mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
1 Commits
sdpav-back
...
ring-init
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a9c720e8cd |
@@ -7,9 +7,18 @@ parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
weekly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
linux_release:
|
||||
type: boolean
|
||||
default: false
|
||||
cuda_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
build_documentation:
|
||||
@@ -64,9 +73,9 @@ jobs:
|
||||
git push -f origin gh-pages
|
||||
|
||||
linux_build_and_test:
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
docker:
|
||||
- image: cimg/python:3.9
|
||||
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
@@ -78,36 +87,35 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install openmpi-bin openmpi-common libopenmpi-dev
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
uv pip install -e ".[dev]" -v
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
|
||||
python3 setup.py develop
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
echo "stubs"
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
python -m unittest discover python/tests -v
|
||||
python3 -m unittest discover python/tests -v
|
||||
mpirun --bind-to none -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
mkdir -p build && cd build
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j `nproc`
|
||||
- run:
|
||||
@@ -132,49 +140,50 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
brew install python@3.9
|
||||
brew install openmpi
|
||||
python3.9 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
pip install unittest-xml-reporting
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv --python 3.9
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
numpy \
|
||||
torch \
|
||||
tensorflow \
|
||||
unittest-xml-reporting
|
||||
source env/bin/activate
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e . -v
|
||||
pip install -e . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
source env/bin/activate
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
source env/bin/activate
|
||||
cd examples/extensions
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project python test.py
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
source env/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
@@ -183,7 +192,7 @@ jobs:
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
source env/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
@@ -195,60 +204,34 @@ jobs:
|
||||
- run:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
source env/bin/activate
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e .
|
||||
pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
|
||||
|
||||
cuda_build_and_test:
|
||||
parameters:
|
||||
image_date:
|
||||
type: string
|
||||
default: "2023.11.1"
|
||||
machine:
|
||||
image: "linux-cuda-12:<< parameters.image_date >>"
|
||||
image: linux-cuda-12:default
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- restore_cache:
|
||||
keys:
|
||||
- cuda-<< parameters.image_date >>-{{ arch }}-
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
pip install -e ".[dev]"
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
paths:
|
||||
- /home/circleci/.cache/ccache
|
||||
|
||||
build_release:
|
||||
parameters:
|
||||
@@ -301,18 +284,7 @@ jobs:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
||||
<< parameters.build_env >> python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
@@ -329,100 +301,88 @@ jobs:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
build_env:
|
||||
extra_env:
|
||||
type: string
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
default: "DEV_RELEASE=1"
|
||||
docker:
|
||||
- image: ubuntu:20.04
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
PYTHON=python<< parameters.python_version >>
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
sudo apt-get update
|
||||
TZ=Etc/UTC sudo apt-get -y install tzdata
|
||||
sudo add-apt-repository -y ppa:deadsnakes/ppa
|
||||
sudo apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
apt-get update
|
||||
apt-get upgrade -y
|
||||
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||
apt-get install -y apt-utils
|
||||
apt-get install -y software-properties-common
|
||||
add-apt-repository -y ppa:deadsnakes/ppa
|
||||
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
apt-get install -y build-essential git
|
||||
$PYTHON -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
<< parameters.build_env >> pip install ".[dev]" -v
|
||||
<< parameters.extra_env >> pip install . -v
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 << parameters.build_env >> python -m build -w
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
python -m build -w
|
||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload packages
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
<< parameters.extra_env >> python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
build_cuda_release:
|
||||
parameters:
|
||||
build_env:
|
||||
python_version:
|
||||
type: string
|
||||
default: ""
|
||||
default: "3.9"
|
||||
extra_env:
|
||||
type: string
|
||||
default: "DEV_RELEASE=1"
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
image: linux-cuda-12:default
|
||||
resource_class: gpu.nvidia.small.gen2
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Build wheel
|
||||
command: |
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
export NEEDRESTART_MODE=a
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2404/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install cuda-toolkit-12-9 libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install zip
|
||||
python -m venv env
|
||||
source env/bin/activate
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
pip install twine
|
||||
export PATH=/usr/local/cuda/bin${PATH:+:${PATH}}
|
||||
export LD_LIBRARY_PATH=/usr/local/cuda/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 \
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build -w
|
||||
pip install ".[dev]" -v
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
python -m build --wheel
|
||||
bash python/scripts/repair_cuda.sh
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
twine upload wheelhouse/*.whl
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload wheelhouse/*.whl
|
||||
- store_artifacts:
|
||||
path: wheelhouse/
|
||||
|
||||
@@ -434,6 +394,7 @@ workflows:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
@@ -441,16 +402,14 @@ workflows:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
- cuda_build_and_test
|
||||
- build_documentation
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
@@ -542,16 +501,7 @@ workflows:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
tags:
|
||||
only: /^v.*/
|
||||
branches:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
||||
prb:
|
||||
when:
|
||||
@@ -572,9 +522,6 @@ workflows:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
image_date: ["2023.11.1", "2025.05.1"]
|
||||
nightly_build:
|
||||
when:
|
||||
and:
|
||||
@@ -633,17 +580,11 @@ workflows:
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
weekly_build:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.test_release >>
|
||||
- << pipeline.parameters.weekly_build >>
|
||||
jobs:
|
||||
- build_release:
|
||||
matrix:
|
||||
@@ -713,12 +654,25 @@ workflows:
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
linux_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.linux_release >>
|
||||
jobs:
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
cuda_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.cuda_release >>
|
||||
jobs:
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
parameters:
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
||||
@@ -19,7 +19,6 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
|
||||
@@ -41,9 +41,7 @@ option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_BUILD_BLAS_FROM_SOURCE "Build OpenBLAS from source code" OFF)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(MLX_USE_CCACHE "Use CCache for compilation cache when available" ON)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
option(USE_SYSTEM_FMT "Use system's provided fmt library" OFF)
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
message(
|
||||
@@ -66,17 +64,10 @@ if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
else()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
endif()
|
||||
|
||||
if(MLX_USE_CCACHE)
|
||||
find_program(CCACHE_PROGRAM ccache)
|
||||
if(CCACHE_PROGRAM)
|
||||
set(CMAKE_C_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CXX_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
set(CMAKE_CUDA_COMPILER_LAUNCHER "${CCACHE_PROGRAM}")
|
||||
endif()
|
||||
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||
endif()
|
||||
|
||||
# ----------------------------- Lib -----------------------------
|
||||
@@ -243,16 +234,12 @@ target_include_directories(
|
||||
# Do not add mlx_EXPORTS define for shared library.
|
||||
set_target_properties(mlx PROPERTIES DEFINE_SYMBOL "")
|
||||
|
||||
if(USE_SYSTEM_FMT)
|
||||
find_package(fmt REQUIRED)
|
||||
else()
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
endif()
|
||||
FetchContent_Declare(
|
||||
fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
|
||||
|
||||
if(MLX_BUILD_PYTHON_BINDINGS)
|
||||
|
||||
21
README.md
21
README.md
@@ -11,10 +11,10 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
@@ -68,23 +68,18 @@ in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install MLX on
|
||||
macOS, run:
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
|
||||
```bash
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
To install the CUDA backend on Linux, run:
|
||||
**With `conda`**:
|
||||
|
||||
```bash
|
||||
pip install mlx[cuda]
|
||||
```
|
||||
|
||||
To install a CPU-only Linux package, run:
|
||||
|
||||
```bash
|
||||
pip install mlx[cpu]
|
||||
conda install -c conda-forge mlx
|
||||
```
|
||||
|
||||
Checkout the
|
||||
|
||||
@@ -138,13 +138,13 @@ more concrete:
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
@@ -394,14 +394,14 @@ below.
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel
|
||||
std::stream kname;
|
||||
kname = "axpby_general_" + type_to_name(out);
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
||||
@@ -13,7 +13,7 @@ silicon computer is
|
||||
|
||||
pip install mlx
|
||||
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
To install from PyPI you must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
@@ -23,39 +23,22 @@ To install from PyPI your system must meet the following requirements:
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
|
||||
|
||||
MLX is also available on conda-forge. To install MLX with conda do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
conda install conda-forge::mlx
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
MLX has a CUDA backend which you can install with:
|
||||
MLX has a CUDA backend which you can use on any Linux platform with CUDA 12
|
||||
and SM 7.0 (Volta) and up. To install MLX with CUDA support, run:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install mlx[cuda]
|
||||
|
||||
To install the CUDA package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Nvidia architecture >= SM 7.0 (Volta)
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
For a CPU-only version of MLX that runs on Linux use:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install mlx[cpu]
|
||||
|
||||
To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
pip install mlx-cuda
|
||||
|
||||
|
||||
Troubleshooting
|
||||
|
||||
@@ -19,4 +19,3 @@ Common Optimizers
|
||||
Adamax
|
||||
Lion
|
||||
MultiOptimizer
|
||||
Muon
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
// Copyright © 2023-2025 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
|
||||
@@ -17,19 +16,6 @@
|
||||
|
||||
namespace my_ext {
|
||||
|
||||
// A helper function to find the location of the current binary on disk.
|
||||
// The Metal library ("mlx_ext.mtllib"), should be in the same directory.
|
||||
std::string current_binary_dir() {
|
||||
static std::string binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path().string();
|
||||
}();
|
||||
return binary_dir;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Operation Implementation
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -181,15 +167,16 @@ void Axpby::eval_gpu(
|
||||
}
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
std::string kname = "axpby_";
|
||||
kname += (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname += type_to_name(out);
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_";
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
|
||||
// Load the metal library
|
||||
auto lib = d.get_library("mlx_ext", current_binary_dir());
|
||||
auto lib = d.get_library("mlx_ext");
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname, lib);
|
||||
auto kernel = d.get_kernel(kname.str(), lib);
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
|
||||
@@ -74,9 +74,9 @@ class Axpby : public mx::Primitive {
|
||||
const std::vector<mx::array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
/** The name of primitive. */
|
||||
const char* name() const override {
|
||||
return "Axpby";
|
||||
/** Print the primitive. */
|
||||
void print(std::ostream& os) override {
|
||||
os << "Axpby";
|
||||
}
|
||||
|
||||
/** Equivalence check **/
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.25
|
||||
mlx>=0.21.0
|
||||
nanobind==2.4.0
|
||||
nanobind==2.2.0
|
||||
|
||||
@@ -3,10 +3,8 @@ from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c_cpu = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
c_gpu = axpby(a, b, 4.0, 2.0, stream=mx.gpu)
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
|
||||
print(f"c shape: {c_cpu.shape}")
|
||||
print(f"c dtype: {c_cpu.dtype}")
|
||||
print(f"c_cpu correct: {mx.all(c_cpu == 6.0).item()}")
|
||||
print(f"c_gpu correct: {mx.all(c_gpu == 6.0).item()}")
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
|
||||
@@ -10,7 +10,6 @@
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/small_vector.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -19,8 +18,8 @@ class Primitive;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using ShapeElem = int32_t;
|
||||
using Shape = SmallVector<ShapeElem>;
|
||||
using Strides = SmallVector<int64_t>;
|
||||
using Shape = std::vector<ShapeElem>;
|
||||
using Strides = std::vector<int64_t>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
|
||||
@@ -1,20 +1,14 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <dlfcn.h>
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::filesystem::path current_binary_dir() {
|
||||
static std::filesystem::path binary_dir = []() {
|
||||
Dl_info info;
|
||||
if (!dladdr(reinterpret_cast<void*>(¤t_binary_dir), &info)) {
|
||||
throw std::runtime_error("Unable to get current binary dir.");
|
||||
}
|
||||
return std::filesystem::path(info.dli_fname).parent_path();
|
||||
}();
|
||||
return binary_dir;
|
||||
std::string get_primitive_string(Primitive* primitive) {
|
||||
std::ostringstream op_t;
|
||||
primitive->print(op_t);
|
||||
return op_t.str();
|
||||
}
|
||||
|
||||
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
@@ -228,31 +222,4 @@ std::pair<Dims, Dims> get_grid_and_block_common(int dim0, int dim1, int dim2) {
|
||||
std::make_tuple(gx, gy, gz), std::make_tuple(bx, by, bz));
|
||||
}
|
||||
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2) {
|
||||
int ndim = x.ndim();
|
||||
if (axis1 < 0) {
|
||||
axis1 += ndim;
|
||||
}
|
||||
if (axis2 < 0) {
|
||||
axis2 += ndim;
|
||||
}
|
||||
|
||||
auto shape = x.shape();
|
||||
std::swap(shape[axis1], shape[axis2]);
|
||||
auto strides = x.strides();
|
||||
std::swap(strides[axis1], strides[axis2]);
|
||||
|
||||
auto [data_size, row_contiguous, col_contiguous] =
|
||||
check_contiguity(shape, strides);
|
||||
bool contiguous = data_size == x.data_size();
|
||||
|
||||
array out(std::move(shape), x.dtype(), nullptr, {});
|
||||
out.copy_shared_buffer(
|
||||
x,
|
||||
std::move(strides),
|
||||
{contiguous, row_contiguous, col_contiguous},
|
||||
x.data_size());
|
||||
return out;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <filesystem>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
@@ -10,8 +9,7 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Return the directory that contains current shared library.
|
||||
std::filesystem::path current_binary_dir();
|
||||
std::string get_primitive_string(Primitive* primitive);
|
||||
|
||||
inline int64_t
|
||||
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
|
||||
@@ -196,11 +194,8 @@ void shared_buffer_reshape(
|
||||
const Strides& out_strides,
|
||||
array& out);
|
||||
|
||||
// Like the swapaxes op but safe to call in eval_gpu.
|
||||
array swapaxes_in_eval(const array& x, int axis1, int axis2);
|
||||
|
||||
template <typename T>
|
||||
inline SmallVector<T> remove_index(SmallVector<T> vec, size_t index) {
|
||||
inline std::vector<T> remove_index(std::vector<T> vec, size_t index) {
|
||||
vec.erase(std::next(vec.begin(), index));
|
||||
return vec;
|
||||
}
|
||||
|
||||
@@ -20,7 +20,7 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
||||
|
||||
// The decomposition is computed in place, so just copy the input to the
|
||||
// output.
|
||||
copy_cpu(
|
||||
copy(
|
||||
a,
|
||||
factor,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -231,7 +231,7 @@ inline void build_kernel(
|
||||
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
||||
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
|
||||
} else {
|
||||
os << x.primitive().name();
|
||||
x.primitive().print(os);
|
||||
os << "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
@@ -288,14 +288,6 @@ void Compiled::eval_cpu(
|
||||
auto [contiguous, shape, strides] =
|
||||
compiled_collapse_contiguous_dims(inputs, outputs[0], is_constant_);
|
||||
|
||||
// Force allocating shape/strides on heap so we can take their data() first
|
||||
// and then std::move them.
|
||||
// TODO: Refactor code to avoid heap allocation.
|
||||
shape.grow();
|
||||
for (auto& s : strides) {
|
||||
s.grow();
|
||||
}
|
||||
|
||||
// Collect function input arguments.
|
||||
std::vector<void*> args;
|
||||
int strides_index = 1;
|
||||
|
||||
@@ -883,7 +883,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1];
|
||||
@@ -895,7 +895,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Make strided view
|
||||
@@ -920,7 +920,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH, wH * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -938,13 +938,13 @@ void explicit_gemm_conv_1D_cpu(
|
||||
wt.size(),
|
||||
0);
|
||||
gemm_wt = array(wt_transpose.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt_transpose, gemm_wt, CopyType::General, stream);
|
||||
copy(wt_transpose, gemm_wt, CopyType::General, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
} else if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
@@ -991,7 +991,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
@@ -1029,7 +1029,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
@@ -1044,7 +1044,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
@@ -1065,7 +1065,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -1076,7 +1076,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
@@ -1116,7 +1116,7 @@ void explicit_gemm_conv_2D_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
@@ -1156,7 +1156,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps = {array(0, conv_dtype)};
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
copy(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = 0;
|
||||
@@ -1173,7 +1173,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
data_offset);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Make strided view
|
||||
@@ -1212,7 +1212,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
}
|
||||
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
copy(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
@@ -1223,13 +1223,13 @@ void explicit_gemm_conv_ND_cpu(
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
copy(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (flip) {
|
||||
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
||||
copy(gemm_wt, gemm_wt_, CopyType::Vector, stream);
|
||||
temps.push_back(gemm_wt_);
|
||||
|
||||
// Calculate the total size of the spatial dimensions
|
||||
@@ -1284,7 +1284,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
copy_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
@@ -295,11 +295,7 @@ inline void copy_inplace_dispatch(
|
||||
|
||||
} // namespace
|
||||
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Stream stream) {
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(src);
|
||||
encoder.set_output_array(dst);
|
||||
@@ -309,7 +305,7 @@ void copy_cpu_inplace(
|
||||
ctype]() mutable { copy_inplace_dispatch(src, dst, ctype); });
|
||||
}
|
||||
|
||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
void copy(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
bool donated = set_copy_output_data(src, dst, ctype);
|
||||
if (donated && src.dtype() == dst.dtype()) {
|
||||
// If the output has the same type as the input then there is nothing to
|
||||
@@ -319,10 +315,10 @@ void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream) {
|
||||
if (ctype == CopyType::GeneralGeneral) {
|
||||
ctype = CopyType::General;
|
||||
}
|
||||
copy_cpu_inplace(src, dst, ctype, stream);
|
||||
copy_inplace(src, dst, ctype, stream);
|
||||
}
|
||||
|
||||
void copy_cpu_inplace(
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const Shape& data_shape,
|
||||
@@ -377,10 +373,4 @@ void copy_cpu_inplace(
|
||||
});
|
||||
}
|
||||
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::General, stream);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -10,14 +10,10 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void copy_cpu(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
void copy_cpu_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
CopyType ctype,
|
||||
Stream stream);
|
||||
void copy(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype, Stream stream);
|
||||
|
||||
void copy_cpu_inplace(
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const Shape& data_shape,
|
||||
@@ -30,7 +26,4 @@ void copy_cpu_inplace(
|
||||
const std::optional<array>& dynamic_i_offset = std::nullopt,
|
||||
const std::optional<array>& dynamic_o_offset = std::nullopt);
|
||||
|
||||
// Return a contiguous array with same shape that copies the data of |arr|.
|
||||
array contiguous_copy_cpu(const array& arr, Stream stream);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -13,7 +13,9 @@ std::pair<array, bool> ensure_row_contiguous(const array& arr, Stream stream) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return {arr, false};
|
||||
} else {
|
||||
return {contiguous_copy_cpu(arr, stream), true};
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, stream);
|
||||
return {arr_copy, true};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -32,7 +34,8 @@ void AllReduce::eval_cpu(
|
||||
}
|
||||
return in;
|
||||
} else {
|
||||
array arr_copy = contiguous_copy_cpu(in, s);
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy(in, arr_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(arr_copy);
|
||||
return arr_copy;
|
||||
}
|
||||
|
||||
@@ -135,7 +135,7 @@ void Eig::eval_cpu(
|
||||
: array(a.shape(), complex64, nullptr, {});
|
||||
|
||||
auto a_copy = array(a.shape(), a.dtype(), nullptr, {});
|
||||
copy_cpu(
|
||||
copy(
|
||||
a,
|
||||
a_copy,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -196,7 +196,7 @@ void Eigh::eval_cpu(
|
||||
|
||||
values.set_data(allocator::malloc(values.nbytes()));
|
||||
|
||||
copy_cpu(
|
||||
copy(
|
||||
a,
|
||||
vectors,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -96,7 +96,7 @@ void Hadamard::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (in.flags().row_contiguous && in.is_donatable()) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy_cpu(
|
||||
copy(
|
||||
in,
|
||||
out,
|
||||
in.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -517,7 +517,7 @@ void Scatter::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Copy src into out (copy allocates memory for out)
|
||||
auto ctype =
|
||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy_cpu(src, out, ctype, stream());
|
||||
copy(src, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
std::vector<array> inds;
|
||||
@@ -686,7 +686,7 @@ void ScatterAxis::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Copy src into out (copy allocates memory for out)
|
||||
auto ctype =
|
||||
src.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy_cpu(src, out, ctype, stream());
|
||||
copy(src, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(idx);
|
||||
|
||||
@@ -115,7 +115,7 @@ void inverse_impl(
|
||||
// (A⁻¹)ᵀ = (Aᵀ)⁻¹
|
||||
|
||||
// The inverse is computed in place, so just copy the input to the output.
|
||||
copy_cpu(
|
||||
copy(
|
||||
a,
|
||||
inv,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
|
||||
@@ -87,7 +87,8 @@ void LogSumExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, x_copy, CopyType::General, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -31,7 +31,7 @@ void luf_impl(
|
||||
strides[ndim - 1] = M;
|
||||
strides[ndim - 2] = 1;
|
||||
lu.set_data(allocator::malloc(lu.nbytes()), lu.nbytes(), strides, flags);
|
||||
copy_cpu_inplace(
|
||||
copy_inplace(
|
||||
a,
|
||||
lu,
|
||||
a.shape(),
|
||||
|
||||
@@ -124,20 +124,21 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (!expand_all && stx == arr.shape(-1) && sty == 1) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
||||
copy(arr, arr_copy, CopyType::Vector, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
return std::make_tuple(false, stx, arr, false);
|
||||
} else if (!expand_all && stx == 1 && sty == arr.shape(-2)) {
|
||||
if (do_copy) {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_copy, CopyType::Vector, s);
|
||||
copy(arr, arr_copy, CopyType::Vector, s);
|
||||
return std::make_tuple(true, sty, arr_copy, true);
|
||||
}
|
||||
return std::make_tuple(true, sty, arr, false);
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
array arr_copy = contiguous_copy_cpu(arr, s);
|
||||
return std::make_tuple(false, stx, arr_copy, true);
|
||||
}
|
||||
};
|
||||
@@ -385,7 +386,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
int64_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, temps.back());
|
||||
}
|
||||
@@ -503,7 +504,7 @@ void SegmentedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return std::make_tuple(true, sty, x);
|
||||
} else {
|
||||
array xc(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_cpu(x, xc, CopyType::General, s);
|
||||
copy(x, xc, CopyType::General, s);
|
||||
encoder.add_temporary(xc);
|
||||
int64_t stx = x.shape(-1);
|
||||
return std::make_tuple(false, stx, xc);
|
||||
|
||||
@@ -81,7 +81,7 @@ void matmul_general(
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, stream);
|
||||
copy(arr, temps.back(), CopyType::General, stream);
|
||||
stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, temps.back());
|
||||
}
|
||||
@@ -142,7 +142,7 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
copy(c, out, ctype, stream());
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -22,7 +22,7 @@ void reshape(const array& in, array& out) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
copy_cpu_inplace(in, out, CopyType::General, out.primitive().stream());
|
||||
copy_inplace(in, out, CopyType::General, out.primitive().stream());
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
@@ -175,7 +175,7 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
copy(in, out, ctype, stream());
|
||||
}
|
||||
|
||||
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -198,7 +198,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
size_t data_offset = strides[axis_] * sizes[i];
|
||||
out_slice.copy_shared_buffer(
|
||||
out, strides, flags, out_slice.size(), data_offset);
|
||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -211,7 +211,7 @@ void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy_cpu(in, out, CopyType::General, stream());
|
||||
copy(in, out, CopyType::General, stream());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -235,7 +235,7 @@ void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
} else {
|
||||
ctype = CopyType::General;
|
||||
}
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
copy(in, out, ctype, stream());
|
||||
}
|
||||
|
||||
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -251,7 +251,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
|
||||
|
||||
// Fill output with val
|
||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
||||
copy(val, out, CopyType::Scalar, stream());
|
||||
|
||||
// Find offset for start of input values
|
||||
size_t data_offset = 0;
|
||||
@@ -266,7 +266,7 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out, out.strides(), out.flags(), out_slice.size(), data_offset);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
||||
copy_inplace(in, out_slice, CopyType::GeneralGeneral, stream());
|
||||
}
|
||||
|
||||
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -340,7 +340,7 @@ void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto [in_offset, donated] =
|
||||
compute_dynamic_offset(inputs[1], in.strides(), axes_, stream());
|
||||
copy_cpu_inplace(
|
||||
copy_inplace(
|
||||
/* const array& src = */ in,
|
||||
/* array& dst = */ out,
|
||||
/* const Shape& data_shape = */ out.shape(),
|
||||
@@ -372,11 +372,11 @@ void DynamicSliceUpdate::eval_cpu(
|
||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
|
||||
auto [out_offset, donated] =
|
||||
compute_dynamic_offset(inputs[2], out.strides(), axes_, stream());
|
||||
copy_cpu_inplace(
|
||||
copy_inplace(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
@@ -412,14 +412,14 @@ void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [data_offset, out_strides] =
|
||||
prepare_slice(out, start_indices_, strides_);
|
||||
|
||||
// Do copy
|
||||
copy_cpu_inplace(
|
||||
copy_inplace(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
@@ -456,9 +456,9 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (in.dtype() == bool_) {
|
||||
auto in_tmp = array(in.shape(), uint8, nullptr, {});
|
||||
in_tmp.copy_shared_buffer(in);
|
||||
copy_cpu_inplace(in_tmp, tmp, CopyType::General, stream());
|
||||
copy_inplace(in_tmp, tmp, CopyType::General, stream());
|
||||
} else {
|
||||
copy_cpu_inplace(in, tmp, CopyType::General, stream());
|
||||
copy_inplace(in, tmp, CopyType::General, stream());
|
||||
}
|
||||
|
||||
auto flags = out.flags();
|
||||
|
||||
@@ -26,7 +26,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
strides[in.ndim() - 2] = 1;
|
||||
strides[in.ndim() - 1] = M;
|
||||
in.set_data(allocator::malloc(in.nbytes()), in.nbytes(), strides, flags);
|
||||
copy_cpu_inplace(a, in, CopyType::GeneralGeneral, stream);
|
||||
copy_inplace(a, in, CopyType::GeneralGeneral, stream);
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
q.set_data(allocator::malloc(q.nbytes()));
|
||||
r.set_data(allocator::malloc(r.nbytes()));
|
||||
|
||||
@@ -529,7 +529,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
}
|
||||
};
|
||||
@@ -579,7 +579,7 @@ void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
copy(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
}
|
||||
};
|
||||
@@ -712,7 +712,9 @@ void fast::AffineQuantize::eval_cpu(
|
||||
if (arr.flags().row_contiguous) {
|
||||
return std::make_pair(arr, false);
|
||||
} else {
|
||||
return std::make_pair(contiguous_copy_cpu(arr, s), true);
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General, s);
|
||||
return std::make_pair(arr_copy, true);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -250,8 +250,10 @@ void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Ensure contiguity
|
||||
auto in = inputs[0];
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_cpu(in, stream());
|
||||
encoder.add_temporary(in);
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy(in, arr_copy, CopyType::General, stream());
|
||||
in = arr_copy;
|
||||
encoder.add_temporary(arr_copy);
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
|
||||
@@ -131,7 +131,8 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_cpu(x, s);
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy(x, x_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
@@ -8,7 +8,7 @@
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -333,24 +333,45 @@ void Sort::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
int axis = axis_;
|
||||
if (axis < 0) {
|
||||
axis += in.ndim();
|
||||
}
|
||||
|
||||
// Copy input to output
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis] != 0)
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(in, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out), axis]() mutable {
|
||||
dispatch_all_types(out.dtype(), [&](auto type_tag) {
|
||||
sort<MLX_GET_TYPE(type_tag)>(out, axis);
|
||||
});
|
||||
});
|
||||
encoder.dispatch(
|
||||
[out = array::unsafe_weak_copy(out), axis_ = axis_]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
return sort<bool>(out, axis_);
|
||||
case uint8:
|
||||
return sort<uint8_t>(out, axis_);
|
||||
case uint16:
|
||||
return sort<uint16_t>(out, axis_);
|
||||
case uint32:
|
||||
return sort<uint32_t>(out, axis_);
|
||||
case uint64:
|
||||
return sort<uint64_t>(out, axis_);
|
||||
case int8:
|
||||
return sort<int8_t>(out, axis_);
|
||||
case int16:
|
||||
return sort<int16_t>(out, axis_);
|
||||
case int32:
|
||||
return sort<int32_t>(out, axis_);
|
||||
case int64:
|
||||
return sort<int64_t>(out, axis_);
|
||||
case float32:
|
||||
return sort<float>(out, axis_);
|
||||
case float64:
|
||||
return sort<double>(out, axis_);
|
||||
case float16:
|
||||
return sort<float16_t>(out, axis_);
|
||||
case bfloat16:
|
||||
return sort<bfloat16_t>(out, axis_);
|
||||
case complex64:
|
||||
return sort<complex64_t>(out, axis_);
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
void ArgPartition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -405,10 +426,8 @@ void Partition::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Copy input to output
|
||||
CopyType ctype = (in.flags().contiguous && in.strides()[axis_] != 0)
|
||||
? CopyType::Vector
|
||||
: CopyType::General;
|
||||
copy_cpu(in, out, ctype, stream());
|
||||
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
|
||||
copy(in, out, ctype, stream());
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
@@ -31,7 +31,7 @@ void svd_impl(
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
copy_cpu(
|
||||
copy(
|
||||
a,
|
||||
in,
|
||||
a.flags().row_contiguous ? CopyType::Vector : CopyType::General,
|
||||
|
||||
@@ -6,7 +6,6 @@
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arange.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/binary_two.cu
|
||||
@@ -16,21 +15,18 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_dynamic.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy/copy_general_input.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cuda.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/all_reduce.cu
|
||||
@@ -39,7 +35,6 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce/row_reduce.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rms_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/rope.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scan.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cu
|
||||
@@ -47,18 +42,8 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_9.cu)
|
||||
else()
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_batched_gemm_12_0.cpp)
|
||||
endif()
|
||||
|
||||
target_compile_definitions(mlx PRIVATE MLX_USE_CUDA)
|
||||
|
||||
# Embed kernel sources in binary for JIT compilation.
|
||||
@@ -101,18 +86,11 @@ endif()
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--Wno-deprecated-gpu-targets>")
|
||||
|
||||
# Use stronger binaries compression. This feature was introduced in CUDA 12.8
|
||||
# and requires drivers released after CUDA 12.4.
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.8.0)
|
||||
target_compile_options(
|
||||
mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--compress-mode=size>")
|
||||
endif()
|
||||
|
||||
# Compute capability >= 7.0 is required for synchronization between CPU/GPU with
|
||||
# managed memory.
|
||||
if(NOT DEFINED MLX_CUDA_ARCHITECTURES)
|
||||
set(MLX_CUDA_ARCHITECTURES "native")
|
||||
endif()
|
||||
# Compute capability 7 is required for synchronization between CPU/GPU with
|
||||
# managed memory. TODO: Add more architectures for potential performance gain.
|
||||
set(MLX_CUDA_ARCHITECTURES
|
||||
"70;80"
|
||||
CACHE STRING "CUDA architectures")
|
||||
message(STATUS "CUDA architectures: ${MLX_CUDA_ARCHITECTURES}")
|
||||
set_target_properties(mlx PROPERTIES CUDA_ARCHITECTURES
|
||||
"${MLX_CUDA_ARCHITECTURES}")
|
||||
@@ -144,27 +122,6 @@ target_link_libraries(mlx PRIVATE CUDA::cublasLt)
|
||||
# Use NVRTC and driver APIs.
|
||||
target_link_libraries(mlx PRIVATE CUDA::nvrtc CUDA::cuda_driver)
|
||||
|
||||
# Use the frontend APIs of cuDNN.
|
||||
FetchContent_Declare(
|
||||
cudnn
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cudnn-frontend.git
|
||||
GIT_TAG v1.12.1
|
||||
GIT_SHALLOW TRUE
|
||||
EXCLUDE_FROM_ALL)
|
||||
set(CUDNN_FRONTEND_SKIP_JSON_LIB ON)
|
||||
set(CUDNN_FRONTEND_BUILD_SAMPLES OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_TESTS OFF)
|
||||
set(CUDNN_FRONTEND_BUILD_PYTHON_BINDINGS OFF)
|
||||
FetchContent_MakeAvailable(cudnn)
|
||||
target_link_libraries(mlx PRIVATE cudnn_frontend)
|
||||
# Link with the actual cuDNN libraries.
|
||||
include(${cudnn_frontend_SOURCE_DIR}/cmake/cuDNN.cmake)
|
||||
target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -16,66 +17,14 @@ namespace cu {
|
||||
|
||||
constexpr int page_size = 16384;
|
||||
|
||||
// Any allocations smaller than this will try to use the small pool
|
||||
constexpr int small_block_size = 8;
|
||||
|
||||
// The small pool size in bytes. This should be a multiple of the host page
|
||||
// size and small_block_size.
|
||||
constexpr int small_pool_size = 4 * page_size;
|
||||
|
||||
SmallSizePool::SmallSizePool() {
|
||||
auto num_blocks = small_pool_size / small_block_size;
|
||||
buffer_ = new Block[num_blocks];
|
||||
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
curr->next = buffer_ + i;
|
||||
curr = curr->next;
|
||||
}
|
||||
curr->next = nullptr;
|
||||
}
|
||||
|
||||
SmallSizePool::~SmallSizePool() {
|
||||
CHECK_CUDA_ERROR(cudaFree(data_));
|
||||
delete[] buffer_;
|
||||
}
|
||||
|
||||
CudaBuffer* SmallSizePool::malloc() {
|
||||
if (next_free_ == nullptr) {
|
||||
return nullptr;
|
||||
}
|
||||
Block* b = next_free_;
|
||||
uint64_t i = next_free_ - buffer_;
|
||||
next_free_ = next_free_->next;
|
||||
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
|
||||
b->buf.size = small_block_size;
|
||||
return &b->buf;
|
||||
}
|
||||
|
||||
void SmallSizePool::free(CudaBuffer* buf) {
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
b->next = next_free_;
|
||||
next_free_ = b;
|
||||
}
|
||||
|
||||
bool SmallSizePool::in_pool(CudaBuffer* buf) {
|
||||
constexpr int num_blocks = (small_pool_size / small_block_size);
|
||||
auto b = reinterpret_cast<Block*>(buf);
|
||||
int64_t block_num = b - buffer_;
|
||||
return block_num >= 0 && block_num < num_blocks;
|
||||
}
|
||||
|
||||
CudaAllocator::CudaAllocator()
|
||||
: buffer_cache_(
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) { cuda_free(buf); }) {
|
||||
[this](CudaBuffer* buf) {
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
@@ -87,9 +36,7 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size <= small_block_size) {
|
||||
size = 8;
|
||||
} else if (size < page_size) {
|
||||
if (size < page_size) {
|
||||
size = next_power_of_2(size);
|
||||
} else {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
@@ -97,25 +44,19 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache.
|
||||
int64_t mem_to_free =
|
||||
get_active_memory() + get_cache_memory() + size - memory_limit_;
|
||||
if (mem_to_free > 0) {
|
||||
buffer_cache_.release_cached_buffers(mem_to_free);
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache.
|
||||
size_t mem_required = get_active_memory() + get_cache_memory() + size;
|
||||
if (mem_required >= memory_limit_) {
|
||||
buffer_cache_.release_cached_buffers(mem_required - memory_limit_);
|
||||
}
|
||||
|
||||
// Try the scalar pool first
|
||||
if (size <= small_block_size) {
|
||||
buf = scalar_pool_.malloc();
|
||||
}
|
||||
lock.unlock();
|
||||
if (!buf) {
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
}
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
@@ -126,6 +67,7 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
@@ -140,7 +82,9 @@ void CudaAllocator::free(Buffer buffer) {
|
||||
if (get_cache_memory() < max_pool_size_) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
cuda_free(buf);
|
||||
lock.unlock();
|
||||
cuda_free(buf->data);
|
||||
delete buf;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -152,14 +96,27 @@ size_t CudaAllocator::size(Buffer buffer) const {
|
||||
return buf->size;
|
||||
}
|
||||
|
||||
// This must be called with mutex_ aquired
|
||||
void CudaAllocator::cuda_free(CudaBuffer* buf) {
|
||||
if (scalar_pool_.in_pool(buf)) {
|
||||
scalar_pool_.free(buf);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
delete buf;
|
||||
void CudaAllocator::register_this_thread() {
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
allowed_threads_.insert(std::this_thread::get_id());
|
||||
}
|
||||
|
||||
void CudaAllocator::cuda_free(void* buf) {
|
||||
// If cuda_free() is called from a unregistered thread, reschedule the call to
|
||||
// worker.
|
||||
{
|
||||
std::lock_guard lock(worker_mutex_);
|
||||
if (allowed_threads_.count(std::this_thread::get_id()) == 0) {
|
||||
if (!worker_) {
|
||||
worker_.reset(new Worker);
|
||||
}
|
||||
worker_->add_task([this, buf]() { this->cuda_free(buf); });
|
||||
worker_->end_batch();
|
||||
worker_->commit();
|
||||
return;
|
||||
}
|
||||
}
|
||||
cudaFree(buf);
|
||||
}
|
||||
|
||||
size_t CudaAllocator::get_active_memory() const {
|
||||
|
||||
@@ -7,10 +7,13 @@
|
||||
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <thread>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class Worker;
|
||||
|
||||
using allocator::Buffer;
|
||||
|
||||
// Stores cuda-managed unified memory.
|
||||
@@ -19,35 +22,21 @@ struct CudaBuffer {
|
||||
size_t size;
|
||||
};
|
||||
|
||||
class SmallSizePool {
|
||||
private:
|
||||
union Block {
|
||||
Block* next;
|
||||
CudaBuffer buf;
|
||||
};
|
||||
|
||||
Block* buffer_{nullptr};
|
||||
void* data_{nullptr};
|
||||
Block* next_free_{nullptr};
|
||||
|
||||
public:
|
||||
SmallSizePool();
|
||||
~SmallSizePool();
|
||||
|
||||
SmallSizePool(const SmallSizePool&) = delete;
|
||||
SmallSizePool& operator=(const SmallSizePool&) = delete;
|
||||
|
||||
CudaBuffer* malloc();
|
||||
void free(CudaBuffer* buf);
|
||||
bool in_pool(CudaBuffer* buf);
|
||||
};
|
||||
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
// Register current thread as safe to free buffers.
|
||||
// In cuda freeing a buffer implicitly synchronizes stream, and for threads
|
||||
// that may be waited by gpu stream (for example cpu stream threads), freeing
|
||||
// buffers there would result in dead lock.
|
||||
void register_this_thread();
|
||||
|
||||
// Call cudaFree in the safe thread.
|
||||
void cuda_free(void* buf);
|
||||
|
||||
size_t get_active_memory() const;
|
||||
size_t get_peak_memory() const;
|
||||
void reset_peak_memory();
|
||||
@@ -58,18 +47,19 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
friend CudaAllocator& allocator();
|
||||
|
||||
std::mutex worker_mutex_;
|
||||
std::unique_ptr<Worker> worker_;
|
||||
std::set<std::thread::id> allowed_threads_;
|
||||
|
||||
std::mutex mutex_;
|
||||
size_t memory_limit_;
|
||||
size_t max_pool_size_;
|
||||
BufferCache<CudaBuffer> buffer_cache_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
SmallSizePool scalar_pool_;
|
||||
};
|
||||
|
||||
CudaAllocator& allocator();
|
||||
|
||||
@@ -1,55 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Arange::eval_gpu");
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -44,11 +44,8 @@ struct ArgMin {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] < best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -77,11 +74,8 @@ struct ArgMax {
|
||||
}
|
||||
|
||||
template <int N>
|
||||
__device__ IndexValPair<T> reduce_many(
|
||||
IndexValPair<T> best,
|
||||
const AlignedVector<T, N>& vals,
|
||||
uint32_t offset) {
|
||||
#pragma unroll
|
||||
__device__ IndexValPair<T>
|
||||
reduce_many(IndexValPair<T> best, T (&vals)[N], uint32_t offset) {
|
||||
for (int i = 0; i < N; i++) {
|
||||
if (vals[i] > best.val) {
|
||||
best.val = vals[i];
|
||||
@@ -112,15 +106,16 @@ __global__ void arg_reduce_general(
|
||||
|
||||
int64_t in_idx = elem_to_loc(index, shape.data(), in_strides.data(), ndim);
|
||||
int64_t out_idx = elem_to_loc(index, shape.data(), out_strides.data(), ndim);
|
||||
in += in_idx;
|
||||
|
||||
Op op;
|
||||
T init = op.init();
|
||||
IndexValPair<T> best{0, init};
|
||||
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T vals[N_READS];
|
||||
auto tid = r * BLOCK_DIM + block.thread_index().x;
|
||||
auto vals = load_vector<N_READS>(in, tid, axis_size, axis_stride, init);
|
||||
cub::LoadDirectBlocked(
|
||||
tid, strided_iterator(in + in_idx, axis_stride), vals, axis_size, init);
|
||||
best = op.reduce_many(best, vals, tid * N_READS);
|
||||
}
|
||||
|
||||
@@ -171,7 +166,6 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
out.size(),
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -28,7 +29,7 @@ __global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a[0], b[0]);
|
||||
out_vec.val[i] = Op{}(a[0], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -49,7 +50,7 @@ __global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a[0], b_vec[i]);
|
||||
out_vec.val[i] = Op{}(a[0], b_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -70,7 +71,7 @@ __global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b[0]);
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -92,7 +93,7 @@ __global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
||||
out_vec.val[i] = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -128,7 +129,7 @@ __global__ void binary_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
out[index] = Op{}(a[a_idx], b[b_idx]);
|
||||
}
|
||||
@@ -176,7 +177,7 @@ template <typename Op>
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
@@ -211,18 +212,14 @@ void binary_op_gpu_inplace(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::
|
||||
binary_g_nd<Op, InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out, large());
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -232,12 +229,13 @@ void binary_op_gpu_inplace(
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::binary_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_g<Op, InType, OutType, IdxT>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -251,7 +249,8 @@ void binary_op_gpu_inplace(
|
||||
} else {
|
||||
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
@@ -261,12 +260,16 @@ void binary_op_gpu_inplace(
|
||||
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
@@ -288,7 +291,7 @@ template <typename Op>
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const char* op,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
@@ -297,11 +300,11 @@ void binary_op_gpu(
|
||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
||||
#define BINARY_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
||||
auto& s = out.primitive().stream(); \
|
||||
binary_op_gpu<cu::func>(inputs, out, get_primitive_string(this), s); \
|
||||
}
|
||||
|
||||
BINARY_GPU(Add)
|
||||
@@ -325,31 +328,33 @@ BINARY_GPU(Subtract)
|
||||
void Equal::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Equal::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
if (equal_nan_) {
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::NaNEqual>(inputs, out, op, s);
|
||||
} else {
|
||||
binary_op_gpu<cu::Equal>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::Equal>(inputs, out, op, s);
|
||||
}
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("BitwiseBinary::eval_gpu");
|
||||
auto& s = out.primitive().stream();
|
||||
auto op = get_primitive_string(this);
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::BitwiseAnd>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::BitwiseOr>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::BitwiseXor>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::LeftShift>(inputs, out, op, s);
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, name(), s);
|
||||
binary_op_gpu<cu::RightShift>(inputs, out, op, s);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
@@ -33,8 +34,8 @@ binary_two_ss(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b[0]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -60,9 +61,9 @@ binary_two_sv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a[0], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
auto out = Op{}(a[0], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -88,9 +89,9 @@ binary_two_vs(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b[0]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
auto out = Op{}(a_vec.val[i], b[0]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -117,9 +118,9 @@ binary_two_vv(const In* a, const In* b, Out* out_a, Out* out_b, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_b_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
auto out = Op{}(a_vec[i], b_vec[i]);
|
||||
out_a_vec[i] = out[0];
|
||||
out_b_vec[i] = out[1];
|
||||
auto out = Op{}(a_vec.val[i], b_vec.val[i]);
|
||||
out_a_vec.val[i] = out[0];
|
||||
out_b_vec.val[i] = out[1];
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out_a, index, out_a_vec);
|
||||
@@ -160,7 +161,7 @@ __global__ void binary_two_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [a_idx, b_idx] = elem_to_loc(
|
||||
auto [a_idx, b_idx] = elem_to_loc_4d(
|
||||
index, shape.data(), a_strides.data(), b_strides.data(), ndim);
|
||||
auto out = Op{}(a[a_idx], b[b_idx]);
|
||||
out_a[index] = out[0];
|
||||
@@ -183,7 +184,7 @@ template <typename Op>
|
||||
void binary_two_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const char* op,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() > 1);
|
||||
const auto& a = inputs[0];
|
||||
@@ -227,18 +228,18 @@ void binary_two_op_gpu_inplace(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto kernel = cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
get_launch_args(kernel, out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g_nd<
|
||||
Op,
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -249,13 +250,13 @@ void binary_two_op_gpu_inplace(
|
||||
const_param<dims_constant()>(b_strides));
|
||||
});
|
||||
} else {
|
||||
auto kernel = cu::binary_two_g<Op, InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(out_a, large());
|
||||
get_launch_args(kernel, out_a, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::binary_two_g<Op, InType, OutType, IdxT>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -270,7 +271,8 @@ void binary_two_op_gpu_inplace(
|
||||
} else {
|
||||
dispatch_bool(out_a.data_size() > UINT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::binary_two_ss<Op, InType, OutType, IdxT, N_READS>;
|
||||
if (bopt == BinaryOpType::ScalarVector) {
|
||||
kernel = cu::binary_two_sv<Op, InType, OutType, IdxT, N_READS>;
|
||||
@@ -280,6 +282,7 @@ void binary_two_op_gpu_inplace(
|
||||
kernel = cu::binary_two_vv<Op, InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel,
|
||||
out_a.data_size(),
|
||||
out_a.shape(),
|
||||
out_a.strides(),
|
||||
@@ -289,7 +292,6 @@ void binary_two_op_gpu_inplace(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
@@ -312,7 +314,7 @@ template <typename Op>
|
||||
void binary_two_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const char* op,
|
||||
std::string_view op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
@@ -327,7 +329,7 @@ void DivMod::eval_gpu(
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("DivMod::eval_gpu");
|
||||
auto& s = outputs[0].primitive().stream();
|
||||
binary_two_op_gpu<cu::DivMod>(inputs, outputs, name(), s);
|
||||
binary_two_op_gpu<cu::DivMod>(inputs, outputs, get_primitive_string(this), s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -53,10 +53,9 @@ struct FusedKernelBuilder {
|
||||
|
||||
// Build function signature.
|
||||
if (contiguous) {
|
||||
os += "template <typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
||||
os += "template <typename IdxT = uint32_t>\n";
|
||||
} else {
|
||||
os +=
|
||||
"template <int NDIM, typename IdxT = uint32_t, int work_per_thread = 1>\n";
|
||||
os += "template <int NDIM, typename IdxT = uint32_t>\n";
|
||||
}
|
||||
os += fmt::format("__global__ void {}(\n", kernel_name + name);
|
||||
for (size_t i = 0; i < params.size(); ++i) {
|
||||
@@ -68,77 +67,12 @@ struct FusedKernelBuilder {
|
||||
}
|
||||
os += ") {\n";
|
||||
|
||||
// Index. For non contiguous kernels we create a separate index
|
||||
// variable per variable otherwise everyone uses `index`.
|
||||
// Index.
|
||||
os +=
|
||||
" IdxT index = cg::this_grid().thread_rank() * work_per_thread;\n"
|
||||
" IdxT index = cg::this_grid().thread_rank();\n"
|
||||
" if (index >= size) {\n"
|
||||
" return;\n"
|
||||
" }\n";
|
||||
if (!contiguous) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += " IdxT " + xname + "_idx = 0;\n";
|
||||
}
|
||||
os += " {\n";
|
||||
os += " IdxT loc = index;\n";
|
||||
os +=
|
||||
" #pragma unroll\n"
|
||||
" for (int i = NDIM - 1; i >= 0; i--) {\n";
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += " " + xname + "_idx += (loc \% shape[i]) * IdxT(" + xname +
|
||||
"_strides[i]);\n";
|
||||
}
|
||||
os +=
|
||||
" loc /= shape[i];\n"
|
||||
" }\n"
|
||||
" }\n";
|
||||
}
|
||||
|
||||
// Vectorized read loop
|
||||
if (contiguous) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" auto vec_{0} = load_vector<work_per_thread, {1}>({0} + index, 0, size - index, 0);\n",
|
||||
xname,
|
||||
type);
|
||||
}
|
||||
}
|
||||
|
||||
// Create some space for the outputs
|
||||
for (const auto& x : outputs) {
|
||||
const std::string& xname = namer.get_name(x);
|
||||
std::string type = dtype_to_cuda_type(x.dtype());
|
||||
os += fmt::format(
|
||||
" AlignedVector<{}, work_per_thread> vec_{};\n", type, xname);
|
||||
}
|
||||
|
||||
// Work loop
|
||||
if (!contiguous) {
|
||||
os +=
|
||||
"\n"
|
||||
" for (int i = 0; i < work_per_thread && index < size; i++) {\n";
|
||||
} else {
|
||||
os +=
|
||||
"\n"
|
||||
" #pragma unroll\n"
|
||||
" for (int i = 0; i < work_per_thread; i++) {\n";
|
||||
}
|
||||
|
||||
// Read inputs.
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
@@ -153,11 +87,14 @@ struct FusedKernelBuilder {
|
||||
} else if (is_scalar(x)) {
|
||||
value = fmt::format("{}[0]", xname);
|
||||
} else if (contiguous) {
|
||||
value = fmt::format("vec_{}[i]", xname);
|
||||
value = fmt::format("{}[index]", xname);
|
||||
} else {
|
||||
value = fmt::format("{}[{}_idx]", xname, xname);
|
||||
std::string index = fmt::format(
|
||||
"elem_to_loc_nd<NDIM>(index, shape.data(), {}_strides.data())",
|
||||
xname);
|
||||
value = fmt::format("{}[{}]", xname, index);
|
||||
}
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
}
|
||||
|
||||
// Write tape.
|
||||
@@ -169,40 +106,21 @@ struct FusedKernelBuilder {
|
||||
value = fmt::format(
|
||||
"static_cast<{}>(tmp_{})", type, namer.get_name(x.inputs()[0]));
|
||||
} else {
|
||||
value = x.primitive().name();
|
||||
std::ostringstream ss;
|
||||
x.primitive().print(ss);
|
||||
value = ss.str();
|
||||
value += "{}(";
|
||||
for (size_t i = 0; i < x.inputs().size() - 1; ++i) {
|
||||
value += fmt::format("tmp_{}, ", namer.get_name(x.inputs()[i]));
|
||||
}
|
||||
value += fmt::format("tmp_{})", namer.get_name(x.inputs().back()));
|
||||
}
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
os += fmt::format(" {} tmp_{} = {};\n", type, xname, value);
|
||||
}
|
||||
|
||||
// Write output.
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(" vec_{0}[i] = tmp_{0};\n", namer.get_name(x));
|
||||
}
|
||||
|
||||
// End of work loop
|
||||
if (!contiguous) {
|
||||
os += "\n";
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
const auto& x = inputs[i];
|
||||
const std::string& xname = namer.get_name(x);
|
||||
if (is_scalar(x) || is_constant(i)) {
|
||||
continue;
|
||||
}
|
||||
os += fmt::format(" {0}_idx += {0}_strides[NDIM - 1];\n", xname);
|
||||
}
|
||||
}
|
||||
os += " }\n";
|
||||
|
||||
// Store the output to global memory
|
||||
for (const auto& x : outputs) {
|
||||
os += fmt::format(
|
||||
" store_vector({0} + index, 0, vec_{0}, size - index);\n",
|
||||
namer.get_name(x));
|
||||
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
||||
}
|
||||
|
||||
os += "}\n";
|
||||
@@ -228,15 +146,6 @@ void Compiled::eval_gpu(
|
||||
nvtx3::scoped_range r("Compiled::eval_gpu");
|
||||
auto& s = stream();
|
||||
|
||||
// Determine the work per thread for the vectorized reads/writes. We take it
|
||||
// as 16 over the max itemsize for the outputs. Another heuristic could be
|
||||
// over the max itemsize of all arrays.
|
||||
int max_size = 1;
|
||||
for (const auto& x : outputs) {
|
||||
max_size = (max_size > x.itemsize()) ? max_size : x.itemsize();
|
||||
}
|
||||
int work_per_thread = 16 / max_size;
|
||||
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, lib_name(), [&]() {
|
||||
// Build source code.
|
||||
cu::FusedKernelBuilder builder{
|
||||
@@ -249,24 +158,16 @@ void Compiled::eval_gpu(
|
||||
builder.build("_strided", false);
|
||||
builder.os += "\n} // namespace mlx::core::cu\n";
|
||||
// Build kernel names.
|
||||
std::vector<std::string> kernel_names;
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<uint32_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_contiguous<int64_t, {}>",
|
||||
lib_name(),
|
||||
work_per_thread));
|
||||
for (auto wpt : std::array<int, 2>{1, work_per_thread}) {
|
||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t, {}>", lib_name(), i, wpt));
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, int64_t, {}>", lib_name(), i, wpt));
|
||||
}
|
||||
std::vector<std::string> kernel_names = {
|
||||
fmt::format("mlx::core::cu::{}_contiguous<uint32_t>", lib_name()),
|
||||
fmt::format("mlx::core::cu::{}_contiguous<int64_t>", lib_name()),
|
||||
};
|
||||
for (int i = 1; i <= MAX_NDIM; ++i) {
|
||||
kernel_names.push_back(fmt::format(
|
||||
"mlx::core::cu::{}_strided<{}, uint32_t>", lib_name(), i));
|
||||
kernel_names.push_back(
|
||||
fmt::format("mlx::core::cu::{}_strided<{}, int64_t>", lib_name(), i));
|
||||
}
|
||||
|
||||
return std::make_pair(std::move(builder.os), std::move(kernel_names));
|
||||
});
|
||||
|
||||
@@ -308,20 +209,13 @@ void Compiled::eval_gpu(
|
||||
args.append<uint32_t>(outputs[0].data_size());
|
||||
}
|
||||
|
||||
// Choose work per thread
|
||||
if (!contiguous && shape.back() % work_per_thread != 0) {
|
||||
work_per_thread = 1;
|
||||
}
|
||||
|
||||
// Launch kernel.
|
||||
const char* index_type = large ? "int64_t" : "uint32_t";
|
||||
std::string kernel_name = fmt::format("mlx::core::cu::{}", lib_name());
|
||||
if (contiguous) {
|
||||
kernel_name +=
|
||||
fmt::format("_contiguous<{}, {}>", index_type, work_per_thread);
|
||||
kernel_name += fmt::format("_contiguous<{}>", index_type);
|
||||
} else {
|
||||
kernel_name += fmt::format(
|
||||
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
|
||||
kernel_name += fmt::format("_strided<{}, {}>", shape.size(), index_type);
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
@@ -332,9 +226,8 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, outputs[0], large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,546 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
// cudnn_frontend.h redefines this macro.
|
||||
#undef CHECK_CUDA_ERROR
|
||||
|
||||
#include <cudnn_frontend.h>
|
||||
#include <cudnn_frontend_find_plan.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// Not all engines support it so can not use this API now.
|
||||
#define MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API 0
|
||||
|
||||
// Alias for better readability.
|
||||
#define CONV_FORWARD CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR
|
||||
#define CONV_BACKWARD_INPUT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR
|
||||
#define CONV_BACKWARD_WEIGHT \
|
||||
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR
|
||||
|
||||
struct ConvCacheKey {
|
||||
int device_id;
|
||||
cudnnDataType_t cudnn_dtype;
|
||||
std::array<int, MAX_NDIM> input_shape;
|
||||
std::array<int, MAX_NDIM> weight_shape;
|
||||
std::array<int, MAX_NDIM> stride;
|
||||
std::array<int, MAX_NDIM> padding_lo;
|
||||
std::array<int, MAX_NDIM> padding_hi;
|
||||
std::array<int, MAX_NDIM> dilation;
|
||||
int groups;
|
||||
bool flip;
|
||||
uint8_t input_alignment;
|
||||
uint8_t weight_alignment;
|
||||
uint8_t output_alignment;
|
||||
};
|
||||
|
||||
auto& conv_cache() {
|
||||
static LRUBytesKeyCache<
|
||||
ConvCacheKey,
|
||||
std::pair<cudnnBackendDescriptorType_t, cudnn_frontend::ExecutionPlan>>
|
||||
cache(/* capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
template <typename T, typename Vec>
|
||||
inline SmallVector<T> convert_vector(const Vec& vec) {
|
||||
return SmallVector<T>(vec.begin(), vec.end());
|
||||
}
|
||||
|
||||
template <typename T, template <typename U> class Vec>
|
||||
inline std::array<T, MAX_NDIM> fixed_vector(const Vec<T>& vec) {
|
||||
if (vec.size() > MAX_NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", MAX_NDIM));
|
||||
}
|
||||
std::array<T, MAX_NDIM> result = {};
|
||||
std::copy_n(vec.begin(), vec.size(), result.begin());
|
||||
return result;
|
||||
}
|
||||
|
||||
auto nhwc_to_nchw(const array& x) {
|
||||
auto shape = convert_vector<int64_t>(x.shape());
|
||||
shape.insert(shape.begin() + 1, shape.back());
|
||||
shape.erase(shape.end() - 1);
|
||||
auto strides = convert_vector<int64_t>(x.strides());
|
||||
strides.insert(strides.begin() + 1, strides.back());
|
||||
strides.erase(strides.end() - 1);
|
||||
return std::make_tuple(std::move(shape), std::move(strides));
|
||||
}
|
||||
|
||||
inline cudnnDataType_t dtype_to_cudnn_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case int8:
|
||||
return CUDNN_DATA_INT8;
|
||||
case int32:
|
||||
return CUDNN_DATA_INT32;
|
||||
case uint8:
|
||||
return CUDNN_DATA_UINT8;
|
||||
case float16:
|
||||
return CUDNN_DATA_HALF;
|
||||
case bfloat16:
|
||||
return CUDNN_DATA_BFLOAT16;
|
||||
case float32:
|
||||
return CUDNN_DATA_FLOAT;
|
||||
case float64:
|
||||
return CUDNN_DATA_DOUBLE;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Convolution: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
}
|
||||
}
|
||||
return alignment;
|
||||
}
|
||||
|
||||
inline cudnn_frontend::Tensor build_tensor(int64_t id, const array& x) {
|
||||
auto [shape, strides] = nhwc_to_nchw(x);
|
||||
return cudnn_frontend::TensorBuilder()
|
||||
.setDim(shape.size(), shape.data())
|
||||
.setStrides(strides.size(), strides.data())
|
||||
.setId(id)
|
||||
.setAlignment(get_alignment(x))
|
||||
.setDataType(dtype_to_cudnn_type(x.dtype()))
|
||||
.build();
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigList get_engine_configs(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph,
|
||||
bool use_fallback = false) {
|
||||
cudnn_frontend::GeneratorSource source;
|
||||
if (use_fallback) {
|
||||
source = [&backend_type](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto fallback = cudnn_frontend::EngineFallbackListBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setOperation(backend_type)
|
||||
.build();
|
||||
return fallback.getFallbackList();
|
||||
};
|
||||
} else {
|
||||
source = [](cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto heuristics = cudnn_frontend::EngineHeuristicsBuilder()
|
||||
.setOperationGraph(op_graph)
|
||||
.setHeurMode(CUDNN_HEUR_MODE_A)
|
||||
.build();
|
||||
return heuristics.getEngineConfig(heuristics.getEngineConfigCount());
|
||||
};
|
||||
}
|
||||
|
||||
cudnn_frontend::EngineConfigGenerator generator(1, &source);
|
||||
auto configs = generator.generate_engine_config(op_graph);
|
||||
|
||||
cudnn_frontend::EngineConfigList filtered_configs;
|
||||
cudnn_frontend::filter(configs, filtered_configs, [dtype](auto c) {
|
||||
if (cudnn_frontend::hasNumericalNote<
|
||||
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS>(c)) {
|
||||
return true;
|
||||
}
|
||||
if (cudnn_frontend::hasNumericalNote<CUDNN_NUMERICAL_NOTE_TENSOR_CORE>(c) &&
|
||||
dtype == float32 && !env::enable_tf32()) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
});
|
||||
return filtered_configs;
|
||||
}
|
||||
|
||||
bool execute_plan(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnn_frontend::ExecutionPlan& plan,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(allocator::malloc(workspace_size), {workspace_size}, uint8);
|
||||
|
||||
int64_t uids[3] = {'x', 'w', 'y'};
|
||||
void* data_ptrs[3] = {
|
||||
x.data<void>(),
|
||||
w.data<void>(),
|
||||
y.data<void>(),
|
||||
};
|
||||
|
||||
auto variantPack = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setDataPointers(3, data_ptrs)
|
||||
.setUids(3, uids)
|
||||
.build();
|
||||
|
||||
auto handle = encoder.device().cudnn_handle();
|
||||
cudnnSetStream(handle, encoder.stream());
|
||||
|
||||
#if CUDNN_VERSION >= 90500 && MLX_USE_CUDNN_NATIVE_CUDA_GRAPH_API
|
||||
cudaGraph_t graph;
|
||||
cudaGraphCreate(&graph, 0);
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { cudaGraphDestroy(*p); });
|
||||
if (cudnnBackendPopulateCudaGraph(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc(), graph) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
return false;
|
||||
}
|
||||
encoder.add_graph_node(graph);
|
||||
#else
|
||||
auto capture = encoder.capture_context();
|
||||
if (cudnnBackendExecute(
|
||||
handle, plan.get_raw_desc(), variantPack.get_raw_desc()) !=
|
||||
CUDNN_STATUS_SUCCESS) {
|
||||
// Discard the captured graph when failed.
|
||||
capture.discard = true;
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
bool try_engines(
|
||||
cu::CommandEncoder& encoder,
|
||||
const ConvCacheKey& cache_key,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
cudnn_frontend::EngineConfigList& configs,
|
||||
const std::string& op_graph_tag,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y) {
|
||||
for (auto& config : configs) {
|
||||
try {
|
||||
auto plan = cudnn_frontend::ExecutionPlanBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setEngineConfig(config, op_graph_tag)
|
||||
.build();
|
||||
if (execute_plan(encoder, plan, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(plan)));
|
||||
return true;
|
||||
}
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_NOT_SUPPORTED) {
|
||||
throw;
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
auto get_conv_op_settings(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const std::vector<int>& kernel_strides,
|
||||
const std::vector<int>& padding_lo_,
|
||||
const std::vector<int>& padding_hi_,
|
||||
const std::vector<int>& kernel_dilation,
|
||||
const std::vector<int>& input_dilation) {
|
||||
auto padding_lo = convert_vector<int64_t>(padding_lo_);
|
||||
auto padding_hi = convert_vector<int64_t>(padding_hi_);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
for (int i = 0; i < padding_lo.size(); ++i) {
|
||||
int wt_size = 1 + kernel_dilation[i] * (w.shape(1 + i) - 1);
|
||||
padding_lo[i] = wt_size - padding_lo[i] - 1;
|
||||
int in_size = 1 + kernel_strides[i] * (x.shape(1 + i) - 1);
|
||||
int out_size = 1 + input_dilation[i] * (y.shape(1 + i) - 1);
|
||||
padding_hi[i] = out_size - in_size + padding_hi[i];
|
||||
}
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(input_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
padding_hi = padding_lo;
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_dilation),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_strides));
|
||||
|
||||
} else {
|
||||
return std::make_tuple(
|
||||
convert_vector<int64_t>(kernel_strides),
|
||||
std::move(padding_lo),
|
||||
std::move(padding_hi),
|
||||
convert_vector<int64_t>(kernel_dilation));
|
||||
}
|
||||
}
|
||||
|
||||
std::optional<cudnn_frontend::OperationGraph> build_op_graph(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
Dtype dtype,
|
||||
array& x,
|
||||
array& w,
|
||||
array& y,
|
||||
const SmallVector<int64_t>& stride,
|
||||
const SmallVector<int64_t>& padding_lo,
|
||||
const SmallVector<int64_t>& padding_hi,
|
||||
const SmallVector<int64_t>& dilation) {
|
||||
try {
|
||||
auto compute_dtype = (dtype == float16 || dtype == bfloat16)
|
||||
? CUDNN_DATA_FLOAT
|
||||
: dtype_to_cudnn_type(dtype);
|
||||
auto conv_desc = cudnn_frontend::ConvDescBuilder()
|
||||
.setDataType(compute_dtype)
|
||||
.setMathMode(CUDNN_CROSS_CORRELATION)
|
||||
.setNDims(stride.size())
|
||||
.setStrides(stride.size(), stride.data())
|
||||
.setPrePadding(padding_lo.size(), padding_lo.data())
|
||||
.setPostPadding(padding_hi.size(), padding_hi.data())
|
||||
.setDilation(dilation.size(), dilation.data())
|
||||
.build();
|
||||
|
||||
auto op = cudnn_frontend::OperationBuilder(backend_type)
|
||||
.setxDesc(build_tensor('x', x))
|
||||
.setwDesc(build_tensor('w', w))
|
||||
.setyDesc(build_tensor('y', y))
|
||||
.setcDesc(conv_desc)
|
||||
.build();
|
||||
|
||||
std::array<cudnn_frontend::Operation const*, 1> ops = {&op};
|
||||
return cudnn_frontend::OperationGraphBuilder()
|
||||
.setHandle(encoder.device().cudnn_handle())
|
||||
.setOperationGraph(ops.size(), ops.data())
|
||||
.build();
|
||||
} catch (cudnn_frontend::cudnnException& error) {
|
||||
if (error.getCudnnStatus() != CUDNN_STATUS_BAD_PARAM) {
|
||||
throw;
|
||||
}
|
||||
return std::nullopt;
|
||||
}
|
||||
}
|
||||
|
||||
// Do necessary transposes and copies to prepare the inputs and outputs for
|
||||
// building the cuDNN conv op. It is safe to be called multiple times in one
|
||||
// eval_gpu, with cost of possible redundant copies.
|
||||
std::tuple<array, array, array> prepare_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array in,
|
||||
array wt,
|
||||
array out,
|
||||
Stream s) {
|
||||
// Transpose the args depending on the backend type.
|
||||
// TODO: Handle groups.
|
||||
if (backend_type == CONV_BACKWARD_INPUT) {
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
} else if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
in = swapaxes_in_eval(in, 0, -1);
|
||||
wt = swapaxes_in_eval(wt, 0, -1);
|
||||
// Create a contiguous array that shares the data with |out|, but with dim
|
||||
// C_in and C_out swapped.
|
||||
Shape shape(out.shape());
|
||||
std::swap(shape.front(), shape.back());
|
||||
Strides strides(shape.size(), 1);
|
||||
for (int i = shape.size() - 2; i >= 0; --i) {
|
||||
strides[i] = shape[i + 1] * strides[i + 1];
|
||||
}
|
||||
array intermediate(std::move(shape), out.dtype(), nullptr, {});
|
||||
intermediate.copy_shared_buffer(
|
||||
out, std::move(strides), {true, true, false}, out.data_size());
|
||||
out = intermediate;
|
||||
}
|
||||
|
||||
// cuDNN requires contiguous input.
|
||||
if (!in.flags().row_contiguous) {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
if (!wt.flags().row_contiguous) {
|
||||
wt = contiguous_copy_gpu(wt, s);
|
||||
encoder.add_temporary(wt);
|
||||
}
|
||||
|
||||
return {std::move(in), std::move(wt), std::move(out)};
|
||||
}
|
||||
|
||||
// Get the x/w/y args from the in/wt/out args depending on backend type.
|
||||
inline std::tuple<array&, array&, array&> dispatch_args(
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& out) {
|
||||
switch (backend_type) {
|
||||
case CONV_BACKWARD_INPUT:
|
||||
return {out, wt, in};
|
||||
case CONV_BACKWARD_WEIGHT:
|
||||
return {in, out, wt};
|
||||
default:
|
||||
return {in, wt, out};
|
||||
}
|
||||
}
|
||||
|
||||
// Register inputs and outputs before actually running conv op. Can only be
|
||||
// called once per eval_gpu.
|
||||
void register_args(
|
||||
cu::CommandEncoder& encoder,
|
||||
cudnnBackendDescriptorType_t backend_type,
|
||||
array& in,
|
||||
array& wt,
|
||||
array& intermediate_out,
|
||||
array& final_out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_input_array(wt);
|
||||
encoder.set_output_array(final_out);
|
||||
|
||||
if (backend_type == CONV_BACKWARD_WEIGHT) {
|
||||
// Turn |out| into a strided array, which will have C_in and C_out swapped
|
||||
// in vjp and the final |grad_weight| will then be contiguous.
|
||||
Strides strides = intermediate_out.strides();
|
||||
std::swap(strides.front(), strides.back());
|
||||
final_out.copy_shared_buffer(
|
||||
intermediate_out,
|
||||
std::move(strides),
|
||||
{false, false, false},
|
||||
intermediate_out.data_size());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
nvtx3::scoped_range r("Convolution::eval_gpu");
|
||||
if (out_.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
assert(inputs.size() == 2);
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
array out = out_;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
Dtype dtype = out.dtype();
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Search cache.
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
dtype_to_cudnn_type(dtype),
|
||||
fixed_vector(in.shape()),
|
||||
fixed_vector(wt.shape()),
|
||||
fixed_vector(kernel_strides_),
|
||||
fixed_vector(padding_lo_),
|
||||
fixed_vector(padding_hi_),
|
||||
fixed_vector(kernel_dilation_),
|
||||
groups_,
|
||||
flip_,
|
||||
get_alignment(in),
|
||||
get_alignment(wt),
|
||||
get_alignment(out)};
|
||||
if (auto it = conv_cache().find(cache_key); it != conv_cache().end()) {
|
||||
auto& [backend_type, plan] = it->second;
|
||||
std::tie(in, wt, out) = prepare_args(encoder, backend_type, in, wt, out, s);
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (!execute_plan(encoder, plan, x, w, y)) {
|
||||
throw std::runtime_error("[conv] Cached plan failed to execute.");
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// There is no reliable way to deduce the proper cuDNN backend for the
|
||||
// convolution, so we make a best guess and then try.
|
||||
SmallVector<cudnnBackendDescriptorType_t, 2> try_backends;
|
||||
if (flip_) {
|
||||
// When weight is flipped, we assume it is backward input convolution.
|
||||
try_backends.push_back(CONV_BACKWARD_INPUT);
|
||||
} else {
|
||||
// Otherwise it could be backward weight convolution or forward convolution,
|
||||
// mathematically there is no difference so we have to use heuristics.
|
||||
// Empirically backward convolutions have large kernel dimensions, and
|
||||
// usually have |in| and |wt| transposed.
|
||||
if (!in.flags().row_contiguous && !wt.flags().row_contiguous &&
|
||||
wt.shape(2) > out.shape(2)) {
|
||||
try_backends = {CONV_BACKWARD_WEIGHT, CONV_FORWARD};
|
||||
} else {
|
||||
try_backends = {CONV_FORWARD, CONV_BACKWARD_WEIGHT};
|
||||
}
|
||||
}
|
||||
|
||||
// Try to build op graph.
|
||||
cudnnBackendDescriptorType_t backend_type;
|
||||
std::optional<cudnn_frontend::OperationGraph> op_graph;
|
||||
for (auto try_backend : try_backends) {
|
||||
auto [in_copy, wt_copy, out_copy] =
|
||||
prepare_args(encoder, try_backend, in, wt, out, s);
|
||||
auto [x, w, y] = dispatch_args(try_backend, in_copy, wt_copy, out_copy);
|
||||
auto [stride, padding_lo, padding_hi, dilation] = get_conv_op_settings(
|
||||
try_backend,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
kernel_strides_,
|
||||
padding_lo_,
|
||||
padding_hi_,
|
||||
kernel_dilation_,
|
||||
input_dilation_);
|
||||
op_graph = build_op_graph(
|
||||
encoder,
|
||||
try_backend,
|
||||
dtype,
|
||||
x,
|
||||
w,
|
||||
y,
|
||||
stride,
|
||||
padding_lo,
|
||||
padding_hi,
|
||||
dilation);
|
||||
if (op_graph) {
|
||||
backend_type = try_backend;
|
||||
in = std::move(in_copy);
|
||||
wt = std::move(wt_copy);
|
||||
out = std::move(out_copy);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (!op_graph) {
|
||||
throw std::runtime_error("[conv] Can not build op graph.");
|
||||
}
|
||||
|
||||
// Get ready to execute the graph.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Try to run plans based on heuristics.
|
||||
auto configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
auto tag = op_graph->getTag();
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
// Then try fallback plans.
|
||||
configs = get_engine_configs(backend_type, dtype, *op_graph);
|
||||
if (try_engines(encoder, cache_key, backend_type, configs, tag, x, w, y)) {
|
||||
return;
|
||||
}
|
||||
throw std::runtime_error("[conv] Unable to find a working engine.");
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -22,7 +22,7 @@ __global__ void copy_s(const In* in, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = cast_to<Out>(in[0]);
|
||||
out_vec.val[i] = cast_to<Out>(in[0]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -43,7 +43,7 @@ __global__ void copy_v(const In* in, Out* out, IdxT size) {
|
||||
AlignedVector<Out, N_READS> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
out_vec[i] = cast_to<Out>(in_vec[i]);
|
||||
out_vec.val[i] = cast_to<Out>(in_vec.val[i]);
|
||||
}
|
||||
|
||||
store_vector<N_READS>(out, index, out_vec);
|
||||
@@ -65,18 +65,23 @@ void copy_contiguous(
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
||||
constexpr int N_READS = 16 / sizeof(InType);
|
||||
// TODO: Choose optimized value based on type size.
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::copy_s<InType, OutType, IdxT, N_READS>;
|
||||
if (ctype == CopyType::Vector) {
|
||||
kernel = cu::copy_v<InType, OutType, IdxT, N_READS>;
|
||||
}
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
||||
kernel,
|
||||
out.data_size(),
|
||||
out.shape(),
|
||||
out.strides(),
|
||||
large(),
|
||||
N_READS);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
out.data_size());
|
||||
|
||||
@@ -37,7 +37,7 @@ __global__ void copy_gg(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
@@ -71,13 +71,14 @@ void copy_general(
|
||||
data_size *= s;
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto ndim_constant) {
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel =
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_nd<InType, OutType, IdxT, ndim_constant()>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
@@ -86,13 +87,13 @@ void copy_general(
|
||||
const_param<ndim_constant()>(strides_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(data_size, shape, out.strides(), large());
|
||||
auto kernel = cu::copy_gg<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(
|
||||
kernel, data_size, shape, out.strides(), large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg<InType, OutType, IdxT>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
data_size,
|
||||
|
||||
@@ -41,7 +41,7 @@ __global__ void copy_gg_dynamic(
|
||||
const int64_t* offset_out) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
auto [idx_in, idx_out] = elem_to_loc(
|
||||
auto [idx_in, idx_out] = elem_to_loc_4d(
|
||||
index, shape.data(), strides_in.data(), strides_out.data(), ndim);
|
||||
out[idx_out + *offset_out] = CastOp<In, Out>{}(in[idx_in + *offset_in]);
|
||||
}
|
||||
@@ -74,16 +74,14 @@ void copy_general_dynamic(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::
|
||||
copy_gg_dynamic_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_dynamic_nd<
|
||||
InType,
|
||||
OutType,
|
||||
IdxT,
|
||||
dims_constant()>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -94,12 +92,13 @@ void copy_general_dynamic(
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::copy_gg_dynamic<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_gg_dynamic<InType, OutType, IdxT>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -34,7 +34,7 @@ __global__ void copy_g(
|
||||
int ndim) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
if (index < size) {
|
||||
IdxT idx_in = elem_to_loc(index, shape.data(), strides_in.data(), ndim);
|
||||
IdxT idx_in = elem_to_loc_4d(index, shape.data(), strides_in.data(), ndim);
|
||||
out[index] = CastOp<In, Out>{}(in[idx_in]);
|
||||
}
|
||||
}
|
||||
@@ -63,12 +63,14 @@ void copy_general_input(
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel =
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g_nd<InType, OutType, IdxT, dims_constant()>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
@@ -76,12 +78,13 @@ void copy_general_input(
|
||||
const_param<dims_constant()>(strides_in));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
auto kernel = cu::copy_g<InType, OutType, IdxT>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(kernel, out, large());
|
||||
encoder.add_kernel_node(
|
||||
cu::copy_g<InType, OutType, IdxT>,
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in_ptr,
|
||||
out_ptr,
|
||||
out.size(),
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
@@ -10,23 +9,12 @@
|
||||
#include <future>
|
||||
#include <unordered_set>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
namespace mlx::core {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
if (err != CUDNN_STATUS_SUCCESS) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed: {}.", name, cudnnGetErrorString(err)));
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
@@ -34,7 +22,7 @@ int cuda_graph_cache_size() {
|
||||
return cache_size;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
namespace cu {
|
||||
|
||||
Device::Device(int device) : device_(device) {
|
||||
CHECK_CUDA_ERROR(cudaDeviceGetAttribute(
|
||||
@@ -52,18 +40,11 @@ Device::Device(int device) : device_(device) {
|
||||
}
|
||||
// The cublasLt handle is used by matmul.
|
||||
make_current();
|
||||
CHECK_CUBLAS_ERROR(cublasLtCreate(<_));
|
||||
// The cudnn handle is used by Convolution.
|
||||
CHECK_CUDNN_ERROR(cudnnCreate(&cudnn_));
|
||||
|
||||
// Initialize the jit module cache here ensures it is not
|
||||
// unloaded before any evaluation is done
|
||||
get_jit_module_cache();
|
||||
cublasLtCreate(<_);
|
||||
}
|
||||
|
||||
Device::~Device() {
|
||||
CHECK_CUDNN_ERROR(cudnnDestroy(cudnn_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtDestroy(lt_));
|
||||
cublasLtDestroy(lt_);
|
||||
}
|
||||
|
||||
void Device::make_current() {
|
||||
@@ -85,19 +66,30 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph, 0));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
CHECK_CUDA_ERROR(cudaStreamEndCapture(enc.stream(), &graph));
|
||||
std::unique_ptr<cudaGraph_t, void (*)(cudaGraph_t*)> graph_freer(
|
||||
&graph, [](cudaGraph_t* p) { CHECK_CUDA_ERROR(cudaGraphDestroy(*p)); });
|
||||
if (discard) {
|
||||
return;
|
||||
size_t num_nodes;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, NULL, &num_nodes));
|
||||
if (num_nodes == 1) {
|
||||
cudaGraphNode_t captured_node;
|
||||
CHECK_CUDA_ERROR(cudaGraphGetNodes(graph, &captured_node, &num_nodes));
|
||||
CUDA_KERNEL_NODE_PARAMS params;
|
||||
CHECK_CUDA_ERROR(cuGraphKernelNodeGetParams(captured_node, ¶ms));
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, enc.graph_, NULL, 0, ¶ms));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
} else {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddChildGraphNode(&node, enc.graph_, NULL, 0, graph));
|
||||
enc.insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
enc.add_graph_node(graph);
|
||||
CHECK_CUDA_ERROR(cudaGraphDestroy(graph));
|
||||
}
|
||||
|
||||
CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
@@ -184,11 +176,21 @@ void CommandEncoder::insert_graph_dependencies(std::vector<GraphNode> nodes) {
|
||||
}
|
||||
}
|
||||
|
||||
CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d), stream_(d), graph_cache_(cuda_graph_cache_size()) {
|
||||
CommandEncoder::CommandEncoder(Device& d) : device_(d), stream_(d) {
|
||||
CHECK_CUDA_ERROR(cudaGraphCreate(&graph_, 0));
|
||||
}
|
||||
|
||||
void clear_graphs(std::unordered_map<std::string, cudaGraphExec_t>& graphs) {
|
||||
for (auto& [_, graph_exec] : graphs) {
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
}
|
||||
graphs.clear();
|
||||
}
|
||||
|
||||
CommandEncoder::~CommandEncoder() {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
@@ -214,22 +216,22 @@ void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
kernel_params.blockDim = block_dim;
|
||||
kernel_params.kernelParams = params;
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
add_kernel_node(kernel_params);
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
@@ -240,30 +242,13 @@ void CommandEncoder::add_kernel_node(
|
||||
kernel_params.blockDimY = block_dim.y;
|
||||
kernel_params.blockDimZ = block_dim.z;
|
||||
kernel_params.kernelParams = params;
|
||||
kernel_params.sharedMemBytes = smem_bytes;
|
||||
add_kernel_node(kernel_params);
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const cudaKernelNodeParams& params) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
CUgraphNode node;
|
||||
CHECK_CUDA_ERROR(cuGraphAddKernelNode(&node, graph_, NULL, 0, ¶ms));
|
||||
CHECK_CUDA_ERROR(
|
||||
cuGraphAddKernelNode(&node, graph_, NULL, 0, &kernel_params));
|
||||
insert_graph_dependencies(GraphNode{node, 'K'});
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
@@ -280,7 +265,7 @@ void CommandEncoder::commit() {
|
||||
graph_key_ += ".";
|
||||
graph_key_ += std::to_string(empty_node_count_);
|
||||
|
||||
CudaGraphExec& graph_exec = graph_cache_[graph_key_];
|
||||
cudaGraphExec_t& graph_exec = graph_cache_[graph_key_];
|
||||
|
||||
if (graph_exec != nullptr) {
|
||||
cudaGraphExecUpdateResult update_result;
|
||||
@@ -294,19 +279,25 @@ void CommandEncoder::commit() {
|
||||
#endif // CUDART_VERSION >= 12000
|
||||
if (update_result != cudaGraphExecUpdateSuccess) {
|
||||
cudaGetLastError(); // reset error
|
||||
graph_exec.reset();
|
||||
CHECK_CUDA_ERROR(cudaGraphExecDestroy(graph_exec));
|
||||
graph_exec = nullptr;
|
||||
}
|
||||
}
|
||||
if (graph_exec == nullptr) {
|
||||
graph_exec.instantiate(graph_);
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaGraphInstantiate(&graph_exec, graph_, NULL, NULL, 0));
|
||||
}
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// TODO smarter cache policy
|
||||
if (graph_cache_.size() > cuda_graph_cache_size()) {
|
||||
clear_graphs(graph_cache_);
|
||||
}
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
to_nodes_.clear();
|
||||
graph_key_.clear();
|
||||
@@ -316,6 +307,7 @@ void CommandEncoder::commit() {
|
||||
}
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.end_batch();
|
||||
worker_.commit(stream_);
|
||||
}
|
||||
|
||||
@@ -324,6 +316,7 @@ void CommandEncoder::synchronize() {
|
||||
auto p = std::make_shared<std::promise<void>>();
|
||||
std::future<void> f = p->get_future();
|
||||
add_completed_handler([p = std::move(p)]() { p->set_value(); });
|
||||
worker_.end_batch();
|
||||
commit();
|
||||
f.wait();
|
||||
}
|
||||
@@ -341,4 +334,6 @@ CommandEncoder& get_command_encoder(Stream s) {
|
||||
return device(s.device).get_command_encoder(s);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
} // namespace cu
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -3,13 +3,11 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cudnn.h>
|
||||
#include <thrust/execution_policy.h>
|
||||
|
||||
#include <unordered_map>
|
||||
@@ -23,7 +21,6 @@ class CommandEncoder {
|
||||
~CaptureContext();
|
||||
cudaGraph_t graph;
|
||||
CommandEncoder& enc;
|
||||
bool discard{false};
|
||||
};
|
||||
struct ConcurrentContext {
|
||||
ConcurrentContext(CommandEncoder& enc);
|
||||
@@ -32,6 +29,7 @@ class CommandEncoder {
|
||||
};
|
||||
|
||||
explicit CommandEncoder(Device& d);
|
||||
~CommandEncoder();
|
||||
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
@@ -47,39 +45,25 @@ class CommandEncoder {
|
||||
void set_output_array(const array& arr);
|
||||
|
||||
template <typename F, typename... Params>
|
||||
void add_kernel_node(
|
||||
F* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
Params&&... params) {
|
||||
void
|
||||
add_kernel_node(F* func, dim3 grid_dim, dim3 block_dim, Params&&... params) {
|
||||
constexpr size_t num = sizeof...(Params);
|
||||
void* ptrs[num];
|
||||
size_t i = 0;
|
||||
([&](auto&& p) { ptrs[i++] = static_cast<void*>(&p); }(
|
||||
std::forward<Params>(params)),
|
||||
...);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, smem_bytes, ptrs);
|
||||
add_kernel_node((void*)func, grid_dim, block_dim, ptrs);
|
||||
}
|
||||
|
||||
void add_kernel_node(
|
||||
CUfunction func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
void add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
void
|
||||
add_kernel_node(void* func, dim3 grid_dim, dim3 block_dim, void** params);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
temporaries_.push_back(arr.data_shared_ptr());
|
||||
@@ -89,10 +73,6 @@ class CommandEncoder {
|
||||
void maybe_commit();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
return device_;
|
||||
}
|
||||
|
||||
CudaStream& stream() {
|
||||
return stream_;
|
||||
}
|
||||
@@ -126,7 +106,7 @@ class CommandEncoder {
|
||||
std::string graph_key_;
|
||||
std::vector<GraphNode> concurrent_nodes_;
|
||||
std::vector<std::shared_ptr<array::Data>> temporaries_;
|
||||
LRUCache<std::string, CudaGraphExec> graph_cache_;
|
||||
std::unordered_map<std::string, cudaGraphExec_t> graph_cache_;
|
||||
std::vector<std::uintptr_t> active_deps_;
|
||||
std::vector<std::uintptr_t> active_outputs_;
|
||||
std::unordered_map<std::uintptr_t, GraphNode> node_map_;
|
||||
@@ -157,16 +137,12 @@ class Device {
|
||||
cublasLtHandle_t lt_handle() const {
|
||||
return lt_;
|
||||
}
|
||||
cudnnHandle_t cudnn_handle() const {
|
||||
return cudnn_;
|
||||
}
|
||||
|
||||
private:
|
||||
int device_;
|
||||
int compute_capability_major_;
|
||||
int compute_capability_minor_;
|
||||
cublasLtHandle_t lt_;
|
||||
cudnnHandle_t cudnn_;
|
||||
std::unordered_map<int, CommandEncoder> encoders_;
|
||||
};
|
||||
|
||||
|
||||
15
mlx/backend/cuda/device/arange.cuh
Normal file
15
mlx/backend/cuda/device/arange.cuh
Normal file
@@ -0,0 +1,15 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -2,7 +2,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/complex.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
|
||||
#include <cuda/atomic>
|
||||
@@ -48,16 +48,25 @@ inline __device__ void atomic_add(__half* out, __half val) {
|
||||
atomicAdd(out, val);
|
||||
}
|
||||
|
||||
inline __device__ void atomic_add(complex64_t* out, complex64_t val) {
|
||||
atomic_add_general(out, val);
|
||||
}
|
||||
|
||||
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
|
||||
#if __CUDA_ARCH__ < 800
|
||||
inline __device__ void atomic_add(cuComplex* out, cuComplex val) {
|
||||
#if __CUDA_ARCH__ < 900
|
||||
atomic_add_general(out, val);
|
||||
#else
|
||||
atomicAdd(out, val);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline __device__ void atomic_add(__nv_bfloat16* out, __nv_bfloat16 val) {
|
||||
#if __CUDA_ARCH__ < 800
|
||||
#if CCCL_VERSION >= 2008000
|
||||
atomic_add_general(out, val);
|
||||
#else
|
||||
bool cccl_version_too_old_for_bfloat16_atomic_add = false;
|
||||
assert(cccl_version_too_old_for_bfloat16_atomic_add);
|
||||
#endif
|
||||
#else
|
||||
atomicAdd(out, val);
|
||||
#endif
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -44,7 +44,7 @@ struct Remainder {
|
||||
} else {
|
||||
return x % y;
|
||||
}
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return x % y;
|
||||
} else {
|
||||
T r = fmod(x, y);
|
||||
@@ -66,12 +66,14 @@ struct Equal {
|
||||
struct NaNEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T x, T y) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if constexpr (std::is_same_v<T, cuComplex>) {
|
||||
return x == y ||
|
||||
(isnan(x.real()) && isnan(y.real()) && isnan(x.imag()) &&
|
||||
isnan(y.imag())) ||
|
||||
(x.real() == y.real() && isnan(x.imag()) && isnan(y.imag())) ||
|
||||
(isnan(x.real()) && isnan(y.real()) && x.imag() == y.imag());
|
||||
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) && isnan(cuCimagf(x)) &&
|
||||
isnan(cuCimagf(y))) ||
|
||||
(cuCrealf(x) == cuCrealf(y) && isnan(cuCimagf(x)) &&
|
||||
isnan(cuCimagf(y))) ||
|
||||
(isnan(cuCrealf(x)) && isnan(cuCrealf(y)) &&
|
||||
cuCimagf(x) == cuCimagf(y));
|
||||
} else {
|
||||
return x == y || (isnan(x) && isnan(y));
|
||||
}
|
||||
@@ -109,17 +111,17 @@ struct LessEqual {
|
||||
struct LogAddExp {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x, T y) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if (isnan(x.real()) || isnan(x.imag()) || isnan(y.real()) ||
|
||||
isnan(y.imag())) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x)) || isnan(cuCrealf(y)) ||
|
||||
isnan(cuCimagf(y))) {
|
||||
return {
|
||||
cuda::std::numeric_limits<float>::quiet_NaN(),
|
||||
cuda::std::numeric_limits<float>::quiet_NaN()};
|
||||
}
|
||||
auto max = x.real() > y.real() ? x : y;
|
||||
auto min = x.real() < y.real() ? x : y;
|
||||
auto min_real = min.real();
|
||||
auto max_real = max.real();
|
||||
auto max = cuCrealf(x) > cuCrealf(y) ? x : y;
|
||||
auto min = cuCrealf(x) < cuCrealf(y) ? x : y;
|
||||
auto min_real = cuCrealf(min);
|
||||
auto max_real = cuCrealf(max);
|
||||
if (!isfinite(min_real) && (min_real == max_real)) {
|
||||
if (min_real < 0) {
|
||||
return min;
|
||||
@@ -148,8 +150,8 @@ struct Maximum {
|
||||
__device__ T operator()(T x, T y) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
return max(x, y);
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
if (isnan(x.real()) || isnan(x.imag())) {
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
|
||||
return x;
|
||||
}
|
||||
return x > y ? x : y;
|
||||
@@ -167,8 +169,8 @@ struct Minimum {
|
||||
__device__ T operator()(T x, T y) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
return min(x, y);
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
if (isnan(x.real()) || isnan(x.imag())) {
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (isnan(cuCrealf(x)) || isnan(cuCimagf(x))) {
|
||||
return x;
|
||||
}
|
||||
return x < y ? x : y;
|
||||
@@ -191,8 +193,8 @@ struct Multiply {
|
||||
struct NotEqual {
|
||||
template <typename T>
|
||||
__device__ bool operator()(T x, T y) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
return x.real() != y.real() || x.imag() != y.imag();
|
||||
if constexpr (std::is_same_v<T, cuComplex>) {
|
||||
return cuCrealf(x) != cuCrealf(y) || cuCimagf(x) != cuCimagf(y);
|
||||
} else {
|
||||
return x != y;
|
||||
}
|
||||
@@ -212,8 +214,19 @@ struct Power {
|
||||
base *= base;
|
||||
}
|
||||
return res;
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
return pow(base, exp);
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (base.y == 0 && base.x == 0) {
|
||||
if (isnan(exp.x) || isnan(exp.y)) {
|
||||
auto nan = cuda::std::numeric_limits<float>::quiet_NaN();
|
||||
return make_cuFloatComplex(nan, nan);
|
||||
}
|
||||
return make_cuFloatComplex(0.0, 0.0);
|
||||
}
|
||||
auto x_theta = atan2f(base.y, base.x);
|
||||
auto x_ln_r = 0.5 * logf(base.x * base.x + base.y * base.y);
|
||||
auto mag = expf(exp.x * x_ln_r - exp.y * x_theta);
|
||||
auto phase = exp.y * x_ln_r + exp.x * x_theta;
|
||||
return make_cuFloatComplex(mag * cosf(phase), mag * sinf(phase));
|
||||
} else {
|
||||
return powf(base, exp);
|
||||
}
|
||||
|
||||
@@ -2,8 +2,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/complex.cuh"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <thrust/iterator/transform_iterator.h>
|
||||
@@ -21,43 +20,50 @@ struct CastOp {
|
||||
};
|
||||
|
||||
// Castings between complex and boolean.
|
||||
template <typename T>
|
||||
struct CastOp<complex_t<T>, bool> {
|
||||
// TODO: Should make a custom complex type.
|
||||
template <>
|
||||
struct CastOp<cuComplex, bool> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ bool operator()(complex_t<T> x) {
|
||||
return x.real() != 0 && x.imag() != 0;
|
||||
__device__ bool operator()(cuComplex x) {
|
||||
return x.x != 0 && x.y != 0;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct CastOp<bool, complex_t<T>> {
|
||||
template <>
|
||||
struct CastOp<bool, cuComplex> {
|
||||
static constexpr bool is_castable = true;
|
||||
|
||||
__device__ complex_t<T> operator()(bool x) {
|
||||
return x ? complex_t<T>{1, 1} : complex_t<T>{0, 0};
|
||||
__device__ cuComplex operator()(bool x) {
|
||||
return x ? make_cuFloatComplex(1, 1) : make_cuFloatComplex(0, 0);
|
||||
}
|
||||
};
|
||||
|
||||
// Converting a complex number to real number discards the imaginary part.
|
||||
template <typename T, typename DstT>
|
||||
struct CastOp<complex_t<T>, DstT, cuda::std::enable_if_t<!is_complex_v<DstT>>> {
|
||||
static constexpr bool is_castable = cuda::std::is_convertible_v<T, DstT>;
|
||||
template <typename DstT>
|
||||
struct CastOp<
|
||||
cuComplex,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<!cuda::std::is_same_v<cuComplex, DstT>>> {
|
||||
static constexpr bool is_castable = cuda::std::is_convertible_v<float, DstT>;
|
||||
|
||||
__device__ DstT operator()(complex_t<T> x) {
|
||||
static_assert(!is_complex_v<DstT>);
|
||||
return static_cast<DstT>(x.real());
|
||||
__device__ DstT operator()(cuComplex x) {
|
||||
static_assert(!cuda::std::is_same_v<cuComplex, DstT>);
|
||||
return static_cast<DstT>(cuCrealf(x));
|
||||
}
|
||||
};
|
||||
|
||||
// Allow converting a real number to complex number.
|
||||
template <typename SrcT, typename T>
|
||||
struct CastOp<SrcT, complex_t<T>, cuda::std::enable_if_t<!is_complex_v<SrcT>>> {
|
||||
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, T>;
|
||||
template <typename SrcT>
|
||||
struct CastOp<
|
||||
SrcT,
|
||||
cuComplex,
|
||||
cuda::std::enable_if_t<!cuda::std::is_same_v<SrcT, cuComplex>>> {
|
||||
static constexpr bool is_castable = cuda::std::is_convertible_v<SrcT, float>;
|
||||
|
||||
__device__ complex_t<T> operator()(SrcT x) {
|
||||
static_assert(!is_complex_v<SrcT>);
|
||||
return complex_t<T>{static_cast<T>(x), 0};
|
||||
__device__ cuComplex operator()(SrcT x) {
|
||||
static_assert(!cuda::std::is_same_v<SrcT, cuComplex>);
|
||||
return cuComplex{static_cast<float>(x), 0};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -82,7 +88,8 @@ struct CastOp<
|
||||
SrcT,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> &&
|
||||
!cuda::std::is_same_v<SrcT, cuComplex> &&
|
||||
(cuda::std::is_same_v<DstT, __half> ||
|
||||
cuda::std::is_same_v<DstT, __nv_bfloat16>)>> {
|
||||
static constexpr bool is_castable = true;
|
||||
@@ -97,7 +104,8 @@ struct CastOp<
|
||||
SrcT,
|
||||
DstT,
|
||||
cuda::std::enable_if_t<
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> && !is_complex_v<SrcT> &&
|
||||
!cuda::std::is_convertible_v<SrcT, DstT> &&
|
||||
!cuda::std::is_same_v<DstT, cuComplex> &&
|
||||
!cuda::std::is_same_v<DstT, __half> &&
|
||||
!cuda::std::is_same_v<DstT, __nv_bfloat16> &&
|
||||
(cuda::std::is_same_v<SrcT, __half> ||
|
||||
|
||||
138
mlx/backend/cuda/device/cexpf.cuh
Normal file
138
mlx/backend/cuda/device/cexpf.cuh
Normal file
@@ -0,0 +1,138 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
// Copyright © 2008-2013 NVIDIA Corporation
|
||||
// Copyright © 2013 Filipe RNC Maia
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Forked from
|
||||
// https://github.com/NVIDIA/cccl/blob/main/thrust/thrust/detail/complex/cexpf.h
|
||||
|
||||
// TODO: We should use thrust::exp but the thrust header in old CUDA versions
|
||||
// can not be used in JIT.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda/std/cstdint>
|
||||
|
||||
namespace mlx::core::cu::detail {
|
||||
|
||||
using ieee_float_shape_type = union {
|
||||
float value;
|
||||
uint32_t word;
|
||||
};
|
||||
|
||||
inline __device__ void get_float_word(uint32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline __device__ void get_float_word(int32_t& i, float d) {
|
||||
ieee_float_shape_type gf_u;
|
||||
gf_u.value = (d);
|
||||
(i) = gf_u.word;
|
||||
}
|
||||
|
||||
inline __device__ void set_float_word(float& d, uint32_t i) {
|
||||
ieee_float_shape_type sf_u;
|
||||
sf_u.word = (i);
|
||||
(d) = sf_u.value;
|
||||
}
|
||||
|
||||
inline __device__ float frexp_expf(float x, int* expt) {
|
||||
const uint32_t k = 235;
|
||||
const float kln2 = 162.88958740F;
|
||||
|
||||
float exp_x;
|
||||
uint32_t hx;
|
||||
|
||||
exp_x = expf(x - kln2);
|
||||
get_float_word(hx, exp_x);
|
||||
*expt = (hx >> 23) - (0x7f + 127) + k;
|
||||
set_float_word(exp_x, (hx & 0x7fffff) | ((0x7f + 127) << 23));
|
||||
return exp_x;
|
||||
}
|
||||
|
||||
inline __device__ cuComplex ldexp_cexpf(cuComplex z, int expt) {
|
||||
float x, y, exp_x, scale1, scale2;
|
||||
int ex_expt, half_expt;
|
||||
|
||||
x = cuCrealf(z);
|
||||
y = cuCimagf(z);
|
||||
exp_x = frexp_expf(x, &ex_expt);
|
||||
expt += ex_expt;
|
||||
|
||||
half_expt = expt / 2;
|
||||
set_float_word(scale1, (0x7f + half_expt) << 23);
|
||||
half_expt = expt - half_expt;
|
||||
set_float_word(scale2, (0x7f + half_expt) << 23);
|
||||
|
||||
return cuComplex{
|
||||
cosf(y) * exp_x * scale1 * scale2, sinf(y) * exp_x * scale1 * scale2};
|
||||
}
|
||||
|
||||
inline __device__ cuComplex cexpf(const cuComplex& z) {
|
||||
float x, y, exp_x;
|
||||
uint32_t hx, hy;
|
||||
|
||||
const uint32_t exp_ovfl = 0x42b17218, cexp_ovfl = 0x43400074;
|
||||
|
||||
x = cuCrealf(z);
|
||||
y = cuCimagf(z);
|
||||
|
||||
get_float_word(hy, y);
|
||||
hy &= 0x7fffffff;
|
||||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if (hy == 0) {
|
||||
return cuComplex{expf(x), y};
|
||||
}
|
||||
get_float_word(hx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if ((hx & 0x7fffffff) == 0) {
|
||||
return cuComplex{cosf(y), sinf(y)};
|
||||
}
|
||||
if (hy >= 0x7f800000) {
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return cuComplex{y - y, y - y};
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return cuComplex{0.0, 0.0};
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return cuComplex{x, y - y};
|
||||
}
|
||||
}
|
||||
|
||||
if (hx >= exp_ovfl && hx <= cexp_ovfl) {
|
||||
/*
|
||||
* x is between 88.7 and 192, so we must scale to avoid
|
||||
* overflow in expf(x).
|
||||
*/
|
||||
return ldexp_cexpf(z, 0);
|
||||
} else {
|
||||
/*
|
||||
* Cases covered here:
|
||||
* - x < exp_ovfl and exp(x) won't overflow (common case)
|
||||
* - x > cexp_ovfl, so exp(x) * s overflows for all s > 0
|
||||
* - x = +-Inf (generated by exp())
|
||||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = expf(x);
|
||||
return cuComplex{exp_x * cosf(y), exp_x * sinf(y)};
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu::detail
|
||||
@@ -1,60 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
// Make multiplication and division faster.
|
||||
#define LIBCUDACXX_ENABLE_SIMPLIFIED_COMPLEX_OPERATIONS
|
||||
|
||||
#include <cuda/std/complex>
|
||||
#include <cuda/std/type_traits>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// TODO: Consider using a faster implementation as cuda::std::complex has to
|
||||
// conform to C++ standard.
|
||||
template <typename T>
|
||||
using complex_t = cuda::std::complex<T>;
|
||||
|
||||
using complex64_t = complex_t<float>;
|
||||
using complex128_t = complex_t<double>;
|
||||
|
||||
template <typename T>
|
||||
struct is_complex : cuda::std::false_type {};
|
||||
|
||||
template <typename T>
|
||||
struct is_complex<cuda::std::complex<T>> : cuda::std::true_type {};
|
||||
|
||||
template <typename T>
|
||||
inline constexpr bool is_complex_v = is_complex<T>::value;
|
||||
|
||||
// cuda::std::complex is missing some operators.
|
||||
template <typename T>
|
||||
inline __host__ __device__ complex_t<T> operator%(
|
||||
complex_t<T> a,
|
||||
complex_t<T> b) {
|
||||
T r = a.real() - floor(a.real() / b.real()) * b.real();
|
||||
T i = a.imag() - floor(a.imag() / b.imag()) * b.imag();
|
||||
return complex_t<T>{r, i};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline __host__ __device__ bool operator>(complex_t<T> a, complex_t<T> b) {
|
||||
return (a.real() > b.real()) || (a.real() == b.real() && a.imag() > b.imag());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline __host__ __device__ bool operator<(complex_t<T> a, complex_t<T> b) {
|
||||
return operator>(b, a);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline __host__ __device__ bool operator<=(complex_t<T> a, complex_t<T> b) {
|
||||
return !(a > b);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline __host__ __device__ bool operator>=(complex_t<T> a, complex_t<T> b) {
|
||||
return !(a < b);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
240
mlx/backend/cuda/device/cucomplex_math.cuh
Normal file
240
mlx/backend/cuda/device/cucomplex_math.cuh
Normal file
@@ -0,0 +1,240 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
// Copyright © 2017-2024 The Simons Foundation, Inc.
|
||||
//
|
||||
// FINUFFT is licensed under the Apache License, Version 2.0 (the
|
||||
// "License"); you may not use this file except in compliance with the
|
||||
// License. You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
//
|
||||
// Forked from
|
||||
// https://github.com/flatironinstitute/finufft/blob/main/include/cufinufft/contrib/helper_math.h
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuComplex.h>
|
||||
|
||||
// This header provides some helper functions for cuComplex types.
|
||||
// It mainly wraps existing CUDA implementations to provide operator overloads
|
||||
// e.g. cuAdd, cuSub, cuMul, cuDiv, cuCreal, cuCimag, cuCabs, cuCarg, cuConj are
|
||||
// all provided by CUDA
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator+(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||
return cuCadd(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator-(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||
return cuCsub(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator*(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||
return cuCmul(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator/(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||
return cuCdiv(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator%(const cuDoubleComplex& a, const cuDoubleComplex& b) {
|
||||
double r = cuCreal(a) - (floorf(cuCreal(a) / cuCreal(b)) * cuCreal(b));
|
||||
double i = cuCimag(a) - (floorf(cuCimag(a) / cuCimag(b)) * cuCimag(b));
|
||||
return make_cuDoubleComplex(r, i);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator==(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
return cuCreal(a) == cuCreal(b) && cuCimag(a) == cuCimag(b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator!=(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator>(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
double mag_a = sqrt(cuCreal(a) * cuCreal(a) + cuCimag(a) * cuCimag(a));
|
||||
double mag_b = sqrt(cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b));
|
||||
return mag_a > mag_b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator>=(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
return a > b || a == b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator<(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
return b > a;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator<=(
|
||||
const cuDoubleComplex& a,
|
||||
const cuDoubleComplex& b) {
|
||||
return b > a || a == b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator+(const cuDoubleComplex& a, double b) {
|
||||
return make_cuDoubleComplex(cuCreal(a) + b, cuCimag(a));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator+(double a, const cuDoubleComplex& b) {
|
||||
return make_cuDoubleComplex(a + cuCreal(b), cuCimag(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator-(const cuDoubleComplex& a, double b) {
|
||||
return make_cuDoubleComplex(cuCreal(a) - b, cuCimag(a));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator-(double a, const cuDoubleComplex& b) {
|
||||
return make_cuDoubleComplex(a - cuCreal(b), -cuCimag(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator*(const cuDoubleComplex& a, double b) {
|
||||
return make_cuDoubleComplex(cuCreal(a) * b, cuCimag(a) * b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator*(double a, const cuDoubleComplex& b) {
|
||||
return make_cuDoubleComplex(a * cuCreal(b), a * cuCimag(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator/(const cuDoubleComplex& a, double b) {
|
||||
return make_cuDoubleComplex(cuCreal(a) / b, cuCimag(a) / b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuDoubleComplex
|
||||
operator/(double a, const cuDoubleComplex& b) {
|
||||
double denom = cuCreal(b) * cuCreal(b) + cuCimag(b) * cuCimag(b);
|
||||
return make_cuDoubleComplex(
|
||||
(a * cuCreal(b)) / denom, (-a * cuCimag(b)) / denom);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator+(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||
return cuCaddf(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator-(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||
return cuCsubf(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator*(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||
return cuCmulf(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator/(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||
return cuCdivf(a, b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator%(const cuFloatComplex& a, const cuFloatComplex& b) {
|
||||
float r = cuCrealf(a) - (floorf(cuCrealf(a) / cuCrealf(b)) * cuCrealf(b));
|
||||
float i = cuCimagf(a) - (floorf(cuCimagf(a) / cuCimagf(b)) * cuCimagf(b));
|
||||
return make_cuFloatComplex(r, i);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator==(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
return cuCrealf(a) == cuCrealf(b) && cuCimagf(a) == cuCimagf(b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator!=(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
return !(a == b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator>(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
float mag_a = sqrt(cuCrealf(a) * cuCrealf(a) + cuCimagf(a) * cuCimagf(a));
|
||||
float mag_b = sqrt(cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b));
|
||||
return mag_a > mag_b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator>=(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
return a > b || a == b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator<(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
return b > a;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ bool operator<=(
|
||||
const cuFloatComplex& a,
|
||||
const cuFloatComplex& b) {
|
||||
return b > a || a == b;
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator+(const cuFloatComplex& a, float b) {
|
||||
return make_cuFloatComplex(cuCrealf(a) + b, cuCimagf(a));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator+(float a, const cuFloatComplex& b) {
|
||||
return make_cuFloatComplex(a + cuCrealf(b), cuCimagf(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator-(const cuFloatComplex& a, float b) {
|
||||
return make_cuFloatComplex(cuCrealf(a) - b, cuCimagf(a));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator-(float a, const cuFloatComplex& b) {
|
||||
return make_cuFloatComplex(a - cuCrealf(b), -cuCimagf(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator*(const cuFloatComplex& a, float b) {
|
||||
return make_cuFloatComplex(cuCrealf(a) * b, cuCimagf(a) * b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator*(float a, const cuFloatComplex& b) {
|
||||
return make_cuFloatComplex(a * cuCrealf(b), a * cuCimagf(b));
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator/(const cuFloatComplex& a, float b) {
|
||||
return make_cuFloatComplex(cuCrealf(a) / b, cuCimagf(a) / b);
|
||||
}
|
||||
|
||||
__forceinline__ __host__ __device__ cuFloatComplex
|
||||
operator/(float a, const cuFloatComplex& b) {
|
||||
float denom = cuCrealf(b) * cuCrealf(b) + cuCimagf(b) * cuCimagf(b);
|
||||
return make_cuFloatComplex(
|
||||
(a * cuCrealf(b)) / denom, (-a * cuCimagf(b)) / denom);
|
||||
}
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/cexpf.cuh"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -14,6 +16,8 @@ struct Abs {
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (cuda::std::is_unsigned_v<T>) {
|
||||
return x;
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {sqrt(cuCrealf(x) * cuCrealf(x) + cuCimagf(x) * cuCimagf(x)), 0};
|
||||
} else {
|
||||
return abs(x);
|
||||
}
|
||||
@@ -25,6 +29,8 @@ struct ArcCos {
|
||||
__device__ T operator()(T x) {
|
||||
return acos(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcCosh {
|
||||
@@ -39,6 +45,8 @@ struct ArcSin {
|
||||
__device__ T operator()(T x) {
|
||||
return asin(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcSinh {
|
||||
@@ -53,6 +61,8 @@ struct ArcTan {
|
||||
__device__ T operator()(T x) {
|
||||
return atan(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x);
|
||||
};
|
||||
|
||||
struct ArcTanh {
|
||||
@@ -74,8 +84,6 @@ struct Ceil {
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
return x;
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
return T{ceil(x.real()), ceil(x.imag())};
|
||||
} else {
|
||||
return ceil(x);
|
||||
}
|
||||
@@ -83,23 +91,34 @@ struct Ceil {
|
||||
};
|
||||
|
||||
struct Conjugate {
|
||||
template <typename T>
|
||||
__device__ complex_t<T> operator()(complex_t<T> x) {
|
||||
return conj(x);
|
||||
__device__ cuComplex operator()(cuComplex x) {
|
||||
return {cuCrealf(x), -cuCimagf(x)};
|
||||
}
|
||||
};
|
||||
|
||||
struct Cos {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return cos(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {
|
||||
cos(cuCrealf(x)) * cosh(cuCimagf(x)),
|
||||
-sin(cuCrealf(x)) * sinh(cuCimagf(x))};
|
||||
} else {
|
||||
return cos(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Cosh {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return cosh(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {
|
||||
cosh(cuCrealf(x)) * cos(cuCimagf(x)),
|
||||
sinh(cuCrealf(x)) * sin(cuCimagf(x))};
|
||||
} else {
|
||||
return cosh(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -132,7 +151,11 @@ struct ErfInv {
|
||||
struct Exp {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return exp(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return detail::cexpf(x);
|
||||
} else {
|
||||
return exp(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -154,8 +177,6 @@ struct Floor {
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
return x;
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
return T{floor(x.real()), floor(x.imag())};
|
||||
} else {
|
||||
return floor(x);
|
||||
}
|
||||
@@ -163,25 +184,30 @@ struct Floor {
|
||||
};
|
||||
|
||||
struct Imag {
|
||||
template <typename T>
|
||||
__device__ auto operator()(complex_t<T> x) {
|
||||
return x.imag();
|
||||
__device__ float operator()(cuComplex x) {
|
||||
return cuCimagf(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Log {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return log(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto r = log(cuCrealf(Abs{}(x)));
|
||||
auto i = atan2f(cuCimagf(x), cuCrealf(x));
|
||||
return {r, i};
|
||||
} else {
|
||||
return log(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Log2 {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto y = Log{}(x);
|
||||
return {y.real() / CUDART_LN2_F, y.imag() / CUDART_LN2_F};
|
||||
return {cuCrealf(y) / CUDART_LN2_F, cuCimagf(y) / CUDART_LN2_F};
|
||||
} else {
|
||||
return log2(x);
|
||||
}
|
||||
@@ -191,17 +217,23 @@ struct Log2 {
|
||||
struct Log10 {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return log10(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
auto y = Log{}(x);
|
||||
return {cuCrealf(y) / CUDART_LNT_F, cuCimagf(y) / CUDART_LNT_F};
|
||||
return y;
|
||||
} else {
|
||||
return log10(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Log1p {
|
||||
template <typename T>
|
||||
__device__ T operator()(T z) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
float x = z.real();
|
||||
float y = z.imag();
|
||||
float zabs = Abs{}(z).real();
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
float x = cuCrealf(z);
|
||||
float y = cuCimagf(z);
|
||||
float zabs = cuCrealf(Abs{}(z));
|
||||
float theta = atan2f(y, x + 1);
|
||||
if (zabs < 0.5f) {
|
||||
float r = x * (2 + x) + y * y;
|
||||
@@ -228,8 +260,8 @@ struct LogicalNot {
|
||||
struct Negative {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
return T{0, 0} - x;
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return 0 - x;
|
||||
} else {
|
||||
return -x;
|
||||
}
|
||||
@@ -237,17 +269,16 @@ struct Negative {
|
||||
};
|
||||
|
||||
struct Real {
|
||||
template <typename T>
|
||||
__device__ auto operator()(complex_t<T> x) {
|
||||
return x.real();
|
||||
__device__ float operator()(cuComplex x) {
|
||||
return cuCrealf(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Round {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
return {rint(x.real()), rint(x.imag())};
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {rint(cuCrealf(x)), rint(cuCimagf(x))};
|
||||
} else {
|
||||
return rint(x);
|
||||
}
|
||||
@@ -267,8 +298,8 @@ struct Sign {
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (cuda::std::is_unsigned_v<T>) {
|
||||
return x != 0;
|
||||
} else if constexpr (is_complex_v<T>) {
|
||||
if (x.real() == 0 && x.imag() == 0) {
|
||||
} else if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
if (cuCrealf(x) == 0 && cuCimagf(x) == 0) {
|
||||
return x;
|
||||
} else {
|
||||
return x / Abs()(x);
|
||||
@@ -284,14 +315,26 @@ struct Sign {
|
||||
struct Sin {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return sin(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {
|
||||
sin(cuCrealf(x)) * cosh(cuCimagf(x)),
|
||||
cos(cuCrealf(x)) * sinh(cuCimagf(x))};
|
||||
} else {
|
||||
return sin(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Sinh {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return sinh(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return {
|
||||
sinh(cuCrealf(x)) * cos(cuCimagf(x)),
|
||||
cosh(cuCrealf(x)) * sin(cuCimagf(x))};
|
||||
} else {
|
||||
return sinh(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -307,31 +350,77 @@ struct Sqrt {
|
||||
__device__ T operator()(T x) {
|
||||
return sqrt(x);
|
||||
}
|
||||
|
||||
__device__ cuComplex operator()(cuComplex x) {
|
||||
auto xr = cuCrealf(x);
|
||||
auto xi = cuCimagf(x);
|
||||
if (xr == 0.0f && xi == 0.0f) {
|
||||
return {0.0f, 0.0f};
|
||||
}
|
||||
auto r = cuCrealf(Abs{}(x));
|
||||
auto a = sqrt((r + xr) / 2.0f);
|
||||
auto b_abs = sqrt((r - xr) / 2.0f);
|
||||
auto b = copysign(b_abs, xi);
|
||||
return {a, b};
|
||||
}
|
||||
};
|
||||
|
||||
struct Rsqrt {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
return 1.0f / Sqrt{}(x);
|
||||
} else {
|
||||
return rsqrt(x);
|
||||
}
|
||||
return rsqrt(x);
|
||||
}
|
||||
__device__ cuComplex operator()(cuComplex x) {
|
||||
return 1.0f / Sqrt{}(x);
|
||||
}
|
||||
};
|
||||
|
||||
struct Tan {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return tan(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
float tan_a = tan(cuCrealf(x));
|
||||
float tanh_b = tanh(cuCimagf(x));
|
||||
float t1 = tan_a * tanh_b;
|
||||
float denom = 1. + t1 * t1;
|
||||
return {(tan_a - tanh_b * t1) / denom, (tanh_b + tan_a * t1) / denom};
|
||||
} else {
|
||||
return tan(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
struct Tanh {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
return tanh(x);
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
float tanh_a = tanh(cuCrealf(x));
|
||||
float tan_b = tan(cuCimagf(x));
|
||||
float t1 = tanh_a * tan_b;
|
||||
float denom = 1. + t1 * t1;
|
||||
return {(tanh_a + tan_b * t1) / denom, (tan_b - tanh_a * t1) / denom};
|
||||
} else {
|
||||
return tanh(x);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcCos::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0, 1.0};
|
||||
auto y = Log{}(x + i * Sqrt{}(1.0 - x * x));
|
||||
return {cuCimagf(y), -cuCrealf(y)};
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcSin::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0f, 1.0f};
|
||||
auto y = Log{}(i * x + Sqrt{}(1.0f - x * x));
|
||||
return {cuCimagf(y), -cuCrealf(y)};
|
||||
};
|
||||
|
||||
inline __device__ cuComplex ArcTan::operator()(cuComplex x) {
|
||||
auto i = cuComplex{0.0f, 1.0f};
|
||||
auto ix = i * x;
|
||||
return (1.0f / cuComplex{0.0f, 2.0f}) * Log{}((1.0f + ix) / (1.0f - ix));
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -8,9 +8,9 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device/complex.cuh"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <cuda/std/array>
|
||||
@@ -32,118 +32,21 @@ using Strides = cuda::std::array<int64_t, MAX_NDIM>;
|
||||
template <typename T, int N>
|
||||
struct alignas(sizeof(T) * N) AlignedVector {
|
||||
T val[N];
|
||||
|
||||
__device__ T& operator[](int i) {
|
||||
return val[i];
|
||||
}
|
||||
|
||||
__device__ T operator[](int i) const {
|
||||
return val[i];
|
||||
}
|
||||
};
|
||||
|
||||
template <int N, typename T>
|
||||
inline __host__ __device__ bool is_aligned(T* x) {
|
||||
return (reinterpret_cast<uintptr_t>(x) % (N * sizeof(T))) == 0;
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> unsafe_load_vector(
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset) {
|
||||
if (is_aligned<N>(ptr)) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] = ptr[offset * N + i];
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ AlignedVector<T, N>
|
||||
load_vector(const T* ptr, uint32_t offset, SizeT size, T fallback) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] = (N * offset + i) < size ? ptr[offset * N + i] : fallback;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ AlignedVector<T, N> load_vector(
|
||||
const T* ptr,
|
||||
uint32_t offset,
|
||||
SizeT size,
|
||||
int64_t stride,
|
||||
T fallback) {
|
||||
if (is_aligned<N>(ptr) && stride == 1 && (offset + 1) * N <= size) {
|
||||
auto* from = reinterpret_cast<const AlignedVector<T, N>*>(ptr);
|
||||
return from[offset];
|
||||
} else {
|
||||
AlignedVector<T, N> v;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
v[i] =
|
||||
(N * offset + i) < size ? ptr[stride * (offset * N + i)] : fallback;
|
||||
}
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ void
|
||||
unsafe_store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
}
|
||||
|
||||
template <int N, typename T>
|
||||
inline __device__ void
|
||||
store_vector(T* ptr, uint32_t offset, const AlignedVector<T, N>& vec) {
|
||||
if (is_aligned<N>(ptr)) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N; ++i) {
|
||||
ptr[offset * N + i] = vec[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <int N, typename T, typename SizeT>
|
||||
inline __device__ void store_vector(
|
||||
T* ptr,
|
||||
uint32_t offset,
|
||||
const AlignedVector<T, N>& vec,
|
||||
SizeT size) {
|
||||
if (is_aligned<N>(ptr) && (offset + 1) * N <= size) {
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
} else {
|
||||
for (int i = 0; (offset * N + i) < size && i < N; ++i) {
|
||||
ptr[offset * N + i] = vec[i];
|
||||
}
|
||||
}
|
||||
auto* to = reinterpret_cast<AlignedVector<T, N>*>(ptr);
|
||||
to[offset] = vec;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -224,13 +127,13 @@ struct Limits<bool> {
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
struct Limits<complex_t<T>> {
|
||||
static constexpr __host__ __device__ complex_t<T> max() {
|
||||
return {Limits<T>::max(), Limits<T>::max()};
|
||||
template <>
|
||||
struct Limits<cuComplex> {
|
||||
static constexpr __host__ __device__ cuComplex max() {
|
||||
return {Limits<float>::max(), Limits<float>::max()};
|
||||
}
|
||||
static constexpr __host__ __device__ complex_t<T> min() {
|
||||
return {Limits<T>::min(), Limits<T>::min()};
|
||||
static constexpr __host__ __device__ cuComplex min() {
|
||||
return {Limits<float>::min(), Limits<float>::min()};
|
||||
}
|
||||
};
|
||||
|
||||
@@ -301,8 +204,20 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_nd(
|
||||
return cuda::std::make_tuple(a_loc, b_loc, c_loc);
|
||||
}
|
||||
|
||||
// Optimized version when ndim is larger than 4.
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
|
||||
inline __host__ __device__ IdxT
|
||||
elem_to_loc_4d(IdxT elem, const int* shape, const int64_t* strides, int ndim) {
|
||||
IdxT loc = 0;
|
||||
for (int i = ndim - 1; i >= 0; --i) {
|
||||
loc += (elem % shape[i]) * IdxT(strides[i]);
|
||||
elem /= shape[i];
|
||||
}
|
||||
return loc;
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
@@ -320,7 +235,7 @@ inline __host__ __device__ cuda::std::tuple<IdxT, IdxT> elem_to_loc(
|
||||
}
|
||||
|
||||
template <typename IdxT = int64_t>
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc(
|
||||
inline __host__ __device__ cuda::std::tuple<IdxT, IdxT, IdxT> elem_to_loc_4d(
|
||||
IdxT elem,
|
||||
const int* shape,
|
||||
const int64_t* a_strides,
|
||||
|
||||
@@ -19,6 +19,8 @@ void new_stream(Stream s) {
|
||||
cudaFree(nullptr);
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
// The main thread is safe to free buffers.
|
||||
cu::allocator().register_this_thread();
|
||||
}
|
||||
|
||||
void eval(array& arr) {
|
||||
@@ -36,15 +38,18 @@ void eval(array& arr) {
|
||||
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
std::unordered_set<std::shared_ptr<array::Data>> buffers;
|
||||
for (auto& in : arr.inputs()) {
|
||||
// Except for the donated one.
|
||||
if (in.data_shared_ptr() != arr.data_shared_ptr()) {
|
||||
encoder.add_temporary(in);
|
||||
}
|
||||
buffers.insert(in.data_shared_ptr());
|
||||
}
|
||||
for (auto& s : arr.siblings()) {
|
||||
encoder.add_temporary(s);
|
||||
buffers.insert(s.data_shared_ptr());
|
||||
}
|
||||
// Remove the output if it was donated to by an input.
|
||||
if (auto it = buffers.find(arr.data_shared_ptr()); it != buffers.end()) {
|
||||
buffers.erase(it);
|
||||
}
|
||||
encoder.add_completed_handler([buffers = std::move(buffers)]() {});
|
||||
encoder.maybe_commit();
|
||||
}
|
||||
|
||||
|
||||
@@ -90,6 +90,8 @@ bool CudaEvent::completed() const {
|
||||
// SharedEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace {
|
||||
|
||||
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
uint64_t current;
|
||||
while ((current = ac->load()) < value) {
|
||||
@@ -110,26 +112,26 @@ __global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
} // namespace
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
delete ptr;
|
||||
});
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
// Allocate cuda::atomic on managed memory.
|
||||
Atomic* ac;
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&ac, sizeof(Atomic)));
|
||||
new (ac) Atomic(0);
|
||||
ac_ = std::shared_ptr<Atomic>(ac, [](Atomic* ptr) {
|
||||
ptr->~Atomic();
|
||||
allocator().cuda_free(ptr);
|
||||
});
|
||||
}
|
||||
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(to_atomic(buf_), value);
|
||||
event_wait(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
@@ -140,17 +142,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
wait(encoder.stream(), value);
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(to_atomic(buf_), value);
|
||||
event_signal(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(ac_.get(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
@@ -164,18 +166,18 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
auto& encoder = get_command_encoder(s);
|
||||
encoder.commit();
|
||||
signal(encoder.stream(), value);
|
||||
encoder.add_completed_handler([buf = buf_]() {});
|
||||
encoder.add_completed_handler([ac = ac_]() {});
|
||||
}
|
||||
}
|
||||
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
return ac_->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return to_atomic(buf_)->load();
|
||||
return ac_->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -2,7 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
@@ -56,8 +55,12 @@ class SharedEvent {
|
||||
bool is_signaled(uint64_t value) const;
|
||||
uint64_t value() const;
|
||||
|
||||
const std::shared_ptr<Atomic>& atomic() const {
|
||||
return ac_;
|
||||
}
|
||||
|
||||
private:
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
std::shared_ptr<Atomic> ac_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -1,73 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = out.size() / (M_ * N_ * batch_shape.back());
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha,
|
||||
beta);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,208 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__global__ void set_mm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
__global__ void set_addmm_device_pointers(
|
||||
int8_t** pointers,
|
||||
int8_t* a_start,
|
||||
int8_t* b_start,
|
||||
int8_t* c_start,
|
||||
int8_t* out_start,
|
||||
int item_size,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides a_batch_strides,
|
||||
const __grid_constant__ Strides b_batch_strides,
|
||||
const __grid_constant__ Strides c_batch_strides,
|
||||
int64_t batch_stride,
|
||||
int batch_ndim,
|
||||
int batch_count) {
|
||||
auto index = cg::this_grid().thread_rank();
|
||||
if (index >= batch_count) {
|
||||
return;
|
||||
}
|
||||
auto [a_offset, b_offset, c_offset] = elem_to_loc(
|
||||
index,
|
||||
batch_shape.data(),
|
||||
a_batch_strides.data(),
|
||||
b_batch_strides.data(),
|
||||
c_batch_strides.data(),
|
||||
batch_ndim);
|
||||
pointers[index] = a_start + item_size * a_offset;
|
||||
pointers[index + batch_count] = b_start + item_size * b_offset;
|
||||
pointers[index + 2 * batch_count] = c_start + item_size * c_offset;
|
||||
pointers[index + 3 * batch_count] =
|
||||
out_start + item_size * index * batch_stride;
|
||||
}
|
||||
|
||||
void set_pointer_mode(cublasLtMatrixLayout_t desc, int batch_count) {
|
||||
auto batch_mode = CUBLASLT_BATCH_MODE_POINTER_ARRAY;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_MODE,
|
||||
&batch_mode,
|
||||
sizeof(batch_mode)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT, &batch_count, sizeof(int32_t)));
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 3),
|
||||
{static_cast<int>(batch_count * 3)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
|
||||
encoder.add_kernel_node(
|
||||
cu::set_mm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
}
|
||||
|
||||
void Matmul::run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta) {
|
||||
auto batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
set_pointer_mode(c_desc_, batch_count);
|
||||
set_pointer_mode(out_desc_, batch_count);
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
{static_cast<int>(batch_count * 4)},
|
||||
uint64);
|
||||
|
||||
encoder.add_temporary(pointers);
|
||||
int block_size = 512;
|
||||
encoder.set_output_array(pointers);
|
||||
encoder.add_kernel_node(
|
||||
cu::set_addmm_device_pointers,
|
||||
cuda::ceil_div(pointers.size(), block_size),
|
||||
block_size,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
static_cast<int>(out.dtype().size()),
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
const_param(b_batch_strides),
|
||||
const_param(c_batch_strides),
|
||||
static_cast<int64_t>(M_) * N_,
|
||||
static_cast<int>(batch_shape.size()),
|
||||
batch_count);
|
||||
|
||||
// Run matmul
|
||||
encoder.set_input_array(pointers);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
run_impl(
|
||||
encoder,
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
reinterpret_cast<void*>(c_pointers),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,284 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
struct CublasPreference {
|
||||
CublasPreference(Device& device) {
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
~CublasPreference() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceDestroy(pref_));
|
||||
}
|
||||
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
};
|
||||
|
||||
cublasLtMatmulPreference_t cublas_preference(Device& device) {
|
||||
static CublasPreference pref(device);
|
||||
return pref.pref_;
|
||||
}
|
||||
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cublas_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in Matmul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()),
|
||||
pref_(cublas_preference(device)),
|
||||
M_(a_rows),
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
Matmul::Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: Matmul(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
Matmul::~Matmul() {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(a_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(b_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(c_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescDestroy(matmul_desc_));
|
||||
}
|
||||
|
||||
void Matmul::run_impl(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
// Ensure workspace is 256-byte aligned
|
||||
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
|
||||
array workspace(
|
||||
allocator::malloc(nbytes),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
void Matmul::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c /* = std::nullopt */,
|
||||
float alpha /* = 1 */,
|
||||
float beta /* = 0 */) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
if (c) {
|
||||
encoder.set_input_array(*c);
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
|
||||
run_impl(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c ? c->data<void>() : nullptr,
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,100 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <optional>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
class Matmul {
|
||||
public:
|
||||
Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride);
|
||||
|
||||
Matmul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride);
|
||||
|
||||
~Matmul();
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& c = std::nullopt,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const array& c,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
const mlx::core::Strides& c_batch_strides,
|
||||
float alpha,
|
||||
float beta);
|
||||
|
||||
private:
|
||||
void run_impl(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
const void* a,
|
||||
const void* b,
|
||||
const void* c,
|
||||
float alpha = 1,
|
||||
float beta = 0);
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,173 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
|
||||
auto g_idx = block.group_index();
|
||||
auto t_idx = block.thread_index();
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
float sum = 0.0f;
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat =
|
||||
unsafe_load_vector<n_per_thread>(mat + row * cols + col, 0);
|
||||
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum +=
|
||||
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void
|
||||
gemv_single(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(mat, vec, out, rows, cols);
|
||||
}
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__global__ void gemv_batched(
|
||||
const T* mat,
|
||||
const T* vec,
|
||||
T* out,
|
||||
int rows,
|
||||
int cols,
|
||||
const __grid_constant__ Shape batch_shape,
|
||||
const __grid_constant__ Strides mat_batch_strides,
|
||||
const __grid_constant__ Strides vec_batch_strides,
|
||||
int batch_ndim) {
|
||||
auto block = cg::this_thread_block();
|
||||
auto batch_idx = block.group_index().y;
|
||||
auto [vec_offset, mat_offset] = elem_to_loc(
|
||||
batch_idx,
|
||||
batch_shape.data(),
|
||||
vec_batch_strides.data(),
|
||||
mat_batch_strides.data(),
|
||||
batch_ndim);
|
||||
gemv_impl<T, rows_per_block, n_per_thread>(
|
||||
mat + mat_offset, vec + vec_offset, out + batch_idx * rows, rows, cols);
|
||||
}
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed) {
|
||||
return K % 32 == 0 && ((M == 1 && b_transposed) || (N == 1 && !a_transposed));
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_n_per_thread(int n_per_thread, F&& f) {
|
||||
switch (n_per_thread) {
|
||||
case 1:
|
||||
f(std::integral_constant<int, 1>{});
|
||||
break;
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
const DataType* vec;
|
||||
int rows;
|
||||
int cols = K;
|
||||
auto mat_strides = const_param(a_batch_strides);
|
||||
auto vec_strides = const_param(b_batch_strides);
|
||||
|
||||
if (M == 1) {
|
||||
mat = b.data<DataType>();
|
||||
vec = a.data<DataType>();
|
||||
rows = N;
|
||||
std::swap(mat_strides, vec_strides);
|
||||
} else {
|
||||
mat = a.data<DataType>();
|
||||
vec = b.data<DataType>();
|
||||
rows = M;
|
||||
}
|
||||
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
|
||||
int n_per_t;
|
||||
if (K % 128 == 0 && is_aligned<4>(mat) && is_aligned<4>(vec)) {
|
||||
n_per_t = 4;
|
||||
} else if (K % 64 == 0 && is_aligned<2>(mat) && is_aligned<2>(vec)) {
|
||||
n_per_t = 2;
|
||||
} else {
|
||||
n_per_t = 1;
|
||||
}
|
||||
dispatch_n_per_thread(n_per_t, [&](auto n_per_thread) {
|
||||
if (batch_count == 1) {
|
||||
auto kernel = gemv_single<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks_x,
|
||||
block_dims,
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
auto kernel = gemv_batched<DataType, rows_per_block, n_per_thread()>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
dim3{num_blocks_x, batch_count},
|
||||
block_dims,
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
mat_strides,
|
||||
vec_strides,
|
||||
batch_shape.size());
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,24 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
bool can_use_gemv(int M, int N, int K, bool a_transposed, bool b_transposed);
|
||||
|
||||
void gemv(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
uint32_t batch_count,
|
||||
const mlx::core::Shape& batch_shape,
|
||||
const mlx::core::Strides& a_batch_strides,
|
||||
const mlx::core::Strides& b_batch_strides,
|
||||
CommandEncoder& encoder);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -29,12 +29,12 @@ void append_indices_arg(
|
||||
const std::vector<array>& inputs,
|
||||
int nidx,
|
||||
int idx_ndim) {
|
||||
SmallVector<const void*> indices(nidx);
|
||||
std::vector<const void*> indices(nidx);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
indices[i] = inputs[i + 1].data<void>();
|
||||
}
|
||||
args.append(std::move(indices));
|
||||
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
std::vector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
inputs[i + 1].shape().begin(),
|
||||
@@ -42,7 +42,7 @@ void append_indices_arg(
|
||||
indices_shape.data() + i * idx_ndim);
|
||||
}
|
||||
args.append(std::move(indices_shape));
|
||||
SmallVector<int64_t> indices_strides(nidx * idx_ndim);
|
||||
std::vector<int64_t> indices_strides(nidx * idx_ndim);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
std::copy_n(
|
||||
inputs[i + 1].strides().begin(),
|
||||
@@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append<int32_t>(src.ndim());
|
||||
args.append_ndim(slice_sizes_);
|
||||
args.append(slice_size);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -128,8 +128,8 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, out, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
}
|
||||
|
||||
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append_ndim(out.shape());
|
||||
args.append_ndim(out.strides());
|
||||
args.append<int32_t>(out.ndim());
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -229,8 +229,8 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, upd, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
}
|
||||
|
||||
void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -317,8 +317,8 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
}
|
||||
|
||||
void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -421,8 +421,8 @@ void ScatterAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
encoder.set_output_array(out);
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [num_blocks, block_dims] = get_launch_args(idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
auto [num_blocks, block_dims] = get_launch_args(kernel, idx, large);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, args.args());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
121
mlx/backend/cuda/iterators/general_iterator.cuh
Normal file
121
mlx/backend/cuda/iterators/general_iterator.cuh
Normal file
@@ -0,0 +1,121 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <cuda/std/utility>
|
||||
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// Iterating non-contiguous array.
|
||||
template <typename Iterator, typename IdxT = int64_t>
|
||||
class general_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<general_iterator<Iterator, IdxT>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides)
|
||||
: super_t(it),
|
||||
index_(index),
|
||||
ndim_(ndim),
|
||||
shape_(cuda::std::move(shape)),
|
||||
strides_(cuda::std::move(strides)) {}
|
||||
|
||||
__host__ __device__ IdxT index() const {
|
||||
return index_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Shape& shape() const {
|
||||
return shape_;
|
||||
}
|
||||
|
||||
__host__ __device__ const Strides& strides() const {
|
||||
return strides_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const general_iterator& other) const {
|
||||
return this->base() == other.base() && this->index() == other.index();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->index_ += n;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->index_ += 1;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->index_ -= 1;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const general_iterator& other) const {
|
||||
_CCCL_ASSERT(
|
||||
this->base() == other.base(),
|
||||
"Underlying iterator must point to same base iterator");
|
||||
return other.index() - this->index();
|
||||
}
|
||||
|
||||
// The dereference is device-only to avoid accidental running in host.
|
||||
__device__ typename super_t::reference dereference() const {
|
||||
IdxT offset = elem_to_loc(index_, shape_.data(), strides_.data(), ndim_);
|
||||
return *(this->base() + offset);
|
||||
}
|
||||
|
||||
IdxT index_;
|
||||
int ndim_;
|
||||
Shape shape_;
|
||||
Strides strides_;
|
||||
};
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
__host__ __device__ auto make_general_iterator(
|
||||
Iterator it,
|
||||
IdxT index,
|
||||
int ndim,
|
||||
Shape shape,
|
||||
Strides strides) {
|
||||
return general_iterator<Iterator, IdxT>(
|
||||
it, index, ndim, cuda::std::move(shape), cuda::std::move(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterator(
|
||||
Iterator it,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
return make_general_iterator<IdxT>(
|
||||
it, 0, shape.size(), const_param(shape), const_param(strides));
|
||||
}
|
||||
|
||||
template <typename IdxT, typename Iterator>
|
||||
auto make_general_iterators(
|
||||
Iterator it,
|
||||
IdxT size,
|
||||
const std::vector<int32_t>& shape,
|
||||
const std::vector<int64_t>& strides) {
|
||||
auto ndim = shape.size();
|
||||
auto shape_arg = const_param(shape);
|
||||
auto strides_arg = const_param(strides);
|
||||
return std::make_pair(
|
||||
make_general_iterator<IdxT>(it, 0, ndim, shape_arg, strides_arg),
|
||||
make_general_iterator<IdxT>(it, size, ndim, shape_arg, strides_arg));
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
60
mlx/backend/cuda/iterators/strided_iterator.cuh
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <thrust/iterator/iterator_adaptor.h>
|
||||
#include <thrust/iterator/iterator_facade.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
// RandomAccessIterator for strided access to array entries.
|
||||
template <typename Iterator, typename Stride = int64_t>
|
||||
class strided_iterator
|
||||
: public thrust::
|
||||
iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator> {
|
||||
public:
|
||||
using super_t =
|
||||
thrust::iterator_adaptor<strided_iterator<Iterator, Stride>, Iterator>;
|
||||
|
||||
using reference = typename super_t::reference;
|
||||
using difference_type = typename super_t::difference_type;
|
||||
|
||||
__host__ __device__ strided_iterator(Iterator it, Stride stride)
|
||||
: super_t(it), stride_(stride) {}
|
||||
|
||||
__host__ __device__ Stride stride() const {
|
||||
return stride_;
|
||||
}
|
||||
|
||||
private:
|
||||
friend class thrust::iterator_core_access;
|
||||
|
||||
__host__ __device__ bool equal(const strided_iterator& other) const {
|
||||
return this->base() == other.base();
|
||||
}
|
||||
|
||||
__host__ __device__ void advance(difference_type n) {
|
||||
this->base_reference() += n * stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void increment() {
|
||||
this->base_reference() += stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ void decrement() {
|
||||
this->base_reference() -= stride_;
|
||||
}
|
||||
|
||||
__host__ __device__ difference_type
|
||||
distance_to(const strided_iterator& other) const {
|
||||
const difference_type dist = other.base() - this->base();
|
||||
_CCCL_ASSERT(
|
||||
dist % stride() == 0,
|
||||
"Underlying iterator difference must be divisible by the stride");
|
||||
return dist / stride();
|
||||
}
|
||||
|
||||
Stride stride_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -9,10 +9,10 @@
|
||||
#include <cstdlib>
|
||||
#include <filesystem>
|
||||
#include <fstream>
|
||||
#include <unordered_map>
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <nvrtc.h>
|
||||
#include <unistd.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
@@ -50,32 +50,6 @@ const std::string& cuda_home() {
|
||||
return home;
|
||||
}
|
||||
|
||||
// Return the location of CCCL headers shipped with the distribution.
|
||||
const std::string& cccl_dir() {
|
||||
static std::string dir = []() {
|
||||
std::filesystem::path path;
|
||||
#if defined(MLX_CCCL_DIR)
|
||||
// First search the install dir if defined.
|
||||
path = MLX_CCCL_DIR;
|
||||
if (std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
#endif
|
||||
// Then search dynamically from the dir of libmlx.so file.
|
||||
path = current_binary_dir().parent_path() / "include" / "cccl";
|
||||
if (std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
// Finally check the environment variable.
|
||||
path = std::getenv("MLX_CCCL_DIR");
|
||||
if (!path.empty() && std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
return std::string();
|
||||
}();
|
||||
return dir;
|
||||
}
|
||||
|
||||
// Get the cache directory for storing compiled results.
|
||||
const std::filesystem::path& ptx_cache_dir() {
|
||||
static std::filesystem::path cache = []() -> std::filesystem::path {
|
||||
@@ -136,8 +110,7 @@ void write_cached_ptx(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name,
|
||||
const std::vector<char>& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
||||
const std::string& source_code) {
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels) {
|
||||
if (cache_dir.empty()) {
|
||||
return;
|
||||
}
|
||||
@@ -150,9 +123,6 @@ void write_cached_ptx(
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
txt_file << name << "\t" << mangled << std::endl;
|
||||
}
|
||||
|
||||
std::ofstream source_file(cache_dir / (module_name + ".cu"));
|
||||
source_file << source_code;
|
||||
}
|
||||
|
||||
// Return if |device|'s version is not newer than |major|.|minor| version.
|
||||
@@ -191,8 +161,9 @@ constexpr const char* g_include_names[] = {
|
||||
INCLUDE_PREFIX "atomic_ops.cuh",
|
||||
INCLUDE_PREFIX "binary_ops.cuh",
|
||||
INCLUDE_PREFIX "cast_op.cuh",
|
||||
INCLUDE_PREFIX "cexpf.cuh",
|
||||
INCLUDE_PREFIX "config.h",
|
||||
INCLUDE_PREFIX "complex.cuh",
|
||||
INCLUDE_PREFIX "cucomplex_math.cuh",
|
||||
INCLUDE_PREFIX "fp16_math.cuh",
|
||||
INCLUDE_PREFIX "indexing.cuh",
|
||||
INCLUDE_PREFIX "scatter_ops.cuh",
|
||||
@@ -207,8 +178,9 @@ constexpr const char* g_headers[] = {
|
||||
jit_source_atomic_ops,
|
||||
jit_source_binary_ops,
|
||||
jit_source_cast_op,
|
||||
jit_source_cexpf,
|
||||
jit_source_config,
|
||||
jit_source_complex,
|
||||
jit_source_cucomplex_math,
|
||||
jit_source_fp16_math,
|
||||
jit_source_indexing,
|
||||
jit_source_scatter_ops,
|
||||
@@ -245,24 +217,16 @@ JitModule::JitModule(
|
||||
}
|
||||
|
||||
// Compile program.
|
||||
std::vector<const char*> args;
|
||||
bool use_sass = compiler_supports_device_sass(device);
|
||||
std::string compute = fmt::format(
|
||||
"--gpu-architecture={}_{}{}",
|
||||
use_sass ? "sm" : "compute",
|
||||
device.compute_capability_major(),
|
||||
device.compute_capability_minor());
|
||||
args.push_back(compute.c_str());
|
||||
std::string cccl_include = cccl_dir();
|
||||
if (!cccl_include.empty()) {
|
||||
cccl_include = fmt::format("--include-path={}", cccl_include);
|
||||
args.push_back(cccl_include.c_str());
|
||||
}
|
||||
std::string cuda_include =
|
||||
fmt::format("--include-path={}/include", cuda_home());
|
||||
args.push_back(cuda_include.c_str());
|
||||
std::string include = fmt::format("--include-path={}/include", cuda_home());
|
||||
const char* args[] = {compute.c_str(), include.c_str()};
|
||||
nvrtcResult compile_result =
|
||||
nvrtcCompileProgram(prog, args.size(), args.data());
|
||||
nvrtcCompileProgram(prog, std::size(args), args);
|
||||
if (compile_result != NVRTC_SUCCESS) {
|
||||
size_t log_size;
|
||||
CHECK_NVRTC_ERROR(nvrtcGetProgramLogSize(prog, &log_size));
|
||||
@@ -292,8 +256,7 @@ JitModule::JitModule(
|
||||
} else {
|
||||
CHECK_NVRTC_ERROR(nvrtcGetPTX(prog, ptx.data()));
|
||||
}
|
||||
write_cached_ptx(
|
||||
ptx_cache_dir(), module_name, ptx, ptx_kernels, source_code);
|
||||
write_cached_ptx(ptx_cache_dir(), module_name, ptx, ptx_kernels);
|
||||
}
|
||||
|
||||
// Load module.
|
||||
@@ -329,16 +292,11 @@ CUfunction JitModule::get_kernel(const std::string& kernel_name) {
|
||||
return it->second;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
static std::unordered_map<std::string, JitModule> map;
|
||||
return map;
|
||||
}
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
const KernelBuilder& builder) {
|
||||
auto& map = get_jit_module_cache();
|
||||
static std::unordered_map<std::string, JitModule> map;
|
||||
auto it = map.find(name);
|
||||
if (it == map.end()) {
|
||||
it = map.try_emplace(name, cu::device(device), name, builder).first;
|
||||
|
||||
@@ -40,14 +40,19 @@ struct KernelArgs {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(SmallVector<T> vec) {
|
||||
storage_.emplace_back(std::move(vec));
|
||||
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
|
||||
void append(std::vector<T> vec) {
|
||||
if (vec.empty()) {
|
||||
// The nullptr can not be used as arg, pass something not null.
|
||||
append(std::monostate{});
|
||||
} else {
|
||||
append_ptr(vec.data());
|
||||
storage_.emplace_back(std::move(vec));
|
||||
}
|
||||
}
|
||||
|
||||
// Make sure the arg is copied to an array with size of NDIM.
|
||||
template <size_t NDIM = MAX_NDIM, typename T>
|
||||
void append_ndim(SmallVector<T> vec) {
|
||||
void append_ndim(std::vector<T> vec) {
|
||||
if (vec.size() > NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", NDIM));
|
||||
@@ -71,9 +76,9 @@ struct KernelArgs {
|
||||
int32_t,
|
||||
uint32_t,
|
||||
int64_t,
|
||||
SmallVector<const void*>,
|
||||
SmallVector<int32_t>,
|
||||
SmallVector<int64_t>>;
|
||||
std::vector<const void*>,
|
||||
std::vector<int32_t>,
|
||||
std::vector<int64_t>>;
|
||||
std::deque<Arg> storage_;
|
||||
};
|
||||
|
||||
@@ -94,8 +99,6 @@ class JitModule {
|
||||
std::unordered_map<std::string, CUfunction> kernels_;
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
|
||||
JitModule& get_jit_module(
|
||||
const mlx::core::Device& device,
|
||||
const std::string& name,
|
||||
|
||||
@@ -30,25 +30,4 @@ std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2) {
|
||||
return std::make_pair(dim3(gx, gy, gz), dim3(bx, by, bz));
|
||||
}
|
||||
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = 1024;
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
|
||||
} else {
|
||||
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
|
||||
}
|
||||
return std::make_tuple(num_blocks, block_dim);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cuComplex.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
@@ -78,7 +79,7 @@ struct CTypeToCudaType<bfloat16_t> {
|
||||
|
||||
template <>
|
||||
struct CTypeToCudaType<complex64_t> {
|
||||
using type = cu::complex64_t;
|
||||
using type = cuComplex;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@@ -90,18 +91,14 @@ inline constexpr bool is_floating_v =
|
||||
cuda::std::is_same_v<T, float> || cuda::std::is_same_v<T, double> ||
|
||||
cuda::std::is_same_v<T, float16_t> || cuda::std::is_same_v<T, bfloat16_t>;
|
||||
|
||||
// Type traits for detecting complex numbers.
|
||||
template <typename T>
|
||||
inline constexpr bool is_complex_v = cuda::std::is_same_v<T, complex64_t> ||
|
||||
cuda::std::is_same_v<T, complex128_t>;
|
||||
|
||||
// Type traits for detecting complex or real floating point numbers.
|
||||
template <typename T>
|
||||
inline constexpr bool is_inexact_v = is_floating_v<T> || is_complex_v<T>;
|
||||
inline constexpr bool is_inexact_v =
|
||||
is_floating_v<T> || cuda::std::is_same_v<T, complex64_t>;
|
||||
|
||||
// Utility to copy data from vector to array in host.
|
||||
template <int NDIM = MAX_NDIM, typename T = int32_t>
|
||||
inline cuda::std::array<T, NDIM> const_param(const SmallVector<T>& vec) {
|
||||
inline cuda::std::array<T, NDIM> const_param(const std::vector<T>& vec) {
|
||||
if (vec.size() > NDIM) {
|
||||
throw std::runtime_error(
|
||||
fmt::format("ndim can not be larger than {}.", NDIM));
|
||||
@@ -120,19 +117,53 @@ dim3 get_2d_grid_dims(
|
||||
size_t divisor);
|
||||
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
|
||||
// Return a block size that achieves maximum potential occupancy for kernel.
|
||||
template <typename T>
|
||||
inline uint max_occupancy_block_dim(T kernel) {
|
||||
int _, block_dim;
|
||||
if constexpr (std::is_same_v<T, CUfunction>) {
|
||||
CHECK_CUDA_ERROR(
|
||||
cuOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel, 0, 0, 0));
|
||||
} else {
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaOccupancyMaxPotentialBlockSize(&_, &block_dim, kernel));
|
||||
}
|
||||
return block_dim;
|
||||
}
|
||||
|
||||
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
|
||||
// assuming each thread handles |work_per_thread| elements of |arr|.
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1);
|
||||
int work_per_thread = 1) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = max_occupancy_block_dim(kernel);
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
num_blocks.x = cuda::ceil_div(num_blocks.x, block_dim);
|
||||
} else {
|
||||
num_blocks.x = cuda::ceil_div(nthreads, block_dim);
|
||||
}
|
||||
return std::make_tuple(num_blocks, block_dim);
|
||||
}
|
||||
|
||||
inline std::tuple<dim3, uint>
|
||||
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
|
||||
template <typename T>
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
T kernel,
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1) {
|
||||
return get_launch_args(
|
||||
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
kernel, arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -10,6 +11,8 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -72,11 +75,9 @@ __global__ void layer_norm(
|
||||
float sum = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
sum += static_cast<float>(xn[i]);
|
||||
}
|
||||
T xn[N_READS] = {};
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
|
||||
}
|
||||
sum = BlockReduceT{block, temp}.Sum(sum);
|
||||
|
||||
@@ -87,18 +88,11 @@ __global__ void layer_norm(
|
||||
float normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
if ((index + 1) * N_READS <= axis_size) {
|
||||
auto xn = load_vector<N_READS>(x, index);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
normalizer += t * t;
|
||||
}
|
||||
} else {
|
||||
for (int i = index * N_READS; i < axis_size; ++i) {
|
||||
float t = static_cast<float>(x[i]) - mean;
|
||||
normalizer += t * t;
|
||||
}
|
||||
T xn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
normalizer += t * t;
|
||||
}
|
||||
}
|
||||
normalizer = BlockReduceT{block, temp}.Sum(normalizer);
|
||||
@@ -107,15 +101,17 @@ __global__ void layer_norm(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
auto bn = load_vector<N_READS>(b, index, axis_size, b_stride, T(0));
|
||||
#pragma unroll
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T bn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(b, b_stride), bn, axis_size);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float norm = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm) + bn[i];
|
||||
}
|
||||
store_vector<N_READS>(out, index, xn, axis_size);
|
||||
cub::StoreDirectBlocked(index, out, xn, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -148,11 +144,9 @@ __global__ void layer_norm_vjp(
|
||||
float sum = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
sum += static_cast<float>(xn[i]);
|
||||
}
|
||||
T xn[N_READS] = {};
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
sum += static_cast<float>(cub::ThreadReduce(xn, cuda::std::plus<>{}));
|
||||
}
|
||||
sum = BlockReduceF{block, temp.f}.Sum(sum);
|
||||
|
||||
@@ -162,28 +156,19 @@ __global__ void layer_norm_vjp(
|
||||
// Normalizer.
|
||||
float3 factors = {};
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T xn[N_READS];
|
||||
T wn[N_READS] = {};
|
||||
T gn[N_READS] = {};
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
|
||||
if ((index + 1) * N_READS <= axis_size) {
|
||||
auto xn = load_vector<N_READS>(x, index);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
}
|
||||
} else {
|
||||
for (int i = index * N_READS; i < axis_size; ++i) {
|
||||
float t = static_cast<float>(x[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
}
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, mean);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]) - mean;
|
||||
float wi = wn[i];
|
||||
float gi = gn[i];
|
||||
float wg = wi * gi;
|
||||
factors = plus_f3(factors, {wg, wg * t, t * t});
|
||||
}
|
||||
}
|
||||
factors = BlockReduceF3{block, temp.f3}.Reduce(factors, plus_f3, {});
|
||||
@@ -195,10 +180,12 @@ __global__ void layer_norm_vjp(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = (static_cast<float>(xn[i]) - mean) * normalizer;
|
||||
float wi = wn[i];
|
||||
@@ -208,9 +195,9 @@ __global__ void layer_norm_vjp(
|
||||
wn[i] = gi * xi;
|
||||
}
|
||||
}
|
||||
store_vector<N_READS>(gx, index, xn, axis_size);
|
||||
cub::StoreDirectBlocked(index, gx, xn, axis_size);
|
||||
if constexpr (HAS_W) {
|
||||
store_vector<N_READS>(gw, index, wn, axis_size);
|
||||
cub::StoreDirectBlocked(index, gw, wn, axis_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -250,7 +237,8 @@ void LayerNorm::eval_gpu(
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
@@ -271,15 +259,14 @@ void LayerNorm::eval_gpu(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "layernorm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
@@ -308,7 +295,9 @@ void LayerNormVJP::eval_gpu(
|
||||
return x;
|
||||
}
|
||||
copied = true;
|
||||
return contiguous_copy_gpu(x, s);
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
return x_copy;
|
||||
};
|
||||
bool donate_x = inputs[0].is_donatable();
|
||||
bool donate_g = inputs[3].is_donatable();
|
||||
@@ -379,10 +368,10 @@ void LayerNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "layernorm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::layer_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
@@ -392,7 +381,6 @@ void LayerNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -43,19 +43,20 @@ __global__ void logsumexp(const T* in, T* out, int axis_size) {
|
||||
AccT maxval = Limits<AccT>::finite_min();
|
||||
AccT normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, Limits<T>::min());
|
||||
AccT vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
r * BLOCK_DIM + block.thread_rank(),
|
||||
make_cast_iterator<AccT>(in),
|
||||
vals,
|
||||
axis_size,
|
||||
Limits<AccT>::min());
|
||||
prevmax = maxval;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
maxval = max_op(maxval, static_cast<AccT>(vals[i]));
|
||||
}
|
||||
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
|
||||
// Online normalizer calculation for softmax:
|
||||
// https://github.com/NVIDIA/online-softmax
|
||||
normalizer = normalizer * softmax_exp(prevmax - maxval);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
normalizer =
|
||||
normalizer + softmax_exp(static_cast<AccT>(vals[i]) - maxval);
|
||||
normalizer = normalizer + softmax_exp(vals[i] - maxval);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -107,7 +108,8 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (x.flags().contiguous && x.strides()[x.ndim() - 1] == 1) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
@@ -142,15 +144,14 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "logsumexp", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::logsumexp<DataType, float, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
@@ -1,159 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
typename K,
|
||||
typename V,
|
||||
template <typename...> typename M = std::unordered_map>
|
||||
class LRUCache {
|
||||
public:
|
||||
using value_type = std::pair<K, V>;
|
||||
using list_type = std::list<value_type>;
|
||||
using iterator = typename list_type::iterator;
|
||||
using const_iterator = typename list_type::const_iterator;
|
||||
using map_type = M<K, iterator>;
|
||||
|
||||
explicit LRUCache(size_t capacity) : capacity_(capacity) {
|
||||
if (capacity == 0) {
|
||||
throw std::runtime_error("LRUCache requires capacity > 0.");
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
size_t capacity() const {
|
||||
return capacity_;
|
||||
}
|
||||
bool empty() const {
|
||||
return vlist_.empty();
|
||||
}
|
||||
|
||||
void resize(size_t new_capacity) {
|
||||
capacity_ = new_capacity;
|
||||
trim();
|
||||
}
|
||||
|
||||
iterator begin() {
|
||||
return vlist_.begin();
|
||||
}
|
||||
const_iterator begin() const {
|
||||
return vlist_.begin();
|
||||
}
|
||||
iterator end() {
|
||||
return vlist_.end();
|
||||
}
|
||||
const_iterator end() const {
|
||||
return vlist_.end();
|
||||
}
|
||||
|
||||
void clear() {
|
||||
map_.clear();
|
||||
vlist_.clear();
|
||||
}
|
||||
|
||||
iterator find(const K& key) {
|
||||
auto it = map_.find(key);
|
||||
if (it == map_.end())
|
||||
return end();
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return it->second;
|
||||
}
|
||||
|
||||
template <typename U>
|
||||
std::pair<iterator, bool> emplace(const K& key, U&& value) {
|
||||
auto it = map_.find(key);
|
||||
if (it != map_.end()) {
|
||||
vlist_.splice(vlist_.begin(), vlist_, it->second);
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
trim();
|
||||
|
||||
return {vlist_.begin(), true};
|
||||
}
|
||||
|
||||
iterator erase(iterator pos) {
|
||||
map_.erase(pos->first);
|
||||
return vlist_.erase(pos);
|
||||
}
|
||||
|
||||
V& operator[](const K& key) {
|
||||
auto it = find(key);
|
||||
if (it == end()) {
|
||||
it = emplace(key, V{}).first;
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
|
||||
private:
|
||||
void trim() {
|
||||
while (map_.size() > capacity_) {
|
||||
auto last = std::prev(vlist_.end());
|
||||
map_.erase(last->first);
|
||||
vlist_.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
};
|
||||
|
||||
// Turn a POD struct into a container key by doing bytes compare.
|
||||
template <typename T>
|
||||
struct BytesKey {
|
||||
T pod;
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
BytesKey(T pod) : pod(std::move(pod)) {}
|
||||
|
||||
BytesKey(const BytesKey& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
BytesKey(BytesKey&& other) {
|
||||
memcpy(&pod, &other.pod, sizeof(T));
|
||||
}
|
||||
|
||||
bool operator==(const BytesKey& other) const {
|
||||
auto* ptr1 = reinterpret_cast<const uint8_t*>(&pod);
|
||||
auto* ptr2 = reinterpret_cast<const uint8_t*>(&other.pod);
|
||||
return memcmp(ptr1, ptr2, sizeof(T)) == 0;
|
||||
}
|
||||
};
|
||||
|
||||
// Compute hash according to the bytes value of T.
|
||||
template <typename T>
|
||||
struct BytesHash {
|
||||
static_assert(std::is_standard_layout_v<T>, "T is not POD");
|
||||
|
||||
size_t operator()(const T& pod) const {
|
||||
auto* ptr = reinterpret_cast<const uint8_t*>(&pod);
|
||||
uint32_t value = 0x811C9DC5;
|
||||
for (int i = 0; i < sizeof(T); ++i) {
|
||||
value ^= ptr[i];
|
||||
value *= 0x01000193;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
};
|
||||
|
||||
template <typename K, typename V>
|
||||
using BytesKeyHashMap = std::unordered_map<K, V, BytesHash<K>>;
|
||||
|
||||
template <typename K, typename V>
|
||||
using LRUBytesKeyCache = LRUCache<BytesKey<K>, V, BytesKeyHashMap>;
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -2,15 +2,275 @@
|
||||
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <fmt/format.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
#include <numeric>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
|
||||
void check_cublas_error(const char* name, cublasStatus_t err) {
|
||||
if (err != CUBLAS_STATUS_SUCCESS) {
|
||||
// TODO: Use cublasGetStatusString when it is widely available.
|
||||
throw std::runtime_error(
|
||||
fmt::format("{} failed with code: {}.", name, static_cast<int>(err)));
|
||||
}
|
||||
}
|
||||
|
||||
class MatMul {
|
||||
public:
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride)
|
||||
: handle_(device.lt_handle()) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cuda_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
|
||||
// The recommended cublas workspace size is 4 MiB for pre-Hopper and 32 MiB
|
||||
// for Hopper+:
|
||||
// https://docs.nvidia.com/cuda/cublas/#cublassetworkspace
|
||||
uint64_t MiB = 1024 * 1024;
|
||||
uint64_t workspace_size =
|
||||
device.compute_capability_major() >= 9 ? 32 * MiB : 4 * MiB;
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceCreate(&pref_));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulPreferenceSetAttribute(
|
||||
pref_,
|
||||
CUBLASLT_MATMUL_PREF_MAX_WORKSPACE_BYTES,
|
||||
&workspace_size,
|
||||
sizeof(uint64_t)));
|
||||
}
|
||||
|
||||
MatMul(
|
||||
Device& device,
|
||||
Dtype dtype,
|
||||
bool a_transposed,
|
||||
uint64_t a_rows,
|
||||
uint64_t a_cols,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
uint64_t b_rows,
|
||||
uint64_t b_cols,
|
||||
int64_t ldb,
|
||||
bool c_transposed,
|
||||
int64_t ldc,
|
||||
int32_t batch_count,
|
||||
int64_t a_batch_stride,
|
||||
int64_t b_batch_stride,
|
||||
int64_t c_batch_stride)
|
||||
: MatMul(
|
||||
device,
|
||||
dtype,
|
||||
a_transposed,
|
||||
a_rows,
|
||||
a_cols,
|
||||
lda,
|
||||
b_transposed,
|
||||
b_rows,
|
||||
b_cols,
|
||||
ldb,
|
||||
batch_count,
|
||||
a_batch_stride,
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cuda_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, c_transposed, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
~MatMul() {
|
||||
cublasLtMatrixLayoutDestroy(a_desc_);
|
||||
cublasLtMatrixLayoutDestroy(b_desc_);
|
||||
cublasLtMatrixLayoutDestroy(c_desc_);
|
||||
cublasLtMatrixLayoutDestroy(out_desc_);
|
||||
cublasLtMatmulDescDestroy(matmul_desc_);
|
||||
}
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
void* out,
|
||||
void* a,
|
||||
void* b,
|
||||
void* c = nullptr,
|
||||
float alpha = 1,
|
||||
float beta = 0) {
|
||||
if (heuristic_.state != CUBLAS_STATUS_SUCCESS) {
|
||||
int ret = 0;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulAlgoGetHeuristic(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
a_desc_,
|
||||
b_desc_,
|
||||
out_desc_,
|
||||
out_desc_,
|
||||
pref_,
|
||||
1,
|
||||
&heuristic_,
|
||||
&ret));
|
||||
if (ret == 0) {
|
||||
throw std::runtime_error("Can not find algorithm for matmul.");
|
||||
}
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
array workspace(
|
||||
allocator::malloc(heuristic_.workspaceSize),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
a_desc_,
|
||||
b,
|
||||
b_desc_,
|
||||
&beta,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
out_desc_,
|
||||
&heuristic_.algo,
|
||||
workspace_ptr,
|
||||
heuristic_.workspaceSize,
|
||||
encoder.stream()));
|
||||
}
|
||||
|
||||
private:
|
||||
cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case bfloat16:
|
||||
return CUBLAS_COMPUTE_32F;
|
||||
case float32:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cudaDataType_t dtype_to_cuda_type(Dtype dtype) {
|
||||
switch (dtype) {
|
||||
case float16:
|
||||
return CUDA_R_16F;
|
||||
case bfloat16:
|
||||
return CUDA_R_16BF;
|
||||
case float32:
|
||||
return CUDA_R_32F;
|
||||
case float64:
|
||||
return CUDA_R_64F;
|
||||
case complex64:
|
||||
return CUDA_C_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in MatMul: {}.", dtype_to_string(dtype)));
|
||||
}
|
||||
}
|
||||
|
||||
cublasLtMatrixLayout_t create_matrix_layout(
|
||||
cudaDataType_t type,
|
||||
uint64_t rows,
|
||||
uint64_t cols,
|
||||
bool transposed,
|
||||
int64_t ld,
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order =
|
||||
transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_BATCH_COUNT,
|
||||
&batch_count,
|
||||
sizeof(int32_t)));
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
CUBLASLT_MATRIX_LAYOUT_STRIDED_BATCH_OFFSET,
|
||||
&batch_stride,
|
||||
sizeof(int64_t)));
|
||||
}
|
||||
return desc;
|
||||
}
|
||||
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtMatrixLayout_t a_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t b_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t c_desc_{nullptr};
|
||||
cublasLtMatrixLayout_t out_desc_{nullptr};
|
||||
cublasLtMatmulHeuristicResult_t heuristic_;
|
||||
};
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace {
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
@@ -22,7 +282,8 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
} else if (stx == 1 && sty == arr.shape(-2)) {
|
||||
return std::make_tuple(true, sty, arr);
|
||||
} else {
|
||||
array arr_copy = contiguous_copy_gpu(arr, s);
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||
enc.add_temporary(arr_copy);
|
||||
return std::make_tuple(false, arr.shape(-1), arr_copy);
|
||||
}
|
||||
@@ -79,25 +340,10 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
cu::Matmul matmul(
|
||||
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -112,13 +358,27 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(encoder, out.data<int8_t>(), a.data<int8_t>(), b.data<int8_t>());
|
||||
return;
|
||||
}
|
||||
|
||||
matmul.run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -129,7 +389,9 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 3);
|
||||
auto& a_pre = inputs[0];
|
||||
auto& b_pre = inputs[1];
|
||||
auto c = inputs[2];
|
||||
auto& c_pre = inputs[2];
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Init checks and prep
|
||||
@@ -142,24 +404,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
// the arrays
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
int64_t ldc;
|
||||
{
|
||||
auto stx = c.strides()[c.ndim() - 2];
|
||||
auto sty = c.strides()[c.ndim() - 1];
|
||||
if (sty == 1 && stx == c.shape(-1)) {
|
||||
ldc = stx;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
} else if (sty == 1 && stx == 0) {
|
||||
ldc = 0;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
} else {
|
||||
// Copy C into out and set C to out
|
||||
ldc = c.shape(-1);
|
||||
copy_gpu(c, out, CopyType::General, s);
|
||||
c = out;
|
||||
}
|
||||
}
|
||||
auto [c_transposed, ldc, c] = check_transpose(encoder, s, c_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
@@ -186,7 +431,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
|
||||
cu::Matmul matmul(
|
||||
cu::MatMul matmul(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
@@ -197,28 +442,48 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
c_transposed,
|
||||
ldc,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back(),
|
||||
c_batch_strides.back());
|
||||
|
||||
if ((batch_count / batch_shape.back()) == 1) {
|
||||
matmul.run(encoder, out, a, b, c, alpha_, beta_);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto nbatch = batch_count / batch_shape.back();
|
||||
if (nbatch == 1) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
alpha_,
|
||||
beta_);
|
||||
return;
|
||||
}
|
||||
matmul.run_batched(
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
c_batch_strides,
|
||||
alpha_,
|
||||
beta_);
|
||||
|
||||
ContiguousIterator a_it(batch_shape, a_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator b_it(batch_shape, b_batch_strides, batch_shape.size() - 1);
|
||||
ContiguousIterator c_it(batch_shape, c_batch_strides, batch_shape.size() - 1);
|
||||
auto concurrent = encoder.concurrent_context();
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
matmul.run(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M * N,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
alpha_,
|
||||
beta_);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
c_it.step();
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,55 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
#define NO_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
#define NO_GPU_USE_FALLBACK(func) \
|
||||
bool func::use_fallback(Stream s) { \
|
||||
return true; \
|
||||
} \
|
||||
NO_GPU_MULTI(func)
|
||||
|
||||
#define NO_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace fast {
|
||||
NO_GPU_MULTI(CustomKernel)
|
||||
} // namespace fast
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
} // namespace distributed
|
||||
|
||||
} // namespace mlx::core
|
||||
105
mlx/backend/cuda/primitives.cu
Normal file
105
mlx/backend/cuda/primitives.cu
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/device/arange.cuh"
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("Arange::eval_gpu");
|
||||
assert(inputs.size() == 0);
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
});
|
||||
}
|
||||
|
||||
bool fast::ScaledDotProductAttention::use_fallback(
|
||||
const array& q,
|
||||
const array& k,
|
||||
const array& v,
|
||||
bool has_mask,
|
||||
bool has_arr_mask,
|
||||
bool do_causal,
|
||||
Stream s) {
|
||||
return true;
|
||||
}
|
||||
|
||||
#define NO_GPU_MULTI(func) \
|
||||
void func::eval_gpu( \
|
||||
const std::vector<array>& inputs, std::vector<array>& outputs) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
#define NO_GPU_USE_FALLBACK(func) \
|
||||
bool func::use_fallback(Stream s) { \
|
||||
return true; \
|
||||
} \
|
||||
NO_GPU_MULTI(func)
|
||||
|
||||
#define NO_GPU(func) \
|
||||
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
||||
throw std::runtime_error(#func " has no CUDA implementation."); \
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(Convolution)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Load)
|
||||
NO_GPU_MULTI(LUF)
|
||||
NO_GPU_MULTI(QRF)
|
||||
NO_GPU(QuantizedMatmul)
|
||||
NO_GPU(SegmentedMM)
|
||||
NO_GPU_MULTI(SVD)
|
||||
NO_GPU(Inverse)
|
||||
NO_GPU(Cholesky)
|
||||
NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace fast {
|
||||
NO_GPU(ScaledDotProductAttention)
|
||||
NO_GPU_MULTI(AffineQuantize)
|
||||
NO_GPU_MULTI(CustomKernel)
|
||||
} // namespace fast
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
} // namespace distributed
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,331 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/quantized/quantized_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
|
||||
namespace mlx::core {
|
||||
namespace cu {
|
||||
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
template <typename T, int group_size, int bits>
|
||||
__global__ void
|
||||
affine_quantize(const T* w, uint8_t* out, T* scales, T* biases, size_t size) {
|
||||
auto block_size = cg::this_thread_block().dim_threads();
|
||||
auto block_idx = cg::this_thread_block().group_index();
|
||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
||||
|
||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
||||
|
||||
auto grid_dim_x =
|
||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
||||
constexpr float eps = 1e-7;
|
||||
constexpr int simd_size = WARP_SIZE;
|
||||
constexpr float n_bins = (1 << bits) - 1;
|
||||
constexpr int pack_factor = get_pack_factor<bits, 8>();
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
|
||||
constexpr int values_per_reduce = group_size / simd_size;
|
||||
constexpr int writes_per_reduce = pack_factor / values_per_reduce;
|
||||
constexpr int writes_per_pack =
|
||||
writes_per_reduce > 1 ? 1 : values_per_reduce / pack_factor;
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
|
||||
size_t offset = tidx + grid_dim_x * size_t(tidy);
|
||||
size_t in_index = offset * values_per_reduce;
|
||||
if (in_index >= size) {
|
||||
return;
|
||||
}
|
||||
size_t out_index = power_of_2_bits
|
||||
? offset * writes_per_pack
|
||||
: offset * bytes_per_pack / writes_per_reduce;
|
||||
|
||||
float w_thread[values_per_reduce];
|
||||
float w_min = Limits<float>::max();
|
||||
float w_max = 0;
|
||||
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < values_per_reduce; i++) {
|
||||
float val = w[in_index + i];
|
||||
w_thread[i] = val;
|
||||
w_min = min(w_min, val);
|
||||
w_max = max(w_max, val);
|
||||
}
|
||||
|
||||
cg::greater<float> max_op;
|
||||
cg::less<float> min_op;
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(cg::this_thread_block());
|
||||
|
||||
w_min = cg::reduce(warp, w_min, min_op);
|
||||
w_max = cg::reduce(warp, w_max, max_op);
|
||||
|
||||
float scale = max((w_max - w_min) / n_bins, eps);
|
||||
bool side = abs(w_min) > abs(w_max);
|
||||
scale = side ? scale : -scale;
|
||||
float edge = side ? w_min : w_max;
|
||||
float q0 = round(edge / scale);
|
||||
bool at_zero = q0 == 0.0f;
|
||||
scale = at_zero ? scale : edge / q0;
|
||||
float bias = at_zero ? 0 : edge;
|
||||
|
||||
// Write out the scales and biases
|
||||
size_t gindex = in_index / group_size;
|
||||
if (in_index % group_size == 0) {
|
||||
scales[gindex] = static_cast<T>(scale);
|
||||
biases[gindex] = static_cast<T>(bias);
|
||||
}
|
||||
|
||||
using OutType = std::conditional_t<bits == 5, uint64_t, uint32_t>;
|
||||
OutType output = 0;
|
||||
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < values_per_reduce; i++) {
|
||||
uint8_t val = min(round((w_thread[i] - bias) / scale), n_bins);
|
||||
if (bits == 8) {
|
||||
output = val;
|
||||
} else {
|
||||
output |= val << (bits * (i % pack_factor));
|
||||
}
|
||||
|
||||
if (pack_factor < values_per_reduce && i % pack_factor == pack_factor - 1) {
|
||||
out[out_index + i / pack_factor] = output;
|
||||
output = 0;
|
||||
} else {
|
||||
#pragma clang loop unroll(full)
|
||||
for (int j = 1; j < writes_per_reduce; j++) {
|
||||
uint8_t sval = warp.shfl_down(val, j);
|
||||
output |= static_cast<OutType>(sval)
|
||||
<< (bits * (j * values_per_reduce + i));
|
||||
}
|
||||
}
|
||||
}
|
||||
if constexpr (bits == 3 || bits == 6) {
|
||||
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
|
||||
out[out_index] = output & 0xff;
|
||||
out[out_index + 1] = (output & 0xff00) >> 8;
|
||||
out[out_index + 2] = (output & 0xff0000) >> 16;
|
||||
}
|
||||
} else if constexpr (bits == 5) {
|
||||
if (in_index % pack_factor == 0 && out_index % bytes_per_pack == 0) {
|
||||
out[out_index] = output & 0xff;
|
||||
out[out_index + 1] = (output & 0xff00) >> 8;
|
||||
out[out_index + 2] = (output & 0xff0000) >> 16;
|
||||
out[out_index + 3] = (output & 0xff000000) >> 24;
|
||||
out[out_index + 4] = (output & 0xff00000000) >> 32;
|
||||
}
|
||||
} else {
|
||||
if constexpr (writes_per_reduce > 0) {
|
||||
if (out_index % writes_per_reduce == 0) {
|
||||
out[out_index / writes_per_reduce] = output;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int group_size, int bits>
|
||||
__global__ void affine_dequantize(
|
||||
const uint8_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
T* out,
|
||||
size_t size) {
|
||||
auto block_size = cg::this_thread_block().dim_threads();
|
||||
auto block_idx = cg::this_thread_block().group_index();
|
||||
auto idx_in_block = cg::this_thread_block().thread_index();
|
||||
|
||||
auto tidx = block_idx.x * block_size.x + idx_in_block.x;
|
||||
auto tidy = block_idx.y * block_size.y + idx_in_block.y;
|
||||
|
||||
auto grid_dim_x =
|
||||
cg::this_grid().dim_blocks().x * cg::this_grid().block_index().x;
|
||||
|
||||
constexpr int pack_factor = get_pack_factor<bits, 8>();
|
||||
constexpr int bytes_per_pack = get_bytes_per_pack<bits>();
|
||||
|
||||
size_t offset = tidx + grid_dim_x * size_t(tidy);
|
||||
size_t oindex = offset * pack_factor;
|
||||
|
||||
if (oindex >= size) {
|
||||
return;
|
||||
}
|
||||
|
||||
size_t gindex = oindex / group_size;
|
||||
T scale = scales[gindex];
|
||||
T bias = biases[gindex];
|
||||
out += oindex;
|
||||
|
||||
if constexpr (bits == 3) {
|
||||
w += offset * bytes_per_pack;
|
||||
out[0] = static_cast<T>(w[0] & 0x7) * scale + bias;
|
||||
out[1] = static_cast<T>((w[0] & 0x38) >> 3) * scale + bias;
|
||||
out[2] = (static_cast<T>((w[0] & 0xc0) >> 6) +
|
||||
static_cast<T>((w[1] & 0x1) << 2)) *
|
||||
scale +
|
||||
bias;
|
||||
out[3] = static_cast<T>((w[1] & 0xe) >> 1) * scale + bias;
|
||||
out[4] = static_cast<T>((w[1] & 0x70) >> 4) * scale + bias;
|
||||
out[5] = (static_cast<T>((w[1] & 0x80) >> 7) +
|
||||
static_cast<T>((w[2] & 0x3) << 1)) *
|
||||
scale +
|
||||
bias;
|
||||
out[6] = static_cast<T>((w[2] & 0x1c) >> 2) * scale + bias;
|
||||
out[7] = static_cast<T>((w[2] & 0xe0) >> 5) * scale + bias;
|
||||
} else if constexpr (bits == 5) {
|
||||
w += offset * bytes_per_pack;
|
||||
out[0] = static_cast<T>(w[0] & 0x1f) * scale + bias;
|
||||
out[1] = (static_cast<T>((w[0] & 0xe0) >> 5) +
|
||||
static_cast<T>((w[1] & 0x3) << 3)) *
|
||||
scale +
|
||||
bias;
|
||||
out[2] = static_cast<T>((w[1] & 0x7c) >> 2) * scale + bias;
|
||||
out[3] = (static_cast<T>((w[1] & 0x80) >> 7) +
|
||||
static_cast<T>((w[2] & 0xf) << 1)) *
|
||||
scale +
|
||||
bias;
|
||||
out[4] = (static_cast<T>((w[2] & 0xf0) >> 4) +
|
||||
static_cast<T>((w[3] & 0x1) << 4)) *
|
||||
scale +
|
||||
bias;
|
||||
out[5] = static_cast<T>((w[3] & 0x3e) >> 1) * scale + bias;
|
||||
out[6] = (static_cast<T>((w[3] & 0xc0) >> 6) +
|
||||
static_cast<T>((w[4] & 0x7) << 2)) *
|
||||
scale +
|
||||
bias;
|
||||
out[7] = static_cast<T>((w[4] & 0xf8) >> 3) * scale + bias;
|
||||
} else if constexpr (bits == 6) {
|
||||
w += offset * bytes_per_pack;
|
||||
out[0] = static_cast<T>(w[0] & 0x3f) * scale + bias;
|
||||
out[1] = (static_cast<T>((w[0] >> 6) & 0x03) +
|
||||
static_cast<T>((w[1] & 0x0f) << 2)) *
|
||||
scale +
|
||||
bias;
|
||||
out[2] = (static_cast<T>((w[1] >> 4) & 0x0f) +
|
||||
static_cast<T>((w[2] & 0x03) << 4)) *
|
||||
scale +
|
||||
bias;
|
||||
out[3] = static_cast<T>((w[2] >> 2) & 0x3f) * scale + bias;
|
||||
} else {
|
||||
uint val = w[offset];
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < pack_factor; i++) {
|
||||
uint8_t d;
|
||||
if (bits == 2) {
|
||||
d = (val >> (bits * i)) & 0x03;
|
||||
} else if (bits == 4) {
|
||||
d = (val >> (bits * i)) & 0x0f;
|
||||
} else if (bits == 8) {
|
||||
d = val;
|
||||
}
|
||||
out[i] = scale * static_cast<T>(d) + bias;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
// Calculate the number of elements per thread
|
||||
int per_thread = group_size_ / WARP_SIZE;
|
||||
size_t size = w.size() / per_thread;
|
||||
|
||||
// Calculate the thread grid that we need to launch
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() /= per_thread;
|
||||
|
||||
enc.set_input_array(w);
|
||||
enc.set_output_array(wq);
|
||||
enc.set_output_array(scales);
|
||||
enc.set_output_array(biases);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_quantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
w.data<T>(),
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
// Calculate how many numbers we pack together. For 2, 4, 8 bits we pack in
|
||||
// one uint8, for 3, 6 in 3 uint8 and for 5 in 5 uint8.
|
||||
constexpr int uint8_per_uint32 = 4;
|
||||
int packs_per_int;
|
||||
switch (bits_) {
|
||||
case 3:
|
||||
case 5:
|
||||
packs_per_int = 8;
|
||||
break;
|
||||
case 6:
|
||||
packs_per_int = 4;
|
||||
break;
|
||||
default:
|
||||
packs_per_int = 8 / bits_;
|
||||
}
|
||||
|
||||
size_t size = w.size() / packs_per_int;
|
||||
bool large = size > UINT_MAX;
|
||||
auto grid_shape = w.shape();
|
||||
grid_shape.back() *= uint8_per_uint32;
|
||||
|
||||
enc.set_input_array(wq);
|
||||
enc.set_input_array(scales);
|
||||
enc.set_input_array(biases);
|
||||
enc.set_output_array(w);
|
||||
dispatch_float_types(w.dtype(), "affine_quantize", [&](auto type_tag) {
|
||||
dispatch_groups(group_size_, [&](auto group_size) {
|
||||
dispatch_bits(bits_, [&](auto bits) {
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::affine_dequantize<T, group_size.value, bits.value>;
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(size, grid_shape, w.strides(), large);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
wq.data<uint8_t>(),
|
||||
scales.data<T>(),
|
||||
biases.data<T>(),
|
||||
w.data<T>(),
|
||||
w.size());
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,80 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/quantized/quantized.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
inline array ensure_row_contiguous(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (!x.flags().row_contiguous) {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
} else {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
inline array ensure_row_contiguous_matrix(
|
||||
const array& x,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s) {
|
||||
if (x.ndim() < 2) {
|
||||
if (x.strides()[0] == 1) {
|
||||
return x;
|
||||
}
|
||||
} else {
|
||||
auto stride_0 = x.strides()[x.ndim() - 2];
|
||||
auto stride_1 = x.strides()[x.ndim() - 1];
|
||||
if (stride_0 == x.shape(-1) && stride_1 == 1) {
|
||||
return x;
|
||||
}
|
||||
}
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
enc.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("AffineQuantize::eval_gpu");
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
if (dequantize_) {
|
||||
auto wq = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto scales = ensure_row_contiguous(inputs[1], enc, s);
|
||||
auto biases = ensure_row_contiguous(inputs[2], enc, s);
|
||||
auto& w = outputs[0];
|
||||
|
||||
w.set_data(allocator::malloc(w.nbytes()));
|
||||
|
||||
affine_dequantize(wq, scales, biases, w, group_size_, bits_, enc, s);
|
||||
} else {
|
||||
auto w = ensure_row_contiguous(inputs[0], enc, s);
|
||||
auto& wq = outputs[0];
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
|
||||
wq.set_data(allocator::malloc(wq.nbytes()));
|
||||
scales.set_data(allocator::malloc(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc(biases.nbytes()));
|
||||
|
||||
affine_quantize(w, wq, scales, biases, group_size_, bits_, enc, s);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,27 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void affine_quantize(
|
||||
const array& w,
|
||||
array& wq,
|
||||
array& scales,
|
||||
array& biases,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
void affine_dequantize(
|
||||
const array& wq,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
array& w,
|
||||
int group_size_,
|
||||
int bits_,
|
||||
cu::CommandEncoder& enc,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -1,59 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_pack_factor() {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
|
||||
template <int bits, int wsize = 8>
|
||||
inline constexpr __device__ short get_bytes_per_pack() {
|
||||
constexpr int power_of_2_bits = (bits & (bits - 1)) == 0;
|
||||
return power_of_2_bits ? (wsize / 8) : (bits == 5 ? 5 : 3);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
template <typename F>
|
||||
void dispatch_groups(int group_size, F&& f) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
f(std::integral_constant<int, 32>{});
|
||||
break;
|
||||
case 64:
|
||||
f(std::integral_constant<int, 64>{});
|
||||
break;
|
||||
case 128:
|
||||
f(std::integral_constant<int, 128>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename F>
|
||||
void dispatch_bits(int bits, F&& f) {
|
||||
switch (bits) {
|
||||
case 2:
|
||||
f(std::integral_constant<int, 2>{});
|
||||
break;
|
||||
case 3:
|
||||
f(std::integral_constant<int, 3>{});
|
||||
break;
|
||||
case 4:
|
||||
f(std::integral_constant<int, 4>{});
|
||||
break;
|
||||
case 5:
|
||||
f(std::integral_constant<int, 5>{});
|
||||
break;
|
||||
case 6:
|
||||
f(std::integral_constant<int, 6>{});
|
||||
break;
|
||||
case 8:
|
||||
f(std::integral_constant<int, 8>{});
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -170,7 +170,6 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbitsc,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
@@ -181,7 +180,6 @@ void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
cu::rbits,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
keys.data<uint32_t>(),
|
||||
out.data<uint8_t>(),
|
||||
grid_dims,
|
||||
|
||||
@@ -5,6 +5,8 @@
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/fill.h>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -45,7 +47,8 @@ void Reduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
if (plan.type == GeneralReduce || broadcasted || !in.flags().contiguous) {
|
||||
array in_copy = contiguous_copy_gpu(in, s);
|
||||
array in_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_gpu(in, in_copy, CopyType::General, s);
|
||||
encoder.add_temporary(in_copy);
|
||||
in = in_copy;
|
||||
plan = get_reduction_plan(in, axes_);
|
||||
|
||||
@@ -120,7 +120,6 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
intermediate.data<U>(),
|
||||
block_step,
|
||||
@@ -147,7 +146,6 @@ void all_reduce(
|
||||
kernel,
|
||||
blocks,
|
||||
threads,
|
||||
0,
|
||||
static_cast<T*>(indata),
|
||||
out.data<U>(),
|
||||
block_step,
|
||||
|
||||
@@ -230,7 +230,7 @@ void col_reduce_looped(
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, 0, indata, out.data<U>(), args);
|
||||
kernel, grid, blocks, indata, out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -41,8 +41,7 @@ void init_reduce(
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
dim3 block(grid.x < 1024 ? grid.x : 1024, 1, 1);
|
||||
grid.x = (grid.x + 1023) / 1024;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, out.data<U>(), out.size());
|
||||
encoder.add_kernel_node(kernel, grid, block, out.data<U>(), out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/backend/cuda/device/cucomplex_math.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce_ops.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
@@ -69,18 +69,6 @@ struct Prod {
|
||||
struct Min {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if (isnan(a.real()) || isnan(a.imag())) {
|
||||
return a;
|
||||
}
|
||||
if (isnan(b.real()) || isnan(b.imag())) {
|
||||
return b;
|
||||
}
|
||||
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
||||
if (isnan(a) || isnan(b)) {
|
||||
return cuda::std::numeric_limits<float>::quiet_NaN();
|
||||
}
|
||||
}
|
||||
return a < b ? a : b;
|
||||
}
|
||||
|
||||
@@ -93,18 +81,6 @@ struct Min {
|
||||
struct Max {
|
||||
template <typename T>
|
||||
__device__ __forceinline__ T operator()(T a, T b) {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if (isnan(a.real()) || isnan(a.imag())) {
|
||||
return a;
|
||||
}
|
||||
if (isnan(b.real()) || isnan(b.imag())) {
|
||||
return b;
|
||||
}
|
||||
} else if constexpr (!cuda::std::is_integral_v<T>) {
|
||||
if (isnan(a) || isnan(b)) {
|
||||
return cuda::std::numeric_limits<float>::quiet_NaN();
|
||||
}
|
||||
}
|
||||
return a > b ? a : b;
|
||||
}
|
||||
|
||||
@@ -175,7 +151,7 @@ struct ReduceInit<Or, T> {
|
||||
template <typename T>
|
||||
struct ReduceInit<Sum, T> {
|
||||
static constexpr __host__ __device__ auto value() {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return T{0, 0};
|
||||
} else {
|
||||
return cast_to<typename ReduceResult<Sum, T>::type>(0);
|
||||
@@ -186,7 +162,7 @@ struct ReduceInit<Sum, T> {
|
||||
template <typename T>
|
||||
struct ReduceInit<Prod, T> {
|
||||
static constexpr __host__ __device__ auto value() {
|
||||
if constexpr (is_complex_v<T>) {
|
||||
if constexpr (cuda::std::is_same_v<T, cuComplex>) {
|
||||
return T{1, 0};
|
||||
} else {
|
||||
return cast_to<typename ReduceResult<Prod, T>::type>(1);
|
||||
|
||||
@@ -269,7 +269,7 @@ void row_reduce_simple(
|
||||
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), size);
|
||||
});
|
||||
});
|
||||
}
|
||||
@@ -322,7 +322,7 @@ void row_reduce_looped(
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
|
||||
kernel, grid, block, indata, out.data<U>(), out.size(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/reduce/reduce.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
@@ -10,6 +11,8 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -55,7 +58,7 @@ __global__ void rms_norm(
|
||||
const T* w,
|
||||
T* out,
|
||||
float eps,
|
||||
uint32_t axis_size,
|
||||
int32_t axis_size,
|
||||
int64_t w_stride) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
@@ -70,8 +73,8 @@ __global__ void rms_norm(
|
||||
float normalizer = 0;
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
#pragma unroll
|
||||
T xn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
normalizer += t * t;
|
||||
@@ -83,14 +86,15 @@ __global__ void rms_norm(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
#pragma unroll
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
float y = static_cast<float>(xn[i]) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(y);
|
||||
float norm = static_cast<float>(xn[i]) * normalizer;
|
||||
xn[i] = wn[i] * static_cast<T>(norm);
|
||||
}
|
||||
store_vector<N_READS>(out, index, xn, axis_size);
|
||||
cub::StoreDirectBlocked(index, out, xn, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -122,10 +126,13 @@ __global__ void rms_norm_vjp(
|
||||
// Normalizer.
|
||||
float2 factors = {};
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
T xn[N_READS];
|
||||
T wn[N_READS] = {};
|
||||
T gn[N_READS] = {};
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size, cast_to<T>(0));
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float t = static_cast<float>(xn[i]);
|
||||
float wi = wn[i];
|
||||
@@ -142,9 +149,12 @@ __global__ void rms_norm_vjp(
|
||||
// Outputs.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); ++r) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto xn = load_vector<N_READS>(x, index, axis_size, T(0));
|
||||
auto gn = load_vector<N_READS>(g, index, axis_size, T(0));
|
||||
auto wn = load_vector<N_READS>(w, index, axis_size, w_stride, T(0));
|
||||
T xn[N_READS];
|
||||
T wn[N_READS];
|
||||
T gn[N_READS];
|
||||
cub::LoadDirectBlocked(index, x, xn, axis_size);
|
||||
cub::LoadDirectBlocked(index, g, gn, axis_size);
|
||||
cub::LoadDirectBlocked(index, strided_iterator(w, w_stride), wn, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
float xi = xn[i];
|
||||
float wi = wn[i];
|
||||
@@ -154,9 +164,9 @@ __global__ void rms_norm_vjp(
|
||||
wn[i] = static_cast<T>(gi * xi * normalizer);
|
||||
}
|
||||
}
|
||||
store_vector<N_READS>(gx, index, xn, axis_size);
|
||||
cub::StoreDirectBlocked(index, gx, xn, axis_size);
|
||||
if constexpr (HAS_W) {
|
||||
store_vector<N_READS>(gw, index, wn, axis_size);
|
||||
cub::StoreDirectBlocked(index, gw, wn, axis_size);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -196,7 +206,8 @@ void RMSNorm::eval_gpu(
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
@@ -214,15 +225,14 @@ void RMSNorm::eval_gpu(
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "rms_norm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr uint32_t N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::rms_norm<DataType, block_dim(), N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
@@ -249,7 +259,9 @@ void RMSNormVJP::eval_gpu(
|
||||
return x;
|
||||
}
|
||||
copied = true;
|
||||
return contiguous_copy_gpu(x, s);
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
return x_copy;
|
||||
};
|
||||
bool donate_x = inputs[0].is_donatable();
|
||||
bool donate_g = inputs[2].is_donatable();
|
||||
@@ -304,10 +316,11 @@ void RMSNormVJP::eval_gpu(
|
||||
encoder.set_output_array(gw_temp);
|
||||
dispatch_float_types(gx.dtype(), "rms_norm_vjp", [&](auto type_tag) {
|
||||
dispatch_bool(has_w, [&](auto has_w_constant) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(
|
||||
cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 4;
|
||||
auto kernel = cu::rms_norm_vjp<
|
||||
DataType,
|
||||
has_w_constant.value,
|
||||
@@ -317,7 +330,6 @@ void RMSNormVJP::eval_gpu(
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
|
||||
@@ -325,7 +325,6 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -342,7 +341,6 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -362,7 +360,6 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
@@ -384,7 +381,6 @@ void RoPE::eval_gpu(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
(donated ? out : in).data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
offset.data<int32_t>(),
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -379,7 +379,9 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
in.flags());
|
||||
}
|
||||
} else {
|
||||
in = contiguous_copy_gpu(in, s);
|
||||
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
||||
copy_gpu(in, arr_copy, CopyType::General, s);
|
||||
in = std::move(arr_copy);
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
|
||||
@@ -414,7 +416,6 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
in.data_size() / axis_size,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size);
|
||||
@@ -444,7 +445,6 @@ void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
num_blocks,
|
||||
block_dim,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
axis_size,
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <cub/block/block_load.cuh>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -44,21 +45,20 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
AccT maxval = Limits<AccT>::finite_min();
|
||||
AccT normalizer = cast_to<AccT>(0);
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, Limits<T>::min());
|
||||
AccT vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
r * BLOCK_DIM + block.thread_rank(),
|
||||
make_cast_iterator<AccT>(in),
|
||||
vals,
|
||||
axis_size,
|
||||
Limits<AccT>::min());
|
||||
prevmax = maxval;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; ++i) {
|
||||
maxval = max_op(maxval, static_cast<AccT>(vals[i]));
|
||||
}
|
||||
|
||||
maxval = max_op(maxval, cub::ThreadReduce(vals, max_op));
|
||||
// Online normalizer calculation for softmax:
|
||||
// https://github.com/NVIDIA/online-softmax
|
||||
normalizer = normalizer * softmax_exp(prevmax - maxval);
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
normalizer =
|
||||
normalizer + softmax_exp(static_cast<AccT>(vals[i]) - maxval);
|
||||
normalizer = normalizer + softmax_exp(vals[i] - maxval);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -95,11 +95,12 @@ __global__ void softmax(const T* in, T* out, int axis_size) {
|
||||
// Write output.
|
||||
for (int r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
||||
auto index = r * BLOCK_DIM + block.thread_rank();
|
||||
auto vals = load_vector<N_READS>(in, index, axis_size, T(0));
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(index, in, vals, axis_size);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = softmax_exp(static_cast<AccT>(vals[i]) - maxval) * normalizer;
|
||||
}
|
||||
store_vector<N_READS>(out, index, vals, axis_size);
|
||||
cub::StoreDirectBlocked(index, out, vals, axis_size);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -124,7 +125,8 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
auto x_copy = array(x.shape(), x.dtype(), nullptr, {});
|
||||
copy_gpu(x, x_copy, CopyType::General, s);
|
||||
out.copy_shared_buffer(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
@@ -140,9 +142,9 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "softmax", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int N_READS = 16 / sizeof(DataType);
|
||||
constexpr int N_READS = 4;
|
||||
dispatch_block_dim(cuda::ceil_div(axis_size, N_READS), [&](auto block_dim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
auto kernel = cu::softmax<DataType, DataType, block_dim(), N_READS>;
|
||||
if (precise) {
|
||||
kernel = cu::softmax<DataType, float, block_dim(), N_READS>;
|
||||
@@ -151,7 +153,6 @@ void Softmax::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kernel,
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
axis_size);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user