x))
|
||||
|
||||
elif args.benchmark == "sum_and_add":
|
||||
print(bench(sum_and_add, axis, *xs))
|
||||
|
||||
else:
|
||||
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")
|
||||
|
||||
@@ -51,20 +51,6 @@ def time_maximum():
|
||||
time_fn(mx.maximum, a, b)
|
||||
|
||||
|
||||
def time_max():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.max, a, 0)
|
||||
|
||||
|
||||
def time_min():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
a[1, 1] = mx.nan
|
||||
mx.eval(a)
|
||||
time_fn(mx.min, a, 0)
|
||||
|
||||
|
||||
def time_negative():
|
||||
a = mx.random.uniform(shape=(10000, 1000))
|
||||
mx.eval(a)
|
||||
@@ -122,8 +108,6 @@ if __name__ == "__main__":
|
||||
|
||||
time_add()
|
||||
time_matmul()
|
||||
time_min()
|
||||
time_max()
|
||||
time_maximum()
|
||||
time_exp()
|
||||
time_negative()
|
||||
|
||||
@@ -30,16 +30,6 @@ MLX is also available on conda-forge. To install MLX with conda do:
|
||||
|
||||
conda install conda-forge::mlx
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
|
||||
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install mlx-cuda
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
@@ -75,8 +65,6 @@ Build Requirements
|
||||
Python API
|
||||
^^^^^^^^^^
|
||||
|
||||
.. _python install:
|
||||
|
||||
To build and install the MLX python library from source, first, clone MLX from
|
||||
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
|
||||
|
||||
@@ -88,20 +76,20 @@ Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install .
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
|
||||
|
||||
For developing, install the package with development dependencies, and use an
|
||||
editable install:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install -e ".[dev]"
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
|
||||
|
||||
Once the development dependencies are installed, you can build faster with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
python setup.py build_ext --inplace
|
||||
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
|
||||
|
||||
Run the tests with:
|
||||
|
||||
@@ -119,8 +107,6 @@ IDE:
|
||||
C++ API
|
||||
^^^^^^^
|
||||
|
||||
.. _cpp install:
|
||||
|
||||
Currently, MLX must be built and installed from source.
|
||||
|
||||
Similarly to the python library, to build and install the MLX C++ library start
|
||||
@@ -199,7 +185,6 @@ should point to the path to the built metal library.
|
||||
|
||||
xcrun -sdk macosx --show-sdk-version
|
||||
|
||||
|
||||
Binary Size Minimization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
@@ -228,50 +213,6 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists across reboots.
|
||||
|
||||
Linux
|
||||
^^^^^
|
||||
|
||||
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
|
||||
For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
apt-get update -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
|
||||
From here follow the instructions to install either the :ref:`Python <python
|
||||
install>` or :ref:`C++ <cpp install>` APIs.
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
|
||||
and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
|
||||
|
||||
To build the C++ package run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_CUDA=ON && make -j
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
|
||||
@@ -60,7 +60,16 @@ else()
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda/no_cuda.cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)
|
||||
if(MLX_BUILD_ROCM)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/rocm)
|
||||
else()
|
||||
target_sources(mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/rocm/no_rocm.cpp)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL
|
||||
OR MLX_BUILD_CUDA
|
||||
OR MLX_BUILD_ROCM)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/gpu)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_gpu)
|
||||
|
||||
@@ -14,8 +14,6 @@ void print_constant(std::ostream& os, const array& x) {
|
||||
return print_float_constant<float16_t>(os, x);
|
||||
case bfloat16:
|
||||
return print_float_constant<bfloat16_t>(os, x);
|
||||
case float64:
|
||||
return print_float_constant<double>(os, x);
|
||||
case complex64:
|
||||
return print_complex_constant<complex64_t>(os, x);
|
||||
case int8:
|
||||
@@ -52,8 +50,6 @@ std::string get_type_string(Dtype d) {
|
||||
return "float16_t";
|
||||
case bfloat16:
|
||||
return "bfloat16_t";
|
||||
case float64:
|
||||
return "double";
|
||||
case complex64:
|
||||
return "complex64_t";
|
||||
case bool_:
|
||||
|
||||
@@ -18,12 +18,8 @@ std::string get_type_string(Dtype d);
|
||||
template <typename T>
|
||||
void print_float_constant(std::ostream& os, const array& x) {
|
||||
auto old_precision = os.precision();
|
||||
if constexpr (std::is_same_v<T, double>) {
|
||||
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
|
||||
} else {
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
|
||||
}
|
||||
os << x.item<T>() << std::setprecision(old_precision);
|
||||
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
|
||||
<< x.item<T>() << std::setprecision(old_precision);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
||||
@@ -12,11 +12,16 @@ namespace mlx::core {
|
||||
inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}};
|
||||
// Get and check the shape for the batched dims
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
|
||||
if (A_bshape != B_bshape) {
|
||||
std::ostringstream msg;
|
||||
msg << "[matmul] Got matrices with incorrectly broadcasted shapes: " << "A "
|
||||
<< a.shape() << ", B " << b.shape() << ".";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
|
||||
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
|
||||
|
||||
@@ -37,11 +42,17 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
// Get and check the shape for the batched dims
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
|
||||
Shape C_bshape{c.shape().begin(), c.shape().end() - 2};
|
||||
if (A_bshape != B_bshape || A_bshape != C_bshape) {
|
||||
std::ostringstream msg;
|
||||
msg << "[addmm] Got matrices with incorrectly broadcasted shapes: " << "A "
|
||||
<< a.shape() << ", B " << b.shape() << ", B " << c.shape() << ".";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
|
||||
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
|
||||
Strides C_bstride{c.strides().begin(), c.strides().end() - 2};
|
||||
|
||||
@@ -5,9 +5,11 @@
|
||||
namespace mlx::core {
|
||||
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
Shape shape,
|
||||
Strides strides,
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
auto shape = x.shape();
|
||||
auto strides = x.strides();
|
||||
|
||||
for (int i = axes.size() - 1; i >= 0; i--) {
|
||||
int a = axes[i];
|
||||
shape.erase(shape.begin() + a);
|
||||
@@ -17,15 +19,6 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
return std::make_pair(shape, strides);
|
||||
}
|
||||
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
auto shape = x.shape();
|
||||
auto strides = x.strides();
|
||||
return shapes_without_reduction_axes(
|
||||
std::move(shape), std::move(strides), axes);
|
||||
}
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
|
||||
@@ -51,9 +51,5 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes);
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
Shape shape,
|
||||
Strides strides,
|
||||
const std::vector<int>& axes);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -199,15 +199,12 @@ Dims get_2d_grid_dims_common(
|
||||
}
|
||||
}
|
||||
}
|
||||
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
|
||||
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX || divisor > 1) {
|
||||
throw std::runtime_error("Unable to safely factor shape.");
|
||||
}
|
||||
if (grid_y > grid_x) {
|
||||
std::swap(grid_x, grid_y);
|
||||
}
|
||||
if (divisor > 1) {
|
||||
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
|
||||
}
|
||||
return std::make_tuple(
|
||||
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
|
||||
}
|
||||
|
||||
@@ -6,7 +6,6 @@
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/gemm.h"
|
||||
#include "mlx/backend/cpu/lapack.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -53,58 +52,6 @@ inline void mask_matrix(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void segmented_mm(
|
||||
const T* a,
|
||||
const T* b,
|
||||
const uint32_t* segments,
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides,
|
||||
size_t num_segments,
|
||||
const Shape& segments_shape,
|
||||
const Strides& segments_strides) {
|
||||
int ndim = a_shape.size();
|
||||
Shape a_copy = a_shape;
|
||||
Shape b_copy = b_shape;
|
||||
int32_t M = a_copy[ndim - 2];
|
||||
int32_t N = b_copy[ndim - 1];
|
||||
for (int i = 0; i < num_segments; i++) {
|
||||
uint32_t k_start =
|
||||
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
|
||||
uint32_t k_end =
|
||||
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
|
||||
if (k_end <= k_start) {
|
||||
std::fill_n(out + i * M * N, M * N, T(0));
|
||||
continue;
|
||||
}
|
||||
a_copy[ndim - 1] = k_end - k_start;
|
||||
b_copy[ndim - 2] = k_end - k_start;
|
||||
matmul<T>(
|
||||
a + k_start * a_strides[ndim - 1],
|
||||
b + k_start * b_strides[ndim - 2],
|
||||
out + i * M * N,
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
N,
|
||||
1.0,
|
||||
0.0,
|
||||
1,
|
||||
a_copy,
|
||||
a_strides,
|
||||
b_copy,
|
||||
b_strides);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -490,121 +437,4 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto check_transpose = [&s, &encoder](const array& x) {
|
||||
auto stx = x.strides()[x.ndim() - 2];
|
||||
auto sty = x.strides()[x.ndim() - 1];
|
||||
if (stx == x.shape(-1) && sty == 1) {
|
||||
return std::make_tuple(false, stx, x);
|
||||
} else if (stx == 1 && sty == x.shape(-2)) {
|
||||
return std::make_tuple(true, sty, x);
|
||||
} else {
|
||||
array xc(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, xc, CopyType::General, s);
|
||||
encoder.add_temporary(xc);
|
||||
int64_t stx = x.shape(-1);
|
||||
return std::make_tuple(false, stx, xc);
|
||||
}
|
||||
};
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
|
||||
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
|
||||
auto& segments = inputs[2];
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(segments);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
segments = array::unsafe_weak_copy(segments),
|
||||
out_ptr = out.data<void>(),
|
||||
a_transposed = a_transposed,
|
||||
b_transposed = b_transposed,
|
||||
lda = lda,
|
||||
ldb = ldb]() {
|
||||
switch (a.dtype()) {
|
||||
case float64:
|
||||
segmented_mm<double>(
|
||||
a.data<double>(),
|
||||
b.data<double>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<double*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case float32:
|
||||
segmented_mm<float>(
|
||||
a.data<float>(),
|
||||
b.data<float>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<float*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case float16:
|
||||
segmented_mm<float16_t>(
|
||||
a.data<float16_t>(),
|
||||
b.data<float16_t>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<float16_t*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
case bfloat16:
|
||||
segmented_mm<bfloat16_t>(
|
||||
a.data<bfloat16_t>(),
|
||||
b.data<bfloat16_t>(),
|
||||
segments.data<uint32_t>(),
|
||||
static_cast<bfloat16_t*>(out_ptr),
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
lda,
|
||||
ldb,
|
||||
a.shape(),
|
||||
a.strides(),
|
||||
b.shape(),
|
||||
b.strides(),
|
||||
segments.size() / 2,
|
||||
segments.shape(),
|
||||
segments.strides());
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"Segmented mm supports only real float types.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -325,15 +325,7 @@ struct MaxReduce {
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
return simd::max(x);
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
if (simd::any(x != x)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
T operator()(simd::Simd<T, N> x) {
|
||||
return simd::max(x);
|
||||
};
|
||||
};
|
||||
@@ -350,15 +342,7 @@ struct MinReduce {
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
return simd::min(x);
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
|
||||
if (simd::any(x != x)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
T operator()(simd::Simd<T, N> x) {
|
||||
return simd::min(x);
|
||||
};
|
||||
};
|
||||
@@ -543,10 +527,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
|
||||
|
||||
@@ -8,7 +8,6 @@ target_sources(
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
|
||||
@@ -29,13 +28,11 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/init_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/segmented_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
|
||||
@@ -68,11 +65,6 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
|
||||
target_compile_options(mlx
|
||||
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
|
||||
|
||||
# Enable calling host constexpr functions from device. This is needed because
|
||||
# the constexpr version of isnan is host only.
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
|
||||
|
||||
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
|
||||
# Explicitly pass this flag to suppress the warning, it is safe to set it to
|
||||
# true but the warning wouldn't be suppressed.
|
||||
|
||||
@@ -3,7 +3,6 @@
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <fmt/format.h>
|
||||
@@ -15,11 +14,9 @@ namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
constexpr int page_size = 16384;
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
page_size,
|
||||
getpagesize(),
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
@@ -34,14 +31,7 @@ CudaAllocator::CudaAllocator()
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size < page_size) {
|
||||
size = next_power_of_2(size);
|
||||
} else {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
}
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
@@ -116,6 +106,7 @@ void CudaAllocator::cuda_free(void* buf) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
cudaFree(buf);
|
||||
}
|
||||
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
@@ -152,29 +151,36 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
auto kernel =
|
||||
cu::arg_reduce_general<T, cu::ArgMax<T>, block_dim(), N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, block_dim(), N_READS>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims{BLOCK_DIM, 1, 1};
|
||||
auto kernel = &cu::arg_reduce_general<
|
||||
InType,
|
||||
cu::ArgMax<InType>,
|
||||
BLOCK_DIM,
|
||||
N_READS>;
|
||||
if (reduce_type_ == ArgReduce::ArgMin) {
|
||||
kernel = &cu::arg_reduce_general<
|
||||
InType,
|
||||
cu::ArgMin<InType>,
|
||||
BLOCK_DIM,
|
||||
N_READS>;
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
const_param(out_strides),
|
||||
ndim,
|
||||
axis_stride,
|
||||
axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -17,86 +17,35 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (int i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[0], b[i]);
|
||||
}
|
||||
} else {
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[i], b[0]);
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[i], b[i]);
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -176,12 +125,13 @@ constexpr bool supports_binary_op() {
|
||||
template <typename Op>
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -190,103 +140,99 @@ void binary_op_gpu_inplace(
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::
|
||||
binary_g_nd<Op, InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(a.dtype(), CTYPE_IN, {
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
|
||||
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel =
|
||||
&cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
});
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
@@ -297,7 +243,8 @@ void binary_op_gpu(
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
std::vector<array> outputs{out};
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
@@ -307,6 +254,14 @@ void binary_op_gpu(
|
||||
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
#define BINARY_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = outputs[0].primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, outputs, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
|
||||
@@ -1,335 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[0], b[i]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[i], b[0]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec.val[i], b[0]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void
|
||||
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
auto out = Op{}(a[i], b[i]);
|
||||
out_a[i] = out[0];
|
||||
out_b[i] = out[1];
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_a_vec;
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
store_vector<N_READS>(out_b, index, out_b_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void binary_two_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_two_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out_a,
|
||||
Out* out_b,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides a_strides,
|
||||
const __grid_constant__ Strides b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
out_b[index] = out[1];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_binary_two_op() {
|
||||
if (std::is_same_v<Op, DivMod>) {
|
||||
return std::is_same_v<In, Out> &&
|
||||
(std::is_integral_v<Out> || is_floating_v<Out>);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename Op>
|
||||
void binary_two_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
auto& out_a = outputs[0];
|
||||
auto& out_b = outputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out_a, bopt);
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
|
||||
if (out_a.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out_a);
|
||||
encoder.set_output_array(out_b);
|
||||
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
out_a.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) =
|
||||
collapse_contiguous_dims(a, b, out_a);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out_a.data_size(),
|
||||
out_a.shape(),
|
||||
out_a.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
out_a.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out_a.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_two_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
void DivMod::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("DivMod::eval_gpu");
|
||||
auto& s = outputs[0].primitive().stream();
|
||||
binary_two_op_gpu<cu::DivMod>(inputs, outputs, get_primitive_string(this), s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -3,7 +3,6 @@
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -179,7 +178,6 @@ void Compiled::eval_gpu(
|
||||
// Whether to use large index.
|
||||
bool large = compiled_use_large_index(inputs, outputs, contiguous);
|
||||
|
||||
cu::KernelArgs args;
|
||||
// Put inputs.
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
@@ -187,26 +185,26 @@ void Compiled::eval_gpu(
|
||||
continue;
|
||||
}
|
||||
const auto& x = inputs[i];
|
||||
args.append(x);
|
||||
mod.append_arg(x);
|
||||
if (!contiguous && !is_scalar(x)) {
|
||||
args.append_ptr(strides_vec[strides_index++].data());
|
||||
mod.append_arg(strides_vec[strides_index++]);
|
||||
}
|
||||
}
|
||||
|
||||
// Put outputs.
|
||||
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
|
||||
for (auto& x : outputs) {
|
||||
args.append(x);
|
||||
mod.append_arg(x);
|
||||
}
|
||||
|
||||
// Put shape and size.
|
||||
if (!contiguous) {
|
||||
args.append_ptr(shape.data());
|
||||
mod.append_arg(shape);
|
||||
}
|
||||
if (large) {
|
||||
args.append<int64_t>(outputs[0].data_size());
|
||||
mod.append_arg<int64_t>(outputs[0].data_size());
|
||||
} else {
|
||||
args.append<uint32_t>(outputs[0].data_size());
|
||||
mod.append_arg<uint32_t>(outputs[0].data_size());
|
||||
}
|
||||
|
||||
// Launch kernel.
|
||||
@@ -224,10 +222,9 @@ void Compiled::eval_gpu(
|
||||
for (const auto& out : outputs) {
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, outputs[0], large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, outputs[0], large);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -24,6 +24,7 @@ void copy_gpu_inplace(
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
|
||||
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
|
||||
return;
|
||||
|
||||
@@ -10,6 +10,15 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, ...) \
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, { \
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, { \
|
||||
using InType = cuda_type_t<CTYPE_IN>; \
|
||||
using OutType = cuda_type_t<CTYPE_OUT>; \
|
||||
__VA_ARGS__; \
|
||||
}); \
|
||||
})
|
||||
|
||||
void copy_contiguous(
|
||||
cu::CommandEncoder& encoder,
|
||||
CopyType ctype,
|
||||
|
||||
@@ -10,43 +10,19 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
__global__ void copy_s(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
} else {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = CastOp<In, Out>{}(in[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename In, typename Out, typename IdxT, int N_READS>
|
||||
template <typename In, typename Out, typename IdxT>
|
||||
__global__ void copy_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = cast_to<Out>(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = CastOp<In, Out>{}(in[index]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -59,29 +35,17 @@ void copy_contiguous(
|
||||
array& out,
|
||||
int64_t in_offset,
|
||||
int64_t out_offset) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT>;
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
|
||||
kernel = cu::copy_v<InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
out.data_size());
|
||||
|
||||
@@ -55,54 +55,39 @@ void copy_general(
|
||||
const Shape& shape,
|
||||
const Strides& strides_in,
|
||||
const Strides& strides_out) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param<ndim_constant()>(shape),
|
||||
const_param<ndim_constant()>(strides_in),
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -61,55 +61,43 @@ void copy_general_dynamic(
|
||||
const Strides& strides_out,
|
||||
const array& dynamic_offset_in,
|
||||
const array& dynamic_offset_out) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::
|
||||
copy_gg_dynamic_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in),
|
||||
const_param<dims_constant()>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_gg_dynamic_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in),
|
||||
const_param<NDIM>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -50,49 +50,37 @@ void copy_general_input(
|
||||
int64_t offset_out,
|
||||
const Shape& shape,
|
||||
const Strides& strides_in) {
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
dispatch_bool(
|
||||
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_COPY_TYPES(in, out, InType, OutType, {
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
bool large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::copy_g_nd<InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(strides_in),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -2,27 +2,36 @@
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <future>
|
||||
#include <unordered_set>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
namespace cu {
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
}();
|
||||
return cache_size;
|
||||
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
|
||||
|
||||
void DeviceStream::synchronize() {
|
||||
cudaStreamSynchronize(stream_);
|
||||
}
|
||||
|
||||
namespace cu {
|
||||
cudaStream_t DeviceStream::schedule_cuda_stream() {
|
||||
// TODO: Return a stream that maximizes parallelism.
|
||||
return stream_;
|
||||
}
|
||||
|
||||
cudaStream_t DeviceStream::last_cuda_stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
CommandEncoder& DeviceStream::get_encoder() {
|
||||
if (!encoder_) {
|
||||
encoder_ = std::make_unique<CommandEncoder>(*this);
|
||||
}
|
||||
return *encoder_;
|
||||
}
|
||||
|
||||
Device::Device(int device) : device_(device) {
|
||||
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
|
||||
@@ -57,268 +66,45 @@ void Device::make_current() {
|
||||
}
|
||||
}
|
||||
|
||||
CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
auto it = encoders_.find(s.index);
|
||||
if (it == encoders_.end()) {
|
||||
it = encoders_.try_emplace(s.index, *this).first;
|
||||
DeviceStream& Device::get_stream(Stream s) {
|
||||
auto it = streams_.find(s.index);
|
||||
if (it == streams_.end()) {
|
||||
it = streams_.try_emplace(s.index, *this).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph, 0));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
size_t num_nodes;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, NULL, &num_nodes));
|
||||
if (num_nodes == 1) {
|
||||
cudaGraphNode_t captured_node;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, &captured_node, &num_nodes));
|
||||
CUDA_KERNEL_NODE_PARAMS params;
|
||||
CHECK_CUDA_ERROR(cuGraphKernelNodeGetParams(captured_node, ¶ms));
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, enc.graph_, NULL, 0, ¶ms));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
} else {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddChildGraphNode(&node, enc.graph_, NULL, 0, graph));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph));
|
||||
}
|
||||
|
||||
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
: enc(enc) {
|
||||
enc.in_concurrent_ = true;
|
||||
}
|
||||
|
||||
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
|
||||
enc.in_concurrent_ = false;
|
||||
|
||||
// Use an empty graph node for synchronization
|
||||
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
|
||||
enc.empty_node_count_++;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddEmptyNode(&empty.node, enc.graph_, NULL, 0));
|
||||
|
||||
// Insert the concurrent -> empty node dependencies
|
||||
for (auto& from : enc.concurrent_nodes_) {
|
||||
enc.from_nodes_.push_back(from.node);
|
||||
enc.to_nodes_.push_back(empty.node);
|
||||
enc.graph_key_ += from.id;
|
||||
enc.graph_key_ += from.node_type;
|
||||
enc.graph_key_ += empty.id;
|
||||
enc.graph_key_ += empty.node_type;
|
||||
}
|
||||
|
||||
// Insert the input -> concurrent node dependencies without updating output
|
||||
// nodes
|
||||
auto outputs = std::move(enc.active_outputs_);
|
||||
enc.insert_graph_dependencies(std::move(enc.concurrent_nodes_));
|
||||
|
||||
// Update output node to be the empty node
|
||||
for (auto o : outputs) {
|
||||
enc.node_map_.emplace(o, empty).first->second = empty;
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::insert_graph_dependencies(GraphNode node) {
|
||||
if (node.node_type == 'G') {
|
||||
graph_node_count_++;
|
||||
}
|
||||
node.id = std::to_string(node_count_++);
|
||||
if (in_concurrent_) {
|
||||
concurrent_nodes_.push_back(std::move(node));
|
||||
} else {
|
||||
std::vector<GraphNode> nodes;
|
||||
nodes.push_back(std::move(node));
|
||||
insert_graph_dependencies(std::move(nodes));
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
||||
std::vector<GraphNode> deps;
|
||||
{
|
||||
// Dependencies must be added in the same order to produce a consistent
|
||||
// topology
|
||||
std::unordered_set<cudaGraphNode_t> set_deps;
|
||||
for (auto d : active_deps_) {
|
||||
if (auto it = node_map_.find(d); it != node_map_.end()) {
|
||||
auto [_, inserted] = set_deps.insert(it->second.node);
|
||||
if (inserted) {
|
||||
deps.push_back(it->second);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
active_deps_.clear();
|
||||
|
||||
for (auto o : active_outputs_) {
|
||||
for (auto& node : nodes) {
|
||||
node_map_.emplace(o, node).first->second = node;
|
||||
}
|
||||
}
|
||||
active_outputs_.clear();
|
||||
|
||||
for (auto& from : deps) {
|
||||
for (auto& to : nodes) {
|
||||
from_nodes_.push_back(from.node);
|
||||
to_nodes_.push_back(to.node);
|
||||
graph_key_ += from.id;
|
||||
graph_key_ += from.node_type;
|
||||
graph_key_ += to.id;
|
||||
graph_key_ += to.node_type;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(Device& d) : device_(d), stream_(d) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
void clear_graphs(std::unordered_map<std::string, cudaGraphExec_t>& graphs) {
|
||||
for (auto& [_, graph_exec] : graphs) {
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
}
|
||||
graphs.clear();
|
||||
}
|
||||
|
||||
CommandEncoder::~CommandEncoder() {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
CommandEncoder::CommandEncoder(DeviceStream& s)
|
||||
: device_(s.device()), stream_(s) {}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
|
||||
void CommandEncoder::set_input_array(const array& arr) {
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
}
|
||||
void CommandEncoder::end_encoding() {
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
|
||||
void CommandEncoder::set_output_array(const array& arr) {
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
active_outputs_.push_back(id);
|
||||
}
|
||||
// There is no kernel running, run completion handlers immediately.
|
||||
if (!has_gpu_work_) {
|
||||
worker_.consume_in_this_thread();
|
||||
return;
|
||||
}
|
||||
has_gpu_work_ = false;
|
||||
|
||||
void CommandEncoder::maybe_commit() {
|
||||
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
// Put completion handlers in a batch.
|
||||
worker_.end_batch();
|
||||
|
||||
// Signaling kernel completion is expensive, delay until enough batches.
|
||||
// TODO: This number is arbitrarily picked, profile for a better stragety.
|
||||
if (worker_.uncommited_batches() > 8) {
|
||||
commit();
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
void** params) {
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
kernel_params.blockDim = block_dim;
|
||||
kernel_params.kernelParams = params;
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
void** params) {
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDimX = grid_dim.x;
|
||||
kernel_params.gridDimY = grid_dim.y;
|
||||
kernel_params.gridDimZ = grid_dim.z;
|
||||
kernel_params.blockDimX = block_dim.x;
|
||||
kernel_params.blockDimY = block_dim.y;
|
||||
kernel_params.blockDimZ = block_dim.z;
|
||||
kernel_params.kernelParams = params;
|
||||
CUgraphNode node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
if (node_count_ > 0) {
|
||||
if (!from_nodes_.empty()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
|
||||
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
|
||||
}
|
||||
|
||||
graph_key_ += ".";
|
||||
graph_key_ += std::to_string(node_count_);
|
||||
graph_key_ += ".";
|
||||
graph_key_ += std::to_string(graph_node_count_);
|
||||
graph_key_ += ".";
|
||||
graph_key_ += std::to_string(empty_node_count_);
|
||||
|
||||
cudaGraphExec_t& graph_exec = graph_cache_[graph_key_];
|
||||
|
||||
if (graph_exec != nullptr) {
|
||||
cudaGraphExecUpdateResult update_result;
|
||||
#if CUDART_VERSION >= 12000
|
||||
cudaGraphExecUpdateResultInfo info;
|
||||
cudaGraphExecUpdate(graph_exec, graph_, &info);
|
||||
update_result = info.result;
|
||||
#else
|
||||
cudaGraphNode_t error_node;
|
||||
cudaGraphExecUpdate(graph_exec, graph_, &error_node, &update_result);
|
||||
#endif // CUDART_VERSION >= 12000
|
||||
if (update_result != cudaGraphExecUpdateSuccess) {
|
||||
cudaGetLastError(); // reset error
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
graph_exec = nullptr;
|
||||
}
|
||||
}
|
||||
if (graph_exec == nullptr) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
|
||||
}
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// TODO smarter cache policy
|
||||
if (graph_cache_.size() > cuda_graph_cache_size()) {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
to_nodes_.clear();
|
||||
graph_key_.clear();
|
||||
node_map_.clear();
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.end_batch();
|
||||
worker_.commit(stream_);
|
||||
}
|
||||
|
||||
void CommandEncoder::synchronize() {
|
||||
cudaStreamSynchronize(stream_);
|
||||
auto p = std::make_shared<std::promise<void>>();
|
||||
std::future<void> f = p->get_future();
|
||||
add_completed_handler([p = std::move(p)]() { p->set_value(); });
|
||||
worker_.end_batch();
|
||||
commit();
|
||||
f.wait();
|
||||
worker_.commit(stream_.last_cuda_stream());
|
||||
}
|
||||
|
||||
Device& device(mlx::core::Device device) {
|
||||
@@ -330,8 +116,12 @@ Device& device(mlx::core::Device device) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
DeviceStream& get_stream(Stream s) {
|
||||
return device(s.device).get_stream(s);
|
||||
}
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s) {
|
||||
return device(s.device).get_command_encoder(s);
|
||||
return get_stream(s).get_encoder();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -7,109 +7,41 @@
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class CommandEncoder {
|
||||
class Device;
|
||||
class CommandEncoder;
|
||||
|
||||
class DeviceStream {
|
||||
public:
|
||||
struct CaptureContext {
|
||||
CaptureContext(CommandEncoder& enc);
|
||||
~CaptureContext();
|
||||
cudaGraph_t graph;
|
||||
CommandEncoder& enc;
|
||||
};
|
||||
struct ConcurrentContext {
|
||||
ConcurrentContext(CommandEncoder& enc);
|
||||
~ConcurrentContext();
|
||||
CommandEncoder& enc;
|
||||
};
|
||||
explicit DeviceStream(Device& device);
|
||||
|
||||
explicit CommandEncoder(Device& d);
|
||||
~CommandEncoder();
|
||||
DeviceStream(const DeviceStream&) = delete;
|
||||
DeviceStream& operator=(const DeviceStream&) = delete;
|
||||
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
|
||||
CaptureContext capture_context() {
|
||||
return CaptureContext{*this};
|
||||
}
|
||||
ConcurrentContext concurrent_context() {
|
||||
return ConcurrentContext{*this};
|
||||
}
|
||||
|
||||
void set_input_array(const array& arr);
|
||||
void set_output_array(const array& arr);
|
||||
|
||||
template <typename F, typename... Params>
|
||||
void
|
||||
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
|
||||
constexpr size_t num = sizeof...(Params);
|
||||
void* ptrs[num];
|
||||
size_t i = 0;
|
||||
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
|
||||
std::forward<Params>(params)),
|
||||
...);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
|
||||
}
|
||||
|
||||
void add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
void** params);
|
||||
|
||||
void
|
||||
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void maybe_commit();
|
||||
void commit();
|
||||
|
||||
CudaStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
// Wait until kernels and completion handlers are finished
|
||||
// Wait until kernels in the stream complete.
|
||||
void synchronize();
|
||||
|
||||
// Return a cuda stream for launching kernels.
|
||||
cudaStream_t schedule_cuda_stream();
|
||||
|
||||
// Return the last cuda stream used.
|
||||
cudaStream_t last_cuda_stream();
|
||||
|
||||
CommandEncoder& get_encoder();
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
private:
|
||||
struct GraphNode {
|
||||
cudaGraphNode_t node;
|
||||
// K = kernel
|
||||
// E = empty
|
||||
// G = subgraph
|
||||
char node_type;
|
||||
std::string id;
|
||||
};
|
||||
|
||||
void insert_graph_dependencies(GraphNode node);
|
||||
void insert_graph_dependencies(std::vector<GraphNode> nodes);
|
||||
|
||||
Device& device_;
|
||||
CudaStream stream_;
|
||||
cudaGraph_t graph_;
|
||||
Worker worker_;
|
||||
char node_count_{0};
|
||||
char graph_node_count_{0};
|
||||
char empty_node_count_{0};
|
||||
bool in_concurrent_{false};
|
||||
std::vector<cudaGraphNode_t> from_nodes_;
|
||||
std::vector<cudaGraphNode_t> to_nodes_;
|
||||
std::string graph_key_;
|
||||
std::vector<GraphNode> concurrent_nodes_;
|
||||
std::vector<std::shared_ptr<array::Data>> temporaries_;
|
||||
std::unordered_map<std::string, cudaGraphExec_t> graph_cache_;
|
||||
std::vector<std::uintptr_t> active_deps_;
|
||||
std::vector<std::uintptr_t> active_outputs_;
|
||||
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
|
||||
std::unique_ptr<CommandEncoder> encoder_;
|
||||
};
|
||||
|
||||
class Device {
|
||||
@@ -123,7 +55,7 @@ class Device {
|
||||
// Make this device the current cuda device, required by some cuda calls.
|
||||
void make_current();
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
DeviceStream& get_stream(Stream s);
|
||||
|
||||
int cuda_device() const {
|
||||
return device_;
|
||||
@@ -143,10 +75,64 @@ class Device {
|
||||
int compute_capability_major_;
|
||||
int compute_capability_minor_;
|
||||
cublasLtHandle_t lt_;
|
||||
std::unordered_map<int, CommandEncoder> encoders_;
|
||||
std::unordered_map<int, DeviceStream> streams_;
|
||||
};
|
||||
|
||||
class CommandEncoder {
|
||||
public:
|
||||
explicit CommandEncoder(DeviceStream& stream);
|
||||
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
|
||||
void set_input_array(const array& arr) {}
|
||||
void set_output_array(const array& arr) {}
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void end_encoding();
|
||||
void commit();
|
||||
|
||||
// Schedule a cuda stream for |fun| to launch kernels, and check error
|
||||
// afterwards.
|
||||
template <typename F>
|
||||
void launch_kernel(F&& fun) {
|
||||
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void launch_kernel(cudaStream_t stream, F&& fun) {
|
||||
device_.make_current();
|
||||
fun(stream);
|
||||
check_cuda_error("kernel launch", cudaGetLastError());
|
||||
has_gpu_work_ = true;
|
||||
}
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
DeviceStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
bool has_gpu_work() const {
|
||||
return has_gpu_work_;
|
||||
}
|
||||
|
||||
private:
|
||||
Device& device_;
|
||||
DeviceStream& stream_;
|
||||
Worker worker_;
|
||||
bool has_gpu_work_{false};
|
||||
std::vector<std::shared_ptr<array::Data>> temporaries_;
|
||||
};
|
||||
|
||||
Device& device(mlx::core::Device device);
|
||||
DeviceStream& get_stream(Stream s);
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
// Return an execution policy that does not sync for result.
|
||||
|
||||
@@ -1,7 +1,10 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device/unary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda/std/array>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
@@ -19,7 +22,7 @@ struct FloorDivide {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
return x / y;
|
||||
} else {
|
||||
return truncf(x / y);
|
||||
return trunc(x / y);
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -111,38 +114,36 @@ struct LessEqual {
|
||||
struct LogAddExp {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x, T y) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
|
||||
isnan(cuCimagf(y))) {
|
||||
return {
|
||||
cuda::std::numeric_limits<float>::quiet_NaN(),
|
||||
cuda::std::numeric_limits<float>::quiet_NaN()};
|
||||
}
|
||||
auto max = cuCrealf(x) > cuCrealf(y) ? x : y;
|
||||
auto min = cuCrealf(x) < cuCrealf(y) ? x : y;
|
||||
auto min_real = cuCrealf(min);
|
||||
auto max_real = cuCrealf(max);
|
||||
if (!isfinite(min_real) && (min_real == max_real)) {
|
||||
if (min_real < 0) {
|
||||
return min;
|
||||
} else {
|
||||
return Log{}(Exp{}(min) + Exp{}(max));
|
||||
}
|
||||
} else {
|
||||
return Log1p{}(Exp{}(min - max)) + max;
|
||||
}
|
||||
} else {
|
||||
if (isnan(x) || isnan(y)) {
|
||||
return cuda::std::numeric_limits<T>::quiet_NaN();
|
||||
}
|
||||
T maxval = max(x, y);
|
||||
T minval = min(x, y);
|
||||
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
|
||||
maxval == cuda::std::numeric_limits<T>::infinity())
|
||||
? maxval
|
||||
: T(float(maxval) + log1p(expf(minval - maxval)));
|
||||
if (isnan(x) || isnan(y)) {
|
||||
return cuda::std::numeric_limits<T>::quiet_NaN();
|
||||
}
|
||||
T maxval = max(x, y);
|
||||
T minval = min(x, y);
|
||||
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
|
||||
maxval == cuda::std::numeric_limits<T>::infinity())
|
||||
? maxval
|
||||
: T(float(maxval) + log1p(expf(minval - maxval)));
|
||||
};
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x, cuComplex y) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
|
||||
isnan(cuCimagf(y))) {
|
||||
return {
|
||||
cuda::std::numeric_limits<float>::quiet_NaN(),
|
||||
cuda::std::numeric_limits<float>::quiet_NaN()};
|
||||
}
|
||||
constexpr float inf = cuda::std::numeric_limits<float>::infinity();
|
||||
auto maxval = x > y ? x : y;
|
||||
auto minval = x < y ? x : y;
|
||||
if (cuCrealf(minval) == -inf || cuCrealf(maxval) == inf)
|
||||
return maxval;
|
||||
float m = exp(cuCrealf(minval) - cuCrealf(maxval));
|
||||
cuComplex dexp{
|
||||
m * cos(cuCimagf(minval) - cuCimagf(maxval)),
|
||||
m * sin(cuCimagf(minval) - cuCimagf(maxval)),
|
||||
};
|
||||
return maxval + log1p(dexp);
|
||||
}
|
||||
};
|
||||
|
||||
struct Maximum {
|
||||
|
||||
@@ -3,8 +3,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <thrust/iterator/transform_iterator.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
@@ -19,26 +17,6 @@ struct CastOp {
|
||||
}
|
||||
};
|
||||
|
||||
// Castings between complex and boolean.
|
||||
// TODO: Should make a custom complex type.
|
||||
template <>
|
||||
struct CastOp<cuComplex, bool> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ bool operator()(cuComplex x) {
|
||||
return x.x != 0 && x.y != 0;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct CastOp<bool, cuComplex> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ cuComplex operator()(bool x) {
|
||||
return x ? make_cuFloatComplex(1, 1) : make_cuFloatComplex(0, 0);
|
||||
}
|
||||
};
|
||||
|
||||
// Converting a complex number to real number discards the imaginary part.
|
||||
template <typename DstT>
|
||||
struct CastOp<
|
||||
@@ -67,7 +45,6 @@ struct CastOp<
|
||||
}
|
||||
};
|
||||
|
||||
// Do nothing when no casting is needed.
|
||||
template <typename SrcT, typename DstT>
|
||||
struct CastOp<
|
||||
SrcT,
|
||||
@@ -80,53 +57,9 @@ struct CastOp<
|
||||
}
|
||||
};
|
||||
|
||||
// In CUDA 11 the half types do not define conversions between some types,
|
||||
// provide fallbacks here.
|
||||
#if CUDART_VERSION < 12000
|
||||
template <typename SrcT, typename DstT>
|
||||
struct CastOp<
|
||||
SrcT,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> &&
|
||||
!cuda::std::is_same_v<SrcT, cuComplex> &&
|
||||
(cuda::std::is_same_v<DstT, __half> ||
|
||||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ DstT operator()(SrcT x) {
|
||||
return DstT(static_cast<float>(x));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
struct CastOp<
|
||||
SrcT,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> &&
|
||||
!cuda::std::is_same_v<DstT, cuComplex> &&
|
||||
!cuda::std::is_same_v<DstT, __half> &&
|
||||
!cuda::std::is_same_v<DstT, __nv_bfloat16> &&
|
||||
(cuda::std::is_same_v<SrcT, __half> ||
|
||||
cuda::std::is_same_v<SrcT, __nv_bfloat16>)>> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ DstT operator()(SrcT x) {
|
||||
return DstT(static_cast<float>(x));
|
||||
}
|
||||
};
|
||||
#endif // CUDART_VERSION < 12000
|
||||
|
||||
// Helper to deduce the SrcT.
|
||||
template <typename DstT, typename SrcT>
|
||||
inline __host__ __device__ auto cast_to(SrcT x) {
|
||||
return CastOp<SrcT, DstT>{}(x);
|
||||
}
|
||||
|
||||
// Return an iterator that cast the value to DstT using CastOp.
|
||||
template <typename DstT, typename Iterator>
|
||||
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||
__host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
|
||||
if constexpr (std::is_same_v<SrcT, DstT>) {
|
||||
return it;
|
||||
|
||||
@@ -1,138 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
// Copyright © 2008-2013 NVIDIA Corporation
|
||||
// Copyright © 2013 Filipe RNC Maia
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Forked from
|
||||
// https://github.com/NVIDIA/cccl/blob/main/thrust/thrust/detail/complex/cexpf.h
|
||||
|
||||
// TODO: We should use thrust::exp but the thrust header in old CUDA versions
|
||||
// can not be used in JIT.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda/std/cstdint>
|
||||
|
||||
namespace mlx::core::cu::detail {
|
||||
|
||||
using ieee_float_shape_type = union {
|
||||
float value;
|
||||
uint32_t word;
|
||||
};
|
||||
|
||||
inline __device__ void get_float_word(uint32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline __device__ void get_float_word(int32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline __device__ void set_float_word(float& d, uint32_t i) {
|
||||
ieee_float_shape_type sf_u;
|
||||
sf_u.word = (i);
|
||||
(d) = sf_u.value;
|
||||
}
|
||||
|
||||
inline __device__ float frexp_expf(float x, int* expt) {
|
||||
const uint32_t k = 235;
|
||||
const float kln2 = 162.88958740F;
|
||||
|
||||
float exp_x;
|
||||
uint32_t hx;
|
||||
|
||||
exp_x = expf(x - kln2);
|
||||
get_float_word(hx, exp_x);
|
||||
*expt = (hx >> 23) - (0x7f + 127) + k;
|
||||
set_float_word(exp_x, (hx & 0x7fffff) | ((0x7f + 127) << 23));
|
||||
return exp_x;
|
||||
}
|
||||
|
||||
inline __device__ cuComplex ldexp_cexpf(cuComplex z, int expt) {
|
||||
float x, y, exp_x, scale1, scale2;
|
||||
int ex_expt, half_expt;
|
||||
|
||||
x = cuCrealf(z);
|
||||
y = cuCimagf(z);
|
||||
exp_x = frexp_expf(x, &ex_expt);
|
||||
expt += ex_expt;
|
||||
|
||||
half_expt = expt / 2;
|
||||
set_float_word(scale1, (0x7f + half_expt) << 23);
|
||||
half_expt = expt - half_expt;
|
||||
set_float_word(scale2, (0x7f + half_expt) << 23);
|
||||
|
||||
return cuComplex{
|
||||
cosf(y) * exp_x * scale1 * scale2, sinf(y) * exp_x * scale1 * scale2};
|
||||
}
|
||||
|
||||
inline __device__ cuComplex cexpf(const cuComplex& z) {
|
||||
float x, y, exp_x;
|
||||
uint32_t hx, hy;
|
||||
|
||||
const uint32_t exp_ovfl = 0x42b17218, cexp_ovfl = 0x43400074;
|
||||
|
||||
x = cuCrealf(z);
|
||||
y = cuCimagf(z);
|
||||
|
||||
get_float_word(hy, y);
|
||||
hy &= 0x7fffffff;
|
||||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if (hy == 0) {
|
||||
return cuComplex{expf(x), y};
|
||||
}
|
||||
get_float_word(hx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if ((hx & 0x7fffffff) == 0) {
|
||||
return cuComplex{cosf(y), sinf(y)};
|
||||
}
|
||||
if (hy >= 0x7f800000) {
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return cuComplex{y - y, y - y};
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return cuComplex{0.0, 0.0};
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return cuComplex{x, y - y};
|
||||
}
|
||||
}
|
||||
|
||||
if (hx >= exp_ovfl && hx <= cexp_ovfl) {
|
||||
/*
|
||||
* x is between 88.7 and 192, so we must scale to avoid
|
||||
* overflow in expf(x).
|
||||
*/
|
||||
return ldexp_cexpf(z, 0);
|
||||
} else {
|
||||
/*
|
||||
* Cases covered here:
|
||||
* - x < exp_ovfl and exp(x) won't overflow (common case)
|
||||
* - x > cexp_ovfl, so exp(x) * s overflows for all s > 0
|
||||
* - x = +-Inf (generated by exp())
|
||||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = expf(x);
|
||||
return cuComplex{exp_x * cosf(y), exp_x * sinf(y)};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu::detail
|
||||
@@ -5,7 +5,7 @@
|
||||
#pragma once
|
||||
|
||||
// The maximum dimensions of shape/strides passed as kernel parameters.
|
||||
#define MAX_NDIM 10
|
||||
#define MAX_NDIM 8
|
||||
|
||||
// All existing NVIDIA hardware has a fixed 32 warp size. Though a built-in
|
||||
// warpSize variable exists, using it would prevent compile-time optimizations.
|
||||
|
||||
@@ -2,8 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/cexpf.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -29,8 +27,6 @@ struct ArcCos {
|
||||
__device__ T operator()(T x) {
|
||||
return acos(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcCosh {
|
||||
@@ -45,8 +41,6 @@ struct ArcSin {
|
||||
__device__ T operator()(T x) {
|
||||
return asin(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcSinh {
|
||||
@@ -61,8 +55,6 @@ struct ArcTan {
|
||||
__device__ T operator()(T x) {
|
||||
return atan(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcTanh {
|
||||
@@ -152,7 +144,8 @@ struct Exp {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return detail::cexpf(x);
|
||||
auto m = exp(cuCrealf(x));
|
||||
return {m * cos(cuCimagf(x)), m * sinh(cuCimagf(x))};
|
||||
} else {
|
||||
return exp(x);
|
||||
}
|
||||
@@ -229,25 +222,8 @@ struct Log10 {
|
||||
|
||||
struct Log1p {
|
||||
template <typename T>
|
||||
__device__ T operator()(T z) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
float x = cuCrealf(z);
|
||||
float y = cuCimagf(z);
|
||||
float zabs = cuCrealf(Abs{}(z));
|
||||
float theta = atan2f(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return {x, theta};
|
||||
}
|
||||
return {0.5f * log1pf(r), theta};
|
||||
} else {
|
||||
float z0 = hypotf(x + 1, y);
|
||||
return {logf(z0), theta};
|
||||
}
|
||||
} else {
|
||||
return log1p(z);
|
||||
}
|
||||
__device__ T operator()(T x) {
|
||||
return log1p(x);
|
||||
}
|
||||
};
|
||||
|
||||
@@ -285,6 +261,13 @@ struct Round {
|
||||
}
|
||||
};
|
||||
|
||||
struct Rsqrt {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return rsqrt(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
@@ -350,29 +333,6 @@ struct Sqrt {
|
||||
__device__ T operator()(T x) {
|
||||
return sqrt(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x) {
|
||||
auto xr = cuCrealf(x);
|
||||
auto xi = cuCimagf(x);
|
||||
if (xr == 0.0f && xi == 0.0f) {
|
||||
return {0.0f, 0.0f};
|
||||
}
|
||||
auto r = cuCrealf(Abs{}(x));
|
||||
auto a = sqrt((r + xr) / 2.0f);
|
||||
auto b_abs = sqrt((r - xr) / 2.0f);
|
||||
auto b = copysign(b_abs, xi);
|
||||
return {a, b};
|
||||
}
|
||||
};
|
||||
|
||||
struct Rsqrt {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return rsqrt(x);
|
||||
}
|
||||
__device__ cuComplex operator()(cuComplex x) {
|
||||
return 1.0f / Sqrt{}(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Tan {
|
||||
@@ -405,22 +365,4 @@ struct Tanh {
|
||||
}
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcCos::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0, 1.0};
|
||||
auto y = Log{}(x + i * Sqrt{}(1.0 - x * x));
|
||||
return {cuCimagf(y), -cuCrealf(y)};
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcSin::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0f, 1.0f};
|
||||
auto y = Log{}(i * x + Sqrt{}(1.0f - x * x));
|
||||
return {cuCimagf(y), -cuCrealf(y)};
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcTan::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0f, 1.0f};
|
||||
auto ix = i * x;
|
||||
return (1.0f / cuComplex{0.0f, 2.0f}) * Log{}((1.0f + ix) / (1.0f - ix));
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -28,27 +28,6 @@ namespace mlx::core::cu {
|
||||
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
|
||||
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
||||
|
||||
// Vectorized load/store.
|
||||
template <typename T, int N>
|
||||
struct alignas(sizeof(T) * N) AlignedVector {
|
||||
T val[N];
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ void
|
||||
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Type limits utils
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -99,20 +78,20 @@ struct Limits<
|
||||
return cuda::std::numeric_limits<T>::infinity();
|
||||
}
|
||||
static constexpr __host__ __device__ T min() {
|
||||
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
|
||||
return -cuda::std::numeric_limits<float>::infinity();
|
||||
#else
|
||||
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
|
||||
return -cuda::std::numeric_limits<T>::infinity();
|
||||
#else
|
||||
return -cuda::std::numeric_limits<float>::infinity();
|
||||
#endif
|
||||
}
|
||||
static constexpr __host__ __device__ T finite_max() {
|
||||
return cuda::std::numeric_limits<T>::max();
|
||||
}
|
||||
static constexpr __host__ __device__ T finite_min() {
|
||||
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
|
||||
return cuda::std::numeric_limits<float>::lowest();
|
||||
#else
|
||||
#if defined(__CUDA_ARCH__) || CUDART_VERSION >= 12000
|
||||
return cuda::std::numeric_limits<T>::lowest();
|
||||
#else
|
||||
return cuda::std::numeric_limits<float>::lowest();
|
||||
#endif
|
||||
}
|
||||
};
|
||||
@@ -176,8 +155,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_nd(
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc);
|
||||
@@ -196,9 +175,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
#pragma unroll
|
||||
for (int i = NDIM - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
c_loc += dim_idx * IdxT(c_strides[i]);
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
c_loc += dim_idx * c_strides[i];
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
@@ -227,8 +206,8 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT b_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc);
|
||||
@@ -247,9 +226,9 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT c_loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
int dim_idx = elem % shape[i];
|
||||
a_loc += dim_idx * IdxT(a_strides[i]);
|
||||
b_loc += dim_idx * IdxT(b_strides[i]);
|
||||
c_loc += dim_idx * IdxT(c_strides[i]);
|
||||
a_loc += dim_idx * a_strides[i];
|
||||
b_loc += dim_idx * b_strides[i];
|
||||
c_loc += dim_idx * c_strides[i];
|
||||
elem /= shape[i];
|
||||
}
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
@@ -359,4 +338,21 @@ struct LoopedElemToLoc<1, false, OffsetT> {
|
||||
}
|
||||
};
|
||||
|
||||
inline __device__ cuComplex log1p(cuComplex in) {
|
||||
float x = cuCrealf(in);
|
||||
float y = cuCimagf(in);
|
||||
float zabs = sqrt(x * x + y * y);
|
||||
float theta = atan2f(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
if (r == 0) { // handle underflow
|
||||
return {x, theta};
|
||||
}
|
||||
return {0.5f * log1pf(r), theta};
|
||||
} else {
|
||||
auto z0 = sqrt((x + 1) * (x + 1) + y * y);
|
||||
return {log(z0), theta};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -37,20 +37,22 @@ void eval(array& arr) {
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
std::unordered_set<std::shared_ptr<array::Data>> buffers;
|
||||
for (auto& in : arr.inputs()) {
|
||||
buffers.insert(in.data_shared_ptr());
|
||||
if (encoder.has_gpu_work()) {
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
std::unordered_set<std::shared_ptr<array::Data>> buffers;
|
||||
for (auto& in : arr.inputs()) {
|
||||
buffers.insert(in.data_shared_ptr());
|
||||
}
|
||||
for (auto& s : arr.siblings()) {
|
||||
buffers.insert(s.data_shared_ptr());
|
||||
}
|
||||
// Remove the output if it was donated to by an input.
|
||||
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
|
||||
buffers.erase(it);
|
||||
}
|
||||
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
|
||||
}
|
||||
for (auto& s : arr.siblings()) {
|
||||
buffers.insert(s.data_shared_ptr());
|
||||
}
|
||||
// Remove the output if it was donated to by an input.
|
||||
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
|
||||
buffers.erase(it);
|
||||
}
|
||||
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
|
||||
encoder.maybe_commit();
|
||||
encoder.end_encoding();
|
||||
}
|
||||
|
||||
void finalize(Stream s) {
|
||||
@@ -60,7 +62,7 @@ void finalize(Stream s) {
|
||||
|
||||
void synchronize(Stream s) {
|
||||
nvtx3::scoped_range r("gpu::synchronize");
|
||||
cu::get_command_encoder(s).synchronize();
|
||||
cu::get_stream(s).synchronize();
|
||||
}
|
||||
|
||||
} // namespace mlx::core::gpu
|
||||
|
||||
@@ -61,9 +61,7 @@ void CudaEvent::wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable { wait(); });
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
wait(enc.stream());
|
||||
wait(cu::get_stream(s).last_cuda_stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -76,9 +74,7 @@ void CudaEvent::record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
record(enc.stream());
|
||||
record(cu::get_stream(s).last_cuda_stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -140,9 +136,11 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
|
||||
} else {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
wait(encoder.stream(), value);
|
||||
encoder.launch_kernel(
|
||||
encoder.stream().last_cuda_stream(),
|
||||
[this, value](cudaStream_t stream) { wait(stream, value); });
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
encoder.end_encoding();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -164,9 +162,11 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
scheduler::enqueue(s, [*this, value]() mutable { signal(stream, value); });
|
||||
} else {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
signal(encoder.stream(), value);
|
||||
encoder.launch_kernel(
|
||||
encoder.stream().last_cuda_stream(),
|
||||
[this, value](cudaStream_t stream) { signal(stream, value); });
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
encoder.end_encoding();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,16 +3,13 @@
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include "cuda_jit_sources.h"
|
||||
|
||||
#include <cuda.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvrtc.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
@@ -25,7 +22,7 @@ namespace {
|
||||
constexpr const char* g_scatter_ops[] = {"Max", "Min", "Sum", "Prod", "Assign"};
|
||||
|
||||
void append_indices_arg(
|
||||
cu::KernelArgs& args,
|
||||
cu::JitModule& mod,
|
||||
const std::vector<array>& inputs,
|
||||
int nidx,
|
||||
int idx_ndim) {
|
||||
@@ -33,7 +30,7 @@ void append_indices_arg(
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
indices[i] = inputs[i + 1].data<void>();
|
||||
}
|
||||
args.append(std::move(indices));
|
||||
mod.append_arg(std::move(indices));
|
||||
std::vector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
@@ -41,7 +38,7 @@ void append_indices_arg(
|
||||
idx_ndim,
|
||||
indices_shape.data() + i * idx_ndim);
|
||||
}
|
||||
args.append(std::move(indices_shape));
|
||||
mod.append_arg(std::move(indices_shape));
|
||||
std::vector<int64_t> indices_strides(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
@@ -49,7 +46,7 @@ void append_indices_arg(
|
||||
idx_ndim,
|
||||
indices_strides.data() + i * idx_ndim);
|
||||
}
|
||||
args.append(std::move(indices_strides));
|
||||
mod.append_arg(std::move(indices_strides));
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -97,21 +94,20 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return std::make_pair(jit_source_gather, std::move(kernel_names));
|
||||
});
|
||||
|
||||
cu::KernelArgs args;
|
||||
args.append(src);
|
||||
args.append(out);
|
||||
mod.append_arg(src);
|
||||
mod.append_arg(out);
|
||||
if (large) {
|
||||
args.append<int64_t>(out.size());
|
||||
mod.append_arg<int64_t>(out.size());
|
||||
} else {
|
||||
args.append<int32_t>(out.size());
|
||||
mod.append_arg<int32_t>(out.size());
|
||||
}
|
||||
args.append_ndim(src.shape());
|
||||
args.append_ndim(src.strides());
|
||||
args.append<int32_t>(src.ndim());
|
||||
args.append_ndim(slice_sizes_);
|
||||
args.append(slice_size);
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
mod.append_ndim_arg(src.shape());
|
||||
mod.append_ndim_arg(src.strides());
|
||||
mod.append_arg<int32_t>(src.ndim());
|
||||
mod.append_ndim_arg(slice_sizes_);
|
||||
mod.append_arg(slice_size);
|
||||
mod.append_arg(axes_);
|
||||
append_indices_arg(mod, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
"mlx::core::cu::gather<{}, {}, {}, {}, {}>",
|
||||
@@ -126,10 +122,9 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, out, large);
|
||||
});
|
||||
}
|
||||
|
||||
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -192,27 +187,26 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
return std::make_pair(jit_source_scatter, std::move(kernel_names));
|
||||
});
|
||||
|
||||
cu::KernelArgs args;
|
||||
args.append(upd);
|
||||
args.append(out);
|
||||
mod.append_arg(upd);
|
||||
mod.append_arg(out);
|
||||
if (large) {
|
||||
args.append<int64_t>(upd.size());
|
||||
mod.append_arg<int64_t>(upd.size());
|
||||
} else {
|
||||
args.append<int32_t>(upd.size());
|
||||
mod.append_arg<int32_t>(upd.size());
|
||||
}
|
||||
args.append_ndim(upd.shape());
|
||||
args.append_ndim(upd.strides());
|
||||
args.append<int32_t>(upd.ndim());
|
||||
mod.append_ndim_arg(upd.shape());
|
||||
mod.append_ndim_arg(upd.strides());
|
||||
mod.append_arg<int32_t>(upd.ndim());
|
||||
if (large) {
|
||||
args.append<int64_t>(upd_post_idx_size);
|
||||
mod.append_arg<int64_t>(upd_post_idx_size);
|
||||
} else {
|
||||
args.append<int32_t>(upd_post_idx_size);
|
||||
mod.append_arg<int32_t>(upd_post_idx_size);
|
||||
}
|
||||
args.append_ndim(out.shape());
|
||||
args.append_ndim(out.strides());
|
||||
args.append<int32_t>(out.ndim());
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
mod.append_ndim_arg(out.shape());
|
||||
mod.append_ndim_arg(out.strides());
|
||||
mod.append_arg<int32_t>(out.ndim());
|
||||
mod.append_arg(axes_);
|
||||
append_indices_arg(mod, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
"mlx::core::cu::scatter<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}>",
|
||||
@@ -228,9 +222,9 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, upd, large);
|
||||
});
|
||||
}
|
||||
|
||||
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -281,26 +275,25 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
size_t idx_size_axis = idx.shape(axis_);
|
||||
|
||||
cu::KernelArgs args;
|
||||
args.append(src);
|
||||
args.append(idx);
|
||||
args.append(out);
|
||||
mod.append_arg(src);
|
||||
mod.append_arg(idx);
|
||||
mod.append_arg(out);
|
||||
if (large) {
|
||||
args.append<int64_t>(idx_size_pre);
|
||||
args.append<int64_t>(idx_size_axis);
|
||||
args.append<int64_t>(idx_size_post);
|
||||
mod.append_arg<int64_t>(idx_size_pre);
|
||||
mod.append_arg<int64_t>(idx_size_axis);
|
||||
mod.append_arg<int64_t>(idx_size_post);
|
||||
} else {
|
||||
args.append<int32_t>(idx_size_pre);
|
||||
args.append<int32_t>(idx_size_axis);
|
||||
args.append<int32_t>(idx_size_post);
|
||||
mod.append_arg<int32_t>(idx_size_pre);
|
||||
mod.append_arg<int32_t>(idx_size_axis);
|
||||
mod.append_arg<int32_t>(idx_size_post);
|
||||
}
|
||||
args.append(remove_index(idx.shape(), axis_));
|
||||
args.append(remove_index(src.strides(), axis_));
|
||||
args.append(remove_index(idx.strides(), axis_));
|
||||
args.append<int32_t>(axis_);
|
||||
args.append(src.shape(axis_));
|
||||
args.append(src.strides(axis_));
|
||||
args.append(idx.strides(axis_));
|
||||
mod.append_arg(remove_index(idx.shape(), axis_));
|
||||
mod.append_arg(remove_index(src.strides(), axis_));
|
||||
mod.append_arg(remove_index(idx.strides(), axis_));
|
||||
mod.append_arg<int32_t>(axis_);
|
||||
mod.append_arg(src.shape(axis_));
|
||||
mod.append_arg(src.strides(axis_));
|
||||
mod.append_arg(idx.strides(axis_));
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
"mlx::core::cu::gather_axis<{}, {}, {}, {}, {}, {}>",
|
||||
@@ -316,9 +309,9 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, idx, large);
|
||||
});
|
||||
}
|
||||
|
||||
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -384,26 +377,25 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
size_t idx_size_axis = idx.shape(axis_);
|
||||
|
||||
cu::KernelArgs args;
|
||||
args.append(upd);
|
||||
args.append(idx);
|
||||
args.append(out);
|
||||
mod.append_arg(upd);
|
||||
mod.append_arg(idx);
|
||||
mod.append_arg(out);
|
||||
if (large) {
|
||||
args.append<int64_t>(idx_size_pre);
|
||||
args.append<int64_t>(idx_size_axis);
|
||||
args.append<int64_t>(idx_size_post);
|
||||
mod.append_arg<int64_t>(idx_size_pre);
|
||||
mod.append_arg<int64_t>(idx_size_axis);
|
||||
mod.append_arg<int64_t>(idx_size_post);
|
||||
} else {
|
||||
args.append<int32_t>(idx_size_pre);
|
||||
args.append<int32_t>(idx_size_axis);
|
||||
args.append<int32_t>(idx_size_post);
|
||||
mod.append_arg<int32_t>(idx_size_pre);
|
||||
mod.append_arg<int32_t>(idx_size_axis);
|
||||
mod.append_arg<int32_t>(idx_size_post);
|
||||
}
|
||||
args.append(remove_index(idx.shape(), axis_));
|
||||
args.append(remove_index(upd.strides(), axis_));
|
||||
args.append(remove_index(idx.strides(), axis_));
|
||||
args.append<int32_t>(axis_);
|
||||
args.append(out.shape(axis_));
|
||||
args.append(upd.strides(axis_));
|
||||
args.append(idx.strides(axis_));
|
||||
mod.append_arg(remove_index(idx.shape(), axis_));
|
||||
mod.append_arg(remove_index(upd.strides(), axis_));
|
||||
mod.append_arg(remove_index(idx.strides(), axis_));
|
||||
mod.append_arg<int32_t>(axis_);
|
||||
mod.append_arg(out.shape(axis_));
|
||||
mod.append_arg(upd.strides(axis_));
|
||||
mod.append_arg(idx.strides(axis_));
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
"mlx::core::cu::scatter_axis<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}, {}>",
|
||||
@@ -420,9 +412,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
mod.launch_kernel(stream, kernel_name, idx, large);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/version.h"
|
||||
|
||||
#include "cuda_jit_sources.h"
|
||||
|
||||
@@ -27,48 +26,47 @@ void check_nvrtc_error(const char* name, nvrtcResult err) {
|
||||
}
|
||||
}
|
||||
|
||||
#define CHECK_CU_ERROR(cmd) check_cu_error(#cmd, (cmd))
|
||||
|
||||
void check_cu_error(const char* name, CUresult err) {
|
||||
if (err != CUDA_SUCCESS) {
|
||||
const char* err_str = "Unknown error";
|
||||
cuGetErrorString(err, &err_str);
|
||||
throw std::runtime_error(fmt::format("{} failed: {}", name, err_str));
|
||||
}
|
||||
}
|
||||
|
||||
// Return the location of the CUDA toolkit.
|
||||
const std::string& cuda_home() {
|
||||
static std::string home = []() -> std::string {
|
||||
const char* home = std::getenv("CUDA_HOME");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
home = std::getenv("CUDA_PATH");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
const char* cuda_home() {
|
||||
const char* home = std::getenv("CUDA_HOME");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
home = std::getenv("CUDA_PATH");
|
||||
if (home) {
|
||||
return home;
|
||||
}
|
||||
#if defined(__linux__)
|
||||
home = "/usr/local/cuda";
|
||||
if (std::filesystem::exists(home)) {
|
||||
return home;
|
||||
}
|
||||
home = "/usr/local/cuda";
|
||||
if (std::filesystem::exists(home)) {
|
||||
return home;
|
||||
}
|
||||
#endif
|
||||
throw std::runtime_error(
|
||||
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
|
||||
}();
|
||||
return home;
|
||||
throw std::runtime_error(
|
||||
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
|
||||
}
|
||||
|
||||
// Get the cache directory for storing compiled results.
|
||||
const std::filesystem::path& ptx_cache_dir() {
|
||||
static std::filesystem::path cache = []() -> std::filesystem::path {
|
||||
std::filesystem::path cache;
|
||||
if (auto c = std::getenv("MLX_PTX_CACHE_DIR"); c) {
|
||||
cache = c;
|
||||
} else {
|
||||
cache =
|
||||
std::filesystem::temp_directory_path() / "mlx" / version() / "ptx";
|
||||
bool get_ptx_cache_dir(std::filesystem::path* result) {
|
||||
auto path = std::filesystem::temp_directory_path() / "mlx" / "ptx";
|
||||
if (!std::filesystem::is_directory(path)) {
|
||||
std::error_code error;
|
||||
if (!std::filesystem::create_directories(path, error)) {
|
||||
return false;
|
||||
}
|
||||
if (!std::filesystem::exists(cache)) {
|
||||
std::error_code error;
|
||||
if (!std::filesystem::create_directories(cache, error)) {
|
||||
return std::filesystem::path();
|
||||
}
|
||||
}
|
||||
return cache;
|
||||
}();
|
||||
return cache;
|
||||
}
|
||||
*result = path;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
|
||||
@@ -77,10 +75,6 @@ bool read_cached_ptx(
|
||||
const std::string& module_name,
|
||||
std::vector<char>* ptx,
|
||||
std::vector<std::pair<std::string, std::string>>* ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return false;
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir / (module_name + ".ptx");
|
||||
std::error_code error;
|
||||
auto ptx_size = std::filesystem::file_size(ptx_path, error);
|
||||
@@ -111,10 +105,6 @@ void write_cached_ptx(
|
||||
const std::string& module_name,
|
||||
const std::vector<char>& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
|
||||
if (!ptx.empty()) {
|
||||
ptx_file.write(&ptx.front(), ptx.size());
|
||||
@@ -161,7 +151,6 @@ constexpr const char* g_include_names[] = {
|
||||
INCLUDE_PREFIX "atomic_ops.cuh",
|
||||
INCLUDE_PREFIX "binary_ops.cuh",
|
||||
INCLUDE_PREFIX "cast_op.cuh",
|
||||
INCLUDE_PREFIX "cexpf.cuh",
|
||||
INCLUDE_PREFIX "config.h",
|
||||
INCLUDE_PREFIX "cucomplex_math.cuh",
|
||||
INCLUDE_PREFIX "fp16_math.cuh",
|
||||
@@ -178,7 +167,6 @@ constexpr const char* g_headers[] = {
|
||||
jit_source_atomic_ops,
|
||||
jit_source_binary_ops,
|
||||
jit_source_cast_op,
|
||||
jit_source_cexpf,
|
||||
jit_source_config,
|
||||
jit_source_cucomplex_math,
|
||||
jit_source_fp16_math,
|
||||
@@ -196,9 +184,11 @@ JitModule::JitModule(
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder) {
|
||||
// Check cache.
|
||||
std::filesystem::path cache_dir;
|
||||
std::vector<char> ptx;
|
||||
std::vector<std::pair<std::string, std::string>> ptx_kernels;
|
||||
if (!read_cached_ptx(ptx_cache_dir(), module_name, &ptx, &ptx_kernels)) {
|
||||
if (!get_ptx_cache_dir(&cache_dir) ||
|
||||
!read_cached_ptx(cache_dir, module_name, &ptx, &ptx_kernels)) {
|
||||
// Create program.
|
||||
auto [source_code, kernel_names] = builder();
|
||||
nvrtcProgram prog;
|
||||
@@ -256,7 +246,7 @@ JitModule::JitModule(
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||
}
|
||||
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels);
|
||||
write_cached_ptx(cache_dir, module_name, ptx, ptx_kernels);
|
||||
}
|
||||
|
||||
// Load module.
|
||||
@@ -274,13 +264,60 @@ JitModule::JitModule(
|
||||
// Load kernels.
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
CUfunction kernel;
|
||||
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
|
||||
CHECK_CU_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
|
||||
kernels_[name] = kernel;
|
||||
}
|
||||
}
|
||||
|
||||
JitModule::~JitModule() {
|
||||
CHECK_CUDA_ERROR(cuModuleUnload(module_));
|
||||
CHECK_CU_ERROR(cuModuleUnload(module_));
|
||||
}
|
||||
|
||||
void JitModule::launch_kernel(
|
||||
CUstream stream,
|
||||
const std::string& kernel_name,
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread) {
|
||||
CUfunction kernel = get_kernel(kernel_name);
|
||||
size_t nthreads = cuda::ceil_div(arr.size(), work_per_thread);
|
||||
int _, block_dim;
|
||||
CHECK_CU_ERROR(
|
||||
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
Dims num_blocks{1, 1, 1};
|
||||
if (large) {
|
||||
num_blocks =
|
||||
get_2d_grid_dims_common(arr.shape(), arr.strides(), work_per_thread);
|
||||
std::get<0>(num_blocks) =
|
||||
(std::get<0>(num_blocks) + block_dim - 1) / block_dim;
|
||||
} else {
|
||||
std::get<0>(num_blocks) = (nthreads + block_dim - 1) / block_dim;
|
||||
}
|
||||
launch_kernel(stream, kernel, num_blocks, Dims{block_dim, 1, 1});
|
||||
}
|
||||
|
||||
void JitModule::launch_kernel(
|
||||
CUstream stream,
|
||||
CUfunction kernel,
|
||||
Dims num_blocks,
|
||||
Dims block_dims) {
|
||||
CHECK_CU_ERROR(cuLaunchKernel(
|
||||
kernel,
|
||||
std::get<0>(num_blocks),
|
||||
std::get<1>(num_blocks),
|
||||
std::get<2>(num_blocks),
|
||||
std::get<0>(block_dims),
|
||||
std::get<1>(block_dims),
|
||||
std::get<2>(block_dims),
|
||||
0,
|
||||
stream,
|
||||
args_.data(),
|
||||
nullptr));
|
||||
args_.clear();
|
||||
storage_.clear();
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(const std::string& kernel_name) {
|
||||
@@ -292,6 +329,10 @@ CUfunction JitModule::get_kernel(const std::string& kernel_name) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
void JitModule::append_ptr_arg(const void* v) {
|
||||
args_.push_back(const_cast<void*>(v));
|
||||
}
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
|
||||
#include <deque>
|
||||
@@ -24,48 +23,72 @@ using KernelBuilderResult = std::pair<
|
||||
/* kernel names */ std::vector<std::string>>;
|
||||
using KernelBuilder = std::function<KernelBuilderResult()>;
|
||||
|
||||
struct KernelArgs {
|
||||
void** args() {
|
||||
return args_.data();
|
||||
}
|
||||
class JitModule {
|
||||
public:
|
||||
JitModule(
|
||||
Device& device,
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder);
|
||||
~JitModule();
|
||||
|
||||
void append(const array& a) {
|
||||
append(reinterpret_cast<CUdeviceptr>(a.data<void>()));
|
||||
JitModule(const JitModule&) = delete;
|
||||
JitModule& operator=(const JitModule&) = delete;
|
||||
|
||||
void append_arg(const array& a) {
|
||||
append_arg(reinterpret_cast<CUdeviceptr>(a.data<void>()));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(T val) {
|
||||
void append_arg(T val) {
|
||||
storage_.emplace_back(val);
|
||||
append_ptr(&storage_.back());
|
||||
append_ptr_arg(&storage_.back());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(std::vector<T> vec) {
|
||||
void append_arg(std::vector<T> vec) {
|
||||
if (vec.empty()) {
|
||||
// The nullptr can not be used as arg, pass something not null.
|
||||
append(std::monostate{});
|
||||
append_arg(std::monostate{});
|
||||
} else {
|
||||
append_ptr(vec.data());
|
||||
append_ptr_arg(vec.data());
|
||||
storage_.emplace_back(std::move(vec));
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure the arg is copied to an array with size of NDIM.
|
||||
template <size_t NDIM = MAX_NDIM, typename T>
|
||||
void append_ndim(std::vector<T> vec) {
|
||||
void append_ndim_arg(const std::vector<T>& vec) {
|
||||
if (vec.size() > NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", NDIM));
|
||||
}
|
||||
vec.resize(NDIM);
|
||||
append(std::move(vec));
|
||||
std::vector<T> copied(NDIM);
|
||||
std::copy(vec.begin(), vec.end(), copied.data());
|
||||
append_arg(std::move(copied));
|
||||
}
|
||||
|
||||
void append_ptr(const void* v) {
|
||||
args_.push_back(const_cast<void*>(v));
|
||||
}
|
||||
// Launch kernel with |kernel_name| that each thread works on
|
||||
// |work_per_thread| elements of |arr|.
|
||||
void launch_kernel(
|
||||
CUstream stream,
|
||||
const std::string& kernel_name,
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1);
|
||||
|
||||
void launch_kernel(
|
||||
CUstream stream,
|
||||
CUfunction kernel,
|
||||
Dims num_blocks,
|
||||
Dims block_dims);
|
||||
|
||||
CUfunction get_kernel(const std::string& kernel_name);
|
||||
|
||||
private:
|
||||
void append_ptr_arg(const void* v);
|
||||
|
||||
CUmodule module_{nullptr};
|
||||
std::unordered_map<std::string, CUfunction> kernels_;
|
||||
std::vector<void*> args_;
|
||||
|
||||
// The cuLaunchKernel API requires passing pointers to arguments so store
|
||||
@@ -82,23 +105,6 @@ struct KernelArgs {
|
||||
std::deque<Arg> storage_;
|
||||
};
|
||||
|
||||
class JitModule {
|
||||
public:
|
||||
JitModule(
|
||||
Device& device,
|
||||
const std::string& module_name,
|
||||
const KernelBuilder& builder);
|
||||
~JitModule();
|
||||
|
||||
JitModule(const JitModule&) = delete;
|
||||
JitModule& operator=(const JitModule&) = delete;
|
||||
CUfunction get_kernel(const std::string& kernel_name);
|
||||
|
||||
private:
|
||||
CUmodule module_{nullptr};
|
||||
std::unordered_map<std::string, CUfunction> kernels_;
|
||||
};
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
|
||||
@@ -6,13 +6,10 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <fmt/format.h>
|
||||
@@ -20,46 +17,60 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename F>
|
||||
void dispatch_1_2_3(int n, F&& f) {
|
||||
switch (n) {
|
||||
case 1:
|
||||
f(std::integral_constant<int, 1>{});
|
||||
break;
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
// Convert a number between 1~3 to constexpr.
|
||||
#define MLX_SWITCH_1_2_3(N, NDIM, ...) \
|
||||
switch (N) { \
|
||||
case 1: { \
|
||||
constexpr int NDIM = 1; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case 2: { \
|
||||
constexpr int NDIM = 2; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
case 3: { \
|
||||
constexpr int NDIM = 3; \
|
||||
__VA_ARGS__; \
|
||||
break; \
|
||||
} \
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bool(bool v, F&& f) {
|
||||
if (v) {
|
||||
f(std::true_type{});
|
||||
} else {
|
||||
f(std::false_type{});
|
||||
// Like MLX_SWITCH_ALL_TYPES but for booleans.
|
||||
#define MLX_SWITCH_BOOL(BOOL, BOOL_ALIAS, ...) \
|
||||
if (BOOL) { \
|
||||
constexpr bool BOOL_ALIAS = true; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr bool BOOL_ALIAS = false; \
|
||||
__VA_ARGS__; \
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_block_dim(int threads, F&& f) {
|
||||
if (threads <= WARP_SIZE) {
|
||||
f(std::integral_constant<int, WARP_SIZE>{});
|
||||
} else if (threads <= WARP_SIZE * 2) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 2>{});
|
||||
} else if (threads <= WARP_SIZE * 4) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 4>{});
|
||||
} else if (threads <= WARP_SIZE * 8) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 8>{});
|
||||
} else if (threads <= WARP_SIZE * 16) {
|
||||
f(std::integral_constant<int, WARP_SIZE * 16>{});
|
||||
} else {
|
||||
f(std::integral_constant<int, WARP_SIZE * 32>{});
|
||||
// Convert a block_dim to constexpr between WARP_SIZE and WARP_SIZE ^ 2.
|
||||
#define MLX_SWITCH_BLOCK_DIM(NUM_THREADS, BLOCK_DIM, ...) \
|
||||
{ \
|
||||
uint32_t _num_threads = NUM_THREADS; \
|
||||
if (_num_threads <= WARP_SIZE) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 2) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 2; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 4) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 4; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 8) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 8; \
|
||||
__VA_ARGS__; \
|
||||
} else if (_num_threads <= WARP_SIZE * 16) { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * 16; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr uint32_t BLOCK_DIM = WARP_SIZE * WARP_SIZE; \
|
||||
__VA_ARGS__; \
|
||||
} \
|
||||
}
|
||||
}
|
||||
|
||||
// Maps CPU types to CUDA types.
|
||||
template <typename T>
|
||||
@@ -121,13 +132,7 @@ std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
template <typename T>
|
||||
inline uint max_occupancy_block_dim(T kernel) {
|
||||
int _, block_dim;
|
||||
if constexpr (std::is_same_v<T, CUfunction>) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
|
||||
} else {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
|
||||
}
|
||||
CHECK_CUDA_ERROR(cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
|
||||
return block_dim;
|
||||
}
|
||||
|
||||
|
||||
@@ -258,23 +258,22 @@ void LayerNorm::eval_gpu(
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride,
|
||||
b_stride);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "layernorm", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::layer_norm<DataType, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride,
|
||||
b_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -289,25 +288,21 @@ void LayerNormVJP::eval_gpu(
|
||||
// Ensure row contiguity. We could relax this step by checking that the array
|
||||
// is contiguous (no broadcasts or holes) and that the input strides are the
|
||||
// same as the cotangent strides but for now this is simpler.
|
||||
auto check_input = [&s](const array& x, bool& copied) {
|
||||
auto check_input = [&s](const array& x) -> std::pair<array, bool> {
|
||||
if (x.flags().row_contiguous) {
|
||||
copied = false;
|
||||
return x;
|
||||
return {x, false};
|
||||
}
|
||||
copied = true;
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
return x_copy;
|
||||
return {x_copy, true};
|
||||
};
|
||||
bool donate_x = inputs[0].is_donatable();
|
||||
bool donate_g = inputs[3].is_donatable();
|
||||
bool copied;
|
||||
auto x = check_input(inputs[0], copied);
|
||||
auto [x, copied] = check_input(inputs[0]);
|
||||
donate_x |= copied;
|
||||
const array& w = inputs[1];
|
||||
const array& b = inputs[2];
|
||||
bool g_copied;
|
||||
auto g = check_input(inputs[3], g_copied);
|
||||
auto [g, g_copied] = check_input(inputs[3]);
|
||||
donate_g |= g_copied;
|
||||
array& gx = outputs[0];
|
||||
array& gw = outputs[1];
|
||||
@@ -338,58 +333,47 @@ void LayerNormVJP::eval_gpu(
|
||||
// gradient accumulators.
|
||||
array gw_temp =
|
||||
(has_w) ? array({n_rows, x.shape().back()}, gw.dtype(), nullptr, {}) : w;
|
||||
bool g_in_gw = false;
|
||||
if (has_w) {
|
||||
if (!g_in_gx && donate_g) {
|
||||
g_in_gw = true;
|
||||
gw_temp.copy_shared_buffer(g);
|
||||
} else {
|
||||
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
|
||||
encoder.add_temporary(gw_temp);
|
||||
}
|
||||
}
|
||||
gw.set_data(allocator::malloc(gw.nbytes()));
|
||||
gb.set_data(allocator::malloc(gb.nbytes()));
|
||||
|
||||
// The gradient for b in case we had a b.
|
||||
bool has_gb = (gb.ndim() == 1 && gb.size() == axis_size);
|
||||
if (has_gb) {
|
||||
// Finish with the gradient for b in case we had a b.
|
||||
if (gb.ndim() == 1 && gb.size() == axis_size) {
|
||||
ReductionPlan plan(
|
||||
ReductionOpType::ContiguousStridedReduce, {n_rows}, {axis_size});
|
||||
col_reduce(encoder, g, gb, Reduce::ReduceType::Sum, {0}, plan);
|
||||
}
|
||||
|
||||
// Insert dependency if `g` was donated
|
||||
if ((g_in_gx || g_in_gw) && has_gb) {
|
||||
encoder.set_input_array(gb);
|
||||
}
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(g);
|
||||
encoder.set_output_array(gx);
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(gx.dtype(), "layernorm_vjp", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
block_dim(),
|
||||
N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
MLX_SWITCH_BOOL(has_w, HAS_W, {
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::layer_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
@@ -143,18 +143,15 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "logsumexp", [&](auto type_tag) {
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::logsumexp<DataType, float, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "logsumexp", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::logsumexp<DataType, float, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -42,8 +42,7 @@ class MatMul {
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()) {
|
||||
int64_t b_batch_stride) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cuda_type(dtype);
|
||||
@@ -148,7 +147,7 @@ class MatMul {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
encoder.device().lt_handle(),
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
@@ -163,34 +162,31 @@ class MatMul {
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
encoder.device().lt_handle(),
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace.data<void>(),
|
||||
workspace.nbytes(),
|
||||
stream));
|
||||
});
|
||||
}
|
||||
|
||||
private:
|
||||
@@ -259,7 +255,6 @@ class MatMul {
|
||||
return desc;
|
||||
}
|
||||
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
@@ -274,7 +269,7 @@ class MatMul {
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
check_transpose(std::vector<array>& copies, const Stream& s, const array& arr) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
auto sty = arr.strides()[arr.ndim() - 1];
|
||||
if (sty == 1 && stx == arr.shape(-1)) {
|
||||
@@ -284,7 +279,7 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||
enc.add_temporary(arr_copy);
|
||||
copies.push_back(arr_copy);
|
||||
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
||||
}
|
||||
}
|
||||
@@ -318,8 +313,13 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Keep a vector with copies to be cleared in the completed buffer to release
|
||||
// the arrays
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
std::vector<array> copies;
|
||||
auto [a_transposed, lda, a] = check_transpose(copies, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(copies, s, b_pre);
|
||||
|
||||
for (auto& temp : copies) {
|
||||
encoder.add_temporary(temp);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
@@ -344,7 +344,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
encoder.device(),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
@@ -358,19 +358,9 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
@@ -402,9 +392,14 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Keep a vector with copies to be cleared in the completed buffer to release
|
||||
// the arrays
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
auto [c_transposed, ldc, c] = check_transpose(encoder, s, c_pre);
|
||||
std::vector<array> copies;
|
||||
auto [a_transposed, lda, a] = check_transpose(copies, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(copies, s, b_pre);
|
||||
auto [c_transposed, ldc, c] = check_transpose(copies, s, c_pre);
|
||||
|
||||
for (auto& temp : copies) {
|
||||
encoder.add_temporary(temp);
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
@@ -432,7 +427,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
encoder.device(),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
@@ -449,29 +444,10 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
alpha_,
|
||||
beta_);
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
for (size_t i = 0; i < batch_count / batch_shape.back(); ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
|
||||
@@ -24,21 +24,22 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_output_array(out);
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
encoder.launch_kernel([&, this](cudaStream_t stream) {
|
||||
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(stream),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -70,8 +71,10 @@ bool fast::ScaledDotProductAttention::use_fallback(
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
NO_GPU(ArgPartition)
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(Convolution)
|
||||
NO_GPU_MULTI(DivMod)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
@@ -80,9 +83,10 @@ NO_GPU(GatherQMM)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU(Partition)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU(Scan)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
|
||||
@@ -156,39 +156,34 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(keys);
|
||||
encoder.set_output_array(out);
|
||||
dim3 grid_dims{num_keys, half_size + odd};
|
||||
int64_t total = grid_dims.x * grid_dims.y;
|
||||
int32_t threads_y = 1;
|
||||
while ((total / threads_y) >= (1U << 31)) {
|
||||
threads_y *= 2;
|
||||
}
|
||||
int32_t threads_x = cuda::ceil_div(total, threads_y);
|
||||
auto [grid, block] = get_grid_and_block(threads_x, threads_y, 1);
|
||||
auto& stream = encoder.stream();
|
||||
if (keys.flags().row_contiguous) {
|
||||
encoder.add_kernel_node(
|
||||
cu::rbitsc,
|
||||
grid,
|
||||
block,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
odd,
|
||||
bytes_per_key);
|
||||
} else {
|
||||
encoder.add_kernel_node(
|
||||
cu::rbits,
|
||||
grid,
|
||||
block,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
odd,
|
||||
bytes_per_key,
|
||||
keys.ndim(),
|
||||
const_param(keys.shape()),
|
||||
const_param(keys.strides()));
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
dim3 grid_dims{num_keys, half_size + odd};
|
||||
int64_t total = grid_dims.x * grid_dims.y;
|
||||
int32_t threads_y = 1;
|
||||
while ((total / threads_y) >= (1U << 31)) {
|
||||
threads_y *= 2;
|
||||
}
|
||||
int32_t threads_x = cuda::ceil_div(total, threads_y);
|
||||
auto [grid, block] = get_grid_and_block(threads_x, threads_y, 1);
|
||||
if (keys.flags().row_contiguous) {
|
||||
cu::rbitsc<<<grid, block, 0, stream>>>(
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
odd,
|
||||
bytes_per_key);
|
||||
} else {
|
||||
cu::rbits<<<grid, block, 0, stream>>>(
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
odd,
|
||||
bytes_per_key,
|
||||
keys.ndim(),
|
||||
const_param(keys.shape()),
|
||||
const_param(keys.strides()));
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -21,11 +21,28 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(!axes_.empty());
|
||||
assert(out.size() != in.size());
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
// Fill out with init value.
|
||||
if (in.size() == 0) {
|
||||
init_reduce(encoder, in, out, reduce_type_);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type_, OP, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
using OutType = cu::ReduceResult<OP, InType>::type;
|
||||
thrust::fill_n(
|
||||
cu::thrust_policy(stream),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
out.data_size(),
|
||||
cu::ReduceInit<OP, InType>::value());
|
||||
});
|
||||
});
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -34,19 +51,7 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// If it is a general reduce then copy the input to a contiguous array and
|
||||
// recompute the plan.
|
||||
//
|
||||
// TODO: Instead of copying we can use elem-to-loc to deal with broadcasting
|
||||
// like we do in Metal. When it comes to broadcasted reduction axes
|
||||
// some can be ignored eg for min/max.
|
||||
bool broadcasted = false;
|
||||
for (int i = 0, j = 0; i < in.ndim() && !broadcasted; i++) {
|
||||
if (j < axes_.size() && axes_[j] == i) {
|
||||
j++;
|
||||
} else {
|
||||
broadcasted = in.strides(i) == 0;
|
||||
}
|
||||
}
|
||||
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
|
||||
if (plan.type == GeneralReduce) {
|
||||
array in_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_gpu(in, in_copy, CopyType::General, s);
|
||||
encoder.add_temporary(in_copy);
|
||||
@@ -54,8 +59,9 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
plan = get_reduction_plan(in, axes_);
|
||||
}
|
||||
|
||||
if (plan.type == ContiguousAllReduce) {
|
||||
all_reduce(encoder, in, out, reduce_type_);
|
||||
if ((plan.type == ContiguousAllReduce) ||
|
||||
(plan.type == ContiguousReduce && plan.shape.size() == 1)) {
|
||||
segmented_reduce(encoder, in, out, reduce_type_, axes_, plan);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -1,157 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <cub/block/block_load.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, typename U, typename ReduceOp, int N = 4>
|
||||
__global__ void all_reduce(T* in, U* out, size_t block_step, size_t size) {
|
||||
// TODO: Process multiple "rows" in each thread
|
||||
constexpr int M = 1;
|
||||
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
const U init = cu::ReduceInit<ReduceOp, T>::value();
|
||||
ReduceOp op;
|
||||
|
||||
T vals[N];
|
||||
U accs[M];
|
||||
accs[0] = init;
|
||||
|
||||
size_t start = grid.block_rank() * block_step;
|
||||
size_t end = start + block_step;
|
||||
size_t check = min(end, size);
|
||||
|
||||
size_t i = start;
|
||||
for (; i + block.size() * N <= check; i += block.size() * N) {
|
||||
cub::LoadDirectBlockedVectorized<T, N>(block.thread_rank(), in + i, vals);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[0] = op(accs[0], cast_to<U>(vals[j]));
|
||||
}
|
||||
}
|
||||
|
||||
if (i < check) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(), in + i, vals, check - i, cast_to<T>(init));
|
||||
for (int i = 0; i < N; i++) {
|
||||
accs[0] = op(accs[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32];
|
||||
block_reduce(block, warp, accs, shared_accumulators, op, init);
|
||||
|
||||
if (block.thread_rank() == 0) {
|
||||
out[grid.block_rank()] = accs[0];
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void all_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto get_args = [](size_t size, int N) {
|
||||
int threads = std::min(512UL, (size + N - 1) / N);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
int reductions_per_step = threads * N;
|
||||
size_t steps_needed =
|
||||
(size + reductions_per_step - 1) / reductions_per_step;
|
||||
|
||||
int blocks;
|
||||
if (steps_needed < 32) {
|
||||
blocks = 1;
|
||||
} else if (steps_needed < 128) {
|
||||
blocks = 32;
|
||||
} else if (steps_needed < 512) {
|
||||
blocks = 128;
|
||||
} else if (steps_needed < 1024) {
|
||||
blocks = 512;
|
||||
} else {
|
||||
blocks = 1024;
|
||||
}
|
||||
|
||||
size_t steps_per_block = (steps_needed + blocks - 1) / blocks;
|
||||
size_t block_step = steps_per_block * reductions_per_step;
|
||||
|
||||
return std::make_tuple(blocks, threads, block_step);
|
||||
};
|
||||
|
||||
int blocks, threads;
|
||||
size_t block_step;
|
||||
size_t insize = in.size();
|
||||
Dtype dt = in.dtype();
|
||||
|
||||
// Cub doesn't like const pointers for load (sigh).
|
||||
void* indata = const_cast<void*>(in.data<void>());
|
||||
|
||||
// Large array so allocate an intermediate and accumulate there
|
||||
std::tie(blocks, threads, block_step) = get_args(insize, N_READS);
|
||||
encoder.set_input_array(in);
|
||||
if (blocks > 1) {
|
||||
array intermediate({blocks}, out.dtype(), nullptr, {});
|
||||
intermediate.set_data(allocator::malloc(intermediate.nbytes()));
|
||||
encoder.add_temporary(intermediate);
|
||||
encoder.set_output_array(intermediate);
|
||||
dispatch_all_types(dt, [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::all_reduce<T, U, OP, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
static_cast<T*>(indata),
|
||||
intermediate.data<U>(),
|
||||
block_step,
|
||||
insize);
|
||||
});
|
||||
});
|
||||
|
||||
// Set the input for the next step and recalculate the blocks
|
||||
indata = intermediate.data<void>();
|
||||
dt = intermediate.dtype();
|
||||
insize = intermediate.size();
|
||||
std::tie(blocks, threads, block_step) = get_args(insize, N_READS);
|
||||
encoder.set_input_array(intermediate);
|
||||
}
|
||||
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(dt, [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::all_reduce<T, U, OP, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
static_cast<T*>(indata),
|
||||
out.data<U>(),
|
||||
block_step,
|
||||
insize);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,8 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <numeric>
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
@@ -37,36 +36,19 @@ struct ColReduceArgs {
|
||||
const array& in,
|
||||
const ReductionPlan& plan,
|
||||
const std::vector<int>& axes) {
|
||||
using ShapeVector = decltype(plan.shape);
|
||||
using StridesVector = decltype(plan.strides);
|
||||
|
||||
ShapeVector shape_vec;
|
||||
StridesVector strides_vec;
|
||||
|
||||
assert(!plan.shape.empty());
|
||||
reduction_size = plan.shape.back();
|
||||
reduction_stride = plan.strides.back();
|
||||
|
||||
int64_t stride_back = 1;
|
||||
std::tie(shape_vec, strides_vec) = shapes_without_reduction_axes(in, axes);
|
||||
auto [shape_vec, strides_vec] = shapes_without_reduction_axes(in, axes);
|
||||
while (!shape_vec.empty() && stride_back < reduction_stride) {
|
||||
stride_back *= shape_vec.back();
|
||||
shape_vec.pop_back();
|
||||
strides_vec.pop_back();
|
||||
}
|
||||
std::vector<int> indices(shape_vec.size());
|
||||
std::iota(indices.begin(), indices.end(), 0);
|
||||
std::sort(indices.begin(), indices.end(), [&](int left, int right) {
|
||||
return strides_vec[left] > strides_vec[right];
|
||||
});
|
||||
ShapeVector sorted_shape;
|
||||
StridesVector sorted_strides;
|
||||
for (auto idx : indices) {
|
||||
sorted_shape.push_back(shape_vec[idx]);
|
||||
sorted_strides.push_back(strides_vec[idx]);
|
||||
}
|
||||
std::tie(shape_vec, strides_vec) =
|
||||
collapse_contiguous_dims(sorted_shape, sorted_strides);
|
||||
collapse_contiguous_dims(shape_vec, strides_vec);
|
||||
shape = const_param(shape_vec);
|
||||
strides = const_param(strides_vec);
|
||||
ndim = shape_vec.size();
|
||||
@@ -82,6 +64,86 @@ struct ColReduceArgs {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
||||
__global__ void col_reduce_small(
|
||||
const T* in,
|
||||
U* out,
|
||||
const __grid_constant__ ColReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
|
||||
int column =
|
||||
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
||||
if (column * N_READS >= args.reduction_stride) {
|
||||
return;
|
||||
}
|
||||
|
||||
int out_idx = grid.block_rank() / grid.dim_blocks().x;
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
|
||||
Op op;
|
||||
U totals[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = ReduceInit<Op, T>::value();
|
||||
}
|
||||
|
||||
// Read input to local.
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
loop.next(
|
||||
block.thread_index().y,
|
||||
args.reduce_shape.data(),
|
||||
args.reduce_strides.data());
|
||||
for (size_t r = block.thread_index().y;
|
||||
r < args.non_col_reductions * args.reduction_size;
|
||||
r += block.dim_threads().y) {
|
||||
U vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
column,
|
||||
make_cast_iterator<U>(in + loop.location()),
|
||||
vals,
|
||||
args.reduction_stride,
|
||||
ReduceInit<Op, T>::value());
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(vals[i], totals[i]);
|
||||
}
|
||||
loop.next(
|
||||
block.dim_threads().y,
|
||||
args.reduce_shape.data(),
|
||||
args.reduce_strides.data());
|
||||
}
|
||||
|
||||
// Do block reduce when each column has more than 1 element to reduce.
|
||||
if (block.dim_threads().y > 1) {
|
||||
__shared__ U shared_vals[32 * 8 * N_READS];
|
||||
size_t col =
|
||||
block.thread_index().y * block.dim_threads().x + block.thread_index().x;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
shared_vals[col * N_READS + i] = totals[i];
|
||||
}
|
||||
block.sync();
|
||||
if (block.thread_index().y == 0) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = shared_vals[block.thread_index().x * N_READS + i];
|
||||
}
|
||||
for (int j = 1; j < block.dim_threads().y; j++) {
|
||||
col = j * block.dim_threads().x + block.thread_index().x;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(shared_vals[col * N_READS + i], totals[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write result.
|
||||
if (block.thread_index().y == 0) {
|
||||
cub::StoreDirectBlocked(
|
||||
column,
|
||||
out + out_idx * args.reduction_stride,
|
||||
totals,
|
||||
args.reduction_stride);
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
@@ -90,94 +152,67 @@ template <
|
||||
int BM,
|
||||
int BN,
|
||||
int N_READS = 4>
|
||||
__global__ void
|
||||
col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
||||
__global__ void col_reduce_looped(
|
||||
const T* in,
|
||||
U* out,
|
||||
const __grid_constant__ ColReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
constexpr int threads_per_row = BN / N_READS;
|
||||
constexpr int n_warps = BN / N_READS;
|
||||
|
||||
// Compute the indices for the tile
|
||||
size_t tile_idx = grid.block_rank();
|
||||
size_t tile_x = tile_idx % ((args.reduction_stride + BN - 1) / BN);
|
||||
size_t tile_y = tile_idx / ((args.reduction_stride + BN - 1) / BN);
|
||||
int out_idx = grid.block_rank() / grid.dim_blocks().x;
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
|
||||
// Compute the indices for the thread within the tile
|
||||
short thread_x = block.thread_rank() % threads_per_row;
|
||||
short thread_y = block.thread_rank() / threads_per_row;
|
||||
|
||||
// Move the input pointer
|
||||
in += elem_to_loc(tile_y, args.shape.data(), args.strides.data(), args.ndim) +
|
||||
tile_x * BN;
|
||||
|
||||
// Initialize the running totals
|
||||
Op op;
|
||||
U totals[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = ReduceInit<Op, T>::value();
|
||||
}
|
||||
|
||||
// Read input to local.
|
||||
int r = block.thread_rank() / n_warps;
|
||||
int column = block.thread_rank() % n_warps;
|
||||
int in_offset = grid.block_index().x * BN;
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
loop.next(thread_y, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
size_t total = args.non_col_reductions * args.reduction_size;
|
||||
if (tile_x * BN + BN <= args.reduction_stride) {
|
||||
if (args.reduction_stride % N_READS == 0) {
|
||||
for (size_t r = thread_y; r < total; r += BM) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlockedVectorized(thread_x, in + loop.location(), vals);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
||||
}
|
||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
} else {
|
||||
for (size_t r = thread_y; r < total; r += BM) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(thread_x, in + loop.location(), vals);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
||||
}
|
||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t r = thread_y; r < total; r += BM) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
thread_x,
|
||||
in + loop.location(),
|
||||
vals,
|
||||
args.reduction_stride - tile_x * BN,
|
||||
cast_to<T>(ReduceInit<Op, T>::value()));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(totals[i], cast_to<U>(vals[i]));
|
||||
}
|
||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
loop.next(r, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
for (; r < args.non_col_reductions * args.reduction_size; r += BM) {
|
||||
U vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
column,
|
||||
make_cast_iterator<U>(in + loop.location() + in_offset),
|
||||
vals,
|
||||
args.reduction_stride - in_offset,
|
||||
ReduceInit<Op, T>::value());
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
totals[i] = op(vals[i], totals[i]);
|
||||
}
|
||||
loop.next(BM, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
// Do warp reduce for each output.
|
||||
constexpr int n_outputs = BN / threads_per_row;
|
||||
constexpr int n_outputs = BN / n_warps;
|
||||
static_assert(BM == 32 && n_outputs == N_READS);
|
||||
__shared__ U shared_vals[BM * BN];
|
||||
short s_idx = thread_y * BN + thread_x * N_READS;
|
||||
size_t col = block.thread_index().y * BN + block.thread_index().x * N_READS;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
shared_vals[s_idx + i] = totals[i];
|
||||
shared_vals[col + i] = totals[i];
|
||||
}
|
||||
block.sync();
|
||||
s_idx = warp.thread_rank() * BN + warp.meta_group_rank() * n_outputs;
|
||||
col = warp.thread_rank() * BN + warp.meta_group_rank() * n_outputs;
|
||||
for (int i = 0; i < n_outputs; i++) {
|
||||
totals[i] = cg::reduce(warp, shared_vals[s_idx + i], op);
|
||||
totals[i] = cg::reduce(warp, shared_vals[col + i], op);
|
||||
}
|
||||
|
||||
// Write result.
|
||||
if (warp.thread_rank() == 0) {
|
||||
size_t out_offset = grid.block_index().x * BN;
|
||||
cub::StoreDirectBlocked(
|
||||
warp.meta_group_rank(),
|
||||
out + tile_y * args.reduction_stride + tile_x * BN,
|
||||
out + out_idx * args.reduction_stride + out_offset,
|
||||
totals,
|
||||
args.reduction_stride - tile_x * BN);
|
||||
args.reduction_stride - out_offset);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -185,55 +220,14 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
||||
|
||||
inline auto output_grid_for_col_reduce(
|
||||
const array& out,
|
||||
const cu::ColReduceArgs& args,
|
||||
int bn) {
|
||||
int gx, gy = 1;
|
||||
size_t n_inner_blocks = cuda::ceil_div(args.reduction_stride, bn);
|
||||
size_t n_outer_blocks = out.size() / args.reduction_stride;
|
||||
size_t n_blocks = n_outer_blocks * n_inner_blocks;
|
||||
while (n_blocks / gy > INT32_MAX) {
|
||||
gy *= 2;
|
||||
const cu::ColReduceArgs& args) {
|
||||
auto out_shape = out.shape();
|
||||
auto out_strides = out.strides();
|
||||
while (!out_shape.empty() && out_strides.back() < args.reduction_stride) {
|
||||
out_shape.pop_back();
|
||||
out_strides.pop_back();
|
||||
}
|
||||
gx = cuda::ceil_div(n_blocks, gy);
|
||||
|
||||
return dim3(gx, gy, 1);
|
||||
}
|
||||
|
||||
void col_reduce_looped(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::ColReduceArgs args) {
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
|
||||
constexpr int N_READS = 4;
|
||||
constexpr int BM = 32;
|
||||
constexpr int BN = 32;
|
||||
dim3 grid = output_grid_for_col_reduce(out, args, BN);
|
||||
int blocks = BM * BN / N_READS;
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, indata, out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
return get_2d_grid_dims(out_shape, out_strides);
|
||||
}
|
||||
|
||||
void col_reduce(
|
||||
@@ -243,23 +237,42 @@ void col_reduce(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
// Current col reduce options
|
||||
//
|
||||
// - col_reduce_looped
|
||||
//
|
||||
// It is a general strided reduce. Each threadblock computes the output for
|
||||
// a subrow of the fast moving axis. For instance 32 elements.
|
||||
//
|
||||
// Notes: As in row reduce we opt to read as much in order as possible and
|
||||
// leave transpositions as they are (contrary to our Metal backend).
|
||||
//
|
||||
// Moreover we need different kernels for short rows and tuning
|
||||
|
||||
// Make the args struct to help route to the best kernel
|
||||
cu::ColReduceArgs args(in, plan, axes);
|
||||
|
||||
// Fallback col reduce
|
||||
col_reduce_looped(encoder, in, out, reduce_type, axes, plan, args);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using OutType = cu::ReduceResult<OP, InType>::type;
|
||||
MLX_SWITCH_REDUCE_NDIM(args.reduce_ndim, NDIM, {
|
||||
constexpr int N_READS = 4;
|
||||
dim3 block_dims;
|
||||
dim3 num_blocks = output_grid_for_col_reduce(out, args);
|
||||
num_blocks.z = num_blocks.y;
|
||||
num_blocks.y = num_blocks.x;
|
||||
auto kernel =
|
||||
cu::col_reduce_small<InType, OutType, OP, NDIM, N_READS>;
|
||||
size_t total = args.non_col_reductions * args.reduction_size;
|
||||
if (total < 32) {
|
||||
size_t stride_blocks =
|
||||
cuda::ceil_div(args.reduction_stride, N_READS);
|
||||
block_dims.x = std::min(stride_blocks, 32ul);
|
||||
block_dims.y = std::min(total, 8ul);
|
||||
num_blocks.x = cuda::ceil_div(stride_blocks, block_dims.x);
|
||||
} else {
|
||||
constexpr int BM = 32;
|
||||
constexpr int BN = 32;
|
||||
block_dims.x = BM * BN / N_READS;
|
||||
num_blocks.x = cuda::ceil_div(args.reduction_stride, BN);
|
||||
kernel = cu::
|
||||
col_reduce_looped<InType, OutType, OP, NDIM, BM, BN, N_READS>;
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>(), out.data<OutType>(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,49 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
__global__ void init_reduce(U* out, size_t size) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = ReduceInit<Op, T>::value();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void init_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type) {
|
||||
// Allocate if needed
|
||||
if (out.data_shared_ptr() == nullptr) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
}
|
||||
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
auto kernel = cu::init_reduce<T, U, OP>;
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
|
||||
grid.x = (grid.x + 1023) / 1024;
|
||||
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,7 +1,5 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
@@ -11,41 +9,51 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename F>
|
||||
void dispatch_reduce_ndim(int ndim, F&& f) {
|
||||
if (ndim == 1) {
|
||||
f(std::integral_constant<int, 1>{});
|
||||
} else if (ndim == 2) {
|
||||
f(std::integral_constant<int, 2>{});
|
||||
} else {
|
||||
f(std::integral_constant<int, 5>{});
|
||||
// Dispatch dynamic ndim to constexpr.
|
||||
// The behavior follows get_kernel_reduce_ndim in metal/reduce.cpp file.
|
||||
#define MLX_SWITCH_REDUCE_NDIM(ndim, NDIM, ...) \
|
||||
if (ndim == 1) { \
|
||||
constexpr uint32_t NDIM = 1; \
|
||||
__VA_ARGS__; \
|
||||
} else if (ndim == 2) { \
|
||||
constexpr uint32_t NDIM = 2; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
constexpr uint32_t NDIM = 5; \
|
||||
__VA_ARGS__; \
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_reduce_ops(Reduce::ReduceType reduce_type, F&& f) {
|
||||
if (reduce_type == Reduce::ReduceType::And) {
|
||||
f(type_identity<cu::And>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Or) {
|
||||
f(type_identity<cu::Or>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Sum) {
|
||||
f(type_identity<cu::Sum>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Prod) {
|
||||
f(type_identity<cu::Prod>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Max) {
|
||||
f(type_identity<cu::Max>{});
|
||||
} else if (reduce_type == Reduce::ReduceType::Min) {
|
||||
f(type_identity<cu::Min>{});
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown reduce type.");
|
||||
// Dispatch reduce ops to constexpr.
|
||||
#define MLX_SWITCH_REDUCE_OPS(REDUCE, OP, ...) \
|
||||
if (REDUCE == Reduce::ReduceType::And) { \
|
||||
using OP = cu::And; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Or) { \
|
||||
using OP = cu::Or; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Sum) { \
|
||||
using OP = cu::Sum; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Prod) { \
|
||||
using OP = cu::Prod; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Max) { \
|
||||
using OP = cu::Max; \
|
||||
__VA_ARGS__; \
|
||||
} else if (REDUCE == Reduce::ReduceType::Min) { \
|
||||
using OP = cu::Min; \
|
||||
__VA_ARGS__; \
|
||||
} else { \
|
||||
throw std::invalid_argument("Unknown reduce type."); \
|
||||
}
|
||||
}
|
||||
|
||||
void all_reduce(
|
||||
void segmented_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type);
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan);
|
||||
|
||||
void row_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -63,10 +71,4 @@ void col_reduce(
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan);
|
||||
|
||||
void init_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,92 +2,49 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/atomic_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce_utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Reduce ops.
|
||||
struct And {
|
||||
__device__ __forceinline__ bool operator()(bool a, bool b) {
|
||||
__device__ bool operator()(bool a, bool b) {
|
||||
return a && b;
|
||||
}
|
||||
|
||||
__device__ void atomic_update(bool* x, bool y) {
|
||||
atomic_reduce<bool, And>(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct Or {
|
||||
__device__ __forceinline__ bool operator()(bool a, bool b) {
|
||||
__device__ bool operator()(bool a, bool b) {
|
||||
return a || b;
|
||||
}
|
||||
|
||||
__device__ void atomic_update(bool* x, bool y) {
|
||||
atomic_reduce<bool, Or>(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct Sum {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void atomic_update(T* x, T y) {
|
||||
atomic_reduce<T, Sum>(x, y);
|
||||
}
|
||||
|
||||
__device__ void atomic_update(__nv_bfloat16* x, __nv_bfloat16 y) {
|
||||
atomic_add(x, y);
|
||||
}
|
||||
|
||||
__device__ void atomic_update(int* x, int y) {
|
||||
atomic_add(x, y);
|
||||
}
|
||||
|
||||
__device__ void atomic_update(float* x, float y) {
|
||||
atomic_add(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct Prod {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void atomic_update(T* x, T y) {
|
||||
atomic_reduce<T, Prod>(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct Min {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void atomic_update(T* x, T y) {
|
||||
atomic_reduce<T, Min>(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct Max {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
__device__ void atomic_update(T* x, T y) {
|
||||
atomic_reduce<T, Max>(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
// Traits to get the result type of reduce op.
|
||||
@@ -154,7 +111,7 @@ struct ReduceInit<Sum, T> {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return T{0, 0};
|
||||
} else {
|
||||
return cast_to<typename ReduceResult<Sum, T>::type>(0);
|
||||
return typename ReduceResult<Sum, T>::type{0};
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -163,9 +120,9 @@ template <typename T>
|
||||
struct ReduceInit<Prod, T> {
|
||||
static constexpr __host__ __device__ auto value() {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return T{1, 0};
|
||||
return T{1, 1};
|
||||
} else {
|
||||
return cast_to<typename ReduceResult<Prod, T>::type>(1);
|
||||
return typename ReduceResult<Prod, T>::type{1};
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,143 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <numeric>
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <size_t N>
|
||||
struct uint_by_size;
|
||||
template <>
|
||||
struct uint_by_size<2> {
|
||||
using type = uint16_t;
|
||||
};
|
||||
template <>
|
||||
struct uint_by_size<4> {
|
||||
using type = uint32_t;
|
||||
};
|
||||
template <>
|
||||
struct uint_by_size<8> {
|
||||
using type = unsigned long long int;
|
||||
};
|
||||
|
||||
template <typename T, typename Op>
|
||||
__device__ void atomic_reduce(T* x, T y) {
|
||||
if constexpr (sizeof(T) == 1) {
|
||||
using U = uint16_t;
|
||||
U* x_int = (U*)((char*)x - ((size_t)x % 2));
|
||||
int shift = ((char*)x - (char*)x_int) * 8;
|
||||
int mask = 0xff << shift;
|
||||
U old_val, new_val;
|
||||
do {
|
||||
old_val = *x_int;
|
||||
T result = Op{}(static_cast<T>((old_val >> shift) & 0xff), y);
|
||||
new_val = (old_val & ~mask) | (result << shift);
|
||||
} while (atomicCAS(x_int, old_val, new_val) != old_val);
|
||||
} else {
|
||||
using U = typename uint_by_size<sizeof(T)>::type;
|
||||
U* x_int = (U*)(x);
|
||||
U old_val, new_val;
|
||||
do {
|
||||
old_val = *x_int;
|
||||
T result = Op{}(*((T*)&old_val), y);
|
||||
new_val = *((U*)&result);
|
||||
} while (atomicCAS(x_int, old_val, new_val) != old_val);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int N, typename Block, typename Warp, typename Op>
|
||||
inline __device__ void
|
||||
block_reduce(Block block, Warp warp, T (&vals)[N], T* smem, Op op, T init) {
|
||||
// First reduce in the current warp
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = cg::reduce(warp, vals[i], op);
|
||||
}
|
||||
|
||||
// Reduce across warps
|
||||
if (warp.meta_group_size() > 1) {
|
||||
if (warp.thread_rank() == 0) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
smem[warp.meta_group_rank() * N + i] = vals[i];
|
||||
}
|
||||
}
|
||||
block.sync();
|
||||
if (warp.thread_rank() < warp.meta_group_size()) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = smem[warp.thread_rank() * N + i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = init;
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[i] = cg::reduce(warp, vals[i], op);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
inline void allocate_same_layout(
|
||||
array& out,
|
||||
const array& in,
|
||||
const std::vector<int>& axes) {
|
||||
if (in.flags().row_contiguous) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
}
|
||||
|
||||
if (out.ndim() < in.ndim()) {
|
||||
throw std::runtime_error(
|
||||
"Reduction without keepdims only supported for row-contiguous inputs");
|
||||
}
|
||||
|
||||
// Calculate the transpositions applied to in in order to apply them to out.
|
||||
std::vector<int> axis_order(in.ndim());
|
||||
std::iota(axis_order.begin(), axis_order.end(), 0);
|
||||
std::sort(axis_order.begin(), axis_order.end(), [&](int left, int right) {
|
||||
return in.strides(left) > in.strides(right);
|
||||
});
|
||||
|
||||
// Transpose the shape and calculate the strides
|
||||
Shape out_shape(in.ndim());
|
||||
Strides out_strides(in.ndim(), 1);
|
||||
for (int i = 0; i < in.ndim(); i++) {
|
||||
out_shape[i] = out.shape(axis_order[i]);
|
||||
}
|
||||
for (int i = in.ndim() - 2; i >= 0; i--) {
|
||||
out_strides[i] = out_shape[i + 1] * out_strides[i + 1];
|
||||
}
|
||||
|
||||
// Reverse the axis order to get the final strides
|
||||
Strides final_strides(in.ndim());
|
||||
for (int i = 0; i < in.ndim(); i++) {
|
||||
final_strides[axis_order[i]] = out_strides[i];
|
||||
}
|
||||
|
||||
// Calculate the resulting contiguity and do the memory allocation
|
||||
auto [data_size, rc, cc] = check_contiguity(out.shape(), final_strides);
|
||||
auto fl = in.flags();
|
||||
fl.row_contiguous = rc;
|
||||
fl.col_contiguous = cc;
|
||||
fl.contiguous = true;
|
||||
out.set_data(
|
||||
allocator::malloc(out.nbytes()),
|
||||
data_size,
|
||||
final_strides,
|
||||
fl,
|
||||
allocator::free);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,8 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <numeric>
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
@@ -56,108 +55,84 @@ struct RowReduceArgs {
|
||||
non_row_reductions *= reduce_shape[i];
|
||||
}
|
||||
}
|
||||
|
||||
// Convert shape and strides as if in was contiguous
|
||||
void sort_access_pattern(const array& in, const std::vector<int>& axes) {
|
||||
auto shape_vec = in.shape();
|
||||
auto strides_vec = in.strides();
|
||||
std::tie(shape_vec, strides_vec) =
|
||||
shapes_without_reduction_axes(shape_vec, strides_vec, axes);
|
||||
std::vector<int> indices(shape_vec.size());
|
||||
std::iota(indices.begin(), indices.end(), 0);
|
||||
std::sort(indices.begin(), indices.end(), [&](int left, int right) {
|
||||
return strides_vec[left] > strides_vec[right];
|
||||
});
|
||||
decltype(shape_vec) sorted_shape;
|
||||
decltype(strides_vec) sorted_strides;
|
||||
for (auto idx : indices) {
|
||||
sorted_shape.push_back(shape_vec[idx]);
|
||||
sorted_strides.push_back(strides_vec[idx]);
|
||||
}
|
||||
std::tie(shape_vec, strides_vec) =
|
||||
collapse_contiguous_dims(sorted_shape, sorted_strides);
|
||||
shape = const_param(shape_vec);
|
||||
strides = const_param(strides_vec);
|
||||
ndim = shape_vec.size();
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename ReduceOp, int N = 4, int M = 1>
|
||||
__global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
||||
__global__ void row_reduce_small(
|
||||
const T* in,
|
||||
U* out,
|
||||
size_t out_size,
|
||||
const __grid_constant__ RowReduceArgs args) {
|
||||
size_t out_idx = cg::this_grid().thread_rank();
|
||||
if (out_idx >= out_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
Op op;
|
||||
|
||||
U total_val = ReduceInit<Op, T>::value();
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
for (int r = 0; r < cuda::ceil_div(args.row_size, N_READS); r++) {
|
||||
U vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
r,
|
||||
make_cast_iterator<U>(in + loop.location()),
|
||||
vals,
|
||||
args.row_size,
|
||||
ReduceInit<Op, T>::value());
|
||||
total_val = op(total_val, cub::ThreadReduce(vals, op));
|
||||
}
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
out[out_idx] = total_val;
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
||||
__global__ void row_reduce_small_warp(
|
||||
const T* in,
|
||||
U* out,
|
||||
size_t out_size,
|
||||
const __grid_constant__ RowReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
const U init = cu::ReduceInit<ReduceOp, T>::value();
|
||||
ReduceOp op;
|
||||
|
||||
T vals[M][N];
|
||||
U accs[M];
|
||||
for (int i = 0; i < M; i++) {
|
||||
accs[i] = init;
|
||||
size_t out_idx = grid.thread_rank() / WARP_SIZE;
|
||||
if (out_idx >= out_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
const size_t start_row =
|
||||
min(n_rows - M, static_cast<size_t>(grid.block_rank() * M));
|
||||
const size_t full_blocks = size / (block.size() * N);
|
||||
const size_t final_offset = full_blocks * (block.size() * N);
|
||||
in += start_row * size;
|
||||
out += start_row;
|
||||
Op op;
|
||||
|
||||
if (size % N == 0) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlockedVectorized<T, N>(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
U total_val = ReduceInit<Op, T>::value();
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
|
||||
if (final_offset < size) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
|
||||
for (size_t n = warp.thread_rank(); n < args.non_row_reductions;
|
||||
n += WARP_SIZE) {
|
||||
for (int r = 0; r < cuda::ceil_div(args.row_size, N_READS); r++) {
|
||||
U vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + final_offset,
|
||||
vals[k],
|
||||
size,
|
||||
cast_to<T>(init));
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
r,
|
||||
make_cast_iterator<U>(in + loop.location()),
|
||||
vals,
|
||||
args.row_size,
|
||||
ReduceInit<Op, T>::value());
|
||||
total_val = op(total_val, cub::ThreadReduce(vals, op));
|
||||
}
|
||||
loop.next(WARP_SIZE, args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32 * M];
|
||||
block_reduce(block, warp, accs, shared_accumulators, op, init);
|
||||
total_val = cg::reduce(warp, total_val, op);
|
||||
|
||||
if (block.thread_rank() == 0) {
|
||||
if (grid.block_rank() * M + M <= n_rows) {
|
||||
for (int i = 0; i < M; i++) {
|
||||
out[i] = accs[i];
|
||||
}
|
||||
} else {
|
||||
short offset = grid.block_rank() * M + M - n_rows;
|
||||
for (int i = offset; i < M; i++) {
|
||||
out[i] = accs[i];
|
||||
}
|
||||
}
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[out_idx] = total_val;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -166,167 +141,55 @@ template <
|
||||
typename U,
|
||||
typename Op,
|
||||
int NDIM,
|
||||
int BLOCK_DIM,
|
||||
int BLOCK_DIM_X,
|
||||
int N_READS = 4>
|
||||
__global__ void row_reduce_looped(
|
||||
T* in,
|
||||
const T* in,
|
||||
U* out,
|
||||
size_t out_size,
|
||||
const __grid_constant__ RowReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
size_t out_idx = grid.block_rank();
|
||||
size_t out_idx = grid.thread_rank() / BLOCK_DIM_X;
|
||||
if (out_idx >= out_size) {
|
||||
return;
|
||||
}
|
||||
|
||||
Op op;
|
||||
|
||||
U total[1];
|
||||
U init = ReduceInit<Op, T>::value();
|
||||
total[0] = init;
|
||||
U total_val = ReduceInit<Op, T>::value();
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
size_t full_blocks = args.row_size / (BLOCK_DIM * N_READS);
|
||||
size_t final_offset = full_blocks * BLOCK_DIM * N_READS;
|
||||
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlockedVectorized<T, N_READS>(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + r * BLOCK_DIM * N_READS,
|
||||
vals);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
}
|
||||
if (final_offset < args.row_size) {
|
||||
T vals[N_READS];
|
||||
for (size_t r = 0; r < cuda::ceil_div(args.row_size, BLOCK_DIM_X * N_READS);
|
||||
r++) {
|
||||
U vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + final_offset,
|
||||
r * BLOCK_DIM_X + block.thread_index().x,
|
||||
make_cast_iterator<U>(in + loop.location()),
|
||||
vals,
|
||||
args.row_size - final_offset,
|
||||
cast_to<T>(init));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
args.row_size,
|
||||
ReduceInit<Op, T>::value());
|
||||
total_val = op(total_val, cub::ThreadReduce(vals, op));
|
||||
}
|
||||
// TODO: Maybe block.sync() here?
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32];
|
||||
block_reduce(block, warp, total, shared_accumulators, op, init);
|
||||
typedef cub::BlockReduce<U, BLOCK_DIM_X> BlockReduceT;
|
||||
__shared__ typename BlockReduceT::TempStorage temp;
|
||||
|
||||
total_val = BlockReduceT(temp).Reduce(total_val, op);
|
||||
|
||||
if (block.thread_rank() == 0) {
|
||||
out[out_idx] = total[0];
|
||||
out[out_idx] = total_val;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void row_reduce_simple(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to avoid elem_to_loc in the
|
||||
// kernel.
|
||||
allocate_same_layout(out, in, axes);
|
||||
|
||||
// TODO: If out.size() < 1024 which will be a common case then write this in
|
||||
// 2 passes. Something like 32 * out.size() and then do a warp reduce.
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
|
||||
// Calculate the grid and block dims
|
||||
size_t reductions = (plan.shape.back() + N_READS - 1) / N_READS;
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
auto kernel = cu::row_reduce_simple<T, U, OP, N_READS>;
|
||||
if (grid.x >= 1024) {
|
||||
grid.x = (grid.x + 1) / 2;
|
||||
kernel = cu::row_reduce_simple<T, U, OP, N_READS, 2>;
|
||||
}
|
||||
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), size);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void row_reduce_looped(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::RowReduceArgs args) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
|
||||
// Calculate the grid and block dims
|
||||
args.sort_access_pattern(in, axes);
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
size_t reductions = (args.row_size + N_READS - 1) / N_READS;
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, 32, N_READS>;
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
dispatch_block_dim(threads, [&](auto threads_constant) {
|
||||
kernel = cu::row_reduce_looped<
|
||||
T,
|
||||
U,
|
||||
OP,
|
||||
reduce_ndim.value,
|
||||
threads_constant.value,
|
||||
N_READS>;
|
||||
block.x = threads_constant.value;
|
||||
});
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void row_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
@@ -334,35 +197,54 @@ void row_reduce(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
// Current row reduction options
|
||||
//
|
||||
// - row_reduce_simple
|
||||
//
|
||||
// That means that we are simply reducing across the fastest moving axis.
|
||||
// We are reducing 1 or 2 rows per threadblock depending on the size of
|
||||
// output.
|
||||
//
|
||||
// - row_reduce_looped
|
||||
//
|
||||
// It is a general row reduction. We are computing 1 output per
|
||||
// threadblock. We read the fastest moving axis vectorized and loop over
|
||||
// the rest of the axes.
|
||||
//
|
||||
// Notes: We opt to read as much in order as possible and leave
|
||||
// transpositions as they are (contrary to our Metal backend).
|
||||
|
||||
// Simple row reduce means that we have 1 axis that we are reducing over and
|
||||
// it has stride 1.
|
||||
if (plan.shape.size() == 1) {
|
||||
row_reduce_simple(encoder, in, out, reduce_type, axes, plan);
|
||||
return;
|
||||
}
|
||||
|
||||
// Make the args struct to help route to the best kernel
|
||||
cu::RowReduceArgs args(in, plan, axes);
|
||||
|
||||
// Fallback row reduce
|
||||
row_reduce_looped(encoder, in, out, reduce_type, axes, plan, std::move(args));
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using OutType = cu::ReduceResult<OP, InType>::type;
|
||||
MLX_SWITCH_REDUCE_NDIM(args.reduce_ndim, NDIM, {
|
||||
constexpr size_t N_READS = 4;
|
||||
dim3 out_dims = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block_dims, num_blocks;
|
||||
auto kernel =
|
||||
cu::row_reduce_small<InType, OutType, OP, NDIM, N_READS>;
|
||||
if (args.row_size <= 64) {
|
||||
if ((args.non_row_reductions < 32 && args.row_size <= 8) ||
|
||||
(args.non_row_reductions <= 8)) {
|
||||
block_dims.x = std::min(out_dims.x, 1024u);
|
||||
num_blocks.x = cuda::ceil_div(out_dims.x, block_dims.x);
|
||||
num_blocks.y = out_dims.y;
|
||||
} else {
|
||||
block_dims.x = WARP_SIZE;
|
||||
num_blocks.y = out_dims.x;
|
||||
num_blocks.z = out_dims.y;
|
||||
kernel =
|
||||
cu::row_reduce_small_warp<InType, OutType, OP, NDIM, N_READS>;
|
||||
}
|
||||
} else {
|
||||
size_t num_threads = cuda::ceil_div(args.row_size, N_READS);
|
||||
num_threads = cuda::ceil_div(num_threads, WARP_SIZE) * WARP_SIZE;
|
||||
MLX_SWITCH_BLOCK_DIM(num_threads, BLOCK_DIM_X, {
|
||||
num_blocks.y = out_dims.x;
|
||||
num_blocks.z = out_dims.y;
|
||||
block_dims.x = BLOCK_DIM_X;
|
||||
kernel = cu::row_reduce_looped<
|
||||
InType,
|
||||
OutType,
|
||||
OP,
|
||||
NDIM,
|
||||
BLOCK_DIM_X,
|
||||
N_READS>;
|
||||
});
|
||||
}
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
in.data<InType>(), out.data<OutType>(), out.size(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
84
mlx/backend/cuda/reduce/segmented_reduce.cu
Normal file
84
mlx/backend/cuda/reduce/segmented_reduce.cu
Normal file
@@ -0,0 +1,84 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/cast_op.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <cub/device/device_reduce.cuh>
|
||||
#include <cub/device/device_segmented_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename... Args>
|
||||
void cub_all_reduce(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceReduce::Reduce(temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
template <typename... Args>
|
||||
void cub_segmented_reduce(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedReduce::Reduce(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedReduce::Reduce(temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
struct MultiplyOp {
|
||||
int factor;
|
||||
__device__ int operator()(int i) {
|
||||
return i * factor;
|
||||
}
|
||||
};
|
||||
|
||||
void segmented_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
MLX_SWITCH_REDUCE_OPS(reduce_type, OP, {
|
||||
using InType = cuda_type_t<CTYPE>;
|
||||
using OutType = cu::ReduceResult<OP, InType>::type;
|
||||
auto in_iter = cu::make_cast_iterator<OutType>(
|
||||
thrust::device_pointer_cast(in.data<InType>()));
|
||||
auto out_ptr = thrust::device_pointer_cast(out.data<OutType>());
|
||||
auto init = cu::ReduceInit<OP, InType>::value();
|
||||
|
||||
if (plan.type == ContiguousAllReduce) {
|
||||
cub_all_reduce(
|
||||
encoder, in_iter, out_ptr, in.data_size(), OP(), init, stream);
|
||||
} else if (plan.type == ContiguousReduce) {
|
||||
auto offsets = thrust::make_transform_iterator(
|
||||
thrust::make_counting_iterator(0), MultiplyOp{plan.shape.back()});
|
||||
cub_segmented_reduce(
|
||||
encoder,
|
||||
in_iter,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
offsets,
|
||||
offsets + 1,
|
||||
OP(),
|
||||
init,
|
||||
stream);
|
||||
} else {
|
||||
throw std::runtime_error("Unsupported plan in segmented_reduce.");
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -74,7 +74,7 @@ __global__ void rms_norm(
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
T xn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
normalizer += t * t;
|
||||
@@ -130,7 +130,7 @@ __global__ void rms_norm_vjp(
|
||||
T wn[N_READS] = {};
|
||||
T gn[N_READS] = {};
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, 0);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
@@ -224,21 +224,20 @@ void RMSNorm::eval_gpu(
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::rms_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "rms_norm", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr uint32_t N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::rms_norm<DataType, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -253,24 +252,20 @@ void RMSNormVJP::eval_gpu(
|
||||
// Ensure row contiguity. We could relax this step by checking that the array
|
||||
// is contiguous (no broadcasts or holes) and that the input strides are the
|
||||
// same as the cotangent strides but for now this is simpler.
|
||||
auto check_input = [&s](const array& x, bool& copied) {
|
||||
auto check_input = [&s](const array& x) -> std::pair<array, bool> {
|
||||
if (x.flags().row_contiguous) {
|
||||
copied = false;
|
||||
return x;
|
||||
return {x, false};
|
||||
}
|
||||
copied = true;
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
return x_copy;
|
||||
return {x_copy, true};
|
||||
};
|
||||
bool donate_x = inputs[0].is_donatable();
|
||||
bool donate_g = inputs[2].is_donatable();
|
||||
bool copied;
|
||||
auto x = check_input(inputs[0], copied);
|
||||
auto [x, copied] = check_input(inputs[0]);
|
||||
donate_x |= copied;
|
||||
const array& w = inputs[1];
|
||||
bool g_copied;
|
||||
auto g = check_input(inputs[2], g_copied);
|
||||
auto [g, g_copied] = check_input(inputs[2]);
|
||||
donate_g |= g_copied;
|
||||
array& gx = outputs[0];
|
||||
array& gw = outputs[1];
|
||||
@@ -308,37 +303,31 @@ void RMSNormVJP::eval_gpu(
|
||||
encoder.add_temporary(gw_temp);
|
||||
}
|
||||
}
|
||||
gw.set_data(allocator::malloc(gw.nbytes()));
|
||||
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(g);
|
||||
encoder.set_output_array(gx);
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
encoder.launch_kernel([&, x = x, g = g](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(gx.dtype(), "rms_norm_vjp", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::rms_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
block_dim(),
|
||||
N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
MLX_SWITCH_BOOL(has_w, HAS_W, {
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::rms_norm_vjp<DataType, HAS_W, BLOCK_DIM, N_READS>;
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
@@ -308,89 +308,73 @@ void RoPE::eval_gpu(
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(donated ? out : in);
|
||||
encoder.set_input_array(offset);
|
||||
if (with_freqs) {
|
||||
encoder.set_input_array(inputs[2]);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "rope", [&](auto type_tag) {
|
||||
dispatch_bool(traditional_, [&](auto traditional) {
|
||||
dispatch_bool(forward_, [&](auto forward) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if (single && !with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_single<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
mat_size,
|
||||
dims);
|
||||
} else if (single) {
|
||||
auto kernel =
|
||||
cu::rope_single_freqs<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
inputs[2].data<float>(),
|
||||
scale_,
|
||||
mat_size,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else if (with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_freqs<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
inputs[2].data<float>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else {
|
||||
auto kernel = cu::rope<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
dims);
|
||||
}
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(in.dtype(), "rope", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
MLX_SWITCH_BOOL(traditional_, TRADITIONAL, {
|
||||
MLX_SWITCH_BOOL(forward_, FORWARD, {
|
||||
if (single && !with_freqs) {
|
||||
auto kernel = cu::rope_single<DataType, TRADITIONAL, FORWARD>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
mat_size,
|
||||
dims);
|
||||
} else if (single) {
|
||||
auto kernel = cu::rope_single_freqs<DataType, TRADITIONAL, FORWARD>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
inputs[2].data<float>(),
|
||||
scale_,
|
||||
mat_size,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else if (with_freqs) {
|
||||
auto kernel = cu::rope_freqs<DataType, TRADITIONAL, FORWARD>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
inputs[2].data<float>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else {
|
||||
auto kernel = cu::rope<DataType, TRADITIONAL, FORWARD>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
kernel<<<grid, block, 0, stream>>>(
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
scale_,
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
dims);
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,467 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/scan.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename T>
|
||||
struct ScanResult {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct ScanResult<Sum, bool> {
|
||||
using type = int32_t;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct ReduceInit<LogAddExp, T> {
|
||||
static constexpr __host__ __device__ T value() {
|
||||
return Limits<T>::min();
|
||||
}
|
||||
};
|
||||
|
||||
template <bool reverse, typename T, typename U, int N_READS>
|
||||
inline __device__ void
|
||||
load_values(int index, const T* in, U (&values)[N_READS], int size, U init) {
|
||||
int remaining = size - index * N_READS;
|
||||
if constexpr (reverse) {
|
||||
in += remaining - N_READS;
|
||||
if (remaining < N_READS) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
values[N_READS - i - 1] =
|
||||
(N_READS - i - 1 < remaining) ? cast_to<U>(in[i]) : init;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
values[N_READS - i - 1] = cast_to<U>(in[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
in += index * N_READS;
|
||||
if (remaining < N_READS) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
values[i] = (i < remaining) ? cast_to<U>(in[i]) : init;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
values[i] = cast_to<U>(in[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <bool reverse, int offset, typename T, int N_READS>
|
||||
inline __device__ void
|
||||
store_values(int index, T* out, T (&values)[N_READS], int size) {
|
||||
int start = index * N_READS + offset;
|
||||
int remaining = size - start;
|
||||
if constexpr (reverse) {
|
||||
out += remaining - N_READS;
|
||||
if (remaining < N_READS) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
if (N_READS - i - 1 < remaining) {
|
||||
out[i] = values[N_READS - i - 1];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out[i] = values[N_READS - i - 1];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
out += start;
|
||||
if (remaining < N_READS) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
if (i < remaining) {
|
||||
out[i] = values[i];
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out[i] = values[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int N_READS,
|
||||
bool inclusive,
|
||||
bool reverse>
|
||||
__global__ void contiguous_scan(const T* in, U* out, int32_t axis_size) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
in += grid.block_rank() * axis_size;
|
||||
out += grid.block_rank() * axis_size;
|
||||
|
||||
__shared__ U warp_sums[WARP_SIZE];
|
||||
|
||||
Op op;
|
||||
U init = ReduceInit<Op, T>::value();
|
||||
U prefix = init;
|
||||
|
||||
// Scan per block.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, block.size() * N_READS); ++r) {
|
||||
int32_t index = r * block.size() + block.thread_rank();
|
||||
U values[N_READS];
|
||||
load_values<reverse>(index, in, values, axis_size, init);
|
||||
|
||||
// Compute an inclusive scan per thread.
|
||||
for (int i = 1; i < N_READS; ++i) {
|
||||
values[i] = op(values[i], values[i - 1]);
|
||||
}
|
||||
|
||||
// Compute exclusive scan of thread sums.
|
||||
U prev_thread_sum = cg::exclusive_scan(warp, values[N_READS - 1], op);
|
||||
if (warp.thread_rank() == 0) {
|
||||
prev_thread_sum = init;
|
||||
}
|
||||
|
||||
// Write wrap's sum to shared memory.
|
||||
if (warp.thread_rank() == WARP_SIZE - 1) {
|
||||
warp_sums[warp.meta_group_rank()] =
|
||||
op(prev_thread_sum, values[N_READS - 1]);
|
||||
}
|
||||
block.sync();
|
||||
|
||||
// Compute exclusive scan of warp sums.
|
||||
if (warp.meta_group_rank() == 0) {
|
||||
U prev_warp_sum =
|
||||
cg::exclusive_scan(warp, warp_sums[warp.thread_rank()], op);
|
||||
if (warp.thread_rank() == 0) {
|
||||
prev_warp_sum = init;
|
||||
}
|
||||
warp_sums[warp.thread_rank()] = prev_warp_sum;
|
||||
}
|
||||
block.sync();
|
||||
|
||||
// Compute the output.
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
values[i] = op(values[i], prefix);
|
||||
values[i] = op(values[i], warp_sums[warp.meta_group_rank()]);
|
||||
values[i] = op(values[i], prev_thread_sum);
|
||||
}
|
||||
|
||||
// Write the values.
|
||||
if (inclusive) {
|
||||
store_values<reverse, 0>(index, out, values, axis_size);
|
||||
} else {
|
||||
store_values<reverse, 1>(index, out, values, axis_size);
|
||||
if (reverse) {
|
||||
if (block.thread_rank() == 0 && index == 0) {
|
||||
out[axis_size - 1] = init;
|
||||
}
|
||||
} else {
|
||||
if (block.thread_rank() == 0 && index == 0) {
|
||||
out[0] = init;
|
||||
}
|
||||
}
|
||||
}
|
||||
block.sync();
|
||||
|
||||
// Share the prefix.
|
||||
if ((warp.meta_group_rank() == warp.meta_group_size() - 1) &&
|
||||
(warp.thread_rank() == WARP_SIZE - 1)) {
|
||||
warp_sums[0] = values[N_READS - 1];
|
||||
}
|
||||
block.sync();
|
||||
prefix = warp_sums[0];
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int N_READS,
|
||||
int BM,
|
||||
int BN,
|
||||
bool inclusive,
|
||||
bool reverse>
|
||||
__global__ void strided_scan(
|
||||
const T* in,
|
||||
U* out,
|
||||
int32_t axis_size,
|
||||
int64_t stride,
|
||||
int64_t stride_blocks) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
constexpr int BN_pad = WARP_SIZE + 16 / sizeof(U);
|
||||
constexpr int n_warps = BN / N_READS;
|
||||
constexpr int n_scans = BN / n_warps;
|
||||
|
||||
__shared__ U read_buffer[BM * BN_pad];
|
||||
|
||||
Op op;
|
||||
U init = ReduceInit<Op, T>::value();
|
||||
U values[n_scans];
|
||||
U prefix[n_scans];
|
||||
for (int i = 0; i < n_scans; ++i) {
|
||||
prefix[i] = init;
|
||||
}
|
||||
|
||||
// Compute offsets.
|
||||
int64_t offset = (grid.block_rank() / stride_blocks) * axis_size * stride;
|
||||
int64_t global_index_x = (grid.block_rank() % stride_blocks) * BN;
|
||||
uint read_offset_y = (block.thread_rank() * N_READS) / BN;
|
||||
uint read_offset_x = (block.thread_rank() * N_READS) % BN;
|
||||
uint scan_offset_y = warp.thread_rank();
|
||||
uint scan_offset_x = warp.meta_group_rank() * n_scans;
|
||||
|
||||
uint stride_limit = stride - global_index_x;
|
||||
in += offset + global_index_x + read_offset_x;
|
||||
out += offset + global_index_x + read_offset_x;
|
||||
U* read_into = read_buffer + read_offset_y * BN_pad + read_offset_x;
|
||||
U* read_from = read_buffer + scan_offset_y * BN_pad + scan_offset_x;
|
||||
|
||||
for (uint j = 0; j < axis_size; j += BM) {
|
||||
// Calculate the indices for the current thread.
|
||||
uint index_y = j + read_offset_y;
|
||||
uint check_index_y = index_y;
|
||||
if (reverse) {
|
||||
index_y = axis_size - 1 - index_y;
|
||||
}
|
||||
|
||||
// Read in SM.
|
||||
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
read_into[i] = in[index_y * stride + i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
||||
read_into[i] = in[index_y * stride + i];
|
||||
} else {
|
||||
read_into[i] = init;
|
||||
}
|
||||
}
|
||||
}
|
||||
block.sync();
|
||||
|
||||
// Read strided into registers.
|
||||
for (int i = 0; i < n_scans; ++i) {
|
||||
values[i] = read_from[i];
|
||||
}
|
||||
|
||||
// Perform the scan.
|
||||
for (int i = 0; i < n_scans; ++i) {
|
||||
values[i] = cg::inclusive_scan(warp, values[i], op);
|
||||
values[i] = op(values[i], prefix[i]);
|
||||
prefix[i] = warp.shfl(values[i], WARP_SIZE - 1);
|
||||
}
|
||||
|
||||
// Write to SM.
|
||||
for (int i = 0; i < n_scans; ++i) {
|
||||
read_from[i] = values[i];
|
||||
}
|
||||
block.sync();
|
||||
|
||||
// Write to device memory.
|
||||
if (!inclusive) {
|
||||
if (check_index_y == 0) {
|
||||
if ((read_offset_x + N_READS) < stride_limit) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out[index_y * stride + i] = init;
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
if ((read_offset_x + i) < stride_limit) {
|
||||
out[index_y * stride + i] = init;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
if (reverse) {
|
||||
index_y -= 1;
|
||||
check_index_y += 1;
|
||||
} else {
|
||||
index_y += 1;
|
||||
check_index_y += 1;
|
||||
}
|
||||
}
|
||||
if (check_index_y < axis_size && (read_offset_x + N_READS) < stride_limit) {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out[index_y * stride + i] = read_into[i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
if (check_index_y < axis_size && (read_offset_x + i) < stride_limit) {
|
||||
out[index_y * stride + i] = read_into[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename F>
|
||||
void dispatch_scan_ops(Scan::ReduceType scan_op, F&& f) {
|
||||
if (scan_op == Scan::ReduceType::Max) {
|
||||
f(type_identity<cu::Max>{});
|
||||
} else if (scan_op == Scan::ReduceType::Min) {
|
||||
f(type_identity<cu::Min>{});
|
||||
} else if (scan_op == Scan::ReduceType::Sum) {
|
||||
f(type_identity<cu::Sum>{});
|
||||
} else if (scan_op == Scan::ReduceType::Prod) {
|
||||
f(type_identity<cu::Prod>{});
|
||||
} else if (scan_op == Scan::ReduceType::LogAddExp) {
|
||||
f(type_identity<cu::LogAddExp>{});
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown reduce type.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
const char* op_to_string() {
|
||||
if (cuda::std::is_same_v<Op, cu::Max>) {
|
||||
return "Max";
|
||||
} else if (cuda::std::is_same_v<Op, cu::Min>) {
|
||||
return "Min";
|
||||
} else if (cuda::std::is_same_v<Op, cu::Sum>) {
|
||||
return "Sum";
|
||||
} else if (cuda::std::is_same_v<Op, cu::Prod>) {
|
||||
return "Prod";
|
||||
} else if (cuda::std::is_same_v<Op, cu::LogAddExp>) {
|
||||
return "LogAddExp";
|
||||
} else {
|
||||
throw std::invalid_argument("Unknown op.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename T>
|
||||
constexpr bool supports_scan_op() {
|
||||
if constexpr (cuda::std::is_same_v<Op, LogAddExp>) {
|
||||
return is_inexact_v<T>;
|
||||
} else {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Scan::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
auto in = inputs[0];
|
||||
auto& s = stream();
|
||||
|
||||
if (in.flags().contiguous && in.strides()[axis_] != 0) {
|
||||
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(in.data_size() * out.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
}
|
||||
} else {
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_gpu(in, arr_copy, CopyType::General, s);
|
||||
in = std::move(arr_copy);
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
|
||||
constexpr int N_READS = 4;
|
||||
int32_t axis_size = in.shape(axis_);
|
||||
bool contiguous = in.strides()[axis_] == 1;
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dispatch_scan_ops(reduce_type_, [&](auto scan_op_tag) {
|
||||
using Op = MLX_GET_TYPE(scan_op_tag);
|
||||
if constexpr (supports_scan_op<Op, T>) {
|
||||
using U = typename cu::ScanResult<Op, T>::type;
|
||||
dispatch_bool(inclusive_, [&](auto inclusive) {
|
||||
dispatch_bool(reverse_, [&](auto reverse) {
|
||||
if (contiguous) {
|
||||
auto kernel = cu::contiguous_scan<
|
||||
T,
|
||||
U,
|
||||
Op,
|
||||
N_READS,
|
||||
inclusive.value,
|
||||
reverse.value>;
|
||||
int block_dim = cuda::ceil_div(axis_size, N_READS);
|
||||
block_dim = cuda::ceil_div(block_dim, WARP_SIZE) * WARP_SIZE;
|
||||
block_dim = std::min(block_dim, WARP_SIZE * WARP_SIZE);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
in.data_size() / axis_size,
|
||||
block_dim,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size);
|
||||
} else {
|
||||
constexpr int BM = WARP_SIZE;
|
||||
constexpr int BN = WARP_SIZE;
|
||||
auto kernel = cu::strided_scan<
|
||||
T,
|
||||
U,
|
||||
Op,
|
||||
N_READS,
|
||||
BM,
|
||||
BN,
|
||||
inclusive.value,
|
||||
reverse.value>;
|
||||
int64_t stride = in.strides()[axis_];
|
||||
int64_t stride_blocks = cuda::ceil_div(stride, BN);
|
||||
dim3 num_blocks = get_2d_grid_dims(
|
||||
in.shape(), in.strides(), axis_size * stride);
|
||||
if (num_blocks.x * stride_blocks <= UINT32_MAX) {
|
||||
num_blocks.x *= stride_blocks;
|
||||
} else {
|
||||
num_blocks.y *= stride_blocks;
|
||||
}
|
||||
int block_dim = (BN / N_READS) * WARP_SIZE;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size,
|
||||
stride,
|
||||
stride_blocks);
|
||||
}
|
||||
});
|
||||
});
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do scan op {} on inputs of {} with result of {}.",
|
||||
op_to_string<Op>(),
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -43,7 +43,7 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
// Thread reduce.
|
||||
AccT prevmax;
|
||||
AccT maxval = Limits<AccT>::finite_min();
|
||||
AccT normalizer = cast_to<AccT>(0);
|
||||
AccT normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
AccT vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
@@ -51,7 +51,7 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
make_cast_iterator<AccT>(in),
|
||||
vals,
|
||||
axis_size,
|
||||
Limits<AccT>::min());
|
||||
Limits<AccT>::finite_min());
|
||||
prevmax = maxval;
|
||||
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
|
||||
// Online normalizer calculation for softmax:
|
||||
@@ -79,7 +79,7 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
block.sync();
|
||||
maxval = warp.thread_rank() < warp.meta_group_size()
|
||||
? local_max[warp.thread_rank()]
|
||||
: Limits<AccT>::min();
|
||||
: Limits<AccT>::finite_min();
|
||||
maxval = cg::reduce(warp, maxval, max_op);
|
||||
normalizer = normalizer * softmax_exp(prevmax - maxval);
|
||||
if (warp.thread_rank() == 0) {
|
||||
@@ -141,21 +141,18 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "softmax", [&](auto type_tag) {
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::softmax<DataType, DataType, block_dim(), N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, block_dim(), N_READS>;
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_FLOAT_TYPES_CHECKED(out.dtype(), "softmax", CTYPE, {
|
||||
using DataType = cuda_type_t<CTYPE>;
|
||||
constexpr int N_READS = 4;
|
||||
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
||||
auto kernel = cu::softmax<DataType, DataType, BLOCK_DIM, N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, BLOCK_DIM, N_READS>;
|
||||
}
|
||||
kernel<<<n_rows, BLOCK_DIM, 0, stream>>>(
|
||||
in.data<DataType>(), out.data<DataType>(), axis_size);
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -50,21 +50,43 @@ array swapaxes_in_eval(const array& in, int axis1, int axis2) {
|
||||
return out;
|
||||
}
|
||||
|
||||
struct OffsetTransform {
|
||||
int nsort;
|
||||
template <typename... Args>
|
||||
void segmented_sort_pairs(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedSort::StableSortPairs(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
int __device__ operator()(int i) {
|
||||
return i * nsort;
|
||||
}
|
||||
};
|
||||
template <typename... Args>
|
||||
void segmented_sort(cu::CommandEncoder& encoder, Args&&... args) {
|
||||
// Allocate temporary storage.
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(
|
||||
cub::DeviceSegmentedSort::StableSortKeys(nullptr, size, args...));
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
// Run op.
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
temp.data<void>(), size, args...));
|
||||
}
|
||||
|
||||
void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
array out = out_;
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
int nsort = in.shape(axis);
|
||||
int nsegments = in.data_size() / nsort;
|
||||
int last_dim = in.ndim() - 1;
|
||||
|
||||
// If we are not sorting the innermost dimension of a contiguous array,
|
||||
@@ -78,103 +100,60 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
out = array(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||
encoder.add_temporary(out);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(in.data_size() * out.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
}
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
auto& stream = encoder.stream();
|
||||
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
||||
using Type = cuda_type_t<CTYPE>;
|
||||
auto offsets = thrust::make_transform_iterator(
|
||||
thrust::make_counting_iterator(0), OffsetTransform{nsort});
|
||||
if (argsort) {
|
||||
// Indices in the sorted dimension.
|
||||
array indices(allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||
encoder.add_temporary(indices);
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE, {
|
||||
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
|
||||
using Type = cuda_type_t<CTYPE>;
|
||||
auto offsets = thrust::make_transform_iterator(
|
||||
thrust::make_counting_iterator(0),
|
||||
[nsort] __device__(int i) { return i * nsort; });
|
||||
if (argsort) {
|
||||
// Indices in the sorted dimension.
|
||||
array indices(
|
||||
allocator::malloc(out.nbytes()), in.shape(), out.dtype());
|
||||
encoder.add_temporary(indices);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(stream),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(indices.data_size()),
|
||||
thrust::device_pointer_cast(indices.data<uint32_t>()),
|
||||
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
|
||||
|
||||
// In argsort though we don't need the result of sorted values, the
|
||||
// API requires us to provide an array to store it.
|
||||
array discard(allocator::malloc(in.nbytes()), in.shape(), in.dtype());
|
||||
encoder.add_temporary(discard);
|
||||
// In argsort though we don't need the result of sorted values, the
|
||||
// API requires us to provide an array to store it.
|
||||
array discard(allocator::malloc(in.nbytes()), in.shape(), in.dtype());
|
||||
encoder.add_temporary(discard);
|
||||
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
nullptr,
|
||||
size,
|
||||
in.data<Type>(),
|
||||
discard.data<Type>(),
|
||||
indices.data<uint32_t>(),
|
||||
out.data<uint32_t>(),
|
||||
in.data_size(),
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream));
|
||||
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
|
||||
// Start capturing after allocations
|
||||
auto capture = encoder.capture_context();
|
||||
thrust::transform(
|
||||
cu::thrust_policy(stream),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(indices.data_size()),
|
||||
thrust::device_pointer_cast(indices.data<uint32_t>()),
|
||||
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
|
||||
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
temp.data<void>(),
|
||||
size,
|
||||
in.data<Type>(),
|
||||
discard.data<Type>(),
|
||||
indices.data<uint32_t>(),
|
||||
out.data<uint32_t>(),
|
||||
in.data_size(),
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream));
|
||||
segmented_sort_pairs(
|
||||
encoder,
|
||||
in.data<Type>(),
|
||||
discard.data<Type>(),
|
||||
indices.data<uint32_t>(),
|
||||
out.data<uint32_t>(),
|
||||
in.data_size(),
|
||||
nsegments,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream);
|
||||
} else {
|
||||
segmented_sort(
|
||||
encoder,
|
||||
in.data<Type>(),
|
||||
out.data<Type>(),
|
||||
in.data_size(),
|
||||
nsegments,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream);
|
||||
}
|
||||
} else {
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
nullptr,
|
||||
size,
|
||||
in.data<Type>(),
|
||||
out.data<Type>(),
|
||||
in.data_size(),
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream));
|
||||
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
encoder.add_temporary(temp);
|
||||
|
||||
// Start capturing after allocations
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
temp.data<void>(),
|
||||
size,
|
||||
in.data<Type>(),
|
||||
out.data<Type>(),
|
||||
in.data_size(),
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
stream));
|
||||
throw std::runtime_error(
|
||||
"CUDA backend does not support sorting complex numbers");
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"CUDA backend does not support sorting complex numbers");
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
if (!is_segmented_sort) {
|
||||
@@ -198,14 +177,4 @@ void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
gpu_sort(stream(), inputs[0], out, axis_, false);
|
||||
}
|
||||
|
||||
void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("ArgPartition::eval_gpu");
|
||||
gpu_sort(stream(), inputs[0], out, axis_, true);
|
||||
}
|
||||
|
||||
void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Partition::eval_gpu");
|
||||
gpu_sort(stream(), inputs[0], out, axis_, false);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -15,27 +15,12 @@ namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename T, typename IdxT, int N_READS>
|
||||
template <typename Op, typename T, typename IdxT>
|
||||
__global__ void
|
||||
ternary_v(const bool* a, const T* b, const T* c, T* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(a[i], b[i], c[i]);
|
||||
}
|
||||
} else {
|
||||
auto a_vec = load_vector<N_READS>(a, index);
|
||||
auto b_vec = load_vector<N_READS>(b, index);
|
||||
auto c_vec = load_vector<N_READS>(c, index);
|
||||
|
||||
AlignedVector<T, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i], c_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[index], c[index]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -106,87 +91,68 @@ void ternary_op_gpu_inplace(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(out.dtype(), [&](auto type_tag) {
|
||||
using DType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE, {
|
||||
using DType = cuda_type_t<CTYPE>;
|
||||
|
||||
auto topt = get_ternary_op_type(a, b, c);
|
||||
if (topt == TernaryOpType::General) {
|
||||
dispatch_bool(
|
||||
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
|
||||
[&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
std::tie(shape, strides) = collapse_contiguous_dims(a, b, c, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel =
|
||||
cu::ternary_g_nd<Op, DType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.size(),
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
const_param<dims_constant()>(b_strides),
|
||||
const_param<dims_constant()>(c_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT>;
|
||||
auto topt = get_ternary_op_type(a, b, c);
|
||||
if (topt == TernaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
auto& c_strides = strides[2];
|
||||
bool large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
||||
c.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel = cu::ternary_g_nd<Op, DType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
const_param(c_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::ternary_v<Op, DType, IdxT, N_READS>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
out.size(),
|
||||
const_param<NDIM>(shape),
|
||||
const_param<NDIM>(a_strides),
|
||||
const_param<NDIM>(b_strides),
|
||||
const_param<NDIM>(c_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::ternary_g<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size(),
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
const_param(b_strides),
|
||||
const_param(c_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = cu::ternary_v<Op, DType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
||||
a.data<bool>(),
|
||||
b.data<DType>(),
|
||||
c.data<DType>(),
|
||||
out.data<DType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@@ -9,83 +9,49 @@
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
||||
__global__ void unary_v(const In* in, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_READS > size) {
|
||||
for (IdxT i = index * N_READS; i < size; ++i) {
|
||||
out[i] = Op{}(in[i]);
|
||||
}
|
||||
} else {
|
||||
auto in_vec = load_vector<N_READS>(in, index);
|
||||
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec.val[i] = Op{}(in_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void unary_g(
|
||||
const In* in,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
const __grid_constant__ Shape shape,
|
||||
const __grid_constant__ Strides strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto idx = elem_to_loc_4d(index, shape.data(), strides.data(), ndim);
|
||||
out[index] = Op{}(in[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_unary_op() {
|
||||
if (std::is_same_v<Op, Abs> || std::is_same_v<Op, Negative> ||
|
||||
std::is_same_v<Op, Sign> || std::is_same_v<Op, Square>) {
|
||||
std::is_same_v<Op, Sign>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCosh> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTanh> || std::is_same_v<Op, Erf> ||
|
||||
std::is_same_v<Op, ErfInv> || std::is_same_v<Op, Expm1> ||
|
||||
std::is_same_v<Op, Sigmoid>) {
|
||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcCosh> ||
|
||||
std::is_same_v<Op, ArcSin> || std::is_same_v<Op, ArcSinh> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, ArcTanh> ||
|
||||
std::is_same_v<Op, Erf> || std::is_same_v<Op, ErfInv> ||
|
||||
std::is_same_v<Op, Expm1> || std::is_same_v<Op, Sigmoid> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Rsqrt>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseInvert>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor>) {
|
||||
if (std::is_same_v<Op, Ceil> || std::is_same_v<Op, Floor> ||
|
||||
std::is_same_v<Op, Square>) {
|
||||
return std::is_same_v<In, Out> && !std::is_same_v<In, complex64_t>;
|
||||
}
|
||||
if (std::is_same_v<Op, Conjugate>) {
|
||||
return std::is_same_v<In, Out> && std::is_same_v<In, complex64_t>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcCos> || std::is_same_v<Op, ArcSin> ||
|
||||
std::is_same_v<Op, ArcTan> || std::is_same_v<Op, Cos> ||
|
||||
std::is_same_v<Op, Cosh> || std::is_same_v<Op, Exp> ||
|
||||
std::is_same_v<Op, Log> || std::is_same_v<Op, Log2> ||
|
||||
std::is_same_v<Op, Log10> || std::is_same_v<Op, Log1p> ||
|
||||
std::is_same_v<Op, Round> || std::is_same_v<Op, Rsqrt> ||
|
||||
std::is_same_v<Op, Sqrt> || std::is_same_v<Op, Sin> ||
|
||||
std::is_same_v<Op, Sinh> || std::is_same_v<Op, Tan> ||
|
||||
std::is_same_v<Op, Tanh>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
if (std::is_same_v<Op, Cos> || std::is_same_v<Op, Cosh> ||
|
||||
std::is_same_v<Op, Exp> || std::is_same_v<Op, Round> ||
|
||||
std::is_same_v<Op, Sin> || std::is_same_v<Op, Sinh> ||
|
||||
std::is_same_v<Op, Tan> || std::is_same_v<Op, Tanh>) {
|
||||
return std::is_same_v<In, Out> &&
|
||||
(is_floating_v<In> || std::is_same_v<In, complex64_t>);
|
||||
}
|
||||
if (std::is_same_v<Op, Imag> || std::is_same_v<Op, Real>) {
|
||||
return std::is_same_v<In, complex64_t> && std::is_same_v<Out, float>;
|
||||
@@ -108,68 +74,36 @@ void unary_op_gpu_inplace(
|
||||
if (in.size() == 0) {
|
||||
return;
|
||||
}
|
||||
bool contig = in.flags().contiguous;
|
||||
bool large;
|
||||
if (!contig) {
|
||||
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
||||
} else {
|
||||
large = in.data_size() > UINT32_MAX;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
|
||||
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
||||
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
||||
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
dispatch_bool(large, [&](auto large) {
|
||||
encoder.launch_kernel([&](cudaStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(in.dtype(), CTYPE_IN, {
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
|
||||
if constexpr (cu::supports_unary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = cuda_type_t<CTYPE_IN>;
|
||||
using OutType = cuda_type_t<CTYPE_OUT>;
|
||||
if (contig) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::unary_v<Op, InType, OutType, IdxT, N_READS>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large,
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
auto policy = cu::thrust_policy(stream);
|
||||
auto in_ptr = thrust::device_pointer_cast(in.data<InType>());
|
||||
auto out_ptr = thrust::device_pointer_cast(out.data<OutType>());
|
||||
if (in.flags().contiguous) {
|
||||
thrust::transform(
|
||||
policy, in_ptr, in_ptr + in.data_size(), out_ptr, Op());
|
||||
} else {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [shape, strides] = collapse_contiguous_dims(in);
|
||||
auto kernel = cu::unary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
in.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
const_param(shape),
|
||||
const_param(strides),
|
||||
shape.size());
|
||||
auto [in_begin, in_end] = cu::make_general_iterators<int64_t>(
|
||||
in_ptr, in.size(), shape, strides);
|
||||
thrust::transform(policy, in_begin, in_end, out_ptr, Op());
|
||||
}
|
||||
});
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do unary op {} on input of {} with output of {}.",
|
||||
op,
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do unary op {} on input of {} with output of {}.",
|
||||
op,
|
||||
dtype_to_string(in.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -24,47 +24,23 @@ void check_cuda_error(const char* name, cudaError_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
void check_cuda_error(const char* name, CUresult err) {
|
||||
if (err != CUDA_SUCCESS) {
|
||||
const char* err_str = "Unknown error";
|
||||
cuGetErrorString(err, &err_str);
|
||||
throw std::runtime_error(fmt::format("{} failed: {}", name, err_str));
|
||||
}
|
||||
}
|
||||
|
||||
const char* dtype_to_cuda_type(const Dtype& dtype) {
|
||||
switch (dtype) {
|
||||
case bool_:
|
||||
return "bool";
|
||||
case int8:
|
||||
return "int8_t";
|
||||
case int16:
|
||||
return "int16_t";
|
||||
case int32:
|
||||
return "int32_t";
|
||||
case int64:
|
||||
return "int64_t";
|
||||
case uint8:
|
||||
return "uint8_t";
|
||||
case uint16:
|
||||
return "uint16_t";
|
||||
case uint32:
|
||||
return "uint32_t";
|
||||
case uint64:
|
||||
return "uint64_t";
|
||||
case float16:
|
||||
return "__half";
|
||||
case bfloat16:
|
||||
return "__nv_bfloat16";
|
||||
case float32:
|
||||
return "float";
|
||||
case float64:
|
||||
return "double";
|
||||
case complex64:
|
||||
return "cuComplex";
|
||||
default:
|
||||
return "unknown";
|
||||
if (dtype == float16) {
|
||||
return "__half";
|
||||
}
|
||||
if (dtype == bfloat16) {
|
||||
return "__nv_bfloat16";
|
||||
}
|
||||
if (dtype == complex64) {
|
||||
return "cuComplex";
|
||||
}
|
||||
#define SPECIALIZE_DtypeToString(CPP_TYPE, DTYPE) \
|
||||
if (dtype == DTYPE) { \
|
||||
return #CPP_TYPE; \
|
||||
}
|
||||
MLX_FORALL_DTYPES(SPECIALIZE_DtypeToString)
|
||||
#undef SPECIALIZE_DtypeToString
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -34,7 +33,6 @@ class CudaStream {
|
||||
|
||||
// Throw exception if the cuda API does not succeed.
|
||||
void check_cuda_error(const char* name, cudaError_t err);
|
||||
void check_cuda_error(const char* name, CUresult err);
|
||||
|
||||
// The macro version that prints the command that failed.
|
||||
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
|
||||
|
||||
@@ -80,9 +80,7 @@ void Worker::thread_fn() {
|
||||
}
|
||||
worker_tasks_.erase(worker_tasks_.begin(), end);
|
||||
}
|
||||
// Make sure tasks are cleared before the next wait
|
||||
for (int i = 0; i < tasks.size(); ++i) {
|
||||
auto task = std::move(tasks[i]);
|
||||
for (auto& task : tasks) {
|
||||
task();
|
||||
}
|
||||
worker_event_.wait(batch + 1);
|
||||
|
||||
@@ -63,7 +63,6 @@ if(MLX_METAL_JIT)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_gather)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
|
||||
make_jit_source(steel/gemm/kernels/steel_gemm_segmented)
|
||||
make_jit_source(
|
||||
steel/conv/conv
|
||||
kernels/steel/utils.h
|
||||
|
||||
@@ -575,17 +575,9 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Set source info
|
||||
if (ndim > 1) {
|
||||
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
|
||||
compute_encoder.set_vector_bytes(remove_index(upd.strides(), axis_), 4);
|
||||
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
|
||||
} else {
|
||||
// The following will be ignored in the kernel but we still have to set
|
||||
// some value so that metal validation passes.
|
||||
compute_encoder.set_vector_bytes(idx.shape(), 3);
|
||||
compute_encoder.set_vector_bytes(upd.strides(), 4);
|
||||
compute_encoder.set_vector_bytes(idx.strides(), 5);
|
||||
}
|
||||
compute_encoder.set_vector_bytes(remove_index(idx.shape(), axis_), 3);
|
||||
compute_encoder.set_vector_bytes(remove_index(upd.strides(), axis_), 4);
|
||||
compute_encoder.set_vector_bytes(remove_index(idx.strides(), axis_), 5);
|
||||
compute_encoder.set_bytes(ndim - 1, 6);
|
||||
compute_encoder.set_bytes(axis_, 7);
|
||||
compute_encoder.set_bytes(out.shape(axis_), 8);
|
||||
|
||||
@@ -34,7 +34,6 @@ const char* steel_gemm_fused();
|
||||
const char* steel_gemm_masked();
|
||||
const char* steel_gemm_splitk();
|
||||
const char* steel_gemm_gather();
|
||||
const char* steel_gemm_segmented();
|
||||
const char* conv();
|
||||
const char* steel_conv();
|
||||
const char* steel_conv_general();
|
||||
|
||||
@@ -652,43 +652,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
||||
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& hash_name,
|
||||
const metal::MTLFCList& func_consts,
|
||||
const array& out,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
int bm,
|
||||
int bn,
|
||||
int bk,
|
||||
int wm,
|
||||
int wn) {
|
||||
const auto& lib_name = kernel_name;
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::string kernel_source;
|
||||
concatenate(
|
||||
kernel_source,
|
||||
metal::utils(),
|
||||
metal::gemm(),
|
||||
metal::steel_gemm_segmented(),
|
||||
get_template_definition(
|
||||
lib_name,
|
||||
"segmented_mm",
|
||||
get_type_string(out.dtype()),
|
||||
bm,
|
||||
bn,
|
||||
bk,
|
||||
wm,
|
||||
wn,
|
||||
transpose_a,
|
||||
transpose_b));
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
||||
@@ -175,20 +175,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
||||
int wn,
|
||||
bool rhs);
|
||||
|
||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& hash_name,
|
||||
const metal::MTLFCList& func_consts,
|
||||
const array& out,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
int bm,
|
||||
int bn,
|
||||
int bk,
|
||||
int wm,
|
||||
int wn);
|
||||
|
||||
MTL::ComputePipelineState* get_steel_conv_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
||||
@@ -71,7 +71,6 @@ set(STEEL_HEADERS
|
||||
steel/gemm/kernels/steel_gemm_fused.h
|
||||
steel/gemm/kernels/steel_gemm_gather.h
|
||||
steel/gemm/kernels/steel_gemm_masked.h
|
||||
steel/gemm/kernels/steel_gemm_segmented.h
|
||||
steel/gemm/kernels/steel_gemm_splitk.h
|
||||
steel/utils/type_traits.h
|
||||
steel/utils/integral_constant.h)
|
||||
@@ -121,7 +120,6 @@ if(NOT MLX_METAL_JIT)
|
||||
build_kernel(steel/gemm/kernels/steel_gemm_gather ${STEEL_HEADERS})
|
||||
build_kernel(steel/gemm/kernels/steel_gemm_masked ${STEEL_HEADERS})
|
||||
build_kernel(steel/gemm/kernels/steel_gemm_splitk ${STEEL_HEADERS})
|
||||
build_kernel(steel/gemm/kernels/steel_gemm_segmented ${STEEL_HEADERS})
|
||||
build_kernel(gemv_masked steel/utils.h)
|
||||
endif()
|
||||
|
||||
|
||||
@@ -1,134 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
// Copyright © 2008-2013 NVIDIA Corporation
|
||||
// Copyright © 2013 Filipe RNC Maia
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Forked from
|
||||
// https://github.com/NVIDIA/cccl/blob/main/thrust/thrust/detail/complex/cexpf.h
|
||||
|
||||
// TODO: We should use thrust::exp but the thrust header in old CUDA versions
|
||||
// can not be used in JIT.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <metal_math>
|
||||
|
||||
using ieee_float_shape_type = union {
|
||||
float value;
|
||||
uint32_t word;
|
||||
};
|
||||
|
||||
inline void get_float_word(thread uint32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline void get_float_word(thread int32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline void set_float_word(thread float& d, uint32_t i) {
|
||||
ieee_float_shape_type sf_u;
|
||||
sf_u.word = (i);
|
||||
(d) = sf_u.value;
|
||||
}
|
||||
|
||||
inline float frexp_expf(float x, thread int* expt) {
|
||||
const uint32_t k = 235;
|
||||
const float kln2 = 162.88958740F;
|
||||
|
||||
float exp_x;
|
||||
uint32_t hx;
|
||||
|
||||
exp_x = metal::exp(x - kln2);
|
||||
get_float_word(hx, exp_x);
|
||||
*expt = (hx >> 23) - (0x7f + 127) + k;
|
||||
set_float_word(exp_x, (hx & 0x7fffff) | ((0x7f + 127) << 23));
|
||||
return exp_x;
|
||||
}
|
||||
|
||||
inline complex64_t ldexp_cexpf(complex64_t z, int expt) {
|
||||
float x, y, exp_x, scale1, scale2;
|
||||
int ex_expt, half_expt;
|
||||
|
||||
x = z.real;
|
||||
y = z.imag;
|
||||
exp_x = frexp_expf(x, &ex_expt);
|
||||
expt += ex_expt;
|
||||
|
||||
half_expt = expt / 2;
|
||||
set_float_word(scale1, (0x7f + half_expt) << 23);
|
||||
half_expt = expt - half_expt;
|
||||
set_float_word(scale2, (0x7f + half_expt) << 23);
|
||||
|
||||
return complex64_t{
|
||||
metal::cos(y) * exp_x * scale1 * scale2,
|
||||
metal::sin(y) * exp_x * scale1 * scale2};
|
||||
}
|
||||
|
||||
inline complex64_t cexpf(const thread complex64_t& z) {
|
||||
float x, y, exp_x;
|
||||
uint32_t hx, hy;
|
||||
|
||||
const uint32_t exp_ovfl = 0x42b17218, cexp_ovfl = 0x43400074;
|
||||
|
||||
x = z.real;
|
||||
y = z.imag;
|
||||
|
||||
get_float_word(hy, y);
|
||||
hy &= 0x7fffffff;
|
||||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if (hy == 0) {
|
||||
return complex64_t{metal::exp(x), y};
|
||||
}
|
||||
get_float_word(hx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if ((hx & 0x7fffffff) == 0) {
|
||||
return complex64_t{metal::cos(y), metal::sin(y)};
|
||||
}
|
||||
if (hy >= 0x7f800000) {
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return complex64_t{y - y, y - y};
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return complex64_t{0.0, 0.0};
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return complex64_t{x, y - y};
|
||||
}
|
||||
}
|
||||
|
||||
if (hx >= exp_ovfl && hx <= cexp_ovfl) {
|
||||
/*
|
||||
* x is between 88.7 and 192, so we must scale to avoid
|
||||
* overflow in expf(x).
|
||||
*/
|
||||
return ldexp_cexpf(z, 0);
|
||||
} else {
|
||||
/*
|
||||
* Cases covered here:
|
||||
* - x < exp_ovfl and exp(x) won't overflow (common case)
|
||||
* - x > cexp_ovfl, so exp(x) * s overflows for all s > 0
|
||||
* - x = +-Inf (generated by exp())
|
||||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = metal::exp(x);
|
||||
return complex64_t{exp_x * metal::cos(y), exp_x * metal::sin(y)};
|
||||
}
|
||||
}
|
||||
@@ -31,7 +31,6 @@ inline void threadgroup_sum(
|
||||
for (int i = 0; i < N; i++) {
|
||||
x[i] = simd_sum(x[i]);
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (simd_lane_id == 0) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
xs[N * simd_group_id + i] = x[i];
|
||||
|
||||
@@ -643,14 +643,14 @@ struct QuantizedBlockLoader {
|
||||
return;
|
||||
}
|
||||
|
||||
if (reduction_dim == 1 && bi >= src_tile_dim.x) {
|
||||
if (reduction_dim == 1 && bi >= src_tile_dim.y) {
|
||||
for (int i = 0; i < n_reads * pack_factor; i++) {
|
||||
dst[i] = T(0);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (reduction_dim == 0 && bi >= src_tile_dim.y) {
|
||||
if (reduction_dim == 0 && bi >= src_tile_dim.x) {
|
||||
for (int i = 0; i < n_reads * pack_factor; i++) {
|
||||
dst[i] = T(0);
|
||||
}
|
||||
|
||||
@@ -164,15 +164,7 @@ struct Min {
|
||||
DEFINE_SIMD_REDUCE()
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
||||
return simd_min(val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<!metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
||||
if (simd_any(val != val)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
T simd_reduce_impl(T val) {
|
||||
return simd_min(val);
|
||||
}
|
||||
|
||||
@@ -184,52 +176,17 @@ struct Min {
|
||||
}
|
||||
|
||||
// Operator
|
||||
template <typename T>
|
||||
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T a, T b) {
|
||||
U operator()(U a, U b) {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T a, T b) {
|
||||
if (metal::isnan(a) || metal::isnan(b)) {
|
||||
return static_cast<T>(NAN);
|
||||
} else {
|
||||
return a < b ? a : b;
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
complex64_t operator()(complex64_t a, complex64_t b) {
|
||||
bool real_is_nan = metal::isnan(a.real) || metal::isnan(b.real);
|
||||
bool imag_is_nan = metal::isnan(a.imag) || metal::isnan(b.imag);
|
||||
|
||||
if (!real_is_nan && !imag_is_nan) {
|
||||
return a < b ? a : b;
|
||||
} else if (real_is_nan && !imag_is_nan) {
|
||||
return complex64_t(
|
||||
static_cast<float>(NAN), a.imag < b.imag ? a.imag : b.imag);
|
||||
} else if (!real_is_nan && imag_is_nan) {
|
||||
return complex64_t(
|
||||
a.real < b.real ? a.real : b.real, static_cast<float>(NAN));
|
||||
} else {
|
||||
return complex64_t(static_cast<float>(NAN), static_cast<float>(NAN));
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
template <typename U>
|
||||
struct Max {
|
||||
DEFINE_SIMD_REDUCE()
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
||||
return simd_max(val);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<!metal::is_integral_v<T>, T> simd_reduce_impl(T val) {
|
||||
if (simd_any(val != val)) {
|
||||
return static_cast<T>(NAN);
|
||||
}
|
||||
T simd_reduce_impl(T val) {
|
||||
return simd_max(val);
|
||||
}
|
||||
|
||||
@@ -241,35 +198,7 @@ struct Max {
|
||||
}
|
||||
|
||||
// Operator
|
||||
template <typename T>
|
||||
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T a, T b) {
|
||||
U operator()(U a, U b) {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T a, T b) {
|
||||
if (metal::isnan(a) || metal::isnan(b)) {
|
||||
return static_cast<T>(NAN);
|
||||
} else {
|
||||
return a > b ? a : b;
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
complex64_t operator()(complex64_t a, complex64_t b) {
|
||||
bool real_is_nan = metal::isnan(a.real) || metal::isnan(b.real);
|
||||
bool imag_is_nan = metal::isnan(a.imag) || metal::isnan(b.imag);
|
||||
|
||||
if (!real_is_nan && !imag_is_nan) {
|
||||
return a > b ? a : b;
|
||||
} else if (real_is_nan && !imag_is_nan) {
|
||||
return complex64_t(
|
||||
static_cast<float>(NAN), a.imag > b.imag ? a.imag : b.imag);
|
||||
} else if (!real_is_nan && imag_is_nan) {
|
||||
return complex64_t(
|
||||
a.real > b.real ? a.real : b.real, static_cast<float>(NAN));
|
||||
} else {
|
||||
return complex64_t(static_cast<float>(NAN), static_cast<float>(NAN));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -1,266 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
using namespace mlx::steel;
|
||||
|
||||
constant bool segments_contiguous [[function_constant(199)]];
|
||||
constant bool align_M [[function_constant(200)]];
|
||||
constant bool align_N [[function_constant(201)]];
|
||||
|
||||
template <
|
||||
typename T,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
typename AccumType = float>
|
||||
[[kernel, max_total_threads_per_threadgroup(WM* WN * 32)]] void segmented_mm(
|
||||
const device T* A [[buffer(0)]],
|
||||
const device T* B [[buffer(1)]],
|
||||
const device uint32_t* segments [[buffer(2)]],
|
||||
device T* C [[buffer(3)]],
|
||||
const constant GEMMParams* params [[buffer(4)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
uint3 tid [[threadgroup_position_in_grid]]) {
|
||||
using gemm_kernel = GEMMKernel<
|
||||
T,
|
||||
T,
|
||||
BM,
|
||||
BN,
|
||||
BK,
|
||||
WM,
|
||||
WN,
|
||||
transpose_a,
|
||||
transpose_b,
|
||||
true,
|
||||
true,
|
||||
AccumType>;
|
||||
|
||||
using loader_a_t = typename gemm_kernel::loader_a_t;
|
||||
using loader_b_t = typename gemm_kernel::loader_b_t;
|
||||
using mma_t = typename gemm_kernel::mma_t;
|
||||
|
||||
if (params->tiles_n <= static_cast<int>(tid.x) ||
|
||||
params->tiles_m <= static_cast<int>(tid.y)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Prepare threadgroup memory
|
||||
threadgroup T As[gemm_kernel::tgp_mem_size_a];
|
||||
threadgroup T Bs[gemm_kernel::tgp_mem_size_b];
|
||||
|
||||
// Find the block in A, B, C
|
||||
const int c_row = tid.y * BM;
|
||||
const int c_col = tid.x * BN;
|
||||
const size_t c_row_long = size_t(c_row);
|
||||
const size_t c_col_long = size_t(c_col);
|
||||
|
||||
// Prepare threadgroup bounds
|
||||
const short tgp_bm = align_M ? BM : short(min(BM, params->M - c_row));
|
||||
const short tgp_bn = align_N ? BN : short(min(BN, params->N - c_col));
|
||||
|
||||
// Move the pointers to the output tile
|
||||
A += transpose_a ? c_row_long : c_row_long * params->lda;
|
||||
B += transpose_b ? c_col_long * params->ldb : c_col_long;
|
||||
C += c_row_long * params->ldd + c_col_long;
|
||||
|
||||
// Move the pointers to the start of the segment
|
||||
uint32_t k_start, k_end;
|
||||
if (segments_contiguous) {
|
||||
k_start = segments[2 * tid.z];
|
||||
k_end = segments[2 * tid.z + 1];
|
||||
} else {
|
||||
// We accept either contiguous (above) or weird strides where the beginning
|
||||
// of the next one is the previous one. Basically the last two strides are
|
||||
// both 1!
|
||||
k_start = segments[tid.z];
|
||||
k_end = segments[tid.z + 1];
|
||||
}
|
||||
A += transpose_a ? k_start * params->lda : k_start;
|
||||
B += transpose_b ? k_start : k_start * params->ldb;
|
||||
C += tid.z * params->batch_stride_d;
|
||||
|
||||
// Prepare threadgroup mma operation
|
||||
thread mma_t mma_op(simd_group_id, simd_lane_id);
|
||||
|
||||
// Prepare threadgroup loading operations
|
||||
thread loader_a_t loader_a(A, params->lda, As, simd_group_id, simd_lane_id);
|
||||
thread loader_b_t loader_b(B, params->ldb, Bs, simd_group_id, simd_lane_id);
|
||||
|
||||
// Matrix level alignment so only check K
|
||||
if (align_M && align_N) {
|
||||
uint32_t k = k_start + BK;
|
||||
for (; k <= k_end; k += BK) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_unsafe();
|
||||
loader_b.load_unsafe();
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
short k_remain = BK - short(k - k_end);
|
||||
const short2 tile_dims_A =
|
||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
||||
const short2 tile_dims_B =
|
||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
||||
if (k_remain > 0) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
mma_op.store_result(C, params->ldd);
|
||||
} else {
|
||||
// Tile aligned do the same as above
|
||||
if ((align_M || tgp_bm == BM) && (align_N || tgp_bn == BN)) {
|
||||
uint32_t k = k_start + BK;
|
||||
for (; k <= k_end; k += BK) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_unsafe();
|
||||
loader_b.load_unsafe();
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
short k_remain = BK - short(k - k_end);
|
||||
const short2 tile_dims_A =
|
||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
||||
const short2 tile_dims_B =
|
||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
||||
if (k_remain > 0) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
mma_op.store_result(C, params->ldd);
|
||||
}
|
||||
|
||||
// Tile partially aligned check rows
|
||||
else if (align_N || tgp_bn == BN) {
|
||||
uint32_t k = k_start + BK;
|
||||
for (; k <= k_end; k += BK) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_safe(
|
||||
transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm));
|
||||
loader_b.load_unsafe();
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
short k_remain = BK - short(k - k_end);
|
||||
const short2 tile_dims_A =
|
||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
||||
const short2 tile_dims_B =
|
||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
||||
if (k_remain > 0) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
}
|
||||
|
||||
// Tile partially aligned check cols
|
||||
else if (align_M || tgp_bm == BM) {
|
||||
uint32_t k = k_start + BK;
|
||||
for (; k <= k_end; k += BK) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_unsafe();
|
||||
loader_b.load_safe(
|
||||
transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK));
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
short k_remain = BK - short(k - k_end);
|
||||
const short2 tile_dims_A =
|
||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
||||
const short2 tile_dims_B =
|
||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
||||
if (k_remain > 0) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
}
|
||||
|
||||
// Nothing aligned so check both rows and cols
|
||||
else {
|
||||
uint32_t k = k_start + BK;
|
||||
for (; k <= k_end; k += BK) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_safe(
|
||||
transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm));
|
||||
loader_b.load_safe(
|
||||
transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK));
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
short k_remain = BK - short(k - k_end);
|
||||
const short2 tile_dims_A =
|
||||
transpose_a ? short2(tgp_bm, k_remain) : short2(k_remain, tgp_bm);
|
||||
const short2 tile_dims_B =
|
||||
transpose_b ? short2(k_remain, tgp_bn) : short2(tgp_bn, k_remain);
|
||||
if (k_remain > 0) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
mma_op.store_result_safe(C, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,43 +0,0 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/gemm.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/kernels/steel_gemm_segmented.h"
|
||||
|
||||
#define instantiate_segmented_mm(tname, trans_a, trans_b, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
||||
instantiate_kernel( \
|
||||
"steel_segmented_mm_" #tname "_" #iname "_" #oname "_bm" #bm "_bn" #bn \
|
||||
"_bk" #bk "_wm" #wm "_wn" #wn, \
|
||||
segmented_mm, \
|
||||
itype, \
|
||||
bm, \
|
||||
bn, \
|
||||
bk, \
|
||||
wm, \
|
||||
wn, \
|
||||
trans_a, \
|
||||
trans_b, \
|
||||
float)
|
||||
|
||||
#define instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
||||
instantiate_segmented_mm(nn, false, false, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
||||
instantiate_segmented_mm(nt, false, true , iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
||||
instantiate_segmented_mm(tn, true , false, iname, itype, oname, otype, bm, bn, bk, wm, wn) \
|
||||
instantiate_segmented_mm(tt, true , true , iname, itype, oname, otype, bm, bn, bk, wm, wn)
|
||||
|
||||
#define instantiate_segmented_mm_shapes_helper(iname, itype, oname, otype) \
|
||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 64, 16, 2, 2) \
|
||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 64, 16, 1, 2) \
|
||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 64, 32, 32, 2, 2) \
|
||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 32, 64, 16, 1, 2) \
|
||||
instantiate_segmented_mm_transpose_helper(iname, itype, oname, otype, 32, 32, 16, 2, 2)
|
||||
// clang-format on
|
||||
|
||||
instantiate_segmented_mm_shapes_helper(float16, half, float16, half);
|
||||
instantiate_segmented_mm_shapes_helper(
|
||||
bfloat16,
|
||||
bfloat16_t,
|
||||
bfloat16,
|
||||
bfloat16_t);
|
||||
instantiate_segmented_mm_shapes_helper(float32, float, float32, float);
|
||||
@@ -5,7 +5,6 @@
|
||||
#include <metal_integer>
|
||||
#include <metal_math>
|
||||
|
||||
#include "mlx/backend/metal/kernels/cexpf.h"
|
||||
#include "mlx/backend/metal/kernels/erf.h"
|
||||
#include "mlx/backend/metal/kernels/expm1f.h"
|
||||
|
||||
@@ -179,7 +178,8 @@ struct Exp {
|
||||
return metal::precise::exp(x);
|
||||
};
|
||||
complex64_t operator()(complex64_t x) {
|
||||
return cexpf(x);
|
||||
auto m = metal::precise::exp(x.real);
|
||||
return {m * metal::precise::cos(x.imag), m * metal::precise::sin(x.imag)};
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -1864,166 +1864,4 @@ void GatherMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
gather_mm(a, b, lhs_indices, rhs_indices, out, M, N, K, d, s);
|
||||
}
|
||||
|
||||
void segmented_mm(
|
||||
const array& a_,
|
||||
const array& b_,
|
||||
const array& segments_,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
metal::Device& d,
|
||||
const Stream& s) {
|
||||
auto check_segments_layout = [&d, &s](const array& x) {
|
||||
// Contiguous so return early
|
||||
if (x.flags().row_contiguous) {
|
||||
return std::make_tuple(true, x);
|
||||
}
|
||||
|
||||
bool rc = true;
|
||||
for (int i = 0; i < x.ndim() - 2; i++) {
|
||||
rc &=
|
||||
(x.strides(i + 1) * x.shape(i) == x.strides(i)) || (x.shape(i) == 1);
|
||||
}
|
||||
rc &= x.strides(x.ndim() - 1) == 1;
|
||||
if (x.ndim() > 1) {
|
||||
rc &= x.strides(x.ndim() - 2) == 1;
|
||||
}
|
||||
|
||||
if (rc) {
|
||||
return std::make_tuple(false, x);
|
||||
}
|
||||
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
d.add_temporary(x_copy, s.index);
|
||||
return std::make_tuple(true, x_copy);
|
||||
};
|
||||
|
||||
// Copy if needed
|
||||
std::vector<array> copies;
|
||||
auto [transpose_a, lda, a] = check_transpose(copies, s, a_, false);
|
||||
auto [transpose_b, ldb, b] = check_transpose(copies, s, b_, false);
|
||||
auto [segments_contiguous, segments] = check_segments_layout(segments_);
|
||||
d.add_temporaries(std::move(copies), s.index);
|
||||
|
||||
// Determine dispatch kernel
|
||||
int bm = 64, bn = 64, bk = 16;
|
||||
int wm = 2, wn = 2;
|
||||
size_t batch_size_out = out.size() / M / N;
|
||||
|
||||
char devc = d.get_architecture().back();
|
||||
GEMM_TPARAM_MACRO(devc)
|
||||
|
||||
const bool align_M = (M % bm) == 0;
|
||||
const bool align_N = (N % bn) == 0;
|
||||
|
||||
// Define the kernel name
|
||||
std::string base_name;
|
||||
base_name.reserve(128);
|
||||
concatenate(
|
||||
base_name,
|
||||
"steel_segmented_mm_",
|
||||
transpose_a ? 't' : 'n',
|
||||
transpose_b ? 't' : 'n',
|
||||
"_",
|
||||
type_to_name(a),
|
||||
"_",
|
||||
type_to_name(out),
|
||||
"_bm",
|
||||
bm,
|
||||
"_bn",
|
||||
bn,
|
||||
"_bk",
|
||||
bk,
|
||||
"_wm",
|
||||
wm,
|
||||
"_wn",
|
||||
wn);
|
||||
|
||||
metal::MTLFCList func_consts = {
|
||||
{&segments_contiguous, MTL::DataType::DataTypeBool, 199},
|
||||
{&align_M, MTL::DataType::DataTypeBool, 200},
|
||||
{&align_N, MTL::DataType::DataTypeBool, 201},
|
||||
};
|
||||
|
||||
// And the kernel hash that includes the function constants
|
||||
std::string hash_name;
|
||||
hash_name.reserve(128);
|
||||
concatenate(
|
||||
hash_name,
|
||||
base_name,
|
||||
"_segments_contiguous_",
|
||||
segments_contiguous ? 't' : 'n',
|
||||
"_align_M_",
|
||||
align_M ? 't' : 'n',
|
||||
"_align_N_",
|
||||
align_N ? 't' : 'n');
|
||||
|
||||
// Get and set the kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = get_steel_gemm_segmented_kernel(
|
||||
d,
|
||||
base_name,
|
||||
hash_name,
|
||||
func_consts,
|
||||
out,
|
||||
transpose_a,
|
||||
transpose_b,
|
||||
bm,
|
||||
bn,
|
||||
bk,
|
||||
wm,
|
||||
wn);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Prepare the matmul params
|
||||
steel::GEMMParams params{
|
||||
/* const int M = */ M,
|
||||
/* const int N = */ N,
|
||||
/* const int K = */ K,
|
||||
/* const int lda = */ static_cast<int>(lda),
|
||||
/* const int ldb = */ static_cast<int>(ldb),
|
||||
/* const int ldd = */ N,
|
||||
/* const int tiles_n = */ (N + bn - 1) / bn,
|
||||
/* const int tiles_m = */ (M + bm - 1) / bm,
|
||||
/* const int64_t batch_stride_a = */ 0,
|
||||
/* const int64_t batch_stride_b = */ 0,
|
||||
/* const int64_t batch_stride_d = */ M * N,
|
||||
/* const int swizzle_log = */ 0,
|
||||
/* const int gemm_k_iterations_aligned = */ 0,
|
||||
/* const int batch_ndim = */ 0};
|
||||
|
||||
// Prepare the grid
|
||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
||||
MTL::Size grid_dims =
|
||||
MTL::Size(params.tiles_n, params.tiles_m, batch_size_out);
|
||||
|
||||
// Launch kernel
|
||||
compute_encoder.set_input_array(a, 0);
|
||||
compute_encoder.set_input_array(b, 1);
|
||||
compute_encoder.set_input_array(segments, 2);
|
||||
compute_encoder.set_output_array(out, 3);
|
||||
compute_encoder.set_bytes(params, 4);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void SegmentedMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto& segments = inputs[2];
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Extract shapes from inputs.
|
||||
int M = a.shape(-2);
|
||||
int N = b.shape(-1);
|
||||
int K = a.shape(-1);
|
||||
|
||||
segmented_mm(a, b, segments, out, M, N, K, d, s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -210,22 +210,6 @@ MTL::ComputePipelineState* get_steel_gemm_gather_kernel(
|
||||
return d.get_kernel(kernel_name, hash_name, func_consts);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_steel_gemm_segmented_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& hash_name,
|
||||
const metal::MTLFCList& func_consts,
|
||||
const array&,
|
||||
bool,
|
||||
bool,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
int) {
|
||||
return d.get_kernel(kernel_name, hash_name, func_consts);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
||||
@@ -105,7 +105,6 @@ NO_CPU(Scan)
|
||||
NO_CPU(Scatter)
|
||||
NO_CPU(ScatterAxis)
|
||||
NO_CPU(Select)
|
||||
NO_CPU(SegmentedMM)
|
||||
NO_CPU(Sigmoid)
|
||||
NO_CPU(Sign)
|
||||
NO_CPU(Sin)
|
||||
|
||||
@@ -121,7 +121,6 @@ NO_GPU(Scan)
|
||||
NO_GPU(Scatter)
|
||||
NO_GPU(ScatterAxis)
|
||||
NO_GPU(Select)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU(Sigmoid)
|
||||
NO_GPU(Sign)
|
||||
NO_GPU(Sin)
|
||||
|
||||
85
mlx/backend/rocm/CMakeLists.txt
Normal file
85
mlx/backend/rocm/CMakeLists.txt
Normal file
@@ -0,0 +1,85 @@
|
||||
# Filename rules in ROCm backend:
|
||||
#
|
||||
# * Use .hip/.hpp if code contains device code, and .cpp/.h if not.
|
||||
# * Device-only code should be put in device/ subdir.
|
||||
# * Files in device/ subdir should not include files outside.
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rocm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/sort.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.hip
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_ROCM)
|
||||
|
||||
# Embed kernel sources in binary for JIT compilation.
|
||||
file(
|
||||
GLOB MLX_JIT_SOURCES
|
||||
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.h"
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.hpp")
|
||||
string(JOIN ":" MLX_JIT_SOURCES_ARG ${MLX_JIT_SOURCES})
|
||||
add_custom_command(
|
||||
OUTPUT gen/rocm_jit_sources.h
|
||||
COMMAND
|
||||
${CMAKE_COMMAND} -DMLX_SOURCE_ROOT=${CMAKE_CURRENT_SOURCE_DIR}
|
||||
-DMLX_JIT_SOURCES=${MLX_JIT_SOURCES_ARG} -P
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/bin2h.cmake"
|
||||
DEPENDS bin2h.cmake ${MLX_JIT_SOURCES})
|
||||
add_custom_target(rocm_jit_sources DEPENDS gen/rocm_jit_sources.h)
|
||||
add_dependencies(mlx rocm_jit_sources)
|
||||
target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
|
||||
|
||||
# Find ROCm installation
|
||||
find_package(hip REQUIRED)
|
||||
find_package(rocblas REQUIRED)
|
||||
|
||||
# Link with ROCm libraries
|
||||
target_link_libraries(mlx PRIVATE hip::device roc::rocblas)
|
||||
|
||||
# Set GPU architectures for ROCm Common ROCm architectures: gfx900, gfx906,
|
||||
# gfx908, gfx90a, gfx1030, gfx1100
|
||||
set(MLX_ROCM_ARCHITECTURES
|
||||
"gfx900;gfx906;gfx908;gfx90a;gfx1030;gfx1100"
|
||||
CACHE STRING "ROCm GPU architectures")
|
||||
message(STATUS "ROCm GPU architectures: ${MLX_ROCM_ARCHITECTURES}")
|
||||
|
||||
# Set GPU targets for HIP compilation
|
||||
set_property(TARGET mlx PROPERTY HIP_ARCHITECTURES "${MLX_ROCM_ARCHITECTURES}")
|
||||
|
||||
# Enable HIP language support
|
||||
enable_language(HIP)
|
||||
|
||||
# Set HIP compiler flags
|
||||
target_compile_options(
|
||||
mlx
|
||||
PRIVATE "$<$<COMPILE_LANGUAGE:HIP>:-fgpu-rdc>"
|
||||
"$<$<COMPILE_LANGUAGE:HIP>:-Xcompiler=-Wall>"
|
||||
"$<$<COMPILE_LANGUAGE:HIP>:-Xcompiler=-Wextra>")
|
||||
|
||||
# Add ROCm include directories
|
||||
target_include_directories(mlx PRIVATE ${hip_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${rocblas_INCLUDE_DIRS})
|
||||
206
mlx/backend/rocm/allocator.cpp
Normal file
206
mlx/backend/rocm/allocator.cpp
Normal file
@@ -0,0 +1,206 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/rocm/allocator.h"
|
||||
#include "mlx/backend/rocm/utils.h"
|
||||
#include "mlx/backend/rocm/worker.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace rocm {
|
||||
|
||||
RocmAllocator::RocmAllocator()
|
||||
: buffer_cache_(
|
||||
getpagesize(),
|
||||
[](RocmBuffer* buf) { return buf->size; },
|
||||
[this](RocmBuffer* buf) {
|
||||
rocm_free(buf->data);
|
||||
delete buf;
|
||||
}) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_HIP_ERROR(hipMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.8;
|
||||
max_pool_size_ = memory_limit_;
|
||||
}
|
||||
|
||||
Buffer RocmAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
std::unique_lock lock(mutex_);
|
||||
RocmBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache.
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
if (mem_required >= memory_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
|
||||
}
|
||||
|
||||
lock.unlock();
|
||||
buf = new RocmBuffer{nullptr, size};
|
||||
hipError_t err = hipMallocManaged(&buf->data, size);
|
||||
if (err != hipSuccess && err != hipErrorMemoryAllocation) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("hipMallocManaged failed: {}.", hipGetErrorString(err)));
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
active_memory_ += size;
|
||||
peak_memory_ = std::max(active_memory_, peak_memory_);
|
||||
|
||||
// Maintain the cache below the requested limit.
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
void RocmAllocator::free(Buffer buffer) {
|
||||
auto* buf = static_cast<RocmBuffer*>(buffer.ptr());
|
||||
if (!buf) {
|
||||
return;
|
||||
}
|
||||
|
||||
std::unique_lock lock(mutex_);
|
||||
active_memory_ -= buf->size;
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
lock.unlock();
|
||||
rocm_free(buf->data);
|
||||
delete buf;
|
||||
}
|
||||
}
|
||||
|
||||
size_t RocmAllocator::size(Buffer buffer) const {
|
||||
auto* buf = static_cast<RocmBuffer*>(buffer.ptr());
|
||||
if (!buf) {
|
||||
return 0;
|
||||
}
|
||||
return buf->size;
|
||||
}
|
||||
|
||||
void RocmAllocator::register_this_thread() {
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
allowed_threads_.insert(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
void RocmAllocator::rocm_free(void* buf) {
|
||||
// If rocm_free() is called from a unregistered thread, reschedule the call to
|
||||
// worker.
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
|
||||
if (!worker_) {
|
||||
worker_.reset(new Worker);
|
||||
}
|
||||
worker_->add_task([this, buf]() { this->rocm_free(buf); });
|
||||
worker_->end_batch();
|
||||
worker_->commit();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
hipFree(buf);
|
||||
}
|
||||
|
||||
size_t RocmAllocator::get_active_memory() const {
|
||||
return active_memory_;
|
||||
}
|
||||
|
||||
size_t RocmAllocator::get_peak_memory() const {
|
||||
return peak_memory_;
|
||||
}
|
||||
|
||||
void RocmAllocator::reset_peak_memory() {
|
||||
std::lock_guard lock(mutex_);
|
||||
peak_memory_ = 0;
|
||||
}
|
||||
|
||||
size_t RocmAllocator::get_memory_limit() {
|
||||
return memory_limit_;
|
||||
}
|
||||
|
||||
size_t RocmAllocator::set_memory_limit(size_t limit) {
|
||||
std::lock_guard lock(mutex_);
|
||||
std::swap(limit, memory_limit_);
|
||||
return limit;
|
||||
}
|
||||
|
||||
size_t RocmAllocator::get_cache_memory() const {
|
||||
return buffer_cache_.cache_size();
|
||||
}
|
||||
|
||||
size_t RocmAllocator::set_cache_limit(size_t limit) {
|
||||
std::lock_guard lk(mutex_);
|
||||
std::swap(limit, max_pool_size_);
|
||||
return limit;
|
||||
}
|
||||
|
||||
void RocmAllocator::clear_cache() {
|
||||
std::lock_guard lk(mutex_);
|
||||
buffer_cache_.clear();
|
||||
}
|
||||
|
||||
RocmAllocator& allocator() {
|
||||
// By creating the |allocator_| on heap, the destructor of RocmAllocator
|
||||
// will not be called on exit and buffers in the cache will be leaked. This
|
||||
// can save some time at program exit.
|
||||
static RocmAllocator* allocator_ = new RocmAllocator;
|
||||
return *allocator_;
|
||||
}
|
||||
|
||||
} // namespace rocm
|
||||
|
||||
namespace allocator {
|
||||
|
||||
Allocator& allocator() {
|
||||
return rocm::allocator();
|
||||
}
|
||||
|
||||
void* Buffer::raw_ptr() {
|
||||
if (!ptr_) {
|
||||
return nullptr;
|
||||
}
|
||||
return static_cast<rocm::RocmBuffer*>(ptr_)->data;
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
|
||||
size_t get_active_memory() {
|
||||
return rocm::allocator().get_active_memory();
|
||||
}
|
||||
size_t get_peak_memory() {
|
||||
return rocm::allocator().get_peak_memory();
|
||||
}
|
||||
void reset_peak_memory() {
|
||||
return rocm::allocator().reset_peak_memory();
|
||||
}
|
||||
size_t set_memory_limit(size_t limit) {
|
||||
return rocm::allocator().set_memory_limit(limit);
|
||||
}
|
||||
size_t get_memory_limit() {
|
||||
return rocm::allocator().get_memory_limit();
|
||||
}
|
||||
size_t get_cache_memory() {
|
||||
return rocm::allocator().get_cache_memory();
|
||||
}
|
||||
size_t set_cache_limit(size_t limit) {
|
||||
return rocm::allocator().set_cache_limit(limit);
|
||||
}
|
||||
void clear_cache() {
|
||||
rocm::allocator().clear_cache();
|
||||
}
|
||||
|
||||
// Not supported in ROCm.
|
||||
size_t set_wired_limit(size_t) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
67
mlx/backend/rocm/allocator.h
Normal file
67
mlx/backend/rocm/allocator.h
Normal file
@@ -0,0 +1,67 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/buffer_cache.h"
|
||||
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
class Worker;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores ROCm-managed unified memory.
|
||||
struct RocmBuffer {
|
||||
void* data;
|
||||
size_t size;
|
||||
};
|
||||
|
||||
class RocmAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
// Register current thread as safe to free buffers.
|
||||
// In ROCm freeing a buffer implicitly synchronizes stream, and for threads
|
||||
// that may be waited by gpu stream (for example cpu stream threads), freeing
|
||||
// buffers there would result in dead lock.
|
||||
void register_this_thread();
|
||||
|
||||
// Call hipFree in the safe thread.
|
||||
void rocm_free(void* buf);
|
||||
|
||||
size_t get_active_memory() const;
|
||||
size_t get_peak_memory() const;
|
||||
void reset_peak_memory();
|
||||
size_t get_memory_limit();
|
||||
size_t set_memory_limit(size_t limit);
|
||||
size_t get_cache_memory() const;
|
||||
size_t set_cache_limit(size_t limit);
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
RocmAllocator();
|
||||
friend RocmAllocator& allocator();
|
||||
|
||||
std::mutex worker_mutex_;
|
||||
std::unique_ptr<Worker> worker_;
|
||||
std::set<std::thread::id> allowed_threads_;
|
||||
|
||||
std::mutex mutex_;
|
||||
size_t memory_limit_;
|
||||
size_t max_pool_size_;
|
||||
BufferCache<RocmBuffer> buffer_cache_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
};
|
||||
|
||||
RocmAllocator& allocator();
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
28
mlx/backend/rocm/arg_reduce.hip
Normal file
28
mlx/backend/rocm/arg_reduce.hip
Normal file
@@ -0,0 +1,28 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
__global__ void argmax_kernel(float* input, int* output, int n) {
|
||||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
// Simple argmax placeholder
|
||||
if (idx == 0) {
|
||||
int max_idx = 0;
|
||||
float max_val = input[0];
|
||||
for (int i = 1; i < n; i++) {
|
||||
if (input[i] > max_val) {
|
||||
max_val = input[i];
|
||||
max_idx = i;
|
||||
}
|
||||
}
|
||||
output[0] = max_idx;
|
||||
}
|
||||
}
|
||||
|
||||
void launch_argmax(float* input, int* output, int n, hipStream_t stream) {
|
||||
hipLaunchKernelGGL(argmax_kernel, dim3(1), dim3(1), 0, stream, input, output, n);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
47
mlx/backend/rocm/bin2h.cmake
Normal file
47
mlx/backend/rocm/bin2h.cmake
Normal file
@@ -0,0 +1,47 @@
|
||||
# Copyright © 2025 Apple Inc.
|
||||
|
||||
# Script to embed kernel source files as header for JIT compilation
|
||||
|
||||
set(MLX_OUTPUT_FILE "${CMAKE_CURRENT_BINARY_DIR}/gen/rocm_jit_sources.h")
|
||||
set(MLX_KERNEL_HEADER
|
||||
"#pragma once\n\n#include <unordered_map>\n#include <string>\n\nnamespace mlx::core::rocm {\n\n"
|
||||
)
|
||||
set(MLX_KERNEL_FOOTER "\n} // namespace mlx::core::rocm\n")
|
||||
|
||||
# Create output directory
|
||||
get_filename_component(MLX_OUTPUT_DIR ${MLX_OUTPUT_FILE} DIRECTORY)
|
||||
file(MAKE_DIRECTORY ${MLX_OUTPUT_DIR})
|
||||
|
||||
# Write header
|
||||
file(WRITE ${MLX_OUTPUT_FILE} ${MLX_KERNEL_HEADER})
|
||||
|
||||
# Process JIT sources
|
||||
string(REPLACE ":" ";" MLX_JIT_SOURCES_LIST ${MLX_JIT_SOURCES})
|
||||
|
||||
set(MLX_SOURCE_MAP
|
||||
"const std::unordered_map<std::string, std::string> kernel_sources = {\n")
|
||||
|
||||
foreach(source IN LISTS MLX_JIT_SOURCES_LIST)
|
||||
set(source_file "${MLX_SOURCE_ROOT}/${source}")
|
||||
if(EXISTS ${source_file})
|
||||
# Read source file
|
||||
file(READ ${source_file} source_content)
|
||||
|
||||
# Escape content for C++ string literal
|
||||
string(REPLACE "\\" "\\\\" source_content "${source_content}")
|
||||
string(REPLACE "\"" "\\\"" source_content "${source_content}")
|
||||
string(REPLACE "\n" "\\n\"\n\"" source_content "${source_content}")
|
||||
|
||||
# Add to map
|
||||
set(MLX_SOURCE_MAP
|
||||
"${MLX_SOURCE_MAP} {\"${source}\", \"${source_content}\"},\n")
|
||||
endif()
|
||||
endforeach()
|
||||
|
||||
set(MLX_SOURCE_MAP "${MLX_SOURCE_MAP}};\n")
|
||||
|
||||
# Write source map
|
||||
file(APPEND ${MLX_OUTPUT_FILE} ${MLX_SOURCE_MAP})
|
||||
|
||||
# Write footer
|
||||
file(APPEND ${MLX_OUTPUT_FILE} ${MLX_KERNEL_FOOTER})
|
||||
312
mlx/backend/rocm/binary.hip
Normal file
312
mlx/backend/rocm/binary.hip
Normal file
@@ -0,0 +1,312 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/rocm/device.h"
|
||||
#include "mlx/backend/rocm/device/binary_ops.hpp"
|
||||
#include "mlx/backend/rocm/kernel_utils.hpp"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <hip/hip_cooperative_groups.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace rocm {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[0], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[0]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
out[index] = Op{}(a[index], b[index]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
|
||||
__global__ void binary_g_nd(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
const hip_array<int32_t, NDIM> shape,
|
||||
const hip_array<int64_t, NDIM> a_strides,
|
||||
const hip_array<int64_t, NDIM> b_strides) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
||||
index, shape.data(), a_strides.data(), b_strides.data());
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Op, typename In, typename Out, typename IdxT>
|
||||
__global__ void binary_g(
|
||||
const In* a,
|
||||
const In* b,
|
||||
Out* out,
|
||||
IdxT size,
|
||||
const hip_array<int32_t, MAX_DIMS> shape,
|
||||
const hip_array<int64_t, MAX_DIMS> a_strides,
|
||||
const hip_array<int64_t, MAX_DIMS> b_strides,
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
}
|
||||
|
||||
// Binary operation support checking
|
||||
template <typename Op, typename In, typename Out>
|
||||
constexpr bool supports_binary_op() {
|
||||
if (std::is_same_v<Op, Add> || std::is_same_v<Op, Divide> ||
|
||||
std::is_same_v<Op, Maximum> || std::is_same_v<Op, Minimum> ||
|
||||
std::is_same_v<Op, Multiply> || std::is_same_v<Op, Subtract> ||
|
||||
std::is_same_v<Op, Power> || std::is_same_v<Op, Remainder>) {
|
||||
return std::is_same_v<In, Out>;
|
||||
}
|
||||
if (std::is_same_v<Op, Equal> || std::is_same_v<Op, Greater> ||
|
||||
std::is_same_v<Op, GreaterEqual> || std::is_same_v<Op, Less> ||
|
||||
std::is_same_v<Op, LessEqual> || std::is_same_v<Op, NotEqual>) {
|
||||
return std::is_same_v<Out, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogicalAnd> || std::is_same_v<Op, LogicalOr>) {
|
||||
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
|
||||
}
|
||||
if (std::is_same_v<Op, NaNEqual>) {
|
||||
return std::is_same_v<Out, bool> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LogAddExp>) {
|
||||
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, ArcTan2>) {
|
||||
return std::is_same_v<In, Out> && is_floating_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
|
||||
std::is_same_v<Op, BitwiseXor>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In>;
|
||||
}
|
||||
if (std::is_same_v<Op, LeftShift> || std::is_same_v<Op, RightShift>) {
|
||||
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
||||
!std::is_same_v<In, bool>;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
} // namespace rocm
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = rocm::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.launch_kernel([&](hipStream_t stream) {
|
||||
MLX_SWITCH_ALL_TYPES(a.dtype(), CTYPE_IN, {
|
||||
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
|
||||
if constexpr (rocm::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
||||
using InType = hip_type_t<CTYPE_IN>;
|
||||
using OutType = hip_type_t<CTYPE_OUT>;
|
||||
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
if (bopt == BinaryOpType::General) {
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
auto& a_strides = strides[0];
|
||||
auto& b_strides = strides[1];
|
||||
bool large = a.data_size() > INT32_MAX ||
|
||||
b.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
MLX_SWITCH_BOOL(large, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, int32_t>;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
MLX_SWITCH_1_2_3(ndim, NDIM, {
|
||||
auto kernel =
|
||||
&rocm::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
hipLaunchKernelGGL(kernel, num_blocks, block_dims, 0, stream,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
make_hip_array<NDIM>(shape),
|
||||
make_hip_array<NDIM>(a_strides),
|
||||
make_hip_array<NDIM>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = rocm::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large);
|
||||
hipLaunchKernelGGL(kernel, num_blocks, block_dims, 0, stream,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.size(),
|
||||
make_hip_array(shape),
|
||||
make_hip_array(a_strides),
|
||||
make_hip_array(b_strides),
|
||||
ndim);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
|
||||
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
|
||||
auto kernel = rocm::binary_ss<Op, InType, OutType, IdxT>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = rocm::binary_sv<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
kernel = rocm::binary_vs<Op, InType, OutType, IdxT>;
|
||||
} else if (bopt == BinaryOpType::VectorVector) {
|
||||
kernel = rocm::binary_vv<Op, InType, OutType, IdxT>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, out.data_size(), out.shape(), out.strides(), LARGE);
|
||||
hipLaunchKernelGGL(kernel, num_blocks, block_dims, 0, stream,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Can not do binary op {} on inputs of {} with result of {}.",
|
||||
op,
|
||||
dtype_to_string(a.dtype()),
|
||||
dtype_to_string(out.dtype())));
|
||||
}
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, outputs[0], bopt);
|
||||
set_binary_op_output_data(a, b, outputs[1], bopt);
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
std::vector<array> outputs{out};
|
||||
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
|
||||
}
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
auto& s = out.primitive().stream(); \
|
||||
binary_op_gpu<rocm::func>(inputs, out, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
#define BINARY_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
auto& s = outputs[0].primitive().stream(); \
|
||||
binary_op_gpu<rocm::func>(inputs, outputs, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
BINARY_GPU(ArcTan2)
|
||||
BINARY_GPU(Divide)
|
||||
BINARY_GPU(Remainder)
|
||||
BINARY_GPU(Greater)
|
||||
BINARY_GPU(GreaterEqual)
|
||||
BINARY_GPU(Less)
|
||||
BINARY_GPU(LessEqual)
|
||||
BINARY_GPU(LogicalAnd)
|
||||
BINARY_GPU(LogicalOr)
|
||||
BINARY_GPU(LogAddExp)
|
||||
BINARY_GPU(Maximum)
|
||||
BINARY_GPU(Minimum)
|
||||
BINARY_GPU(Multiply)
|
||||
BINARY_GPU(NotEqual)
|
||||
BINARY_GPU(Power)
|
||||
BINARY_GPU(Subtract)
|
||||
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<rocm::NaNEqual>(inputs, out, op, s);
|
||||
} else {
|
||||
binary_op_gpu<rocm::Equal>(inputs, out, op, s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<rocm::BitwiseAnd>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<rocm::BitwiseOr>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<rocm::BitwiseXor>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<rocm::LeftShift>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<rocm::RightShift>(inputs, out, op, s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
9
mlx/backend/rocm/compiled.cpp
Normal file
9
mlx/backend/rocm/compiled.cpp
Normal file
@@ -0,0 +1,9 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
void compile() {
|
||||
// Placeholder for ROCm compilation
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
20
mlx/backend/rocm/copy.hip
Normal file
20
mlx/backend/rocm/copy.hip
Normal file
@@ -0,0 +1,20 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
__global__ void copy_kernel(float* src, float* dst, int n) {
|
||||
int idx = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (idx < n) {
|
||||
dst[idx] = src[idx];
|
||||
}
|
||||
}
|
||||
|
||||
void launch_copy(float* src, float* dst, int n, hipStream_t stream) {
|
||||
int threads = 256;
|
||||
int blocks = (n + threads - 1) / threads;
|
||||
hipLaunchKernelGGL(copy_kernel, dim3(blocks), dim3(threads), 0, stream, src, dst, n);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
60
mlx/backend/rocm/copy/copy.hpp
Normal file
60
mlx/backend/rocm/copy/copy.hpp
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <cstddef>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
// Copy function declarations
|
||||
void copy_contiguous(
|
||||
const void* src,
|
||||
void* dst,
|
||||
size_t size,
|
||||
hipStream_t stream);
|
||||
|
||||
void copy_general(
|
||||
const void* src,
|
||||
void* dst,
|
||||
const int* src_shape,
|
||||
const size_t* src_strides,
|
||||
const int* dst_shape,
|
||||
const size_t* dst_strides,
|
||||
int ndim,
|
||||
size_t size,
|
||||
size_t dtype_size,
|
||||
hipStream_t stream);
|
||||
|
||||
void copy_general_dynamic(
|
||||
const void* src,
|
||||
void* dst,
|
||||
const int* src_shape,
|
||||
const size_t* src_strides,
|
||||
const int* dst_shape,
|
||||
const size_t* dst_strides,
|
||||
int ndim,
|
||||
size_t size,
|
||||
size_t dtype_size,
|
||||
hipStream_t stream);
|
||||
|
||||
void copy_general_input(
|
||||
const void* src,
|
||||
void* dst,
|
||||
const int* src_shape,
|
||||
const size_t* src_strides,
|
||||
const int* dst_shape,
|
||||
const size_t* dst_strides,
|
||||
int ndim,
|
||||
size_t size,
|
||||
size_t dtype_size,
|
||||
hipStream_t stream);
|
||||
|
||||
// Utility functions for element location calculation
|
||||
__device__ size_t
|
||||
elem_to_loc(size_t elem, const int* shape, const size_t* strides, int ndim);
|
||||
|
||||
__device__ size_t
|
||||
loc_to_elem(size_t loc, const int* shape, const size_t* strides, int ndim);
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
38
mlx/backend/rocm/copy/copy_contiguous.hip
Normal file
38
mlx/backend/rocm/copy/copy_contiguous.hip
Normal file
@@ -0,0 +1,38 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/rocm/copy/copy.hpp"
|
||||
#include "mlx/backend/rocm/kernel_utils.hpp"
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
__global__ void copy_contiguous_kernel(
|
||||
const char* src,
|
||||
char* dst,
|
||||
size_t size) {
|
||||
size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (tid < size) {
|
||||
dst[tid] = src[tid];
|
||||
}
|
||||
}
|
||||
|
||||
void copy_contiguous(
|
||||
const void* src,
|
||||
void* dst,
|
||||
size_t size,
|
||||
hipStream_t stream) {
|
||||
if (size == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int threads_per_block = 256;
|
||||
const int blocks = (size + threads_per_block - 1) / threads_per_block;
|
||||
|
||||
copy_contiguous_kernel<<<blocks, threads_per_block, 0, stream>>>(
|
||||
static_cast<const char*>(src),
|
||||
static_cast<char*>(dst),
|
||||
size);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
130
mlx/backend/rocm/device.cpp
Normal file
130
mlx/backend/rocm/device.cpp
Normal file
@@ -0,0 +1,130 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/rocm/device.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "mlx/backend/rocm/worker.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace rocm {
|
||||
|
||||
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
|
||||
|
||||
void DeviceStream::synchronize() {
|
||||
CHECK_HIP_ERROR(hipStreamSynchronize(stream_));
|
||||
}
|
||||
|
||||
hipStream_t DeviceStream::schedule_hip_stream() {
|
||||
// TODO: Return a stream that maximizes parallelism.
|
||||
return stream_;
|
||||
}
|
||||
|
||||
hipStream_t DeviceStream::last_hip_stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
CommandEncoder& DeviceStream::get_encoder() {
|
||||
if (!encoder_) {
|
||||
encoder_ = std::make_unique<CommandEncoder>(*this);
|
||||
}
|
||||
return *encoder_;
|
||||
}
|
||||
|
||||
Device::Device(int device) : device_(device) {
|
||||
CHECK_HIP_ERROR(hipDeviceGetAttribute(
|
||||
&compute_capability_major_,
|
||||
hipDeviceAttributeComputeCapabilityMajor,
|
||||
device_));
|
||||
CHECK_HIP_ERROR(hipDeviceGetAttribute(
|
||||
&compute_capability_minor_,
|
||||
hipDeviceAttributeComputeCapabilityMinor,
|
||||
device_));
|
||||
|
||||
// Validate device requirements
|
||||
int attr = 0;
|
||||
CHECK_HIP_ERROR(hipDeviceGetAttribute(
|
||||
&attr, hipDeviceAttributeConcurrentManagedAccess, device_));
|
||||
if (attr != 1) {
|
||||
// ROCm unified memory might not be available on all devices
|
||||
// This is a warning rather than an error for ROCm
|
||||
// TODO: Add proper ROCm unified memory checking
|
||||
}
|
||||
|
||||
// Create rocBLAS handle
|
||||
make_current();
|
||||
CHECK_HIP_ERROR(
|
||||
static_cast<hipError_t>(rocblas_create_handle(&rocblas_handle_)));
|
||||
}
|
||||
|
||||
Device::~Device() {
|
||||
if (rocblas_handle_) {
|
||||
rocblas_destroy_handle(rocblas_handle_);
|
||||
}
|
||||
}
|
||||
|
||||
void Device::make_current() {
|
||||
// Cache current device to reduce HIP API calls
|
||||
static int current = 0;
|
||||
if (current != device_) {
|
||||
CHECK_HIP_ERROR(hipSetDevice(device_));
|
||||
current = device_;
|
||||
}
|
||||
}
|
||||
|
||||
DeviceStream& Device::get_stream(Stream s) {
|
||||
auto it = streams_.find(s.index);
|
||||
if (it == streams_.end()) {
|
||||
it = streams_.try_emplace(s.index, *this).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(DeviceStream& s)
|
||||
: device_(s.device()), stream_(s) {}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
|
||||
void CommandEncoder::end_encoding() {
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
|
||||
// There is no kernel running, run completion handlers immediately.
|
||||
if (!has_gpu_work_) {
|
||||
worker_.consume_in_this_thread();
|
||||
return;
|
||||
}
|
||||
has_gpu_work_ = false;
|
||||
|
||||
// Commit tasks
|
||||
commit();
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
worker_.commit(stream_.last_hip_stream());
|
||||
}
|
||||
|
||||
Device& device(mlx::core::Device device) {
|
||||
static std::unordered_map<int, Device> devices;
|
||||
auto it = devices.find(device.index);
|
||||
if (it == devices.end()) {
|
||||
it = devices.try_emplace(device.index, device.index).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
DeviceStream& get_stream(Stream s) {
|
||||
return device(s.device).get_stream(s);
|
||||
}
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s) {
|
||||
return get_stream(s).get_encoder();
|
||||
}
|
||||
|
||||
} // namespace rocm
|
||||
|
||||
} // namespace mlx::core
|
||||
146
mlx/backend/rocm/device.h
Normal file
146
mlx/backend/rocm/device.h
Normal file
@@ -0,0 +1,146 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/rocm/utils.h"
|
||||
#include "mlx/backend/rocm/worker.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <rocblas/rocblas.h>
|
||||
|
||||
#include <unordered_map>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace rocm {
|
||||
|
||||
class Device;
|
||||
class CommandEncoder;
|
||||
|
||||
class DeviceStream {
|
||||
public:
|
||||
explicit DeviceStream(Device& device);
|
||||
|
||||
DeviceStream(const DeviceStream&) = delete;
|
||||
DeviceStream& operator=(const DeviceStream&) = delete;
|
||||
|
||||
// Wait until kernels in the stream complete.
|
||||
void synchronize();
|
||||
|
||||
// Return a HIP stream for launching kernels.
|
||||
hipStream_t schedule_hip_stream();
|
||||
|
||||
// Return the last HIP stream used.
|
||||
hipStream_t last_hip_stream();
|
||||
|
||||
CommandEncoder& get_encoder();
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
private:
|
||||
Device& device_;
|
||||
HipStream stream_;
|
||||
std::unique_ptr<CommandEncoder> encoder_;
|
||||
};
|
||||
|
||||
class Device {
|
||||
public:
|
||||
explicit Device(int device);
|
||||
~Device();
|
||||
|
||||
Device(const Device&) = delete;
|
||||
Device& operator=(const Device&) = delete;
|
||||
|
||||
// Make this device the current HIP device, required by some HIP calls.
|
||||
void make_current();
|
||||
|
||||
DeviceStream& get_stream(Stream s);
|
||||
|
||||
int hip_device() const {
|
||||
return device_;
|
||||
}
|
||||
int compute_capability_major() const {
|
||||
return compute_capability_major_;
|
||||
}
|
||||
int compute_capability_minor() const {
|
||||
return compute_capability_minor_;
|
||||
}
|
||||
rocblas_handle rocblas_handle() const {
|
||||
return rocblas_handle_;
|
||||
}
|
||||
|
||||
private:
|
||||
int device_;
|
||||
int compute_capability_major_;
|
||||
int compute_capability_minor_;
|
||||
rocblas_handle rocblas_handle_;
|
||||
std::unordered_map<int, DeviceStream> streams_;
|
||||
};
|
||||
|
||||
class CommandEncoder {
|
||||
public:
|
||||
explicit CommandEncoder(DeviceStream& stream);
|
||||
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
|
||||
void set_input_array(const array& arr) {}
|
||||
void set_output_array(const array& arr) {}
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void end_encoding();
|
||||
void commit();
|
||||
|
||||
// Schedule a HIP stream for |fun| to launch kernels, and check error
|
||||
// afterwards.
|
||||
template <typename F>
|
||||
void launch_kernel(F&& fun) {
|
||||
launch_kernel(stream_.schedule_hip_stream(), std::forward<F>(fun));
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void launch_kernel(hipStream_t stream, F&& fun) {
|
||||
device_.make_current();
|
||||
fun(stream);
|
||||
check_hip_error("kernel launch", hipGetLastError());
|
||||
has_gpu_work_ = true;
|
||||
}
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
DeviceStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
|
||||
bool has_gpu_work() const {
|
||||
return has_gpu_work_;
|
||||
}
|
||||
|
||||
private:
|
||||
Device& device_;
|
||||
DeviceStream& stream_;
|
||||
Worker worker_;
|
||||
bool has_gpu_work_{false};
|
||||
std::vector<std::shared_ptr<array::Data>> temporaries_;
|
||||
};
|
||||
|
||||
Device& device(mlx::core::Device device);
|
||||
DeviceStream& get_stream(Stream s);
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
// Utility function to check HIP errors
|
||||
void check_hip_error(const char* msg, hipError_t error);
|
||||
|
||||
} // namespace rocm
|
||||
|
||||
} // namespace mlx::core
|
||||
17
mlx/backend/rocm/device/arange.hpp
Normal file
17
mlx/backend/rocm/device/arange.hpp
Normal file
@@ -0,0 +1,17 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
template <typename T>
|
||||
__global__ void arange_kernel(T* out, T start, T step, size_t size) {
|
||||
size_t tid = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
if (tid < size) {
|
||||
out[tid] = start + static_cast<T>(tid) * step;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
36
mlx/backend/rocm/device/atomic_ops.hpp
Normal file
36
mlx/backend/rocm/device/atomic_ops.hpp
Normal file
@@ -0,0 +1,36 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
// Atomic operations for HIP
|
||||
__device__ inline float atomicAddFloat(float* address, float val) {
|
||||
return atomicAdd(address, val);
|
||||
}
|
||||
|
||||
__device__ inline double atomicAddDouble(double* address, double val) {
|
||||
return atomicAdd(address, val);
|
||||
}
|
||||
|
||||
__device__ inline int atomicAddInt(int* address, int val) {
|
||||
return atomicAdd(address, val);
|
||||
}
|
||||
|
||||
__device__ inline unsigned int atomicAddUInt(
|
||||
unsigned int* address,
|
||||
unsigned int val) {
|
||||
return atomicAdd(address, val);
|
||||
}
|
||||
|
||||
__device__ inline float atomicMaxFloat(float* address, float val) {
|
||||
return atomicMax(address, val);
|
||||
}
|
||||
|
||||
__device__ inline float atomicMinFloat(float* address, float val) {
|
||||
return atomicMin(address, val);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
217
mlx/backend/rocm/device/binary_ops.hpp
Normal file
217
mlx/backend/rocm/device/binary_ops.hpp
Normal file
@@ -0,0 +1,217 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_bfloat16.h>
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_runtime.h>
|
||||
#include <hipcomplex.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
// Arithmetic operations
|
||||
struct Add {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a + b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Subtract {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a - b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Multiply {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a * b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Divide {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a / b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Power {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return powf(a, b);
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
return pow(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct Remainder {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return fmodf(a, b);
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
return fmod(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
// Comparison operations
|
||||
struct Equal {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a == b;
|
||||
}
|
||||
};
|
||||
|
||||
struct NotEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a != b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Greater {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a > b;
|
||||
}
|
||||
};
|
||||
|
||||
struct GreaterEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a >= b;
|
||||
}
|
||||
};
|
||||
|
||||
struct Less {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a < b;
|
||||
}
|
||||
};
|
||||
|
||||
struct LessEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return a <= b;
|
||||
}
|
||||
};
|
||||
|
||||
struct NaNEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T a, T b) {
|
||||
return (isnan(a) && isnan(b)) || (a == b);
|
||||
}
|
||||
};
|
||||
|
||||
// Logic operations
|
||||
struct LogicalAnd {
|
||||
__device__ bool operator()(bool a, bool b) {
|
||||
return a && b;
|
||||
}
|
||||
};
|
||||
|
||||
struct LogicalOr {
|
||||
__device__ bool operator()(bool a, bool b) {
|
||||
return a || b;
|
||||
}
|
||||
};
|
||||
|
||||
// Math operations
|
||||
struct Maximum {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return fmaxf(a, b);
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
return fmax(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct Minimum {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return fminf(a, b);
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
return fmin(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
struct LogAddExp {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
T max_val = fmaxf(a, b);
|
||||
T min_val = fminf(a, b);
|
||||
if (isinf(max_val)) {
|
||||
return max_val;
|
||||
}
|
||||
return max_val + log1pf(expf(min_val - max_val));
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
double max_val = fmax(a, b);
|
||||
double min_val = fmin(a, b);
|
||||
if (isinf(max_val)) {
|
||||
return max_val;
|
||||
}
|
||||
return max_val + log1p(exp(min_val - max_val));
|
||||
}
|
||||
};
|
||||
|
||||
struct ArcTan2 {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return atan2f(a, b);
|
||||
}
|
||||
|
||||
__device__ double operator()(double a, double b) {
|
||||
return atan2(a, b);
|
||||
}
|
||||
};
|
||||
|
||||
// Bitwise operations
|
||||
struct BitwiseAnd {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a & b;
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseOr {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a | b;
|
||||
}
|
||||
};
|
||||
|
||||
struct BitwiseXor {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a ^ b;
|
||||
}
|
||||
};
|
||||
|
||||
struct LeftShift {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a << b;
|
||||
}
|
||||
};
|
||||
|
||||
struct RightShift {
|
||||
template <typename T>
|
||||
__device__ T operator()(T a, T b) {
|
||||
return a >> b;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
21
mlx/backend/rocm/device/cast_op.hpp
Normal file
21
mlx/backend/rocm/device/cast_op.hpp
Normal file
@@ -0,0 +1,21 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
template <typename To, typename From>
|
||||
struct CastOp {
|
||||
__device__ To operator()(From x) const {
|
||||
return static_cast<To>(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename To, typename From>
|
||||
__device__ inline To cast_op(From x) {
|
||||
return static_cast<To>(x);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
14
mlx/backend/rocm/device/config.h
Normal file
14
mlx/backend/rocm/device/config.h
Normal file
@@ -0,0 +1,14 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
// ROCm/HIP specific configuration
|
||||
#define ROCM_MAX_THREADS_PER_BLOCK 1024
|
||||
#define ROCM_WARP_SIZE 64
|
||||
#define ROCM_MAX_BLOCKS_PER_GRID 65535
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
constexpr int kMaxThreadsPerBlock = ROCM_MAX_THREADS_PER_BLOCK;
|
||||
constexpr int kWarpSize = ROCM_WARP_SIZE;
|
||||
constexpr int kMaxBlocksPerGrid = ROCM_MAX_BLOCKS_PER_GRID;
|
||||
} // namespace mlx::core::rocm
|
||||
87
mlx/backend/rocm/device/fp16_math.hpp
Normal file
87
mlx/backend/rocm/device/fp16_math.hpp
Normal file
@@ -0,0 +1,87 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <hip/hip_fp16.h>
|
||||
#include <hip/hip_runtime.h>
|
||||
|
||||
namespace mlx::core::rocm {
|
||||
|
||||
// HIP/ROCm equivalents of CUDA half precision math functions
|
||||
inline __device__ __half2 h2sin(__half2 x) {
|
||||
return __half2{hsin(x.x), hsin(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2cos(__half2 x) {
|
||||
return __half2{hcos(x.x), hcos(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2exp(__half2 x) {
|
||||
return __half2{hexp(x.x), hexp(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2log(__half2 x) {
|
||||
return __half2{hlog(x.x), hlog(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2sqrt(__half2 x) {
|
||||
return __half2{hsqrt(x.x), hsqrt(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2rsqrt(__half2 x) {
|
||||
return __half2{hrsqrt(x.x), hrsqrt(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2ceil(__half2 x) {
|
||||
return __half2{hceil(x.x), hceil(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2floor(__half2 x) {
|
||||
return __half2{hfloor(x.x), hfloor(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2rint(__half2 x) {
|
||||
return __half2{hrint(x.x), hrint(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2trunc(__half2 x) {
|
||||
return __half2{htrunc(x.x), htrunc(x.y)};
|
||||
}
|
||||
|
||||
// Additional math functions for half precision
|
||||
inline __device__ __half habs(__half x) {
|
||||
return __half{fabsf(__half2float(x))};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2abs(__half2 x) {
|
||||
return __half2{habs(x.x), habs(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __half hneg(__half x) {
|
||||
return __half{-__half2float(x)};
|
||||
}
|
||||
|
||||
inline __device__ __half2 h2neg(__half2 x) {
|
||||
return __half2{hneg(x.x), hneg(x.y)};
|
||||
}
|
||||
|
||||
// BFloat16 support functions
|
||||
#ifdef __HIP_BFLOAT16__
|
||||
inline __device__ __hip_bfloat16 habs(__hip_bfloat16 x) {
|
||||
return __hip_bfloat16{fabsf(__bfloat162float(x))};
|
||||
}
|
||||
|
||||
inline __device__ __hip_bfloat162 h2abs(__hip_bfloat162 x) {
|
||||
return __hip_bfloat162{habs(x.x), habs(x.y)};
|
||||
}
|
||||
|
||||
inline __device__ __hip_bfloat16 hneg(__hip_bfloat16 x) {
|
||||
return __hip_bfloat16{-__bfloat162float(x)};
|
||||
}
|
||||
|
||||
inline __device__ __hip_bfloat162 h2neg(__hip_bfloat162 x) {
|
||||
return __hip_bfloat162{hneg(x.x), hneg(x.y)};
|
||||
}
|
||||
#endif
|
||||
|
||||
} // namespace mlx::core::rocm
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user