Compare commits

..

2 Commits

Author SHA1 Message Date
Awni Hannun
5ce655a646 Merge branch 'main' into cuda-sort 2025-06-10 08:17:53 -07:00
Cheng
35401c22db CUDA backend: sort 2025-06-10 01:48:50 +00:00
275 changed files with 3715 additions and 18194 deletions

View File

@@ -7,9 +7,15 @@ parameters:
nightly_build:
type: boolean
default: false
weekly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
linux_release:
type: boolean
default: false
jobs:
build_documentation:
@@ -32,7 +38,7 @@ jobs:
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
pip install . -v
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
@@ -64,9 +70,9 @@ jobs:
git push -f origin gh-pages
linux_build_and_test:
machine:
image: ubuntu-2204:current
resource_class: large
docker:
- image: cimg/python:3.9
steps:
- checkout
- run:
@@ -78,36 +84,37 @@ jobs:
- run:
name: Install dependencies
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
sudo apt-get update
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
uv pip install cmake
uv pip install -e ".[dev]" -v
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
echo "stubs"
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
python -m unittest discover python/tests -v
python3 -m unittest discover python/tests -v
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build CPP only
command: |
source .venv/bin/activate
mkdir -p build && cd build
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
- run:
@@ -132,49 +139,51 @@ jobs:
- run:
name: Install dependencies
command: |
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
brew install openmpi uv
brew install python@3.9
brew install openmpi
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install numpy
pip install torch
pip install tensorflow
pip install unittest-xml-reporting
- run:
name: Install Python package
command: |
uv venv --python 3.9
uv pip install \
nanobind==2.4.0 \
cmake \
numpy \
torch \
tensorflow \
unittest-xml-reporting
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
uv pip install -e . -v
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
pip install -e . -v
- run:
name: Generate package stubs
command: |
uv pip install typing_extensions
uv run --no-project setup.py generate_stubs
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
source .venv/bin/activate
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
- run:
name: Build example extension
command: |
source .venv/bin/activate
source env/bin/activate
cd examples/extensions
uv pip install -r requirements.txt
uv run --no-project setup.py build_ext --inplace
uv run --no-project python test.py
pip install -r requirements.txt
python setup.py build_ext -j8
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source .venv/bin/activate
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
- run:
name: Run CPP tests
@@ -183,7 +192,7 @@ jobs:
- run:
name: Build small binary
command: |
source .venv/bin/activate
source env/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
@@ -195,60 +204,13 @@ jobs:
- run:
name: Run Python tests with JIT
command: |
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
uv pip install -e .
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
pip install -e . -v
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
uv run --no-project python -m xmlrunner discover \
-v python/tests \
-o test-results/gpu_jit
cuda_build_and_test:
parameters:
image_date:
type: string
default: "2023.11.1"
machine:
image: "linux-cuda-12:<< parameters.image_date >>"
resource_class: gpu.nvidia.small.gen2
steps:
- checkout
- restore_cache:
keys:
- cuda-<< parameters.image_date >>-{{ arch }}-
- run:
name: Install dependencies
command: |
sudo apt-get update
sudo apt-get install libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
rm -rf ccache-4.11.3-linux-x86_64
curl -LsSf https://astral.sh/uv/install.sh | sh
- run:
name: Install Python package
command: |
uv venv
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
uv pip install -e ".[dev]" -v
- run:
name: Run Python tests
command: |
source .venv/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
- run:
name: CCache report
command: |
ccache --show-stats
ccache --zero-stats
ccache --max-size 400MB
ccache --cleanup
- save_cache:
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
paths:
- /home/circleci/.cache/ccache
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
build_release:
parameters:
@@ -290,29 +252,21 @@ jobs:
command: |
source env/bin/activate
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
pip install . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
python setup.py generate_stubs
- run:
name: Build Python package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
python -m build -w
- when:
condition: << parameters.build_env >>
steps:
@@ -329,100 +283,52 @@ jobs:
python_version:
type: string
default: "3.9"
build_env:
extra_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
default: "DEV_RELEASE=1"
docker:
- image: ubuntu:20.04
steps:
- checkout
- run:
name: Build wheel
command: |
PYTHON=python<< parameters.python_version >>
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
sudo apt-get update
TZ=Etc/UTC sudo apt-get -y install tzdata
sudo add-apt-repository -y ppa:deadsnakes/ppa
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get update
apt-get upgrade -y
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
apt-get install -y apt-utils
apt-get install -y software-properties-common
add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get install -y build-essential git
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.4.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.build_env >> pip install ".[dev]" -v
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
pip install . -v
pip install typing_extensions
python setup.py generate_stubs
python setup.py clean --all
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
bash python/scripts/repair_linux.sh
- when:
condition:
equal: ["3.9", << parameters.python_version >>]
steps:
- run:
name: Build common package
command: |
source env/bin/activate
python setup.py clean --all
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
python -m build -w
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload packages
command: |
source env/bin/activate
twine upload wheelhouse/*.whl
- store_artifacts:
path: wheelhouse/
build_cuda_release:
parameters:
build_env:
type: string
default: ""
machine:
image: ubuntu-2204:current
resource_class: large
steps:
- checkout
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- run:
name: Build wheel
name: Upload package
command: |
export DEBIAN_FRONTEND=noninteractive
export NEEDRESTART_MODE=a
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
sudo dpkg -i cuda-keyring_1.1-1_all.deb
sudo apt-get update
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
sudo apt-get install zip
pip install auditwheel
pip install patchelf
pip install build
pip install twine
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
python -m build -w
bash python/scripts/repair_cuda.sh
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
twine upload wheelhouse/*.whl
source env/bin/activate
twine upload wheelhouse/*
- store_artifacts:
path: wheelhouse/
@@ -434,6 +340,7 @@ workflows:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
@@ -441,16 +348,13 @@ workflows:
parameters:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test
- cuda_build_and_test:
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
- build_documentation
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
@@ -533,25 +437,6 @@ workflows:
branches:
ignore: /.*/
upload-docs: true
- build_linux_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["PYPI_RELEASE=1"]
- build_cuda_release:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
matrix:
parameters:
build_env: ["PYPI_RELEASE=1"]
prb:
when:
@@ -570,11 +455,6 @@ workflows:
macosx_deployment_target: ["13.5", "14.0"]
- linux_build_and_test:
requires: [ hold ]
- cuda_build_and_test:
requires: [ hold ]
matrix:
parameters:
image_date: ["2023.11.1", "2025.05.1"]
nightly_build:
when:
and:
@@ -633,17 +513,11 @@ workflows:
- macosx_deployment_target: "15.0"
xcode_version: "15.0.0"
python_version: "3.13"
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
- build_cuda_release
build_dev_release:
weekly_build:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
- << pipeline.parameters.weekly_build >>
jobs:
- build_release:
matrix:
@@ -713,12 +587,14 @@ workflows:
xcode_version: "15.0.0"
python_version: "3.13"
build_env: "DEV_RELEASE=1"
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.linux_release >>
jobs:
- build_linux_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
build_env: ["DEV_RELEASE=1"]
- build_cuda_release:
matrix:
parameters:
build_env: ["DEV_RELEASE=1"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -19,7 +19,6 @@ MLX was developed with contributions from the following individuals:
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -41,9 +41,7 @@ option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
# --------------------- Processor tests -------------------------
message(
@@ -66,17 +64,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
message(WARNING "Building for x86_64 arch is not officially supported.")
endif()
endif()
else()
set(MLX_BUILD_METAL OFF)
endif()
if(MLX_USE_CCACHE)
find_program(CCACHE_PROGRAM ccache)
if(CCACHE_PROGRAM)
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
endif()
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
# ----------------------------- Lib -----------------------------
@@ -243,16 +234,12 @@ target_include_directories(
# Do not add mlx_EXPORTS define for shared library.
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
if(USE_SYSTEM_FMT)
find_package(fmt REQUIRED)
else()
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
endif()
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
if(MLX_BUILD_PYTHON_BINDINGS)

View File

@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
@@ -68,23 +68,18 @@ in the documentation.
## Installation
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
macOS, run:
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
```bash
**With `pip`**:
```
pip install mlx
```
To install the CUDA backend on Linux, run:
**With `conda`**:
```bash
pip install mlx[cuda]
```
To install a CPU-only Linux package, run:
```bash
pip install mlx[cpu]
conda install -c conda-forge mlx
```
Checkout the

View File

@@ -1,6 +1,5 @@
// Copyright © 2023 Apple Inc.
#include <cstring>
#include <iostream>
#include <sstream>

View File

@@ -192,22 +192,6 @@ void time_reductions() {
auto argmin_along_1 = [&a]() { return mx::argmin(a, 1, false); };
TIME(argmin_along_1);
auto indices = mx::array({1});
auto updates = mx::reshape(mx::array({NAN}), {1, 1, 1});
std::vector<int> axes{0};
auto b = scatter(a, {indices}, updates, axes);
mx::eval(b);
auto max_along_0 = [&b]() { return mx::max(b, 0, false); };
TIME(max_along_0);
auto max_along_1 = [&b]() { return mx::max(b, 1, false); };
TIME(max_along_1);
auto min_along_0 = [&b]() { return mx::min(b, 0, false); };
TIME(min_along_0);
auto min_along_1 = [&b]() { return mx::min(b, 1, false); };
TIME(min_along_1);
}
void time_gather_scatter() {

View File

@@ -5,7 +5,6 @@ import os
import time
import torch
import torch.cuda
import torch.mps
@@ -45,10 +44,8 @@ def bench(f, *args):
def sync_if_needed(x):
if x.device == torch.device("mps"):
if x.device != torch.device("cpu"):
torch.mps.synchronize()
elif x.device == torch.device("cuda"):
torch.cuda.synchronize()
@torch.no_grad()
@@ -102,14 +99,6 @@ def reduction(op, axis, x):
sync_if_needed(x)
@torch.no_grad()
def sum_and_add(axis, x, y):
z = x.sum(axis=axis, keepdims=True)
for i in range(50):
z = (z + y).sum(axis=axis, keepdims=True)
sync_if_needed(x)
@torch.no_grad()
def softmax(axis, x):
ys = []
@@ -351,11 +340,7 @@ if __name__ == "__main__":
args.axis.pop(0)
torch.set_num_threads(1)
device = "mps"
if torch.cuda.is_available():
device = "cuda"
if args.cpu:
device = "cpu"
device = "cpu" if args.cpu else "mps"
types = args.dtype
if not types:
@@ -475,8 +460,5 @@ if __name__ == "__main__":
elif args.benchmark == "selu":
print(bench(selu, x))
elif args.benchmark == "sum_and_add":
print(bench(sum_and_add, axis, *xs))
else:
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")

View File

@@ -1,107 +0,0 @@
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_2D(strides, padding, groups)
f_pt = make_pt_conv_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
dtype = "float32"
shapes = (
(4, 32, 32, 21, 3, 3, 128),
(4, 32, 32, 21, 3, 3, 37),
(4, 32, 32, 370, 3, 3, 370),
(4, 32, 32, 370, 7, 7, 128),
(2, 320, 640, 21, 7, 7, 21),
)
for N, H, W, C, kh, kw, O in shapes:
time_mlx, time_torch = bench_shape(
N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -51,20 +51,6 @@ def time_maximum():
time_fn(mx.maximum, a, b)
def time_max():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.max, a, 0)
def time_min():
a = mx.random.uniform(shape=(32, 1024, 1024))
a[1, 1] = mx.nan
mx.eval(a)
time_fn(mx.min, a, 0)
def time_negative():
a = mx.random.uniform(shape=(10000, 1000))
mx.eval(a)
@@ -122,8 +108,6 @@ if __name__ == "__main__":
time_add()
time_matmul()
time_min()
time_max()
time_maximum()
time_exp()
time_negative()

View File

@@ -138,13 +138,13 @@ more concrete:
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<std::vector<array>, std::vector<int>> vmap(
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
/** The name of primitive. */
const char* name() const override {
return "Axpby";
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
}
/** Equivalence check **/
@@ -394,14 +394,14 @@ below.
out.set_data(allocator::malloc(out.nbytes()));
// Resolve name of kernel
std::stream kname;
kname = "axpby_general_" + type_to_name(out);
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
auto lib = d.get_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname, lib);
auto kernel = d.get_kernel(kname.str(), lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -13,7 +13,7 @@ silicon computer is
pip install mlx
To install from PyPI your system must meet the following requirements:
To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.9
@@ -23,39 +23,12 @@ To install from PyPI your system must meet the following requirements:
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
CUDA
^^^^
MLX has a CUDA backend which you can install with:
MLX is also available on conda-forge. To install MLX with conda do:
.. code-block:: shell
pip install mlx[cuda]
To install the CUDA package from PyPi your system must meet the following
requirements:
- Nvidia architecture >= SM 7.0 (Volta)
- Nvidia driver >= 550.54.14
- CUDA toolkit >= 12.0
- Linux distribution with glibc >= 2.35
- Python >= 3.9
CPU-only (Linux)
^^^^^^^^^^^^^^^^
For a CPU-only version of MLX that runs on Linux use:
.. code-block:: shell
pip install mlx[cpu]
To install the CPU-only package from PyPi your system must meet the following
requirements:
- Linux distribution with glibc >= 2.35
- Python >= 3.9
conda install conda-forge::mlx
Troubleshooting
@@ -92,8 +65,6 @@ Build Requirements
Python API
^^^^^^^^^^
.. _python install:
To build and install the MLX python library from source, first, clone MLX from
`its GitHub repo <https://github.com/ml-explore/mlx>`_:
@@ -105,20 +76,20 @@ Then simply build and install MLX using pip:
.. code-block:: shell
pip install .
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
pip install -e ".[dev]"
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
python setup.py build_ext --inplace
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
Run the tests with:
@@ -136,8 +107,6 @@ IDE:
C++ API
^^^^^^^
.. _cpp install:
Currently, MLX must be built and installed from source.
Similarly to the python library, to build and install the MLX C++ library start
@@ -216,7 +185,6 @@ should point to the path to the built metal library.
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
@@ -245,50 +213,6 @@ be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists across reboots.
Linux
^^^^^
To build from source on Linux (CPU only), install the BLAS and LAPACK headers.
For example on Ubuntu, run the following:
.. code-block:: shell
apt-get update -y
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
From here follow the instructions to install either the :ref:`Python <python
install>` or :ref:`C++ <cpp install>` APIs.
CUDA
^^^^
To build from source on Linux with CUDA, install the BLAS and LAPACK headers
and the CUDA toolkit. For example on Ubuntu, run the following:
.. code-block:: shell
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
dpkg -i cuda-keyring_1.1-1_all.deb
apt-get update -y
apt-get -y install cuda-toolkit-12-9
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
When building either the Python or C++ APIs make sure to pass the cmake flag
``MLX_BUILD_CUDA=ON``. For example, to build the Python API run:
.. code-block:: shell
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON" pip install -e ".[dev]"
To build the C++ package run:
.. code-block:: shell
mkdir -p build && cd build
cmake .. -DMLX_BUILD_CUDA=ON && make -j
Troubleshooting
^^^^^^^^^^^^^^^

View File

@@ -19,4 +19,3 @@ Common Optimizers
Adamax
Lion
MultiOptimizer
Muon

View File

@@ -107,16 +107,6 @@ same array:
>>> a
array([1, 2, 0], dtype=int32)
Note, unlike NumPy, updates to the same location are nondeterministic:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> a[[0, 0]] = mx.array([4, 5])
The first element of ``a`` could be ``4`` or ``5``.
Transformations of functions which use in-place updates are allowed and work as
expected. For example:

View File

@@ -1,6 +1,5 @@
// Copyright © 2023-2025 Apple Inc.
#include <dlfcn.h>
#include <iostream>
#include <sstream>
@@ -17,19 +16,6 @@
namespace my_ext {
// A helper function to find the location of the current binary on disk.
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
std::string current_binary_dir() {
static std::string binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path().string();
}();
return binary_dir;
}
///////////////////////////////////////////////////////////////////////////////
// Operation Implementation
///////////////////////////////////////////////////////////////////////////////
@@ -181,15 +167,16 @@ void Axpby::eval_gpu(
}
// Resolve name of kernel (corresponds to axpby.metal)
std::string kname = "axpby_";
kname += (contiguous_kernel ? "contiguous_" : "general_");
kname += type_to_name(out);
std::ostringstream kname;
kname << "axpby_";
kname << (contiguous_kernel ? "contiguous_" : "general_");
kname << type_to_name(out);
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
auto lib = d.get_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname, lib);
auto kernel = d.get_kernel(kname.str(), lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);

View File

@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
const std::vector<mx::array>& inputs,
const std::vector<int>& axes) override;
/** The name of primitive. */
const char* name() const override {
return "Axpby";
/** Print the primitive. */
void print(std::ostream& os) override {
os << "Axpby";
}
/** Equivalence check **/

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.25
mlx>=0.21.0
nanobind==2.4.0
nanobind==2.2.0

View File

@@ -3,10 +3,8 @@ from mlx_sample_extensions import axpby
a = mx.ones((3, 4))
b = mx.ones((3, 4))
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
print(f"c shape: {c_cpu.shape}")
print(f"c dtype: {c_cpu.dtype}")
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")

View File

@@ -55,9 +55,6 @@ endif()
if(MLX_BUILD_CUDA)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda)
else()
target_sources(mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/cuda/no_cuda.cpp)
endif()
if(MLX_BUILD_METAL OR MLX_BUILD_CUDA)

View File

@@ -10,7 +10,6 @@
#include "mlx/allocator.h"
#include "mlx/dtype.h"
#include "mlx/event.h"
#include "mlx/small_vector.h"
namespace mlx::core {
@@ -19,8 +18,8 @@ class Primitive;
using Deleter = std::function<void(allocator::Buffer)>;
using ShapeElem = int32_t;
using Shape = SmallVector<ShapeElem>;
using Strides = SmallVector<int64_t>;
using Shape = std::vector<ShapeElem>;
using Strides = std::vector<int64_t>;
class array {
/* An array is really a node in a graph. It contains a shared ArrayDesc

View File

@@ -14,8 +14,6 @@ void print_constant(std::ostream& os, const array& x) {
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case float64:
return print_float_constant<double>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
@@ -52,8 +50,6 @@ std::string get_type_string(Dtype d) {
return "float16_t";
case bfloat16:
return "bfloat16_t";
case float64:
return "double";
case complex64:
return "complex64_t";
case bool_:

View File

@@ -18,12 +18,8 @@ std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
if constexpr (std::is_same_v<T, double>) {
os << std::setprecision(std::numeric_limits<double>::digits10 + 1);
} else {
os << std::setprecision(std::numeric_limits<float>::digits10 + 1);
}
os << x.item<T>() << std::setprecision(old_precision);
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>

View File

@@ -12,11 +12,16 @@ namespace mlx::core {
inline std::tuple<Shape, Strides, Strides> collapse_batches(
const array& a,
const array& b) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}};
// Get and check the shape for the batched dims
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
if (A_bshape != B_bshape) {
std::ostringstream msg;
msg << "[matmul] Got matrices with incorrectly broadcasted shapes: " << "A "
<< a.shape() << ", B " << b.shape() << ".";
throw std::runtime_error(msg.str());
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
@@ -37,11 +42,17 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
inline std::tuple<Shape, Strides, Strides, Strides>
collapse_batches(const array& a, const array& b, const array& c) {
if (a.ndim() == 2) {
return {{1}, {0}, {0}, {0}};
// Get and check the shape for the batched dims
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Shape B_bshape{b.shape().begin(), b.shape().end() - 2};
Shape C_bshape{c.shape().begin(), c.shape().end() - 2};
if (A_bshape != B_bshape || A_bshape != C_bshape) {
std::ostringstream msg;
msg << "[addmm] Got matrices with incorrectly broadcasted shapes: " << "A "
<< a.shape() << ", B " << b.shape() << ", B " << c.shape() << ".";
throw std::runtime_error(msg.str());
}
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
Strides A_bstride{a.strides().begin(), a.strides().end() - 2};
Strides B_bstride{b.strides().begin(), b.strides().end() - 2};
Strides C_bstride{c.strides().begin(), c.strides().end() - 2};

View File

@@ -5,9 +5,11 @@
namespace mlx::core {
std::pair<Shape, Strides> shapes_without_reduction_axes(
Shape shape,
Strides strides,
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
shape.erase(shape.begin() + a);
@@ -17,15 +19,6 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
return std::make_pair(shape, strides);
}
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
auto shape = x.shape();
auto strides = x.strides();
return shapes_without_reduction_axes(
std::move(shape), std::move(strides), axes);
}
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// The data is all there and we are reducing over everything
if (x.size() == x.data_size() && axes.size() == x.ndim() &&

View File

@@ -51,9 +51,5 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
std::pair<Shape, Strides> shapes_without_reduction_axes(
Shape shape,
Strides strides,
const std::vector<int>& axes);
} // namespace mlx::core

View File

@@ -1,20 +1,14 @@
// Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
std::filesystem::path current_binary_dir() {
static std::filesystem::path binary_dir = []() {
Dl_info info;
if (!dladdr(reinterpret_cast<void*>(&current_binary_dir), &info)) {
throw std::runtime_error("Unable to get current binary dir.");
}
return std::filesystem::path(info.dli_fname).parent_path();
}();
return binary_dir;
std::string get_primitive_string(Primitive* primitive) {
std::ostringstream op_t;
primitive->print(op_t);
return op_t.str();
}
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
@@ -205,54 +199,14 @@ Dims get_2d_grid_dims_common(
}
}
}
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX || divisor > 1) {
throw std::runtime_error("Unable to safely factor shape.");
}
if (grid_y > grid_x) {
std::swap(grid_x, grid_y);
}
if (divisor > 1) {
grid_x = ((grid_x + divisor - 1) / divisor) * divisor;
}
return std::make_tuple(
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
}
std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
auto [bx, by, bz] = get_block_dims_common(dim0, dim1, dim2);
auto gx = (dim0 + bx - 1) / bx;
auto gy = (dim1 + by - 1) / by;
auto gz = (dim2 + bz - 1) / bz;
return std::make_pair(
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
}
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
int ndim = x.ndim();
if (axis1 < 0) {
axis1 += ndim;
}
if (axis2 < 0) {
axis2 += ndim;
}
auto shape = x.shape();
std::swap(shape[axis1], shape[axis2]);
auto strides = x.strides();
std::swap(strides[axis1], strides[axis2]);
auto [data_size, row_contiguous, col_contiguous] =
check_contiguity(shape, strides);
bool contiguous = data_size == x.data_size();
array out(std::move(shape), x.dtype(), nullptr, {});
out.copy_shared_buffer(
x,
std::move(strides),
{contiguous, row_contiguous, col_contiguous},
x.data_size());
return out;
}
} // namespace mlx::core

View File

@@ -2,7 +2,6 @@
#pragma once
#include <filesystem>
#include <tuple>
#include <vector>
@@ -10,8 +9,7 @@
namespace mlx::core {
// Return the directory that contains current shared library.
std::filesystem::path current_binary_dir();
std::string get_primitive_string(Primitive* primitive);
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
@@ -97,9 +95,6 @@ Dims get_2d_grid_dims_common(
const Strides& strides,
size_t divisor);
// Get both the block and a grid of blocks that covers dim0, dim1 and dim2.
std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2);
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
@@ -196,11 +191,8 @@ void shared_buffer_reshape(
const Strides& out_strides,
array& out);
// Like the swapaxes op but safe to call in eval_gpu.
array swapaxes_in_eval(const array& x, int axis1, int axis2);
template <typename T>
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
vec.erase(std::next(vec.begin(), index));
return vec;
}

View File

@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
// The decomposition is computed in place, so just copy the input to the
// output.
copy_cpu(
copy(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -231,7 +231,7 @@ inline void build_kernel(
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
os << x.primitive().name();
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
@@ -288,14 +288,6 @@ void Compiled::eval_cpu(
auto [contiguous, shape, strides] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Force allocating shape/strides on heap so we can take their data() first
// and then std::move them.
// TODO: Refactor code to avoid heap allocation.
shape.grow();
for (auto& s : strides) {
s.grow();
}
// Collect function input arguments.
std::vector<void*> args;
int strides_index = 1;

View File

@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH, wH * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
wt.size(),
0);
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
copy(wt_transpose, gemm_wt, CopyType::General, stream);
temps.push_back(gemm_wt);
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
// Fill with zeros
std::vector<array> temps;
temps.push_back(array(0, conv_dtype));
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
temps.push_back(in_padded_slice);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
// Make strided view
Shape strided_shape = {N, oH, oW, wH, wW, C};
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
// Materialize strided view
Shape strided_reshape = {N * oH * oW, wH * wW * C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
// Fill with zeros
std::vector<array> temps = {array(0, conv_dtype)};
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
copy(temps.back(), in_padded, CopyType::Scalar, stream);
// Pick input slice from padded
size_t data_offset = 0;
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
temps.push_back(in_padded_slice);
// Make strided view
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
}
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
copy(in_strided_view, in_strided, CopyType::General, stream);
temps.push_back(in_strided);
// Check wt dtype and prepare
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy_cpu(wt, gemm_wt, ctype, stream);
copy(wt, gemm_wt, ctype, stream);
temps.push_back(gemm_wt);
}
if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
temps.push_back(gemm_wt_);
// Calculate the total size of the spatial dimensions
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
// Copy results if needed
if (out.dtype() != float32) {
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
copy_inplace(gemm_out, out, CopyType::Vector, stream);
}
encoder.add_temporaries(std::move(temps));
}

View File

@@ -295,11 +295,7 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream) {
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
auto& encoder = cpu::get_command_encoder(stream);
encoder.set_input_array(src);
encoder.set_output_array(dst);
@@ -309,7 +305,7 @@ void copy_cpu_inplace(
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
}
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
bool donated = set_copy_output_data(src, dst, ctype);
if (donated && src.dtype() == dst.dtype()) {
// If the output has the same type as the input then there is nothing to
@@ -319,10 +315,10 @@ void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
copy_cpu_inplace(src, dst, ctype, stream);
copy_inplace(src, dst, ctype, stream);
}
void copy_cpu_inplace(
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -377,10 +373,4 @@ void copy_cpu_inplace(
});
}
array contiguous_copy_cpu(const array& arr, Stream stream) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::General, stream);
return arr_copy;
}
} // namespace mlx::core

View File

@@ -10,14 +10,10 @@
namespace mlx::core {
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
const array& src,
array& dst,
CopyType ctype,
Stream stream);
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
void copy_cpu_inplace(
void copy_inplace(
const array& src,
array& dst,
const Shape& data_shape,
@@ -30,7 +26,4 @@ void copy_cpu_inplace(
const std::optional<array>& dynamic_i_offset = std::nullopt,
const std::optional<array>& dynamic_o_offset = std::nullopt);
// Return a contiguous array with same shape that copies the data of |arr|.
array contiguous_copy_cpu(const array& arr, Stream stream);
} // namespace mlx::core

View File

@@ -13,7 +13,9 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
if (arr.flags().row_contiguous) {
return {arr, false};
} else {
return {contiguous_copy_cpu(arr, stream), true};
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, stream);
return {arr_copy, true};
}
};
@@ -32,7 +34,8 @@ void AllReduce::eval_cpu(
}
return in;
} else {
array arr_copy = contiguous_copy_cpu(in, s);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, s);
out.copy_shared_buffer(arr_copy);
return arr_copy;
}

View File

@@ -135,7 +135,7 @@ void Eig::eval_cpu(
: array(a.shape(), complex64, nullptr, {});
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
copy_cpu(
copy(
a,
a_copy,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
values.set_data(allocator::malloc(values.nbytes()));
copy_cpu(
copy(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.flags().row_contiguous && in.is_donatable()) {
out.copy_shared_buffer(in);
} else {
copy_cpu(
copy(
in,
out,
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(src, out, ctype, stream());
copy(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
std::vector<array> inds;
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
// Copy src into out (copy allocates memory for out)
auto ctype =
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(src, out, ctype, stream());
copy(src, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_input_array(idx);

View File

@@ -115,7 +115,7 @@ void inverse_impl(
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
// The inverse is computed in place, so just copy the input to the output.
copy_cpu(
copy(
a,
inv,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -2,7 +2,6 @@
#include "mlx/backend/cpu/jit_compiler.h"
#include <algorithm>
#include <sstream>
#include <vector>

View File

@@ -87,7 +87,8 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
encoder.add_temporary(x_copy);
return x_copy;
}

View File

@@ -31,7 +31,7 @@ void luf_impl(
strides[ndim - 1] = M;
strides[ndim - 2] = 1;
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
copy_cpu_inplace(
copy_inplace(
a,
lu,
a.shape(),

View File

@@ -6,7 +6,6 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/backend/cpu/gemm.h"
#include "mlx/backend/cpu/lapack.h"
#include "mlx/primitives.h"
@@ -53,58 +52,6 @@ inline void mask_matrix(
}
}
template <typename T>
inline void segmented_mm(
const T* a,
const T* b,
const uint32_t* segments,
T* out,
bool a_transposed,
bool b_transposed,
size_t lda,
size_t ldb,
const Shape& a_shape,
const Strides& a_strides,
const Shape& b_shape,
const Strides& b_strides,
size_t num_segments,
const Shape& segments_shape,
const Strides& segments_strides) {
int ndim = a_shape.size();
Shape a_copy = a_shape;
Shape b_copy = b_shape;
int32_t M = a_copy[ndim - 2];
int32_t N = b_copy[ndim - 1];
for (int i = 0; i < num_segments; i++) {
uint32_t k_start =
segments[elem_to_loc(2 * i, segments_shape, segments_strides)];
uint32_t k_end =
segments[elem_to_loc(2 * i + 1, segments_shape, segments_strides)];
if (k_end <= k_start) {
std::fill_n(out + i * M * N, M * N, T(0));
continue;
}
a_copy[ndim - 1] = k_end - k_start;
b_copy[ndim - 2] = k_end - k_start;
matmul<T>(
a + k_start * a_strides[ndim - 1],
b + k_start * b_strides[ndim - 2],
out + i * M * N,
a_transposed,
b_transposed,
lda,
ldb,
N,
1.0,
0.0,
1,
a_copy,
a_strides,
b_copy,
b_strides);
}
}
} // namespace
void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -124,20 +71,21 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::Vector, s);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(false, stx, arr_copy, true);
}
return std::make_tuple(false, stx, arr, false);
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
if (do_copy) {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_cpu(arr, arr_copy, CopyType::Vector, s);
copy(arr, arr_copy, CopyType::Vector, s);
return std::make_tuple(true, sty, arr_copy, true);
}
return std::make_tuple(true, sty, arr, false);
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
int64_t stx = arr.shape(-1);
array arr_copy = contiguous_copy_cpu(arr, s);
return std::make_tuple(false, stx, arr_copy, true);
}
};
@@ -385,7 +333,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -489,121 +437,4 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
encoder.add_temporaries(std::move(temps));
}
void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& encoder = cpu::get_command_encoder(stream());
auto check_transpose = [&s, &encoder](const array& x) {
auto stx = x.strides()[x.ndim() - 2];
auto sty = x.strides()[x.ndim() - 1];
if (stx == x.shape(-1) && sty == 1) {
return std::make_tuple(false, stx, x);
} else if (stx == 1 && sty == x.shape(-2)) {
return std::make_tuple(true, sty, x);
} else {
array xc(x.shape(), x.dtype(), nullptr, {});
copy_cpu(x, xc, CopyType::General, s);
encoder.add_temporary(xc);
int64_t stx = x.shape(-1);
return std::make_tuple(false, stx, xc);
}
};
auto [a_transposed, lda, a] = check_transpose(inputs[0]);
auto [b_transposed, ldb, b] = check_transpose(inputs[1]);
auto& segments = inputs[2];
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(segments);
encoder.set_output_array(out);
encoder.dispatch([a = array::unsafe_weak_copy(a),
b = array::unsafe_weak_copy(b),
segments = array::unsafe_weak_copy(segments),
out_ptr = out.data<void>(),
a_transposed = a_transposed,
b_transposed = b_transposed,
lda = lda,
ldb = ldb]() {
switch (a.dtype()) {
case float64:
segmented_mm<double>(
a.data<double>(),
b.data<double>(),
segments.data<uint32_t>(),
static_cast<double*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float32:
segmented_mm<float>(
a.data<float>(),
b.data<float>(),
segments.data<uint32_t>(),
static_cast<float*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case float16:
segmented_mm<float16_t>(
a.data<float16_t>(),
b.data<float16_t>(),
segments.data<uint32_t>(),
static_cast<float16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
case bfloat16:
segmented_mm<bfloat16_t>(
a.data<bfloat16_t>(),
b.data<bfloat16_t>(),
segments.data<uint32_t>(),
static_cast<bfloat16_t*>(out_ptr),
a_transposed,
b_transposed,
lda,
ldb,
a.shape(),
a.strides(),
b.shape(),
b.strides(),
segments.size() / 2,
segments.shape(),
segments.strides());
break;
default:
throw std::invalid_argument(
"Segmented mm supports only real float types.");
}
});
}
} // namespace mlx::core

View File

@@ -81,7 +81,7 @@ void matmul_general(
return std::make_tuple(true, sty, arr);
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, stream);
copy(arr, temps.back(), CopyType::General, stream);
stx = arr.shape(-1);
return std::make_tuple(false, stx, temps.back());
}
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
CopyType ctype = c.data_size() == 1
? CopyType::Scalar
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
copy_cpu(c, out, ctype, stream());
copy(c, out, ctype, stream());
if (inputs[0].shape(-1) == 0) {
return;
}

View File

@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc(out.nbytes()));
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
copy_inplace(in, out, CopyType::General, out.primitive().stream());
} else {
shared_buffer_reshape(in, out_strides, out);
}
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy_cpu(in, out, ctype, stream());
copy(in, out, ctype, stream());
}
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
}
}
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
(allow_col_major_ && in.flags().col_contiguous))) {
out.copy_shared_buffer(in);
} else {
copy_cpu(in, out, CopyType::General, stream());
copy(in, out, CopyType::General, stream());
}
}
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
} else {
ctype = CopyType::General;
}
copy_cpu(in, out, ctype, stream());
copy(in, out, ctype, stream());
}
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy_cpu(val, out, CopyType::Scalar, stream());
copy(val, out, CopyType::Scalar, stream());
// Find offset for start of input values
size_t data_offset = 0;
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
}
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto [in_offset, donated] =
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
auto [out_offset, donated] =
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_);
// Do copy
copy_cpu_inplace(
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
copy_inplace(in_tmp, tmp, CopyType::General, stream());
} else {
copy_cpu_inplace(in, tmp, CopyType::General, stream());
copy_inplace(in, tmp, CopyType::General, stream());
}
auto flags = out.flags();

View File

@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
auto& encoder = cpu::get_command_encoder(stream);
q.set_data(allocator::malloc(q.nbytes()));
r.set_data(allocator::malloc(r.nbytes()));

View File

@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
return arr;
} else {
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
copy_cpu(arr, temps.back(), CopyType::General, s);
copy(arr, temps.back(), CopyType::General, s);
return temps.back();
}
};
@@ -712,7 +712,9 @@ void fast::AffineQuantize::eval_cpu(
if (arr.flags().row_contiguous) {
return std::make_pair(arr, false);
} else {
return std::make_pair(contiguous_copy_cpu(arr, s), true);
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General, s);
return std::make_pair(arr_copy, true);
}
};

View File

@@ -325,15 +325,7 @@ struct MaxReduce {
};
template <int N, typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
T operator()(simd::Simd<T, N> x) {
return simd::max(x);
};
};
@@ -350,15 +342,7 @@ struct MinReduce {
};
template <int N, typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
template <int N, typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(simd::Simd<T, N> x) {
if (simd::any(x != x)) {
return static_cast<T>(NAN);
}
T operator()(simd::Simd<T, N> x) {
return simd::min(x);
};
};
@@ -543,10 +527,10 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<int8_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<int16_t>(in, out, reduce_type_, axes_);
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);

View File

@@ -250,8 +250,10 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
// Ensure contiguity
auto in = inputs[0];
if (!in.flags().row_contiguous) {
in = contiguous_copy_cpu(in, stream());
encoder.add_temporary(in);
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy(in, arr_copy, CopyType::General, stream());
in = arr_copy;
encoder.add_temporary(arr_copy);
}
out.set_data(allocator::malloc(out.nbytes()));

View File

@@ -131,7 +131,8 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
}
return x;
} else {
array x_copy = contiguous_copy_cpu(x, s);
array x_copy(x.shape(), x.dtype(), nullptr, {});
copy(x, x_copy, CopyType::General, s);
out.copy_shared_buffer(x_copy);
return x_copy;
}

View File

@@ -8,7 +8,7 @@
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/encoder.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
@@ -333,24 +333,45 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
int axis = axis_;
if (axis < 0) {
axis += in.ndim();
}
// Copy input to output
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
dispatch_all_types(out.dtype(), [&](auto type_tag) {
sort<MLX_GET_TYPE(type_tag)>(out, axis);
});
});
encoder.dispatch(
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
switch (out.dtype()) {
case bool_:
return sort<bool>(out, axis_);
case uint8:
return sort<uint8_t>(out, axis_);
case uint16:
return sort<uint16_t>(out, axis_);
case uint32:
return sort<uint32_t>(out, axis_);
case uint64:
return sort<uint64_t>(out, axis_);
case int8:
return sort<int8_t>(out, axis_);
case int16:
return sort<int16_t>(out, axis_);
case int32:
return sort<int32_t>(out, axis_);
case int64:
return sort<int64_t>(out, axis_);
case float32:
return sort<float>(out, axis_);
case float64:
return sort<double>(out, axis_);
case float16:
return sort<float16_t>(out, axis_);
case bfloat16:
return sort<bfloat16_t>(out, axis_);
case complex64:
return sort<complex64_t>(out, axis_);
}
});
}
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -405,10 +426,8 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Copy input to output
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
? CopyType::Vector
: CopyType::General;
copy_cpu(in, out, ctype, stream());
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype, stream());
auto& encoder = cpu::get_command_encoder(stream());
encoder.set_output_array(out);

View File

@@ -31,7 +31,7 @@ void svd_impl(
// lapack clobbers the input, so we have to make a copy.
array in(a.shape(), a.dtype(), nullptr, {});
copy_cpu(
copy(
a,
in,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,

View File

@@ -1,118 +1,37 @@
# Filename rules in cuda backend:
#
# * Use .cu/.cuh if code contains device code, and .cpp/.h if not.
# * Device-only code should be put in device/ subdir.
# * Files in device/ subdir should not include files outside.
# * Device-only kernel code should be put in kernels/ subdir.
# * Files in kernels/ subdir should not include files outside.
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_contiguous.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/col_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/init_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
${CMAKE_CURRENT_SOURCE_DIR}/sort.cu
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
# Embed kernel sources in binary for JIT compilation.
file(
GLOB MLX_JIT_SOURCES
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.h"
"${CMAKE_CURRENT_SOURCE_DIR}/device/*.cuh")
string(JOIN ":" MLX_JIT_SOURCES_ARG ${MLX_JIT_SOURCES})
add_custom_command(
OUTPUT gen/cuda_jit_sources.h
COMMAND
${CMAKE_COMMAND} -DMLX_SOURCE_ROOT=${CMAKE_CURRENT_SOURCE_DIR}
-DMLX_JIT_SOURCES=${MLX_JIT_SOURCES_ARG} -P
"${CMAKE_CURRENT_SOURCE_DIR}/bin2h.cmake"
DEPENDS bin2h.cmake ${MLX_JIT_SOURCES})
add_custom_target(cuda_jit_sources DEPENDS gen/cuda_jit_sources.h)
add_dependencies(mlx cuda_jit_sources)
target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
# Enable defining device lambda functions.
target_compile_options(mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
# Enable calling host constexpr functions from device. This is needed because
# the constexpr version of isnan is host only.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--expt-relaxed-constexpr>")
# CUDA 12.8 emits warning #20280-D for copy kernels which is a false positive.
# Explicitly pass this flag to suppress the warning, it is safe to set it to
# true but the warning wouldn't be suppressed.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--static-global-template-stub=false>")
endif()
# Suppress warning when building for compute capability 7 used by V100.
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
# and requires drivers released after CUDA 12.4.
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
target_compile_options(
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
endif()
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
# managed memory.
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
set(MLX_CUDA_ARCHITECTURES "native")
endif()
# Compute capability 7 is required for synchronization between CPU/GPU with
# managed memory. TODO: Add more architectures for potential performance gain.
set(MLX_CUDA_ARCHITECTURES
"70;80"
CACHE STRING "CUDA architectures")
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
"${MLX_CUDA_ARCHITECTURES}")
@@ -141,30 +60,6 @@ target_include_directories(mlx PRIVATE ${CUDAToolkit_INCLUDE_DIRS})
# Use cublasLt.
target_link_libraries(mlx PRIVATE CUDA::cublasLt)
# Use NVRTC and driver APIs.
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
# Use the frontend APIs of cuDNN.
FetchContent_Declare(
cudnn
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
GIT_TAG v1.12.1
GIT_SHALLOW TRUE
EXCLUDE_FROM_ALL)
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
FetchContent_MakeAvailable(cudnn)
target_link_libraries(mlx PRIVATE cudnn_frontend)
# Link with the actual cuDNN libraries.
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
# Suppress nvcc warnings on MLX headers.
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
--diag_suppress=997>)
# Install CCCL headers for JIT.
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)

View File

@@ -2,7 +2,7 @@
#include "mlx/backend/cuda/allocator.h"
#include "mlx/backend/cuda/utils.h"
#include "mlx/utils.h"
#include "mlx/backend/cuda/worker.h"
#include <cuda_runtime.h>
#include <fmt/format.h>
@@ -14,68 +14,14 @@ namespace mlx::core {
namespace cu {
constexpr int page_size = 16384;
// Any allocations smaller than this will try to use the small pool
constexpr int small_block_size = 8;
// The small pool size in bytes. This should be a multiple of the host page
// size and small_block_size.
constexpr int small_pool_size = 4 * page_size;
SmallSizePool::SmallSizePool() {
auto num_blocks = small_pool_size / small_block_size;
buffer_ = new Block[num_blocks];
next_free_ = buffer_;
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
CHECK_CUDA_ERROR(
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
auto curr = next_free_;
for (size_t i = 1; i < num_blocks; ++i) {
curr->next = buffer_ + i;
curr = curr->next;
}
curr->next = nullptr;
}
SmallSizePool::~SmallSizePool() {
CHECK_CUDA_ERROR(cudaFree(data_));
delete[] buffer_;
}
CudaBuffer* SmallSizePool::malloc() {
if (next_free_ == nullptr) {
return nullptr;
}
Block* b = next_free_;
uint64_t i = next_free_ - buffer_;
next_free_ = next_free_->next;
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
b->buf.size = small_block_size;
return &b->buf;
}
void SmallSizePool::free(CudaBuffer* buf) {
auto b = reinterpret_cast<Block*>(buf);
b->next = next_free_;
next_free_ = b;
}
bool SmallSizePool::in_pool(CudaBuffer* buf) {
constexpr int num_blocks = (small_pool_size / small_block_size);
auto b = reinterpret_cast<Block*>(buf);
int64_t block_num = b - buffer_;
return block_num >= 0 && block_num < num_blocks;
}
CudaAllocator::CudaAllocator()
: buffer_cache_(
page_size,
getpagesize(),
[](CudaBuffer* buf) { return buf->size; },
[this](CudaBuffer* buf) { cuda_free(buf); }) {
[this](CudaBuffer* buf) {
cuda_free(buf->data);
delete buf;
}) {
// TODO: Set memory limit for multi-device.
size_t free, total;
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
@@ -85,37 +31,22 @@ CudaAllocator::CudaAllocator()
Buffer CudaAllocator::malloc(size_t size) {
// Find available buffer from cache.
auto orig_size = size;
std::unique_lock lock(mutex_);
if (size <= small_block_size) {
size = 8;
} else if (size < page_size) {
size = next_power_of_2(size);
} else {
size = page_size * ((size + page_size - 1) / page_size);
}
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
// If we have a lot of memory pressure try to reclaim memory from the cache.
int64_t mem_to_free =
get_active_memory() + get_cache_memory() + size - memory_limit_;
if (mem_to_free > 0) {
buffer_cache_.release_cached_buffers(mem_to_free);
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache.
size_t mem_required = get_active_memory() + get_cache_memory() + size;
if (mem_required >= memory_limit_) {
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
}
// Try the scalar pool first
if (size <= small_block_size) {
buf = scalar_pool_.malloc();
}
lock.unlock();
if (!buf) {
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
buf = new CudaBuffer{nullptr, size};
cudaError_t err = cudaMallocManaged(&buf->data, size);
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
throw std::runtime_error(fmt::format(
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
}
lock.lock();
}
@@ -126,6 +57,7 @@ Buffer CudaAllocator::malloc(size_t size) {
if (get_cache_memory() > max_pool_size_) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{buf};
}
@@ -140,7 +72,9 @@ void CudaAllocator::free(Buffer buffer) {
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
cuda_free(buf);
lock.unlock();
cuda_free(buf->data);
delete buf;
}
}
@@ -152,14 +86,28 @@ size_t CudaAllocator::size(Buffer buffer) const {
return buf->size;
}
// This must be called with mutex_ aquired
void CudaAllocator::cuda_free(CudaBuffer* buf) {
if (scalar_pool_.in_pool(buf)) {
scalar_pool_.free(buf);
} else {
cudaFree(buf->data);
delete buf;
void CudaAllocator::register_this_thread() {
std::lock_guard lock(worker_mutex_);
allowed_threads_.insert(std::this_thread::get_id());
}
void CudaAllocator::cuda_free(void* buf) {
// If cuda_free() is called from a unregistered thread, reschedule the call to
// worker.
{
std::lock_guard lock(worker_mutex_);
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
if (!worker_) {
worker_.reset(new Worker);
}
worker_->add_task([this, buf]() { this->cuda_free(buf); });
worker_->end_batch();
worker_->commit();
return;
}
}
cudaFree(buf);
}
size_t CudaAllocator::get_active_memory() const {

View File

@@ -7,10 +7,13 @@
#include <mutex>
#include <set>
#include <thread>
#include <utility>
namespace mlx::core::cu {
class Worker;
using allocator::Buffer;
// Stores cuda-managed unified memory.
@@ -19,35 +22,21 @@ struct CudaBuffer {
size_t size;
};
class SmallSizePool {
private:
union Block {
Block* next;
CudaBuffer buf;
};
Block* buffer_{nullptr};
void* data_{nullptr};
Block* next_free_{nullptr};
public:
SmallSizePool();
~SmallSizePool();
SmallSizePool(const SmallSizePool&) = delete;
SmallSizePool& operator=(const SmallSizePool&) = delete;
CudaBuffer* malloc();
void free(CudaBuffer* buf);
bool in_pool(CudaBuffer* buf);
};
class CudaAllocator : public allocator::Allocator {
public:
Buffer malloc(size_t size) override;
void free(Buffer buffer) override;
size_t size(Buffer buffer) const override;
// Register current thread as safe to free buffers.
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
// that may be waited by gpu stream (for example cpu stream threads), freeing
// buffers there would result in dead lock.
void register_this_thread();
// Call cudaFree in the safe thread.
void cuda_free(void* buf);
size_t get_active_memory() const;
size_t get_peak_memory() const;
void reset_peak_memory();
@@ -58,18 +47,19 @@ class CudaAllocator : public allocator::Allocator {
void clear_cache();
private:
void cuda_free(CudaBuffer* buf);
CudaAllocator();
friend CudaAllocator& allocator();
std::mutex worker_mutex_;
std::unique_ptr<Worker> worker_;
std::set<std::thread::id> allowed_threads_;
std::mutex mutex_;
size_t memory_limit_;
size_t max_pool_size_;
BufferCache<CudaBuffer> buffer_cache_;
size_t active_memory_{0};
size_t peak_memory_{0};
SmallSizePool scalar_pool_;
};
CudaAllocator& allocator();

View File

@@ -1,55 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
namespace mlx::core {
namespace cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace cu
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(stream());
encoder.set_output_array(out);
auto capture = encoder.capture_context();
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(encoder.stream()),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
}
} // namespace mlx::core

View File

@@ -1,188 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
#include <cub/block/block_load.cuh>
#include <cub/block/block_reduce.cuh>
#include <cassert>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename T>
struct IndexValPair {
uint32_t index;
T val;
};
template <typename T>
struct ArgMin {
constexpr __device__ T init() {
return Limits<T>::max();
}
__device__ IndexValPair<T> operator()(
const IndexValPair<T>& best,
const IndexValPair<T>& current) {
if (best.val > current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
for (int i = 0; i < N; i++) {
if (vals[i] < best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename T>
struct ArgMax {
constexpr __device__ T init() {
return Limits<T>::min();
}
__device__ IndexValPair<T> operator()(
const IndexValPair<T>& best,
const IndexValPair<T>& current) {
if (best.val < current.val ||
(best.val == current.val && best.index > current.index)) {
return current;
} else {
return best;
}
}
template <int N>
__device__ IndexValPair<T> reduce_many(
IndexValPair<T> best,
const AlignedVector<T, N>& vals,
uint32_t offset) {
#pragma unroll
for (int i = 0; i < N; i++) {
if (vals[i] > best.val) {
best.val = vals[i];
best.index = offset + i;
}
}
return best;
}
};
template <typename T, typename Op, int BLOCK_DIM, int N_READS = 4>
__global__ void arg_reduce_general(
const T* in,
uint32_t* out,
size_t size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides in_strides,
const __grid_constant__ Strides out_strides,
int32_t ndim,
int64_t axis_stride,
int32_t axis_size) {
auto block = cg::this_thread_block();
int64_t index = cg::this_grid().block_rank();
if (index >= size) {
return;
}
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
in += in_idx;
Op op;
T init = op.init();
IndexValPair<T> best{0, init};
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
auto tid = r * BLOCK_DIM + block.thread_index().x;
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
best = op.reduce_many(best, vals, tid * N_READS);
}
typedef cub::BlockReduce<IndexValPair<T>, BLOCK_DIM> BlockReduceT;
__shared__ typename BlockReduceT::TempStorage temp;
best = BlockReduceT(temp).Reduce(best, op);
if (block.thread_rank() == 0) {
out[out_idx] = best.index;
}
}
} // namespace cu
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgReduce::eval_gpu");
assert(inputs.size() == 1);
auto& in = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
// Prepare the shapes, strides and axis arguments.
Shape shape = remove_index(in.shape(), axis_);
Strides in_strides = remove_index(in.strides(), axis_);
Strides out_strides = out.ndim() == in.ndim()
? remove_index(out.strides(), axis_)
: out.strides();
int64_t axis_stride = in.strides()[axis_];
int32_t axis_size = in.shape()[axis_];
int32_t ndim = shape.size();
// ArgReduce.
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
constexpr uint32_t N_READS = 4;
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
auto kernel =
cu::arg_reduce_general<T, cu::ArgMax<T>, block_dim(), N_READS>;
if (reduce_type_ == ArgReduce::ArgMin) {
kernel = cu::arg_reduce_general<T, cu::ArgMin<T>, block_dim(), N_READS>;
}
encoder.add_kernel_node(
kernel,
num_blocks,
block_dim(),
0,
in.data<T>(),
out.data<uint32_t>(),
out.size(),
const_param(shape),
const_param(in_strides),
const_param(out_strides),
ndim,
axis_stride,
axis_size);
});
});
}
} // namespace mlx::core

View File

@@ -1,150 +0,0 @@
# Based on: https://github.com/sivachandran/cmake-bin2h
#
# Copyright 2020 Sivachandran Paramasivam
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
include(CMakeParseArguments)
# Function to wrap a given string into multiple lines at the given column
# position.
#
# Parameters:
#
# * VARIABLE - The name of the CMake variable holding the string.
# * AT_COLUMN - The column position at which string will be wrapped.
function(WRAP_STRING)
set(oneValueArgs VARIABLE AT_COLUMN)
cmake_parse_arguments(WRAP_STRING "${options}" "${oneValueArgs}" "" ${ARGN})
string(LENGTH ${${WRAP_STRING_VARIABLE}} stringLength)
math(EXPR offset "0")
while(stringLength GREATER 0)
if(stringLength GREATER ${WRAP_STRING_AT_COLUMN})
math(EXPR length "${WRAP_STRING_AT_COLUMN}")
else()
math(EXPR length "${stringLength}")
endif()
string(SUBSTRING ${${WRAP_STRING_VARIABLE}} ${offset} ${length} line)
set(lines "${lines}\n ${line}")
math(EXPR stringLength "${stringLength} - ${length}")
math(EXPR offset "${offset} + ${length}")
endwhile()
set(${WRAP_STRING_VARIABLE}
"${lines}"
PARENT_SCOPE)
endfunction()
# Function to embed contents of a file as byte array in C/C++ header file(.h).
# The header file will contain a byte array and integer variable holding the
# size of the array.
#
# Parameters:
#
# * SOURCE_FILES - The paths of source files whose contents will be embedded in
# the header file.
# * VARIABLE_NAME - The name of the variable for the byte array. The string
# "_SIZE" will be append to this name and will be used a variable name for
# size variable.
# * HEADER_FILE - The path of header file.
# * APPEND - If specified appends to the header file instead of overwriting it
# * HEADER_NAMESPACE - The namespace, where the array should be located in.
# * NULL_TERMINATE - If specified a null byte(zero) will be append to the byte
# array.
#
# Usage:
#
# bin2h(SOURCE_FILE "Logo.png" HEADER_FILE "Logo.h" VARIABLE_NAME "LOGO_PNG")
function(BIN2H)
set(options APPEND NULL_TERMINATE)
set(oneValueArgs VARIABLE_NAME HEADER_FILE HEADER_NAMESPACE)
set(multiValueArgs SOURCE_FILES)
cmake_parse_arguments(BIN2H "${options}" "${oneValueArgs}"
"${multiValueArgs}" ${ARGN})
set(arrayDefinition "")
foreach(SOURCE_FILE IN LISTS BIN2H_SOURCE_FILES)
# get filename without extension
get_filename_component(FILE_NAME_WE ${SOURCE_FILE} NAME_WE)
# convert the filename to a valid C identifier
string(MAKE_C_IDENTIFIER "${FILE_NAME_WE}" VALID_FILE_NAME)
# reads source file contents as hex string
file(READ ${SOURCE_FILE} hexString HEX)
# append null
if(BIN2H_NULL_TERMINATE)
string(APPEND hexString "00")
endif()
# wraps the hex string into multiple lines
wrap_string(VARIABLE hexString AT_COLUMN 24)
# strip the © in source code
string(REGEX REPLACE "c2a9" "2020" arrayValues ${hexString})
string(REGEX REPLACE "([0-9a-f][0-9a-f])" " 0x\\1," arrayValues
${arrayValues})
# make a full variable name for the array
set(FULL_VARIABLE_NAME "${BIN2H_VARIABLE_NAME}_${VALID_FILE_NAME}")
# declares byte array and the length variables
string(APPEND arrayDefinition
"constexpr char ${FULL_VARIABLE_NAME}[] = {${arrayValues}\n};\n\n")
endforeach()
# add namespace wrapper if defined
if(DEFINED BIN2H_HEADER_NAMESPACE)
set(namespaceStart "namespace ${BIN2H_HEADER_NAMESPACE} {")
set(namespaceEnd "} // namespace ${BIN2H_HEADER_NAMESPACE}")
set(declarations "${namespaceStart}\n\n${arrayDefinition}${namespaceEnd}\n")
endif()
set(arrayIncludes "#pragma once")
string(PREPEND declarations "${arrayIncludes}\n\n")
if(BIN2H_APPEND)
file(APPEND ${BIN2H_HEADER_FILE} "${declarations}")
else()
file(WRITE ${BIN2H_HEADER_FILE} "${declarations}")
endif()
endfunction()
# ----------------------------- CLI args -----------------------------
string(REPLACE ":" ";" MLX_JIT_SOURCES_LIST ${MLX_JIT_SOURCES})
foreach(source ${MLX_JIT_SOURCES_LIST})
list(APPEND MLX_JIT_SOURCES_ABS "${MLX_SOURCE_ROOT}/${source}")
endforeach()
bin2h(
SOURCE_FILES
${MLX_JIT_SOURCES_ABS}
NULL_TERMINATE
VARIABLE_NAME
"jit_source"
HEADER_NAMESPACE
"mlx::core"
HEADER_FILE
"${CMAKE_CURRENT_BINARY_DIR}/gen/cuda_jit_sources.h")

View File

@@ -2,8 +2,9 @@
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/kernels/binary_ops.cuh"
#include "mlx/backend/cuda/kernels/cucomplex_math.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
@@ -16,86 +17,35 @@ namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (int i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[0], b[0]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[0], b[i]);
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a[0], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[0], b[index]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[0]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b[0]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[index], b[0]);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = Op{}(a[i], b[i]);
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
if (index < size) {
out[index] = Op{}(a[index], b[index]);
}
}
@@ -128,7 +78,7 @@ __global__ void binary_g(
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
auto [a_idx, b_idx] = elem_to_loc_4d(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
out[index] = Op{}(a[a_idx], b[b_idx]);
}
@@ -151,12 +101,10 @@ constexpr bool supports_binary_op() {
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
}
if (std::is_same_v<Op, NaNEqual>) {
return std::is_same_v<Out, bool> && is_inexact_v<In>;
return std::is_same_v<Out, bool> &&
(is_floating_v<In> || std::is_same_v<In, complex64_t>);
}
if (std::is_same_v<Op, LogAddExp>) {
return std::is_same_v<In, Out> && is_inexact_v<In>;
}
if (std::is_same_v<Op, ArcTan2>) {
if (std::is_same_v<Op, LogAddExp> || std::is_same_v<Op, ArcTan2>) {
return std::is_same_v<In, Out> && is_floating_v<In>;
}
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
@@ -175,12 +123,13 @@ constexpr bool supports_binary_op() {
template <typename Op>
void binary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const char* op,
std::vector<array>& outputs,
std::string_view op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
auto& out = outputs[0];
if (out.size() == 0) {
return;
}
@@ -189,125 +138,133 @@ void binary_op_gpu_inplace(
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] =
get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::binary_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
encoder.launch_kernel([&](cudaStream_t stream) {
MLX_SWITCH_ALL_TYPES(a.dtype(), CTYPE_IN, {
MLX_SWITCH_ALL_TYPES(out.dtype(), CTYPE_OUT, {
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
bool large = a.data_size() > UINT32_MAX ||
b.data_size() > UINT32_MAX || out.data_size() > UINT32_MAX;
MLX_SWITCH_BOOL(large, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
int ndim = shape.size();
if (ndim <= 3) {
MLX_SWITCH_1_2_3(ndim, NDIM, {
auto kernel =
&cu::binary_g_nd<Op, InType, OutType, IdxT, NDIM>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
out.data_size(),
const_param<NDIM>(shape),
const_param<NDIM>(a_strides),
const_param<NDIM>(b_strides));
});
} else {
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
auto [num_blocks, block_dims] =
get_launch_args(kernel, out, large);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.data_size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
} else {
MLX_SWITCH_BOOL(out.data_size() > UINT32_MAX, LARGE, {
using IdxT = std::conditional_t<LARGE, int64_t, uint32_t>;
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_vs<Op, InType, OutType, IdxT>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_vv<Op, InType, OutType, IdxT>;
}
auto [num_blocks, block_dims] =
get_launch_args(kernel, out, LARGE);
kernel<<<num_blocks, block_dims, 0, stream>>>(
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.data_size());
});
}
} else {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out.data<OutType>(),
out.data_size());
});
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out.dtype())));
}
} else {
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out.dtype())));
}
});
});
});
}
template <typename Op>
void binary_op_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs,
std::string_view op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt);
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
template <typename Op>
void binary_op_gpu(
const std::vector<array>& inputs,
array& out,
const char* op,
std::string_view op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out, bopt);
binary_op_gpu_inplace<Op>(inputs, out, op, s);
std::vector<array> outputs{out};
binary_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
#define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \
binary_op_gpu<cu::func>(inputs, out, name(), s); \
#define BINARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = out.primitive().stream(); \
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
}
#define BINARY_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
nvtx3::scoped_range r(#func "::eval_gpu"); \
auto& s = outputs[0].primitive().stream(); \
binary_op_gpu<cu::func>(inputs, outputs, get_primitive_string(this), s); \
}
BINARY_GPU(Add)
BINARY_GPU(ArcTan2)
BINARY_GPU(Divide)
BINARY_GPU(Remainder)
BINARY_GPU(Equal)
BINARY_GPU(Greater)
BINARY_GPU(GreaterEqual)
BINARY_GPU(Less)
@@ -322,34 +279,25 @@ BINARY_GPU(NotEqual)
BINARY_GPU(Power)
BINARY_GPU(Subtract)
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Equal::eval_gpu");
auto& s = out.primitive().stream();
if (equal_nan_) {
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
} else {
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
}
}
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
auto& s = out.primitive().stream();
auto op = get_primitive_string(this);
switch (op_) {
case BitwiseBinary::And:
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s);
break;
case BitwiseBinary::Or:
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s);
break;
case BitwiseBinary::Xor:
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s);
break;
case BitwiseBinary::LeftShift:
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
binary_op_gpu<cu::LeftShift>(inputs, out, op, s);
break;
case BitwiseBinary::RightShift:
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
binary_op_gpu<cu::RightShift>(inputs, out, op, s);
break;
}
}

View File

@@ -1,333 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/binary.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <cooperative_groups.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[0], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a[0], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[0]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b[0]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
__global__ void
binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
auto out = Op{}(a[i], b[i]);
out_a[i] = out[0];
out_b[i] = out[1];
}
} else {
auto a_vec = load_vector<N_READS>(a, index);
auto b_vec = load_vector<N_READS>(b, index);
AlignedVector<Out, N_READS> out_a_vec;
AlignedVector<Out, N_READS> out_b_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
auto out = Op{}(a_vec[i], b_vec[i]);
out_a_vec[i] = out[0];
out_b_vec[i] = out[1];
}
store_vector<N_READS>(out_a, index, out_a_vec);
store_vector<N_READS>(out_b, index, out_b_vec);
}
}
template <typename Op, typename In, typename Out, typename IdxT, int NDIM>
__global__ void binary_two_g_nd(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
index, shape.data(), a_strides.data(), b_strides.data());
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out, typename IdxT>
__global__ void binary_two_g(
const In* a,
const In* b,
Out* out_a,
Out* out_b,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides a_strides,
const __grid_constant__ Strides b_strides,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [a_idx, b_idx] = elem_to_loc(
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
auto out = Op{}(a[a_idx], b[b_idx]);
out_a[index] = out[0];
out_b[index] = out[1];
}
}
template <typename Op, typename In, typename Out>
constexpr bool supports_binary_two_op() {
if (std::is_same_v<Op, DivMod>) {
return std::is_same_v<In, Out> &&
(std::is_integral_v<Out> || is_floating_v<Out>);
}
return false;
}
} // namespace cu
template <typename Op>
void binary_two_op_gpu_inplace(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
assert(inputs.size() > 1);
const auto& a = inputs[0];
const auto& b = inputs[1];
auto& out_a = outputs[0];
auto& out_b = outputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
if (out_a.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out_a);
encoder.set_output_array(out_b);
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out_a.dtype(), [&](auto out_type_tag) {
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
if constexpr (cu::supports_binary_two_op<Op, CTYPE_IN, CTYPE_OUT>()) {
using InType = cuda_type_t<CTYPE_IN>;
using OutType = cuda_type_t<CTYPE_OUT>;
auto bopt = get_binary_op_type(a, b);
if (bopt == BinaryOpType::General) {
dispatch_bool(
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
out_a.data_size() > INT32_MAX,
[&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
Shape shape;
std::vector<Strides> strides;
std::tie(shape, strides) =
collapse_contiguous_dims(a, b, out_a);
auto& a_strides = strides[0];
auto& b_strides = strides[1];
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g_nd<
Op,
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(a_strides),
const_param<dims_constant()>(b_strides));
});
} else {
auto [num_blocks, block_dims] =
get_launch_args(out_a, large());
encoder.add_kernel_node(
cu::binary_two_g<Op, InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.size(),
const_param(shape),
const_param(a_strides),
const_param(b_strides),
ndim);
}
});
} else {
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
if (bopt == BinaryOpType::ScalarVector) {
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorScalar) {
kernel = cu::binary_two_vs<Op, InType, OutType, IdxT, N_READS>;
} else if (bopt == BinaryOpType::VectorVector) {
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out_a.data_size(),
out_a.shape(),
out_a.strides(),
large(),
N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
a.data<InType>(),
b.data<InType>(),
out_a.data<OutType>(),
out_b.data<OutType>(),
out_a.data_size());
});
}
} else {
throw std::runtime_error(fmt::format(
"Can not do binary op {} on inputs of {} with result of {}.",
op,
dtype_to_string(a.dtype()),
dtype_to_string(out_a.dtype())));
}
});
});
}
template <typename Op>
void binary_two_op_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs,
const char* op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, outputs[0], bopt);
set_binary_op_output_data(a, b, outputs[1], bopt);
binary_two_op_gpu_inplace<Op>(inputs, outputs, op, s);
}
void DivMod::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("DivMod::eval_gpu");
auto& s = outputs[0].primitive().stream();
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
}
} // namespace mlx::core

View File

@@ -1,340 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
namespace mlx::core {
namespace cu {
struct FusedKernelBuilder {
std::string os;
const std::string& kernel_name;
const std::vector<array>& inputs;
const std::vector<array>& outputs;
const std::vector<array>& tape;
const std::function<bool(size_t)>& is_constant;
void build(const char* name, bool contiguous) {
NodeNamer namer;
// Function parameters.
std::vector<std::string> params;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant(i)) {
continue;
}
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
params.push_back(
fmt::format("const {}* {}", dtype_to_cuda_type(x.dtype()), xname));
if (!is_scalar(x) && !contiguous) {
params.push_back(fmt::format(
"const __grid_constant__ cuda::std::array<int64_t, NDIM> {}_strides",
xname));
}
}
for (const auto& x : outputs) {
params.push_back(fmt::format(
"{}* {}", dtype_to_cuda_type(x.dtype()), namer.get_name(x)));
}
if (!contiguous) {
params.push_back(
"const __grid_constant__ cuda::std::array<int32_t, NDIM> shape");
}
params.push_back("IdxT size");
// Build function signature.
if (contiguous) {
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
} else {
os +=
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
}
os += fmt::format("__global__ void {}(\n", kernel_name + name);
for (size_t i = 0; i < params.size(); ++i) {
os += " ";
os += params[i];
if (i != params.size() - 1) {
os += ",\n";
}
}
os += ") {\n";
// Index. For non contiguous kernels we create a separate index
// variable per variable otherwise everyone uses `index`.
os +=
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
" if (index >= size) {\n"
" return;\n"
" }\n";
if (!contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " IdxT " + xname + "_idx = 0;\n";
}
os += " {\n";
os += " IdxT loc = index;\n";
os +=
" #pragma unroll\n"
" for (int i = NDIM - 1; i >= 0; i--) {\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
"_strides[i]);\n";
}
os +=
" loc /= shape[i];\n"
" }\n"
" }\n";
}
// Vectorized read loop
if (contiguous) {
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
if (is_scalar(x) || is_constant(i)) {
continue;
}
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
xname,
type);
}
}
// Create some space for the outputs
for (const auto& x : outputs) {
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
os += fmt::format(
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
}
// Work loop
if (!contiguous) {
os +=
"\n"
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
} else {
os +=
"\n"
" #pragma unroll\n"
" for (int i = 0; i < work_per_thread; i++) {\n";
}
// Read inputs.
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
std::string value;
if (is_constant(i)) {
std::ostringstream ss;
print_constant(ss, x);
value = fmt::format("static_cast<{}>({})", type, ss.str());
} else if (is_scalar(x)) {
value = fmt::format("{}[0]", xname);
} else if (contiguous) {
value = fmt::format("vec_{}[i]", xname);
} else {
value = fmt::format("{}[{}_idx]", xname, xname);
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write tape.
for (const auto& x : tape) {
const std::string& xname = namer.get_name(x);
std::string type = dtype_to_cuda_type(x.dtype());
std::string value;
if (is_static_cast(x.primitive())) {
value = fmt::format(
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
} else {
value = x.primitive().name();
value += "{}(";
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
}
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
}
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
}
// Write output.
for (const auto& x : outputs) {
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
}
// End of work loop
if (!contiguous) {
os += "\n";
for (size_t i = 0; i < inputs.size(); ++i) {
const auto& x = inputs[i];
const std::string& xname = namer.get_name(x);
if (is_scalar(x) || is_constant(i)) {
continue;
}
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
}
}
os += " }\n";
// Store the output to global memory
for (const auto& x : outputs) {
os += fmt::format(
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
namer.get_name(x));
}
os += "}\n";
}
};
} // namespace cu
constexpr const char* g_jit_includes = R"(
#include "mlx/backend/cuda/device/binary_ops.cuh"
#include "mlx/backend/cuda/device/ternary_ops.cuh"
#include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
#define inf cuda::std::numeric_limits<float>::infinity()
)";
void Compiled::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
nvtx3::scoped_range r("Compiled::eval_gpu");
auto& s = stream();
// Determine the work per thread for the vectorized reads/writes. We take it
// as 16 over the max itemsize for the outputs. Another heuristic could be
// over the max itemsize of all arrays.
int max_size = 1;
for (const auto& x : outputs) {
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
}
int work_per_thread = 16 / max_size;
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
// Build source code.
cu::FusedKernelBuilder builder{
g_jit_includes, lib_name(), inputs_, outputs_, tape_, is_constant_};
builder.os +=
"namespace mlx::core::cu {\n\n"
"namespace cg = cooperative_groups;\n\n";
builder.build("_contiguous", true);
builder.os += "\n";
builder.build("_strided", false);
builder.os += "\n} // namespace mlx::core::cu\n";
// Build kernel names.
std::vector<std::string> kernel_names;
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
lib_name(),
work_per_thread));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_contiguous<int64_t, {}>",
lib_name(),
work_per_thread));
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
for (int i = 1; i <= MAX_NDIM; ++i) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
kernel_names.push_back(fmt::format(
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
}
}
return std::make_pair(std::move(builder.os), std::move(kernel_names));
});
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
auto [contiguous, shape, strides_vec] =
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
// Whether to use large index.
bool large = compiled_use_large_index(inputs, outputs, contiguous);
cu::KernelArgs args;
// Put inputs.
int strides_index = 1;
for (size_t i = 0; i < inputs.size(); ++i) {
if (is_constant_(i)) {
continue;
}
const auto& x = inputs[i];
args.append(x);
if (!contiguous && !is_scalar(x)) {
args.append_ptr(strides_vec[strides_index++].data());
}
}
// Put outputs.
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
for (auto& x : outputs) {
args.append(x);
}
// Put shape and size.
if (!contiguous) {
args.append_ptr(shape.data());
}
if (large) {
args.append<int64_t>(outputs[0].data_size());
} else {
args.append<uint32_t>(outputs[0].data_size());
}
// Choose work per thread
if (!contiguous && shape.back() % work_per_thread != 0) {
work_per_thread = 1;
}
// Launch kernel.
const char* index_type = large ? "int64_t" : "uint32_t";
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
if (contiguous) {
kernel_name +=
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
} else {
kernel_name += fmt::format(
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
}
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
for (const auto& out : outputs) {
encoder.set_output_array(out);
}
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] =
get_launch_args(outputs[0], large, work_per_thread);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -1,546 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <cudnn_frontend_find_plan.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
namespace mlx::core {
namespace {
// Not all engines support it so can not use this API now.
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
// Alias for better readability.
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
#define CONV_BACKWARD_INPUT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
#define CONV_BACKWARD_WEIGHT \
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
struct ConvCacheKey {
int device_id;
cudnnDataType_t cudnn_dtype;
std::array<int, MAX_NDIM> input_shape;
std::array<int, MAX_NDIM> weight_shape;
std::array<int, MAX_NDIM> stride;
std::array<int, MAX_NDIM> padding_lo;
std::array<int, MAX_NDIM> padding_hi;
std::array<int, MAX_NDIM> dilation;
int groups;
bool flip;
uint8_t input_alignment;
uint8_t weight_alignment;
uint8_t output_alignment;
};
auto& conv_cache() {
static LRUBytesKeyCache<
ConvCacheKey,
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
cache(/* capacity */ 128);
return cache;
}
template <typename T, typename Vec>
inline SmallVector<T> convert_vector(const Vec& vec) {
return SmallVector<T>(vec.begin(), vec.end());
}
template <typename T, template <typename U> class Vec>
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
if (vec.size() > MAX_NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
}
std::array<T, MAX_NDIM> result = {};
std::copy_n(vec.begin(), vec.size(), result.begin());
return result;
}
auto nhwc_to_nchw(const array& x) {
auto shape = convert_vector<int64_t>(x.shape());
shape.insert(shape.begin() + 1, shape.back());
shape.erase(shape.end() - 1);
auto strides = convert_vector<int64_t>(x.strides());
strides.insert(strides.begin() + 1, strides.back());
strides.erase(strides.end() - 1);
return std::make_tuple(std::move(shape), std::move(strides));
}
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return CUDNN_DATA_INT8;
case int32:
return CUDNN_DATA_INT32;
case uint8:
return CUDNN_DATA_UINT8;
case float16:
return CUDNN_DATA_HALF;
case bfloat16:
return CUDNN_DATA_BFLOAT16;
case float32:
return CUDNN_DATA_FLOAT;
case float64:
return CUDNN_DATA_DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
}
}
inline uint8_t get_alignment(const array& x) {
uint8_t alignment = 1;
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
for (; alignment < 32; alignment *= 2) {
if (address % (alignment * 2)) {
return alignment;
}
}
return alignment;
}
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
auto [shape, strides] = nhwc_to_nchw(x);
return cudnn_frontend::TensorBuilder()
.setDim(shape.size(), shape.data())
.setStrides(strides.size(), strides.data())
.setId(id)
.setAlignment(get_alignment(x))
.setDataType(dtype_to_cudnn_type(x.dtype()))
.build();
}
cudnn_frontend::EngineConfigList get_engine_configs(
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
cudnn_frontend::OperationGraph& op_graph,
bool use_fallback = false) {
cudnn_frontend::GeneratorSource source;
if (use_fallback) {
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
.setOperationGraph(op_graph)
.setOperation(backend_type)
.build();
return fallback.getFallbackList();
};
} else {
source = [](cudnn_frontend::OperationGraph& op_graph) {
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
.setOperationGraph(op_graph)
.setHeurMode(CUDNN_HEUR_MODE_A)
.build();
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
};
}
cudnn_frontend::EngineConfigGenerator generator(1, &source);
auto configs = generator.generate_engine_config(op_graph);
cudnn_frontend::EngineConfigList filtered_configs;
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
if (cudnn_frontend::hasNumericalNote<
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
return true;
}
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
dtype == float32 && !env::enable_tf32()) {
return true;
}
return false;
});
return filtered_configs;
}
bool execute_plan(
cu::CommandEncoder& encoder,
cudnn_frontend::ExecutionPlan& plan,
array& x,
array& w,
array& y) {
int workspace_size = plan.getWorkspaceSize();
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
int64_t uids[3] = {'x', 'w', 'y'};
void* data_ptrs[3] = {
x.data<void>(),
w.data<void>(),
y.data<void>(),
};
auto variantPack = cudnn_frontend::VariantPackBuilder()
.setWorkspacePointer(workspace.data<void>())
.setDataPointers(3, data_ptrs)
.setUids(3, uids)
.build();
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
cudaGraph_t graph;
cudaGraphCreate(&graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
if (cudnnBackendPopulateCudaGraph(
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
CUDNN_STATUS_SUCCESS) {
return false;
}
encoder.add_graph_node(graph);
#else
auto capture = encoder.capture_context();
if (cudnnBackendExecute(
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
CUDNN_STATUS_SUCCESS) {
// Discard the captured graph when failed.
capture.discard = true;
return false;
}
#endif
encoder.add_temporary(workspace);
return true;
}
bool try_engines(
cu::CommandEncoder& encoder,
const ConvCacheKey& cache_key,
cudnnBackendDescriptorType_t backend_type,
cudnn_frontend::EngineConfigList& configs,
const std::string& op_graph_tag,
array& x,
array& w,
array& y) {
for (auto& config : configs) {
try {
auto plan = cudnn_frontend::ExecutionPlanBuilder()
.setHandle(encoder.device().cudnn_handle())
.setEngineConfig(config, op_graph_tag)
.build();
if (execute_plan(encoder, plan, x, w, y)) {
conv_cache().emplace(
cache_key, std::make_pair(backend_type, std::move(plan)));
return true;
}
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
throw;
}
}
}
return false;
}
auto get_conv_op_settings(
cudnnBackendDescriptorType_t backend_type,
array& x,
array& w,
array& y,
const std::vector<int>& kernel_strides,
const std::vector<int>& padding_lo_,
const std::vector<int>& padding_hi_,
const std::vector<int>& kernel_dilation,
const std::vector<int>& input_dilation) {
auto padding_lo = convert_vector<int64_t>(padding_lo_);
auto padding_hi = convert_vector<int64_t>(padding_hi_);
if (backend_type == CONV_BACKWARD_INPUT) {
for (int i = 0; i < padding_lo.size(); ++i) {
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
padding_lo[i] = wt_size - padding_lo[i] - 1;
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
padding_hi[i] = out_size - in_size + padding_hi[i];
}
return std::make_tuple(
convert_vector<int64_t>(input_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
padding_hi = padding_lo;
return std::make_tuple(
convert_vector<int64_t>(kernel_dilation),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_strides));
} else {
return std::make_tuple(
convert_vector<int64_t>(kernel_strides),
std::move(padding_lo),
std::move(padding_hi),
convert_vector<int64_t>(kernel_dilation));
}
}
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
Dtype dtype,
array& x,
array& w,
array& y,
const SmallVector<int64_t>& stride,
const SmallVector<int64_t>& padding_lo,
const SmallVector<int64_t>& padding_hi,
const SmallVector<int64_t>& dilation) {
try {
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
? CUDNN_DATA_FLOAT
: dtype_to_cudnn_type(dtype);
auto conv_desc = cudnn_frontend::ConvDescBuilder()
.setDataType(compute_dtype)
.setMathMode(CUDNN_CROSS_CORRELATION)
.setNDims(stride.size())
.setStrides(stride.size(), stride.data())
.setPrePadding(padding_lo.size(), padding_lo.data())
.setPostPadding(padding_hi.size(), padding_hi.data())
.setDilation(dilation.size(), dilation.data())
.build();
auto op = cudnn_frontend::OperationBuilder(backend_type)
.setxDesc(build_tensor('x', x))
.setwDesc(build_tensor('w', w))
.setyDesc(build_tensor('y', y))
.setcDesc(conv_desc)
.build();
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
return cudnn_frontend::OperationGraphBuilder()
.setHandle(encoder.device().cudnn_handle())
.setOperationGraph(ops.size(), ops.data())
.build();
} catch (cudnn_frontend::cudnnException& error) {
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
throw;
}
return std::nullopt;
}
}
// Do necessary transposes and copies to prepare the inputs and outputs for
// building the cuDNN conv op. It is safe to be called multiple times in one
// eval_gpu, with cost of possible redundant copies.
std::tuple<array, array, array> prepare_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array in,
array wt,
array out,
Stream s) {
// Transpose the args depending on the backend type.
// TODO: Handle groups.
if (backend_type == CONV_BACKWARD_INPUT) {
wt = swapaxes_in_eval(wt, 0, -1);
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
in = swapaxes_in_eval(in, 0, -1);
wt = swapaxes_in_eval(wt, 0, -1);
// Create a contiguous array that shares the data with |out|, but with dim
// C_in and C_out swapped.
Shape shape(out.shape());
std::swap(shape.front(), shape.back());
Strides strides(shape.size(), 1);
for (int i = shape.size() - 2; i >= 0; --i) {
strides[i] = shape[i + 1] * strides[i + 1];
}
array intermediate(std::move(shape), out.dtype(), nullptr, {});
intermediate.copy_shared_buffer(
out, std::move(strides), {true, true, false}, out.data_size());
out = intermediate;
}
// cuDNN requires contiguous input.
if (!in.flags().row_contiguous) {
in = contiguous_copy_gpu(in, s);
encoder.add_temporary(in);
}
if (!wt.flags().row_contiguous) {
wt = contiguous_copy_gpu(wt, s);
encoder.add_temporary(wt);
}
return {std::move(in), std::move(wt), std::move(out)};
}
// Get the x/w/y args from the in/wt/out args depending on backend type.
inline std::tuple<array&, array&, array&> dispatch_args(
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& out) {
switch (backend_type) {
case CONV_BACKWARD_INPUT:
return {out, wt, in};
case CONV_BACKWARD_WEIGHT:
return {in, out, wt};
default:
return {in, wt, out};
}
}
// Register inputs and outputs before actually running conv op. Can only be
// called once per eval_gpu.
void register_args(
cu::CommandEncoder& encoder,
cudnnBackendDescriptorType_t backend_type,
array& in,
array& wt,
array& intermediate_out,
array& final_out) {
encoder.set_input_array(in);
encoder.set_input_array(wt);
encoder.set_output_array(final_out);
if (backend_type == CONV_BACKWARD_WEIGHT) {
// Turn |out| into a strided array, which will have C_in and C_out swapped
// in vjp and the final |grad_weight| will then be contiguous.
Strides strides = intermediate_out.strides();
std::swap(strides.front(), strides.back());
final_out.copy_shared_buffer(
intermediate_out,
std::move(strides),
{false, false, false},
intermediate_out.data_size());
}
}
} // namespace
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
nvtx3::scoped_range r("Convolution::eval_gpu");
if (out_.size() == 0) {
return;
}
assert(inputs.size() == 2);
array in = inputs[0];
array wt = inputs[1];
array out = out_;
out.set_data(allocator::malloc(out.nbytes()));
Dtype dtype = out.dtype();
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
// Search cache.
ConvCacheKey cache_key{
encoder.device().cuda_device(),
dtype_to_cudnn_type(dtype),
fixed_vector(in.shape()),
fixed_vector(wt.shape()),
fixed_vector(kernel_strides_),
fixed_vector(padding_lo_),
fixed_vector(padding_hi_),
fixed_vector(kernel_dilation_),
groups_,
flip_,
get_alignment(in),
get_alignment(wt),
get_alignment(out)};
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
auto& [backend_type, plan] = it->second;
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
register_args(encoder, backend_type, in, wt, out, out_);
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (!execute_plan(encoder, plan, x, w, y)) {
throw std::runtime_error("[conv] Cached plan failed to execute.");
}
return;
}
// There is no reliable way to deduce the proper cuDNN backend for the
// convolution, so we make a best guess and then try.
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
if (flip_) {
// When weight is flipped, we assume it is backward input convolution.
try_backends.push_back(CONV_BACKWARD_INPUT);
} else {
// Otherwise it could be backward weight convolution or forward convolution,
// mathematically there is no difference so we have to use heuristics.
// Empirically backward convolutions have large kernel dimensions, and
// usually have |in| and |wt| transposed.
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
wt.shape(2) > out.shape(2)) {
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
} else {
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
}
}
// Try to build op graph.
cudnnBackendDescriptorType_t backend_type;
std::optional<cudnn_frontend::OperationGraph> op_graph;
for (auto try_backend : try_backends) {
auto [in_copy, wt_copy, out_copy] =
prepare_args(encoder, try_backend, in, wt, out, s);
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
try_backend,
x,
w,
y,
kernel_strides_,
padding_lo_,
padding_hi_,
kernel_dilation_,
input_dilation_);
op_graph = build_op_graph(
encoder,
try_backend,
dtype,
x,
w,
y,
stride,
padding_lo,
padding_hi,
dilation);
if (op_graph) {
backend_type = try_backend;
in = std::move(in_copy);
wt = std::move(wt_copy);
out = std::move(out_copy);
break;
}
}
if (!op_graph) {
throw std::runtime_error("[conv] Can not build op graph.");
}
// Get ready to execute the graph.
register_args(encoder, backend_type, in, wt, out, out_);
// Try to run plans based on heuristics.
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
auto tag = op_graph->getTag();
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
// Then try fallback plans.
configs = get_engine_configs(backend_type, dtype, *op_graph);
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
return;
}
throw std::runtime_error("[conv] Unable to find a working engine.");
}
} // namespace mlx::core

26
mlx/backend/cuda/copy.cpp Normal file
View File

@@ -0,0 +1,26 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/gpu/copy.h"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_i_offset /* = std::nullopt */,
const std::optional<array>& dynamic_o_offset /* = std::nullopt */) {
throw std::runtime_error("copy_gpu_inplace not implemented in CUDA backend.");
}
void fill_gpu(const array& val, array& out, const Stream& s) {
throw std::runtime_error("fill_gpu not implemented in CUDA backend.");
}
} // namespace mlx::core

View File

@@ -1,87 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/copy/copy.cuh"
namespace mlx::core {
void copy_gpu_inplace(
const array& in,
array& out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out,
int64_t offset_in,
int64_t offset_out,
CopyType ctype,
const Stream& s,
const std::optional<array>& dynamic_offset_in,
const std::optional<array>& dynamic_offset_out) {
if (out.size() == 0) {
return;
}
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
if (ctype == CopyType::Scalar || ctype == CopyType::Vector) {
copy_contiguous(encoder, ctype, in, out, offset_in, offset_out);
return;
}
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
auto [shape_collapsed, strides_vec] = collapse_contiguous_dims(
shape, std::vector{strides_in, strides_out}, INT32_MAX);
if (ctype == CopyType::General) {
copy_general_input(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0]);
} else {
if (dynamic_offset_in || dynamic_offset_out) {
copy_general_dynamic(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0],
strides_vec[1],
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
} else {
copy_general(
encoder,
ctype,
in,
out,
offset_in,
offset_out,
shape_collapsed,
strides_vec[0],
strides_vec[1]);
}
}
return;
}
}
void fill_gpu(const array& in, array& out, const Stream& s) {
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc(out.nbytes()));
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(in);
encoder.set_output_array(out);
copy_contiguous(encoder, CopyType::Scalar, in, out, 0, 0);
}
} // namespace mlx::core

View File

@@ -1,55 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/cast_op.cuh"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
namespace mlx::core {
void copy_contiguous(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out);
void copy_general(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out);
void copy_general_dynamic(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out,
const array& dynamic_offset_in,
const array& dynamic_offset_out);
void copy_general_input(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in);
} // namespace mlx::core

View File

@@ -1,88 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_s(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[0]);
}
} else {
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in[0]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_v(const In* in, Out* out, IdxT size) {
IdxT index = cg::this_grid().thread_rank();
if ((index + 1) * N_READS > size) {
for (IdxT i = index * N_READS; i < size; ++i) {
out[i] = cast_to<Out>(in[i]);
}
} else {
auto in_vec = load_vector<N_READS>(in, index);
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = cast_to<Out>(in_vec[i]);
}
store_vector<N_READS>(out, index, out_vec);
}
}
} // namespace cu
void copy_contiguous(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t in_offset,
int64_t out_offset) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
constexpr int N_READS = 16 / sizeof(InType);
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
if (ctype == CopyType::Vector) {
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
}
auto [num_blocks, block_dims] = get_launch_args(
out.data_size(), out.shape(), out.strides(), large(), N_READS);
encoder.add_kernel_node(
kernel,
num_blocks,
block_dims,
0,
in.data<InType>() + in_offset,
out.data<OutType>() + out_offset,
out.data_size());
});
});
});
}
} // namespace mlx::core

View File

@@ -1,109 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM>
__global__ void copy_gg_nd(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
index, shape.data(), strides_in.data(), strides_out.data());
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
}
template <typename In, typename Out, typename IdxT>
__global__ void copy_gg(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides_in,
const __grid_constant__ Strides strides_out,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
}
}
} // namespace cu
void copy_general(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
size_t data_size = 1;
for (auto& s : shape)
data_size *= s;
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,
const_param<ndim_constant()>(shape),
const_param<ndim_constant()>(strides_in),
const_param<ndim_constant()>(strides_out));
});
} else { // ndim >= 4
auto [num_blocks, block_dims] =
get_launch_args(data_size, shape, out.strides(), large());
encoder.add_kernel_node(
cu::copy_gg<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
data_size,
const_param(shape),
const_param(strides_in),
const_param(strides_out),
ndim);
}
});
});
});
}
} // namespace mlx::core

View File

@@ -1,118 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM>
__global__ void copy_gg_dynamic_nd(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_out,
const int64_t* offset_in,
const int64_t* offset_out) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc_nd<NDIM>(
index, shape.data(), strides_in.data(), strides_out.data());
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
}
}
template <typename In, typename Out, typename IdxT>
__global__ void copy_gg_dynamic(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides_in,
const __grid_constant__ Strides strides_out,
int ndim,
const int64_t* offset_in,
const int64_t* offset_out) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
auto [idx_in, idx_out] = elem_to_loc(
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
}
}
} // namespace cu
void copy_general_dynamic(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in,
const Strides& strides_out,
const array& dynamic_offset_in,
const array& dynamic_offset_out) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_gg_dynamic_nd<
InType,
OutType,
IdxT,
dims_constant()>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in),
const_param<dims_constant()>(strides_out),
dynamic_offset_in.data<int64_t>(),
dynamic_offset_out.data<int64_t>());
});
} else { // ndim >= 4
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_gg_dynamic<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
const_param(shape),
const_param(strides_in),
const_param(strides_out),
ndim,
dynamic_offset_in.data<int64_t>(),
dynamic_offset_out.data<int64_t>());
}
});
});
});
}
} // namespace mlx::core

View File

@@ -1,97 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM>
__global__ void copy_g_nd(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides_in) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc_nd<NDIM>(index, shape.data(), strides_in.data());
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
}
template <typename In, typename Out, typename IdxT>
__global__ void copy_g(
const In* in,
Out* out,
IdxT size,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides_in,
int ndim) {
IdxT index = cg::this_grid().thread_rank();
if (index < size) {
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
out[index] = CastOp<In, Out>{}(in[idx_in]);
}
}
} // namespace cu
void copy_general_input(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = in.data<InType>() + offset_in;
OutType* out_ptr = out.data<OutType>() + offset_out;
int ndim = shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in));
});
} else { // ndim >= 4
auto [num_blocks, block_dims] = get_launch_args(out, large());
encoder.add_kernel_node(
cu::copy_g<InType, OutType, IdxT>,
num_blocks,
block_dims,
0,
in_ptr,
out_ptr,
out.size(),
const_param(shape),
const_param(strides_in),
ndim);
}
});
});
});
}
} // namespace mlx::core

View File

@@ -1,11 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/cuda.h"
namespace mlx::core::cu {
bool is_available() {
return true;
}
} // namespace mlx::core::cu

View File

@@ -1,10 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cu {
/* Check if the CUDA backend is available. */
bool is_available();
} // namespace mlx::core::cu

View File

@@ -1,41 +1,38 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/utils.h"
#include "mlx/backend/metal/metal.h"
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <future>
#include <unordered_set>
namespace mlx::core::cu {
namespace mlx::core {
namespace {
namespace cu {
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
// This should be less than 255
constexpr int default_max_nodes_per_graph = 20;
DeviceStream::DeviceStream(Device& device) : device_(device), stream_(device) {}
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
void DeviceStream::synchronize() {
cudaStreamSynchronize(stream_);
}
void check_cudnn_error(const char* name, cudnnStatus_t err) {
if (err != CUDNN_STATUS_SUCCESS) {
throw std::runtime_error(
fmt::format("{} failed: {}.", name, cudnnGetErrorString(err)));
cudaStream_t DeviceStream::schedule_cuda_stream() {
// TODO: Return a stream that maximizes parallelism.
return stream_;
}
cudaStream_t DeviceStream::last_cuda_stream() {
return stream_;
}
CommandEncoder& DeviceStream::get_encoder() {
if (!encoder_) {
encoder_ = std::make_unique<CommandEncoder>(*this);
}
return *encoder_;
}
int cuda_graph_cache_size() {
static int cache_size = []() {
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
}();
return cache_size;
}
} // namespace
Device::Device(int device) : device_(device) {
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
&compute_capability_major_, cudaDevAttrComputeCapabilityMajor, device_));
@@ -52,18 +49,11 @@ Device::Device(int device) : device_(device) {
}
// The cublasLt handle is used by matmul.
make_current();
CHECK_CUBLAS_ERROR(cublasLtCreate(&lt_));
// The cudnn handle is used by Convolution.
CHECK_CUDNN_ERROR(cudnnCreate(&cudnn_));
// Initialize the jit module cache here ensures it is not
// unloaded before any evaluation is done
get_jit_module_cache();
cublasLtCreate(&lt_);
}
Device::~Device() {
CHECK_CUDNN_ERROR(cudnnDestroy(cudnn_));
CHECK_CUBLAS_ERROR(cublasLtDestroy(lt_));
cublasLtDestroy(lt_);
}
void Device::make_current() {
@@ -76,256 +66,45 @@ void Device::make_current() {
}
}
CommandEncoder& Device::get_command_encoder(Stream s) {
auto it = encoders_.find(s.index);
if (it == encoders_.end()) {
it = encoders_.try_emplace(s.index, *this).first;
DeviceStream& Device::get_stream(Stream s) {
auto it = streams_.find(s.index);
if (it == streams_.end()) {
it = streams_.try_emplace(s.index, *this).first;
}
return it->second;
}
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
enc.device().make_current();
CHECK_CUDA_ERROR(
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
}
CommandEncoder::CaptureContext::~CaptureContext() {
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
if (discard) {
return;
}
enc.add_graph_node(graph);
}
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
: enc(enc) {
enc.in_concurrent_ = true;
}
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
enc.in_concurrent_ = false;
// Use an empty graph node for synchronization
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
enc.empty_node_count_++;
CHECK_CUDA_ERROR(cudaGraphAddEmptyNode(&empty.node, enc.graph_, NULL, 0));
// Insert the concurrent -> empty node dependencies
for (auto& from : enc.concurrent_nodes_) {
enc.from_nodes_.push_back(from.node);
enc.to_nodes_.push_back(empty.node);
enc.graph_key_ += from.id;
enc.graph_key_ += from.node_type;
enc.graph_key_ += empty.id;
enc.graph_key_ += empty.node_type;
}
// Insert the input -> concurrent node dependencies without updating output
// nodes
auto outputs = std::move(enc.active_outputs_);
enc.insert_graph_dependencies(std::move(enc.concurrent_nodes_));
// Update output node to be the empty node
for (auto o : outputs) {
enc.node_map_.emplace(o, empty).first->second = empty;
}
}
void CommandEncoder::insert_graph_dependencies(GraphNode node) {
if (node.node_type == 'G') {
graph_node_count_++;
}
node.id = std::to_string(node_count_++);
if (in_concurrent_) {
concurrent_nodes_.push_back(std::move(node));
} else {
std::vector<GraphNode> nodes;
nodes.push_back(std::move(node));
insert_graph_dependencies(std::move(nodes));
}
}
void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
std::vector<GraphNode> deps;
{
// Dependencies must be added in the same order to produce a consistent
// topology
std::unordered_set<cudaGraphNode_t> set_deps;
for (auto d : active_deps_) {
if (auto it = node_map_.find(d); it != node_map_.end()) {
auto [_, inserted] = set_deps.insert(it->second.node);
if (inserted) {
deps.push_back(it->second);
}
}
}
}
active_deps_.clear();
for (auto o : active_outputs_) {
for (auto& node : nodes) {
node_map_.emplace(o, node).first->second = node;
}
}
active_outputs_.clear();
for (auto& from : deps) {
for (auto& to : nodes) {
from_nodes_.push_back(from.node);
to_nodes_.push_back(to.node);
graph_key_ += from.id;
graph_key_ += from.node_type;
graph_key_ += to.id;
graph_key_ += to.node_type;
}
}
}
CommandEncoder::CommandEncoder(Device& d)
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
}
CommandEncoder::CommandEncoder(DeviceStream& s)
: device_(s.device()), stream_(s) {}
void CommandEncoder::add_completed_handler(std::function<void()> task) {
worker_.add_task(std::move(task));
}
void CommandEncoder::set_input_array(const array& arr) {
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
}
void CommandEncoder::end_encoding() {
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
void CommandEncoder::set_output_array(const array& arr) {
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
active_deps_.push_back(id);
active_outputs_.push_back(id);
}
// There is no kernel running, run completion handlers immediately.
if (!has_gpu_work_) {
worker_.consume_in_this_thread();
return;
}
has_gpu_work_ = false;
void CommandEncoder::maybe_commit() {
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
// Put completion handlers in a batch.
worker_.end_batch();
// Signaling kernel completion is expensive, delay until enough batches.
// TODO: This number is arbitrarily picked, profile for a better stragety.
if (worker_.uncommited_batches() > 8) {
commit();
}
}
void CommandEncoder::add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
cudaKernelNodeParams kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDim = grid_dim;
kernel_params.blockDim = block_dim;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
add_kernel_node(kernel_params);
}
void CommandEncoder::add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params) {
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
kernel_params.func = func;
kernel_params.gridDimX = grid_dim.x;
kernel_params.gridDimY = grid_dim.y;
kernel_params.gridDimZ = grid_dim.z;
kernel_params.blockDimX = block_dim.x;
kernel_params.blockDimY = block_dim.y;
kernel_params.blockDimZ = block_dim.z;
kernel_params.kernelParams = params;
kernel_params.sharedMemBytes = smem_bytes;
add_kernel_node(kernel_params);
}
void CommandEncoder::add_kernel_node(const cudaKernelNodeParams& params) {
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddKernelNode(&node, graph_, NULL, 0, &params));
insert_graph_dependencies(GraphNode{node, 'K'});
}
void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
CUgraphNode node;
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, graph_, NULL, 0, &params));
insert_graph_dependencies(GraphNode{node, 'K'});
}
void CommandEncoder::add_graph_node(cudaGraph_t child) {
cudaGraphNode_t node;
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
insert_graph_dependencies(GraphNode{node, 'G'});
}
void CommandEncoder::commit() {
nvtx3::scoped_range r("CommandEncoder::commit");
if (!temporaries_.empty()) {
add_completed_handler([temporaries = std::move(temporaries_)]() {});
}
if (node_count_ > 0) {
if (!from_nodes_.empty()) {
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
}
graph_key_ += ".";
graph_key_ += std::to_string(node_count_);
graph_key_ += ".";
graph_key_ += std::to_string(graph_node_count_);
graph_key_ += ".";
graph_key_ += std::to_string(empty_node_count_);
CudaGraphExec& graph_exec = graph_cache_[graph_key_];
if (graph_exec != nullptr) {
cudaGraphExecUpdateResult update_result;
#if CUDART_VERSION >= 12000
cudaGraphExecUpdateResultInfo info;
cudaGraphExecUpdate(graph_exec, graph_, &info);
update_result = info.result;
#else
cudaGraphNode_t error_node;
cudaGraphExecUpdate(graph_exec, graph_, &error_node, &update_result);
#endif // CUDART_VERSION >= 12000
if (update_result != cudaGraphExecUpdateSuccess) {
cudaGetLastError(); // reset error
graph_exec.reset();
}
}
if (graph_exec == nullptr) {
graph_exec.instantiate(graph_);
}
device_.make_current();
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
// Reset state
node_count_ = 0;
graph_node_count_ = 0;
empty_node_count_ = 0;
from_nodes_.clear();
to_nodes_.clear();
graph_key_.clear();
node_map_.clear();
CHECK_CUDA_ERROR(cudaGraphDestroy(graph_));
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
}
// Put completion handlers in a batch.
worker_.commit(stream_);
}
void CommandEncoder::synchronize() {
cudaStreamSynchronize(stream_);
auto p = std::make_shared<std::promise<void>>();
std::future<void> f = p->get_future();
add_completed_handler([p = std::move(p)]() { p->set_value(); });
commit();
f.wait();
worker_.commit(stream_.last_cuda_stream());
}
Device& device(mlx::core::Device device) {
@@ -337,8 +116,14 @@ Device& device(mlx::core::Device device) {
return it->second;
}
CommandEncoder& get_command_encoder(Stream s) {
return device(s.device).get_command_encoder(s);
DeviceStream& get_stream(Stream s) {
return device(s.device).get_stream(s);
}
} // namespace mlx::core::cu
CommandEncoder& get_command_encoder(Stream s) {
return get_stream(s).get_encoder();
}
} // namespace cu
} // namespace mlx::core

View File

@@ -3,133 +3,45 @@
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/lru_cache.h"
#include "mlx/backend/cuda/worker.h"
#include "mlx/stream.h"
#include <cublasLt.h>
#include <cuda.h>
#include <cudnn.h>
#include <thrust/execution_policy.h>
#include <unordered_map>
namespace mlx::core::cu {
class CommandEncoder {
class Device;
class CommandEncoder;
class DeviceStream {
public:
struct CaptureContext {
CaptureContext(CommandEncoder& enc);
~CaptureContext();
cudaGraph_t graph;
CommandEncoder& enc;
bool discard{false};
};
struct ConcurrentContext {
ConcurrentContext(CommandEncoder& enc);
~ConcurrentContext();
CommandEncoder& enc;
};
explicit DeviceStream(Device& device);
explicit CommandEncoder(Device& d);
DeviceStream(const DeviceStream&) = delete;
DeviceStream& operator=(const DeviceStream&) = delete;
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
// Wait until kernels in the stream complete.
void synchronize();
CaptureContext capture_context() {
return CaptureContext{*this};
}
ConcurrentContext concurrent_context() {
return ConcurrentContext{*this};
}
// Return a cuda stream for launching kernels.
cudaStream_t schedule_cuda_stream();
void set_input_array(const array& arr);
void set_output_array(const array& arr);
// Return the last cuda stream used.
cudaStream_t last_cuda_stream();
template <typename F, typename... Params>
void add_kernel_node(
F* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
Params&&... params) {
constexpr size_t num = sizeof...(Params);
void* ptrs[num];
size_t i = 0;
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
std::forward<Params>(params)),
...);
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
}
void add_kernel_node(
CUfunction func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
void add_kernel_node(
void* func,
dim3 grid_dim,
dim3 block_dim,
uint32_t smem_bytes,
void** params);
// Low-level graph helpers.
void add_kernel_node(const cudaKernelNodeParams& params);
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
void add_graph_node(cudaGraph_t child);
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void maybe_commit();
void commit();
CommandEncoder& get_encoder();
Device& device() {
return device_;
}
CudaStream& stream() {
return stream_;
}
// Wait until kernels and completion handlers are finished
void synchronize();
private:
struct GraphNode {
cudaGraphNode_t node;
// K = kernel
// E = empty
// G = subgraph
char node_type;
std::string id;
};
void insert_graph_dependencies(GraphNode node);
void insert_graph_dependencies(std::vector<GraphNode> nodes);
Device& device_;
CudaStream stream_;
cudaGraph_t graph_;
Worker worker_;
char node_count_{0};
char graph_node_count_{0};
char empty_node_count_{0};
bool in_concurrent_{false};
std::vector<cudaGraphNode_t> from_nodes_;
std::vector<cudaGraphNode_t> to_nodes_;
std::string graph_key_;
std::vector<GraphNode> concurrent_nodes_;
std::vector<std::shared_ptr<array::Data>> temporaries_;
LRUCache<std::string, CudaGraphExec> graph_cache_;
std::vector<std::uintptr_t> active_deps_;
std::vector<std::uintptr_t> active_outputs_;
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
std::unique_ptr<CommandEncoder> encoder_;
};
class Device {
@@ -143,7 +55,7 @@ class Device {
// Make this device the current cuda device, required by some cuda calls.
void make_current();
CommandEncoder& get_command_encoder(Stream s);
DeviceStream& get_stream(Stream s);
int cuda_device() const {
return device_;
@@ -157,20 +69,70 @@ class Device {
cublasLtHandle_t lt_handle() const {
return lt_;
}
cudnnHandle_t cudnn_handle() const {
return cudnn_;
}
private:
int device_;
int compute_capability_major_;
int compute_capability_minor_;
cublasLtHandle_t lt_;
cudnnHandle_t cudnn_;
std::unordered_map<int, CommandEncoder> encoders_;
std::unordered_map<int, DeviceStream> streams_;
};
class CommandEncoder {
public:
explicit CommandEncoder(DeviceStream& stream);
CommandEncoder(const CommandEncoder&) = delete;
CommandEncoder& operator=(const CommandEncoder&) = delete;
void set_input_array(const array& arr) {}
void set_output_array(const array& arr) {}
void add_temporary(const array& arr) {
temporaries_.push_back(arr.data_shared_ptr());
}
void add_completed_handler(std::function<void()> task);
void end_encoding();
void commit();
// Schedule a cuda stream for |fun| to launch kernels, and check error
// afterwards.
template <typename F>
void launch_kernel(F&& fun) {
launch_kernel(stream_.schedule_cuda_stream(), std::forward<F>(fun));
}
template <typename F>
void launch_kernel(cudaStream_t stream, F&& fun) {
device_.make_current();
fun(stream);
check_cuda_error("kernel launch", cudaGetLastError());
has_gpu_work_ = true;
}
Device& device() {
return device_;
}
DeviceStream& stream() {
return stream_;
}
bool has_gpu_work() const {
return has_gpu_work_;
}
private:
Device& device_;
DeviceStream& stream_;
Worker worker_;
bool has_gpu_work_{false};
std::vector<std::shared_ptr<array::Data>> temporaries_;
};
Device& device(mlx::core::Device device);
DeviceStream& get_stream(Stream s);
CommandEncoder& get_command_encoder(Stream s);
// Return an execution policy that does not sync for result.

View File

@@ -1,63 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/fp16_math.cuh"
#include <cuda/atomic>
namespace mlx::core::cu {
template <typename T>
inline __device__ void atomic_add(T* out, T val) {
cuda::atomic_ref<T, cuda::thread_scope_device> ref(*out);
ref += val;
}
template <typename T>
inline __device__ void atomic_prod(T* out, T val) {
cuda::atomic_ref<T, cuda::thread_scope_device> ref(*out);
T old = ref.load();
while (!ref.compare_exchange_strong(old, old * val)) {
}
}
template <typename T>
inline __device__ void atomic_max(T* out, T val) {
cuda::atomic_ref<T, cuda::thread_scope_device> ref(*out);
ref.fetch_max(val);
}
template <typename T>
inline __device__ void atomic_min(T* out, T val) {
cuda::atomic_ref<T, cuda::thread_scope_device> ref(*out);
ref.fetch_min(val);
}
// Somehow cuda::atomic_ref does not provide atomic add for following types.
template <typename T>
inline __device__ void atomic_add_general(T* out, T val) {
cuda::atomic_ref<T, cuda::thread_scope_device> ref(*out);
T old = ref.load();
while (!ref.compare_exchange_strong(old, old + val)) {
}
}
inline __device__ void atomic_add(__half* out, __half val) {
atomicAdd(out, val);
}
inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
atomic_add_general(out, val);
}
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
#if __CUDA_ARCH__ < 800
atomic_add_general(out, val);
#else
atomicAdd(out, val);
#endif
}
} // namespace mlx::core::cu

View File

@@ -1,130 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <thrust/iterator/transform_iterator.h>
namespace mlx::core::cu {
// An op that does static_cast, with custom conversions for some types.
template <typename SrcT, typename DstT, typename = void>
struct CastOp {
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, DstT>;
__device__ DstT operator()(SrcT x) {
return static_cast<DstT>(x);
}
};
// Castings between complex and boolean.
template <typename T>
struct CastOp<complex_t<T>, bool> {
static constexpr bool is_castable = true;
__device__ bool operator()(complex_t<T> x) {
return x.real() != 0 && x.imag() != 0;
}
};
template <typename T>
struct CastOp<bool, complex_t<T>> {
static constexpr bool is_castable = true;
__device__ complex_t<T> operator()(bool x) {
return x ? complex_t<T>{1, 1} : complex_t<T>{0, 0};
}
};
// Converting a complex number to real number discards the imaginary part.
template <typename T, typename DstT>
struct CastOp<complex_t<T>, DstT, cuda::std::enable_if_t<!is_complex_v<DstT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<T, DstT>;
__device__ DstT operator()(complex_t<T> x) {
static_assert(!is_complex_v<DstT>);
return static_cast<DstT>(x.real());
}
};
// Allow converting a real number to complex number.
template <typename SrcT, typename T>
struct CastOp<SrcT, complex_t<T>, cuda::std::enable_if_t<!is_complex_v<SrcT>>> {
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, T>;
__device__ complex_t<T> operator()(SrcT x) {
static_assert(!is_complex_v<SrcT>);
return complex_t<T>{static_cast<T>(x), 0};
}
};
// Do nothing when no casting is needed.
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
DstT,
cuda::std::enable_if_t<cuda::std::is_same_v<SrcT, DstT>>> {
static constexpr bool is_castable = true;
__device__ SrcT operator()(SrcT x) {
return x;
}
};
// In CUDA 11 the half types do not define conversions between some types,
// provide fallbacks here.
#if CUDART_VERSION < 12000
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
DstT,
cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
(cuda::std::is_same_v<DstT, __half> ||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
static constexpr bool is_castable = true;
__device__ DstT operator()(SrcT x) {
return DstT(static_cast<float>(x));
}
};
template <typename SrcT, typename DstT>
struct CastOp<
SrcT,
DstT,
cuda::std::enable_if_t<
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
!cuda::std::is_same_v<DstT, __half> &&
!cuda::std::is_same_v<DstT, __nv_bfloat16> &&
(cuda::std::is_same_v<SrcT, __half> ||
cuda::std::is_same_v<SrcT, __nv_bfloat16>)>> {
static constexpr bool is_castable = true;
__device__ DstT operator()(SrcT x) {
return DstT(static_cast<float>(x));
}
};
#endif // CUDART_VERSION < 12000
// Helper to deduce the SrcT.
template <typename DstT, typename SrcT>
inline __host__ __device__ auto cast_to(SrcT x) {
return CastOp<SrcT, DstT>{}(x);
}
// Return an iterator that cast the value to DstT using CastOp.
template <typename DstT, typename Iterator>
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
if constexpr (std::is_same_v<SrcT, DstT>) {
return it;
} else {
return thrust::make_transform_iterator(it, CastOp<SrcT, DstT>{});
}
}
} // namespace mlx::core::cu

View File

@@ -1,60 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
// Make multiplication and division faster.
#define LIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS
#include <cuda/std/complex>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
// TODO: Consider using a faster implementation as cuda::std::complex has to
// conform to C++ standard.
template <typename T>
using complex_t = cuda::std::complex<T>;
using complex64_t = complex_t<float>;
using complex128_t = complex_t<double>;
template <typename T>
struct is_complex : cuda::std::false_type {};
template <typename T>
struct is_complex<cuda::std::complex<T>> : cuda::std::true_type {};
template <typename T>
inline constexpr bool is_complex_v = is_complex<T>::value;
// cuda::std::complex is missing some operators.
template <typename T>
inline __host__ __device__ complex_t<T> operator%(
complex_t<T> a,
complex_t<T> b) {
T r = a.real() - floor(a.real() / b.real()) * b.real();
T i = a.imag() - floor(a.imag() / b.imag()) * b.imag();
return complex_t<T>{r, i};
}
template <typename T>
inline __host__ __device__ bool operator>(complex_t<T> a, complex_t<T> b) {
return (a.real() > b.real()) || (a.real() == b.real() && a.imag() > b.imag());
}
template <typename T>
inline __host__ __device__ bool operator<(complex_t<T> a, complex_t<T> b) {
return operator>(b, a);
}
template <typename T>
inline __host__ __device__ bool operator<=(complex_t<T> a, complex_t<T> b) {
return !(a > b);
}
template <typename T>
inline __host__ __device__ bool operator>=(complex_t<T> a, complex_t<T> b) {
return !(a < b);
}
} // namespace mlx::core::cu

View File

@@ -1,12 +0,0 @@
// Copyright © 2025 Apple Inc.
// This file is used by both CUDA kernel code and host-only C++ code.
#pragma once
// The maximum dimensions of shape/strides passed as kernel parameters.
#define MAX_NDIM 10
// All existing NVIDIA hardware has a fixed 32 warp size. Though a built-in
// warpSize variable exists, using it would prevent compile-time optimizations.
#define WARP_SIZE 32

View File

@@ -1,53 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/indexing.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
template <typename T, typename IdxT, int NIDX, int IDX_NDIM, typename LocT>
__global__ void gather(
const T* src,
T* out,
LocT size,
const __grid_constant__ Shape src_shape,
const __grid_constant__ Strides src_strides,
int32_t src_ndim,
const __grid_constant__ Shape slice_sizes,
uint32_t slice_size,
const __grid_constant__ cuda::std::array<int32_t, NIDX> axes,
const __grid_constant__ cuda::std::array<IdxT*, NIDX> indices,
const __grid_constant__ cuda::std::array<int32_t, NIDX * IDX_NDIM>
indices_shape,
const __grid_constant__ cuda::std::array<int64_t, NIDX * IDX_NDIM>
indices_strides) {
LocT out_idx = cg::this_grid().thread_rank();
if (out_idx >= size) {
return;
}
LocT src_elem = out_idx % slice_size;
LocT idx_elem = out_idx / slice_size;
LocT src_loc =
elem_to_loc(src_elem, slice_sizes.data(), src_strides.data(), src_ndim);
#pragma unroll
for (int i = 0; i < NIDX; ++i) {
LocT idx_loc = elem_to_loc_nd<IDX_NDIM>(
idx_elem,
indices_shape.data() + i * IDX_NDIM,
indices_strides.data() + i * IDX_NDIM);
int32_t axis = axes[i];
LocT idx_val = absolute_index(indices[i][idx_loc], src_shape[axis]);
src_loc += idx_val * src_strides[axis];
}
out[out_idx] = src[src_loc];
}
} // namespace mlx::core::cu

View File

@@ -1,65 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/indexing.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
template <
typename T,
typename IdxT,
int NDIM,
bool SrcC,
bool IdxC,
typename LocT>
__global__ void gather_axis(
const T* src,
const IdxT* indices,
T* out,
LocT idx_size_pre,
LocT idx_size_axis,
LocT idx_size_post,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> src_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> idx_strides,
int32_t axis,
int32_t axis_size,
int64_t src_stride_axis,
int64_t idx_stride_axis) {
LocT index = cg::this_grid().thread_rank();
if (index >= idx_size_pre * idx_size_axis * idx_size_post) {
return;
}
auto [x, y, z] = index_to_dims(index, idx_size_axis, idx_size_pre);
LocT elem_idx = z * idx_size_post;
LocT idx_loc = y * idx_stride_axis;
if constexpr (IdxC) {
idx_loc += elem_idx * idx_size_axis + x;
} else {
idx_loc +=
elem_to_loc_nd<NDIM>(elem_idx + x, shape.data(), idx_strides.data());
}
auto idx_val = absolute_index(indices[idx_loc], axis_size);
LocT src_loc = idx_val * src_stride_axis;
if constexpr (SrcC) {
src_loc += elem_idx * axis_size + x;
} else {
src_loc +=
elem_to_loc_nd<NDIM>(elem_idx + x, shape.data(), src_strides.data());
}
LocT out_idx = y * idx_size_post + elem_idx * idx_size_axis + x;
out[out_idx] = src[src_loc];
}
} // namespace mlx::core::cu

View File

@@ -1,30 +0,0 @@
// Copyright © 2025 Apple Inc.
#include <cuda/std/tuple>
#include <cuda/std/type_traits>
namespace mlx::core::cu {
// Convert an absolute index to positions in a 3d grid, assuming the index is
// calculated with:
// index = x * dim1 * dim2 + y * dim2 + z
template <typename T>
inline __host__ __device__ cuda::std::tuple<T, T, T>
index_to_dims(T index, T dim1, T dim2) {
T x = index / (dim1 * dim2);
T y = (index % (dim1 * dim2)) / dim2;
T z = index % dim2;
return cuda::std::make_tuple(x, y, z);
}
// Get absolute index from possible negative index.
template <typename IdxT>
inline __host__ __device__ auto absolute_index(IdxT idx, int32_t size) {
if constexpr (cuda::std::is_unsigned_v<IdxT>) {
return idx;
} else {
return static_cast<int32_t>(idx < 0 ? idx + size : idx);
}
}
} // namespace mlx::core::cu

View File

@@ -1,68 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/indexing.cuh"
#include "mlx/backend/cuda/device/scatter_ops.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
template <
typename T,
typename IdxT,
typename Op,
int NIDX,
int IDX_NDIM,
typename LocT>
__global__ void scatter(
const T* upd,
T* out,
LocT size,
const __grid_constant__ Shape upd_shape,
const __grid_constant__ Strides upd_strides,
int32_t upd_ndim,
LocT upd_post_idx_size,
const __grid_constant__ Shape out_shape,
const __grid_constant__ Strides out_strides,
int32_t out_ndim,
const __grid_constant__ cuda::std::array<int32_t, NIDX> axes,
const __grid_constant__ cuda::std::array<IdxT*, NIDX> indices,
const __grid_constant__ cuda::std::array<int32_t, NIDX * IDX_NDIM>
indices_shape,
const __grid_constant__ cuda::std::array<int64_t, NIDX * IDX_NDIM>
indices_strides) {
LocT upd_idx = cg::this_grid().thread_rank();
if (upd_idx >= size) {
return;
}
LocT out_elem = upd_idx % upd_post_idx_size;
LocT idx_elem = upd_idx / upd_post_idx_size;
LocT out_idx = elem_to_loc(
out_elem, upd_shape.data() + IDX_NDIM, out_strides.data(), out_ndim);
#pragma unroll
for (int i = 0; i < NIDX; ++i) {
LocT idx_loc = elem_to_loc_nd<IDX_NDIM>(
idx_elem,
indices_shape.data() + i * IDX_NDIM,
indices_strides.data() + i * IDX_NDIM);
int32_t axis = axes[i];
LocT idx_val = absolute_index(indices[i][idx_loc], out_shape[axis]);
out_idx += idx_val * out_strides[axis];
}
LocT upd_loc = elem_to_loc(
out_elem + idx_elem * upd_post_idx_size,
upd_shape.data(),
upd_strides.data(),
upd_ndim);
Op{}(out + out_idx, upd[upd_loc]);
}
} // namespace mlx::core::cu

View File

@@ -1,67 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/indexing.cuh"
#include "mlx/backend/cuda/device/scatter_ops.cuh"
#include "mlx/backend/cuda/device/utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
template <
typename T,
typename IdxT,
typename Op,
int NDIM,
bool UpdC,
bool IdxC,
typename LocT>
__global__ void scatter_axis(
const T* upd,
const IdxT* indices,
T* out,
LocT idx_size_pre,
LocT idx_size_axis,
LocT idx_size_post,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> upd_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> idx_strides,
int32_t axis,
int32_t axis_size,
int64_t upd_stride_axis,
int64_t idx_stride_axis) {
LocT index = cg::this_grid().thread_rank();
if (index >= idx_size_pre * idx_size_axis * idx_size_post) {
return;
}
auto [x, y, z] = index_to_dims(index, idx_size_axis, idx_size_pre);
LocT elem_idx = z * idx_size_post;
LocT idx_loc = y * idx_stride_axis;
if constexpr (IdxC) {
idx_loc += elem_idx * idx_size_axis + x;
} else {
idx_loc +=
elem_to_loc_nd<NDIM>(elem_idx + x, shape.data(), idx_strides.data());
}
auto idx_val = absolute_index(indices[idx_loc], axis_size);
LocT upd_loc = y * upd_stride_axis;
if constexpr (UpdC) {
upd_loc += elem_idx * idx_size_axis + x;
} else {
upd_loc +=
elem_to_loc_nd<NDIM>(elem_idx + x, shape.data(), upd_strides.data());
}
LocT out_idx = idx_val * idx_size_post + elem_idx * axis_size + x;
Op{}(out + out_idx, upd[upd_loc]);
}
} // namespace mlx::core::cu

View File

@@ -1,44 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device/atomic_ops.cuh"
namespace mlx::core::cu {
struct ScatterAssign {
template <typename T>
__device__ void operator()(T* out, T val) const {
*out = val;
}
};
struct ScatterSum {
template <typename T>
__device__ void operator()(T* out, T val) const {
atomic_add(out, val);
}
};
struct ScatterProd {
template <typename T>
__device__ void operator()(T* out, T val) const {
atomic_prod(out, val);
}
};
struct ScatterMax {
template <typename T>
__device__ void operator()(T* out, T val) const {
atomic_max(out, val);
}
};
struct ScatterMin {
template <typename T>
__device__ void operator()(T* out, T val) const {
atomic_min(out, val);
}
};
} // namespace mlx::core::cu

View File

@@ -1,13 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
namespace mlx::core::cu {
struct Select {
template <typename T>
__device__ T operator()(bool condition, T x, T y) {
return condition ? x : y;
}
};
} // namespace mlx::core::cu

View File

@@ -1,447 +0,0 @@
// Copyright © 2025 Apple Inc.
// This file must not include any host-only code, utilies that work under both
// host and device can be put here.
//
// See more about the requirements at:
// https://docs.nvidia.com/cuda/nvrtc/#language
#pragma once
#include "mlx/backend/cuda/device/complex.cuh"
#include "mlx/backend/cuda/device/config.h"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda/std/array>
#include <cuda/std/limits>
#include <cuda/std/tuple>
namespace mlx::core::cu {
///////////////////////////////////////////////////////////////////////////////
// CUDA kernel utils
///////////////////////////////////////////////////////////////////////////////
// To pass shape/strides to kernels via constant memory, their size must be
// known at compile time.
using Shape = cuda::std::array<int32_t, MAX_NDIM>;
using Strides = cuda::std::array<int64_t, MAX_NDIM>;
// Vectorized load/store.
template <typename T, int N>
struct alignas(sizeof(T) * N) AlignedVector {
T val[N];
__device__ T& operator[](int i) {
return val[i];
}
__device__ T operator[](int i) const {
return val[i];
}
};
template <int N, typename T>
inline __host__ __device__ bool is_aligned(T* x) {
return (reinterpret_cast<uintptr_t>(x) % (N * sizeof(T))) == 0;
}
template <int N, typename T>
inline __device__ AlignedVector<T, N> unsafe_load_vector(
const T* ptr,
uint32_t offset) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
}
template <int N, typename T>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset) {
if (is_aligned<N>(ptr)) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = ptr[offset * N + i];
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N>
load_vector(const T* ptr, uint32_t offset, SizeT size, T fallback) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] = (N * offset + i) < size ? ptr[offset * N + i] : fallback;
}
return v;
}
}
template <int N, typename T, typename SizeT>
inline __device__ AlignedVector<T, N> load_vector(
const T* ptr,
uint32_t offset,
SizeT size,
int64_t stride,
T fallback) {
if (is_aligned<N>(ptr) && stride == 1 && (offset + 1) * N <= size) {
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
return from[offset];
} else {
AlignedVector<T, N> v;
#pragma unroll
for (int i = 0; i < N; ++i) {
v[i] =
(N * offset + i) < size ? ptr[stride * (offset * N + i)] : fallback;
}
return v;
}
}
template <int N, typename T>
inline __device__ void
unsafe_store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
}
template <int N, typename T>
inline __device__ void
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
if (is_aligned<N>(ptr)) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
#pragma unroll
for (int i = 0; i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
template <int N, typename T, typename SizeT>
inline __device__ void store_vector(
T* ptr,
uint32_t offset,
const AlignedVector<T, N>& vec,
SizeT size) {
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
to[offset] = vec;
} else {
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
ptr[offset * N + i] = vec[i];
}
}
}
///////////////////////////////////////////////////////////////////////////////
// Type limits utils
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename = void>
struct Limits {
static constexpr __host__ __device__ T max() {
return cuda::std::numeric_limits<T>::max();
}
static constexpr __host__ __device__ T min() {
return cuda::std::numeric_limits<T>::min();
}
static constexpr __host__ __device__ T finite_max() {
return cuda::std::numeric_limits<T>::max();
}
static constexpr __host__ __device__ T finite_min() {
return cuda::std::numeric_limits<T>::min();
}
};
template <typename T>
struct Limits<
T,
cuda::std::enable_if_t<
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double>>> {
static constexpr __host__ __device__ T max() {
return cuda::std::numeric_limits<T>::infinity();
}
static constexpr __host__ __device__ T min() {
return -cuda::std::numeric_limits<T>::infinity();
}
static constexpr __host__ __device__ T finite_max() {
return cuda::std::numeric_limits<T>::max();
}
static constexpr __host__ __device__ T finite_min() {
return cuda::std::numeric_limits<T>::lowest();
}
};
// CUDA 11 does not have host side arithmatic operators for half types.
template <typename T>
struct Limits<
T,
cuda::std::enable_if_t<
cuda::std::is_same_v<T, __half> ||
cuda::std::is_same_v<T, __nv_bfloat16>>> {
static constexpr __host__ __device__ T max() {
return cuda::std::numeric_limits<T>::infinity();
}
static constexpr __host__ __device__ T min() {
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
return -cuda::std::numeric_limits<float>::infinity();
#else
return -cuda::std::numeric_limits<T>::infinity();
#endif
}
static constexpr __host__ __device__ T finite_max() {
return cuda::std::numeric_limits<T>::max();
}
static constexpr __host__ __device__ T finite_min() {
#if CUDART_VERSION < 12000 && __CUDA_ARCH__ < 800
return cuda::std::numeric_limits<float>::lowest();
#else
return cuda::std::numeric_limits<T>::lowest();
#endif
}
};
template <>
struct Limits<bool> {
static constexpr __host__ __device__ bool max() {
return true;
}
static constexpr __host__ __device__ bool min() {
return false;
}
};
template <typename T>
struct Limits<complex_t<T>> {
static constexpr __host__ __device__ complex_t<T> max() {
return {Limits<T>::max(), Limits<T>::max()};
}
static constexpr __host__ __device__ complex_t<T> min() {
return {Limits<T>::min(), Limits<T>::min()};
}
};
///////////////////////////////////////////////////////////////////////////////
// Indexing utils
///////////////////////////////////////////////////////////////////////////////
template <typename IdxT = int64_t>
inline __host__ __device__ IdxT
elem_to_loc(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
IdxT loc = 0;
for (int i = ndim - 1; i >= 0 && elem > 0; --i) {
loc += (elem % shape[i]) * IdxT(strides[i]);
elem /= shape[i];
}
return loc;
}
// Optimize when the ndim is known at compile time.
template <int NDIM, typename IdxT = int64_t>
inline __host__ __device__ IdxT
elem_to_loc_nd(IdxT elem, const int* shape, const int64_t* strides) {
IdxT loc = 0;
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
loc += (elem % shape[i]) * IdxT(strides[i]);
elem /= shape[i];
}
return loc;
}
template <int NDIM, typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_nd(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides) {
IdxT a_loc = 0;
IdxT b_loc = 0;
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc);
}
template <int NDIM, typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides,
const int64_t* c_strides) {
IdxT a_loc = 0;
IdxT b_loc = 0;
IdxT c_loc = 0;
#pragma unroll
for (int i = NDIM - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
c_loc += dim_idx * IdxT(c_strides[i]);
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides,
int ndim) {
IdxT a_loc = 0;
IdxT b_loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc);
}
template <typename IdxT = int64_t>
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
IdxT elem,
const int* shape,
const int64_t* a_strides,
const int64_t* b_strides,
const int64_t* c_strides,
int ndim) {
IdxT a_loc = 0;
IdxT b_loc = 0;
IdxT c_loc = 0;
for (int i = ndim - 1; i >= 0; --i) {
int dim_idx = elem % shape[i];
a_loc += dim_idx * IdxT(a_strides[i]);
b_loc += dim_idx * IdxT(b_strides[i]);
c_loc += dim_idx * IdxT(c_strides[i]);
elem /= shape[i];
}
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
}
///////////////////////////////////////////////////////////////////////////////
// Elem to loc in a loop utils
///////////////////////////////////////////////////////////////////////////////
template <int DIM, bool General = true, typename OffsetT = size_t>
struct LoopedElemToLoc {
int dim;
LoopedElemToLoc<DIM - 1, General, OffsetT> inner_looper;
OffsetT offset{0};
int index{0};
__device__ LoopedElemToLoc(int dim) : dim(dim), inner_looper(dim - 1) {}
__device__ void next(const int* shape, const int64_t* strides) {
if (dim == 0) {
return;
}
index++;
offset += OffsetT(strides[dim - 1]);
if (index >= shape[dim - 1]) {
index = 0;
inner_looper.next(shape, strides);
offset = inner_looper.offset;
}
}
__device__ void next(int n, const int* shape, const int64_t* strides) {
if (dim == 0) {
return;
}
index += n;
offset += n * OffsetT(strides[dim - 1]);
if (index >= shape[dim - 1]) {
int extra = index - shape[dim - 1];
if (extra >= shape[dim - 1]) {
inner_looper.next(1 + extra / shape[dim - 1], shape, strides);
extra = extra % shape[dim - 1];
} else {
inner_looper.next(shape, strides);
}
index = 0;
offset = inner_looper.offset;
if (extra > 0) {
next(extra, shape, strides);
}
}
}
__device__ OffsetT location() {
return offset;
}
};
template <typename OffsetT>
struct LoopedElemToLoc<1, true, OffsetT> {
int dim;
OffsetT offset{0};
int index{0};
__device__ LoopedElemToLoc(int dim) : dim(dim) {}
__device__ void next(const int* shape, const int64_t* strides) {
index++;
if (dim > 1) {
offset = elem_to_loc<OffsetT>(index, shape, strides, dim);
} else {
offset += OffsetT(strides[0]);
}
}
__device__ void next(int n, const int* shape, const int64_t* strides) {
index += n;
if (dim > 1) {
offset = elem_to_loc<OffsetT>(index, shape, strides, dim);
} else {
offset = index * OffsetT(strides[0]);
}
}
__device__ OffsetT location() {
return offset;
}
};
template <typename OffsetT>
struct LoopedElemToLoc<1, false, OffsetT> {
OffsetT offset{0};
__device__ LoopedElemToLoc(int) {}
__device__ void next(const int*, const int64_t* strides) {
offset += OffsetT(strides[0]);
}
__device__ void next(int n, const int*, const int64_t* strides) {
offset += n * OffsetT(strides[0]);
}
__device__ OffsetT location() {
return offset;
}
};
} // namespace mlx::core::cu

View File

@@ -19,6 +19,8 @@ void new_stream(Stream s) {
cudaFree(nullptr);
// Ensure the static stream objects get created.
cu::get_command_encoder(s);
// The main thread is safe to free buffers.
cu::allocator().register_this_thread();
}
void eval(array& arr) {
@@ -35,17 +37,22 @@ void eval(array& arr) {
}
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
// Keep used buffers alive until kernel finishes running.
for (auto& in : arr.inputs()) {
// Except for the donated one.
if (in.data_shared_ptr() != arr.data_shared_ptr()) {
encoder.add_temporary(in);
if (encoder.has_gpu_work()) {
// Keep used buffers alive until kernel finishes running.
std::unordered_set<std::shared_ptr<array::Data>> buffers;
for (auto& in : arr.inputs()) {
buffers.insert(in.data_shared_ptr());
}
for (auto& s : arr.siblings()) {
buffers.insert(s.data_shared_ptr());
}
// Remove the output if it was donated to by an input.
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
buffers.erase(it);
}
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
}
for (auto& s : arr.siblings()) {
encoder.add_temporary(s);
}
encoder.maybe_commit();
encoder.end_encoding();
}
void finalize(Stream s) {
@@ -55,7 +62,7 @@ void finalize(Stream s) {
void synchronize(Stream s) {
nvtx3::scoped_range r("gpu::synchronize");
cu::get_command_encoder(s).synchronize();
cu::get_stream(s).synchronize();
}
} // namespace mlx::core::gpu

View File

@@ -61,9 +61,7 @@ void CudaEvent::wait(Stream s) {
if (s.device == mlx::core::Device::cpu) {
scheduler::enqueue(s, [*this]() mutable { wait(); });
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
wait(enc.stream());
wait(cu::get_stream(s).last_cuda_stream());
}
}
@@ -76,9 +74,7 @@ void CudaEvent::record(Stream s) {
if (s.device == mlx::core::Device::cpu) {
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
} else {
auto& enc = cu::get_command_encoder(s);
enc.commit();
record(enc.stream());
record(cu::get_stream(s).last_cuda_stream());
}
}
@@ -90,6 +86,8 @@ bool CudaEvent::completed() const {
// SharedEvent implementations
///////////////////////////////////////////////////////////////////////////////
namespace {
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
uint64_t current;
while ((current = ac->load()) < value) {
@@ -110,26 +108,26 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
event_signal(ac, value);
}
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
}
} // namespace
SharedEvent::SharedEvent() {
buf_ = std::shared_ptr<Buffer>(
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
allocator().free(*ptr);
delete ptr;
});
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
// Allocate cuda::atomic on managed memory.
Atomic* ac;
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
new (ac) Atomic(0);
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
ptr->~Atomic();
allocator().cuda_free(ptr);
});
}
void SharedEvent::wait(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::wait");
event_wait(to_atomic(buf_), value);
event_wait(ac_.get(), value);
}
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::wait(Stream s, uint64_t value) {
@@ -138,19 +136,21 @@ void SharedEvent::wait(Stream s, uint64_t value) {
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.commit();
wait(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { wait(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
void SharedEvent::signal(uint64_t value) {
nvtx3::scoped_range r("cu::SharedEvent::signal");
event_signal(to_atomic(buf_), value);
event_signal(ac_.get(), value);
}
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
}
void SharedEvent::signal(Stream s, uint64_t value) {
@@ -162,20 +162,22 @@ void SharedEvent::signal(Stream s, uint64_t value) {
scheduler::enqueue(s, [*this, value]() mutable { signal(stream, value); });
} else {
auto& encoder = get_command_encoder(s);
encoder.commit();
signal(encoder.stream(), value);
encoder.add_completed_handler([buf = buf_]() {});
encoder.launch_kernel(
encoder.stream().last_cuda_stream(),
[this, value](cudaStream_t stream) { signal(stream, value); });
encoder.add_completed_handler([ac = ac_]() {});
encoder.end_encoding();
}
}
bool SharedEvent::is_signaled(uint64_t value) const {
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
return to_atomic(buf_)->load() >= value;
return ac_->load() >= value;
}
uint64_t SharedEvent::value() const {
nvtx3::scoped_range r("cu::SharedEvent::value");
return to_atomic(buf_)->load();
return ac_->load();
}
} // namespace cu

View File

@@ -2,7 +2,6 @@
#pragma once
#include "mlx/allocator.h"
#include "mlx/stream.h"
#include <cuda_runtime.h>
@@ -56,8 +55,12 @@ class SharedEvent {
bool is_signaled(uint64_t value) const;
uint64_t value() const;
const std::shared_ptr<Atomic>& atomic() const {
return ac_;
}
private:
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
std::shared_ptr<Atomic> ac_;
};
} // namespace mlx::core::cu

View File

@@ -1,73 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
namespace mlx::core::cu {
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
nullptr);
a_it.step();
b_it.step();
}
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
b.data<int8_t>() + b.itemsize() * b_it.loc,
c.data<int8_t>() + c.itemsize() * c_it.loc,
alpha,
beta);
a_it.step();
b_it.step();
c_it.step();
}
}
} // namespace mlx::core::cu

View File

@@ -1,208 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
__global__ void set_mm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
const __grid_constant__ Strides c_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
&batch_mode,
sizeof(batch_mode)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
{static_cast<int>(batch_count * 3)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_mm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
nullptr);
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{static_cast<int>(batch_count * 4)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_addmm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
reinterpret_cast<void*>(c_pointers),
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@@ -1,284 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/dtype_utils.h"
#include "mlx/utils.h"
#include <fmt/format.h>
namespace mlx::core::cu {
struct CublasPreference {
CublasPreference(Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
uint64_t MiB = 1024 * 1024;
uint64_t workspace_size =
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
pref_,
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
&workspace_size,
sizeof(uint64_t)));
}
~CublasPreference() {
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
}
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUBLAS_COMPUTE_32F;
case bfloat16:
return CUBLAS_COMPUTE_32F;
case float32:
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
: CUBLAS_COMPUTE_32F;
case float64:
case complex64:
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
switch (dtype) {
case float16:
return CUDA_R_16F;
case bfloat16:
return CUDA_R_16BF;
case float32:
return CUDA_R_32F;
case float64:
return CUDA_R_64F;
case complex64:
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
}
}
cublasLtMatrixLayout_t create_matrix_layout(
cudaDataType_t type,
uint64_t rows,
uint64_t cols,
bool transposed,
int64_t ld,
int32_t batch_count,
int64_t batch_stride) {
cublasLtMatrixLayout_t desc;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
if (batch_count > 1) {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
&batch_count,
sizeof(int32_t)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
&batch_stride,
sizeof(int64_t)));
}
return desc;
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride)
: handle_(device.lt_handle()),
pref_(cublas_preference(device)),
M_(a_rows),
N_(b_cols) {
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
auto scale_type = dtype_to_cublas_type(dtype);
if (dtype == bfloat16 || dtype == float16) {
scale_type = CUDA_R_32F;
}
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_POINTER_MODE,
&pointer_mode,
sizeof(int32_t)));
cublasOperation_t op = CUBLAS_OP_N;
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSA,
&op,
sizeof(cublasOperation_t)));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
matmul_desc_,
CUBLASLT_MATMUL_DESC_TRANSB,
&op,
sizeof(cublasOperation_t)));
auto type = dtype_to_cublas_type(dtype);
a_desc_ = create_matrix_layout(
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
b_desc_ = create_matrix_layout(
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
out_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
Matmul::Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: Matmul(
device,
dtype,
a_transposed,
a_rows,
a_cols,
lda,
b_transposed,
b_rows,
b_cols,
ldb,
batch_count,
a_batch_stride,
b_batch_stride) {
auto type = dtype_to_cublas_type(dtype);
c_desc_ = create_matrix_layout(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
Matmul::~Matmul() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void Matmul::run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha /* = 1 */,
float beta /* = 0 */) {
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
int ret = 0;
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
handle_,
matmul_desc_,
a_desc_,
b_desc_,
c ? c_desc_ : out_desc_,
out_desc_,
pref_,
1,
&heuristic_,
&ret));
if (ret == 0) {
throw std::runtime_error("Can not find algorithm for matmul.");
}
}
void* workspace_ptr = nullptr;
if (heuristic_.workspaceSize > 0) {
// Ensure workspace is 256-byte aligned
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
array workspace(
allocator::malloc(nbytes),
{static_cast<int>(heuristic_.workspaceSize)},
int8);
encoder.add_temporary(workspace);
workspace_ptr = workspace.data<void>();
}
auto capture = encoder.capture_context();
CHECK_CUBLAS_ERROR(cublasLtMatmul(
handle_,
matmul_desc_,
&alpha,
a,
a_desc_,
b,
b_desc_,
&beta,
c ? c : out,
c ? c_desc_ : out_desc_,
out,
out_desc_,
&heuristic_.algo,
workspace_ptr,
heuristic_.workspaceSize,
encoder.stream()));
}
void Matmul::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c /* = std::nullopt */,
float alpha /* = 1 */,
float beta /* = 0 */) {
encoder.set_input_array(a);
encoder.set_input_array(b);
if (c) {
encoder.set_input_array(*c);
}
encoder.set_output_array(out);
run_impl(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c ? c->data<void>() : nullptr,
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@@ -1,100 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/cuda/device.h"
#include <cublasLt.h>
#include <optional>
namespace mlx::core::cu {
class Matmul {
public:
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride);
Matmul(
Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
uint64_t a_cols,
int64_t lda,
bool b_transposed,
uint64_t b_rows,
uint64_t b_cols,
int64_t ldb,
int64_t ldc,
int32_t batch_count,
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride);
~Matmul();
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c = std::nullopt,
float alpha = 1,
float beta = 0);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides);
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_impl(
cu::CommandEncoder& encoder,
void* out,
const void* a,
const void* b,
const void* c,
float alpha = 1,
float beta = 0);
uint64_t M_;
uint64_t N_;
cublasLtMatmulPreference_t pref_{nullptr};
cublasLtHandle_t handle_{nullptr};
cublasLtMatmulDesc_t matmul_desc_{nullptr};
cublasLtMatrixLayout_t a_desc_{nullptr};
cublasLtMatrixLayout_t b_desc_{nullptr};
cublasLtMatrixLayout_t c_desc_{nullptr};
cublasLtMatrixLayout_t out_desc_{nullptr};
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace mlx::core::cu

View File

@@ -1,173 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/gemms/gemv.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/dtype_utils.h"
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
static constexpr int rows_per_block = 8;
template <typename T, int rows_per_block, int n_per_thread>
__device__ void
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<WARP_SIZE>(block);
auto g_idx = block.group_index();
auto t_idx = block.thread_index();
int row = g_idx.x * rows_per_block + t_idx.y;
if (row < rows) {
float sum = 0.0f;
for (int col = n_per_thread * warp.thread_rank(); col < cols;
col += (WARP_SIZE * n_per_thread)) {
auto local_mat =
unsafe_load_vector<n_per_thread>(mat + row * cols + col, 0);
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
#pragma unroll
for (int j = 0; j < n_per_thread; ++j) {
sum +=
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
}
}
sum = cg::reduce(warp, sum, cg::plus<float>{});
if (warp.thread_rank() == 0) {
out[row] = static_cast<T>(sum);
}
}
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
}
template <typename T, int rows_per_block, int n_per_thread>
__global__ void gemv_batched(
const T* mat,
const T* vec,
T* out,
int rows,
int cols,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides mat_batch_strides,
const __grid_constant__ Strides vec_batch_strides,
int batch_ndim) {
auto block = cg::this_thread_block();
auto batch_idx = block.group_index().y;
auto [vec_offset, mat_offset] = elem_to_loc(
batch_idx,
batch_shape.data(),
vec_batch_strides.data(),
mat_batch_strides.data(),
batch_ndim);
gemv_impl<T, rows_per_block, n_per_thread>(
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
}
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
return K % 32 == 0 && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
}
template <typename F>
void dispatch_n_per_thread(int n_per_thread, F&& f) {
switch (n_per_thread) {
case 1:
f(std::integral_constant<int, 1>{});
break;
case 2:
f(std::integral_constant<int, 2>{});
break;
case 4:
f(std::integral_constant<int, 4>{});
break;
}
}
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
dim3 block_dims{WARP_SIZE, rows_per_block};
const DataType* mat;
const DataType* vec;
int rows;
int cols = K;
auto mat_strides = const_param(a_batch_strides);
auto vec_strides = const_param(b_batch_strides);
if (M == 1) {
mat = b.data<DataType>();
vec = a.data<DataType>();
rows = N;
std::swap(mat_strides, vec_strides);
} else {
mat = a.data<DataType>();
vec = b.data<DataType>();
rows = M;
}
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
int n_per_t;
if (K % 128 == 0 && is_aligned<4>(mat) && is_aligned<4>(vec)) {
n_per_t = 4;
} else if (K % 64 == 0 && is_aligned<2>(mat) && is_aligned<2>(vec)) {
n_per_t = 2;
} else {
n_per_t = 1;
}
dispatch_n_per_thread(n_per_t, [&](auto n_per_thread) {
if (batch_count == 1) {
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread()>;
encoder.add_kernel_node(
kernel,
num_blocks_x,
block_dims,
0,
mat,
vec,
out.data<DataType>(),
rows,
cols);
} else {
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread()>;
encoder.add_kernel_node(
kernel,
dim3{num_blocks_x, batch_count},
block_dims,
0,
mat,
vec,
out.data<DataType>(),
rows,
cols,
const_param(batch_shape),
mat_strides,
vec_strides,
batch_shape.size());
}
});
});
}
} // namespace mlx::core::cu

View File

@@ -1,24 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/backend/cuda/device.h"
namespace mlx::core::cu {
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
void gemv(
const array& a,
const array& b,
array& out,
int M,
int N,
int K,
uint32_t batch_count,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
CommandEncoder& encoder);
} // namespace mlx::core::cu

View File

@@ -1,428 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include "cuda_jit_sources.h"
#include <cuda.h>
#include <fmt/format.h>
#include <nvrtc.h>
#include <nvtx3/nvtx3.hpp>
#include <cassert>
#include <numeric>
namespace mlx::core {
namespace {
constexpr const char* g_scatter_ops[] = {"Max", "Min", "Sum", "Prod", "Assign"};
void append_indices_arg(
cu::KernelArgs& args,
const std::vector<array>& inputs,
int nidx,
int idx_ndim) {
SmallVector<const void*> indices(nidx);
for (int i = 0; i < nidx; ++i) {
indices[i] = inputs[i + 1].data<void>();
}
args.append(std::move(indices));
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].shape().begin(),
idx_ndim,
indices_shape.data() + i * idx_ndim);
}
args.append(std::move(indices_shape));
SmallVector<int64_t> indices_strides(nidx * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy_n(
inputs[i + 1].strides().begin(),
idx_ndim,
indices_strides.data() + i * idx_ndim);
}
args.append(std::move(indices_strides));
}
} // namespace
void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Gather::eval_gpu");
assert(inputs.size() > 0);
const auto& src = inputs[0];
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
int nidx = inputs.size() - 1;
Dtype idx_dtype = nidx > 0 ? inputs[1].dtype() : int32;
int32_t idx_ndim = nidx > 0 ? inputs[1].ndim() : 0;
bool large = (nidx > 0 && inputs[1].size() > INT32_MAX) ||
(src.size() > INT32_MAX) || (out.size() > INT32_MAX);
uint32_t slice_size = std::accumulate(
slice_sizes_.begin(), slice_sizes_.end(), 1, std::multiplies<uint32_t>());
std::string module_name = fmt::format(
"gather_{}_{}_{}",
dtype_to_string(out.dtype()),
dtype_to_string(idx_dtype),
nidx);
auto& s = stream();
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
std::vector<std::string> kernel_names;
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
for (int large = 0; large <= 1; ++large) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::gather<{}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx_dtype),
nidx,
ndim,
large ? "int64_t" : "int32_t"));
}
}
return std::make_pair(jit_source_gather, std::move(kernel_names));
});
cu::KernelArgs args;
args.append(src);
args.append(out);
if (large) {
args.append<int64_t>(out.size());
} else {
args.append<int32_t>(out.size());
}
args.append_ndim(src.shape());
args.append_ndim(src.strides());
args.append<int32_t>(src.ndim());
args.append_ndim(slice_sizes_);
args.append(slice_size);
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(
"mlx::core::cu::gather<{}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx_dtype),
nidx,
idx_ndim,
large ? "int64_t" : "int32_t");
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(out, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Gather::eval_gpu");
assert(inputs.size() > 1);
auto& upd = inputs.back();
// Copy src into out.
CopyType copy_type;
if (inputs[0].data_size() == 1) {
copy_type = CopyType::Scalar;
} else if (inputs[0].flags().row_contiguous) {
copy_type = CopyType::Vector;
} else {
copy_type = CopyType::General;
}
copy_gpu(inputs[0], out, copy_type);
// Empty update.
if (upd.size() == 0) {
return;
}
int nidx = axes_.size();
Dtype idx_dtype = nidx > 0 ? inputs[1].dtype() : int32;
int32_t idx_ndim = nidx > 0 ? inputs[1].ndim() : 0;
bool large = (nidx > 0 && inputs[1].size() > INT32_MAX) ||
(upd.size() > INT32_MAX) || (out.size() > INT32_MAX);
int32_t upd_post_idx_size = std::accumulate(
upd.shape().begin() + idx_ndim,
upd.shape().end(),
1,
std::multiplies<int32_t>());
const char* op = g_scatter_ops[reduce_type_];
std::string module_name = fmt::format(
"scatter_{}_{}_{}_{}",
dtype_to_string(out.dtype()),
dtype_to_string(idx_dtype),
op,
nidx);
auto& s = stream();
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
std::vector<std::string> kernel_names;
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
for (int large = 0; large <= 1; ++large) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::scatter<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx_dtype),
op,
nidx,
ndim,
large ? "int64_t" : "int32_t"));
}
}
return std::make_pair(jit_source_scatter, std::move(kernel_names));
});
cu::KernelArgs args;
args.append(upd);
args.append(out);
if (large) {
args.append<int64_t>(upd.size());
} else {
args.append<int32_t>(upd.size());
}
args.append_ndim(upd.shape());
args.append_ndim(upd.strides());
args.append<int32_t>(upd.ndim());
if (large) {
args.append<int64_t>(upd_post_idx_size);
} else {
args.append<int32_t>(upd_post_idx_size);
}
args.append_ndim(out.shape());
args.append_ndim(out.strides());
args.append<int32_t>(out.ndim());
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
append_indices_arg(args, inputs, nidx, idx_ndim);
std::string kernel_name = fmt::format(
"mlx::core::cu::scatter<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx_dtype),
op,
nidx,
idx_ndim,
large ? "int64_t" : "int32_t");
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(upd, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("GatherAxis::eval_gpu");
assert(inputs.size() > 1);
const auto& src = inputs[0];
const auto& idx = inputs[1];
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
std::string module_name = fmt::format(
"gather_axis_{}_{}",
dtype_to_string(out.dtype()),
dtype_to_string(idx.dtype()));
auto& s = stream();
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
std::vector<std::string> kernel_names;
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
for (int contiguous = 0; contiguous < 4; ++contiguous) {
for (int large = 0; large <= 1; ++large) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::gather_axis<{}, {}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx.dtype()),
ndim,
contiguous & 1 ? true : false,
contiguous & 2 ? true : false,
large ? "int64_t" : "int32_t"));
}
}
}
return std::make_pair(jit_source_gather_axis, std::move(kernel_names));
});
size_t idx_size_pre = 1;
size_t idx_size_post = 1;
for (int i = 0; i < axis_; ++i) {
idx_size_pre *= idx.shape(i);
}
for (int i = axis_ + 1; i < idx.ndim(); ++i) {
idx_size_post *= idx.shape(i);
}
size_t idx_size_axis = idx.shape(axis_);
cu::KernelArgs args;
args.append(src);
args.append(idx);
args.append(out);
if (large) {
args.append<int64_t>(idx_size_pre);
args.append<int64_t>(idx_size_axis);
args.append<int64_t>(idx_size_post);
} else {
args.append<int32_t>(idx_size_pre);
args.append<int32_t>(idx_size_axis);
args.append<int32_t>(idx_size_post);
}
args.append(remove_index(idx.shape(), axis_));
args.append(remove_index(src.strides(), axis_));
args.append(remove_index(idx.strides(), axis_));
args.append<int32_t>(axis_);
args.append(src.shape(axis_));
args.append(src.strides(axis_));
args.append(idx.strides(axis_));
std::string kernel_name = fmt::format(
"mlx::core::cu::gather_axis<{}, {}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx.dtype()),
src.ndim() - 1,
src.flags().row_contiguous,
idx.flags().row_contiguous,
large ? "int64_t" : "int32_t");
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ScatterAxis::eval_gpu");
assert(inputs.size() > 2);
const auto& src = inputs[0];
const auto& idx = inputs[1];
const auto& upd = inputs[2];
// Copy src into out.
CopyType copy_type;
if (src.data_size() == 1) {
copy_type = CopyType::Scalar;
} else if (src.flags().row_contiguous) {
copy_type = CopyType::Vector;
} else {
copy_type = CopyType::General;
}
copy_gpu(src, out, copy_type);
// Empty update.
if (upd.size() == 0) {
return;
}
bool large = idx.size() > INT32_MAX || src.size() > INT32_MAX;
const char* op = reduce_type_ == ScatterAxis::Sum ? "Sum" : "Assign";
std::string module_name = fmt::format(
"scatter_axis_{}_{}_{}",
dtype_to_string(out.dtype()),
dtype_to_string(idx.dtype()),
op);
auto& s = stream();
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
std::vector<std::string> kernel_names;
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
for (int contiguous = 0; contiguous < 4; ++contiguous) {
for (int large = 0; large <= 1; ++large) {
kernel_names.push_back(fmt::format(
"mlx::core::cu::scatter_axis<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx.dtype()),
op,
ndim,
contiguous & 1 ? true : false,
contiguous & 2 ? true : false,
large ? "int64_t" : "int32_t"));
}
}
}
return std::make_pair(jit_source_scatter_axis, std::move(kernel_names));
});
size_t idx_size_pre = 1;
size_t idx_size_post = 1;
for (int i = 0; i < axis_; ++i) {
idx_size_pre *= idx.shape(i);
}
for (int i = axis_ + 1; i < idx.ndim(); ++i) {
idx_size_post *= idx.shape(i);
}
size_t idx_size_axis = idx.shape(axis_);
cu::KernelArgs args;
args.append(upd);
args.append(idx);
args.append(out);
if (large) {
args.append<int64_t>(idx_size_pre);
args.append<int64_t>(idx_size_axis);
args.append<int64_t>(idx_size_post);
} else {
args.append<int32_t>(idx_size_pre);
args.append<int32_t>(idx_size_axis);
args.append<int32_t>(idx_size_post);
}
args.append(remove_index(idx.shape(), axis_));
args.append(remove_index(upd.strides(), axis_));
args.append(remove_index(idx.strides(), axis_));
args.append<int32_t>(axis_);
args.append(out.shape(axis_));
args.append(upd.strides(axis_));
args.append(idx.strides(axis_));
std::string kernel_name = fmt::format(
"mlx::core::cu::scatter_axis<{}, {}, mlx::core::cu::Scatter{}, {}, {}, {}, {}>",
dtype_to_cuda_type(out.dtype()),
dtype_to_cuda_type(idx.dtype()),
op,
idx.ndim() - 1,
upd.flags().row_contiguous,
idx.flags().row_contiguous,
large ? "int64_t" : "int32_t");
auto& encoder = cu::get_command_encoder(s);
for (const auto& in : inputs) {
encoder.set_input_array(in);
}
encoder.set_output_array(out);
auto kernel = mod.get_kernel(kernel_name);
auto [num_blocks, block_dims] = get_launch_args(idx, large);
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
}
} // namespace mlx::core

View File

@@ -0,0 +1,121 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include <thrust/iterator/iterator_adaptor.h>
#include <cuda/std/utility>
#include "mlx/backend/cuda/kernel_utils.cuh"
namespace mlx::core::cu {
// Iterating non-contiguous array.
template <typename Iterator, typename IdxT = int64_t>
class general_iterator
: public thrust::
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
public:
using super_t =
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
using reference = typename super_t::reference;
using difference_type = typename super_t::difference_type;
__host__ __device__ general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides)
: super_t(it),
index_(index),
ndim_(ndim),
shape_(cuda::std::move(shape)),
strides_(cuda::std::move(strides)) {}
__host__ __device__ IdxT index() const {
return index_;
}
__host__ __device__ const Shape& shape() const {
return shape_;
}
__host__ __device__ const Strides& strides() const {
return strides_;
}
private:
friend class thrust::iterator_core_access;
__host__ __device__ bool equal(const general_iterator& other) const {
return this->base() == other.base() && this->index() == other.index();
}
__host__ __device__ void advance(difference_type n) {
this->index_ += n;
}
__host__ __device__ void increment() {
this->index_ += 1;
}
__host__ __device__ void decrement() {
this->index_ -= 1;
}
__host__ __device__ difference_type
distance_to(const general_iterator& other) const {
_CCCL_ASSERT(
this->base() == other.base(),
"Underlying iterator must point to same base iterator");
return other.index() - this->index();
}
// The dereference is device-only to avoid accidental running in host.
__device__ typename super_t::reference dereference() const {
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
return *(this->base() + offset);
}
IdxT index_;
int ndim_;
Shape shape_;
Strides strides_;
};
template <typename IdxT, typename Iterator>
__host__ __device__ auto make_general_iterator(
Iterator it,
IdxT index,
int ndim,
Shape shape,
Strides strides) {
return general_iterator<Iterator, IdxT>(
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterator(
Iterator it,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
return make_general_iterator<IdxT>(
it, 0, shape.size(), const_param(shape), const_param(strides));
}
template <typename IdxT, typename Iterator>
auto make_general_iterators(
Iterator it,
IdxT size,
const std::vector<int32_t>& shape,
const std::vector<int64_t>& strides) {
auto ndim = shape.size();
auto shape_arg = const_param(shape);
auto strides_arg = const_param(strides);
return std::make_pair(
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
}
} // namespace mlx::core::cu

View File

@@ -1,349 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/jit_module.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/version.h"
#include "cuda_jit_sources.h"
#include <cstdlib>
#include <filesystem>
#include <fstream>
#include <fmt/format.h>
#include <nvrtc.h>
#include <unistd.h>
namespace mlx::core::cu {
namespace {
#define CHECK_NVRTC_ERROR(cmd) check_nvrtc_error(#cmd, (cmd))
void check_nvrtc_error(const char* name, nvrtcResult err) {
if (err != NVRTC_SUCCESS) {
throw std::runtime_error(
fmt::format("{} failed: {}", name, nvrtcGetErrorString(err)));
}
}
// Return the location of the CUDA toolkit.
const std::string& cuda_home() {
static std::string home = []() -> std::string {
const char* home = std::getenv("CUDA_HOME");
if (home) {
return home;
}
home = std::getenv("CUDA_PATH");
if (home) {
return home;
}
#if defined(__linux__)
home = "/usr/local/cuda";
if (std::filesystem::exists(home)) {
return home;
}
#endif
throw std::runtime_error(
"Environment variable CUDA_HOME or CUDA_PATH is not set.");
}();
return home;
}
// Return the location of CCCL headers shipped with the distribution.
const std::string& cccl_dir() {
static std::string dir = []() {
std::filesystem::path path;
#if defined(MLX_CCCL_DIR)
// First search the install dir if defined.
path = MLX_CCCL_DIR;
if (std::filesystem::exists(path)) {
return path.string();
}
#endif
// Then search dynamically from the dir of libmlx.so file.
path = current_binary_dir().parent_path() / "include" / "cccl";
if (std::filesystem::exists(path)) {
return path.string();
}
// Finally check the environment variable.
path = std::getenv("MLX_CCCL_DIR");
if (!path.empty() && std::filesystem::exists(path)) {
return path.string();
}
return std::string();
}();
return dir;
}
// Get the cache directory for storing compiled results.
const std::filesystem::path& ptx_cache_dir() {
static std::filesystem::path cache = []() -> std::filesystem::path {
std::filesystem::path cache;
if (auto c = std::getenv("MLX_PTX_CACHE_DIR"); c) {
cache = c;
} else {
cache =
std::filesystem::temp_directory_path() / "mlx" / version() / "ptx";
}
if (!std::filesystem::exists(cache)) {
std::error_code error;
if (!std::filesystem::create_directories(cache, error)) {
return std::filesystem::path();
}
}
return cache;
}();
return cache;
}
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
bool read_cached_ptx(
const std::filesystem::path& cache_dir,
const std::string& module_name,
std::vector<char>* ptx,
std::vector<std::pair<std::string, std::string>>* ptx_kernels) {
if (cache_dir.empty()) {
return false;
}
auto ptx_path = cache_dir / (module_name + ".ptx");
std::error_code error;
auto ptx_size = std::filesystem::file_size(ptx_path, error);
if (error) {
return false;
}
std::ifstream ptx_file(ptx_path, std::ios::binary);
if (!ptx_file.good()) {
return false;
}
ptx->resize(ptx_size);
ptx_file.read(ptx->data(), ptx_size);
std::ifstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
std::string line;
while (std::getline(txt_file, line)) {
auto tab = line.find('\t');
if (tab != std::string::npos) {
ptx_kernels->emplace_back(line.substr(0, tab), line.substr(tab + 1));
}
}
return true;
}
// Write the |ptx| and |ptx_kernels| to |cache_dir| with |name|.
void write_cached_ptx(
const std::filesystem::path& cache_dir,
const std::string& module_name,
const std::vector<char>& ptx,
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
const std::string& source_code) {
if (cache_dir.empty()) {
return;
}
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
if (!ptx.empty()) {
ptx_file.write(&ptx.front(), ptx.size());
}
std::ofstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
for (const auto& [name, mangled] : ptx_kernels) {
txt_file << name << "\t" << mangled << std::endl;
}
std::ofstream source_file(cache_dir / (module_name + ".cu"));
source_file << source_code;
}
// Return if |device|'s version is not newer than |major|.|minor| version.
inline bool version_lower_equal(Device& device, int major, int minor) {
if (device.compute_capability_major() < major) {
return true;
} else if (device.compute_capability_major() == major) {
return device.compute_capability_minor() <= minor;
} else {
return false;
}
}
// Return whether NVRTC supports compiling to |device|'s SASS code.
bool compiler_supports_device_sass(Device& device) {
int nvrtc_major, nvrtc_minor;
CHECK_NVRTC_ERROR(nvrtcVersion(&nvrtc_major, &nvrtc_minor));
if (nvrtc_major < 9) {
return false;
} else if (nvrtc_major == 9) {
return version_lower_equal(device, 7, 2);
} else if (nvrtc_major == 10) {
return version_lower_equal(device, 7, 5);
} else if (nvrtc_major == 11 && nvrtc_minor == 0) {
return version_lower_equal(device, 8, 0);
} else if (nvrtc_major == 11 && nvrtc_minor < 8) {
return version_lower_equal(device, 8, 6);
} else {
return true;
}
}
#define INCLUDE_PREFIX "mlx/backend/cuda/device/"
constexpr const char* g_include_names[] = {
INCLUDE_PREFIX "atomic_ops.cuh",
INCLUDE_PREFIX "binary_ops.cuh",
INCLUDE_PREFIX "cast_op.cuh",
INCLUDE_PREFIX "config.h",
INCLUDE_PREFIX "complex.cuh",
INCLUDE_PREFIX "fp16_math.cuh",
INCLUDE_PREFIX "indexing.cuh",
INCLUDE_PREFIX "scatter_ops.cuh",
INCLUDE_PREFIX "unary_ops.cuh",
INCLUDE_PREFIX "ternary_ops.cuh",
INCLUDE_PREFIX "utils.cuh",
};
#undef INCLUDE_PREFIX
constexpr const char* g_headers[] = {
jit_source_atomic_ops,
jit_source_binary_ops,
jit_source_cast_op,
jit_source_config,
jit_source_complex,
jit_source_fp16_math,
jit_source_indexing,
jit_source_scatter_ops,
jit_source_unary_ops,
jit_source_ternary_ops,
jit_source_utils,
};
} // namespace
JitModule::JitModule(
Device& device,
const std::string& module_name,
const KernelBuilder& builder) {
// Check cache.
std::vector<char> ptx;
std::vector<std::pair<std::string, std::string>> ptx_kernels;
if (!read_cached_ptx(ptx_cache_dir(), module_name, &ptx, &ptx_kernels)) {
// Create program.
auto [source_code, kernel_names] = builder();
nvrtcProgram prog;
CHECK_NVRTC_ERROR(nvrtcCreateProgram(
&prog,
source_code.c_str(),
(module_name + ".cu").c_str(),
std::size(g_headers),
g_headers,
g_include_names));
std::unique_ptr<nvrtcProgram, void (*)(nvrtcProgram*)> prog_freer(
&prog,
[](nvrtcProgram* p) { CHECK_NVRTC_ERROR(nvrtcDestroyProgram(p)); });
for (const auto& name : kernel_names) {
CHECK_NVRTC_ERROR(nvrtcAddNameExpression(prog, name.c_str()));
}
// Compile program.
std::vector<const char*> args;
bool use_sass = compiler_supports_device_sass(device);
std::string compute = fmt::format(
"--gpu-architecture={}_{}{}",
use_sass ? "sm" : "compute",
device.compute_capability_major(),
device.compute_capability_minor());
args.push_back(compute.c_str());
std::string cccl_include = cccl_dir();
if (!cccl_include.empty()) {
cccl_include = fmt::format("--include-path={}", cccl_include);
args.push_back(cccl_include.c_str());
}
std::string cuda_include =
fmt::format("--include-path={}/include", cuda_home());
args.push_back(cuda_include.c_str());
nvrtcResult compile_result =
nvrtcCompileProgram(prog, args.size(), args.data());
if (compile_result != NVRTC_SUCCESS) {
size_t log_size;
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
std::vector<char> log(log_size + 1, 0);
CHECK_NVRTC_ERROR(nvrtcGetProgramLog(prog, log.data()));
throw std::runtime_error(
fmt::format("Failed to compile kernel: {}.", log.data()));
}
// Get mangled names of kernel names.
for (const auto& name : kernel_names) {
const char* mangled;
CHECK_NVRTC_ERROR(nvrtcGetLoweredName(prog, name.c_str(), &mangled));
ptx_kernels.emplace_back(name, mangled);
}
// Get ptx data.
size_t ptx_size;
if (use_sass) {
CHECK_NVRTC_ERROR(nvrtcGetCUBINSize(prog, &ptx_size));
} else {
CHECK_NVRTC_ERROR(nvrtcGetPTXSize(prog, &ptx_size));
}
ptx.resize(ptx_size, 0);
if (use_sass) {
CHECK_NVRTC_ERROR(nvrtcGetCUBIN(prog, ptx.data()));
} else {
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
}
write_cached_ptx(
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
}
// Load module.
char jit_log[4089] = {};
CUjit_option options[] = {
CU_JIT_ERROR_LOG_BUFFER, CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES};
void* values[] = {jit_log, reinterpret_cast<void*>(std::size(jit_log) - 1)};
CUresult jit_result = cuModuleLoadDataEx(
&module_, ptx.data(), std::size(options), options, values);
if (jit_result != CUDA_SUCCESS) {
throw std::runtime_error(fmt::format(
"Failed to load compiled {} kernel: {}.", module_name, jit_log));
}
// Load kernels.
for (const auto& [name, mangled] : ptx_kernels) {
CUfunction kernel;
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
kernels_[name] = kernel;
}
}
JitModule::~JitModule() {
CHECK_CUDA_ERROR(cuModuleUnload(module_));
}
CUfunction JitModule::get_kernel(const std::string& kernel_name) {
auto it = kernels_.find(kernel_name);
if (it == kernels_.end()) {
throw std::runtime_error(
fmt::format("There is no kernel named {}.", kernel_name));
}
return it->second;
}
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
static std::unordered_map<std::string, JitModule> map;
return map;
}
JitModule& get_jit_module(
const mlx::core::Device& device,
const std::string& name,
const KernelBuilder& builder) {
auto& map = get_jit_module_cache();
auto it = map.find(name);
if (it == map.end()) {
it = map.try_emplace(name, cu::device(device), name, builder).first;
}
return it->second;
}
} // namespace mlx::core::cu

View File

@@ -1,104 +0,0 @@
// Copyright © 2025 Apple Inc.
#pragma once
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/config.h"
#include <deque>
#include <unordered_map>
#include <utility>
#include <variant>
#include <cuda.h>
#include <fmt/format.h>
namespace mlx::core::cu {
class Device;
using KernelBuilderResult = std::pair<
/* source code */ std::string,
/* kernel names */ std::vector<std::string>>;
using KernelBuilder = std::function<KernelBuilderResult()>;
struct KernelArgs {
void** args() {
return args_.data();
}
void append(const array& a) {
append(reinterpret_cast<CUdeviceptr>(a.data<void>()));
}
template <typename T>
void append(T val) {
storage_.emplace_back(val);
append_ptr(&storage_.back());
}
template <typename T>
void append(SmallVector<T> vec) {
storage_.emplace_back(std::move(vec));
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
}
// Make sure the arg is copied to an array with size of NDIM.
template <size_t NDIM = MAX_NDIM, typename T>
void append_ndim(SmallVector<T> vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
}
vec.resize(NDIM);
append(std::move(vec));
}
void append_ptr(const void* v) {
args_.push_back(const_cast<void*>(v));
}
private:
std::vector<void*> args_;
// The cuLaunchKernel API requires passing pointers to arguments so store
// temporary values untill kernel is launched.
using Arg = std::variant<
std::monostate,
CUdeviceptr,
int32_t,
uint32_t,
int64_t,
SmallVector<const void*>,
SmallVector<int32_t>,
SmallVector<int64_t>>;
std::deque<Arg> storage_;
};
class JitModule {
public:
JitModule(
Device& device,
const std::string& module_name,
const KernelBuilder& builder);
~JitModule();
JitModule(const JitModule&) = delete;
JitModule& operator=(const JitModule&) = delete;
CUfunction get_kernel(const std::string& kernel_name);
private:
CUmodule module_{nullptr};
std::unordered_map<std::string, CUfunction> kernels_;
};
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
JitModule& get_jit_module(
const mlx::core::Device& device,
const std::string& name,
const KernelBuilder& builder);
} // namespace mlx::core::cu

View File

@@ -23,32 +23,4 @@ dim3 get_2d_grid_dims(
return dim3(std::get<0>(dims), std::get<1>(dims), std::get<2>(dims));
}
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2) {
auto [grid, block] = get_grid_and_block_common(dim0, dim1, dim2);
auto [gx, gy, gz] = grid;
auto [bx, by, bz] = block;
return std::make_pair(dim3(gx, gy, gz), dim3(bx, by, bz));
}
std::tuple<dim3, uint> get_launch_args(
size_t size,
const Shape& shape,
const Strides& strides,
bool large,
int work_per_thread) {
size_t nthreads = cuda::ceil_div(size, work_per_thread);
uint block_dim = 1024;
if (block_dim > nthreads) {
block_dim = nthreads;
}
dim3 num_blocks;
if (large) {
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
} else {
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
}
return std::make_tuple(num_blocks, block_dim);
}
} // namespace mlx::core

View File

@@ -1,17 +1,15 @@
// Copyright © 2025 Apple Inc.
// This file includes host-only utilies for writing CUDA kernels, the difference
// from backend/cuda/device/utils.cuh is that the latter file only include
// from backend/cuda/kernels/utils.cuh is that the latter file only include
// device-only code.
#pragma once
#include <type_traits>
#include "mlx/array.h"
#include "mlx/backend/cuda/device/utils.cuh"
#include "mlx/backend/cuda/kernels/utils.cuh"
#include <cuda.h>
#include <cuComplex.h>
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <fmt/format.h>
@@ -19,46 +17,35 @@
namespace mlx::core {
template <typename F>
void dispatch_1_2_3(int n, F&& f) {
switch (n) {
case 1:
f(std::integral_constant<int, 1>{});
break;
case 2:
f(std::integral_constant<int, 2>{});
break;
case 3:
f(std::integral_constant<int, 3>{});
break;
// Convert a number between 1~3 to constexpr.
#define MLX_SWITCH_1_2_3(N, NDIM, ...) \
switch (N) { \
case 1: { \
constexpr int NDIM = 1; \
__VA_ARGS__; \
break; \
} \
case 2: { \
constexpr int NDIM = 2; \
__VA_ARGS__; \
break; \
} \
case 3: { \
constexpr int NDIM = 3; \
__VA_ARGS__; \
break; \
} \
}
}
template <typename F>
void dispatch_bool(bool v, F&& f) {
if (v) {
f(std::true_type{});
} else {
f(std::false_type{});
// Like MLX_SWITCH_ALL_TYPES but for booleans.
#define MLX_SWITCH_BOOL(BOOL, BOOL_ALIAS, ...) \
if (BOOL) { \
constexpr bool BOOL_ALIAS = true; \
__VA_ARGS__; \
} else { \
constexpr bool BOOL_ALIAS = false; \
__VA_ARGS__; \
}
}
template <typename F>
void dispatch_block_dim(int threads, F&& f) {
if (threads <= WARP_SIZE) {
f(std::integral_constant<int, WARP_SIZE>{});
} else if (threads <= WARP_SIZE * 2) {
f(std::integral_constant<int, WARP_SIZE * 2>{});
} else if (threads <= WARP_SIZE * 4) {
f(std::integral_constant<int, WARP_SIZE * 4>{});
} else if (threads <= WARP_SIZE * 8) {
f(std::integral_constant<int, WARP_SIZE * 8>{});
} else if (threads <= WARP_SIZE * 16) {
f(std::integral_constant<int, WARP_SIZE * 16>{});
} else {
f(std::integral_constant<int, WARP_SIZE * 32>{});
}
}
// Maps CPU types to CUDA types.
template <typename T>
@@ -78,7 +65,7 @@ struct CTypeToCudaType<bfloat16_t> {
template <>
struct CTypeToCudaType<complex64_t> {
using type = cu::complex64_t;
using type = cuComplex;
};
template <typename T>
@@ -90,18 +77,9 @@ inline constexpr bool is_floating_v =
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
// Type traits for detecting complex numbers.
template <typename T>
inline constexpr bool is_complex_v = cuda::std::is_same_v<T, complex64_t> ||
cuda::std::is_same_v<T, complex128_t>;
// Type traits for detecting complex or real floating point numbers.
template <typename T>
inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
// Utility to copy data from vector to array in host.
template <int NDIM = MAX_NDIM, typename T = int32_t>
inline cuda::std::array<T, NDIM> const_param(const SmallVector<T>& vec) {
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
if (vec.size() > NDIM) {
throw std::runtime_error(
fmt::format("ndim can not be larger than {}.", NDIM));
@@ -118,21 +96,36 @@ dim3 get_2d_grid_dims(
const Shape& shape,
const Strides& strides,
size_t divisor);
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
// Return a block size that achieves maximum potential occupancy for kernel.
template <typename T>
inline uint max_occupancy_block_dim(T kernel) {
int _, block_dim;
CHECK_CUDA_ERROR(cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
return block_dim;
}
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
// assuming each thread handles |work_per_thread| elements of |arr|.
std::tuple<dim3, uint> get_launch_args(
size_t size,
const Shape& shape,
const Strides& strides,
template <typename T>
inline std::tuple<dim3, uint> get_launch_args(
T kernel,
const array& arr,
bool large,
int work_per_thread = 1);
inline std::tuple<dim3, uint>
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
return get_launch_args(
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
int work_per_thread = 1) {
size_t nthreads = cuda::ceil_div(arr.size(), work_per_thread);
uint block_dim = max_occupancy_block_dim(kernel);
if (block_dim > nthreads) {
block_dim = nthreads;
}
dim3 num_blocks;
if (large) {
num_blocks = get_2d_grid_dims(arr.shape(), arr.strides(), work_per_thread);
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
} else {
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
}
return std::make_tuple(num_blocks, block_dim);
}
} // namespace mlx::core

View File

@@ -0,0 +1,15 @@
// Copyright © 2025 Apple Inc.
namespace mlx::core::cu {
template <typename T>
struct Arange {
const T start;
const T step;
__device__ T operator()(uint32_t i) const {
return start + i * step;
}
};
} // namespace mlx::core::cu

View File

@@ -1,7 +1,8 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device/unary_ops.cuh"
#include "mlx/backend/cuda/kernels/fp16_math.cuh"
#include <cuComplex.h>
#include <cuda/std/array>
namespace mlx::core::cu {
@@ -19,7 +20,7 @@ struct FloorDivide {
if constexpr (cuda::std::is_integral_v<T>) {
return x / y;
} else {
return truncf(x / y);
return trunc(x / y);
}
}
};
@@ -44,7 +45,7 @@ struct Remainder {
} else {
return x % y;
}
} else if constexpr (is_complex_v<T>) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
return x % y;
} else {
T r = fmod(x, y);
@@ -66,12 +67,14 @@ struct Equal {
struct NaNEqual {
template <typename T>
__device__ bool operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
if constexpr (std::is_same_v<T, cuComplex>) {
return x == y ||
(isnan(x.real()) && isnan(y.real()) && isnan(x.imag()) &&
isnan(y.imag())) ||
(x.real() == y.real() && isnan(x.imag()) && isnan(y.imag())) ||
(isnan(x.real()) && isnan(y.real()) && x.imag() == y.imag());
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) && isnan(cuCimagf(x)) &&
isnan(cuCimagf(y))) ||
(cuCrealf(x) == cuCrealf(y) && isnan(cuCimagf(x)) &&
isnan(cuCimagf(y))) ||
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) &&
cuCimagf(x) == cuCimagf(y));
} else {
return x == y || (isnan(x) && isnan(y));
}
@@ -109,37 +112,15 @@ struct LessEqual {
struct LogAddExp {
template <typename T>
__device__ T operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag()) || isnan(y.real()) ||
isnan(y.imag())) {
return {
cuda::std::numeric_limits<float>::quiet_NaN(),
cuda::std::numeric_limits<float>::quiet_NaN()};
}
auto max = x.real() > y.real() ? x : y;
auto min = x.real() < y.real() ? x : y;
auto min_real = min.real();
auto max_real = max.real();
if (!isfinite(min_real) && (min_real == max_real)) {
if (min_real < 0) {
return min;
} else {
return Log{}(Exp{}(min) + Exp{}(max));
}
} else {
return Log1p{}(Exp{}(min - max)) + max;
}
} else {
if (isnan(x) || isnan(y)) {
return cuda::std::numeric_limits<T>::quiet_NaN();
}
T maxval = max(x, y);
T minval = min(x, y);
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
maxval == cuda::std::numeric_limits<T>::infinity())
? maxval
: T(float(maxval) + log1p(expf(minval - maxval)));
if (isnan(x) || isnan(y)) {
return cuda::std::numeric_limits<T>::quiet_NaN();
}
T maxval = max(x, y);
T minval = min(x, y);
return (minval == -cuda::std::numeric_limits<T>::infinity() ||
maxval == cuda::std::numeric_limits<T>::infinity())
? maxval
: T(float(maxval) + log1p(expf(minval - maxval)));
};
};
@@ -148,8 +129,8 @@ struct Maximum {
__device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) {
return max(x, y);
} else if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag())) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
return x;
}
return x > y ? x : y;
@@ -167,8 +148,8 @@ struct Minimum {
__device__ T operator()(T x, T y) {
if constexpr (cuda::std::is_integral_v<T>) {
return min(x, y);
} else if constexpr (is_complex_v<T>) {
if (isnan(x.real()) || isnan(x.imag())) {
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
return x;
}
return x < y ? x : y;
@@ -191,8 +172,8 @@ struct Multiply {
struct NotEqual {
template <typename T>
__device__ bool operator()(T x, T y) {
if constexpr (is_complex_v<T>) {
return x.real() != y.real() || x.imag() != y.imag();
if constexpr (std::is_same_v<T, cuComplex>) {
return cuCrealf(x) != cuCrealf(y) || cuCimagf(x) != cuCimagf(y);
} else {
return x != y;
}
@@ -212,8 +193,12 @@ struct Power {
base *= base;
}
return res;
} else if constexpr (is_complex_v<T>) {
return pow(base, exp);
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
auto x_theta = atan2f(base.y, base.x);
auto x_ln_r = 0.5 * logf(base.x * base.x + base.y * base.y);
auto mag = expf(exp.x * x_ln_r - exp.y * x_theta);
auto phase = exp.y * x_ln_r + exp.x * x_theta;
return make_cuFloatComplex(mag * cosf(phase), mag * sinf(phase));
} else {
return powf(base, exp);
}

Some files were not shown because too many files have changed in this diff Show More