Compare commits

..

11 Commits

Author SHA1 Message Date
Jagrit Digani
400f8457ea Experimenting with a gemm based on the cuda steel utils 2025-08-14 11:27:50 -07:00
Cheng
dfb5022eab Rename cu::Matmul to CublasGemm (#2488) 2025-08-13 09:37:40 +09:00
Daniel Yeh
ac207ce7aa make code blocks copyable (#2480)
Co-authored-by: Chen-Chen Yeh <ge96noj@mytum.de>
2025-08-12 12:29:02 -07:00
Abe Leininger
fce53b61d6 Fix reduce sum/prod overflow (#2477) 2025-08-12 00:05:33 -07:00
Angelos Katharopoulos
8ae4a76308 Use CMake <4.1 to avoid the nvpl error (#2489) 2025-08-12 00:03:42 -07:00
Cheng
7fde1b6a1e Fix logsumexp/softmax not fused for some cases (#2474) 2025-08-08 14:07:17 -07:00
Cheng
aa7b47481a [CUDA] Optimize set_mm_device_pointers for small ndim (#2473) 2025-08-08 15:23:30 +09:00
Awni Hannun
56be773610 version (#2470) 2025-08-07 00:36:04 -07:00
Jagrit Digani
a9bdd67baa Add CUDA sdpa vector (#2468) 2025-08-06 21:40:26 -07:00
Angelos Katharopoulos
f2adb5638d Fix typo in metal command encoder (#2471) 2025-08-06 16:58:23 -07:00
Luca Vivona
728d4db582 Support destination arg in tree flatten/unflatten (#2450) 2025-08-06 15:34:59 -07:00
27 changed files with 1083 additions and 773 deletions

View File

@@ -1,4 +1,5 @@
sphinx
breathe
sphinx-book-theme
sphinx-copybutton
mlx

View File

@@ -18,6 +18,7 @@ release = version
# -- General configuration ---------------------------------------------------
extensions = [
"sphinx_copybutton",
"sphinx.ext.autodoc",
"sphinx.ext.autosummary",
"sphinx.ext.intersphinx",

View File

@@ -51,14 +51,14 @@ the saved state. Here's a simple example:
optimizer.update(model, grads)
# Save the state
state = tree_flatten(optimizer.state)
mx.save_safetensors("optimizer.safetensors", dict(state))
state = tree_flatten(optimizer.state, destination={})
mx.save_safetensors("optimizer.safetensors", state)
# Later on, for example when loading from a checkpoint,
# recreate the optimizer and load the state
optimizer = optim.Adam(learning_rate=1e-2)
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
state = tree_unflatten(mx.load("optimizer.safetensors"))
optimizer.state = state
Note, not every optimizer configuation parameter is saved in the state. For

View File

@@ -151,7 +151,7 @@ parameters, pass them as inputs to the ``call`` wrapper:
model.update(tree_unflatten(list(params.items())))
return model(x)
params = dict(tree_flatten(model.parameters()))
params = tree_flatten(model.parameters(), destination={})
mx.export_function("model.mlxfn", call, (mx.zeros(4),), params)

View File

@@ -491,19 +491,27 @@ void Reduce::eval_cpu(const std::vector<array>& inputs, array& out) {
switch (in.dtype()) {
case bool_:
case uint8:
reduce_dispatch_sum_prod<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_sum_prod<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_sum_prod<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_sum_prod<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:

View File

@@ -24,6 +24,7 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/gemms/steel_gemm.cu
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
@@ -53,10 +54,10 @@ target_sources(
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
else()
target_sources(
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_0.cpp)
endif()
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)

View File

@@ -1,208 +0,0 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core::cu {
namespace cg = cooperative_groups;
__global__ void set_mm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
const __grid_constant__ Strides c_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
&batch_mode,
sizeof(batch_mode)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
{static_cast<int>(batch_count * 3)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_mm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
nullptr);
}
void Matmul::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
float alpha,
float beta) {
auto batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{static_cast<int>(batch_count * 4)},
uint64);
encoder.add_temporary(pointers);
int block_size = 512;
encoder.set_output_array(pointers);
encoder.add_kernel_node(
cu::set_addmm_device_pointers,
cuda::ceil_div(pointers.size(), block_size),
block_size,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
static_cast<int>(out.dtype().size()),
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
static_cast<int64_t>(M_) * N_,
static_cast<int>(batch_shape.size()),
batch_count);
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
run_impl(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
reinterpret_cast<void*>(c_pointers),
alpha,
beta);
}
} // namespace mlx::core::cu

View File

@@ -7,10 +7,12 @@
#include <fmt/format.h>
namespace mlx::core::cu {
namespace mlx::core {
namespace {
struct CublasPreference {
CublasPreference(Device& device) {
CublasPreference(cu::Device& device) {
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
// for Hopper+:
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
@@ -33,7 +35,7 @@ struct CublasPreference {
cublasLtMatmulPreference_t pref_{nullptr};
};
cublasLtMatmulPreference_t cublas_preference(Device& device) {
cublasLtMatmulPreference_t cublas_preference(cu::Device& device) {
static CublasPreference pref(device);
return pref.pref_;
}
@@ -52,7 +54,7 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
return CUBLAS_COMPUTE_64F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
}
}
@@ -70,7 +72,7 @@ cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
return CUDA_C_32F;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
}
}
@@ -102,8 +104,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
return desc;
}
Matmul::Matmul(
Device& device,
} // namespace
CublasGemm::CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -155,8 +159,8 @@ Matmul::Matmul(
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
}
Matmul::Matmul(
Device& device,
CublasGemm::CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -171,7 +175,7 @@ Matmul::Matmul(
int64_t a_batch_stride,
int64_t b_batch_stride,
int64_t c_batch_stride)
: Matmul(
: CublasGemm(
device,
dtype,
a_transposed,
@@ -190,7 +194,7 @@ Matmul::Matmul(
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
}
Matmul::~Matmul() {
CublasGemm::~CublasGemm() {
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
@@ -198,7 +202,73 @@ Matmul::~Matmul() {
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
}
void Matmul::run_impl(
void CublasGemm::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
int batch_count = out.size() / (M_ * N_);
if (batch_count / batch_shape.back() > 1) {
run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
return;
}
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
}
void CublasGemm::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
int batch_count = out.size() / (M_ * N_);
if (batch_count / batch_shape.back() > 1) {
run_batched(
encoder,
out,
a,
b,
c,
batch_shape,
a_batch_strides,
b_batch_strides,
c_batch_strides,
alpha,
beta);
return;
}
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
execute(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c.data<void>(),
alpha,
beta);
}
void CublasGemm::execute(
cu::CommandEncoder& encoder,
void* out,
const void* a,
@@ -256,29 +326,4 @@ void Matmul::run_impl(
encoder.stream()));
}
void Matmul::run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c /* = std::nullopt */,
float alpha /* = 1 */,
float beta /* = 0 */) {
encoder.set_input_array(a);
encoder.set_input_array(b);
if (c) {
encoder.set_input_array(*c);
}
encoder.set_output_array(out);
run_impl(
encoder,
out.data<void>(),
a.data<void>(),
b.data<void>(),
c ? c->data<void>() : nullptr,
alpha,
beta);
}
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -5,13 +5,13 @@
#include "mlx/backend/cuda/device.h"
#include <cublasLt.h>
#include <optional>
namespace mlx::core::cu {
class Matmul {
namespace mlx::core {
class CublasGemm {
public:
Matmul(
Device& device,
CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -25,8 +25,8 @@ class Matmul {
int64_t a_batch_stride,
int64_t b_batch_stride);
Matmul(
Device& device,
CublasGemm(
cu::Device& device,
Dtype dtype,
bool a_transposed,
uint64_t a_rows,
@@ -42,25 +42,39 @@ class Matmul {
int64_t b_batch_stride,
int64_t c_batch_stride);
~Matmul();
~CublasGemm();
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const std::optional<array>& c = std::nullopt,
float alpha = 1,
float beta = 0);
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides);
void run(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides);
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides);
void run_batched(
cu::CommandEncoder& encoder,
@@ -68,15 +82,14 @@ class Matmul {
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta);
private:
void run_impl(
void execute(
cu::CommandEncoder& encoder,
void* out,
const void* a,
@@ -97,4 +110,4 @@ class Matmul {
cublasLtMatmulHeuristicResult_t heuristic_;
};
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -4,16 +4,16 @@
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
namespace mlx::core::cu {
namespace mlx::core {
void Matmul::run_batched(
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides) {
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
@@ -22,7 +22,7 @@ void Matmul::run_batched(
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
execute(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
@@ -33,16 +33,16 @@ void Matmul::run_batched(
}
}
void Matmul::run_batched(
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const mlx::core::Shape& batch_shape,
const mlx::core::Strides& a_batch_strides,
const mlx::core::Strides& b_batch_strides,
const mlx::core::Strides& c_batch_strides,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
encoder.set_input_array(a);
@@ -56,7 +56,7 @@ void Matmul::run_batched(
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
auto concurrent = encoder.concurrent_context();
for (size_t i = 0; i < nbatch; ++i) {
run_impl(
execute(
encoder,
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
a.data<int8_t>() + a.itemsize() * a_it.loc,
@@ -70,4 +70,4 @@ void Matmul::run_batched(
}
}
} // namespace mlx::core::cu
} // namespace mlx::core

View File

@@ -0,0 +1,327 @@
// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <int NDIM>
__global__ void set_mm_device_pointers_nd(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
int64_t batch_stride,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc_nd<NDIM>(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data());
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_mm_device_pointers_g(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] =
out_start + item_size * index * batch_stride;
}
template <int NDIM>
__global__ void set_addmm_device_pointers_nd(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ cuda::std::array<int32_t, NDIM> batch_shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_batch_strides,
const __grid_constant__ cuda::std::array<int64_t, NDIM> c_batch_strides,
int64_t batch_stride,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc_nd<NDIM>(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data());
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
__global__ void set_addmm_device_pointers_g(
int8_t** pointers,
int8_t* a_start,
int8_t* b_start,
int8_t* c_start,
int8_t* out_start,
int item_size,
const __grid_constant__ Shape batch_shape,
const __grid_constant__ Strides a_batch_strides,
const __grid_constant__ Strides b_batch_strides,
const __grid_constant__ Strides c_batch_strides,
int64_t batch_stride,
int batch_ndim,
int batch_count) {
auto index = cg::this_grid().thread_rank();
if (index >= batch_count) {
return;
}
auto [a_offset, b_offset, c_offset] = elem_to_loc(
index,
batch_shape.data(),
a_batch_strides.data(),
b_batch_strides.data(),
c_batch_strides.data(),
batch_ndim);
pointers[index] = a_start + item_size * a_offset;
pointers[index + batch_count] = b_start + item_size * b_offset;
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
pointers[index + 3 * batch_count] =
out_start + item_size * index * batch_stride;
}
} // namespace cu
namespace {
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc,
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
&batch_mode,
sizeof(batch_mode)));
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
}
} // namespace
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides) {
int batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(void*) * 3),
{batch_count * 3},
uint64);
encoder.add_temporary(pointers);
encoder.set_output_array(pointers);
int block_dims = std::min(batch_count, 256);
int num_blocks = cuda::ceil_div(batch_count, block_dims);
int64_t batch_stride = M_ * N_;
int item_size = out.itemsize();
int ndim = batch_shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
encoder.add_kernel_node(
cu::set_mm_device_pointers_nd<ndim_constant()>,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param<ndim_constant()>(batch_shape),
const_param<ndim_constant()>(a_batch_strides),
const_param<ndim_constant()>(b_batch_strides),
batch_stride,
batch_count);
});
} else {
encoder.add_kernel_node(
cu::set_mm_device_pointers_g,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
batch_stride,
ndim,
batch_count);
}
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto out_pointers = b_pointers + batch_count;
execute(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
nullptr);
}
void CublasGemm::run_batched(
cu::CommandEncoder& encoder,
array& out,
const array& a,
const array& b,
const array& c,
const Shape& batch_shape,
const Strides& a_batch_strides,
const Strides& b_batch_strides,
const Strides& c_batch_strides,
float alpha,
float beta) {
int batch_count = out.size() / (M_ * N_);
set_pointer_mode(a_desc_, batch_count);
set_pointer_mode(b_desc_, batch_count);
set_pointer_mode(c_desc_, batch_count);
set_pointer_mode(out_desc_, batch_count);
// Launch kernel to set device offsets
auto pointers = array(
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
{batch_count * 4},
uint64);
encoder.add_temporary(pointers);
encoder.set_output_array(pointers);
int block_dims = std::min(batch_count, 256);
int num_blocks = cuda::ceil_div(batch_count, block_dims);
int64_t batch_stride = M_ * N_;
int item_size = out.itemsize();
int ndim = batch_shape.size();
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
encoder.add_kernel_node(
cu::set_addmm_device_pointers_nd<ndim_constant()>,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param<ndim_constant()>(batch_shape),
const_param<ndim_constant()>(a_batch_strides),
const_param<ndim_constant()>(b_batch_strides),
const_param<ndim_constant()>(c_batch_strides),
batch_stride,
batch_count);
});
} else {
encoder.add_kernel_node(
cu::set_addmm_device_pointers_g,
num_blocks,
block_dims,
0,
pointers.data<int8_t*>(),
a.data<int8_t>(),
b.data<int8_t>(),
c.data<int8_t>(),
out.data<int8_t>(),
item_size,
const_param(batch_shape),
const_param(a_batch_strides),
const_param(b_batch_strides),
const_param(c_batch_strides),
batch_stride,
ndim,
batch_count);
}
// Run matmul
encoder.set_input_array(pointers);
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_input_array(c);
encoder.set_output_array(out);
auto a_pointers = pointers.data<int8_t*>();
auto b_pointers = a_pointers + batch_count;
auto c_pointers = b_pointers + batch_count;
auto out_pointers = c_pointers + batch_count;
execute(
encoder,
reinterpret_cast<void*>(out_pointers),
reinterpret_cast<void*>(a_pointers),
reinterpret_cast<void*>(b_pointers),
reinterpret_cast<void*>(c_pointers),
alpha,
beta);
}
} // namespace mlx::core

View File

@@ -0,0 +1,301 @@
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/device/utils.cuh"
#include "mlx/backend/cuda/gemms/steel_gemm.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
#include <cooperative_groups.h>
#include "mlx/backend/cuda/steel/gemm.cuh"
#include "mlx/backend/cuda/steel/mma.cuh"
#include "mlx/backend/cuda/steel/tiles.cuh"
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
struct GemmParams {
int M;
int N;
int K;
int lda;
int ldb;
int ldd;
int NblockM;
int NblockN;
int NblockK;
};
template <
typename T,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
int SL,
int Nstages>
__global__ void kernel_steel_gemm(
const T* a,
const T* b,
T* d,
__grid_constant__ const GemmParams params) {
const int bM_idx = (blockIdx.y << SL) + (blockIdx.x & ((1 << SL) - 1));
const int bN_idx = blockIdx.x >> SL;
if (params.NblockN <= bN_idx || params.NblockM <= bM_idx) {
return;
}
const int d_row = bM_idx * BM;
const int d_col = bN_idx * BN;
const size_t d_row_long = size_t(d_row);
const size_t d_col_long = size_t(d_col);
a += transpose_a ? d_row_long : d_row_long * params.K;
b += transpose_b ? d_col_long * params.K : d_col_long;
d += d_row_long * params.ldd + d_col_long;
auto block = cg::this_thread_block();
auto warp = cg::tiled_partition<32>(block);
const int lane_idx = warp.thread_rank();
const int warp_idx = warp.meta_group_rank();
const int wm = warp_idx / WN;
const int wn = warp_idx % WN;
constexpr int SM = BM / WM;
constexpr int SN = BN / WN;
constexpr int SK = BK;
constexpr int TK = SK / 16;
constexpr int NUM_WARPS = WM * WN;
// Allocate shared memory
extern __shared__ char shmem[];
SharedTile<T, BM, BK>(&as)[Nstages] =
*(SharedTile<T, BM, BK>(*)[Nstages])(&shmem[0]);
SharedTile<T, BN, BK>(&bs)[Nstages] = *(SharedTile<T, BN, BK>(*)[Nstages])(
&shmem[sizeof(T) * Nstages * BM * BK]);
// Allocate registers for the MMA
RegisterTile<float, SM, SN> C;
RegisterTile<T, SM, 16> A[TK];
RegisterTile<T, SN, 16> B[TK];
// Zero the accumulators
C.fill(0);
// Start gmem -> smem copies
int k_block_read = 0;
MLX_UNROLL
for (int bk = 0; bk < (Nstages - 1); bk++) {
load_async<NUM_WARPS>(
as[bk], as[bk].base_addr(), a + k_block_read, params.K);
load_async<NUM_WARPS>(
bs[bk], bs[bk].base_addr(), b + k_block_read, params.K);
k_block_read += BK;
cp_async_commit();
}
int smem_pipe_read = 0;
int smem_pipe_write = Nstages - 1;
// Wait till only 1 remains laoding
cp_async_wait<1>();
block.sync();
const int offset_m = wm * SM;
const int offset_n = wn * SN;
// Start smem -> register copy
A[0].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
lane_idx / 16 * 8);
B[0].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
lane_idx / 16 * 8);
// Main loop
for (int kb = 0; kb < params.NblockK; kb++) {
// Prepare next registers
{
A[1].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
16 + lane_idx / 16 * 8);
B[1].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
16 + lane_idx / 16 * 8);
}
// Prepare next smem
if ((kb + Nstages - 1) < params.NblockK) {
load_async<NUM_WARPS>(
as[smem_pipe_write],
as[smem_pipe_write].base_addr(),
a + k_block_read,
params.K);
load_async<NUM_WARPS>(
bs[smem_pipe_write],
bs[smem_pipe_write].base_addr(),
b + k_block_read,
params.K);
}
k_block_read += BK;
cp_async_commit();
smem_pipe_write = smem_pipe_read;
smem_pipe_read = smem_pipe_read + 1;
smem_pipe_read = (smem_pipe_read == Nstages) ? 0 : smem_pipe_read;
// Do current gemm
mma_t(C, A[0], B[0]);
// Do wait for next register
cp_async_wait<1>();
block.sync();
// Prepare next register (smem_pipe_read has moved to the next)
{
A[0].load(
as[smem_pipe_read],
as[smem_pipe_read].base_addr(),
offset_m + lane_idx % 16,
lane_idx / 16 * 8);
B[0].load(
bs[smem_pipe_read],
bs[smem_pipe_read].base_addr(),
offset_n + lane_idx % 16,
lane_idx / 16 * 8);
}
// Do current gemm
mma_t(C, A[1], B[1]);
}
// Wait and clear
cp_async_wait_all();
block.sync();
C.store_global(d, params.ldd, offset_m, offset_n);
}
} // namespace cu
void dispatch_steel_gemm(
const Stream& s,
cu::CommandEncoder& encoder,
const array& a,
const array& b,
array& d,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool a_transposed,
bool b_transposed) {
using DataType = cuda_type_t<float16_t>;
encoder.set_input_array(a);
encoder.set_input_array(b);
encoder.set_output_array(d);
constexpr int BM = 128;
constexpr int BN = 128;
constexpr int BK = 32;
constexpr int WM = 2;
constexpr int WN = 2;
constexpr int SL = 0;
constexpr int Nstages = 3;
constexpr uint32_t smem_bytes = BK * (BM + BN) * Nstages * sizeof(DataType);
const int NblockM = (M + BM - 1) / BM;
const int NblockN = (N + BN - 1) / BN;
const int NblockK = (K + BK - 1) / BK;
cu::GemmParams params{
/* int M = */ M,
/* int N = */ N,
/* int K = */ K,
/* int lda = */ lda,
/* int ldb = */ ldb,
/* int ldd = */ ldd,
/* int NblockM = */ NblockM,
/* int NblockN = */ NblockN,
/* int NblockK = */ NblockK,
};
// Prepare launch grid params
int tile = 1 << SL;
int tm = (NblockM + tile - 1) / tile;
int tn = NblockN * tile;
dim3 grid_dim(tn, tm, 1);
dim3 block_dim(32 * WM * WN, 1, 1);
dispatch_bool(a_transposed, [&](auto ta_) {
dispatch_bool(b_transposed, [&](auto tb_) {
constexpr bool ta = ta_.value;
constexpr bool tb = tb_.value;
auto kernel = cu::ab_t_aligned<DataType, BM, BN, BK>;
cudaFuncSetAttribute(
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
encoder.add_kernel_node(
kernel,
grid_dim,
block_dim,
smem_bytes,
a.data<DataType>(),
b.data<DataType>(),
d.data<DataType>(),
N,
K);
// auto kernel = cu::kernel_steel_gemm<DataType, BM, BN, BK, WM, WN, ta,
// tb, SL, Nstages>;
// cudaFuncSetAttribute(kernel,
// cudaFuncAttributeMaxDynamicSharedMemorySize, smem_bytes);
// encoder.add_kernel_node(
// kernel,
// grid_dim,
// block_dim,
// smem_bytes,
// a.data<DataType>(),
// b.data<DataType>(),
// d.data<DataType>(),
// params);
});
});
}
} // namespace mlx::core

View File

@@ -0,0 +1,27 @@
#pragma once
#include "mlx/backend/common/matmul.h"
#include "mlx/backend/cuda/device.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
namespace mlx::core {
void dispatch_steel_gemm(
const Stream& s,
cu::CommandEncoder& encoder,
const array& a,
const array& b,
array& d,
int M,
int N,
int K,
int lda,
int ldb,
int ldd,
bool a_transposed,
bool b_transposed);
} // namespace mlx::core

View File

@@ -7,6 +7,8 @@
#include "mlx/backend/gpu/copy.h"
#include "mlx/primitives.h"
#include "mlx/backend/cuda/gemms/steel_gemm.h"
#include <nvtx3/nvtx3.hpp>
#include <numeric>
@@ -95,9 +97,27 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
return;
}
if (out.dtype() == float16 && batch_count == 1 && !a_transposed &&
b_transposed) {
return dispatch_steel_gemm(
/* const Stream& s = */ s,
/* cu::CommandEncoder& encoder = */ encoder,
/* const array& a = */ a,
/* const array& b = */ b,
/* array& d = */ out,
/* int M = */ M,
/* int N = */ N,
/* int K = */ K,
/* int lda = */ lda,
/* int ldb = */ ldb,
/* int ldd = */ N,
/* bool a_transposed = */ a_transposed,
/* bool b_transposed = */ b_transposed);
}
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
CublasGemm gemm(
cu::device(s.device),
a.dtype(),
a_transposed,
@@ -111,14 +131,7 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
batch_shape.back(),
a_batch_strides.back(),
b_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b);
return;
}
matmul.run_batched(
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
}
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -186,7 +199,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
/////////////////////////////////////////////////////////////////////////////
// Invoke cublasLt
cu::Matmul matmul(
CublasGemm gemm(
cu::device(s.device),
a.dtype(),
a_transposed,
@@ -202,12 +215,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
a_batch_strides.back(),
b_batch_strides.back(),
c_batch_strides.back());
if ((batch_count / batch_shape.back()) == 1) {
matmul.run(encoder, out, a, b, c, alpha_, beta_);
return;
}
matmul.run_batched(
gemm.run(
encoder,
out,
a,

View File

@@ -8,19 +8,13 @@
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/transforms_impl.h"
// cudnn_frontend.h redefines this macro.
#undef CHECK_CUDA_ERROR
#include <cudnn_frontend.h>
#include <fmt/format.h>
#include <nvtx3/nvtx3.hpp>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace fe = cudnn_frontend;
namespace mlx::core {
namespace cu {
@@ -645,294 +639,6 @@ void sdpa_vector_fallback(
}
}
struct SDPACacheKey {
int device_id;
fe::DataType_t cudnn_type;
int B;
int H;
int D;
int qL;
int kL;
int gqa_factor;
float scale;
int64_t Q_strides[3];
int64_t K_strides[3];
int64_t V_strides[3];
int64_t O_strides[3];
bool generate_stats;
bool causal_mask;
};
auto& sdpa_cache() {
static LRUBytesKeyCache<SDPACacheKey, std::shared_ptr<fe::graph::Graph>>
cache(
/* capacity */ 128);
return cache;
}
#define Q_UID 1
#define K_UID 2
#define V_UID 3
#define O_UID 4
#define STATS_UID 5
std::shared_ptr<fe::graph::Graph> get_sdpa_forward_graph(
cu::CommandEncoder& encoder,
const SDPACacheKey& cache_key) {
// Check if graph has already been fully built
if (auto it = sdpa_cache().find(cache_key); it != sdpa_cache().end()) {
return it->second;
}
// Set up new graph
auto graph = std::make_shared<fe::graph::Graph>();
graph->set_io_data_type(cache_key.cudnn_type)
.set_intermediate_data_type(fe::DataType_t::FLOAT)
.set_compute_data_type(fe::DataType_t::FLOAT);
auto Q = graph->tensor(
fe::graph::Tensor_attributes()
.set_name("Q")
.set_uid(Q_UID)
.set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D})
.set_stride(
{cache_key.Q_strides[0],
cache_key.Q_strides[1],
cache_key.Q_strides[2],
1}));
int h_kv = cache_key.H / cache_key.gqa_factor;
auto K =
graph->tensor(fe::graph::Tensor_attributes()
.set_name("K")
.set_uid(K_UID)
.set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D})
.set_stride(
{cache_key.K_strides[0],
cache_key.K_strides[1],
cache_key.V_strides[2],
1}));
auto V =
graph->tensor(fe::graph::Tensor_attributes()
.set_name("V")
.set_uid(V_UID)
.set_dim({cache_key.B, h_kv, cache_key.kL, cache_key.D})
.set_stride(
{cache_key.V_strides[0],
cache_key.V_strides[1],
cache_key.V_strides[2],
1}));
auto sdpa_options = fe::graph::SDPA_attributes()
.set_name("flash_attention")
.set_is_inference(!cache_key.generate_stats)
.set_attn_scale(cache_key.scale);
if (cache_key.causal_mask && cache_key.qL > 1) {
sdpa_options.set_diagonal_alignment(fe::DiagonalAlignment_t::TOP_LEFT)
.set_diagonal_band_right_bound(0);
}
auto [O, Stats] = graph->sdpa(Q, K, V, sdpa_options);
O->set_output(true)
.set_uid(O_UID)
.set_dim({cache_key.B, cache_key.H, cache_key.qL, cache_key.D})
.set_stride(
{cache_key.O_strides[0],
cache_key.O_strides[1],
cache_key.O_strides[2],
1});
if (cache_key.generate_stats) {
Stats->set_output(true)
.set_data_type(fe::DataType_t::FLOAT)
.set_uid(STATS_UID);
}
// Build and Validate cudnn graph
auto handle = encoder.device().cudnn_handle();
// cuDNN only supports native CUDA graphs for sdpa in 9.6 or above.
if (cudnnGetVersion() < 90600) {
auto build_status = graph->build(handle, {fe::HeurMode_t::A});
if (!build_status.is_good()) {
throw std::runtime_error(
"Unable to build cudnn graph for attention."
" Failed with message: " +
build_status.get_message());
}
} else {
auto val_status = graph->validate();
auto op_status = graph->build_operation_graph(handle);
auto plan_stauts =
graph->create_execution_plans({cudnn_frontend::HeurMode_t::A});
if (!plan_stauts.is_good()) {
throw std::runtime_error(
"Unable to create exec plan for cudnn attention."
" Failed with message: " +
plan_stauts.get_message());
}
graph->select_behavior_notes(
{cudnn_frontend::BehaviorNote_t::SUPPORTS_CUDA_GRAPH_NATIVE_API});
auto support_status = graph->check_support(handle);
if (!support_status.is_good()) {
throw std::runtime_error(
"No cuda graph support for cudnn attention."
" Failed with message: " +
support_status.get_message());
}
auto build_status = graph->build_plans(handle);
if (!build_status.is_good()) {
throw std::runtime_error(
"Unable to build cudnn graph for attention."
" Failed with message: " +
build_status.get_message());
}
}
auto [it, _] = sdpa_cache().emplace(cache_key, graph);
return it->second;
}
inline fe::DataType_t dtype_to_cudnn_type(Dtype dtype) {
switch (dtype) {
case int8:
return fe::DataType_t::INT8;
case int32:
return fe::DataType_t::INT32;
case uint8:
return fe::DataType_t::UINT8;
case float16:
return fe::DataType_t::HALF;
case bfloat16:
return fe::DataType_t::BFLOAT16;
case float32:
return fe::DataType_t::FLOAT;
case float64:
return fe::DataType_t::DOUBLE;
default:
throw std::runtime_error(fmt::format(
"Unsupported dtype in SDPA: {}.", dtype_to_string(dtype)));
}
}
void sdpa_cudnn(
const Stream& s,
cu::CommandEncoder& encoder,
const array& q,
const array& k,
const array& v,
const float scale,
array& o,
bool do_causal_ = false) {
encoder.set_input_array(q);
encoder.set_input_array(k);
encoder.set_input_array(v);
encoder.set_output_array(o);
auto cudnn_type = dtype_to_cudnn_type(q.dtype());
int B = q.shape(0);
int H = q.shape(1);
int D = q.shape(3);
int gqa_factor = q.shape(1) / k.shape(1);
int qL = q.shape(2);
int kL = k.shape(2);
SDPACacheKey cache_key{
/* int device_id = */ encoder.device().cuda_device(),
/* fe::DataType_t cudnn_type = */ cudnn_type,
/* int B = */ B,
/* int H = */ H,
/* int D = */ D,
/* int qL = */ qL,
/* int kL = */ kL,
/* int gqa_factor = */ gqa_factor,
/* float scale = */ scale,
/* int64_t Q_strides[3] = */ {q.strides(0), q.strides(1), q.strides(2)},
/* int64_t K_strides[3] = */ {k.strides(0), k.strides(1), k.strides(2)},
/* int64_t V_strides[3] = */ {v.strides(0), v.strides(1), v.strides(2)},
/* int64_t O_strides[3] = */ {o.strides(0), o.strides(1), o.strides(2)},
/* bool generate_stats = */ false,
/* bool causal_mask = */ do_causal_};
auto graph = get_sdpa_forward_graph(encoder, cache_key);
int64_t workspace_size = 0;
auto workspace_status = graph->get_workspace_size(workspace_size);
if (!workspace_status.is_good()) {
throw std::runtime_error("Unable to get workspace for cudnn attention.");
}
array workspace(
allocator::malloc(workspace_size), {int(workspace_size)}, uint8);
auto workspace_ptr = workspace.data<void>();
std::unordered_map<int64_t, void*> variant_pack = {
{Q_UID, const_cast<void*>(q.data<void>())},
{K_UID, const_cast<void*>(k.data<void>())},
{V_UID, const_cast<void*>(v.data<void>())},
{O_UID, o.data<void>()}};
auto handle = encoder.device().cudnn_handle();
cudnnSetStream(handle, encoder.stream());
// cuDNN only supports native CUDA graphs for sdpa in 9.6 or above.
if (cudnnGetVersion() < 90600) {
auto capture = encoder.capture_context();
auto exec_status = graph->execute(handle, variant_pack, workspace_ptr);
if (!exec_status.is_good()) {
capture.discard = true;
throw std::runtime_error(
"Unable to execute cudnn attention."
" Failed with message: " +
exec_status.get_message());
}
} else {
cudaGraph_t cu_graph;
cudaGraphCreate(&cu_graph, 0);
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
&cu_graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
auto cu_graph_status = graph->populate_cuda_graph(
handle, variant_pack, workspace_ptr, cu_graph);
if (!cu_graph_status.is_good()) {
throw std::runtime_error(
"Unable to add cuda graph for cudnn attention."
" Failed with message: " +
cu_graph_status.get_message());
}
encoder.add_graph_node(cu_graph);
}
encoder.add_temporary(workspace);
}
} // namespace
namespace fast {
@@ -945,6 +651,9 @@ bool ScaledDotProductAttention::use_fallback(
bool has_arr_mask,
bool do_causal,
Stream s) {
if (detail::in_grad_tracing()) {
return true;
}
if (s.device == Device::cpu) {
return true;
}
@@ -960,15 +669,7 @@ bool ScaledDotProductAttention::use_fallback(
const bool supported_vector_config =
sdpa_supported_head_dim && query_sequence_length < 4;
auto& cu_device = cu::device(s.device);
const bool supported_matrix_config = query_sequence_length > 4 &&
cu_device.compute_capability_major() >= 8 &&
query_sequence_length == key_sequence_length &&
(q.dtype() == float16 || q.dtype() == bfloat16);
const bool supported_config =
(supported_matrix_config || supported_vector_config);
const bool supported_config = supported_vector_config;
return has_arr_mask || !supported_config;
}
@@ -1002,10 +703,6 @@ void ScaledDotProductAttention::eval_gpu(
}
};
auto is_matrix_contiguous = [](const array& arr) {
return arr.strides(-1) == 1;
};
// We are in vector mode ie single query
if (q_pre.shape(2) < 4) {
auto q_copy_unless = [](const array& arr) {
@@ -1059,7 +756,7 @@ void ScaledDotProductAttention::eval_gpu(
array::Flags flags{
/* bool contiguous = */ 1,
/* bool row_contiguous = */ 0,
/* bool row_contiguous = */ o.shape(2) == 1,
/* bool col_contiguous = */ 0,
};
@@ -1073,35 +770,9 @@ void ScaledDotProductAttention::eval_gpu(
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
}
// Full attention mode
// Full attention mode should never reach here
else {
const auto& q = copy_unless(is_matrix_contiguous, q_pre);
const auto& k = copy_unless(is_matrix_contiguous, k_pre);
const auto& v = copy_unless(is_matrix_contiguous, v_pre);
for (const auto& cp : copies) {
encoder.add_temporary(cp);
}
int64_t str_oD = 1;
int64_t str_oH = o.shape(3);
int64_t str_oL = o.shape(1) * str_oH;
int64_t str_oB = o.shape(2) * str_oL;
size_t data_size = o.shape(0) * str_oB;
array::Flags flags{
/* bool contiguous = */ 1,
/* bool row_contiguous = */ 0,
/* bool col_contiguous = */ 0,
};
o.set_data(
allocator::malloc(o.nbytes()),
data_size,
{str_oB, str_oH, str_oL, str_oD},
flags);
return sdpa_cudnn(s, encoder, q, k, v, scale_, o, do_causal_);
throw std::runtime_error("Doesn't support matrix yet.");
}
}

View File

@@ -143,85 +143,87 @@ struct Tile16x16 {
}
};
/**
* A simple container of multiple Tile16x16.
*
* Provides utility functions for loading and manipulating collections of basic
* tiles.
*/
template <typename T, int ROWS_, int COLS_>
struct RegisterTile {
static constexpr int ROWS = ROWS_;
static constexpr int COLS = COLS_;
static constexpr int TILES_X = COLS / 16;
static constexpr int TILES_Y = ROWS / 16;
// /**
// * A simple container of multiple Tile16x16.
// *
// * Provides utility functions for loading and manipulating collections of
// basic
// * tiles.
// */
// template <typename T, int ROWS_, int COLS_>
// struct RegisterTile {
// static constexpr int ROWS = ROWS_;
// static constexpr int COLS = COLS_;
// static constexpr int TILES_X = COLS / 16;
// static constexpr int TILES_Y = ROWS / 16;
Tile16x16<T> data[TILES_X * TILES_Y];
// Tile16x16<T> data[TILES_X * TILES_Y];
__device__ inline void fill(T v) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].fill(v);
}
}
}
// __device__ inline void fill(T v) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].fill(v);
// }
// }
// }
template <typename Tile>
__device__ __forceinline__ void
load(Tile& tile, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].load(
tile.loc(base_address, row + i * 16, col + j * 16));
}
}
}
// template <typename Tile>
// __device__ __forceinline__ void
// load(Tile& tile, uint32_t base_address, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].load(
// tile.loc(base_address, row + i * 16, col + j * 16));
// }
// }
// }
template <typename Tile, typename F>
__device__ __forceinline__ void
load(Tile& tile, F f, uint32_t base_address, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
f(data[i * TILES_X + j],
tile,
base_address,
row + i * 16,
col + j * 16);
}
}
}
// template <typename Tile, typename F>
// __device__ __forceinline__ void
// load(Tile& tile, F f, uint32_t base_address, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// f(data[i * TILES_X + j],
// tile,
// base_address,
// row + i * 16,
// col + j * 16);
// }
// }
// }
template <typename U>
__device__ inline void store_global(U* x, int N, int row, int col) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global(
x + (row + i * 16) * N + col + j * 16, N);
}
}
}
// template <typename U>
// __device__ inline void store_global(U* x, int N, int row, int col) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].store_global(
// x + (row + i * 16) * N + col + j * 16, N);
// }
// }
// }
template <typename U>
__device__ inline void
store_global_safe(U* x, int N, int row, int col, int max_rows) {
MLX_UNROLL
for (int i = 0; i < TILES_Y; i++) {
MLX_UNROLL
for (int j = 0; j < TILES_X; j++) {
data[i * TILES_X + j].store_global_safe(
x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i * 16);
}
}
}
};
// template <typename U>
// __device__ inline void
// store_global_safe(U* x, int N, int row, int col, int max_rows) {
// MLX_UNROLL
// for (int i = 0; i < TILES_Y; i++) {
// MLX_UNROLL
// for (int j = 0; j < TILES_X; j++) {
// data[i * TILES_X + j].store_global_safe(
// x + (row + i * 16) * N + col + j * 16, N, max_rows - row - i *
// 16);
// }
// }
// }
// };
/**
* A simple container of multiple Tile16x16.

View File

@@ -104,7 +104,7 @@ struct CommandEncoder {
};
// Outputs of all kernels in the encoder including temporaries
std::unordered_set<const void*> outputs() {
std::unordered_set<const void*>& outputs() {
return all_outputs_;
};

View File

@@ -134,6 +134,10 @@ instantiate_and_or(and, And)
instantiate_and_or(or, Or)
#define instantiate_sum_prod(name, op) \
instantiate_reduce_functions(name, uint8, uint8_t, int32_t, op) \
instantiate_reduce_functions(name, uint16, uint16_t, uint32_t, op) \
instantiate_reduce_functions(name, uint32, uint32_t, uint32_t, op) \
instantiate_reduce_functions(name, uint64, uint64_t, uint64_t, op) \
instantiate_reduce_functions(name, int8, int8_t, int32_t, op) \
instantiate_reduce_functions(name, int16, int16_t, int32_t, op) \
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \

View File

@@ -247,15 +247,25 @@ std::pair<Dtype, Dtype> remap_reduce_types(
const std::string& op_name) {
if (op_name == "sum" || op_name == "prod") {
if (issubdtype(in.dtype(), integer)) {
switch (in.dtype().size()) {
case 1:
switch (in.dtype()) {
case uint8:
return {uint8, uint32};
case uint16:
return {uint16, uint32};
case uint32:
return {uint32, uint32};
case uint64:
return {uint64, uint64};
case int8:
return {int8, int32};
case 2:
case int16:
return {int16, int32};
case 4:
case int32:
return {int32, int32};
case 8:
case int64:
return {int64, int64};
default:
throw std::runtime_error("Unsupported integer type");
}
}
if (in.dtype() == bool_) {

View File

@@ -2381,9 +2381,20 @@ array logsumexp(
throw std::invalid_argument(
"[logsumexp] Received non-empty axes for array with 0 dimensions.");
}
bool reduce_last_dim =
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
if (reduce_last_dim) {
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
// is [1, 1, ..., N].
for (int i = axes.size() - 2; i >= 0; --i) {
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
reduce_last_dim = false;
break;
}
}
}
bool is_complex = issubdtype(a.dtype(), complexfloating);
if (!is_complex && axes.size() == 1 &&
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
if (!is_complex && reduce_last_dim) {
auto dtype = at_least_float(a.dtype());
auto out_shape = a.shape();
out_shape.back() = 1;
@@ -3403,10 +3414,20 @@ array softmax(
throw std::invalid_argument(
"[softmax] Received non-empty axes for array with 0 dimensions.");
}
bool reduce_last_dim =
!axes.empty() && (axes.back() == a.ndim() - 1 || axes.back() == -1);
if (reduce_last_dim) {
// For more than 2 axes check if axes is [0, 1, ..., NDIM - 1] and shape
// is [1, 1, ..., N].
for (int i = axes.size() - 2; i >= 0; --i) {
if ((axes[i] + 1 != axes[i + 1]) || (a.shape(axes[i]) != 1)) {
reduce_last_dim = false;
break;
}
}
}
bool is_complex = issubdtype(a.dtype(), complexfloating);
if (!is_complex && axes.size() == 1 &&
(a.ndim() == axes[0] + 1 || axes[0] == -1)) {
if (!is_complex && reduce_last_dim) {
auto dtype = at_least_float(a.dtype());
return array(
a.shape(),

View File

@@ -3,8 +3,8 @@
#pragma once
#define MLX_VERSION_MAJOR 0
#define MLX_VERSION_MINOR 27
#define MLX_VERSION_PATCH 1
#define MLX_VERSION_MINOR 28
#define MLX_VERSION_PATCH 0
#define MLX_VERSION_NUMERIC \
(100000 * MLX_VERSION_MAJOR + 1000 * MLX_VERSION_MINOR + MLX_VERSION_PATCH)

View File

@@ -2,6 +2,6 @@
requires = [
"setuptools>=80",
"nanobind==2.4.0",
"cmake>=3.25",
"cmake>=3.25,<4.1",
]
build-backend = "setuptools.build_meta"

View File

@@ -178,7 +178,7 @@ class Module(dict):
if strict:
new_weights = dict(weights)
curr_weights = dict(tree_flatten(self.parameters()))
curr_weights = tree_flatten(self.parameters(), destination={})
if extras := (new_weights.keys() - curr_weights.keys()):
num_extra = len(extras)
extras = ",\n".join(sorted(extras))
@@ -212,7 +212,7 @@ class Module(dict):
- ``.npz`` will use :func:`mx.savez`
- ``.safetensors`` will use :func:`mx.save_safetensors`
"""
params_dict = dict(tree_flatten(self.parameters()))
params_dict = tree_flatten(self.parameters(), destination={})
if file.endswith(".npz"):
mx.savez(file, **params_dict)

View File

@@ -1,7 +1,7 @@
# Copyright © 2023 Apple Inc.
from collections import defaultdict
from itertools import zip_longest
from typing import Any, Callable, List, Optional, Tuple
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
def tree_map(
@@ -114,8 +114,11 @@ def tree_map_with_path(
def tree_flatten(
tree: Any, prefix: str = "", is_leaf: Optional[Callable] = None
) -> Any:
tree: Any,
prefix: str = "",
is_leaf: Optional[Callable] = None,
destination: Optional[Union[List[Tuple[str, Any]], Dict[str, Any]]] = None,
) -> Union[List[Tuple[str, Any]], Dict[str, Any]]:
"""Flattens a Python tree to a list of key, value tuples.
The keys are using the dot notation to define trees of arbitrary depth and
@@ -128,9 +131,12 @@ def tree_flatten(
print(tree_flatten([[[0]]]))
# [("0.0.0", 0)]
print(tree_flatten([[[0]]], ".hello"))
print(tree_flatten([[[0]]], prefix=".hello"))
# [("hello.0.0.0", 0)]
tree_flatten({"a": {"b": 1}}, destination={})
{"a.b": 1}
.. note::
Dictionaries should have keys that are valid Python identifiers.
@@ -140,26 +146,50 @@ def tree_flatten(
always discarded.
is_leaf (callable): An optional callable that returns True if the
passed object is considered a leaf or False otherwise.
destination (list or dict, optional): A list or dictionary to store the
flattened tree. If None an empty list will be used. Default: ``None``.
Returns:
List[Tuple[str, Any]]: The flat representation of the Python tree.
Union[List[Tuple[str, Any]], Dict[str, Any]]: The flat representation of
the Python tree.
"""
flat_tree = []
if destination is None:
destination = []
if is_leaf is None or not is_leaf(tree):
# Create the function to update the destination. We are taking advantage of
# the fact that list.extend and dict.update have the same API to simplify
# the code a bit.
if isinstance(destination, list):
_add_to_destination = destination.extend
elif isinstance(destination, dict):
_add_to_destination = destination.update
else:
raise ValueError("Destination should be either a list or a dictionary or None")
# Leaf identified by is_leaf so add it and return
if is_leaf is not None and is_leaf(tree):
_add_to_destination([(prefix[1:], tree)])
return destination
# List or tuple so recursively add each subtree
if isinstance(tree, (list, tuple)):
for i, t in enumerate(tree):
flat_tree.extend(tree_flatten(t, f"{prefix}.{i}", is_leaf))
return flat_tree
for i, item in enumerate(tree):
tree_flatten(item, f"{prefix}.{i}", is_leaf, destination)
return destination
# Dictionary so recursively add each subtree
if isinstance(tree, dict):
for k, t in tree.items():
flat_tree.extend(tree_flatten(t, f"{prefix}.{k}", is_leaf))
return flat_tree
for key, value in tree.items():
tree_flatten(value, f"{prefix}.{key}", is_leaf, destination)
return destination
return [(prefix[1:], tree)]
# Leaf so add it and return
_add_to_destination([(prefix[1:], tree)])
return destination
def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
def tree_unflatten(tree: Union[List[Tuple[str, Any]], Dict[str, Any]]) -> Any:
"""Recreate a Python tree from its flat representation.
.. code-block:: python
@@ -170,31 +200,34 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
print(d)
# {"hello": {"world": 42}}
d = tree_unflatten({"hello.world": 42})
print(d)
# {"hello": {"world": 42}}
Args:
tree (list[tuple[str, Any]]): The flat representation of a Python tree.
tree (list[tuple[str, Any]] or dict[str, Any]): The flat representation of a Python tree.
For instance as returned by :meth:`tree_flatten`.
Returns:
A Python tree.
"""
if len(tree) == 1 and tree[0][0] == "":
return tree[0][1]
items = tree.items() if isinstance(tree, dict) else tree
try:
int(tree[0][0].split(".", maxsplit=1)[0])
is_list = True
except ValueError:
is_list = False
# Special case when we have just one element in the tree ie not a tree
if len(items) == 1:
key, value = next(iter(items))
if key == "":
return value
# collect children
children = defaultdict(list)
for key, value in tree:
for key, value in items:
current_idx, *next_idx = key.split(".", maxsplit=1)
next_idx = "" if not next_idx else next_idx[0]
children[current_idx].append((next_idx, value))
# recursively map them to the original container
if is_list:
# Assume they are a list and fail to dict if the keys are not all integers
try:
keys = sorted((int(idx), idx) for idx in children.keys())
l = []
for i, k in keys:
@@ -202,7 +235,7 @@ def tree_unflatten(tree: List[Tuple[str, Any]]) -> Any:
l.extend([{} for _ in range(i - len(l))])
l.append(tree_unflatten(children[k]))
return l
else:
except ValueError:
return {k: tree_unflatten(v) for k, v in children.items()}

View File

@@ -80,7 +80,7 @@ class TestBase(mlx_tests.MLXTestCase):
self.weights = {"w1": mx.zeros((2, 2)), "w2": mx.ones((2, 2))}
model = DictModule()
params = dict(tree_flatten(model.parameters()))
params = tree_flatten(model.parameters(), destination={})
self.assertEqual(len(params), 2)
self.assertTrue(mx.array_equal(params["weights.w1"], mx.zeros((2, 2))))
self.assertTrue(mx.array_equal(params["weights.w2"], mx.ones((2, 2))))

View File

@@ -155,6 +155,19 @@ TEST_CASE("test gpu reduce") {
CHECK_EQ(prod(a, Device::gpu).item<int32_t>(), 1);
}
// sum and prod overflow
{
auto a = full({256, 2, 2}, 1u, uint8);
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 256 * 4);
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
a = full({65535, 2, 2}, 1u, uint16);
CHECK_EQ(sum(a, Device::gpu).item<uint32_t>(), 65535 * 4);
CHECK_EQ(prod(a, Device::gpu).item<uint32_t>(), 1);
}
}
TEST_CASE("test gpu reduce with axes") {
// reducing only some axes and irregular layouts
{
array a(1.0f);

View File

@@ -915,6 +915,23 @@ TEST_CASE("test reduction ops") {
CHECK(array_equal(sum(x, 1), array({3.0f, 6.0f}, {2})).item<bool>());
}
// Test unsigned sum
{
const int num_elems = 1000;
auto x = astype(full({num_elems}, 255), uint8);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 255 * num_elems);
x = astype(full({num_elems}, 65535), uint16);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 65535 * num_elems);
x = full({3, 3, 3}, 10000, uint32);
CHECK_EQ(sum(x, Device::cpu).item<uint32_t>(), 270000);
x = full({3, 3, 3}, 10000, uint64);
CHECK_EQ(sum(x, Device::cpu).item<uint64_t>(), 270000);
}
// Test prod
{
auto x = array({});
@@ -947,6 +964,21 @@ TEST_CASE("test reduction ops") {
CHECK(array_equal(prod(x, 1), array({true, false})).item<bool>());
}
// Test unsigned prod
{
auto x = array({255, 255}, {2}, uint8);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 65025);
x = array({65535, 2}, {2}, uint16);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 131070);
x = array({100000, 2}, {2}, uint32);
CHECK_EQ(prod(x, Device::cpu).item<uint32_t>(), 200000);
x = array({100000, 2}, {2}, uint64);
CHECK_EQ(prod(x, Device::cpu).item<uint64_t>(), 200000);
}
// Test all
{
auto x = array({});