Compare commits

..

8 Commits

Author SHA1 Message Date
Abe Leininger
fce53b61d6 Fix reduce sum/prod overflow (#2477) 2025-08-12 00:05:33 -07:00
Angelos Katharopoulos
8ae4a76308 Use CMake <4.1 to avoid the nvpl error (#2489) 2025-08-12 00:03:42 -07:00
Cheng
7fde1b6a1e Fix logsumexp/softmax not fused for some cases (#2474) 2025-08-08 14:07:17 -07:00
Cheng
aa7b47481a [CUDA] Optimize set_mm_device_pointers for small ndim (#2473) 2025-08-08 15:23:30 +09:00
Awni Hannun
56be773610 version (#2470) 2025-08-07 00:36:04 -07:00
Jagrit Digani
a9bdd67baa Add CUDA sdpa vector (#2468) 2025-08-06 21:40:26 -07:00
Angelos Katharopoulos
f2adb5638d Fix typo in metal command encoder (#2471) 2025-08-06 16:58:23 -07:00
Luca Vivona
728d4db582 Support destination arg in tree flatten/unflatten (#2450) 2025-08-06 15:34:59 -07:00
16 changed files with 348 additions and 445 deletions

View File

@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
optimizer.update(model, grads)
# Save the state
state = tree_flatten(optimizer.state)
mx.save_safetensors("optimizer.safetensors", dict(state))
state = tree_flatten(optimizer.state, destination={})
mx.save_safetensors("optimizer.safetensors", state)
# Later on, for example when loading from a checkpoint,
# recreate the optimizer and load the state
optimizer = optim.Adam(learning_rate=1e-2)
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
state = tree_unflatten(mx.load("optimizer.safetensors"))
optimizer.state = state
Note, not every optimizer configuation parameter is saved in the state. For

View File

@@ -151,7 +151,7 @@ parameters, pass them as inputs to the ``call`` wrapper:
model.update(tree_unflatten(list(params.items())))
return model(x)
params = dict(tree_flatten(model.parameters()))
params = tree_flatten(model.parameters(), destination={})
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)

View File

@@ -491,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
switch (in.dtype()) {
case bool_:
case uint8:
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:

View File

@@ -10,7 +10,34 @@ namespace mlx::core::cu {
namespace cg = cooperative_groups;
__global__ void set_mm_device_pointers(
template <int NDIM>
__global__ void set_mm_device_pointers_nd(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
int64_t batch_stride,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc_nd<NDIM>(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data());
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_mm_device_pointers_g(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
@@ -38,7 +65,38 @@ __global__ void set_mm_device_pointers(
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers(
template <int NDIM>
__global__ void set_addmm_device_pointers_nd(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_batch_strides,
int64_t batch_stride,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc_nd<NDIM>(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data());
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers_g(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
@@ -89,37 +147,62 @@ void Matmul::run_batched(
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
auto batch_count = out.size() / (M_ * N_);
int batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
{static_cast<int>(batch_count * 3)},
allocator::malloc(batch_count * sizeof(void*) * 3),
{batch_count * 3},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_mm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
int block_dims = std::min(batch_count, 256);
int num_blocks = cuda::ceil_div(batch_count, block_dims);
int64_t batch_stride = M_ * N_;
int item_size = out.itemsize();
int ndim = batch_shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
encoder.add_kernel_node(
cu::set_mm_device_pointers_nd<ndim_constant()>,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param<ndim_constant()>(batch_shape),
const_param<ndim_constant()>(a_batch_strides),
const_param<ndim_constant()>(b_batch_strides),
batch_stride,
batch_count);
});
} else {
encoder.add_kernel_node(
cu::set_mm_device_pointers_g,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
batch_stride,
ndim,
batch_count);
}
// Run matmul
encoder.set_input_array(pointers);
@@ -150,7 +233,7 @@ void Matmul::run_batched(
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
auto batch_count = out.size() / (M_ * N_);
int batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
@@ -159,30 +242,58 @@ void Matmul::run_batched(
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{static_cast<int>(batch_count * 4)},
{batch_count * 4},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_addmm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
int block_dims = std::min(batch_count, 256);
int num_blocks = cuda::ceil_div(batch_count, block_dims);
int64_t batch_stride = M_ * N_;
int item_size = out.itemsize();
int ndim = batch_shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
encoder.add_kernel_node(
cu::set_addmm_device_pointers_nd<ndim_constant()>,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param<ndim_constant()>(batch_shape),
const_param<ndim_constant()>(a_batch_strides),
const_param<ndim_constant()>(b_batch_strides),
const_param<ndim_constant()>(c_batch_strides),
batch_stride,
batch_count);
});
} else {
encoder.add_kernel_node(
cu::set_addmm_device_pointers_g,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
batch_stride,
ndim,
batch_count);
}
// Run matmul
encoder.set_input_array(pointers);

View File

@@ -8,19 +8,13 @@
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/transforms_impl.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace fe = cudnn_frontend;
namespace mlx::core {
namespace cu {
@@ -645,294 +639,6 @@ void sdpa_vector_fallback(
}
}
struct SDPACacheKey {
int device_id;
fe::DataType_t cudnn_type;
int B;
int H;
int D;
int qL;
int kL;
int gqa_factor;
float scale;
int64_t Q_strides[3];
int64_t K_strides[3];
int64_t V_strides[3];
int64_t O_strides[3];
bool generate_stats;
bool causal_mask;
};
auto& sdpa_cache() {
static LRUBytesKeyCache<SDPACacheKey, std::shared_ptr<fe::graph::Graph>>
cache(
/* capacity */ 128);
return cache;
}
#define Q_UID 1
#define K_UID 2
#define V_UID 3
#define O_UID 4
#define STATS_UID 5
std::shared_ptr<fe::graph::Graph> get_sdpa_forward_graph(
cu::CommandEncoder& encoder,
const SDPACacheKey& cache_key) {
// Check if graph has already been fully built
if (auto it = sdpa_cache().find(cache_key); it != sdpa_cache().end()) {
return it->second;
}
// Set up new graph
auto graph = std::make_shared<fe::graph::Graph>();
graph->set_io_data_type(cache_key.cudnn_type)
.set_intermediate_data_type(fe::DataType_t::FLOAT)
.set_compute_data_type(fe::DataType_t::FLOAT);
auto Q = graph->tensor(
fe::graph::Tensor_attributes()
.set_name("Q")
.set_uid(Q_UID)
.set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D})
.set_stride(
{cache_key.Q_strides[0],
cache_key.Q_strides[1],
cache_key.Q_strides[2],
1}));
int h_kv = cache_key.H / cache_key.gqa_factor;
auto K =
graph->tensor(fe::graph::Tensor_attributes()
.set_name("K")
.set_uid(K_UID)
.set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D})
.set_stride(
{cache_key.K_strides[0],
cache_key.K_strides[1],
cache_key.V_strides[2],
1}));
auto V =
graph->tensor(fe::graph::Tensor_attributes()
.set_name("V")
.set_uid(V_UID)
.set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D})
.set_stride(
{cache_key.V_strides[0],
cache_key.V_strides[1],
cache_key.V_strides[2],
1}));
auto sdpa_options = fe::graph::SDPA_attributes()
.set_name("flash_attention")
.set_is_inference(!cache_key.generate_stats)
.set_attn_scale(cache_key.scale);
if (cache_key.causal_mask && cache_key.qL > 1) {
sdpa_options.set_diagonal_alignment(fe::DiagonalAlignment_t::TOP_LEFT)
.set_diagonal_band_right_bound(0);
}
auto [O, Stats] = graph->sdpa(Q, K, V, sdpa_options);
O->set_output(true)
.set_uid(O_UID)
.set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D})
.set_stride(
{cache_key.O_strides[0],
cache_key.O_strides[1],
cache_key.O_strides[2],
1});
if (cache_key.generate_stats) {
Stats->set_output(true)
.set_data_type(fe::DataType_t::FLOAT)
.set_uid(STATS_UID);
}
// Build and Validate cudnn graph
auto handle = encoder.device().cudnn_handle();
// cuDNN only supports native CUDA graphs for sdpa in 9.6 or above.
if (cudnnGetVersion() < 90600) {
auto build_status = graph->build(handle, {fe::HeurMode_t::A});
if (!build_status.is_good()) {
throw std::runtime_error(
"Unable to build cudnn graph for attention."
" Failed with message: " +
build_status.get_message());
}
} else {
auto val_status = graph->validate();
auto op_status = graph->build_operation_graph(handle);
auto plan_stauts =
graph->create_execution_plans({cudnn_frontend::HeurMode_t::A});
if (!plan_stauts.is_good()) {
throw std::runtime_error(
"Unable to create exec plan for cudnn attention."
" Failed with message: " +
plan_stauts.get_message());
}
graph->select_behavior_notes(
{cudnn_frontend::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API});
auto support_status = graph->check_support(handle);
if (!support_status.is_good()) {
throw std::runtime_error(
"No cuda graph support for cudnn attention."
" Failed with message: " +
support_status.get_message());
}
auto build_status = graph->build_plans(handle);
if (!build_status.is_good()) {
throw std::runtime_error(
"Unable to build cudnn graph for attention."
" Failed with message: " +
build_status.get_message());
}
}
auto [it, _] = sdpa_cache().emplace(cache_key, graph);
return it->second;
}
inline fe::DataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return fe::DataType_t::INT8;
case int32:
return fe::DataType_t::INT32;
case uint8:
return fe::DataType_t::UINT8;
case float16:
return fe::DataType_t::HALF;
case bfloat16:
return fe::DataType_t::BFLOAT16;
case float32:
return fe::DataType_t::FLOAT;
case float64:
return fe::DataType_t::DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in SDPA: {}.", dtype_to_string(dtype)));
}
}
void sdpa_cudnn(
const Stream& s,
cu::CommandEncoder& encoder,
const array& q,
const array& k,
const array& v,
const float scale,
array& o,
bool do_causal_ = false) {
encoder.set_input_array(q);
encoder.set_input_array(k);
encoder.set_input_array(v);
encoder.set_output_array(o);
auto cudnn_type = dtype_to_cudnn_type(q.dtype());
int B = q.shape(0);
int H = q.shape(1);
int D = q.shape(3);
int gqa_factor = q.shape(1) / k.shape(1);
int qL = q.shape(2);
int kL = k.shape(2);
SDPACacheKey cache_key{
/* int device_id = */ encoder.device().cuda_device(),
/* fe::DataType_t cudnn_type = */ cudnn_type,
/* int B = */ B,
/* int H = */ H,
/* int D = */ D,
/* int qL = */ qL,
/* int kL = */ kL,
/* int gqa_factor = */ gqa_factor,
/* float scale = */ scale,
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)},
/* bool generate_stats = */ false,
/* bool causal_mask = */ do_causal_};
auto graph = get_sdpa_forward_graph(encoder, cache_key);
int64_t workspace_size = 0;
auto workspace_status = graph->get_workspace_size(workspace_size);
if (!workspace_status.is_good()) {
throw std::runtime_error("Unable to get workspace for cudnn attention.");
}
array workspace(
allocator::malloc(workspace_size), {int(workspace_size)}, uint8);
auto workspace_ptr = workspace.data<void>();
std::unordered_map<int64_t, void*> variant_pack = {
{Q_UID, const_cast<void*>(q.data<void>())},
{K_UID, const_cast<void*>(k.data<void>())},
{V_UID, const_cast<void*>(v.data<void>())},
{O_UID, o.data<void>()}};
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
// cuDNN only supports native CUDA graphs for sdpa in 9.6 or above.
if (cudnnGetVersion() < 90600) {
auto capture = encoder.capture_context();
auto exec_status = graph->execute(handle, variant_pack, workspace_ptr);
if (!exec_status.is_good()) {
capture.discard = true;
throw std::runtime_error(
"Unable to execute cudnn attention."
" Failed with message: " +
exec_status.get_message());
}
} else {
cudaGraph_t cu_graph;
cudaGraphCreate(&cu_graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&cu_graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
auto cu_graph_status = graph->populate_cuda_graph(
handle, variant_pack, workspace_ptr, cu_graph);
if (!cu_graph_status.is_good()) {
throw std::runtime_error(
"Unable to add cuda graph for cudnn attention."
" Failed with message: " +
cu_graph_status.get_message());
}
encoder.add_graph_node(cu_graph);
}
encoder.add_temporary(workspace);
}
} // namespace
namespace fast {
@@ -945,6 +651,9 @@ bool ScaledDotProductAttention::use_fallback(
bool has_arr_mask,
bool do_causal,
Stream s) {
if (detail::in_grad_tracing()) {
return true;
}
if (s.device == Device::cpu) {
return true;
}
@@ -960,15 +669,7 @@ bool ScaledDotProductAttention::use_fallback(
const bool supported_vector_config =
sdpa_supported_head_dim && query_sequence_length < 4;
auto& cu_device = cu::device(s.device);
const bool supported_matrix_config = query_sequence_length > 4 &&
cu_device.compute_capability_major() >= 8 &&
query_sequence_length == key_sequence_length &&
(q.dtype() == float16 || q.dtype() == bfloat16);
const bool supported_config =
(supported_matrix_config || supported_vector_config);
const bool supported_config = supported_vector_config;
return has_arr_mask || !supported_config;
}
@@ -1002,10 +703,6 @@ void ScaledDotProductAttention::eval_gpu(
}
};
auto is_matrix_contiguous = [](const array& arr) {
return arr.strides(-1) == 1;
};
// We are in vector mode ie single query
if (q_pre.shape(2) < 4) {
auto q_copy_unless = [](const array& arr) {
@@ -1059,7 +756,7 @@ void ScaledDotProductAttention::eval_gpu(
array::Flags flags{
/* bool contiguous = */ 1,
/* bool row_contiguous = */ 0,
/* bool row_contiguous = */ o.shape(2) == 1,
/* bool col_contiguous = */ 0,
};
@@ -1073,35 +770,9 @@ void ScaledDotProductAttention::eval_gpu(
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
}
// Full attention mode
// Full attention mode should never reach here
else {
const auto& q = copy_unless(is_matrix_contiguous, q_pre);
const auto& k = copy_unless(is_matrix_contiguous, k_pre);
const auto& v = copy_unless(is_matrix_contiguous, v_pre);
for (const auto& cp : copies) {
encoder.add_temporary(cp);
}
int64_t str_oD = 1;
int64_t str_oH = o.shape(3);
int64_t str_oL = o.shape(1) * str_oH;
int64_t str_oB = o.shape(2) * str_oL;
size_t data_size = o.shape(0) * str_oB;
array::Flags flags{
/* bool contiguous = */ 1,
/* bool row_contiguous = */ 0,
/* bool col_contiguous = */ 0,
};
o.set_data(
allocator::malloc(o.nbytes()),
data_size,
{str_oB, str_oH, str_oL, str_oD},
flags);
return sdpa_cudnn(s, encoder, q, k, v, scale_, o, do_causal_);
throw std::runtime_error("Doesn't support matrix yet.");
}
}

View File

@@ -104,7 +104,7 @@ struct CommandEncoder {
};
// Outputs of all kernels in the encoder including temporaries
std::unordered_set<const void*> outputs() {
std::unordered_set<const void*>& outputs() {
return all_outputs_;
};

View File

@@ -134,6 +134,10 @@ instantiate_and_or(and, And)
instantiate_and_or(or, Or)
#define instantiate_sum_prod(name, op) \
instantiate_reduce_functions(name, uint8, uint8_t, int32_t, op) \
instantiate_reduce_functions(name, uint16, uint16_t, uint32_t, op) \
instantiate_reduce_functions(name, uint32, uint32_t, uint32_t, op) \
instantiate_reduce_functions(name, uint64, uint64_t, uint64_t, op) \
instantiate_reduce_functions(name, int8, int8_t, int32_t, op) \
instantiate_reduce_functions(name, int16, int16_t, int32_t, op) \
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \

View File

@@ -247,15 +247,25 @@ std::pair<Dtype, Dtype> remap_reduce_types(
const std::string& op_name) {
if (op_name == "sum" || op_name == "prod") {
if (issubdtype(in.dtype(), integer)) {
switch (in.dtype().size()) {
case 1:
switch (in.dtype()) {
case uint8:
return {uint8, uint32};
case uint16:
return {uint16, uint32};
case uint32:
return {uint32, uint32};
case uint64:
return {uint64, uint64};
case int8:
return {int8, int32};
case 2:
case int16:
return {int16, int32};
case 4:
case int32:
return {int32, int32};
case 8:
case int64:
return {int64, int64};
default:
throw std::runtime_error("Unsupported integer type");
}
}
if (in.dtype() == bool_) {

View File

@@ -2381,9 +2381,20 @@ array logsumexp(
throw std::invalid_argument(
"[logsumexp] Received non-empty axes for array with 0 dimensions.");
}
bool reduce_last_dim =
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
if (reduce_last_dim) {
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
// is [1, 1, ..., N].
for (int i = axes.size() - 2; i >= 0; --i) {
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
reduce_last_dim = false;
break;
}
}
}
bool is_complex = issubdtype(a.dtype(), complexfloating);
if (!is_complex && axes.size() == 1 &&
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
if (!is_complex && reduce_last_dim) {
auto dtype = at_least_float(a.dtype());
auto out_shape = a.shape();
out_shape.back() = 1;
@@ -3403,10 +3414,20 @@ array softmax(
throw std::invalid_argument(
"[softmax] Received non-empty axes for array with 0 dimensions.");
}
bool reduce_last_dim =
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
if (reduce_last_dim) {
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
// is [1, 1, ..., N].
for (int i = axes.size() - 2; i >= 0; --i) {
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
reduce_last_dim = false;
break;
}
}
}
bool is_complex = issubdtype(a.dtype(), complexfloating);
if (!is_complex && axes.size() == 1 &&
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
if (!is_complex && reduce_last_dim) {
auto dtype = at_least_float(a.dtype());
return array(
a.shape(),

View File

@@ -3,8 +3,8 @@
#pragma once
#define MLX_VERSION_MAJOR 0
#define MLX_VERSION_MINOR 27
#define MLX_VERSION_PATCH 1
#define MLX_VERSION_MINOR 28
#define MLX_VERSION_PATCH 0
#define MLX_VERSION_NUMERIC \
(100000 * MLX_VERSION_MAJOR + 1000 * MLX_VERSION_MINOR + MLX_VERSION_PATCH)

View File

@@ -2,6 +2,6 @@
requires = [
"setuptools>=80",
"nanobind==2.4.0",
"cmake>=3.25",
"cmake>=3.25,<4.1",
]
build-backend = "setuptools.build_meta"

View File

@@ -178,7 +178,7 @@ class Module(dict):
if strict:
new_weights = dict(weights)
curr_weights = dict(tree_flatten(self.parameters()))
curr_weights = tree_flatten(self.parameters(), destination={})
if extras := (new_weights.keys() - curr_weights.keys()):
num_extra = len(extras)
extras = ",\n".join(sorted(extras))
@@ -212,7 +212,7 @@ class Module(dict):
- ``.npz`` will use :func:`mx.savez`
- ``.safetensors`` will use :func:`mx.save_safetensors`
"""
params_dict = dict(tree_flatten(self.parameters()))
params_dict = tree_flatten(self.parameters(), destination={})
if file.endswith(".npz"):
mx.savez(file, **params_dict)

View File

@@ -1,7 +1,7 @@
# Copyright © 2023 Apple Inc.
from collections import defaultdict
from itertools import zip_longest
from typing import Any, Callable, List, Optional, Tuple
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
def tree_map(
@@ -114,8 +114,11 @@ def tree_map_with_path(
def tree_flatten(
tree: Any, prefix: str = "", is_leaf: Optional[Callable] = None
) -> Any:
tree: Any,
prefix: str = "",
is_leaf: Optional[Callable] = None,
destination: Optional[Union[List[Tuple[str, Any]], Dict[str, Any]]] = None,
) -> Union[List[Tuple[str, Any]], Dict[str, Any]]:
"""Flattens a Python tree to a list of key, value tuples.
The keys are using the dot notation to define trees of arbitrary depth and
@@ -128,9 +131,12 @@ def tree_flatten(
print(tree_flatten([[[0]]]))
# [("0.0.0", 0)]
print(tree_flatten([[[0]]], ".hello"))
print(tree_flatten([[[0]]], prefix=".hello"))
# [("hello.0.0.0", 0)]
tree_flatten({"a": {"b": 1}}, destination={})
{"a.b": 1}
.. note::
Dictionaries should have keys that are valid Python identifiers.
@@ -140,26 +146,50 @@ def tree_flatten(
always discarded.
is_leaf (callable): An optional callable that returns True if the
passed object is considered a leaf or False otherwise.
destination (list or dict, optional): A list or dictionary to store the
flattened tree. If None an empty list will be used. Default: ``None``.
Returns:
List[Tuple[str, Any]]: The flat representation of the Python tree.
Union[List[Tuple[str, Any]], Dict[str, Any]]: The flat representation of
the Python tree.
"""
flat_tree = []
if destination is None:
destination = []
if is_leaf is None or not is_leaf(tree):
if isinstance(tree, (list, tuple)):
for i, t in enumerate(tree):
flat_tree.extend(tree_flatten(t, f"{prefix}.{i}", is_leaf))
return flat_tree
if isinstance(tree, dict):
for k, t in tree.items():
flat_tree.extend(tree_flatten(t, f"{prefix}.{k}", is_leaf))
return flat_tree
# Create the function to update the destination. We are taking advantage of
# the fact that list.extend and dict.update have the same API to simplify
# the code a bit.
if isinstance(destination, list):
_add_to_destination = destination.extend
elif isinstance(destination, dict):
_add_to_destination = destination.update
else:
raise ValueError("Destination should be either a list or a dictionary or None")
return [(prefix[1:], tree)]
# Leaf identified by is_leaf so add it and return
if is_leaf is not None and is_leaf(tree):
_add_to_destination([(prefix[1:], tree)])
return destination
# List or tuple so recursively add each subtree
if isinstance(tree, (list, tuple)):
for i, item in enumerate(tree):
tree_flatten(item, f"{prefix}.{i}", is_leaf, destination)
return destination
# Dictionary so recursively add each subtree
if isinstance(tree, dict):
for key, value in tree.items():
tree_flatten(value, f"{prefix}.{key}", is_leaf, destination)
return destination
# Leaf so add it and return
_add_to_destination([(prefix[1:], tree)])
return destination
def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
def tree_unflatten(tree: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> Any:
"""Recreate a Python tree from its flat representation.
.. code-block:: python
@@ -170,31 +200,34 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
print(d)
# {"hello": {"world": 42}}
d = tree_unflatten({"hello.world": 42})
print(d)
# {"hello": {"world": 42}}
Args:
tree (list[tuple[str, Any]]): The flat representation of a Python tree.
tree (list[tuple[str, Any]] or dict[str, Any]): The flat representation of a Python tree.
For instance as returned by :meth:`tree_flatten`.
Returns:
A Python tree.
"""
if len(tree) == 1 and tree[0][0] == "":
return tree[0][1]
items = tree.items() if isinstance(tree, dict) else tree
try:
int(tree[0][0].split(".", maxsplit=1)[0])
is_list = True
except ValueError:
is_list = False
# Special case when we have just one element in the tree ie not a tree
if len(items) == 1:
key, value = next(iter(items))
if key == "":
return value
# collect children
children = defaultdict(list)
for key, value in tree:
for key, value in items:
current_idx, *next_idx = key.split(".", maxsplit=1)
next_idx = "" if not next_idx else next_idx[0]
children[current_idx].append((next_idx, value))
# recursively map them to the original container
if is_list:
# Assume they are a list and fail to dict if the keys are not all integers
try:
keys = sorted((int(idx), idx) for idx in children.keys())
l = []
for i, k in keys:
@@ -202,7 +235,7 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
l.extend([{} for _ in range(i - len(l))])
l.append(tree_unflatten(children[k]))
return l
else:
except ValueError:
return {k: tree_unflatten(v) for k, v in children.items()}

View File

@@ -80,7 +80,7 @@ class TestBase(mlx_tests.MLXTestCase):
self.weights = {"w1": mx.zeros((2, 2)), "w2": mx.ones((2, 2))}
model = DictModule()
params = dict(tree_flatten(model.parameters()))
params = tree_flatten(model.parameters(), destination={})
self.assertEqual(len(params), 2)
self.assertTrue(mx.array_equal(params["weights.w1"], mx.zeros((2, 2))))
self.assertTrue(mx.array_equal(params["weights.w2"], mx.ones((2, 2))))

View File

@@ -155,6 +155,19 @@ TEST_CASE("test gpu reduce") {
CHECK_EQ(prod(a, Device::gpu).item<int32_t>(), 1);
}
// sum and prod overflow
{
auto a = full({256, 2, 2}, 1u, uint8);
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 256 * 4);
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
a = full({65535, 2, 2}, 1u, uint16);
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 65535 * 4);
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
}
}
TEST_CASE("test gpu reduce with axes") {
// reducing only some axes and irregular layouts
{
array a(1.0f);

View File

@@ -915,6 +915,23 @@ TEST_CASE("test reduction ops") {
CHECK(array_equal(sum(x, 1), array({3.0f, 6.0f}, {2})).item<bool>());
}
// Test unsigned sum
{
const int num_elems = 1000;
auto x = astype(full({num_elems}, 255), uint8);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 255 * num_elems);
x = astype(full({num_elems}, 65535), uint16);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 65535 * num_elems);
x = full({3, 3, 3}, 10000, uint32);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 270000);
x = full({3, 3, 3}, 10000, uint64);
CHECK_EQ(sum(x, Device::cpu).item<uint64_t>(), 270000);
}
// Test prod
{
auto x = array({});
@@ -947,6 +964,21 @@ TEST_CASE("test reduction ops") {
CHECK(array_equal(prod(x, 1), array({true, false})).item<bool>());
}
// Test unsigned prod
{
auto x = array({255, 255}, {2}, uint8);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 65025);
x = array({65535, 2}, {2}, uint16);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 131070);
x = array({100000, 2}, {2}, uint32);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 200000);
x = array({100000, 2}, {2}, uint64);
CHECK_EQ(prod(x, Device::cpu).item<uint64_t>(), 200000);
}
// Test all
{
auto x = array({});