mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
24 Commits
sign-warns
...
eba6a9d163
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
eba6a9d163 | ||
|
|
be9e2aebd6 | ||
|
|
df58b4133a | ||
|
|
27778156dc | ||
|
|
761f901a41 | ||
|
|
6ece97f69b | ||
|
|
d3bc6a9bff | ||
|
|
26ceb507eb | ||
|
|
910b3e3299 | ||
|
|
50fa315d18 | ||
|
|
1ff2b713b6 | ||
|
|
50514a6146 | ||
|
|
93d76b0f30 | ||
|
|
78678de0cd | ||
|
|
ed9c6b1117 | ||
|
|
39b04ce638 | ||
|
|
d9e6349657 | ||
|
|
b901a9f311 | ||
|
|
68c5fa1c95 | ||
|
|
793a31eeb6 | ||
|
|
74c1ed25bb | ||
|
|
ec72b44417 | ||
|
|
460691a0e8 | ||
|
|
969924cc69 |
24
.github/actions/build-cuda-release/action.yml
vendored
Normal file
24
.github/actions/build-cuda-release/action.yml
vendored
Normal file
@@ -0,0 +1,24 @@
|
||||
name: 'Build CUDA wheel'
|
||||
description: 'Build CUDA wheel'
|
||||
|
||||
inputs:
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build package
|
||||
shell: bash
|
||||
env:
|
||||
MLX_BUILD_STAGE: 2
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: |
|
||||
pip install auditwheel build patchelf setuptools
|
||||
python setup.py clean --all
|
||||
python -m build -w
|
||||
|
||||
if [ -f "python/scripts/repair_cuda.sh" ]; then
|
||||
bash python/scripts/repair_cuda.sh
|
||||
fi
|
||||
64
.github/actions/build-cuda/action.yml
vendored
Normal file
64
.github/actions/build-cuda/action.yml
vendored
Normal file
@@ -0,0 +1,64 @@
|
||||
name: 'Build and Test with CUDA'
|
||||
description: 'Build and test MLX with CUDA'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type (debug, release)'
|
||||
required: false
|
||||
default: 'debug'
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
nvcc-location:
|
||||
description: 'Location of nvcc compiler'
|
||||
required: true
|
||||
default: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
# this value is dependent on the CUDA tools installed in the setup-linux workflow
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Python package
|
||||
shell: bash
|
||||
env:
|
||||
DEBUG: 1
|
||||
CMAKE_ARGS: -DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }}
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Run Python tests - CPU
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: cpu
|
||||
run: python -m unittest discover python/tests -v
|
||||
|
||||
- name: Run Python tests - GPU
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
run: python -m tests discover python/tests -v
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.build-type == 'debug'
|
||||
shell: bash
|
||||
run: |
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=${{ inputs.nvcc-location }} \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
|
||||
shell: bash
|
||||
run: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
|
||||
- name: Build Python package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: ${{ inputs.nvcc-location }}
|
||||
38
.github/actions/build-docs/action.yml
vendored
Normal file
38
.github/actions/build-docs/action.yml
vendored
Normal file
@@ -0,0 +1,38 @@
|
||||
name: 'Build Documentation'
|
||||
description: 'Build documentation on a mac'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Setup machine
|
||||
uses: ./.github/actions/setup-macos
|
||||
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
run: |
|
||||
brew install doxygen
|
||||
uv pip install --upgrade pip cmake
|
||||
uv pip install -r docs/requirements.txt
|
||||
uv pip install . -v
|
||||
|
||||
- name: Build documentation
|
||||
shell: bash
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
cd docs
|
||||
doxygen
|
||||
make html O=-W
|
||||
|
||||
- name: Create artifact tar
|
||||
shell: sh
|
||||
run: tar -cf artifact.tar --cd docs --dereference build/html index.html
|
||||
|
||||
# Do it manually because upload-pages-artifact requires gtar
|
||||
- name: Upload artifact
|
||||
id: upload-artifact
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: github-pages
|
||||
path: artifact.tar
|
||||
retention-days: 1
|
||||
if-no-files-found: error
|
||||
78
.github/actions/build-linux/action.yml
vendored
Normal file
78
.github/actions/build-linux/action.yml
vendored
Normal file
@@ -0,0 +1,78 @@
|
||||
name: 'Build and Test on Linux'
|
||||
description: 'Build and test MLX on Linux'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type'
|
||||
required: false
|
||||
default: 'debug'
|
||||
type: choice
|
||||
options:
|
||||
- debug
|
||||
- release
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
type: boolean
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Set DEBUG
|
||||
shell: sh
|
||||
if: inputs.build-type == 'debug'
|
||||
run: echo "DEBUG=1" >> $GITHUB_ENV
|
||||
|
||||
- name: Install Python package
|
||||
shell: sh
|
||||
env:
|
||||
CMAKE_ARGS: "-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
run: pip install -e ".[dev]" -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: sh
|
||||
run: |
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
|
||||
- name: Run Python tests
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
python -m unittest discover python/tests -v
|
||||
mpirun --bind-to none --allow-run-as-root -host localhost:8 -np 8 python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if grep -Fq '[WARN]' stderr.log ; then
|
||||
grep -F '[WARN]' stderr.log
|
||||
echo "Distributed ring test failed";
|
||||
exit 1;
|
||||
fi
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.build-type == 'debug'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build && cd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j $(nproc)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: ${{ inputs.build-type == 'debug' && inputs.run-tests == 'true' }}
|
||||
shell: sh
|
||||
run: ./build/tests/tests
|
||||
|
||||
- name: Build Python package
|
||||
if: inputs.build-type == 'release'
|
||||
shell: bash
|
||||
run: |
|
||||
pip install auditwheel patchelf build
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 python -m build -w
|
||||
if [ -f "python/scripts/repair_linux.sh" ]; then
|
||||
bash python/scripts/repair_linux.sh
|
||||
fi
|
||||
|
||||
python setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 python -m build -w
|
||||
auditwheel repair dist/mlx_cpu*.whl --plat manylinux_2_35_x86_64
|
||||
22
.github/actions/build-macos-release/action.yml
vendored
Normal file
22
.github/actions/build-macos-release/action.yml
vendored
Normal file
@@ -0,0 +1,22 @@
|
||||
name: 'Build macOS release'
|
||||
description: 'Build MLX releases macOS'
|
||||
|
||||
inputs:
|
||||
macos-target:
|
||||
description: 'macOS build target'
|
||||
required: false
|
||||
default: '15.0'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Build Python package(s)
|
||||
shell: bash
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: ${{ inputs.macos-target }}
|
||||
run: |
|
||||
uv pip install build
|
||||
uv run --no-project setup.py clean --all
|
||||
MLX_BUILD_STAGE=1 uv run -m build -w
|
||||
uv run --no-project setup.py clean --all
|
||||
MLX_BUILD_STAGE=2 uv run -m build -w
|
||||
120
.github/actions/build-macos/action.yml
vendored
Normal file
120
.github/actions/build-macos/action.yml
vendored
Normal file
@@ -0,0 +1,120 @@
|
||||
name: 'Build and Test on macOS'
|
||||
description: 'Build and test MLX on macOS'
|
||||
|
||||
inputs:
|
||||
build-type:
|
||||
description: 'Build type (debug, release)'
|
||||
required: false
|
||||
default: 'debug'
|
||||
type: choice
|
||||
options:
|
||||
- debug
|
||||
- release
|
||||
run-tests:
|
||||
description: 'Whether to run tests'
|
||||
required: false
|
||||
default: 'true'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install dependencies
|
||||
shell: sh
|
||||
env:
|
||||
DEBUG: 1
|
||||
DEV_RELEASE: 1
|
||||
run: |
|
||||
uv pip install --upgrade pip
|
||||
uv pip install cmake setuptools nanobind==2.4.0
|
||||
uv pip install -e . -v
|
||||
|
||||
- name: Generate package stubs
|
||||
shell: bash
|
||||
run: |
|
||||
uv pip install typing_extensions
|
||||
uv run --no-project setup.py generate_stubs
|
||||
|
||||
- name: Install tests dependencies
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: sh
|
||||
run: |
|
||||
uv pip install numpy torch tensorflow unittest-xml-reporting
|
||||
|
||||
- name: Run Python tests
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
run: |
|
||||
DEVICE=cpu uv run -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 uv run -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
mlx.launch --verbose -n 8 python/tests/ring_test_distributed.py -v 2> >(tee -a stderr.log >&2)
|
||||
if $(grep "\[WARN\]" stderr.log); then echo "Distributed ring test failed"; exit 1; fi
|
||||
|
||||
- name: Build example extension
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
cd examples/extensions
|
||||
uv pip install -r requirements.txt
|
||||
uv run --no-project setup.py build_ext --inplace
|
||||
uv run --no-project test.py
|
||||
|
||||
- name: Build CPP only
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake ..
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run CPP tests
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
run: ./build/tests/tests
|
||||
|
||||
- name: Build small binary with JIT
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
run: |
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
make -j $(sysctl -n hw.ncpu)
|
||||
|
||||
- name: Run Python tests with JIT
|
||||
if: inputs.run-tests == 'true'
|
||||
shell: bash
|
||||
env:
|
||||
LOW_MEMORY: 1
|
||||
DEVICE: gpu
|
||||
METAL_DEVICE_WRAPPER_TYPE: 1
|
||||
METAL_DEBUG_ERROR_MODE: 0
|
||||
run: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e . -v
|
||||
uv run -m xmlrunner discover \
|
||||
-v python/tests \
|
||||
-o test-results/gpu_jit
|
||||
|
||||
- name: Build macOS 14 package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 14.0
|
||||
- name: Build macOS 15 package
|
||||
if: inputs.build-type == 'release'
|
||||
uses: ./.github/actions/build-macos-release
|
||||
with:
|
||||
macos-target: 15.0
|
||||
83
.github/actions/setup-linux/action.yml
vendored
Normal file
83
.github/actions/setup-linux/action.yml
vendored
Normal file
@@ -0,0 +1,83 @@
|
||||
name: 'Setup Linux Environment'
|
||||
description: 'Install dependencies for Linux builds'
|
||||
|
||||
inputs:
|
||||
runner-type:
|
||||
description: 'Whether to set this up as a linux or CUDA runner'
|
||||
required: false
|
||||
default: 'linux'
|
||||
type: choice
|
||||
options:
|
||||
- linux
|
||||
- cuda
|
||||
python-version:
|
||||
description: 'Version of python to set up'
|
||||
required: false
|
||||
default: '3.10'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Free disk space
|
||||
shell: sh
|
||||
if: inputs.runner-type == 'linux'
|
||||
run: sudo rm -rf "$AGENT_TOOLSDIRECTORY"
|
||||
|
||||
- name: Install common dependencies
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libblas-dev liblapack-dev liblapacke-dev tzdata zip
|
||||
sudo apt autoremove -y
|
||||
|
||||
- uses: actions/setup-python@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
cache: 'pip'
|
||||
|
||||
- name: setup python venv
|
||||
shell: bash
|
||||
run: |
|
||||
python -m venv .venv
|
||||
source .venv/bin/activate
|
||||
echo PATH=$PATH >> $GITHUB_ENV
|
||||
pip install --upgrade pip cmake
|
||||
|
||||
- name: Install MPI
|
||||
if: inputs.runner-type == 'linux'
|
||||
shell: bash
|
||||
run: sudo apt-get install -y openmpi-bin openmpi-common libopenmpi-dev
|
||||
|
||||
- name: Network CUDA installation from packages
|
||||
id: install-cuda
|
||||
if: inputs.runner-type == 'cuda'
|
||||
env:
|
||||
TZ: Etc/UTC
|
||||
shell: bash ## Specific to Ubuntu 22.04 & Architecture x86_64
|
||||
run: |
|
||||
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyring_1.1-1_all.deb
|
||||
sudo dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y libcudnn9-dev-cuda-12 libnccl2 libnccl-dev cuda-toolkit-12-9
|
||||
# Note: This installs CUDA 12.9, which is the latest supported by cuDNN 9.x and works with the NVidia 570 drivers
|
||||
# cuda-toolkit by itself installs version 13 (+) and requires updated drives (580+), which require a reboot to function properly.
|
||||
# Compatibility matrix: https://docs.nvidia.com/deeplearning/cudnn/backend/latest/reference/support-matrix.html
|
||||
# This also drops `nvcc` into `/usr/local/cuda-12.9/bin/nvcc` - but it's *not* on the default PATH
|
||||
|
||||
- name: Package and Driver Report
|
||||
if: inputs.runner-type == 'cuda'
|
||||
shell: bash
|
||||
run: |
|
||||
sudo apt-get install -y ubuntu-drivers-common dkms
|
||||
echo "NVIDIA Driver Packages Available:"
|
||||
sudo ubuntu-drivers list --gpgpu
|
||||
echo "NVIDIA Driver Version:"
|
||||
cat /proc/driver/nvidia/version || echo "nvidia driver not found"
|
||||
echo "Installed NVIDIA and CUDA packages:"
|
||||
dpkg -l | egrep "cuda|nvidia" -i
|
||||
echo "DKMS Status:"
|
||||
dkms status || echo "dkms not found"
|
||||
echo "NVIDIA-SMI Status:"
|
||||
nvidia-smi || echo "nvidia-smi not found"
|
||||
31
.github/actions/setup-macos/action.yml
vendored
Normal file
31
.github/actions/setup-macos/action.yml
vendored
Normal file
@@ -0,0 +1,31 @@
|
||||
name: 'Setup macOS Environment'
|
||||
description: 'Install dependencies for macOS builds'
|
||||
|
||||
inputs:
|
||||
install-mpi:
|
||||
description: 'Whether to install MPI'
|
||||
required: false
|
||||
default: 'true'
|
||||
type: boolean
|
||||
python-version:
|
||||
description: 'Python version to use'
|
||||
required: false
|
||||
default: '3.10'
|
||||
|
||||
runs:
|
||||
using: "composite"
|
||||
steps:
|
||||
- name: Install Homebrew packages
|
||||
shell: sh
|
||||
if: inputs.install-mpi == 'true'
|
||||
run: /opt/homebrew/bin/brew install openmpi
|
||||
|
||||
- name: Verify MetalToolchain installed
|
||||
shell: bash
|
||||
run: xcodebuild -showComponent MetalToolchain
|
||||
|
||||
- name: Setup uv
|
||||
uses: astral-sh/setup-uv@v6
|
||||
with:
|
||||
python-version: ${{ inputs.python-version }}
|
||||
activate-environment: true
|
||||
6
.github/dependabot.yml
vendored
Normal file
6
.github/dependabot.yml
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: "github-actions"
|
||||
directory: "/"
|
||||
schedule:
|
||||
interval: "weekly"
|
||||
27
.github/scripts/setup+build-cpp-linux-fedora-container.sh
vendored
Executable file
27
.github/scripts/setup+build-cpp-linux-fedora-container.sh
vendored
Executable file
@@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
set -ex
|
||||
|
||||
# [Setup] Install dependencies inside the container.
|
||||
dnf update -y
|
||||
dnf install -y \
|
||||
blas-devel \
|
||||
lapack-devel \
|
||||
openblas-devel \
|
||||
make \
|
||||
cmake \
|
||||
clang \
|
||||
git
|
||||
dnf clean all
|
||||
|
||||
# [C++] CI Build Sanity Check: Verifies code compilation, not for release.
|
||||
export CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON"
|
||||
export DEBUG=1
|
||||
export CMAKE_C_COMPILER=/usr/bin/clang
|
||||
export CMAKE_CXX_COMPILER=/usr/bin/clang++
|
||||
|
||||
mkdir -p build
|
||||
pushd build
|
||||
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
|
||||
make -j $(nproc)
|
||||
./tests/tests
|
||||
popd
|
||||
28
.github/workflows/documentation.yml
vendored
Normal file
28
.github/workflows/documentation.yml
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
name: Documentation
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build:
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy:
|
||||
needs: build
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
116
.github/workflows/nightly.yml
vendored
Normal file
116
.github/workflows/nightly.yml
vendored
Normal file
@@ -0,0 +1,116 @@
|
||||
name: Nightly Build
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: 33 6 * * 1-5
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
build_linux_release:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux
|
||||
with:
|
||||
build-type: release
|
||||
run-tests: false
|
||||
- name: Upload mlx artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
retention-days: 7
|
||||
- name: Upload mlx-cpu artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
retention-days: 7
|
||||
|
||||
build_linux_with_tests:
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
build_mac_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.13"]
|
||||
env:
|
||||
MACOSX_DEPLOYMENT_TARGET: "15.0"
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: ./.github/actions/build-macos
|
||||
|
||||
build_cuda_with_tests:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: gpu-t4-4-core
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_cuda_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: ubuntu-22-large
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
retention-days: 7
|
||||
|
||||
linux_fedora_build_cpp:
|
||||
name: Linux Fedora CPP Build (${{ matrix.arch }})
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- host: ubuntu-22.04
|
||||
arch: x86_64
|
||||
- host: ubuntu-22.04-arm
|
||||
arch: aarch64
|
||||
|
||||
runs-on: ${{ matrix.host }}
|
||||
container:
|
||||
image: fedora:42
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: CPP Build Test - No Release
|
||||
run: |
|
||||
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
|
||||
79
.github/workflows/pull_request.yml
vendored
79
.github/workflows/pull_request.yml
vendored
@@ -1,20 +1,71 @@
|
||||
on:
|
||||
pull_request:
|
||||
branches:
|
||||
- main
|
||||
name: Build and Test
|
||||
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
check_lint:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
- uses: actions/setup-python@v4
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
|
||||
linux_build_and_test:
|
||||
runs-on: ubuntu-22.04
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
- uses: ./.github/actions/build-linux
|
||||
|
||||
mac_build_and_test:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
- uses: ./.github/actions/build-macos
|
||||
|
||||
cuda_build_and_test:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: gpu-t4-4-core
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: 3.8
|
||||
- name: Install dependencies
|
||||
runner-type: 'cuda'
|
||||
- uses: ./.github/actions/build-cuda
|
||||
|
||||
build_documentation:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: [self-hosted, macos]
|
||||
needs: check_lint
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
linux_fedora_build_cpp:
|
||||
name: Linux Fedora CPP Build (${{ matrix.arch }})
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
include:
|
||||
- host: ubuntu-22.04
|
||||
arch: x86_64
|
||||
- host: ubuntu-22.04-arm
|
||||
arch: aarch64
|
||||
|
||||
runs-on: ${{ matrix.host }}
|
||||
container:
|
||||
image: fedora:42
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v5
|
||||
|
||||
- name: CPP Build Test - No Release
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
pip install pre-commit black isort clang-format
|
||||
- name: Run lint
|
||||
run: |
|
||||
pre-commit run --all-files
|
||||
bash ./.github/scripts/setup+build-cpp-linux-fedora-container.sh
|
||||
|
||||
210
.github/workflows/release.yml
vendored
Normal file
210
.github/workflows/release.yml
vendored
Normal file
@@ -0,0 +1,210 @@
|
||||
name: PyPI Release
|
||||
|
||||
on:
|
||||
push:
|
||||
tags:
|
||||
- 'v*'
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
|
||||
jobs:
|
||||
setup:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
pypi_env: ${{ github.event_name == 'push' && 'pypi' || 'test-pypi' }}
|
||||
pypi_url: ${{ github.event_name == 'push' && 'https://upload.pypi.org/legacy/' || 'https://test.pypi.org/legacy/' }}
|
||||
steps:
|
||||
- name: Set publishing variables
|
||||
run: echo "Publishing setup complete"
|
||||
|
||||
build_documentation:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: [self-hosted, macos]
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/build-docs
|
||||
|
||||
deploy_documentation:
|
||||
needs: build_documentation
|
||||
permissions:
|
||||
pages: write
|
||||
id-token: write
|
||||
runs-on: ubuntu-latest
|
||||
environment:
|
||||
name: github-pages
|
||||
url: ${{ steps.deployment.outputs.page_url }}
|
||||
steps:
|
||||
- name: Deploy to GitHub Pages
|
||||
id: deployment
|
||||
uses: actions/deploy-pages@v4
|
||||
|
||||
build_linux_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: ubuntu-22.04
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
python-version: ${{ matrix.python_version }}
|
||||
- uses: ./.github/actions/build-linux
|
||||
with:
|
||||
build-type: release
|
||||
run-tests: false
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: linux-wheels-${{ matrix.python_version }}
|
||||
path: wheelhouse/mlx-*.whl
|
||||
- name: Upload CPU artifacts
|
||||
if: matrix.python_version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: wheelhouse/mlx_cpu-*.whl
|
||||
|
||||
build_mac_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
runs-on: [self-hosted, macos]
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-macos
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: ./.github/actions/build-macos
|
||||
with:
|
||||
build-type: release
|
||||
run-tests: false
|
||||
- name: Upload MLX artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mac-wheels-${{ matrix.python-version }}
|
||||
path: dist/mlx-*.whl
|
||||
- name: Upload Metal artifacts
|
||||
if: matrix.python-version == '3.10'
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: dist/mlx_metal-*.whl
|
||||
|
||||
build_cuda_release:
|
||||
if: github.repository == 'ml-explore/mlx'
|
||||
runs-on: ubuntu-22-large
|
||||
env:
|
||||
PYPI_RELEASE: 1
|
||||
steps:
|
||||
- uses: actions/checkout@v5
|
||||
- uses: ./.github/actions/setup-linux
|
||||
with:
|
||||
runner-type: 'cuda'
|
||||
- name: Build Python package
|
||||
uses: ./.github/actions/build-cuda-release
|
||||
with:
|
||||
nvcc-location: '/usr/local/cuda-12.9/bin/nvcc'
|
||||
- name: Upload artifacts
|
||||
uses: actions/upload-artifact@v5
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: wheelhouse/mlx_cuda-*.whl
|
||||
|
||||
pypi-publish:
|
||||
name: Upload release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_linux_release, build_mac_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: ${{ needs.setup.outputs.pypi_env }}
|
||||
url: https://pypi.org/p/mlx
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: linux-wheels-*
|
||||
merge-multiple: true
|
||||
path: dist
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
pattern: mac-wheels-*
|
||||
merge-multiple: true
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: ${{ needs.setup.outputs.pypi_url }}
|
||||
|
||||
pypi-publish-cuda:
|
||||
name: Upload CUDA release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_cuda_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: ${{ needs.setup.outputs.pypi_env }}
|
||||
url: https://pypi.org/p/mlx-cuda
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cuda
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: ${{ needs.setup.outputs.pypi_url }}
|
||||
|
||||
pypi-publish-cpu:
|
||||
name: Upload CPU release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_linux_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: ${{ needs.setup.outputs.pypi_env }}
|
||||
url: https://pypi.org/p/mlx-cpu
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-cpu
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: ${{ needs.setup.outputs.pypi_url }}
|
||||
|
||||
pypi-publish-metal:
|
||||
name: Upload Metal release to PyPI
|
||||
runs-on: ubuntu-latest
|
||||
needs: [setup, build_mac_release]
|
||||
permissions:
|
||||
id-token: write
|
||||
environment:
|
||||
name: ${{ needs.setup.outputs.pypi_env }}
|
||||
url: https://pypi.org/p/mlx-metal
|
||||
steps:
|
||||
- uses: actions/download-artifact@v6
|
||||
with:
|
||||
name: mlx-metal
|
||||
path: dist
|
||||
- name: Display structure of downloaded files
|
||||
run: ls -R dist
|
||||
- name: Publish package distributions to PyPI
|
||||
uses: pypa/gh-action-pypi-publish@release/v1
|
||||
with:
|
||||
repository-url: ${{ needs.setup.outputs.pypi_url }}
|
||||
|
||||
@@ -1,4 +1,10 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: v6.0.0
|
||||
hooks:
|
||||
- id: check-yaml
|
||||
# - id: end-of-file-fixer
|
||||
# - id: trailing-whitespace
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v19.1.7
|
||||
hooks:
|
||||
|
||||
@@ -20,13 +20,9 @@ project(
|
||||
LANGUAGES C CXX
|
||||
VERSION ${MLX_PROJECT_VERSION})
|
||||
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang")
|
||||
add_compile_options(-Wall -Wextra)
|
||||
endif()
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
@@ -92,6 +88,11 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
@@ -126,9 +127,12 @@ if(MLX_BUILD_METAL)
|
||||
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18.zip)
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_26.zip)
|
||||
|
||||
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
||||
if(${CMAKE_OSX_DEPLOYMENT_TARGET} LESS 14.0)
|
||||
message(FATAL_ERROR "MLX requires macOS >= 14.0")
|
||||
endif()
|
||||
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
||||
endif()
|
||||
execute_process(
|
||||
@@ -137,7 +141,6 @@ if(MLX_BUILD_METAL)
|
||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
target_include_directories(
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||
|
||||
@@ -17,11 +17,10 @@ To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.10
|
||||
- macOS >= 13.5
|
||||
- macOS >= 14.0
|
||||
|
||||
.. note::
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
MLX is only available on devices running macOS >= 14.0 and higher.
|
||||
|
||||
CUDA
|
||||
^^^^
|
||||
|
||||
@@ -7,12 +7,13 @@ Distributed Communication
|
||||
|
||||
MLX supports distributed communication operations that allow the computational cost
|
||||
of training or inference to be shared across many physical machines. At the
|
||||
moment we support two different communication backends:
|
||||
moment we support three different communication backends:
|
||||
|
||||
* `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ a
|
||||
full-featured and mature distributed communications library
|
||||
* A **ring** backend of our own that uses native TCP sockets and should be
|
||||
faster for thunderbolt connections.
|
||||
* A **ring** backend of our own that uses native TCP sockets. It should be
|
||||
faster for thunderbolt connections, but it also works over Ethernet.
|
||||
* `nccl <https://developer.nvidia.com/nccl>`_, for use in CUDA environments.
|
||||
|
||||
The list of all currently supported operations and their documentation can be
|
||||
seen in the :ref:`API docs<distributed>`.
|
||||
@@ -84,9 +85,8 @@ Selecting Backend
|
||||
^^^^^^^^^^^^^^^^^
|
||||
|
||||
You can select the backend you want to use when calling :func:`init` by passing
|
||||
one of ``{'any', 'ring', 'mpi'}``. When passing ``any``, MLX will try to
|
||||
initialize the ``ring`` backend and if it fails the ``mpi`` backend. If they
|
||||
both fail then a singleton group is created.
|
||||
one of ``{'any', 'ring', 'mpi', 'nccl'}``. When passing ``any``, MLX will try all
|
||||
available backends. If they all fail then a singleton group is created.
|
||||
|
||||
.. note::
|
||||
After a distributed backend is successfully initialized :func:`init` will
|
||||
@@ -220,7 +220,7 @@ print 4 etc.
|
||||
Installing MPI
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
MPI can be installed with Homebrew, using the Anaconda package manager or
|
||||
MPI can be installed with Homebrew, pip, using the Anaconda package manager, or
|
||||
compiled from source. Most of our testing is done using ``openmpi`` installed
|
||||
with the Anaconda package manager as follows:
|
||||
|
||||
@@ -228,14 +228,16 @@ with the Anaconda package manager as follows:
|
||||
|
||||
$ conda install conda-forge::openmpi
|
||||
|
||||
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
|
||||
Installing with Homebrew or pip requires specifying the location of ``libmpi.dyld``
|
||||
so that MLX can find it and load it at runtime. This can simply be achieved by
|
||||
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun`` and it is
|
||||
done automatically by ``mlx.launch``.
|
||||
done automatically by ``mlx.launch``. Some environments use a non-standard
|
||||
library filename that can be specified using the ``MPI_LIBNAME`` environment
|
||||
variable. This is automatically taken care of by ``mlx.launch`` as well.
|
||||
|
||||
.. code:: shell
|
||||
|
||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
|
||||
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ -x MPI_LIBNAME=libmpi.40.dylib python test.py
|
||||
$ # or simply
|
||||
$ mlx.launch -n 2 test.py
|
||||
|
||||
|
||||
@@ -14,17 +14,14 @@ void array_basics() {
|
||||
// Get the value out of it:
|
||||
auto s = x.item<float>();
|
||||
assert(s == 1.0);
|
||||
(void)s;
|
||||
|
||||
// Scalars have a size of 1:
|
||||
int64_t size = x.size();
|
||||
size_t size = x.size();
|
||||
assert(size == 1);
|
||||
(void)size;
|
||||
|
||||
// Scalars have 0 dimensions:
|
||||
int ndim = x.ndim();
|
||||
assert(ndim == 0);
|
||||
(void)ndim;
|
||||
|
||||
// The shape should be an empty vector:
|
||||
auto shape = x.shape();
|
||||
@@ -33,7 +30,6 @@ void array_basics() {
|
||||
// The datatype should be float32:
|
||||
auto dtype = x.dtype();
|
||||
assert(dtype == mx::float32);
|
||||
(void)dtype;
|
||||
|
||||
// Specify the dtype when constructing the array:
|
||||
x = mx::array(1, mx::int32);
|
||||
|
||||
@@ -14,7 +14,7 @@ class Buffer {
|
||||
void* ptr_;
|
||||
|
||||
public:
|
||||
Buffer(void* ptr) : ptr_(ptr) {};
|
||||
explicit Buffer(void* ptr) : ptr_(ptr) {};
|
||||
|
||||
// Get the raw data pointer from the buffer
|
||||
void* raw_ptr();
|
||||
|
||||
@@ -44,11 +44,11 @@ std::vector<array> array::make_arrays(
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
std::vector<array> outputs;
|
||||
for (int i = 0; i < std::ssize(shapes); ++i) {
|
||||
for (size_t i = 0; i < shapes.size(); ++i) {
|
||||
outputs.emplace_back(std::move(shapes[i]), dtypes[i], primitive, inputs);
|
||||
}
|
||||
// For each node in |outputs|, its siblings are the other nodes.
|
||||
for (int i = 0; i < std::ssize(outputs); ++i) {
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
auto siblings = outputs;
|
||||
siblings.erase(siblings.begin() + i);
|
||||
outputs[i].set_siblings(std::move(siblings), i);
|
||||
@@ -64,7 +64,7 @@ array array::unsafe_weak_copy(const array& other) {
|
||||
other.strides(),
|
||||
other.flags(),
|
||||
[](auto) {});
|
||||
cpy.array_desc_->data_ptr = other.array_desc_->data_ptr;
|
||||
cpy.array_desc_->offset = other.array_desc_->offset;
|
||||
return cpy;
|
||||
}
|
||||
|
||||
@@ -141,13 +141,12 @@ bool array::is_tracer() const {
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->offset = 0;
|
||||
array_desc_->data_size = size();
|
||||
array_desc_->flags.contiguous = true;
|
||||
array_desc_->flags.row_contiguous = true;
|
||||
auto max_dim =
|
||||
static_cast<int64_t>(*std::max_element(shape().begin(), shape().end()));
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == max_dim;
|
||||
auto max_dim = std::max_element(shape().begin(), shape().end());
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == *max_dim;
|
||||
}
|
||||
|
||||
void array::set_data(
|
||||
@@ -157,7 +156,7 @@ void array::set_data(
|
||||
Flags flags,
|
||||
Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->offset = 0;
|
||||
array_desc_->data_size = data_size;
|
||||
array_desc_->strides = std::move(strides);
|
||||
array_desc_->flags = flags;
|
||||
@@ -173,9 +172,8 @@ void array::copy_shared_buffer(
|
||||
array_desc_->strides = strides;
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
array_desc_->data_ptr = static_cast<void*>(
|
||||
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||
array_desc_->offset =
|
||||
sizeof(char) * itemsize() * offset + other.array_desc_->offset;
|
||||
}
|
||||
|
||||
void array::copy_shared_buffer(const array& other) {
|
||||
@@ -193,7 +191,7 @@ array::~array() {
|
||||
}
|
||||
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = std::ssize(siblings()); n > 0) {
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
bool do_detach = true;
|
||||
// If all siblings have siblings.size() references except
|
||||
// the one we are currently destroying (which has siblings.size() + 1)
|
||||
@@ -275,7 +273,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
ad.inputs.clear();
|
||||
for (auto& [_, a] : input_map) {
|
||||
bool is_deletable =
|
||||
(a.array_desc_.use_count() <= std::ssize(a.siblings()) + 1);
|
||||
(a.array_desc_.use_count() <= a.siblings().size() + 1);
|
||||
// An array with siblings is deletable only if all of its siblings
|
||||
// are deletable
|
||||
for (auto& s : a.siblings()) {
|
||||
@@ -284,7 +282,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
}
|
||||
int is_input = (input_map.find(s.id()) != input_map.end());
|
||||
is_deletable &=
|
||||
s.array_desc_.use_count() <= std::ssize(a.siblings()) + is_input;
|
||||
s.array_desc_.use_count() <= a.siblings().size() + is_input;
|
||||
}
|
||||
if (is_deletable) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
|
||||
37
mlx/array.h
37
mlx/array.h
@@ -81,22 +81,22 @@ class array {
|
||||
}
|
||||
|
||||
/** The size of the array's datatype in bytes. */
|
||||
int itemsize() const {
|
||||
size_t itemsize() const {
|
||||
return size_of(dtype());
|
||||
}
|
||||
|
||||
/** The number of elements in the array. */
|
||||
int64_t size() const {
|
||||
size_t size() const {
|
||||
return array_desc_->size;
|
||||
}
|
||||
|
||||
/** The number of bytes in the array. */
|
||||
int64_t nbytes() const {
|
||||
size_t nbytes() const {
|
||||
return size() * itemsize();
|
||||
}
|
||||
|
||||
/** The number of dimensions of the array. */
|
||||
int ndim() const {
|
||||
size_t ndim() const {
|
||||
return array_desc_->shape.size();
|
||||
}
|
||||
|
||||
@@ -294,6 +294,11 @@ class array {
|
||||
return array_desc_->siblings;
|
||||
}
|
||||
|
||||
/** The array's position in the sibling list. */
|
||||
int sibling_position() const {
|
||||
return array_desc_->position;
|
||||
}
|
||||
|
||||
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
||||
array_desc_->siblings = std::move(siblings);
|
||||
array_desc_->position = position;
|
||||
@@ -329,7 +334,7 @@ class array {
|
||||
* corresponding to ``arr[-1, -1, ...]``) then ``data_size = last - first``.
|
||||
* Note, ``data_size`` is in units of ``item_size`` (not bytes).
|
||||
**/
|
||||
int64_t data_size() const {
|
||||
size_t data_size() const {
|
||||
return array_desc_->data_size;
|
||||
}
|
||||
|
||||
@@ -340,7 +345,7 @@ class array {
|
||||
return array_desc_->data->buffer;
|
||||
}
|
||||
|
||||
int64_t buffer_size() const {
|
||||
size_t buffer_size() const {
|
||||
return allocator::allocator().size(buffer());
|
||||
}
|
||||
|
||||
@@ -349,15 +354,23 @@ class array {
|
||||
return array_desc_->data;
|
||||
}
|
||||
|
||||
// Return a raw pointer to the arrays data
|
||||
// Return a raw pointer to the arrays data. This function may do a copy if
|
||||
// the underlying buffer is not accessible on the CPU. When accessing the
|
||||
// data for GPU kernels, be sure to use the correct method / function for the
|
||||
// given backend to access the GPU pointer.
|
||||
template <typename T>
|
||||
T* data() {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
return reinterpret_cast<T*>(
|
||||
(static_cast<char*>(buffer().raw_ptr()) + array_desc_->offset));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
const T* data() const {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
return const_cast<array&>(*this).data<T>();
|
||||
}
|
||||
|
||||
int64_t offset() const {
|
||||
return array_desc_->offset;
|
||||
}
|
||||
|
||||
enum Status {
|
||||
@@ -461,8 +474,8 @@ class array {
|
||||
// can share the underlying data buffer.
|
||||
std::shared_ptr<Data> data;
|
||||
|
||||
// Properly offset data pointer
|
||||
void* data_ptr{nullptr};
|
||||
// Offset from beginning of data pointer
|
||||
int64_t offset{0};
|
||||
|
||||
// The size in elements of the data buffer the array accesses
|
||||
size_t data_size;
|
||||
@@ -530,7 +543,7 @@ array::array(
|
||||
Shape shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (std::ssize(data) != size()) {
|
||||
if (data.size() != size()) {
|
||||
throw std::invalid_argument(
|
||||
"Data size and provided shape mismatch in array construction.");
|
||||
}
|
||||
|
||||
@@ -38,20 +38,20 @@ inline void set_binary_op_output_data(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
BinaryOpType bopt) {
|
||||
BinaryOpType bopt,
|
||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
||||
bool b_donatable = is_donatable(b, out);
|
||||
bool a_donatable = is_donatable(a, out);
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc(out.itemsize()), 1, a.strides(), a.flags());
|
||||
out.set_data(mallocfn(out.itemsize()), 1, a.strides(), a.flags());
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
if (b_donatable) {
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(b.data_size() * out.itemsize()),
|
||||
mallocfn(b.data_size() * out.itemsize()),
|
||||
b.data_size(),
|
||||
b.strides(),
|
||||
b.flags());
|
||||
@@ -62,7 +62,7 @@ inline void set_binary_op_output_data(
|
||||
out.copy_shared_buffer(a);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(a.data_size() * out.itemsize()),
|
||||
mallocfn(a.data_size() * out.itemsize()),
|
||||
a.data_size(),
|
||||
a.strides(),
|
||||
a.flags());
|
||||
@@ -75,7 +75,7 @@ inline void set_binary_op_output_data(
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(a.data_size() * out.itemsize()),
|
||||
mallocfn(a.data_size() * out.itemsize()),
|
||||
a.data_size(),
|
||||
a.strides(),
|
||||
a.flags());
|
||||
@@ -88,7 +88,7 @@ inline void set_binary_op_output_data(
|
||||
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
|
||||
out.copy_shared_buffer(b);
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(mallocfn(out.nbytes()));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -6,7 +6,7 @@ namespace mlx::core {
|
||||
|
||||
void broadcast(const array& in, array& out) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
Strides strides(out.ndim(), 0);
|
||||
|
||||
@@ -21,8 +21,8 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Compute the flags given the shape and strides
|
||||
bool row_contiguous = true, col_contiguous = true;
|
||||
int64_t r = 1, c = 1;
|
||||
for (int i = std::ssize(strides_) - 1, j = 0; i >= 0; i--, j++) {
|
||||
size_t r = 1, c = 1;
|
||||
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
|
||||
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
|
||||
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
|
||||
r *= shape_[i];
|
||||
@@ -60,8 +60,7 @@ void CustomTransforms::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = std::ssize(inputs) - std::ssize(outputs);
|
||||
i < std::ssize(outputs);
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
@@ -71,7 +70,7 @@ void Depends::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < std::ssize(outputs); i++) {
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
@@ -207,11 +206,11 @@ void Split::eval(
|
||||
|
||||
auto compute_new_flags = [](const auto& shape,
|
||||
const auto& strides,
|
||||
int64_t in_data_size,
|
||||
size_t in_data_size,
|
||||
auto flags) {
|
||||
int64_t data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
@@ -241,7 +240,7 @@ void Split::eval(
|
||||
|
||||
std::vector<int> indices(1, 0);
|
||||
indices.insert(indices.end(), indices_.begin(), indices_.end());
|
||||
for (int i = 0; i < std::ssize(indices); i++) {
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
size_t offset = indices[i] * in.strides()[axis_];
|
||||
auto [new_flags, data_size] = compute_new_flags(
|
||||
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
|
||||
@@ -255,7 +254,7 @@ void Squeeze::eval(const std::vector<array>& inputs, array& out) {
|
||||
const auto& in = inputs[0];
|
||||
Strides strides;
|
||||
for (int i = 0, j = 0; i < in.ndim(); ++i) {
|
||||
if (j < std::ssize(axes_) && i == axes_[j]) {
|
||||
if (j < axes_.size() && i == axes_[j]) {
|
||||
j++;
|
||||
} else {
|
||||
strides.push_back(in.strides(i));
|
||||
@@ -273,7 +272,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
Strides out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < std::ssize(axes_); ++ax) {
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
}
|
||||
|
||||
|
||||
@@ -114,13 +114,15 @@ void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous) {
|
||||
bool contiguous,
|
||||
const std::function<allocator::Buffer(size_t)>&
|
||||
mallocfn /* = allocator::malloc */) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
Strides strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Correct size
|
||||
@@ -138,16 +140,16 @@ void compiled_allocate_outputs(
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc(data_size * outputs[o].itemsize()),
|
||||
mallocfn(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
strides,
|
||||
flags);
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
@@ -162,8 +164,8 @@ void compiled_allocate_outputs(
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
outputs[o].set_data(allocator::malloc(outputs[o].nbytes()));
|
||||
for (; o < outputs.size(); ++o) {
|
||||
outputs[o].set_data(mallocfn(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -193,7 +195,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
int j = 0;
|
||||
size_t j = 0;
|
||||
for (; j < shape.size() - x.ndim(); ++j) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -201,7 +203,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (int i = 0; i < x.ndim(); ++i, ++j) {
|
||||
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -224,13 +226,13 @@ bool compiled_use_large_index(
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
int64_t max_size = 0;
|
||||
size_t max_size = 0;
|
||||
for (const auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
} else {
|
||||
int64_t max_size = 0;
|
||||
size_t max_size = 0;
|
||||
for (const auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
|
||||
@@ -58,7 +58,9 @@ void compiled_allocate_outputs(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::function<bool(size_t)>& is_constant,
|
||||
bool contiguous);
|
||||
bool contiguous,
|
||||
const std::function<allocator::Buffer(size_t)>& mallocfn =
|
||||
allocator::malloc);
|
||||
|
||||
// Collapse contiguous dims ignoring scalars and constants.
|
||||
std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
|
||||
@@ -22,7 +22,11 @@ enum class CopyType {
|
||||
GeneralGeneral
|
||||
};
|
||||
|
||||
inline bool set_copy_output_data(const array& in, array& out, CopyType ctype) {
|
||||
inline bool set_copy_output_data(
|
||||
const array& in,
|
||||
array& out,
|
||||
CopyType ctype,
|
||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
||||
if (ctype == CopyType::Vector) {
|
||||
// If the input is donateable, we are doing a vector copy and the types
|
||||
// have the same size, then the input buffer can hold the output.
|
||||
@@ -31,14 +35,14 @@ inline bool set_copy_output_data(const array& in, array& out, CopyType ctype) {
|
||||
return true;
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(in.data_size() * out.itemsize()),
|
||||
mallocfn(in.data_size() * out.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(mallocfn(out.nbytes()));
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Load::eval_cpu(const std::vector<array>& /* inputs */, array& out) {
|
||||
void Load::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto read_task = [out_ptr = out.data<char>(),
|
||||
size = out.size(),
|
||||
|
||||
@@ -28,7 +28,7 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && std::ssize(axes) == x.ndim() &&
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
return ContiguousAllReduce;
|
||||
}
|
||||
@@ -38,7 +38,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// Merge consecutive axes
|
||||
Shape shape = {x.shape(axes[0])};
|
||||
Strides strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < std::ssize(axes); i++) {
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
|
||||
@@ -24,8 +24,8 @@ std::tuple<int64_t, Strides> prepare_slice(
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const Strides& out_strides,
|
||||
int64_t data_offset,
|
||||
int64_t data_size,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [no_bsx_size, is_row_contiguous, is_col_contiguous] =
|
||||
@@ -45,7 +45,7 @@ void slice(
|
||||
const Shape& start_indices,
|
||||
const Shape& strides) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -61,7 +61,7 @@ void slice(
|
||||
if (data_end < 0) {
|
||||
data_end += in.data_size();
|
||||
}
|
||||
int64_t data_size = (data_end - data_offset);
|
||||
size_t data_size = (data_end - data_offset);
|
||||
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
|
||||
}
|
||||
|
||||
|
||||
@@ -46,7 +46,8 @@ inline void set_ternary_op_output_data(
|
||||
const array& b,
|
||||
const array& c,
|
||||
array& out,
|
||||
TernaryOpType topt) {
|
||||
TernaryOpType topt,
|
||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
||||
auto maybe_donate = [&out](const array& x) {
|
||||
if (is_donatable(x, out)) {
|
||||
out.copy_shared_buffer(x);
|
||||
@@ -57,13 +58,12 @@ inline void set_ternary_op_output_data(
|
||||
|
||||
switch (topt) {
|
||||
case TernaryOpType::ScalarScalarScalar:
|
||||
out.set_data(
|
||||
allocator::malloc(out.itemsize()), 1, b.strides(), b.flags());
|
||||
out.set_data(mallocfn(out.itemsize()), 1, b.strides(), b.flags());
|
||||
break;
|
||||
case TernaryOpType::VectorVectorVector:
|
||||
if (!(maybe_donate(a) || maybe_donate(b) || maybe_donate(c))) {
|
||||
out.set_data(
|
||||
allocator::malloc(out.itemsize() * b.data_size()),
|
||||
mallocfn(out.itemsize() * b.data_size()),
|
||||
b.data_size(),
|
||||
b.strides(),
|
||||
b.flags());
|
||||
@@ -76,7 +76,7 @@ inline void set_ternary_op_output_data(
|
||||
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
||||
(b.flags().row_contiguous && maybe_donate(b)) ||
|
||||
(c.flags().row_contiguous && maybe_donate(c)))) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(mallocfn(out.nbytes()));
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -7,19 +7,22 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
inline void set_unary_output_data(const array& in, array& out) {
|
||||
inline void set_unary_output_data(
|
||||
const array& in,
|
||||
array& out,
|
||||
std::function<allocator::Buffer(size_t)> mallocfn = allocator::malloc) {
|
||||
if (in.flags().contiguous) {
|
||||
if (is_donatable(in, out)) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(in.data_size() * out.itemsize()),
|
||||
mallocfn(in.data_size() * out.itemsize()),
|
||||
in.data_size(),
|
||||
in.strides(),
|
||||
in.flags());
|
||||
}
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(mallocfn(out.nbytes()));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -28,7 +28,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
if (shape[0] != 1) {
|
||||
to_collapse.push_back(0);
|
||||
}
|
||||
int64_t size = shape[0];
|
||||
size_t size = shape[0];
|
||||
for (int i = 1; i < shape.size(); i++) {
|
||||
bool contiguous = true;
|
||||
size *= shape[i];
|
||||
@@ -64,7 +64,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
current_shape *= shape[to_collapse[k]];
|
||||
}
|
||||
out_shape.push_back(current_shape);
|
||||
for (int j = 0; j < std::ssize(strides); j++) {
|
||||
for (int j = 0; j < strides.size(); j++) {
|
||||
const auto& st = strides[j];
|
||||
out_strides[j].push_back(st[to_collapse[k - 1]]);
|
||||
}
|
||||
|
||||
@@ -162,7 +162,7 @@ struct ContiguousIterator {
|
||||
};
|
||||
|
||||
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
int64_t no_broadcast_data_size = 1;
|
||||
size_t no_broadcast_data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
bool is_row_contiguous = true;
|
||||
@@ -183,7 +183,7 @@ inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
}
|
||||
|
||||
inline bool is_donatable(const array& in, const array& out) {
|
||||
constexpr int64_t donation_extra = 16384;
|
||||
constexpr size_t donation_extra = 16384;
|
||||
|
||||
return in.is_donatable() && in.itemsize() == out.itemsize() &&
|
||||
in.buffer_size() <= out.nbytes() + donation_extra;
|
||||
|
||||
@@ -10,7 +10,7 @@ namespace mlx::core {
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
void arange(T start, T next, array& out, int64_t size, Stream stream) {
|
||||
void arange(T start, T next, array& out, size_t size, Stream stream) {
|
||||
auto ptr = out.data<T>();
|
||||
auto step_size = next - start;
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
@@ -19,12 +19,12 @@ void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||
auto in_ptr = in.data<InT>();
|
||||
auto out_ptr = out.data<uint32_t>();
|
||||
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||
auto loc = elem_to_loc(i, shape, strides);
|
||||
auto local_in_ptr = in_ptr + loc;
|
||||
uint32_t ind_v = 0;
|
||||
InT v = (*local_in_ptr);
|
||||
for (int64_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
for (uint32_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
op(j, (*local_in_ptr), &ind_v, &v);
|
||||
}
|
||||
out_ptr[i] = ind_v;
|
||||
|
||||
@@ -14,238 +14,11 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename Op>
|
||||
void binary(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void comparison_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (a.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_float(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
binary_op<float16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[binary_float] Only supports floating point types.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_int(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, Op>(a, b, out, bopt);
|
||||
case uint8:
|
||||
binary_op<uint8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("[binary_int] Type not supported");
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Add(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Add(), stream());
|
||||
}
|
||||
|
||||
void DivMod::eval_cpu(
|
||||
@@ -329,14 +102,14 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Divide(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Divide(), stream());
|
||||
}
|
||||
|
||||
void Remainder::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Remainder(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Remainder(), stream());
|
||||
}
|
||||
|
||||
void Equal::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -377,89 +150,90 @@ void Equal::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
});
|
||||
} else {
|
||||
comparison_op(a, b, out, detail::Equal(), stream());
|
||||
comparison_op_cpu(a, b, out, detail::Equal(), stream());
|
||||
}
|
||||
}
|
||||
|
||||
void Greater::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Greater(), stream());
|
||||
comparison_op_cpu(inputs[0], inputs[1], out, detail::Greater(), stream());
|
||||
}
|
||||
|
||||
void GreaterEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual(), stream());
|
||||
comparison_op_cpu(
|
||||
inputs[0], inputs[1], out, detail::GreaterEqual(), stream());
|
||||
}
|
||||
|
||||
void Less::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::Less(), stream());
|
||||
comparison_op_cpu(inputs[0], inputs[1], out, detail::Less(), stream());
|
||||
}
|
||||
|
||||
void LessEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::LessEqual(), stream());
|
||||
comparison_op_cpu(inputs[0], inputs[1], out, detail::LessEqual(), stream());
|
||||
}
|
||||
|
||||
void LogAddExp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary_float(a, b, out, detail::LogAddExp(), stream());
|
||||
binary_float_op_cpu(a, b, out, detail::LogAddExp(), stream());
|
||||
}
|
||||
|
||||
void LogicalAnd::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalAnd(), stream());
|
||||
binary_op_cpu(in1, in2, out, detail::LogicalAnd(), stream());
|
||||
}
|
||||
|
||||
void LogicalOr::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2); // LogicalOr requires two input arrays
|
||||
auto& in1 = inputs[0];
|
||||
auto& in2 = inputs[1];
|
||||
binary(in1, in2, out, detail::LogicalOr(), stream());
|
||||
binary_op_cpu(in1, in2, out, detail::LogicalOr(), stream());
|
||||
}
|
||||
|
||||
void Maximum::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Maximum(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Maximum(), stream());
|
||||
}
|
||||
|
||||
void Minimum::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Minimum(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Minimum(), stream());
|
||||
}
|
||||
|
||||
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Multiply(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Multiply(), stream());
|
||||
}
|
||||
|
||||
void NotEqual::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
comparison_op(inputs[0], inputs[1], out, detail::NotEqual(), stream());
|
||||
comparison_op_cpu(inputs[0], inputs[1], out, detail::NotEqual(), stream());
|
||||
}
|
||||
|
||||
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Power(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Power(), stream());
|
||||
}
|
||||
|
||||
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
binary(a, b, out, detail::Subtract(), stream());
|
||||
binary_op_cpu(a, b, out, detail::Subtract(), stream());
|
||||
}
|
||||
|
||||
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -468,19 +242,19 @@ void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
switch (op_) {
|
||||
case BitwiseBinary::And:
|
||||
binary_int(a, b, out, detail::BitwiseAnd(), stream());
|
||||
binary_int_op_cpu(a, b, out, detail::BitwiseAnd(), stream());
|
||||
break;
|
||||
case BitwiseBinary::Or:
|
||||
binary_int(a, b, out, detail::BitwiseOr(), stream());
|
||||
binary_int_op_cpu(a, b, out, detail::BitwiseOr(), stream());
|
||||
break;
|
||||
case BitwiseBinary::Xor:
|
||||
binary_int(a, b, out, detail::BitwiseXor(), stream());
|
||||
binary_int_op_cpu(a, b, out, detail::BitwiseXor(), stream());
|
||||
break;
|
||||
case BitwiseBinary::LeftShift:
|
||||
binary_int(a, b, out, detail::LeftShift(), stream());
|
||||
binary_int_op_cpu(a, b, out, detail::LeftShift(), stream());
|
||||
break;
|
||||
case BitwiseBinary::RightShift:
|
||||
binary_int(a, b, out, detail::RightShift(), stream());
|
||||
binary_int_op_cpu(a, b, out, detail::RightShift(), stream());
|
||||
break;
|
||||
}
|
||||
}
|
||||
@@ -489,7 +263,7 @@ void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
const auto& a = inputs[0];
|
||||
const auto& b = inputs[1];
|
||||
binary_float(a, b, out, detail::ArcTan2(), stream());
|
||||
binary_float_op_cpu(a, b, out, detail::ArcTan2(), stream());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -7,6 +7,7 @@
|
||||
#include "mlx/backend/common/binary.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -290,4 +291,227 @@ void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
|
||||
binary_op<T, T, Op>(a, b, out, bopt);
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_op_cpu(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void comparison_op_cpu(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (a.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint8:
|
||||
binary_op<uint8_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float16:
|
||||
binary_op<float16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, bool, Op>(a, b, out, bopt);
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_float_op_cpu(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
binary_op<float16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float32:
|
||||
binary_op<float, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case float64:
|
||||
binary_op<double, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case bfloat16:
|
||||
binary_op<bfloat16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case complex64:
|
||||
binary_op<complex64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"[binary_float] Only supports floating point types.");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Op>
|
||||
void binary_int_op_cpu(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([a = array::unsafe_weak_copy(a),
|
||||
b = array::unsafe_weak_copy(b),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
bopt]() mutable {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
binary_op<bool, Op>(a, b, out, bopt);
|
||||
case uint8:
|
||||
binary_op<uint8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint16:
|
||||
binary_op<uint16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint32:
|
||||
binary_op<uint32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case uint64:
|
||||
binary_op<uint64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int8:
|
||||
binary_op<int8_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int16:
|
||||
binary_op<int16_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int32:
|
||||
binary_op<int32_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
case int64:
|
||||
binary_op<int64_t, Op>(a, b, out, bopt);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("[binary_int] Type not supported");
|
||||
break;
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -99,7 +99,7 @@ void binary_op_dispatch_dims(
|
||||
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
||||
auto stride = out_strides[ndim - 3];
|
||||
for (int64_t elem = 0; elem < std::ssize(a); elem += stride) {
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
@@ -137,21 +137,21 @@ void binary_op(
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
} else if (bopt == BinaryOpType::ScalarVector) {
|
||||
for (int64_t i = 0; i < b.data_size(); ++i) {
|
||||
for (size_t i = 0; i < b.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
for (int64_t i = 0; i < a.data_size(); ++i) {
|
||||
for (size_t i = 0; i < a.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
a_ptr++;
|
||||
}
|
||||
} else { // VectorVector
|
||||
for (int64_t i = 0; i < a.size(); ++i) {
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
|
||||
@@ -33,8 +33,8 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
||||
N = a.shape(-1),
|
||||
size = a.size()]() mutable {
|
||||
char uplo = (upper) ? 'L' : 'U';
|
||||
int64_t num_matrices = size / (N * N);
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
size_t num_matrices = size / (N * N);
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info;
|
||||
potrf<T>(
|
||||
|
||||
@@ -49,7 +49,7 @@ static CompilerCache& cache() {
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& /* device */) {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -168,7 +168,7 @@ inline void build_kernel(
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
int strides_index = 1;
|
||||
for (int i = 0; i < std::ssize(inputs); ++i) {
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
@@ -238,7 +238,7 @@ inline void build_kernel(
|
||||
} else {
|
||||
os << x.primitive().name();
|
||||
os << "()(";
|
||||
for (int i = 0; i < std::ssize(x.inputs()) - 1; i++) {
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
}
|
||||
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
|
||||
|
||||
@@ -860,7 +860,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
const std::vector<int>& wt_dilation,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
@@ -1003,7 +1003,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const bool flip,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
@@ -1023,7 +1023,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Pad input
|
||||
Shape padded_shape(in.shape().size());
|
||||
padded_shape.front() = N;
|
||||
for (int i = 0; i < iDim.size(); i++) {
|
||||
for (size_t i = 0; i < iDim.size(); i++) {
|
||||
padded_shape[i + 1] = iDim[i] + padding_lo[i] + padding_hi[i];
|
||||
}
|
||||
padded_shape.back() = C;
|
||||
@@ -1054,20 +1054,20 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Make strided view
|
||||
Shape strided_shape(oDim.size() + wDim.size() + 2);
|
||||
strided_shape.front() = N;
|
||||
for (int i = 0; i < oDim.size(); i++) {
|
||||
for (size_t i = 0; i < oDim.size(); i++) {
|
||||
strided_shape[i + 1] = oDim[i];
|
||||
}
|
||||
for (int i = 0; i < wDim.size(); i++) {
|
||||
for (size_t i = 0; i < wDim.size(); i++) {
|
||||
strided_shape[i + 1 + oDim.size()] = wDim[i];
|
||||
}
|
||||
strided_shape.back() = C;
|
||||
|
||||
Strides strided_strides(in.shape().size() * 2 - 2);
|
||||
strided_strides[0] = in_padded.strides()[0];
|
||||
for (int i = 0; i < std::ssize(wt_strides); i++) {
|
||||
for (size_t i = 0; i < wt_strides.size(); i++) {
|
||||
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
|
||||
}
|
||||
for (int i = 1; i < std::ssize(in_padded.strides()); i++) {
|
||||
for (size_t i = 1; i < in_padded.strides().size(); i++) {
|
||||
strided_strides[i + wt_strides.size()] = in_padded.strides()[i];
|
||||
}
|
||||
|
||||
|
||||
@@ -90,10 +90,14 @@ void Recv::eval_cpu(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 0);
|
||||
assert(outputs.size() == 1);
|
||||
(void)inputs;
|
||||
|
||||
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
|
||||
distributed::detail::recv(group(), outputs[0], src_, stream());
|
||||
}
|
||||
|
||||
void ReduceScatter::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
throw std::runtime_error("[ReduceScatter] Not implemented yet.");
|
||||
}
|
||||
} // namespace mlx::core::distributed
|
||||
|
||||
@@ -70,7 +70,7 @@ void eig_impl(
|
||||
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
|
||||
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
|
||||
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
|
||||
@@ -165,7 +165,7 @@ void eigh_impl(
|
||||
EighWork<T> work(jobz, uplo, N);
|
||||
|
||||
// Work loop
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
work.run(vec_ptr, eig_ptr);
|
||||
vec_ptr += N * N;
|
||||
eig_ptr += N;
|
||||
|
||||
@@ -20,8 +20,8 @@ struct CommandEncoder {
|
||||
CommandEncoder(CommandEncoder&&) = delete;
|
||||
CommandEncoder& operator=(CommandEncoder&&) = delete;
|
||||
|
||||
void set_input_array(const array& /* a */) {}
|
||||
void set_output_array(array& /* a */) {}
|
||||
void set_input_array(const array& a) {}
|
||||
void set_output_array(array& a) {}
|
||||
|
||||
// Hold onto a temporary until any already scheduled tasks which use it as
|
||||
// an input are complete.
|
||||
|
||||
@@ -12,12 +12,12 @@ void matmul(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -34,7 +34,7 @@ void matmul_bnns(
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t /* ldc */,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
@@ -52,7 +52,7 @@ void matmul_bnns(
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
if (beta != 1.0 && beta != 0.0) {
|
||||
// scale the output
|
||||
for (size_t i = 0; i < batch_size * M * N; ++i) {
|
||||
for (auto i = 0; i < batch_size * M * N; ++i) {
|
||||
out[i] *= beta;
|
||||
}
|
||||
beta = 1.0;
|
||||
@@ -127,7 +127,7 @@ void matmul_bnns(
|
||||
auto bnns_filter =
|
||||
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
||||
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
BNNSFilterApplyTwoInput(
|
||||
bnns_filter,
|
||||
reinterpret_cast<const uint8_t*>(
|
||||
@@ -148,12 +148,12 @@ void matmul<float16_t>(
|
||||
float16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
@@ -183,12 +183,12 @@ void matmul<bfloat16_t>(
|
||||
bfloat16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -13,20 +13,20 @@ void matmul<float>(
|
||||
float* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_sgemm(
|
||||
@@ -54,20 +54,20 @@ void matmul<double>(
|
||||
double* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_dgemm(
|
||||
@@ -95,20 +95,20 @@ void matmul<complex64_t>(
|
||||
complex64_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
size_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
auto calpha = static_cast<complex64_t>(alpha);
|
||||
auto cbeta = static_cast<complex64_t>(beta);
|
||||
|
||||
|
||||
@@ -11,9 +11,9 @@ namespace mlx::core {
|
||||
|
||||
// n = 2^k component
|
||||
template <typename T>
|
||||
void hadamard_n(T* out, int n, int /* m */, float scale, int64_t size) {
|
||||
void hadamard_n(T* out, int n, int m, float scale, size_t size) {
|
||||
for (int b = 0; b < size / n; b++) {
|
||||
int64_t loc = b * n;
|
||||
size_t loc = b * n;
|
||||
T* data_ptr = out + loc;
|
||||
int h = 1;
|
||||
int n_over_2 = n / 2;
|
||||
@@ -37,7 +37,7 @@ void hadamard_n(T* out, int n, int /* m */, float scale, int64_t size) {
|
||||
|
||||
// m component
|
||||
template <typename T>
|
||||
void hadamard_m(T* out, int n, int m, float scale, int64_t size) {
|
||||
void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
auto start = 1;
|
||||
@@ -45,7 +45,7 @@ void hadamard_m(T* out, int n, int m, float scale, int64_t size) {
|
||||
std::vector<bool> hmat_vec;
|
||||
while (end != std::string_view::npos) {
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < std::ssize(row); i++) {
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
hmat_vec.push_back(row[i] == '+');
|
||||
}
|
||||
start = end + 1;
|
||||
@@ -53,7 +53,7 @@ void hadamard_m(T* out, int n, int m, float scale, int64_t size) {
|
||||
}
|
||||
|
||||
for (int b = 0; b < size / m / n; b++) {
|
||||
int64_t loc = b * n * m;
|
||||
size_t loc = b * n * m;
|
||||
T* data_ptr = out + loc;
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<float> out(m);
|
||||
|
||||
@@ -78,7 +78,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore leading 1s
|
||||
int64_t i = 0;
|
||||
int i = 0;
|
||||
for (; i < slice_sizes.size() && slice_sizes[i] == 1; ++i)
|
||||
;
|
||||
|
||||
@@ -91,7 +91,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore trailing 1s
|
||||
int64_t i = slice_sizes.size() - 1;
|
||||
int i = slice_sizes.size() - 1;
|
||||
for (; i >= 0 && slice_sizes[i] == 1; --i)
|
||||
;
|
||||
|
||||
@@ -101,11 +101,11 @@ void gather(
|
||||
can_copy = (src.shape(i) == slice_sizes[i]);
|
||||
}
|
||||
}
|
||||
int64_t slice_size = 1;
|
||||
size_t slice_size = 1;
|
||||
for (auto s : slice_sizes) {
|
||||
slice_size *= s;
|
||||
}
|
||||
int64_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
size_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
const T* src_ptr = src.data<T>();
|
||||
T* dst_ptr = out.data<T>();
|
||||
|
||||
@@ -115,10 +115,10 @@ void gather(
|
||||
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
|
||||
}
|
||||
|
||||
int64_t out_idx = 0;
|
||||
for (int64_t idx = 0; idx < ind_size; idx++) {
|
||||
int64_t src_idx = 0;
|
||||
for (int ii = 0; ii < std::ssize(inds); ++ii) {
|
||||
size_t out_idx = 0;
|
||||
for (int idx = 0; idx < ind_size; idx++) {
|
||||
size_t src_idx = 0;
|
||||
for (int ii = 0; ii < inds.size(); ++ii) {
|
||||
auto ax = axes[ii];
|
||||
auto idx_loc = its[ii].loc;
|
||||
its[ii].step();
|
||||
@@ -134,7 +134,7 @@ void gather(
|
||||
src_ptr + src_idx, src_ptr + src_idx + slice_size, dst_ptr + out_idx);
|
||||
out_idx += slice_size;
|
||||
} else {
|
||||
for (int64_t jj = 0; jj < slice_size; jj++) {
|
||||
for (int jj = 0; jj < slice_size; jj++) {
|
||||
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
|
||||
src_it.step();
|
||||
}
|
||||
@@ -403,11 +403,11 @@ void scatter(
|
||||
const std::vector<int>& axes) {
|
||||
int nind = inds.size();
|
||||
auto inds_ndim = updates.ndim() - out.ndim();
|
||||
int64_t n_updates = nind ? inds[0].size() : 1;
|
||||
size_t n_updates = nind ? inds[0].size() : 1;
|
||||
|
||||
Shape update_shape(
|
||||
updates.shape().begin() + inds_ndim, updates.shape().end());
|
||||
int64_t update_size = 1;
|
||||
size_t update_size = 1;
|
||||
for (auto us : update_shape) {
|
||||
update_size *= us;
|
||||
}
|
||||
@@ -418,9 +418,9 @@ void scatter(
|
||||
|
||||
auto out_ptr = out.data<InT>();
|
||||
auto upd_ptr = updates.data<InT>();
|
||||
for (int64_t i = 0; i < n_updates; ++i) {
|
||||
int64_t out_offset = 0;
|
||||
for (int j = 0; j < std::ssize(inds); ++j) {
|
||||
for (int i = 0; i < n_updates; ++i) {
|
||||
size_t out_offset = 0;
|
||||
for (int j = 0; j < inds.size(); ++j) {
|
||||
auto ax = axes[j];
|
||||
auto idx_loc = its[j].loc;
|
||||
its[j].step();
|
||||
@@ -429,7 +429,7 @@ void scatter(
|
||||
out_offset += (idx_val * out.strides()[ax]);
|
||||
}
|
||||
update_it.seek(i * update_size);
|
||||
for (int64_t j = 0; j < update_size; ++j) {
|
||||
for (int j = 0; j < update_size; ++j) {
|
||||
OpT{}(upd_ptr[update_it.loc], out_ptr + out_offset + out_it.loc);
|
||||
update_it.step();
|
||||
out_it.step();
|
||||
|
||||
@@ -122,7 +122,7 @@ void inverse_impl(
|
||||
stream);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const int64_t num_matrices = a.size() / (N * N);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_output_array(inv);
|
||||
@@ -130,13 +130,13 @@ void inverse_impl(
|
||||
auto inv_ptr = inv.data<T>();
|
||||
if (tri) {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices, upper]() {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
tri_inv<T>(inv_ptr + N * N * i, N, upper);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices]() {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
general_inv<T>(inv_ptr + N * N * i, N);
|
||||
}
|
||||
});
|
||||
|
||||
@@ -25,7 +25,7 @@ inline void mask_matrix(
|
||||
const int64_t Y_data_str,
|
||||
const int64_t X_mask_str,
|
||||
const int64_t Y_mask_str,
|
||||
const int64_t mask_offset) {
|
||||
const size_t mask_offset) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
|
||||
@@ -61,13 +61,13 @@ inline void segmented_mm(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides,
|
||||
int64_t num_segments,
|
||||
size_t num_segments,
|
||||
const Shape& segments_shape,
|
||||
const Strides& segments_strides) {
|
||||
int ndim = a_shape.size();
|
||||
@@ -149,9 +149,9 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [b_transposed, ldb, b, b_copied] =
|
||||
check_transpose(b_pre, has_op_mask, inputs.back().dtype() != bool_);
|
||||
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -172,8 +172,8 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
int batch_idx,
|
||||
int X,
|
||||
int Y,
|
||||
int64_t X_data_str,
|
||||
int64_t Y_data_str,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str,
|
||||
const Shape& mask_shape,
|
||||
const Strides& mask_strides,
|
||||
bool is_bool) {
|
||||
@@ -253,7 +253,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto a_ptr = a.data<float>();
|
||||
auto b_ptr = b.data<float>();
|
||||
auto out_ptr = out.data<float>();
|
||||
int64_t num_matrices = out.size() / (M * int64_t(N));
|
||||
size_t num_matrices = out.size() / (M * size_t(N));
|
||||
auto ldc = out.shape(-1);
|
||||
|
||||
encoder.dispatch([a_ptr,
|
||||
@@ -394,9 +394,9 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -413,7 +413,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Get batch dims
|
||||
auto batch_size_out = out.size() / (M * N);
|
||||
int64_t matrix_stride_out = M * N;
|
||||
size_t matrix_stride_out = M * N;
|
||||
|
||||
auto get_batch_dims = [](const auto& v) {
|
||||
return decltype(v){v.begin(), v.end() - 2};
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
#include <cstring>
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cpu/binary.h"
|
||||
#include "mlx/backend/cpu/binary_ops.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/gemm.h"
|
||||
@@ -135,15 +137,29 @@ void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Handle empty matrix case (K=0)
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
auto& c = inputs[2];
|
||||
if (beta_ == 1.0f) {
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
} else {
|
||||
array beta_scalar = array(beta_, c.dtype());
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
binary_float_op_cpu(c, beta_scalar, out, detail::Multiply(), stream());
|
||||
encoder.add_temporary(std::move(beta_scalar));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Fill output with C
|
||||
auto& c = inputs[2];
|
||||
CopyType ctype = c.data_size() == 1
|
||||
? CopyType::Scalar
|
||||
: (c.flags().row_contiguous ? CopyType::Vector : CopyType::General);
|
||||
copy_cpu(c, out, ctype, stream());
|
||||
if (inputs[0].shape(-1) == 0) {
|
||||
return;
|
||||
}
|
||||
matmul_general(inputs[0], inputs[1], out, stream(), alpha_, beta_);
|
||||
}
|
||||
|
||||
|
||||
@@ -48,7 +48,7 @@ static std::pair<array, bool> compute_dynamic_offset(
|
||||
auto compute_offset =
|
||||
[strides, axes, offset = offset.data<int64_t>()](const auto* indices) {
|
||||
int64_t offset_ = 0;
|
||||
for (int i = 0; i < std::ssize(axes); ++i) {
|
||||
for (int i = 0; i < axes.size(); ++i) {
|
||||
offset_ += indices[i] * strides[axes[i]];
|
||||
}
|
||||
offset[0] = offset_;
|
||||
@@ -124,7 +124,6 @@ void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 0);
|
||||
(void)inputs;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
@@ -194,9 +193,9 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
flags.row_contiguous = false;
|
||||
flags.col_contiguous = false;
|
||||
flags.contiguous = false;
|
||||
for (int i = 0; i < std::ssize(inputs); i++) {
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
||||
int64_t data_offset = strides[axis_] * sizes[i];
|
||||
size_t data_offset = strides[axis_] * sizes[i];
|
||||
out_slice.copy_shared_buffer(
|
||||
out, strides, flags, out_slice.size(), data_offset);
|
||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
@@ -206,7 +205,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
constexpr int64_t extra_bytes = 16384;
|
||||
constexpr size_t extra_bytes = 16384;
|
||||
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
|
||||
(in.flags().row_contiguous ||
|
||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||
@@ -255,8 +254,8 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
||||
|
||||
// Find offset for start of input values
|
||||
int64_t data_offset = 0;
|
||||
for (int i = 0; i < std::ssize(axes_); i++) {
|
||||
size_t data_offset = 0;
|
||||
for (int i = 0; i < axes_.size(); i++) {
|
||||
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
|
||||
data_offset += out.strides()[ax] * low_pad_size_[i];
|
||||
}
|
||||
@@ -275,10 +274,10 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// keys has shape (N1, ..., NK, 2)
|
||||
// out has shape (N1, ..., NK, M1, M2, ...)
|
||||
auto& keys = inputs[0];
|
||||
int64_t num_keys = keys.size() / 2;
|
||||
size_t num_keys = keys.size() / 2;
|
||||
|
||||
int64_t elems_per_key = out.size() / num_keys;
|
||||
int64_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
size_t elems_per_key = out.size() / num_keys;
|
||||
size_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto kptr = inputs[0].data<uint32_t>();
|
||||
@@ -292,8 +291,8 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
num_keys,
|
||||
kshape = keys.shape(),
|
||||
kstrides = keys.strides()]() mutable {
|
||||
int64_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
uintptr_t half_size = out_skip / 2;
|
||||
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
auto half_size = out_skip / 2;
|
||||
bool even = out_skip % 2 == 0;
|
||||
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
|
||||
auto ptr = reinterpret_cast<uint32_t*>(cptr);
|
||||
@@ -334,7 +333,7 @@ void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
auto& in = inputs[0];
|
||||
@@ -362,7 +361,7 @@ void DynamicSliceUpdate::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out) {
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -397,7 +396,7 @@ void DynamicSliceUpdate::eval_cpu(
|
||||
void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 2);
|
||||
if (out.size() == 0) {
|
||||
out.set_data(nullptr);
|
||||
out.set_data(allocator::malloc(0));
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
@@ -13,7 +13,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
const int M = a.shape(-2);
|
||||
const int N = a.shape(-1);
|
||||
const int lda = M;
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// Copy A to inplace input and make it col-contiguous
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
auto work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
// Solve
|
||||
geqrf<T>(
|
||||
&M,
|
||||
@@ -68,7 +68,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
}
|
||||
allocator::free(work);
|
||||
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
/// num_reflectors x N
|
||||
for (int j = 0; j < num_reflectors; ++j) {
|
||||
for (int k = 0; k < j; ++k) {
|
||||
@@ -97,7 +97,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
// Compute Q
|
||||
orgqr<T>(
|
||||
&M,
|
||||
@@ -111,7 +111,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
&info);
|
||||
}
|
||||
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
// M x num_reflectors
|
||||
for (int j = 0; j < M; ++j) {
|
||||
for (int k = 0; k < num_reflectors; ++k) {
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/unary.h"
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
#include "mlx/backend/cpu/unary.h"
|
||||
#include "mlx/backend/cpu/unary_ops.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
@@ -1102,4 +1105,44 @@ void fast::Quantize::eval_cpu(
|
||||
});
|
||||
}
|
||||
|
||||
void fast::ConvertFP8::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto& in = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
set_unary_output_data(in, out);
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([in = array::unsafe_weak_copy(in),
|
||||
out = array::unsafe_weak_copy(out),
|
||||
to_fp8 = to_fp8_]() mutable {
|
||||
if (to_fp8) {
|
||||
switch (in.dtype()) {
|
||||
case float16:
|
||||
unary_op<float16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<bfloat16_t, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<float, uint8_t>(in, out, detail::ToFP8());
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
switch (out.dtype()) {
|
||||
case float16:
|
||||
unary_op<uint8_t, float16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
case bfloat16:
|
||||
unary_op<uint8_t, bfloat16_t>(in, out, detail::FromFP8());
|
||||
break;
|
||||
default:
|
||||
unary_op<uint8_t, float>(in, out, detail::FromFP8());
|
||||
break;
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
#pragma once
|
||||
|
||||
#include <arm_neon.h>
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
@@ -200,6 +201,15 @@ SIMD_DEFAULT_COMPARISONS(<=)
|
||||
SIMD_DEFAULT_COMPARISONS(==)
|
||||
SIMD_DEFAULT_COMPARISONS(!=)
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> clz(Simd<T, N> x) {
|
||||
auto a = *(uint32x4_t*)(&x);
|
||||
auto b = *((uint32x4_t*)(&x) + 1);
|
||||
a = vclzq_u32(a);
|
||||
b = vclzq_u32(b);
|
||||
return asd::make_uint8(a, b);
|
||||
}
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
|
||||
return asd::atan2(a.value, b.value);
|
||||
@@ -207,14 +217,20 @@ Simd<T, N> atan2(Simd<T, N> a, Simd<T, N> b) {
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> maximum(Simd<T, N> a, Simd<T, N> b) {
|
||||
// TODO add isnan
|
||||
return asd::max(a.value, b.value);
|
||||
auto out = Simd<T, N>(asd::max(a.value, b.value));
|
||||
if constexpr (!std::is_integral_v<T>) {
|
||||
out = select(isnan(b), b, select(isnan(a), a, out));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T, int N>
|
||||
Simd<T, N> minimum(Simd<T, N> a, Simd<T, N> b) {
|
||||
// TODO add isnan
|
||||
return asd::min(a.value, b.value);
|
||||
auto out = Simd<T, N>(asd::min(a.value, b.value));
|
||||
if constexpr (!std::is_integral_v<T>) {
|
||||
out = select(isnan(b), b, select(isnan(a), a, out));
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <typename T, int N>
|
||||
@@ -253,12 +269,12 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
|
||||
} else {
|
||||
Simd<T, N> res = 1;
|
||||
// Raising an integer to a negative power is undefined
|
||||
if (any(exp < static_cast<T>(0))) {
|
||||
if (any(exp < 0)) {
|
||||
return 0;
|
||||
}
|
||||
while (any(exp > static_cast<T>(0))) {
|
||||
while (any(exp > 0)) {
|
||||
res = select((exp & 1) != 0, res * base, res);
|
||||
base = select(exp > static_cast<T>(0), base * base, base);
|
||||
base = select(exp > 0, base * base, base);
|
||||
exp = exp >> 1;
|
||||
}
|
||||
return res;
|
||||
|
||||
@@ -171,6 +171,11 @@ DEFAULT_BINARY(&)
|
||||
DEFAULT_BINARY(&&)
|
||||
DEFAULT_BINARY(||)
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> clz(Simd<T, 1> x_) {
|
||||
return __builtin_clz(x_.value);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Simd<T, 1> remainder(Simd<T, 1> a_, Simd<T, 1> b_) {
|
||||
T a = a_.value;
|
||||
|
||||
@@ -79,8 +79,7 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
|
||||
// Get the polynom selection mask. There is one polynom for 0 <= x <= Pi/4
|
||||
// and another one for Pi/4<x<=Pi/2. Both branches will be computed.
|
||||
auto poly_mask =
|
||||
(emm2 & static_cast<uint32_t>(2)) != static_cast<uint32_t>(0);
|
||||
auto poly_mask = (emm2 & 2) != 0;
|
||||
|
||||
// The magic pass: "Extended precision modular arithmetic"
|
||||
// x = ((x - y * DP1) - y * DP2) - y * DP3
|
||||
@@ -88,8 +87,8 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
x = fma(y, Simd<float, N>(-2.4187564849853515625e-4f), x);
|
||||
x = fma(y, Simd<float, N>(-3.77489497744594108e-8f), x);
|
||||
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != static_cast<uint32_t>(0));
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != static_cast<uint32_t>(0);
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != 0);
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != 0;
|
||||
|
||||
// Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
// and the second polynom (Pi/4 <= x <= 0) in y2
|
||||
|
||||
@@ -120,8 +120,8 @@ template <typename T>
|
||||
void sort(array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -136,7 +136,7 @@ void sort(array& out, int axis) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
@@ -151,7 +151,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argsort(const array& in, array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -176,7 +176,7 @@ void argsort(const array& in, array& out, int axis) {
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
|
||||
@@ -214,8 +214,8 @@ template <typename T>
|
||||
void partition(array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -232,7 +232,7 @@ void partition(array& out, int axis, int kth) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
src_it.step();
|
||||
|
||||
@@ -248,7 +248,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -277,7 +277,7 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
in_it.step();
|
||||
|
||||
@@ -27,7 +27,7 @@ void svd_impl(
|
||||
const int N = a.shape(-1);
|
||||
const int K = std::min(M, N);
|
||||
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -121,7 +121,7 @@ void svd_impl(
|
||||
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
|
||||
// Loop over matrices.
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
@@ -153,10 +153,10 @@ void svd_impl(
|
||||
|
||||
template <typename T>
|
||||
void compute_svd(
|
||||
const array& /* a */,
|
||||
bool /* compute_uv */,
|
||||
std::vector<array>& /* outputs */,
|
||||
Stream /* stream */) {}
|
||||
const array& a,
|
||||
bool compute_uv,
|
||||
std::vector<array>& outputs,
|
||||
Stream stream) {}
|
||||
|
||||
void SVD::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
|
||||
@@ -136,7 +136,7 @@ void ternary_op(
|
||||
if (topt == TernaryOpType::ScalarScalarScalar) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
} else if (topt == TernaryOpType::VectorVectorVector) {
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
|
||||
@@ -10,8 +10,8 @@
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T, typename U = T, typename Op>
|
||||
void unary_op(const T* a, U* out, int64_t shape, int64_t stride) {
|
||||
for (int64_t i = 0; i < shape; i += 1) {
|
||||
void unary_op(const T* a, U* out, size_t shape, size_t stride) {
|
||||
for (size_t i = 0; i < shape; i += 1) {
|
||||
out[i] = Op{}(*a);
|
||||
a += stride;
|
||||
}
|
||||
@@ -24,9 +24,9 @@ void unary_op(const array& a, array& out, Op) {
|
||||
auto ndim = a.ndim();
|
||||
if (a.flags().contiguous) {
|
||||
auto size = a.data_size();
|
||||
constexpr int N = simd::max_size<T>;
|
||||
constexpr int N = std::min(simd::max_size<T>, simd::max_size<U>);
|
||||
while (size >= N) {
|
||||
simd::store(dst, Op{}(simd::load<T, N>(src)));
|
||||
simd::store(dst, simd::Simd<U, N>(Op{}(simd::load<T, N>(src))));
|
||||
size -= N;
|
||||
src += N;
|
||||
dst += N;
|
||||
@@ -38,14 +38,14 @@ void unary_op(const array& a, array& out, Op) {
|
||||
src++;
|
||||
}
|
||||
} else {
|
||||
int64_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
int64_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
size_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
size_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
if (ndim <= 1) {
|
||||
unary_op<T, U, Op>(src, dst, shape, stride);
|
||||
return;
|
||||
}
|
||||
auto it = ContiguousIterator(a.shape(), a.strides(), ndim - 1);
|
||||
for (int64_t elem = 0; elem < a.size(); elem += shape) {
|
||||
for (size_t elem = 0; elem < a.size(); elem += shape) {
|
||||
unary_op<T, U, Op>(src + it.loc, dst + elem, shape, stride);
|
||||
it.step();
|
||||
}
|
||||
|
||||
@@ -108,4 +108,73 @@ struct Square {
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
template <int N>
|
||||
Simd<float, N> fp32_from_bits(Simd<uint32_t, N> x) {
|
||||
return *(Simd<float, N>*)(&x);
|
||||
}
|
||||
template <int N>
|
||||
Simd<uint32_t, N> fp32_to_bits(Simd<float, N> x) {
|
||||
return *(Simd<uint32_t, N>*)(&x);
|
||||
}
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T, int N>
|
||||
Simd<uint8_t, N> operator()(Simd<T, N> f) {
|
||||
uint32_t fp8_max = 543 << 21;
|
||||
auto denorm_mask = Simd<uint32_t, N>(141 << 23);
|
||||
Simd<uint32_t, N> f_bits;
|
||||
Simd<float, N> f32 = f;
|
||||
f_bits = fp32_to_bits(f32);
|
||||
Simd<uint8_t, N> result = 0u;
|
||||
auto sign = f_bits & 0x80000000;
|
||||
f_bits = f_bits ^ sign;
|
||||
|
||||
auto f_bits_low =
|
||||
fp32_to_bits(fp32_from_bits(f_bits) + fp32_from_bits(denorm_mask));
|
||||
auto result_low = Simd<uint8_t, N>(f_bits_low - denorm_mask);
|
||||
|
||||
auto mant_odd = Simd<uint8_t, N>((f_bits >> 20) & 1);
|
||||
auto f_bits_high = f_bits + (((uint32_t)(7 - 127) << 23) + 0x7FFFF);
|
||||
f_bits_high = f_bits_high + Simd<uint32_t, N>(mant_odd);
|
||||
|
||||
auto result_high = Simd<uint8_t, N>(f_bits_high >> 20);
|
||||
result = select(f_bits < (121 << 23), result_low, result_high);
|
||||
|
||||
auto result_sat = Simd<uint8_t, N>(0x7E);
|
||||
result = select(f_bits >= fp8_max, result_sat, result);
|
||||
return result | Simd<uint8_t, N>(sign >> 24);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
uint8_t operator()(T x) {
|
||||
return (*this)(Simd<T, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
template <int N>
|
||||
Simd<float, N> operator()(Simd<uint8_t, N> x) {
|
||||
auto w = Simd<uint32_t, N>(x) << 24;
|
||||
auto sign = w & 0x80000000;
|
||||
auto nonsign = w & 0x7FFFFFFF;
|
||||
|
||||
auto renorm_shift = clz(nonsign);
|
||||
renorm_shift = simd::select(
|
||||
renorm_shift > Simd<uint32_t, N>{4},
|
||||
renorm_shift - Simd<uint32_t, N>{4},
|
||||
Simd<uint32_t, N>{0});
|
||||
|
||||
Simd<int32_t, N> inf_nan_mask =
|
||||
(Simd<int32_t, N>(nonsign + 0x01000000) >> 8) & 0x7F800000;
|
||||
auto zero_mask = Simd<int32_t, N>(nonsign - 1) >> 31;
|
||||
auto result = sign |
|
||||
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
|
||||
inf_nan_mask) &
|
||||
~zero_mask);
|
||||
return fp32_from_bits(result);
|
||||
}
|
||||
float operator()(uint8_t x) {
|
||||
return (*this)(Simd<uint8_t, 1>(x)).value;
|
||||
}
|
||||
};
|
||||
} // namespace mlx::core::detail
|
||||
|
||||
@@ -32,6 +32,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/kernel_utils.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/layer_norm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/logsumexp.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
@@ -51,12 +52,19 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/affine_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/fp_quantize.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/quantized.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized/convert_fp8.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/worker.cpp)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/binary)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/unary)
|
||||
|
||||
# fp4 is not available on < 12.8
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_LESS 12.8.0)
|
||||
target_include_directories(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/quantized/)
|
||||
endif()
|
||||
|
||||
if(CMAKE_CUDA_COMPILER_VERSION VERSION_GREATER_EQUAL 12.9.0)
|
||||
target_sources(
|
||||
mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm_batched_12_9.cu)
|
||||
@@ -170,11 +178,6 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
@@ -67,6 +68,7 @@ CudaBuffer* SmallSizePool::malloc() {
|
||||
next_free_ = next_free_->next;
|
||||
b->buf.data = static_cast<char*>(data_) + i * small_block_size;
|
||||
b->buf.size = small_block_size;
|
||||
b->buf.device = -1;
|
||||
return &b->buf;
|
||||
}
|
||||
|
||||
@@ -88,16 +90,41 @@ CudaAllocator::CudaAllocator()
|
||||
page_size,
|
||||
[](CudaBuffer* buf) { return buf->size; },
|
||||
[this](CudaBuffer* buf) { cuda_free(buf); }) {
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.95;
|
||||
max_pool_size_ = memory_limit_;
|
||||
|
||||
int device_count = 0;
|
||||
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
|
||||
int curr;
|
||||
CHECK_CUDA_ERROR(cudaGetDevice(&curr));
|
||||
for (int i = 0; i < device_count; ++i) {
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(i));
|
||||
cudaStream_t s;
|
||||
CHECK_CUDA_ERROR(cudaStreamCreateWithFlags(&s, cudaStreamNonBlocking));
|
||||
free_streams_.push_back(s);
|
||||
}
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(curr));
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
void copy_to_managed(CudaBuffer& buf) {
|
||||
// TODO maybe make this async on a i/o stream to avoid synchronizing the
|
||||
// device on malloc/and free
|
||||
void* new_data;
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&new_data, buf.size));
|
||||
buf.device = -1;
|
||||
CHECK_CUDA_ERROR(cudaMemcpy(new_data, buf.data, buf.size, cudaMemcpyDefault));
|
||||
CHECK_CUDA_ERROR(cudaFree(buf.data));
|
||||
buf.data = new_data;
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc_impl(size_t size, cudaStream_t stream) {
|
||||
if (size == 0) {
|
||||
return Buffer{new CudaBuffer{nullptr, 0, -1}};
|
||||
}
|
||||
|
||||
// Find available buffer from cache.
|
||||
auto orig_size = size;
|
||||
std::unique_lock lock(mutex_);
|
||||
if (size <= small_block_size) {
|
||||
size = 8;
|
||||
@@ -107,6 +134,11 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
size = page_size * ((size + page_size - 1) / page_size);
|
||||
}
|
||||
|
||||
int device = -1;
|
||||
if (size > small_block_size && stream != nullptr) {
|
||||
CHECK_CUDA_ERROR(cudaStreamGetDevice(stream, &device));
|
||||
}
|
||||
|
||||
CudaBuffer* buf = buffer_cache_.reuse_from_cache(size);
|
||||
if (!buf) {
|
||||
// If we have a lot of memory pressure try to reclaim memory from the cache.
|
||||
@@ -122,8 +154,13 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
}
|
||||
lock.unlock();
|
||||
if (!buf) {
|
||||
buf = new CudaBuffer{nullptr, size};
|
||||
cudaError_t err = cudaMallocManaged(&buf->data, size);
|
||||
buf = new CudaBuffer{nullptr, size, device};
|
||||
cudaError_t err;
|
||||
if (device == -1) {
|
||||
err = cudaMallocManaged(&buf->data, size);
|
||||
} else {
|
||||
err = cudaMallocAsync(&buf->data, size, stream);
|
||||
}
|
||||
if (err != cudaSuccess && err != cudaErrorMemoryAllocation) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"cudaMallocManaged failed: {}.", cudaGetErrorString(err)));
|
||||
@@ -131,21 +168,37 @@ Buffer CudaAllocator::malloc(size_t size) {
|
||||
}
|
||||
lock.lock();
|
||||
}
|
||||
active_memory_ += size;
|
||||
active_memory_ += buf->size;
|
||||
peak_memory_ = std::max(active_memory_, peak_memory_);
|
||||
|
||||
// Maintain the cache below the requested limit.
|
||||
if (get_cache_memory() > max_pool_size_) {
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
// Copy to managed here if the buffer is not on the right device
|
||||
if (buf->device != device) {
|
||||
copy_to_managed(*buf);
|
||||
}
|
||||
return Buffer{buf};
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc_async(size_t size, cudaStream_t stream) {
|
||||
return malloc_impl(size, stream);
|
||||
}
|
||||
|
||||
Buffer CudaAllocator::malloc(size_t size) {
|
||||
return malloc_impl(size, nullptr);
|
||||
}
|
||||
|
||||
void CudaAllocator::free(Buffer buffer) {
|
||||
auto* buf = static_cast<CudaBuffer*>(buffer.ptr());
|
||||
if (!buf) {
|
||||
return;
|
||||
}
|
||||
if (buf->size == 0) {
|
||||
delete buf;
|
||||
return;
|
||||
}
|
||||
|
||||
std::unique_lock lock(mutex_);
|
||||
active_memory_ -= buf->size;
|
||||
@@ -169,7 +222,11 @@ void CudaAllocator::cuda_free(CudaBuffer* buf) {
|
||||
if (scalar_pool_.in_pool(buf)) {
|
||||
scalar_pool_.free(buf);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
if (buf->device >= 0) {
|
||||
cudaFreeAsync(buf->data, free_streams_[buf->device]);
|
||||
} else {
|
||||
cudaFree(buf->data);
|
||||
}
|
||||
delete buf;
|
||||
}
|
||||
}
|
||||
@@ -220,6 +277,16 @@ CudaAllocator& allocator() {
|
||||
return *allocator_;
|
||||
}
|
||||
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream) {
|
||||
auto buffer = allocator().malloc_async(size, stream);
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc_async] Unable to allocate " << size << " bytes.";
|
||||
throw std::runtime_error(msg.str());
|
||||
}
|
||||
return buffer;
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
namespace allocator {
|
||||
@@ -232,7 +299,11 @@ void* Buffer::raw_ptr() {
|
||||
if (!ptr_) {
|
||||
return nullptr;
|
||||
}
|
||||
return static_cast<cu::CudaBuffer*>(ptr_)->data;
|
||||
auto& cbuf = *static_cast<cu::CudaBuffer*>(ptr_);
|
||||
if (cbuf.device != -1) {
|
||||
copy_to_managed(cbuf);
|
||||
}
|
||||
return cbuf.data;
|
||||
}
|
||||
|
||||
} // namespace allocator
|
||||
|
||||
@@ -4,7 +4,9 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/buffer_cache.h"
|
||||
#include "mlx/backend/cuda/cuda_utils.h"
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <mutex>
|
||||
#include <set>
|
||||
#include <utility>
|
||||
@@ -17,6 +19,7 @@ using allocator::Buffer;
|
||||
struct CudaBuffer {
|
||||
void* data;
|
||||
size_t size;
|
||||
int device; // -1 for managed
|
||||
};
|
||||
|
||||
class SmallSizePool {
|
||||
@@ -45,6 +48,7 @@ class SmallSizePool {
|
||||
class CudaAllocator : public allocator::Allocator {
|
||||
public:
|
||||
Buffer malloc(size_t size) override;
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream);
|
||||
void free(Buffer buffer) override;
|
||||
size_t size(Buffer buffer) const override;
|
||||
|
||||
@@ -58,6 +62,7 @@ class CudaAllocator : public allocator::Allocator {
|
||||
void clear_cache();
|
||||
|
||||
private:
|
||||
Buffer malloc_impl(size_t size, cudaStream_t stream);
|
||||
void cuda_free(CudaBuffer* buf);
|
||||
|
||||
CudaAllocator();
|
||||
@@ -69,9 +74,12 @@ class CudaAllocator : public allocator::Allocator {
|
||||
BufferCache<CudaBuffer> buffer_cache_;
|
||||
size_t active_memory_{0};
|
||||
size_t peak_memory_{0};
|
||||
std::vector<cudaStream_t> free_streams_;
|
||||
SmallSizePool scalar_pool_;
|
||||
};
|
||||
|
||||
CudaAllocator& allocator();
|
||||
|
||||
Buffer malloc_async(size_t size, cudaStream_t stream);
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -41,9 +41,8 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
encoder.set_output_array(out);
|
||||
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
@@ -58,7 +57,7 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
out.data<OutType>(),
|
||||
gpu_ptr<OutType>(out),
|
||||
out.data_size(),
|
||||
static_cast<CTYPE>(start_),
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
|
||||
|
||||
@@ -140,8 +140,10 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nvtx3::scoped_range r("ArgReduce::eval_gpu");
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
|
||||
// Prepare the shapes, strides and axis arguments.
|
||||
Shape shape = remove_index(in.shape(), axis_);
|
||||
@@ -154,7 +156,6 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
int32_t ndim = shape.size();
|
||||
|
||||
// ArgReduce.
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_real_types(in.dtype(), "ArgReduce", [&](auto type_tag) {
|
||||
@@ -172,8 +173,8 @@ void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
num_blocks,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<uint32_t>(),
|
||||
gpu_ptr<T>(in),
|
||||
gpu_ptr<uint32_t>(out),
|
||||
out.size(),
|
||||
const_param(shape),
|
||||
const_param(in_strides),
|
||||
|
||||
@@ -292,9 +292,9 @@ void binary_op_gpu_inplace(
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
@@ -310,9 +310,9 @@ void binary_op_gpu_inplace(
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
@@ -339,9 +339,9 @@ void binary_op_gpu_inplace(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out),
|
||||
out.data_size());
|
||||
});
|
||||
}
|
||||
@@ -365,7 +365,11 @@ void binary_op_gpu(
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
set_binary_op_output_data(a, b, out, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
||||
}
|
||||
|
||||
|
||||
@@ -245,14 +245,18 @@ void binary_two_op_gpu_inplace(
|
||||
auto& out_a = outputs[0];
|
||||
auto& out_b = outputs[1];
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out_a, bopt);
|
||||
set_binary_op_output_data(a, b, out_b, bopt);
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
set_binary_op_output_data(a, b, out_a, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
set_binary_op_output_data(a, b, out_b, bopt, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
|
||||
if (out_a.size() == 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out_a);
|
||||
@@ -313,10 +317,10 @@ void binary_two_op_gpu_inplace(
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out_a),
|
||||
gpu_ptr<OutType>(out_b),
|
||||
rest,
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(a_strides),
|
||||
@@ -332,10 +336,10 @@ void binary_two_op_gpu_inplace(
|
||||
{num_blocks_x, num_blocks_y},
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out_a),
|
||||
gpu_ptr<OutType>(out_b),
|
||||
rest,
|
||||
const_param(shape),
|
||||
const_param(a_strides),
|
||||
@@ -366,10 +370,10 @@ void binary_two_op_gpu_inplace(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
a.data<InType>(),
|
||||
b.data<InType>(),
|
||||
out_a.data<OutType>(),
|
||||
out_b.data<OutType>(),
|
||||
gpu_ptr<InType>(a),
|
||||
gpu_ptr<InType>(b),
|
||||
gpu_ptr<OutType>(out_a),
|
||||
gpu_ptr<OutType>(out_b),
|
||||
out_a.data_size());
|
||||
});
|
||||
}
|
||||
|
||||
@@ -293,8 +293,13 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Put outputs.
|
||||
compiled_allocate_outputs(inputs, outputs, is_constant_, contiguous);
|
||||
compiled_allocate_outputs(
|
||||
inputs, outputs, is_constant_, contiguous, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
for (auto& x : outputs) {
|
||||
args.append(x);
|
||||
}
|
||||
@@ -324,7 +329,6 @@ void Compiled::eval_gpu(
|
||||
kernel_name += fmt::format(
|
||||
"_strided<{}, {}, {}>", shape.size(), index_type, work_per_thread);
|
||||
}
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
|
||||
@@ -270,17 +270,16 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
if (out_.size() == 0) {
|
||||
return;
|
||||
}
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
assert(inputs.size() == 2);
|
||||
array in = inputs[0];
|
||||
array wt = inputs[1];
|
||||
array out = out_;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
Dtype dtype = out.dtype();
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Search cache.
|
||||
ConvCacheKey cache_key{
|
||||
encoder.device().cuda_device(),
|
||||
|
||||
@@ -86,7 +86,7 @@ array unfold_inputs_nd(
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder.stream()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
@@ -118,8 +118,8 @@ array unfold_inputs_nd(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
gpu_ptr<DataType>(in),
|
||||
gpu_ptr<DataType>(unfolded),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
|
||||
@@ -89,7 +89,7 @@ array grouped_unfold_transpose_inputs_nd(
|
||||
int mat_N,
|
||||
ConvParams<NDIM>& params) {
|
||||
array unfolded({mat_M, mat_K * params.groups}, in.dtype(), nullptr, {});
|
||||
unfolded.set_data(allocator::malloc(unfolded.nbytes()));
|
||||
unfolded.set_data(cu::malloc_async(unfolded.nbytes(), encoder.stream()));
|
||||
encoder.add_temporary(unfolded);
|
||||
|
||||
int filter_size = params.C;
|
||||
@@ -121,8 +121,8 @@ array grouped_unfold_transpose_inputs_nd(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
unfolded.data<DataType>(),
|
||||
gpu_ptr<DataType>(in),
|
||||
gpu_ptr<DataType>(unfolded),
|
||||
filter_size,
|
||||
out_pixels,
|
||||
params);
|
||||
|
||||
@@ -5,6 +5,22 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
bool donated = set_copy_output_data(in, out, ctype, [&](auto n) {
|
||||
return cu::malloc_async(n, encoder.stream());
|
||||
});
|
||||
if (donated && in.dtype() == out.dtype()) {
|
||||
// If the output has the same type as the input then there is nothing to
|
||||
// copy, just use the buffer.
|
||||
return;
|
||||
}
|
||||
if (ctype == CopyType::GeneralGeneral) {
|
||||
ctype = CopyType::General;
|
||||
}
|
||||
copy_gpu_inplace(in, out, ctype, s);
|
||||
}
|
||||
|
||||
void copy_gpu_inplace(
|
||||
const array& in,
|
||||
array& out,
|
||||
@@ -87,11 +103,31 @@ void fill_gpu(const array& in, array& out, const Stream& s) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
copy_contiguous(encoder, CopyType::Scalar, in, out, 0, 0);
|
||||
}
|
||||
|
||||
void reshape_gpu(const array& in, array& out, Stream s) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
if (copy_necessary) {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
copy_gpu_inplace(
|
||||
in,
|
||||
out,
|
||||
in.shape(),
|
||||
in.strides(),
|
||||
make_contiguous_strides(in.shape()),
|
||||
0,
|
||||
0,
|
||||
CopyType::General,
|
||||
s);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -77,8 +77,8 @@ void copy_contiguous(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
in.data<InType>() + in_offset,
|
||||
out.data<OutType>() + out_offset,
|
||||
gpu_ptr<InType>(in) + in_offset,
|
||||
gpu_ptr<OutType>(out) + out_offset,
|
||||
out.data_size());
|
||||
});
|
||||
});
|
||||
|
||||
@@ -106,8 +106,8 @@ void copy_general(
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
|
||||
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
|
||||
int ndim = shape.size();
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
|
||||
@@ -69,8 +69,8 @@ void copy_general_dynamic(
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
|
||||
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
|
||||
int ndim = shape.size();
|
||||
if (ndim <= 3) {
|
||||
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
||||
@@ -90,8 +90,8 @@ void copy_general_dynamic(
|
||||
const_param<dims_constant()>(shape),
|
||||
const_param<dims_constant()>(strides_in),
|
||||
const_param<dims_constant()>(strides_out),
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
gpu_ptr<int64_t>(dynamic_offset_in),
|
||||
gpu_ptr<int64_t>(dynamic_offset_out));
|
||||
});
|
||||
} else { // ndim >= 4
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large());
|
||||
@@ -107,8 +107,8 @@ void copy_general_dynamic(
|
||||
const_param(strides_in),
|
||||
const_param(strides_out),
|
||||
ndim,
|
||||
dynamic_offset_in.data<int64_t>(),
|
||||
dynamic_offset_out.data<int64_t>());
|
||||
gpu_ptr<int64_t>(dynamic_offset_in),
|
||||
gpu_ptr<int64_t>(dynamic_offset_out));
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
@@ -92,8 +92,8 @@ void copy_general_input(
|
||||
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
|
||||
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
const InType* in_ptr = in.data<InType>() + offset_in;
|
||||
OutType* out_ptr = out.data<OutType>() + offset_out;
|
||||
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
|
||||
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
|
||||
int ndim = shape.size();
|
||||
int work_per_thread = 1;
|
||||
auto dim0 = ndim > 0 ? shape.back() : 1;
|
||||
|
||||
82
mlx/backend/cuda/cuda_utils.h
Normal file
82
mlx/backend/cuda/cuda_utils.h
Normal file
@@ -0,0 +1,82 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cublasLt.h>
|
||||
#include <cuda.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// Throw exception if the cuda API does not succeed.
|
||||
void check_cublas_error(const char* name, cublasStatus_t err);
|
||||
void check_cuda_error(const char* name, cudaError_t err);
|
||||
void check_cuda_error(const char* name, CUresult err);
|
||||
|
||||
// The macro version that prints the command that failed.
|
||||
#define CHECK_CUBLAS_ERROR(cmd) check_cublas_error(#cmd, (cmd))
|
||||
#define CHECK_CUDA_ERROR(cmd) check_cuda_error(#cmd, (cmd))
|
||||
|
||||
// Base class for RAII managed CUDA resources.
|
||||
template <typename Handle, cudaError_t (*Destroy)(Handle)>
|
||||
class CudaHandle {
|
||||
public:
|
||||
CudaHandle(Handle handle = nullptr) : handle_(handle) {}
|
||||
|
||||
CudaHandle(CudaHandle&& other) : handle_(other.handle_) {
|
||||
assert(this != &other);
|
||||
other.handle_ = nullptr;
|
||||
}
|
||||
|
||||
~CudaHandle() {
|
||||
reset();
|
||||
}
|
||||
|
||||
CudaHandle(const CudaHandle&) = delete;
|
||||
CudaHandle& operator=(const CudaHandle&) = delete;
|
||||
|
||||
CudaHandle& operator=(CudaHandle&& other) {
|
||||
assert(this != &other);
|
||||
reset();
|
||||
std::swap(handle_, other.handle_);
|
||||
return *this;
|
||||
}
|
||||
|
||||
void reset() {
|
||||
if (handle_ != nullptr) {
|
||||
CHECK_CUDA_ERROR(Destroy(handle_));
|
||||
handle_ = nullptr;
|
||||
}
|
||||
}
|
||||
|
||||
operator Handle() const {
|
||||
return handle_;
|
||||
}
|
||||
|
||||
protected:
|
||||
Handle handle_;
|
||||
};
|
||||
|
||||
namespace cu {
|
||||
class Device;
|
||||
}; // namespace cu
|
||||
|
||||
// Wrappers of CUDA resources.
|
||||
class CudaGraph : public CudaHandle<cudaGraph_t, cudaGraphDestroy> {
|
||||
public:
|
||||
using CudaHandle::CudaHandle;
|
||||
explicit CudaGraph(cu::Device& device);
|
||||
void end_capture(cudaStream_t stream);
|
||||
};
|
||||
|
||||
class CudaGraphExec : public CudaHandle<cudaGraphExec_t, cudaGraphExecDestroy> {
|
||||
public:
|
||||
void instantiate(cudaGraph_t graph);
|
||||
};
|
||||
|
||||
class CudaStream : public CudaHandle<cudaStream_t, cudaStreamDestroy> {
|
||||
public:
|
||||
explicit CudaStream(cu::Device& device);
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -132,14 +132,18 @@ bool prepare_cudnn_plan(
|
||||
void** data_ptrs,
|
||||
F&& execute) {
|
||||
int workspace_size = plan.getWorkspaceSize();
|
||||
array workspace(
|
||||
workspace_size > 0 ? allocator::malloc(workspace_size)
|
||||
: allocator::Buffer(nullptr),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
void* workspace_ptr = nullptr;
|
||||
if (workspace_size > 0) {
|
||||
array workspace(
|
||||
cu::malloc_async(workspace_size, encoder.stream()),
|
||||
{workspace_size},
|
||||
uint8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = gpu_ptr<void>(workspace);
|
||||
}
|
||||
|
||||
auto args = cudnn_frontend::VariantPackBuilder()
|
||||
.setWorkspacePointer(workspace.data<void>())
|
||||
.setWorkspacePointer(workspace_ptr)
|
||||
.setDataPointers(num_args, data_ptrs)
|
||||
.setUids(num_args, uids)
|
||||
.build();
|
||||
@@ -151,7 +155,6 @@ bool prepare_cudnn_plan(
|
||||
return false;
|
||||
}
|
||||
|
||||
encoder.add_temporary(workspace);
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
@@ -23,7 +24,7 @@ class CommandEncoder;
|
||||
// Return pointer alignment of |x|'s data.
|
||||
inline uint8_t get_alignment(const array& x) {
|
||||
uint8_t alignment = 1;
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(x.data<void>());
|
||||
uintptr_t address = reinterpret_cast<uintptr_t>(gpu_ptr<void>(x));
|
||||
for (; alignment < 32; alignment *= 2) {
|
||||
if (address % (alignment * 2)) {
|
||||
return alignment;
|
||||
@@ -56,7 +57,7 @@ inline std::array<T, MAX_NDIM> vector_key(const Vec<T>& vec) {
|
||||
|
||||
// Helpers used by get_data_ptrs to get pointers.
|
||||
inline void* get_data_ptr(const array& arr) {
|
||||
return const_cast<void*>(arr.data<void>());
|
||||
return const_cast<void*>(gpu_ptr<void>(arr));
|
||||
}
|
||||
|
||||
template <typename T, typename = std::enable_if_t<std::is_scalar_v<T>>>
|
||||
|
||||
@@ -279,6 +279,7 @@ void CustomKernel::eval_gpu(
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("CustomKernel::eval_gpu");
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
std::vector<array> copies;
|
||||
|
||||
@@ -288,7 +289,7 @@ void CustomKernel::eval_gpu(
|
||||
copies.emplace_back(init_value_.value(), out.dtype());
|
||||
fill_gpu(copies.back(), out, s);
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -356,7 +357,6 @@ void CustomKernel::eval_gpu(
|
||||
dim3 grid((gx + tx - 1) / tx, (gy + ty - 1) / ty, (gz + tz - 1) / tz);
|
||||
|
||||
// Call the kernel
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : checked_inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/cuda/worker.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <cuda_fp8.h>
|
||||
|
||||
#include "mlx/backend/cuda/device/fp16_math.cuh"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
@@ -334,4 +336,17 @@ struct Tanh {
|
||||
}
|
||||
};
|
||||
|
||||
struct ToFP8 {
|
||||
template <typename T>
|
||||
__device__ uint8_t operator()(T x) {
|
||||
return __nv_fp8_e4m3(x).__x;
|
||||
}
|
||||
};
|
||||
|
||||
struct FromFP8 {
|
||||
__device__ float operator()(uint8_t x) {
|
||||
return float(*(__nv_fp8_e4m3*)(&x));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -15,8 +15,10 @@ void AllReduce::eval_gpu(
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto set_input_output =
|
||||
[s = stream()](const array& in, array& out) -> std::pair<array, array> {
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
auto set_input_output = [&](const array& in,
|
||||
array& out) -> std::pair<array, array> {
|
||||
if (!in.flags().row_contiguous) {
|
||||
copy_gpu(in, out, CopyType::General, s);
|
||||
return {out, out};
|
||||
@@ -24,19 +26,17 @@ void AllReduce::eval_gpu(
|
||||
out.copy_shared_buffer(in);
|
||||
return {in, out};
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
return {in, out};
|
||||
}
|
||||
};
|
||||
|
||||
auto [input, output] = set_input_output(inputs[0], outputs[0]);
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(output);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
auto& s = stream();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
@@ -53,4 +53,69 @@ void AllReduce::eval_gpu(
|
||||
"Only all reduce sum, max, and min are supported.");
|
||||
}
|
||||
}
|
||||
|
||||
void AllGather::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
auto ensure_contiguous = [&s, &encoder](const array& x) {
|
||||
if (x.flags().row_contiguous) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
};
|
||||
|
||||
auto input = ensure_contiguous(inputs[0]);
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder.stream()));
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(outputs[0]);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
distributed::detail::all_gather(group(), input, outputs[0], s);
|
||||
}
|
||||
|
||||
void ReduceScatter::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
auto ensure_contiguous = [&s, &encoder](const array& x) {
|
||||
if (x.flags().row_contiguous) {
|
||||
return x;
|
||||
} else {
|
||||
array x_copy = contiguous_copy_gpu(x, s);
|
||||
encoder.add_temporary(x_copy);
|
||||
return x_copy;
|
||||
}
|
||||
};
|
||||
|
||||
auto input = ensure_contiguous(inputs[0]);
|
||||
outputs[0].set_data(cu::malloc_async(outputs[0].nbytes(), encoder.stream()));
|
||||
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(outputs[0]);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
distributed::detail::sum_scatter(group(), input, outputs[0], s);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error("Only sum scatter is supported. ");
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core::distributed
|
||||
|
||||
@@ -1,6 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/fence.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -20,8 +22,24 @@ void Fence::wait(Stream s, const array&) {
|
||||
fence->event.wait(fence->count);
|
||||
}
|
||||
|
||||
void Fence::update(Stream s, const array&) {
|
||||
void Fence::update(Stream s, const array& a, bool cross_device) {
|
||||
auto* fence = static_cast<FenceImpl*>(fence_.get());
|
||||
if (cross_device) {
|
||||
// Move to managed memory if there is a device switch
|
||||
auto& cbuf =
|
||||
*static_cast<cu::CudaBuffer*>(const_cast<array&>(a).buffer().ptr());
|
||||
if (cbuf.device != -1) {
|
||||
void* new_data;
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&new_data, cbuf.size));
|
||||
cbuf.device = -1;
|
||||
auto& encoder = cu::device(s.device).get_command_encoder(s);
|
||||
encoder.commit();
|
||||
CHECK_CUDA_ERROR(cudaMemcpyAsync(
|
||||
new_data, cbuf.data, cbuf.size, cudaMemcpyDefault, encoder.stream()));
|
||||
CHECK_CUDA_ERROR(cudaFreeAsync(cbuf.data, encoder.stream()));
|
||||
cbuf.data = new_data;
|
||||
}
|
||||
}
|
||||
fence->count++;
|
||||
fence->event.signal(s, fence->count);
|
||||
}
|
||||
|
||||
@@ -241,7 +241,7 @@ void CublasGemm::set_bias(cu::CommandEncoder& encoder, const array& bias) {
|
||||
CUBLASLT_MATMUL_DESC_EPILOGUE,
|
||||
&epilogue,
|
||||
sizeof(epilogue)));
|
||||
auto* bias_ptr = bias.data<void>();
|
||||
auto* bias_ptr = gpu_ptr<void>(bias);
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_BIAS_POINTER,
|
||||
@@ -278,9 +278,9 @@ void CublasGemm::run(
|
||||
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
gpu_ptr<void>(out),
|
||||
gpu_ptr<void>(a),
|
||||
gpu_ptr<void>(b),
|
||||
nullptr,
|
||||
alpha);
|
||||
}
|
||||
@@ -321,10 +321,10 @@ void CublasGemm::run(
|
||||
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
c.data<void>(),
|
||||
gpu_ptr<void>(out),
|
||||
gpu_ptr<void>(a),
|
||||
gpu_ptr<void>(b),
|
||||
gpu_ptr<void>(c),
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
@@ -370,11 +370,11 @@ void CublasGemm::execute(
|
||||
// Ensure workspace is 256-byte aligned
|
||||
int nbytes = cuda::ceil_div(heuristic_.workspaceSize, 256) * 256;
|
||||
array workspace(
|
||||
allocator::malloc(nbytes),
|
||||
cu::malloc_async(nbytes, encoder.stream()),
|
||||
{static_cast<int>(heuristic_.workspaceSize)},
|
||||
int8);
|
||||
encoder.add_temporary(workspace);
|
||||
workspace_ptr = workspace.data<void>();
|
||||
workspace_ptr = gpu_ptr<void>(workspace);
|
||||
}
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
|
||||
@@ -25,9 +25,10 @@ void CublasGemm::run_batched(
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
gpu_ptr<int8_t>(out) +
|
||||
out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
gpu_ptr<int8_t>(a) + a.itemsize() * a_it.loc,
|
||||
gpu_ptr<int8_t>(b) + b.itemsize() * b_it.loc,
|
||||
nullptr,
|
||||
alpha);
|
||||
a_it.step();
|
||||
@@ -60,10 +61,11 @@ void CublasGemm::run_batched(
|
||||
for (size_t i = 0; i < nbatch; ++i) {
|
||||
execute(
|
||||
encoder,
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
c.data<int8_t>() + c.itemsize() * c_it.loc,
|
||||
gpu_ptr<int8_t>(out) +
|
||||
out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
gpu_ptr<int8_t>(a) + a.itemsize() * a_it.loc,
|
||||
gpu_ptr<int8_t>(b) + b.itemsize() * b_it.loc,
|
||||
gpu_ptr<int8_t>(c) + c.itemsize() * c_it.loc,
|
||||
alpha,
|
||||
beta);
|
||||
a_it.step();
|
||||
|
||||
@@ -163,7 +163,7 @@ void CublasGemm::run_batched(
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(void*) * 3),
|
||||
cu::malloc_async(batch_count * sizeof(void*) * 3, encoder.stream()),
|
||||
{batch_count * 3},
|
||||
uint64);
|
||||
|
||||
@@ -183,10 +183,10 @@ void CublasGemm::run_batched(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
gpu_ptr<int8_t*>(pointers),
|
||||
gpu_ptr<int8_t>(a),
|
||||
gpu_ptr<int8_t>(b),
|
||||
gpu_ptr<int8_t>(out),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
@@ -200,10 +200,10 @@ void CublasGemm::run_batched(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
gpu_ptr<int8_t*>(pointers),
|
||||
gpu_ptr<int8_t>(a),
|
||||
gpu_ptr<int8_t>(b),
|
||||
gpu_ptr<int8_t>(out),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
@@ -219,7 +219,7 @@ void CublasGemm::run_batched(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto a_pointers = gpu_ptr<int8_t*>(pointers);
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto out_pointers = b_pointers + batch_count;
|
||||
execute(
|
||||
@@ -251,7 +251,7 @@ void CublasGemm::run_batched(
|
||||
|
||||
// Launch kernel to set device offsets
|
||||
auto pointers = array(
|
||||
allocator::malloc(batch_count * sizeof(uint64_t) * 4),
|
||||
cu::malloc_async(batch_count * sizeof(uint64_t) * 4, encoder.stream()),
|
||||
{batch_count * 4},
|
||||
uint64);
|
||||
|
||||
@@ -271,11 +271,11 @@ void CublasGemm::run_batched(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
gpu_ptr<int8_t*>(pointers),
|
||||
gpu_ptr<int8_t>(a),
|
||||
gpu_ptr<int8_t>(b),
|
||||
gpu_ptr<int8_t>(c),
|
||||
gpu_ptr<int8_t>(out),
|
||||
item_size,
|
||||
const_param<ndim_constant()>(batch_shape),
|
||||
const_param<ndim_constant()>(a_batch_strides),
|
||||
@@ -290,11 +290,11 @@ void CublasGemm::run_batched(
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
pointers.data<int8_t*>(),
|
||||
a.data<int8_t>(),
|
||||
b.data<int8_t>(),
|
||||
c.data<int8_t>(),
|
||||
out.data<int8_t>(),
|
||||
gpu_ptr<int8_t*>(pointers),
|
||||
gpu_ptr<int8_t>(a),
|
||||
gpu_ptr<int8_t>(b),
|
||||
gpu_ptr<int8_t>(c),
|
||||
gpu_ptr<int8_t>(out),
|
||||
item_size,
|
||||
const_param(batch_shape),
|
||||
const_param(a_batch_strides),
|
||||
@@ -312,7 +312,7 @@ void CublasGemm::run_batched(
|
||||
encoder.set_input_array(c);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto a_pointers = pointers.data<int8_t*>();
|
||||
auto a_pointers = gpu_ptr<int8_t*>(pointers);
|
||||
auto b_pointers = a_pointers + batch_count;
|
||||
auto c_pointers = b_pointers + batch_count;
|
||||
auto out_pointers = c_pointers + batch_count;
|
||||
|
||||
@@ -149,13 +149,13 @@ void gemv(
|
||||
auto vec_strides = const_param(b_batch_strides);
|
||||
|
||||
if (M == 1) {
|
||||
mat = b.data<DataType>();
|
||||
vec = a.data<DataType>();
|
||||
mat = gpu_ptr<DataType>(b);
|
||||
vec = gpu_ptr<DataType>(a);
|
||||
rows = N;
|
||||
std::swap(mat_strides, vec_strides);
|
||||
} else {
|
||||
mat = a.data<DataType>();
|
||||
vec = b.data<DataType>();
|
||||
mat = gpu_ptr<DataType>(a);
|
||||
vec = gpu_ptr<DataType>(b);
|
||||
rows = M;
|
||||
}
|
||||
uint32_t num_blocks_x = (rows + rows_per_block - 1) / rows_per_block;
|
||||
@@ -177,7 +177,7 @@ void gemv(
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
gpu_ptr<DataType>(out),
|
||||
rows,
|
||||
cols);
|
||||
} else {
|
||||
@@ -189,7 +189,7 @@ void gemv(
|
||||
0,
|
||||
mat,
|
||||
vec,
|
||||
out.data<DataType>(),
|
||||
gpu_ptr<DataType>(out),
|
||||
rows,
|
||||
cols,
|
||||
const_param(batch_shape),
|
||||
|
||||
@@ -31,7 +31,7 @@ void append_indices_arg(
|
||||
int idx_ndim) {
|
||||
SmallVector<const void*> indices(nidx);
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
indices[i] = inputs[i + 1].data<void>();
|
||||
indices[i] = gpu_ptr<void>(inputs[i + 1]);
|
||||
}
|
||||
args.append(std::move(indices));
|
||||
SmallVector<int32_t> indices_shape(nidx * idx_ndim);
|
||||
@@ -59,7 +59,9 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() > 0);
|
||||
const auto& src = inputs[0];
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -80,7 +82,6 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
dtype_to_string(idx_dtype),
|
||||
nidx);
|
||||
|
||||
auto& s = stream();
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
|
||||
std::vector<std::string> kernel_names;
|
||||
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
|
||||
@@ -121,7 +122,6 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
idx_ndim,
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
@@ -239,7 +239,9 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
const auto& src = inputs[0];
|
||||
const auto& idx = inputs[1];
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto& s = stream();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -251,7 +253,6 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
dtype_to_string(out.dtype()),
|
||||
dtype_to_string(idx.dtype()));
|
||||
|
||||
auto& s = stream();
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
|
||||
std::vector<std::string> kernel_names;
|
||||
for (int ndim = 0; ndim <= MAX_NDIM; ++ndim) {
|
||||
@@ -312,7 +313,6 @@ void GatherAxis::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
idx.flags().row_contiguous,
|
||||
large ? "int64_t" : "int32_t");
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
for (const auto& in : inputs) {
|
||||
encoder.set_input_array(in);
|
||||
}
|
||||
|
||||
@@ -31,7 +31,7 @@ struct KernelArgs {
|
||||
}
|
||||
|
||||
void append(const array& a) {
|
||||
append(reinterpret_cast<CUdeviceptr>(a.data<void>()));
|
||||
append(reinterpret_cast<CUdeviceptr>(gpu_ptr<void>(a)));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
#include <type_traits>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
#include <cuda.h>
|
||||
|
||||
@@ -230,9 +230,10 @@ void LayerNorm::eval_gpu(
|
||||
nvtx3::scoped_range r("LayerNorm::eval_gpu");
|
||||
auto& s = stream();
|
||||
auto& out = outputs[0];
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
|
||||
// Make sure that the last dimension is contiguous.
|
||||
auto set_output = [&s, &out](const array& x) {
|
||||
auto set_output = [&s, &out, &encoder](const array& x) {
|
||||
bool no_copy = x.flags().contiguous && x.strides()[x.ndim() - 1] == 1;
|
||||
if (no_copy && x.ndim() > 1) {
|
||||
auto s = x.strides()[x.ndim() - 2];
|
||||
@@ -243,7 +244,7 @@ void LayerNorm::eval_gpu(
|
||||
out.copy_shared_buffer(x);
|
||||
} else {
|
||||
out.set_data(
|
||||
allocator::malloc(x.data_size() * x.itemsize()),
|
||||
cu::malloc_async(x.data_size() * x.itemsize(), encoder.stream()),
|
||||
x.data_size(),
|
||||
x.strides(),
|
||||
x.flags());
|
||||
@@ -265,7 +266,6 @@ void LayerNorm::eval_gpu(
|
||||
int64_t w_stride = (w.ndim() == 1) ? w.strides()[0] : 0;
|
||||
int64_t b_stride = (b.ndim() == 1) ? b.strides()[0] : 0;
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(b);
|
||||
@@ -280,10 +280,10 @@ void LayerNorm::eval_gpu(
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
gpu_ptr<DataType>(x),
|
||||
gpu_ptr<DataType>(w),
|
||||
gpu_ptr<DataType>(b),
|
||||
gpu_ptr<DataType>(out),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride,
|
||||
@@ -335,7 +335,7 @@ void LayerNormVJP::eval_gpu(
|
||||
gx.copy_shared_buffer(g);
|
||||
g_in_gx = true;
|
||||
} else {
|
||||
gx.set_data(allocator::malloc(gx.nbytes()));
|
||||
gx.set_data(cu::malloc_async(gx.nbytes(), encoder.stream()));
|
||||
}
|
||||
if (g_copied && !g_in_gx) {
|
||||
encoder.add_temporary(g);
|
||||
@@ -355,7 +355,7 @@ void LayerNormVJP::eval_gpu(
|
||||
g_in_gw = true;
|
||||
gw_temp.copy_shared_buffer(g);
|
||||
} else {
|
||||
gw_temp.set_data(allocator::malloc(gw_temp.nbytes()));
|
||||
gw_temp.set_data(cu::malloc_async(gw_temp.nbytes(), encoder.stream()));
|
||||
encoder.add_temporary(gw_temp);
|
||||
}
|
||||
}
|
||||
@@ -393,11 +393,11 @@ void LayerNormVJP::eval_gpu(
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
x.data<DataType>(),
|
||||
w.data<DataType>(),
|
||||
g.data<DataType>(),
|
||||
gx.data<DataType>(),
|
||||
gw_temp.data<DataType>(),
|
||||
gpu_ptr<DataType>(x),
|
||||
gpu_ptr<DataType>(w),
|
||||
gpu_ptr<DataType>(g),
|
||||
gpu_ptr<DataType>(gx),
|
||||
gpu_ptr<DataType>(gw_temp),
|
||||
eps_,
|
||||
axis_size,
|
||||
w_stride);
|
||||
|
||||
60
mlx/backend/cuda/load.cpp
Normal file
60
mlx/backend/cuda/load.cpp
Normal file
@@ -0,0 +1,60 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <algorithm>
|
||||
#include <utility>
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace {
|
||||
|
||||
template <const uint8_t scalar_size>
|
||||
void swap_endianness(uint8_t* data_bytes, size_t N) {
|
||||
struct Elem {
|
||||
uint8_t bytes[scalar_size];
|
||||
};
|
||||
|
||||
Elem* data = reinterpret_cast<Elem*>(data_bytes);
|
||||
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
for (size_t j = 0; j < (scalar_size / 2); j++) {
|
||||
std::swap(data[i].bytes[j], data[i].bytes[scalar_size - j - 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Load::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
auto size = out.size();
|
||||
auto nbytes = size * out.itemsize();
|
||||
out.set_data(cu::malloc_async(nbytes, encoder.stream()));
|
||||
auto out_ptr = malloc(nbytes);
|
||||
reader_->read(static_cast<char*>(out_ptr), nbytes, offset_);
|
||||
if (swap_endianness_) {
|
||||
switch (out.itemsize()) {
|
||||
case 2:
|
||||
swap_endianness<2>(reinterpret_cast<uint8_t*>(out_ptr), size);
|
||||
break;
|
||||
case 4:
|
||||
swap_endianness<4>(reinterpret_cast<uint8_t*>(out_ptr), size);
|
||||
break;
|
||||
case 8:
|
||||
swap_endianness<8>(reinterpret_cast<uint8_t*>(out_ptr), size);
|
||||
break;
|
||||
}
|
||||
}
|
||||
CHECK_CUDA_ERROR(cudaMemcpyAsync(
|
||||
gpu_ptr<void>(out),
|
||||
out_ptr,
|
||||
nbytes,
|
||||
cudaMemcpyDefault,
|
||||
encoder.stream()));
|
||||
CHECK_CUDA_ERROR(cudaLaunchHostFunc(encoder.stream(), free, out_ptr));
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
@@ -115,7 +115,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
auto in = ensure_contiguous(inputs[0]);
|
||||
if (in.flags().row_contiguous) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
out.set_data(cu::malloc_async(out.nbytes(), encoder.stream()));
|
||||
} else {
|
||||
auto n = in.shape(-1);
|
||||
auto flags = in.flags();
|
||||
@@ -130,7 +130,7 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
flags.col_contiguous = col_contig;
|
||||
out.set_data(
|
||||
allocator::malloc(in.nbytes() / n),
|
||||
cu::malloc_async(in.nbytes() / n, encoder.stream()),
|
||||
in.data_size() / n,
|
||||
std::move(strides),
|
||||
flags);
|
||||
@@ -151,8 +151,8 @@ void LogSumExp::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
n_rows,
|
||||
block_dim(),
|
||||
0,
|
||||
in.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
gpu_ptr<DataType>(in),
|
||||
gpu_ptr<DataType>(out),
|
||||
axis_size);
|
||||
});
|
||||
});
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user