mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Compare commits
135 Commits
simple-gem
...
sign-warns
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
24828b1b2f | ||
|
|
9f649b5658 | ||
|
|
18aa921388 | ||
|
|
8d13a0bc6b | ||
|
|
ac75c87fd7 | ||
|
|
7107802e09 | ||
|
|
c5913131cf | ||
|
|
19ab7911f6 | ||
|
|
4a1b1796b7 | ||
|
|
b48d298205 | ||
|
|
8277e71ea9 | ||
|
|
b0d985416a | ||
|
|
8d10f3ec75 | ||
|
|
6343622c67 | ||
|
|
979abf462b | ||
|
|
981d2fdaf0 | ||
|
|
5a306d3495 | ||
|
|
5baa361779 | ||
|
|
1bac0db7e3 | ||
|
|
a1212b4e44 | ||
|
|
45a8b226af | ||
|
|
76ef1e98f3 | ||
|
|
63d91557e0 | ||
|
|
310e501e6a | ||
|
|
cacc3ab7fd | ||
|
|
53525cba23 | ||
|
|
3d67b717a0 | ||
|
|
953b2f5be2 | ||
|
|
26f7155537 | ||
|
|
66fcb9fe94 | ||
|
|
d1e06117e8 | ||
|
|
539d8322d1 | ||
|
|
c4767d110f | ||
|
|
895217f25b | ||
|
|
0cfeeb60ca | ||
|
|
8f8af61a37 | ||
|
|
233384161e | ||
|
|
5bcf3a6794 | ||
|
|
7707196297 | ||
|
|
7e3471c987 | ||
|
|
9f0ba3ddf1 | ||
|
|
4bce5f9b2d | ||
|
|
e9eab527eb | ||
|
|
36ca62dba8 | ||
|
|
9cbb1b0148 | ||
|
|
9bfc476d72 | ||
|
|
25e2356316 | ||
|
|
226a1d24e0 | ||
|
|
630350ad3e | ||
|
|
380aeb58ae | ||
|
|
f37389d100 | ||
|
|
e89e8b4272 | ||
|
|
85a8824a8c | ||
|
|
f5d4397e5c | ||
|
|
343e33b6d5 | ||
|
|
0073096dd1 | ||
|
|
e3d004fed9 | ||
|
|
a393435d28 | ||
|
|
a7a94b29d7 | ||
|
|
22a5da76c8 | ||
|
|
287c63a093 | ||
|
|
1c9ae1eaa1 | ||
|
|
c2c3e0b0a2 | ||
|
|
b0cc71ae71 | ||
|
|
e88f2d4a8e | ||
|
|
9cee557423 | ||
|
|
bbf1423953 | ||
|
|
eb24267b56 | ||
|
|
dc371ae7a5 | ||
|
|
e76a8dd5c5 | ||
|
|
b466dea982 | ||
|
|
7a6adda1e6 | ||
|
|
1a9f820af6 | ||
|
|
d4f4ff3c5e | ||
|
|
7c7e48dbd1 | ||
|
|
fbbf3b9b3e | ||
|
|
bf01ad9367 | ||
|
|
ae438d05fa | ||
|
|
711a645807 | ||
|
|
aa9d44b3d4 | ||
|
|
ec2ab42888 | ||
|
|
787c0d90cd | ||
|
|
e8b604a6a3 | ||
|
|
50cc09887f | ||
|
|
3f730e77aa | ||
|
|
caecbe876a | ||
|
|
8afb6d62f2 | ||
|
|
6ccfa603cd | ||
|
|
36cad99a11 | ||
|
|
ee18e1cbf0 | ||
|
|
af120c2bc0 | ||
|
|
6a3acf2301 | ||
|
|
d6977f2a57 | ||
|
|
db5443e831 | ||
|
|
52b8384d10 | ||
|
|
44cc5da4bc | ||
|
|
dde3682b69 | ||
|
|
17310d91a6 | ||
|
|
b194d65a6a | ||
|
|
a44b27f5f8 | ||
|
|
e5a33f2223 | ||
|
|
c1e3340b23 | ||
|
|
8f163a367d | ||
|
|
89a3df9014 | ||
|
|
c5d2937aa5 | ||
|
|
b61a65e313 | ||
|
|
04cbb4191c | ||
|
|
c5460762e7 | ||
|
|
8ce49cd39e | ||
|
|
9c68b50853 | ||
|
|
111f1e71af | ||
|
|
827003d568 | ||
|
|
d363a76aa4 | ||
|
|
70560b6bd5 | ||
|
|
7ef8a6f2d5 | ||
|
|
31c6f6e33f | ||
|
|
584d48458e | ||
|
|
5cf984ca87 | ||
|
|
a9bac3d9e5 | ||
|
|
5458d43247 | ||
|
|
a4dba65220 | ||
|
|
3dcb286baf | ||
|
|
4822c3dbe9 | ||
|
|
2ca75bb529 | ||
|
|
db14e29a0b | ||
|
|
d2f540f4e0 | ||
|
|
333ffea273 | ||
|
|
f55b6f1f2f | ||
|
|
30561229c7 | ||
|
|
068a4612e9 | ||
|
|
5722c147de | ||
|
|
f6819a1f26 | ||
|
|
f93f87c802 | ||
|
|
9392fc3f88 | ||
|
|
e843c4d8d5 |
@@ -18,16 +18,17 @@ jobs:
|
||||
type: boolean
|
||||
default: false
|
||||
macos:
|
||||
xcode: "16.2.0"
|
||||
resource_class: m2pro.medium
|
||||
xcode: "26.0.0"
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install
|
||||
command: |
|
||||
brew install python@3.9
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
brew install python@3.10
|
||||
brew install doxygen
|
||||
python3.9 -m venv env
|
||||
python3.10 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
@@ -89,7 +90,8 @@ jobs:
|
||||
command: |
|
||||
uv venv
|
||||
uv pip install cmake
|
||||
uv pip install -e ".[dev]" -v
|
||||
DEBUG=1 CMAKE_ARGS="-DCMAKE_COMPILE_WARNING_AS_ERROR=ON" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
@@ -118,7 +120,7 @@ jobs:
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
macosx_deployment_target:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -126,18 +128,19 @@ jobs:
|
||||
xcode: << parameters.xcode_version >>
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
HOMEBREW_NO_AUTO_UPDATE=1 HOMEBREW_NO_INSTALL_CLEANUP=1 \
|
||||
brew install openmpi uv
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv --python 3.9
|
||||
uv venv --python 3.10
|
||||
uv pip install \
|
||||
nanobind==2.4.0 \
|
||||
cmake \
|
||||
@@ -196,7 +199,7 @@ jobs:
|
||||
name: Run Python tests with JIT
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
|
||||
uv pip install -e .
|
||||
uv pip install -e . -v
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
|
||||
METAL_DEBUG_ERROR_MODE=0 \
|
||||
uv run --no-project python -m xmlrunner discover \
|
||||
@@ -222,15 +225,20 @@ jobs:
|
||||
sudo apt-get update
|
||||
sudo apt-get install libcudnn9-dev-cuda-12
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
sudo apt-get install libnccl2 libnccl-dev
|
||||
curl -sL https://github.com/ccache/ccache/releases/download/v4.11.3/ccache-4.11.3-linux-x86_64.tar.xz | tar xJf -
|
||||
sudo mv ccache-4.11.3-linux-x86_64/ccache /usr/bin/ccache
|
||||
rm -rf ccache-4.11.3-linux-x86_64
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
- run:
|
||||
name: Set CCache size
|
||||
command: ccache --max-size 1G
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
uv venv
|
||||
CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install cmake
|
||||
DEBUG=1 CMAKE_ARGS="-DMLX_BUILD_CUDA=ON -DCMAKE_COMPILE_WARNING_AS_ERROR=ON -DCMAKE_CUDA_COMPILER=`which nvcc`" \
|
||||
uv pip install -e ".[dev]" -v
|
||||
- run:
|
||||
name: Run Python tests
|
||||
@@ -238,12 +246,23 @@ jobs:
|
||||
source .venv/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m unittest discover python/tests -v
|
||||
LOW_MEMORY=1 DEVICE=gpu python -m tests discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source .venv/bin/activate
|
||||
cmake . -B build \
|
||||
-DMLX_BUILD_CUDA=ON \
|
||||
-DCMAKE_CUDA_COMPILER=`which nvcc` \
|
||||
-DCMAKE_BUILD_TYPE=DEBUG
|
||||
cmake --build build -j `nproc`
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: ./build/tests/tests -sfe="*fft_tests.cpp,*linalg_tests.cpp"
|
||||
- run:
|
||||
name: CCache report
|
||||
command: |
|
||||
ccache --show-stats
|
||||
ccache --zero-stats
|
||||
ccache --max-size 400MB
|
||||
ccache --cleanup
|
||||
- save_cache:
|
||||
key: cuda-<< parameters.image_date >>-{{ arch }}-{{ epoch }}
|
||||
@@ -254,10 +273,10 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "16.2.0"
|
||||
default: "26.0.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -266,7 +285,7 @@ jobs:
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: m2pro.medium
|
||||
resource_class: m4pro.medium
|
||||
environment:
|
||||
MACOSX_DEPLOYMENT_TARGET: << parameters.macosx_deployment_target >>
|
||||
steps:
|
||||
@@ -274,11 +293,15 @@ jobs:
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
brew install python@<< parameters.python_version >>
|
||||
brew install openmpi
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
xcodebuild -downloadComponent MetalToolchain
|
||||
mkdir -p ~/miniconda3
|
||||
curl https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh -o ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
source ~/miniconda3/bin/activate
|
||||
conda init --all
|
||||
conda create -n env python=<< parameters.python_version >> -y
|
||||
conda activate env
|
||||
pip install --upgrade cmake
|
||||
pip install nanobind==2.4.0
|
||||
pip install --upgrade setuptools
|
||||
@@ -288,29 +311,29 @@ jobs:
|
||||
- run:
|
||||
name: Install Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
env -u MACOSX_DEPLOYMENT_TARGET DEV_RELEASE=1 \
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
pip install typing_extensions
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=1 python -m build -w
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
python setup.py clean --all
|
||||
<< parameters.build_env >> MLX_BUILD_STAGE=2 python -m build -w
|
||||
- when:
|
||||
@@ -319,7 +342,7 @@ jobs:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
conda activate env
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
@@ -328,7 +351,7 @@ jobs:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
default: "3.10"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
@@ -364,7 +387,7 @@ jobs:
|
||||
bash python/scripts/repair_linux.sh
|
||||
- when:
|
||||
condition:
|
||||
equal: ["3.9", << parameters.python_version >>]
|
||||
equal: ["3.10", << parameters.python_version >>]
|
||||
steps:
|
||||
- run:
|
||||
name: Build common package
|
||||
@@ -392,7 +415,7 @@ jobs:
|
||||
default: ""
|
||||
machine:
|
||||
image: ubuntu-2204:current
|
||||
resource_class: large
|
||||
resource_class: xlarge
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
@@ -439,7 +462,7 @@ workflows:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test
|
||||
- cuda_build_and_test:
|
||||
matrix:
|
||||
@@ -461,71 +484,10 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "PYPI_RELEASE=1"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_documentation:
|
||||
filters:
|
||||
tags:
|
||||
@@ -541,7 +503,7 @@ workflows:
|
||||
ignore: /.*/
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
filters:
|
||||
@@ -567,7 +529,7 @@ workflows:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
macosx_deployment_target: ["13.5", "14.0"]
|
||||
macosx_deployment_target: ["13.5", "15.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
- cuda_build_and_test:
|
||||
@@ -584,59 +546,13 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
- build_cuda_release
|
||||
|
||||
build_dev_release:
|
||||
@@ -648,75 +564,14 @@ workflows:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
macosx_deployment_target: ["13.5", "14.0", "15.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
xcode_version: ["16.2.0", "15.0.0"]
|
||||
exclude:
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "13.5"
|
||||
xcode_version: "16.2.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "14.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.9"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.10"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.11"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.12"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
- macosx_deployment_target: "15.0"
|
||||
xcode_version: "15.0.0"
|
||||
python_version: "3.13"
|
||||
build_env: "DEV_RELEASE=1"
|
||||
xcode_version: ["26.0.0"]
|
||||
- build_linux_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
|
||||
python_version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
- build_cuda_release:
|
||||
matrix:
|
||||
|
||||
@@ -19,12 +19,17 @@ MLX was developed with contributions from the following individuals:
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer.
|
||||
- Gökdeniz Gülmez: Added the `Muon (MomentUm Orthogonalized by Newton-schulz)` optimizer, and the `ReLU²` activation function.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Organizations
|
||||
|
||||
MLX has received contributions from the following companies:
|
||||
- NVIDIA Corporation & Affiliates
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
MLX leverages several third-party software, listed here together with
|
||||
|
||||
@@ -20,12 +20,17 @@ project(
|
||||
LANGUAGES C CXX
|
||||
VERSION ${MLX_PROJECT_VERSION})
|
||||
|
||||
if(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang")
|
||||
add_compile_options(-Wall -Wextra)
|
||||
endif()
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
set(CMAKE_CXX_STANDARD 20)
|
||||
set(CMAKE_CXX_STANDARD_REQUIRED ON)
|
||||
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
|
||||
set(CMAKE_INSTALL_MESSAGE NEVER)
|
||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||
|
||||
# ----------------------------- Configuration -----------------------------
|
||||
option(MLX_BUILD_TESTS "Build tests for mlx" ON)
|
||||
@@ -87,22 +92,21 @@ cmake_policy(SET CMP0135 NEW)
|
||||
|
||||
add_library(mlx)
|
||||
|
||||
if(MLX_BUILD_METAL)
|
||||
set(METAL_LIB "-framework Metal")
|
||||
set(FOUNDATION_LIB "-framework Foundation")
|
||||
set(QUARTZ_LIB "-framework QuartzCore")
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CUDA)
|
||||
enable_language(CUDA)
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif(MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
if(MLX_BUILD_METAL)
|
||||
find_library(METAL_LIB Metal)
|
||||
find_library(FOUNDATION_LIB Foundation)
|
||||
find_library(QUARTZ_LIB QuartzCore)
|
||||
if(METAL_LIB)
|
||||
message(STATUS "Metal found ${METAL_LIB}")
|
||||
else()
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"Metal not found. Set MLX_BUILD_METAL=OFF to build without GPU")
|
||||
endif()
|
||||
|
||||
if(MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
@@ -111,7 +115,8 @@ elseif(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
@@ -140,6 +145,12 @@ elseif(MLX_BUILD_METAL)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
endif()
|
||||
|
||||
if(CMAKE_SYSTEM_NAME STREQUAL "Linux")
|
||||
# With newer clang/gcc versions following libs are implicitly linked, but when
|
||||
# building on old distributions they need to be explicitly listed.
|
||||
target_link_libraries(mlx PRIVATE dl pthread)
|
||||
endif()
|
||||
|
||||
if(WIN32)
|
||||
if(MSVC)
|
||||
# GGUF does not build with MSVC.
|
||||
@@ -167,7 +178,7 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
message(STATUS "Accelerate not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
|
||||
38
README.md
38
README.md
@@ -2,7 +2,7 @@
|
||||
|
||||
[**Quickstart**](#quickstart) | [**Installation**](#installation) |
|
||||
[**Documentation**](https://ml-explore.github.io/mlx/build/html/index.html) |
|
||||
[**Examples**](#examples)
|
||||
[**Examples**](#examples)
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
@@ -11,37 +11,37 @@ brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
and computation graph optimization.
|
||||
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
- **Lazy computation**: Computations in MLX are lazy. Arrays are only
|
||||
materialized when needed.
|
||||
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
- **Dynamic graph construction**: Computation graphs in MLX are constructed
|
||||
dynamically. Changing the shapes of function arguments does not trigger
|
||||
slow compilations, and debugging is simple and intuitive.
|
||||
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
- **Multi-device**: Operations can run on any of the supported devices
|
||||
(currently the CPU and the GPU).
|
||||
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
- **Unified memory**: A notable difference from MLX and other frameworks
|
||||
is the *unified memory model*. Arrays in MLX live in shared memory.
|
||||
Operations on MLX arrays can be performed on any of the supported
|
||||
device types without transferring data.
|
||||
|
||||
MLX is designed by machine learning researchers for machine learning
|
||||
researchers. The framework is intended to be user-friendly, but still efficient
|
||||
to train and deploy models. The design of the framework itself is also
|
||||
conceptually simple. We intend to make it easy for researchers to extend and
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
improve MLX with the goal of quickly exploring new ideas.
|
||||
|
||||
The design of MLX is inspired by frameworks like
|
||||
[NumPy](https://numpy.org/doc/stable/index.html),
|
||||
@@ -91,7 +91,7 @@ Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
@@ -110,7 +110,7 @@ Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. If you find
|
||||
MLX useful in your research and wish to cite it, please use the following
|
||||
BibTex entry:
|
||||
|
||||
```
|
||||
```text
|
||||
@software{mlx2023,
|
||||
author = {Awni Hannun and Jagrit Digani and Angelos Katharopoulos and Ronan Collobert},
|
||||
title = {{MLX}: Efficient and flexible machine learning on Apple silicon},
|
||||
|
||||
@@ -142,9 +142,7 @@ def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
|
||||
t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
|
||||
|
||||
c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
|
||||
c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
|
||||
np.float32
|
||||
)
|
||||
c_npy = a_np.transpose(t_a).astype(np_dtype) @ b_np.transpose(t_b).astype(np_dtype)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
@@ -163,7 +161,7 @@ def get_gflop_count(B, M, N, K):
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
dtypes = ("float32", "float16")
|
||||
dtypes = ("float32", "float16", "complex64")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
@@ -187,7 +185,7 @@ if __name__ == "__main__":
|
||||
diff = gflops_mx / gflops_pt - 1.0
|
||||
|
||||
print(
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
|
||||
f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100.0 * diff:+5.2f}%"
|
||||
)
|
||||
if gflops_pt >= 2.0 * gflops_mx:
|
||||
print("ATTENTION ^^^^^^^")
|
||||
|
||||
@@ -196,7 +196,7 @@ def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
|
||||
|
||||
for transpose in (False, True):
|
||||
for dtype in ("float32", "float16"):
|
||||
for dtype in ("float32", "float16", "complex64"):
|
||||
fig, axs = plt.subplots(
|
||||
len(in_vec_sizes), 2, figsize=(8.5, 11), layout="constrained"
|
||||
)
|
||||
@@ -215,7 +215,7 @@ for transpose in (False, True):
|
||||
fig.suptitle(f"{device_name}: {dtype} {op_name}")
|
||||
fig.savefig(
|
||||
os.path.join(
|
||||
results_dir, f'{device_name.replace(" ", "_")}_{dtype}_{op_name}.pdf'
|
||||
results_dir, f"{device_name.replace(' ', '_')}_{dtype}_{op_name}.pdf"
|
||||
)
|
||||
)
|
||||
plt.close(fig)
|
||||
|
||||
54
cmake/FindNCCL.cmake
Normal file
54
cmake/FindNCCL.cmake
Normal file
@@ -0,0 +1,54 @@
|
||||
# FindNCCL.cmake This module finds the NVIDIA NCCL library and its include
|
||||
# directories.
|
||||
|
||||
set(NCCL_ROOT_DIR
|
||||
$ENV{NCCL_ROOT_DIR}
|
||||
CACHE PATH "Folder contains NVIDIA NCCL")
|
||||
|
||||
find_path(
|
||||
NCCL_INCLUDE_DIRS
|
||||
NAMES nccl.h
|
||||
HINTS ${NCCL_INCLUDE_DIR} ${NCCL_ROOT_DIR} ${NCCL_ROOT_DIR}/include
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/include)
|
||||
|
||||
if($ENV{USE_STATIC_NCCL})
|
||||
message(
|
||||
STATUS "USE_STATIC_NCCL detected. Linking against static NCCL library")
|
||||
set(NCCL_LIBNAME "libnccl_static.a")
|
||||
else()
|
||||
set(NCCL_LIBNAME "nccl")
|
||||
endif()
|
||||
|
||||
find_library(
|
||||
NCCL_LIBRARIES
|
||||
NAMES ${NCCL_LIBNAME}
|
||||
HINTS ${NCCL_LIB_DIR}
|
||||
${NCCL_ROOT_DIR}
|
||||
${NCCL_ROOT_DIR}/lib
|
||||
${NCCL_ROOT_DIR}/lib/x86_64-linux-gnu
|
||||
${NCCL_ROOT_DIR}/lib64
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib
|
||||
${CUDA_TOOLKIT_ROOT_DIR}/lib64)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(NCCL DEFAULT_MSG NCCL_INCLUDE_DIRS
|
||||
NCCL_LIBRARIES)
|
||||
|
||||
if(NCCL_FOUND)
|
||||
set(NCCL_HEADER_FILE "${NCCL_INCLUDE_DIRS}/nccl.h")
|
||||
message(
|
||||
STATUS "Determining NCCL version from the header file: ${NCCL_HEADER_FILE}")
|
||||
file(
|
||||
STRINGS ${NCCL_HEADER_FILE} NCCL_MAJOR_VERSION_DEFINED
|
||||
REGEX "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+[0-9]+.*$"
|
||||
LIMIT_COUNT 1)
|
||||
if(NCCL_MAJOR_VERSION_DEFINED)
|
||||
string(REGEX REPLACE "^[ \t]*#define[ \t]+NCCL_MAJOR[ \t]+" ""
|
||||
NCCL_MAJOR_VERSION ${NCCL_MAJOR_VERSION_DEFINED})
|
||||
message(STATUS "NCCL_MAJOR_VERSION: ${NCCL_MAJOR_VERSION}")
|
||||
endif()
|
||||
message(
|
||||
STATUS
|
||||
"Found NCCL (include: ${NCCL_INCLUDE_DIRS}, library: ${NCCL_LIBRARIES})")
|
||||
mark_as_advanced(NCCL_ROOT_DIR NCCL_INCLUDE_DIRS NCCL_LIBRARIES)
|
||||
endif()
|
||||
@@ -127,7 +127,7 @@ relying on a copy from ``ensure_row_contiguous``:
|
||||
name="myexp_strided",
|
||||
input_names=["inp"],
|
||||
output_names=["out"],
|
||||
source=source
|
||||
source=source,
|
||||
ensure_row_contiguous=False,
|
||||
)
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ silicon computer is
|
||||
To install from PyPI your system must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.9
|
||||
- Using a native Python >= 3.10
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
@@ -39,7 +39,7 @@ requirements:
|
||||
- Nvidia driver >= 550.54.14
|
||||
- CUDA toolkit >= 12.0
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
CPU-only (Linux)
|
||||
@@ -55,7 +55,7 @@ To install the CPU-only package from PyPi your system must meet the following
|
||||
requirements:
|
||||
|
||||
- Linux distribution with glibc >= 2.35
|
||||
- Python >= 3.9
|
||||
- Python >= 3.10
|
||||
|
||||
|
||||
Troubleshooting
|
||||
@@ -271,7 +271,7 @@ and the CUDA toolkit. For example on Ubuntu, run the following:
|
||||
dpkg -i cuda-keyring_1.1-1_all.deb
|
||||
apt-get update -y
|
||||
apt-get -y install cuda-toolkit-12-9
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev -y
|
||||
apt-get install libblas-dev liblapack-dev liblapacke-dev libcudnn9-dev-cuda-12 -y
|
||||
|
||||
|
||||
When building either the Python or C++ APIs make sure to pass the cmake flag
|
||||
|
||||
@@ -27,6 +27,7 @@ simple functions.
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu2
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
|
||||
@@ -50,6 +50,7 @@ Layers
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
ReLU2
|
||||
ReLU6
|
||||
RNN
|
||||
RoPE
|
||||
|
||||
@@ -112,6 +112,7 @@ Operations
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
median
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
|
||||
@@ -130,8 +130,8 @@ Now make an array, and benchmark both functions:
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
timeit(gelu, x)
|
||||
timeit(mx.compile(gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
|
||||
@@ -184,7 +184,7 @@ almost identical to the example above:
|
||||
|
||||
def step(model, x, y):
|
||||
loss, grads = loss_grad_fn(model, x, y)
|
||||
grads = mlx.nn.average_gradients(grads) # <---- This line was added
|
||||
grads = mx.nn.average_gradients(grads) # <---- This line was added
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
|
||||
@@ -164,11 +164,11 @@ to export a function which can be used for inputs with variable shapes:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array(0.0), shapeless=True)
|
||||
mx.export_function("fun.mlxfn", mx.abs, mx.array([0.0]), shapeless=True)
|
||||
imported_abs = mx.import_function("fun.mlxfn")
|
||||
|
||||
# Ok
|
||||
out, = imported_abs(mx.array(-1.0))
|
||||
out, = imported_abs(mx.array([-1.0]))
|
||||
|
||||
# Also ok
|
||||
out, = imported_abs(mx.array([-1.0, -2.0]))
|
||||
|
||||
@@ -107,8 +107,20 @@ same array:
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Note that unlike NumPy, slicing an array creates a copy, not a view. So
|
||||
mutating it does not mutate the original array:
|
||||
|
||||
Note, unlike NumPy, updates to the same location are nondeterministic:
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a[:]
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 3], dtype=int32)
|
||||
|
||||
Also unlike NumPy, updates to the same location are nondeterministic:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
|
||||
@@ -14,14 +14,17 @@ void array_basics() {
|
||||
// Get the value out of it:
|
||||
auto s = x.item<float>();
|
||||
assert(s == 1.0);
|
||||
(void)s;
|
||||
|
||||
// Scalars have a size of 1:
|
||||
size_t size = x.size();
|
||||
int64_t size = x.size();
|
||||
assert(size == 1);
|
||||
(void)size;
|
||||
|
||||
// Scalars have 0 dimensions:
|
||||
int ndim = x.ndim();
|
||||
assert(ndim == 0);
|
||||
(void)ndim;
|
||||
|
||||
// The shape should be an empty vector:
|
||||
auto shape = x.shape();
|
||||
@@ -30,6 +33,7 @@ void array_basics() {
|
||||
// The datatype should be float32:
|
||||
auto dtype = x.dtype();
|
||||
assert(dtype == mx::float32);
|
||||
(void)dtype;
|
||||
|
||||
// Specify the dtype when constructing the array:
|
||||
x = mx::array(1, mx::int32);
|
||||
|
||||
@@ -44,11 +44,11 @@ std::vector<array> array::make_arrays(
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
std::vector<array> outputs;
|
||||
for (size_t i = 0; i < shapes.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(shapes); ++i) {
|
||||
outputs.emplace_back(std::move(shapes[i]), dtypes[i], primitive, inputs);
|
||||
}
|
||||
// For each node in |outputs|, its siblings are the other nodes.
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(outputs); ++i) {
|
||||
auto siblings = outputs;
|
||||
siblings.erase(siblings.begin() + i);
|
||||
outputs[i].set_siblings(std::move(siblings), i);
|
||||
@@ -145,8 +145,9 @@ void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
array_desc_->data_size = size();
|
||||
array_desc_->flags.contiguous = true;
|
||||
array_desc_->flags.row_contiguous = true;
|
||||
auto max_dim = std::max_element(shape().begin(), shape().end());
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == *max_dim;
|
||||
auto max_dim =
|
||||
static_cast<int64_t>(*std::max_element(shape().begin(), shape().end()));
|
||||
array_desc_->flags.col_contiguous = size() <= 1 || size() == max_dim;
|
||||
}
|
||||
|
||||
void array::set_data(
|
||||
@@ -192,7 +193,7 @@ array::~array() {
|
||||
}
|
||||
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
if (auto n = std::ssize(siblings()); n > 0) {
|
||||
bool do_detach = true;
|
||||
// If all siblings have siblings.size() references except
|
||||
// the one we are currently destroying (which has siblings.size() + 1)
|
||||
@@ -241,8 +242,8 @@ array::ArrayDesc::ArrayDesc(
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
status(Status::unscheduled),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
@@ -274,7 +275,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
ad.inputs.clear();
|
||||
for (auto& [_, a] : input_map) {
|
||||
bool is_deletable =
|
||||
(a.array_desc_.use_count() <= a.siblings().size() + 1);
|
||||
(a.array_desc_.use_count() <= std::ssize(a.siblings()) + 1);
|
||||
// An array with siblings is deletable only if all of its siblings
|
||||
// are deletable
|
||||
for (auto& s : a.siblings()) {
|
||||
@@ -283,7 +284,7 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
}
|
||||
int is_input = (input_map.find(s.id()) != input_map.end());
|
||||
is_deletable &=
|
||||
s.array_desc_.use_count() <= a.siblings().size() + is_input;
|
||||
s.array_desc_.use_count() <= std::ssize(a.siblings()) + is_input;
|
||||
}
|
||||
if (is_deletable) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
|
||||
14
mlx/array.h
14
mlx/array.h
@@ -81,22 +81,22 @@ class array {
|
||||
}
|
||||
|
||||
/** The size of the array's datatype in bytes. */
|
||||
size_t itemsize() const {
|
||||
int itemsize() const {
|
||||
return size_of(dtype());
|
||||
}
|
||||
|
||||
/** The number of elements in the array. */
|
||||
size_t size() const {
|
||||
int64_t size() const {
|
||||
return array_desc_->size;
|
||||
}
|
||||
|
||||
/** The number of bytes in the array. */
|
||||
size_t nbytes() const {
|
||||
int64_t nbytes() const {
|
||||
return size() * itemsize();
|
||||
}
|
||||
|
||||
/** The number of dimensions of the array. */
|
||||
size_t ndim() const {
|
||||
int ndim() const {
|
||||
return array_desc_->shape.size();
|
||||
}
|
||||
|
||||
@@ -329,7 +329,7 @@ class array {
|
||||
* corresponding to ``arr[-1, -1, ...]``) then ``data_size = last - first``.
|
||||
* Note, ``data_size`` is in units of ``item_size`` (not bytes).
|
||||
**/
|
||||
size_t data_size() const {
|
||||
int64_t data_size() const {
|
||||
return array_desc_->data_size;
|
||||
}
|
||||
|
||||
@@ -340,7 +340,7 @@ class array {
|
||||
return array_desc_->data->buffer;
|
||||
}
|
||||
|
||||
size_t buffer_size() const {
|
||||
int64_t buffer_size() const {
|
||||
return allocator::allocator().size(buffer());
|
||||
}
|
||||
|
||||
@@ -530,7 +530,7 @@ array::array(
|
||||
Shape shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
if (std::ssize(data) != size()) {
|
||||
throw std::invalid_argument(
|
||||
"Data size and provided shape mismatch in array construction.");
|
||||
}
|
||||
|
||||
@@ -21,8 +21,8 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Compute the flags given the shape and strides
|
||||
bool row_contiguous = true, col_contiguous = true;
|
||||
size_t r = 1, c = 1;
|
||||
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
|
||||
int64_t r = 1, c = 1;
|
||||
for (int i = std::ssize(strides_) - 1, j = 0; i >= 0; i--, j++) {
|
||||
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
|
||||
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
|
||||
r *= shape_[i];
|
||||
@@ -60,7 +60,8 @@ void CustomTransforms::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
for (int i = 0, j = std::ssize(inputs) - std::ssize(outputs);
|
||||
i < std::ssize(outputs);
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
}
|
||||
@@ -70,7 +71,7 @@ void Depends::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(outputs); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
}
|
||||
}
|
||||
@@ -206,11 +207,11 @@ void Split::eval(
|
||||
|
||||
auto compute_new_flags = [](const auto& shape,
|
||||
const auto& strides,
|
||||
size_t in_data_size,
|
||||
int64_t in_data_size,
|
||||
auto flags) {
|
||||
size_t data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
int64_t data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
flags.row_contiguous = true;
|
||||
flags.col_contiguous = true;
|
||||
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
|
||||
@@ -240,7 +241,7 @@ void Split::eval(
|
||||
|
||||
std::vector<int> indices(1, 0);
|
||||
indices.insert(indices.end(), indices_.begin(), indices_.end());
|
||||
for (int i = 0; i < indices.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(indices); i++) {
|
||||
size_t offset = indices[i] * in.strides()[axis_];
|
||||
auto [new_flags, data_size] = compute_new_flags(
|
||||
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
|
||||
@@ -254,7 +255,7 @@ void Squeeze::eval(const std::vector<array>& inputs, array& out) {
|
||||
const auto& in = inputs[0];
|
||||
Strides strides;
|
||||
for (int i = 0, j = 0; i < in.ndim(); ++i) {
|
||||
if (j < axes_.size() && i == axes_[j]) {
|
||||
if (j < std::ssize(axes_) && i == axes_[j]) {
|
||||
j++;
|
||||
} else {
|
||||
strides.push_back(in.strides(i));
|
||||
@@ -272,7 +273,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
Strides out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
for (int ax = 0; ax < std::ssize(axes_); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
}
|
||||
|
||||
|
||||
@@ -120,7 +120,7 @@ void compiled_allocate_outputs(
|
||||
Strides strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Correct size
|
||||
@@ -138,7 +138,7 @@ void compiled_allocate_outputs(
|
||||
data_size = in.data_size();
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
outputs[o].set_data(
|
||||
allocator::malloc(data_size * outputs[o].itemsize()),
|
||||
data_size,
|
||||
@@ -147,7 +147,7 @@ void compiled_allocate_outputs(
|
||||
}
|
||||
} else {
|
||||
int o = 0;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(inputs) && o < std::ssize(outputs); ++i) {
|
||||
auto& in = inputs[i];
|
||||
// Conditions for donation
|
||||
// - Row contiguous
|
||||
@@ -162,7 +162,7 @@ void compiled_allocate_outputs(
|
||||
o++;
|
||||
}
|
||||
}
|
||||
for (; o < outputs.size(); ++o) {
|
||||
for (; o < std::ssize(outputs); ++o) {
|
||||
outputs[o].set_data(allocator::malloc(outputs[o].nbytes()));
|
||||
}
|
||||
}
|
||||
@@ -193,7 +193,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
Strides xstrides;
|
||||
size_t j = 0;
|
||||
int j = 0;
|
||||
for (; j < shape.size() - x.ndim(); ++j) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -201,7 +201,7 @@ std::tuple<bool, Shape, std::vector<Strides>> compiled_collapse_contiguous_dims(
|
||||
xstrides.push_back(0);
|
||||
}
|
||||
}
|
||||
for (size_t i = 0; i < x.ndim(); ++i, ++j) {
|
||||
for (int i = 0; i < x.ndim(); ++i, ++j) {
|
||||
if (x.shape(i) == 1) {
|
||||
if (shape[j] == 1) {
|
||||
xstrides.push_back(out.strides()[j]);
|
||||
@@ -224,13 +224,13 @@ bool compiled_use_large_index(
|
||||
const std::vector<array>& outputs,
|
||||
bool contiguous) {
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
int64_t max_size = 0;
|
||||
for (const auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
return max_size > UINT32_MAX;
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
int64_t max_size = 0;
|
||||
for (const auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void Load::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Load::eval_cpu(const std::vector<array>& /* inputs */, array& out) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
auto read_task = [out_ptr = out.data<char>(),
|
||||
size = out.size(),
|
||||
|
||||
@@ -13,7 +13,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
const array& a,
|
||||
const array& b) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
@@ -38,7 +38,7 @@ inline std::tuple<Shape, Strides, Strides> collapse_batches(
|
||||
inline std::tuple<Shape, Strides, Strides, Strides>
|
||||
collapse_batches(const array& a, const array& b, const array& c) {
|
||||
if (a.ndim() == 2) {
|
||||
return {{1}, {0}, {0}, {0}};
|
||||
return {Shape{1}, Strides{0}, Strides{0}, Strides{0}};
|
||||
}
|
||||
|
||||
Shape A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
|
||||
@@ -28,7 +28,7 @@ std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
|
||||
ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// The data is all there and we are reducing over everything
|
||||
if (x.size() == x.data_size() && axes.size() == x.ndim() &&
|
||||
if (x.size() == x.data_size() && std::ssize(axes) == x.ndim() &&
|
||||
x.flags().contiguous) {
|
||||
return ContiguousAllReduce;
|
||||
}
|
||||
@@ -38,7 +38,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// Merge consecutive axes
|
||||
Shape shape = {x.shape(axes[0])};
|
||||
Strides strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
for (int i = 1; i < std::ssize(axes); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
strides.back() = x.strides()[axes[i]];
|
||||
|
||||
@@ -24,8 +24,8 @@ std::tuple<int64_t, Strides> prepare_slice(
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const Strides& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
int64_t data_offset,
|
||||
int64_t data_size,
|
||||
array& out) {
|
||||
// Compute row/col contiguity
|
||||
auto [no_bsx_size, is_row_contiguous, is_col_contiguous] =
|
||||
@@ -61,7 +61,7 @@ void slice(
|
||||
if (data_end < 0) {
|
||||
data_end += in.data_size();
|
||||
}
|
||||
size_t data_size = (data_end - data_offset);
|
||||
int64_t data_size = (data_end - data_offset);
|
||||
shared_buffer_slice(in, inp_strides, data_offset, data_size, out);
|
||||
}
|
||||
|
||||
|
||||
@@ -11,6 +11,8 @@ namespace mlx::core {
|
||||
enum class TernaryOpType {
|
||||
ScalarScalarScalar,
|
||||
VectorVectorVector,
|
||||
VectorVectorScalar,
|
||||
VectorScalarVector,
|
||||
General,
|
||||
};
|
||||
|
||||
@@ -25,6 +27,14 @@ get_ternary_op_type(const array& a, const array& b, const array& c) {
|
||||
(a.flags().col_contiguous && b.flags().col_contiguous &&
|
||||
c.flags().col_contiguous)) {
|
||||
topt = TernaryOpType::VectorVectorVector;
|
||||
} else if (
|
||||
b.data_size() == 1 && a.flags().row_contiguous &&
|
||||
c.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorScalarVector;
|
||||
} else if (
|
||||
c.data_size() == 1 && a.flags().row_contiguous &&
|
||||
b.flags().row_contiguous) {
|
||||
topt = TernaryOpType::VectorVectorScalar;
|
||||
} else {
|
||||
topt = TernaryOpType::General;
|
||||
}
|
||||
@@ -59,6 +69,8 @@ inline void set_ternary_op_output_data(
|
||||
b.flags());
|
||||
}
|
||||
break;
|
||||
case TernaryOpType::VectorVectorScalar:
|
||||
case TernaryOpType::VectorScalarVector:
|
||||
case TernaryOpType::General:
|
||||
// Try to donate an input which is row_contiguous
|
||||
if (!((a.flags().row_contiguous && maybe_donate(a)) ||
|
||||
|
||||
@@ -28,7 +28,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
if (shape[0] != 1) {
|
||||
to_collapse.push_back(0);
|
||||
}
|
||||
size_t size = shape[0];
|
||||
int64_t size = shape[0];
|
||||
for (int i = 1; i < shape.size(); i++) {
|
||||
bool contiguous = true;
|
||||
size *= shape[i];
|
||||
@@ -64,7 +64,7 @@ std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
current_shape *= shape[to_collapse[k]];
|
||||
}
|
||||
out_shape.push_back(current_shape);
|
||||
for (int j = 0; j < strides.size(); j++) {
|
||||
for (int j = 0; j < std::ssize(strides); j++) {
|
||||
const auto& st = strides[j];
|
||||
out_strides[j].push_back(st[to_collapse[k - 1]]);
|
||||
}
|
||||
|
||||
@@ -162,7 +162,7 @@ struct ContiguousIterator {
|
||||
};
|
||||
|
||||
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
size_t no_broadcast_data_size = 1;
|
||||
int64_t no_broadcast_data_size = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
bool is_row_contiguous = true;
|
||||
@@ -183,7 +183,7 @@ inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
}
|
||||
|
||||
inline bool is_donatable(const array& in, const array& out) {
|
||||
constexpr size_t donation_extra = 16384;
|
||||
constexpr int64_t donation_extra = 16384;
|
||||
|
||||
return in.is_donatable() && in.itemsize() == out.itemsize() &&
|
||||
in.buffer_size() <= out.nbytes() + donation_extra;
|
||||
|
||||
@@ -10,7 +10,7 @@ namespace mlx::core {
|
||||
namespace {
|
||||
|
||||
template <typename T>
|
||||
void arange(T start, T next, array& out, size_t size, Stream stream) {
|
||||
void arange(T start, T next, array& out, int64_t size, Stream stream) {
|
||||
auto ptr = out.data<T>();
|
||||
auto step_size = next - start;
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
@@ -19,12 +19,12 @@ void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||
auto in_ptr = in.data<InT>();
|
||||
auto out_ptr = out.data<uint32_t>();
|
||||
|
||||
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
auto loc = elem_to_loc(i, shape, strides);
|
||||
auto local_in_ptr = in_ptr + loc;
|
||||
uint32_t ind_v = 0;
|
||||
InT v = (*local_in_ptr);
|
||||
for (uint32_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
for (int64_t j = 0; j < axis_size; ++j, local_in_ptr += axis_stride) {
|
||||
op(j, (*local_in_ptr), &ind_v, &v);
|
||||
}
|
||||
out_ptr[i] = ind_v;
|
||||
|
||||
@@ -17,7 +17,12 @@ namespace mlx::core {
|
||||
namespace {
|
||||
|
||||
template <typename Op>
|
||||
void binary(const array& a, const array& b, array& out, Op op, Stream stream) {
|
||||
void binary(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
@@ -81,7 +86,7 @@ void comparison_op(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
@@ -146,7 +151,7 @@ void binary_float(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
@@ -187,7 +192,7 @@ void binary_int(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
Op op,
|
||||
Op /* op */,
|
||||
Stream stream) {
|
||||
auto bopt = get_binary_op_type(a, b);
|
||||
set_binary_op_output_data(a, b, out, bopt);
|
||||
|
||||
@@ -99,7 +99,7 @@ void binary_op_dispatch_dims(
|
||||
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
||||
auto stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
for (int64_t elem = 0; elem < std::ssize(a); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
@@ -137,21 +137,21 @@ void binary_op(
|
||||
if (bopt == BinaryOpType::ScalarScalar) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
} else if (bopt == BinaryOpType::ScalarVector) {
|
||||
for (size_t i = 0; i < b.data_size(); ++i) {
|
||||
for (int64_t i = 0; i < b.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
b_ptr++;
|
||||
}
|
||||
} else if (bopt == BinaryOpType::VectorScalar) {
|
||||
for (size_t i = 0; i < a.data_size(); ++i) {
|
||||
for (int64_t i = 0; i < a.data_size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
a_ptr++;
|
||||
}
|
||||
} else { // VectorVector
|
||||
for (size_t i = 0; i < a.size(); ++i) {
|
||||
for (int64_t i = 0; i < a.size(); ++i) {
|
||||
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
|
||||
out_a_ptr++;
|
||||
out_b_ptr++;
|
||||
|
||||
@@ -33,8 +33,8 @@ void cholesky_impl(const array& a, array& factor, bool upper, Stream stream) {
|
||||
N = a.shape(-1),
|
||||
size = a.size()]() mutable {
|
||||
char uplo = (upper) ? 'L' : 'U';
|
||||
size_t num_matrices = size / (N * N);
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
int64_t num_matrices = size / (N * N);
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
// Compute Cholesky factorization.
|
||||
int info;
|
||||
potrf<T>(
|
||||
|
||||
@@ -15,6 +15,7 @@
|
||||
#include "mlx/backend/cpu/jit_compiler.h"
|
||||
#include "mlx/device.h"
|
||||
#include "mlx/graph_utils.h"
|
||||
#include "mlx/version.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -48,7 +49,7 @@ static CompilerCache& cache() {
|
||||
// GPU compile is always available if the GPU is available and since we are in
|
||||
// this file CPU compile is also available.
|
||||
namespace detail {
|
||||
bool compile_available_for_device(const Device& device) {
|
||||
bool compile_available_for_device(const Device& /* device */) {
|
||||
return true;
|
||||
}
|
||||
|
||||
@@ -94,7 +95,11 @@ void* compile(
|
||||
kernel_file_name = kernel_name;
|
||||
}
|
||||
|
||||
auto output_dir = std::filesystem::temp_directory_path();
|
||||
auto output_dir =
|
||||
std::filesystem::temp_directory_path() / "mlx" / version() / "cpu";
|
||||
if (!std::filesystem::exists(output_dir)) {
|
||||
std::filesystem::create_directories(output_dir);
|
||||
}
|
||||
|
||||
std::string shared_lib_name = "lib" + kernel_file_name + ".so";
|
||||
auto shared_lib_path = (output_dir / shared_lib_name).string();
|
||||
@@ -163,7 +168,7 @@ inline void build_kernel(
|
||||
// Add the input arguments
|
||||
int cnt = 0;
|
||||
int strides_index = 1;
|
||||
for (size_t i = 0; i < inputs.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(inputs); ++i) {
|
||||
// Skip constants from the input list
|
||||
if (is_constant(i)) {
|
||||
continue;
|
||||
@@ -233,7 +238,7 @@ inline void build_kernel(
|
||||
} else {
|
||||
os << x.primitive().name();
|
||||
os << "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
for (int i = 0; i < std::ssize(x.inputs()) - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
}
|
||||
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
|
||||
|
||||
@@ -860,7 +860,7 @@ void explicit_gemm_conv_1D_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
@@ -996,131 +996,6 @@ void explicit_gemm_conv_1D_cpu(
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_2D_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
array out,
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
const int iH = in.shape(1); // Input spatial dim
|
||||
const int iW = in.shape(2); // Input spatial dim
|
||||
const int oH = out.shape(1); // Output spatial dim
|
||||
const int oW = out.shape(2); // Output spatial dim
|
||||
const int O = wt.shape(0); // Out channels
|
||||
const int C = wt.shape(3); // In channels
|
||||
const int wH = wt.shape(1); // Weight spatial dim
|
||||
const int wW = wt.shape(2); // Weight spatial dim
|
||||
|
||||
auto conv_dtype = out.dtype();
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
|
||||
// Pad input
|
||||
Shape padded_shape = {
|
||||
N,
|
||||
iH + padding_lo[0] + padding_hi[0],
|
||||
iW + padding_lo[1] + padding_hi[1],
|
||||
C};
|
||||
array in_padded(padded_shape, conv_dtype, nullptr, {});
|
||||
|
||||
// Fill with zeros
|
||||
std::vector<array> temps;
|
||||
temps.push_back(array(0, conv_dtype));
|
||||
copy_cpu(temps.back(), in_padded, CopyType::Scalar, stream);
|
||||
|
||||
// Pick input slice from padded
|
||||
size_t data_offset = padding_lo[0] * in_padded.strides()[1] +
|
||||
padding_lo[1] * in_padded.strides()[2];
|
||||
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
|
||||
in_padded_slice.copy_shared_buffer(
|
||||
in_padded,
|
||||
in_padded.strides(),
|
||||
in_padded.flags(),
|
||||
in_padded_slice.size(),
|
||||
data_offset);
|
||||
temps.push_back(in_padded_slice);
|
||||
|
||||
// Copy input values into the slice
|
||||
copy_cpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, stream);
|
||||
|
||||
// Make strided view
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[2] * wt_strides[1],
|
||||
in_padded.strides()[1],
|
||||
in_padded.strides()[2],
|
||||
in_padded.strides()[3]};
|
||||
auto flags = in_padded.flags();
|
||||
|
||||
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
|
||||
in_strided_view.copy_shared_buffer(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
Shape strided_reshape = {N * oH * oW, wH * wW * C};
|
||||
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
|
||||
copy_cpu(in_strided_view, in_strided, CopyType::General, stream);
|
||||
temps.push_back(in_strided);
|
||||
|
||||
// Check wt dtype and prepare
|
||||
auto gemm_wt = wt;
|
||||
auto gemm_out = out;
|
||||
|
||||
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
|
||||
auto ctype =
|
||||
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
|
||||
gemm_wt = array(wt.shape(), float32, nullptr, {});
|
||||
copy_cpu(wt, gemm_wt, ctype, stream);
|
||||
temps.push_back(gemm_wt);
|
||||
}
|
||||
|
||||
if (out.dtype() != float32) {
|
||||
gemm_out = array(out.shape(), float32, nullptr, {});
|
||||
gemm_out.set_data(allocator::malloc(gemm_out.nbytes()));
|
||||
temps.push_back(gemm_out);
|
||||
}
|
||||
|
||||
encoder.set_input_array(in_strided);
|
||||
encoder.set_input_array(gemm_wt);
|
||||
encoder.set_output_array(gemm_out);
|
||||
|
||||
encoder.dispatch([in_strided_ptr = in_strided.data<float>(),
|
||||
gemm_wt_ptr = gemm_wt.data<float>(),
|
||||
gemm_out_ptr = gemm_out.data<float>(),
|
||||
strided_reshape = std::move(strided_reshape),
|
||||
O]() {
|
||||
// Perform gemm
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
CblasNoTrans, // no trans A
|
||||
CblasTrans, // transB
|
||||
strided_reshape[0], // M
|
||||
O, // N
|
||||
strided_reshape[1], // K
|
||||
1.0f, // alpha
|
||||
in_strided_ptr,
|
||||
strided_reshape[1], // lda
|
||||
gemm_wt_ptr,
|
||||
strided_reshape[1], // ldb
|
||||
0.0f, // beta
|
||||
gemm_out_ptr,
|
||||
O // ldc
|
||||
);
|
||||
});
|
||||
|
||||
// Copy results if needed
|
||||
if (out.dtype() != float32) {
|
||||
copy_cpu_inplace(gemm_out, out, CopyType::Vector, stream);
|
||||
}
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
}
|
||||
|
||||
void explicit_gemm_conv_ND_cpu(
|
||||
const array& in,
|
||||
const array& wt,
|
||||
@@ -1128,7 +1003,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
const std::vector<int>& padding_lo,
|
||||
const std::vector<int>& padding_hi,
|
||||
const std::vector<int>& wt_strides,
|
||||
const std::vector<int>& wt_dilation,
|
||||
const std::vector<int>& /* wt_dilation */,
|
||||
const bool flip,
|
||||
Stream stream) {
|
||||
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
|
||||
@@ -1148,7 +1023,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Pad input
|
||||
Shape padded_shape(in.shape().size());
|
||||
padded_shape.front() = N;
|
||||
for (size_t i = 0; i < iDim.size(); i++) {
|
||||
for (int i = 0; i < iDim.size(); i++) {
|
||||
padded_shape[i + 1] = iDim[i] + padding_lo[i] + padding_hi[i];
|
||||
}
|
||||
padded_shape.back() = C;
|
||||
@@ -1179,20 +1054,20 @@ void explicit_gemm_conv_ND_cpu(
|
||||
// Make strided view
|
||||
Shape strided_shape(oDim.size() + wDim.size() + 2);
|
||||
strided_shape.front() = N;
|
||||
for (size_t i = 0; i < oDim.size(); i++) {
|
||||
for (int i = 0; i < oDim.size(); i++) {
|
||||
strided_shape[i + 1] = oDim[i];
|
||||
}
|
||||
for (size_t i = 0; i < wDim.size(); i++) {
|
||||
for (int i = 0; i < wDim.size(); i++) {
|
||||
strided_shape[i + 1 + oDim.size()] = wDim[i];
|
||||
}
|
||||
strided_shape.back() = C;
|
||||
|
||||
Strides strided_strides(in.shape().size() * 2 - 2);
|
||||
strided_strides[0] = in_padded.strides()[0];
|
||||
for (size_t i = 0; i < wt_strides.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(wt_strides); i++) {
|
||||
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
|
||||
}
|
||||
for (size_t i = 1; i < in_padded.strides().size(); i++) {
|
||||
for (int i = 1; i < std::ssize(in_padded.strides()); i++) {
|
||||
strided_strides[i + wt_strides.size()] = in_padded.strides()[i];
|
||||
}
|
||||
|
||||
|
||||
@@ -90,6 +90,7 @@ void Recv::eval_cpu(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 0);
|
||||
assert(outputs.size() == 1);
|
||||
(void)inputs;
|
||||
|
||||
outputs[0].set_data(allocator::malloc(outputs[0].nbytes()));
|
||||
distributed::detail::recv(group(), outputs[0], src_, stream());
|
||||
|
||||
@@ -46,7 +46,6 @@ void eig_impl(
|
||||
int info;
|
||||
{
|
||||
T work;
|
||||
int iwork;
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
@@ -71,7 +70,7 @@ void eig_impl(
|
||||
auto eig_tmp = static_cast<T*>(eig_tmp_data.buffer.raw_ptr());
|
||||
auto vec_tmp = static_cast<T*>(vec_tmp_data.buffer.raw_ptr());
|
||||
auto work_buf = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
geev<T>(
|
||||
&jobl,
|
||||
&jobr,
|
||||
|
||||
@@ -165,7 +165,7 @@ void eigh_impl(
|
||||
EighWork<T> work(jobz, uplo, N);
|
||||
|
||||
// Work loop
|
||||
for (size_t i = 0; i < size / (N * N); ++i) {
|
||||
for (int64_t i = 0; i < size / (N * N); ++i) {
|
||||
work.run(vec_ptr, eig_ptr);
|
||||
vec_ptr += N * N;
|
||||
eig_ptr += N;
|
||||
|
||||
@@ -20,8 +20,8 @@ struct CommandEncoder {
|
||||
CommandEncoder(CommandEncoder&&) = delete;
|
||||
CommandEncoder& operator=(CommandEncoder&&) = delete;
|
||||
|
||||
void set_input_array(const array& a) {}
|
||||
void set_output_array(array& a) {}
|
||||
void set_input_array(const array& /* a */) {}
|
||||
void set_output_array(array& /* a */) {}
|
||||
|
||||
// Hold onto a temporary until any already scheduled tasks which use it as
|
||||
// an input are complete.
|
||||
|
||||
@@ -12,12 +12,12 @@ void matmul(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/array.h"
|
||||
@@ -35,7 +34,7 @@ void matmul_bnns(
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
size_t /* ldc */,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
@@ -49,9 +48,15 @@ void matmul_bnns(
|
||||
size_t K = a_shape[ndim - 1];
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype<T>();
|
||||
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
|
||||
if (beta != 1.0 && beta != 0.0) {
|
||||
// scale the output
|
||||
for (size_t i = 0; i < batch_size * M * N; ++i) {
|
||||
out[i] *= beta;
|
||||
}
|
||||
beta = 1.0;
|
||||
}
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
@@ -122,7 +127,7 @@ void matmul_bnns(
|
||||
auto bnns_filter =
|
||||
BNNSFilterCreateLayerBroadcastMatMul(&gemm_params, nullptr);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
for (size_t i = 0; i < batch_size; ++i) {
|
||||
BNNSFilterApplyTwoInput(
|
||||
bnns_filter,
|
||||
reinterpret_cast<const uint8_t*>(
|
||||
@@ -143,12 +148,12 @@ void matmul<float16_t>(
|
||||
float16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
@@ -178,12 +183,12 @@ void matmul<bfloat16_t>(
|
||||
bfloat16_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
|
||||
@@ -13,20 +13,20 @@ void matmul<float>(
|
||||
float* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_sgemm(
|
||||
@@ -54,20 +54,20 @@ void matmul<double>(
|
||||
double* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
size_t ldc,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
size_t batch_size,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
size_t M = a_shape[ndim - 2];
|
||||
size_t N = b_shape[ndim - 1];
|
||||
size_t K = a_shape[ndim - 1];
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_dgemm(
|
||||
@@ -88,4 +88,47 @@ void matmul<double>(
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void matmul<complex64_t>(
|
||||
const complex64_t* a,
|
||||
const complex64_t* b,
|
||||
complex64_t* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
int64_t ldc,
|
||||
float alpha,
|
||||
float beta,
|
||||
int64_t batch_size,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides) {
|
||||
auto ndim = a_shape.size();
|
||||
int64_t M = a_shape[ndim - 2];
|
||||
int64_t N = b_shape[ndim - 1];
|
||||
int64_t K = a_shape[ndim - 1];
|
||||
auto calpha = static_cast<complex64_t>(alpha);
|
||||
auto cbeta = static_cast<complex64_t>(beta);
|
||||
|
||||
for (int i = 0; i < batch_size; ++i) {
|
||||
cblas_cgemm(
|
||||
CblasRowMajor,
|
||||
a_transposed ? CblasTrans : CblasNoTrans, // transA
|
||||
b_transposed ? CblasTrans : CblasNoTrans, // transB
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
&calpha,
|
||||
a + elem_to_loc(M * K * i, a_shape, a_strides),
|
||||
lda,
|
||||
b + elem_to_loc(K * N * i, b_shape, b_strides),
|
||||
ldb,
|
||||
&cbeta,
|
||||
out + M * N * i,
|
||||
ldc);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -11,9 +11,9 @@ namespace mlx::core {
|
||||
|
||||
// n = 2^k component
|
||||
template <typename T>
|
||||
void hadamard_n(T* out, int n, int m, float scale, size_t size) {
|
||||
void hadamard_n(T* out, int n, int /* m */, float scale, int64_t size) {
|
||||
for (int b = 0; b < size / n; b++) {
|
||||
size_t loc = b * n;
|
||||
int64_t loc = b * n;
|
||||
T* data_ptr = out + loc;
|
||||
int h = 1;
|
||||
int n_over_2 = n / 2;
|
||||
@@ -37,7 +37,7 @@ void hadamard_n(T* out, int n, int m, float scale, size_t size) {
|
||||
|
||||
// m component
|
||||
template <typename T>
|
||||
void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
void hadamard_m(T* out, int n, int m, float scale, int64_t size) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
auto start = 1;
|
||||
@@ -45,7 +45,7 @@ void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
std::vector<bool> hmat_vec;
|
||||
while (end != std::string_view::npos) {
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
for (int i = 0; i < std::ssize(row); i++) {
|
||||
hmat_vec.push_back(row[i] == '+');
|
||||
}
|
||||
start = end + 1;
|
||||
@@ -53,7 +53,7 @@ void hadamard_m(T* out, int n, int m, float scale, size_t size) {
|
||||
}
|
||||
|
||||
for (int b = 0; b < size / m / n; b++) {
|
||||
size_t loc = b * n * m;
|
||||
int64_t loc = b * n * m;
|
||||
T* data_ptr = out + loc;
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<float> out(m);
|
||||
|
||||
@@ -78,7 +78,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore leading 1s
|
||||
int i = 0;
|
||||
int64_t i = 0;
|
||||
for (; i < slice_sizes.size() && slice_sizes[i] == 1; ++i)
|
||||
;
|
||||
|
||||
@@ -91,7 +91,7 @@ void gather(
|
||||
can_copy = true;
|
||||
|
||||
// Ignore trailing 1s
|
||||
int i = slice_sizes.size() - 1;
|
||||
int64_t i = slice_sizes.size() - 1;
|
||||
for (; i >= 0 && slice_sizes[i] == 1; --i)
|
||||
;
|
||||
|
||||
@@ -101,11 +101,11 @@ void gather(
|
||||
can_copy = (src.shape(i) == slice_sizes[i]);
|
||||
}
|
||||
}
|
||||
size_t slice_size = 1;
|
||||
int64_t slice_size = 1;
|
||||
for (auto s : slice_sizes) {
|
||||
slice_size *= s;
|
||||
}
|
||||
size_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
int64_t ind_size = slice_size == 0 ? 0 : out.size() / slice_size;
|
||||
const T* src_ptr = src.data<T>();
|
||||
T* dst_ptr = out.data<T>();
|
||||
|
||||
@@ -115,10 +115,10 @@ void gather(
|
||||
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
|
||||
}
|
||||
|
||||
size_t out_idx = 0;
|
||||
for (int idx = 0; idx < ind_size; idx++) {
|
||||
size_t src_idx = 0;
|
||||
for (int ii = 0; ii < inds.size(); ++ii) {
|
||||
int64_t out_idx = 0;
|
||||
for (int64_t idx = 0; idx < ind_size; idx++) {
|
||||
int64_t src_idx = 0;
|
||||
for (int ii = 0; ii < std::ssize(inds); ++ii) {
|
||||
auto ax = axes[ii];
|
||||
auto idx_loc = its[ii].loc;
|
||||
its[ii].step();
|
||||
@@ -134,7 +134,7 @@ void gather(
|
||||
src_ptr + src_idx, src_ptr + src_idx + slice_size, dst_ptr + out_idx);
|
||||
out_idx += slice_size;
|
||||
} else {
|
||||
for (int jj = 0; jj < slice_size; jj++) {
|
||||
for (int64_t jj = 0; jj < slice_size; jj++) {
|
||||
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
|
||||
src_it.step();
|
||||
}
|
||||
@@ -403,11 +403,11 @@ void scatter(
|
||||
const std::vector<int>& axes) {
|
||||
int nind = inds.size();
|
||||
auto inds_ndim = updates.ndim() - out.ndim();
|
||||
size_t n_updates = nind ? inds[0].size() : 1;
|
||||
int64_t n_updates = nind ? inds[0].size() : 1;
|
||||
|
||||
Shape update_shape(
|
||||
updates.shape().begin() + inds_ndim, updates.shape().end());
|
||||
size_t update_size = 1;
|
||||
int64_t update_size = 1;
|
||||
for (auto us : update_shape) {
|
||||
update_size *= us;
|
||||
}
|
||||
@@ -418,9 +418,9 @@ void scatter(
|
||||
|
||||
auto out_ptr = out.data<InT>();
|
||||
auto upd_ptr = updates.data<InT>();
|
||||
for (int i = 0; i < n_updates; ++i) {
|
||||
size_t out_offset = 0;
|
||||
for (int j = 0; j < inds.size(); ++j) {
|
||||
for (int64_t i = 0; i < n_updates; ++i) {
|
||||
int64_t out_offset = 0;
|
||||
for (int j = 0; j < std::ssize(inds); ++j) {
|
||||
auto ax = axes[j];
|
||||
auto idx_loc = its[j].loc;
|
||||
its[j].step();
|
||||
@@ -429,7 +429,7 @@ void scatter(
|
||||
out_offset += (idx_val * out.strides()[ax]);
|
||||
}
|
||||
update_it.seek(i * update_size);
|
||||
for (int j = 0; j < update_size; ++j) {
|
||||
for (int64_t j = 0; j < update_size; ++j) {
|
||||
OpT{}(upd_ptr[update_it.loc], out_ptr + out_offset + out_it.loc);
|
||||
update_it.step();
|
||||
out_it.step();
|
||||
|
||||
@@ -122,7 +122,7 @@ void inverse_impl(
|
||||
stream);
|
||||
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
const int64_t num_matrices = a.size() / (N * N);
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream);
|
||||
encoder.set_output_array(inv);
|
||||
@@ -130,13 +130,13 @@ void inverse_impl(
|
||||
auto inv_ptr = inv.data<T>();
|
||||
if (tri) {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices, upper]() {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
tri_inv<T>(inv_ptr + N * N * i, N, upper);
|
||||
}
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([inv_ptr, N, num_matrices]() {
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
general_inv<T>(inv_ptr + N * N * i, N);
|
||||
}
|
||||
});
|
||||
|
||||
@@ -25,7 +25,7 @@ inline void mask_matrix(
|
||||
const int64_t Y_data_str,
|
||||
const int64_t X_mask_str,
|
||||
const int64_t Y_mask_str,
|
||||
const size_t mask_offset) {
|
||||
const int64_t mask_offset) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
|
||||
@@ -61,13 +61,13 @@ inline void segmented_mm(
|
||||
T* out,
|
||||
bool a_transposed,
|
||||
bool b_transposed,
|
||||
size_t lda,
|
||||
size_t ldb,
|
||||
int64_t lda,
|
||||
int64_t ldb,
|
||||
const Shape& a_shape,
|
||||
const Strides& a_strides,
|
||||
const Shape& b_shape,
|
||||
const Strides& b_strides,
|
||||
size_t num_segments,
|
||||
int64_t num_segments,
|
||||
const Shape& segments_shape,
|
||||
const Strides& segments_strides) {
|
||||
int ndim = a_shape.size();
|
||||
@@ -149,9 +149,9 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [b_transposed, ldb, b, b_copied] =
|
||||
check_transpose(b_pre, has_op_mask, inputs.back().dtype() != bool_);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -172,8 +172,8 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
int batch_idx,
|
||||
int X,
|
||||
int Y,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str,
|
||||
int64_t X_data_str,
|
||||
int64_t Y_data_str,
|
||||
const Shape& mask_shape,
|
||||
const Strides& mask_strides,
|
||||
bool is_bool) {
|
||||
@@ -215,18 +215,18 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
const void* a_mask_ptr;
|
||||
const void* b_mask_ptr;
|
||||
const void* out_mask_ptr;
|
||||
const void* a_mask_ptr = nullptr;
|
||||
const void* b_mask_ptr = nullptr;
|
||||
const void* out_mask_ptr = nullptr;
|
||||
Shape a_mask_shape;
|
||||
Shape b_mask_shape;
|
||||
Shape out_mask_shape;
|
||||
Strides a_mask_strides;
|
||||
Strides b_mask_strides;
|
||||
Strides out_mask_strides;
|
||||
bool a_mask_bool;
|
||||
bool b_mask_bool;
|
||||
bool out_mask_bool;
|
||||
bool a_mask_bool = false;
|
||||
bool b_mask_bool = false;
|
||||
bool out_mask_bool = false;
|
||||
if (has_op_mask) {
|
||||
auto& a_mask = inputs[inputs.size() - 2];
|
||||
auto& b_mask = inputs[inputs.size() - 1];
|
||||
@@ -253,7 +253,7 @@ void BlockMaskedMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto a_ptr = a.data<float>();
|
||||
auto b_ptr = b.data<float>();
|
||||
auto out_ptr = out.data<float>();
|
||||
size_t num_matrices = out.size() / (M * size_t(N));
|
||||
int64_t num_matrices = out.size() / (M * int64_t(N));
|
||||
auto ldc = out.shape(-1);
|
||||
|
||||
encoder.dispatch([a_ptr,
|
||||
@@ -394,9 +394,9 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
int64_t M = a.shape(-2);
|
||||
int64_t N = b.shape(-1);
|
||||
int64_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
@@ -413,7 +413,7 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
// Get batch dims
|
||||
auto batch_size_out = out.size() / (M * N);
|
||||
size_t matrix_stride_out = M * N;
|
||||
int64_t matrix_stride_out = M * N;
|
||||
|
||||
auto get_batch_dims = [](const auto& v) {
|
||||
return decltype(v){v.begin(), v.end() - 2};
|
||||
@@ -423,7 +423,6 @@ void GatherMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
auto batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
auto batch_shape_A = get_batch_dims(a.shape());
|
||||
auto batch_strides_A = get_batch_dims(a.strides());
|
||||
|
||||
@@ -91,7 +91,6 @@ void matmul_general(
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
size_t M = a.shape(-2);
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -108,6 +107,9 @@ void matmul_general(
|
||||
} else if (out.dtype() == float64) {
|
||||
matmul_dispatch<double>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else if (out.dtype() == complex64) {
|
||||
matmul_dispatch<complex64_t>(
|
||||
a, b, out, a_transposed, b_transposed, lda, ldb, alpha, beta, stream);
|
||||
} else {
|
||||
throw std::runtime_error("[Matmul::eval_cpu] Invalid type.");
|
||||
}
|
||||
@@ -128,10 +130,6 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[AddMM::eval_cpu] Currently only supports float32.");
|
||||
}
|
||||
if (out.size() == 0) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return;
|
||||
|
||||
@@ -48,7 +48,7 @@ static std::pair<array, bool> compute_dynamic_offset(
|
||||
auto compute_offset =
|
||||
[strides, axes, offset = offset.data<int64_t>()](const auto* indices) {
|
||||
int64_t offset_ = 0;
|
||||
for (int i = 0; i < axes.size(); ++i) {
|
||||
for (int i = 0; i < std::ssize(axes); ++i) {
|
||||
offset_ += indices[i] * strides[axes[i]];
|
||||
}
|
||||
offset[0] = offset_;
|
||||
@@ -124,6 +124,7 @@ void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 0);
|
||||
(void)inputs;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
@@ -193,9 +194,9 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
flags.row_contiguous = false;
|
||||
flags.col_contiguous = false;
|
||||
flags.contiguous = false;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
for (int i = 0; i < std::ssize(inputs); i++) {
|
||||
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
||||
size_t data_offset = strides[axis_] * sizes[i];
|
||||
int64_t data_offset = strides[axis_] * sizes[i];
|
||||
out_slice.copy_shared_buffer(
|
||||
out, strides, flags, out_slice.size(), data_offset);
|
||||
copy_cpu_inplace(inputs[i], out_slice, CopyType::GeneralGeneral, stream());
|
||||
@@ -205,7 +206,7 @@ void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
constexpr size_t extra_bytes = 16384;
|
||||
constexpr int64_t extra_bytes = 16384;
|
||||
if (in.buffer_size() <= out.nbytes() + extra_bytes &&
|
||||
(in.flags().row_contiguous ||
|
||||
(allow_col_major_ && in.flags().col_contiguous))) {
|
||||
@@ -254,8 +255,8 @@ void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
copy_cpu(val, out, CopyType::Scalar, stream());
|
||||
|
||||
// Find offset for start of input values
|
||||
size_t data_offset = 0;
|
||||
for (int i = 0; i < axes_.size(); i++) {
|
||||
int64_t data_offset = 0;
|
||||
for (int i = 0; i < std::ssize(axes_); i++) {
|
||||
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
|
||||
data_offset += out.strides()[ax] * low_pad_size_[i];
|
||||
}
|
||||
@@ -274,10 +275,10 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// keys has shape (N1, ..., NK, 2)
|
||||
// out has shape (N1, ..., NK, M1, M2, ...)
|
||||
auto& keys = inputs[0];
|
||||
size_t num_keys = keys.size() / 2;
|
||||
int64_t num_keys = keys.size() / 2;
|
||||
|
||||
size_t elems_per_key = out.size() / num_keys;
|
||||
size_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
int64_t elems_per_key = out.size() / num_keys;
|
||||
int64_t bytes_per_key = out.itemsize() * elems_per_key;
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto kptr = inputs[0].data<uint32_t>();
|
||||
@@ -291,8 +292,8 @@ void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
num_keys,
|
||||
kshape = keys.shape(),
|
||||
kstrides = keys.strides()]() mutable {
|
||||
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
auto half_size = out_skip / 2;
|
||||
int64_t out_skip = (bytes_per_key + 4 - 1) / 4;
|
||||
uintptr_t half_size = out_skip / 2;
|
||||
bool even = out_skip % 2 == 0;
|
||||
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
|
||||
auto ptr = reinterpret_cast<uint32_t*>(cptr);
|
||||
|
||||
@@ -13,7 +13,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
const int M = a.shape(-2);
|
||||
const int N = a.shape(-1);
|
||||
const int lda = M;
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// Copy A to inplace input and make it col-contiguous
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
auto work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// Solve
|
||||
geqrf<T>(
|
||||
&M,
|
||||
@@ -68,7 +68,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
}
|
||||
allocator::free(work);
|
||||
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
/// num_reflectors x N
|
||||
for (int j = 0; j < num_reflectors; ++j) {
|
||||
for (int k = 0; k < j; ++k) {
|
||||
@@ -97,7 +97,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
work = allocator::malloc(sizeof(T) * lwork);
|
||||
|
||||
// Loop over matrices
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// Compute Q
|
||||
orgqr<T>(
|
||||
&M,
|
||||
@@ -111,7 +111,7 @@ void qrf_impl(const array& a, array& q, array& r, Stream stream) {
|
||||
&info);
|
||||
}
|
||||
|
||||
for (int i = 0; i < num_matrices; ++i) {
|
||||
for (int64_t i = 0; i < num_matrices; ++i) {
|
||||
// M x num_reflectors
|
||||
for (int j = 0; j < M; ++j) {
|
||||
for (int k = 0; k < num_reflectors; ++k) {
|
||||
|
||||
@@ -1,7 +1,5 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/cpu/copy.h"
|
||||
#include "mlx/backend/cpu/encoder.h"
|
||||
#include "mlx/backend/cpu/simd/simd.h"
|
||||
@@ -13,6 +11,35 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
const static float MXFP4_LUT[16] = {
|
||||
+0.0f,
|
||||
+0.5f,
|
||||
+1.0f,
|
||||
+1.5f,
|
||||
+2.0f,
|
||||
+3.0f,
|
||||
+4.0f,
|
||||
+6.0f,
|
||||
-0.0f,
|
||||
-0.5f,
|
||||
-1.0f,
|
||||
-1.5f,
|
||||
-2.0f,
|
||||
-3.0f,
|
||||
-4.0f,
|
||||
-6.0f};
|
||||
|
||||
template <typename T>
|
||||
static inline T dequantize_scale(uint8_t s) {
|
||||
using FOrI = union {
|
||||
bfloat16_t f;
|
||||
uint16_t i;
|
||||
};
|
||||
FOrI out;
|
||||
out.i = (s == 0 ? 0x40 : (static_cast<uint16_t>(s) << 7));
|
||||
return static_cast<T>(out.f);
|
||||
}
|
||||
|
||||
inline constexpr short get_pack_factor(int bits, int wsize = 8) {
|
||||
return (bits == 3 || bits == 5) ? 8 : (bits == 6 ? 4 : wsize / bits);
|
||||
}
|
||||
@@ -407,6 +434,229 @@ void _qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
std::fill(result, result + N, 0);
|
||||
|
||||
for (int k = 0; k < K; k++) {
|
||||
T* result_local = result;
|
||||
T xi = *x++;
|
||||
|
||||
for (int n = 0; n < N; n += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * scale * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
result += N;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = get_pack_factor(4, 8);
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
const T* x_local = x;
|
||||
T sum = 0;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
T gsum = 0;
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
gsum += (*x_local++) * static_cast<T>(MXFP4_LUT[wi & 0xf]);
|
||||
wi >>= 4;
|
||||
}
|
||||
}
|
||||
sum += scale * gsum;
|
||||
}
|
||||
*result = sum;
|
||||
result++;
|
||||
}
|
||||
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <int S>
|
||||
simd::Simd<float, S> mxfp4_extract_bits_simd(const uint32_t* w) {
|
||||
if constexpr (S == 8) {
|
||||
constexpr std::array<uint32_t, 8> shifts_ = {{0, 4, 8, 12, 16, 20, 24, 28}};
|
||||
auto shifts(*(simd::Simd<uint32_t, S>*)&shifts_);
|
||||
auto wi = simd::Simd<uint32_t, S>(*w);
|
||||
wi = wi >> shifts;
|
||||
wi = wi & 0xf;
|
||||
simd::Simd<float, S> w_out;
|
||||
for (int i = 0; i < S; ++i) {
|
||||
w_out[i] = MXFP4_LUT[wi[i]];
|
||||
}
|
||||
return w_out;
|
||||
} else {
|
||||
// Appease compiler.. but should never get here
|
||||
throw std::runtime_error("Unsupported combination for simd qmm.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_t_simd(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int group_size = 32;
|
||||
constexpr int pack_factor = 32 / 4;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
constexpr int S = simd::max_size<T>;
|
||||
static_assert(
|
||||
S % pack_factor == 0, "SIMD size must be divisible by pack factor");
|
||||
constexpr int packs_per_simd = S / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* scales_local = scales;
|
||||
|
||||
for (int n = 0; n < N; n++) {
|
||||
simd::Simd<float, S> acc(0);
|
||||
auto x_local = x;
|
||||
for (int k = 0; k < K; k += group_size) {
|
||||
T scale = dequantize_scale<T>(*scales_local++);
|
||||
|
||||
simd::Simd<float, S> g_acc(0);
|
||||
for (int kw = 0; kw < packs_in_group; kw += packs_per_simd) {
|
||||
// Extract bits
|
||||
auto wf = mxfp4_extract_bits_simd<S>(w_local);
|
||||
w_local += packs_per_simd;
|
||||
simd::Simd<float, S> x_simd = simd::load<T, S>(x_local);
|
||||
g_acc = g_acc + x_simd * wf;
|
||||
x_local += S;
|
||||
}
|
||||
acc = acc + scale * g_acc;
|
||||
}
|
||||
|
||||
*result = T(simd::sum(acc));
|
||||
result++;
|
||||
}
|
||||
x += K;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const uint8_t* scales,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
// the simd size must be a multiple of the number of elements per word
|
||||
if constexpr (simd::max_size<T> % 8 == 0) {
|
||||
mxfp4_qmm_t_simd<T>(result, x, w, scales, M, N, K);
|
||||
} else {
|
||||
mxfp4_qmm_t<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
} else {
|
||||
mxfp4_qmm<T>(result, x, w, scales, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.ndim() > 1 ? x.shape(-2) : 1;
|
||||
int N = out.shape(-1);
|
||||
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
|
||||
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
|
||||
int batch_size = x.size() / (K * M);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
for (int i = 0; i < batch_size; i++) {
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(i * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(i * w_els, w.shape(), w.strides()),
|
||||
scales_ptr + elem_to_loc(i * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case bfloat16:
|
||||
mxfp4_qmm_dispatch_typed<bfloat16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_qmm_dispatch_typed<float16_t>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
case float32:
|
||||
mxfp4_qmm_dispatch_typed<float>(out, x, w, scales, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
@@ -513,115 +763,198 @@ void _bs_qmm_dispatch(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void mxfp4_bs_qmm_dispatch_typed(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
int K = x.shape(-1);
|
||||
int M = x.shape(-2);
|
||||
int N = out.shape(-1);
|
||||
|
||||
int w_els = w.shape(-1) * w.shape(-2);
|
||||
int g_els = scales.shape(-1) * scales.shape(-2);
|
||||
|
||||
auto out_ptr = out.data<T>();
|
||||
auto x_ptr = x.data<T>();
|
||||
auto w_ptr = w.data<uint32_t>();
|
||||
auto scales_ptr = scales.data<uint8_t>();
|
||||
auto lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
auto rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
||||
for (int i = 0; i < lhs_indices.size(); i++) {
|
||||
int x_idx = lhs_indices_ptr[elem_to_loc(
|
||||
i, lhs_indices.shape(), lhs_indices.strides())];
|
||||
int w_idx = rhs_indices_ptr[elem_to_loc(
|
||||
i, rhs_indices.shape(), rhs_indices.strides())];
|
||||
mxfp4_qmm_dispatch_transpose<T>(
|
||||
out_ptr + i * M * N,
|
||||
x_ptr + elem_to_loc(x_idx * M * K, x.shape(), x.strides()),
|
||||
w_ptr + elem_to_loc(w_idx * w_els, w.shape(), w.strides()),
|
||||
scales_ptr +
|
||||
elem_to_loc(w_idx * g_els, scales.shape(), scales.strides()),
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
transposed_w);
|
||||
}
|
||||
}
|
||||
|
||||
void mxfp4_bs_qmm_dispatch(
|
||||
array& out,
|
||||
const array& x,
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& lhs_indices,
|
||||
const array& rhs_indices,
|
||||
bool transposed_w) {
|
||||
switch (x.dtype()) {
|
||||
case float32:
|
||||
mxfp4_bs_qmm_dispatch_typed<float>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case float16:
|
||||
mxfp4_bs_qmm_dispatch_typed<float16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
case bfloat16:
|
||||
mxfp4_bs_qmm_dispatch_typed<bfloat16_t>(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"[quantized_matmul] only floating types are supported");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 4);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto ensure_row_contiguous = [s = stream(), &temps](const array& arr) {
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous = [s = stream(), &encoder](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous(x_pre);
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_qmm_dispatch(out, x, w, scales, biases, group_size_, bits_, transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_qmm_dispatch(out, x, w, scales, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
void GatherQMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 6);
|
||||
|
||||
auto& x_pre = inputs[0];
|
||||
auto& w_pre = inputs[1];
|
||||
auto& scales_pre = inputs[2];
|
||||
auto& biases_pre = inputs[3];
|
||||
auto& lhs_indices = inputs[4];
|
||||
auto& rhs_indices = inputs[5];
|
||||
auto& lhs_indices = inputs[inputs.size() - 2];
|
||||
auto& rhs_indices = inputs[inputs.size() - 1];
|
||||
|
||||
std::vector<array> temps;
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
auto ensure_row_contiguous_last_dims = [s = stream(),
|
||||
&temps](const array& arr) {
|
||||
&encoder](const array& arr) {
|
||||
auto stride_0 = arr.strides()[arr.ndim() - 2];
|
||||
auto stride_1 = arr.strides()[arr.ndim() - 1];
|
||||
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
|
||||
return arr;
|
||||
} else {
|
||||
temps.push_back(array(arr.shape(), arr.dtype(), nullptr, {}));
|
||||
copy_cpu(arr, temps.back(), CopyType::General, s);
|
||||
return temps.back();
|
||||
auto arr_cpy = array(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_cpu(arr, arr_cpy, CopyType::General, s);
|
||||
encoder.add_temporary(arr_cpy);
|
||||
return arr_cpy;
|
||||
}
|
||||
};
|
||||
|
||||
auto x = ensure_row_contiguous_last_dims(x_pre);
|
||||
auto w = ensure_row_contiguous_last_dims(w_pre);
|
||||
auto scales = ensure_row_contiguous_last_dims(scales_pre);
|
||||
auto biases = ensure_row_contiguous_last_dims(biases_pre);
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
auto& encoder = cpu::get_command_encoder(stream());
|
||||
encoder.add_temporaries(std::move(temps));
|
||||
encoder.set_input_array(x);
|
||||
encoder.set_input_array(w);
|
||||
encoder.set_input_array(scales);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.set_input_array(lhs_indices);
|
||||
encoder.set_input_array(rhs_indices);
|
||||
encoder.set_output_array(out);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
if (mode_ == QuantizationMode::Affine) {
|
||||
auto biases = ensure_row_contiguous_last_dims(inputs[3]);
|
||||
encoder.set_input_array(biases);
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
biases = array::unsafe_weak_copy(biases),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
group_size_ = group_size_,
|
||||
bits_ = bits_,
|
||||
transpose_ = transpose_]() mutable {
|
||||
_bs_qmm_dispatch(
|
||||
out,
|
||||
x,
|
||||
w,
|
||||
scales,
|
||||
biases,
|
||||
lhs_indices,
|
||||
rhs_indices,
|
||||
group_size_,
|
||||
bits_,
|
||||
transpose_);
|
||||
});
|
||||
} else {
|
||||
encoder.dispatch([out = array::unsafe_weak_copy(out),
|
||||
x = array::unsafe_weak_copy(x),
|
||||
w = array::unsafe_weak_copy(w),
|
||||
scales = array::unsafe_weak_copy(scales),
|
||||
lhs_indices = array::unsafe_weak_copy(lhs_indices),
|
||||
rhs_indices = array::unsafe_weak_copy(rhs_indices),
|
||||
transpose_ = transpose_]() mutable {
|
||||
mxfp4_bs_qmm_dispatch(
|
||||
out, x, w, scales, lhs_indices, rhs_indices, transpose_);
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
@@ -705,7 +1038,7 @@ void dispatch_quantize(
|
||||
w_ptr, out_ptr, scales_ptr, biases_ptr, bits, group_size, w.size());
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
void fast::Quantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [s = stream()](const array& arr) {
|
||||
@@ -764,7 +1097,7 @@ void fast::AffineQuantize::eval_cpu(
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
"[fast::Quantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
|
||||
#include "mlx/backend/cpu/simd/base_simd.h"
|
||||
|
||||
// There seems to be a bug in sims/base.h
|
||||
// There seems to be a bug in simd/base_simd.h
|
||||
// __XROS_2_0 is not defined, the expression evaluates
|
||||
// to true instead of false setting the SIMD library
|
||||
// higher than it should be even on macOS < 15
|
||||
@@ -234,6 +234,7 @@ Simd<T, N> remainder(Simd<T, N> a, Simd<T, N> b) {
|
||||
|
||||
template <typename MaskT, typename T1, typename T2, int N>
|
||||
Simd<T1, N> select(Simd<MaskT, N> mask, Simd<T1, N> x, Simd<T2, N> y) {
|
||||
static_assert(std::is_same_v<MaskT, bool>);
|
||||
if constexpr (sizeof(T1) == 1) {
|
||||
return asd::bitselect(y.value, x.value, asd::convert<char>(mask.value));
|
||||
} else if constexpr (sizeof(T1) == 2) {
|
||||
@@ -251,9 +252,13 @@ Simd<T, N> pow(Simd<T, N> base, Simd<T, N> exp) {
|
||||
return asd::pow(base.value, exp.value);
|
||||
} else {
|
||||
Simd<T, N> res = 1;
|
||||
while (any(exp)) {
|
||||
res = select(exp & 1, res * base, res);
|
||||
base = select(exp, base * base, base);
|
||||
// Raising an integer to a negative power is undefined
|
||||
if (any(exp < static_cast<T>(0))) {
|
||||
return 0;
|
||||
}
|
||||
while (any(exp > static_cast<T>(0))) {
|
||||
res = select((exp & 1) != 0, res * base, res);
|
||||
base = select(exp > static_cast<T>(0), base * base, base);
|
||||
exp = exp >> 1;
|
||||
}
|
||||
return res;
|
||||
|
||||
@@ -79,7 +79,8 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
|
||||
// Get the polynom selection mask. There is one polynom for 0 <= x <= Pi/4
|
||||
// and another one for Pi/4<x<=Pi/2. Both branches will be computed.
|
||||
auto poly_mask = (emm2 & 2) != 0;
|
||||
auto poly_mask =
|
||||
(emm2 & static_cast<uint32_t>(2)) != static_cast<uint32_t>(0);
|
||||
|
||||
// The magic pass: "Extended precision modular arithmetic"
|
||||
// x = ((x - y * DP1) - y * DP2) - y * DP3
|
||||
@@ -87,8 +88,8 @@ Simd<T, N> sincos(Simd<T, N> in) {
|
||||
x = fma(y, Simd<float, N>(-2.4187564849853515625e-4f), x);
|
||||
x = fma(y, Simd<float, N>(-3.77489497744594108e-8f), x);
|
||||
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != 0);
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != 0;
|
||||
sign_mask_sin = sign_mask_sin ^ ((emm2 & 4) != static_cast<uint32_t>(0));
|
||||
auto sign_mask_cos = ((emm2 - 2) & 4) != static_cast<uint32_t>(0);
|
||||
|
||||
// Evaluate the first polynom (0 <= x <= Pi/4) in y1,
|
||||
// and the second polynom (Pi/4 <= x <= 0) in y2
|
||||
|
||||
@@ -15,6 +15,18 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// NaN-aware comparator that places NaNs at the end
|
||||
template <typename T>
|
||||
bool nan_aware_less(T a, T b) {
|
||||
if constexpr (std::is_floating_point_v<T> || std::is_same_v<T, complex64_t>) {
|
||||
if (std::isnan(a))
|
||||
return false;
|
||||
if (std::isnan(b))
|
||||
return true;
|
||||
}
|
||||
return a < b;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
struct StridedIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -27,7 +39,7 @@ struct StridedIterator {
|
||||
StridedIterator() = default;
|
||||
|
||||
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
|
||||
: ptr_(ptr + offset * stride), stride_(stride) {}
|
||||
: stride_(stride), ptr_(ptr + offset * stride) {}
|
||||
|
||||
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
|
||||
: StridedIterator(arr.data<T>(), arr.strides()[axis], offset) {}
|
||||
@@ -108,8 +120,8 @@ template <typename T>
|
||||
void sort(array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -124,13 +136,13 @@ void sort(array& out, int axis) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
|
||||
StridedIterator st(data_ptr, axis_stride, 0);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed);
|
||||
std::stable_sort(st, ed, nan_aware_less<T>);
|
||||
src_it.step();
|
||||
}
|
||||
}
|
||||
@@ -139,7 +151,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argsort(const array& in, array& out, int axis) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -164,7 +176,7 @@ void argsort(const array& in, array& out, int axis) {
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
|
||||
@@ -184,6 +196,15 @@ void argsort(const array& in, array& out, int axis) {
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
@@ -193,8 +214,8 @@ template <typename T>
|
||||
void partition(array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + out.ndim() : axis;
|
||||
size_t in_size = out.size();
|
||||
size_t n_rows = in_size / out.shape(axis);
|
||||
int64_t in_size = out.size();
|
||||
int64_t n_rows = in_size / out.shape(axis);
|
||||
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
@@ -211,7 +232,7 @@ void partition(array& out, int axis, int kth) {
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
auto out_ptr = out.data<T>();
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out_ptr + src_it.loc;
|
||||
src_it.step();
|
||||
|
||||
@@ -219,7 +240,7 @@ void partition(array& out, int axis, int kth) {
|
||||
StridedIterator md(data_ptr, axis_stride, kth);
|
||||
StridedIterator ed(data_ptr, axis_stride, axis_size);
|
||||
|
||||
std::nth_element(st, md, ed);
|
||||
std::nth_element(st, md, ed, nan_aware_less<T>);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -227,7 +248,7 @@ template <typename T, typename IdxT = uint32_t>
|
||||
void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
// Get axis, shape and stride info
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
int64_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
@@ -256,7 +277,7 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
auto in_ptr = in.data<T>();
|
||||
auto out_ptr = out.data<IdxT>();
|
||||
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
for (int64_t i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in_ptr + in_it.loc;
|
||||
IdxT* idx_ptr = out_ptr + out_it.loc;
|
||||
in_it.step();
|
||||
@@ -276,6 +297,15 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
|
||||
// Handle NaNs (place them at the end)
|
||||
if (std::is_floating_point<T>::value) {
|
||||
if (std::isnan(v1))
|
||||
return false;
|
||||
if (std::isnan(v2))
|
||||
return true;
|
||||
}
|
||||
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
||||
@@ -27,7 +27,7 @@ void svd_impl(
|
||||
const int N = a.shape(-1);
|
||||
const int K = std::min(M, N);
|
||||
|
||||
size_t num_matrices = a.size() / (M * N);
|
||||
int64_t num_matrices = a.size() / (M * N);
|
||||
|
||||
// lapack clobbers the input, so we have to make a copy.
|
||||
array in(a.shape(), a.dtype(), nullptr, {});
|
||||
@@ -83,8 +83,6 @@ void svd_impl(
|
||||
|
||||
auto jobz = (u_ptr) ? "A" : "N";
|
||||
|
||||
// Will contain the number of singular values after the call has returned.
|
||||
int ns = 0;
|
||||
T workspace_dimension = 0;
|
||||
|
||||
// Will contain the indices of eigenvectors that failed to converge (not
|
||||
@@ -123,7 +121,7 @@ void svd_impl(
|
||||
auto scratch = array::Data{allocator::malloc(sizeof(T) * lwork)};
|
||||
|
||||
// Loop over matrices.
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
for (int64_t i = 0; i < num_matrices; i++) {
|
||||
gesdd<T>(
|
||||
/* jobz = */ jobz,
|
||||
// M and N are swapped since lapack expects column-major.
|
||||
@@ -155,10 +153,10 @@ void svd_impl(
|
||||
|
||||
template <typename T>
|
||||
void compute_svd(
|
||||
const array& a,
|
||||
bool compute_uv,
|
||||
std::vector<array>& outputs,
|
||||
Stream stream) {}
|
||||
const array& /* a */,
|
||||
bool /* compute_uv */,
|
||||
std::vector<array>& /* outputs */,
|
||||
Stream /* stream */) {}
|
||||
|
||||
void SVD::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
|
||||
@@ -136,7 +136,7 @@ void ternary_op(
|
||||
if (topt == TernaryOpType::ScalarScalarScalar) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
} else if (topt == TernaryOpType::VectorVectorVector) {
|
||||
for (size_t i = 0; i < out.size(); ++i) {
|
||||
for (int64_t i = 0; i < out.size(); ++i) {
|
||||
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
|
||||
a_ptr++;
|
||||
b_ptr++;
|
||||
|
||||
@@ -10,8 +10,8 @@
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename T, typename U = T, typename Op>
|
||||
void unary_op(const T* a, U* out, size_t shape, size_t stride) {
|
||||
for (size_t i = 0; i < shape; i += 1) {
|
||||
void unary_op(const T* a, U* out, int64_t shape, int64_t stride) {
|
||||
for (int64_t i = 0; i < shape; i += 1) {
|
||||
out[i] = Op{}(*a);
|
||||
a += stride;
|
||||
}
|
||||
@@ -38,14 +38,14 @@ void unary_op(const array& a, array& out, Op) {
|
||||
src++;
|
||||
}
|
||||
} else {
|
||||
size_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
size_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
int64_t shape = ndim > 0 ? a.shape().back() : 1;
|
||||
int64_t stride = ndim > 0 ? a.strides().back() : 1;
|
||||
if (ndim <= 1) {
|
||||
unary_op<T, U, Op>(src, dst, shape, stride);
|
||||
return;
|
||||
}
|
||||
auto it = ContiguousIterator(a.shape(), a.strides(), ndim - 1);
|
||||
for (size_t elem = 0; elem < a.size(); elem += shape) {
|
||||
for (int64_t elem = 0; elem < a.size(); elem += shape) {
|
||||
unary_op<T, U, Op>(src + it.loc, dst + elem, shape, stride);
|
||||
it.step();
|
||||
}
|
||||
|
||||
@@ -77,7 +77,8 @@ struct Real {
|
||||
struct Sigmoid {
|
||||
template <int N, typename T>
|
||||
Simd<T, N> operator()(Simd<T, N> x) {
|
||||
return 1.0f / (1.0f + simd::exp(-x));
|
||||
auto y = 1.0f / (1.0f + simd::exp(simd::abs(x)));
|
||||
return simd::select(x < Simd<T, N>{0}, y, Simd<T, N>{1} - y);
|
||||
}
|
||||
SINGLE()
|
||||
};
|
||||
|
||||
@@ -22,12 +22,11 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/cudnn_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/eval.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fence.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/gemv.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cutlass_gemm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/simple_gemm.cu
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/gemms/cublas_gemm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/jit_module.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
@@ -90,9 +89,6 @@ target_include_directories(mlx PRIVATE "${CMAKE_CURRENT_BINARY_DIR}/gen")
|
||||
target_compile_options(mlx
|
||||
PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--extended-lambda>")
|
||||
|
||||
# Keep ptx around for inspection
|
||||
target_compile_options(mlx PRIVATE "$<$<COMPILE_LANGUAGE:CUDA>:--keep>")
|
||||
|
||||
# Enable calling host constexpr functions from device. This is needed because
|
||||
# the constexpr version of isnan is host only.
|
||||
target_compile_options(
|
||||
@@ -174,16 +170,11 @@ target_link_libraries(mlx PRIVATE CUDNN::cudnn_all)
|
||||
# Suppress nvcc warnings on MLX headers.
|
||||
target_compile_options(mlx PRIVATE $<$<COMPILE_LANGUAGE:CUDA>:-Xcudafe
|
||||
--diag_suppress=997>)
|
||||
# Supress warnings: note: parameter passing for argument of type
|
||||
# ‘std::pair<float, float>’ when C++17 is enabled changed to match C++14 in GCC
|
||||
# 10.1
|
||||
target_compile_options(mlx PRIVATE -Wno-psabi)
|
||||
|
||||
# Install CCCL headers for JIT.
|
||||
install(DIRECTORY ${cccl_SOURCE_DIR}/include/cuda
|
||||
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/cccl)
|
||||
|
||||
# Fetch and make available cutlass
|
||||
FetchContent_Declare(
|
||||
cutlass
|
||||
GIT_REPOSITORY https://github.com/NVIDIA/cutlass.git
|
||||
GIT_TAG v4.1.0)
|
||||
FetchContent_Populate(cutlass)
|
||||
target_include_directories(
|
||||
mlx PRIVATE $<BUILD_INTERFACE:${cutlass_SOURCE_DIR}/include>)
|
||||
|
||||
@@ -30,8 +30,20 @@ SmallSizePool::SmallSizePool() {
|
||||
next_free_ = buffer_;
|
||||
|
||||
CHECK_CUDA_ERROR(cudaMallocManaged(&data_, small_pool_size));
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetReadMostly, 0));
|
||||
|
||||
int device_count = 0;
|
||||
CHECK_CUDA_ERROR(cudaGetDeviceCount(&device_count));
|
||||
for (int i = 0; i < device_count; ++i) {
|
||||
#if CUDART_VERSION >= 13000
|
||||
cudaMemLocation loc;
|
||||
loc.type = cudaMemLocationTypeDevice;
|
||||
loc.id = i;
|
||||
#else
|
||||
int loc = i;
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaMemAdvise(data_, small_pool_size, cudaMemAdviseSetAccessedBy, loc));
|
||||
}
|
||||
|
||||
auto curr = next_free_;
|
||||
for (size_t i = 1; i < num_blocks; ++i) {
|
||||
@@ -79,7 +91,7 @@ CudaAllocator::CudaAllocator()
|
||||
// TODO: Set memory limit for multi-device.
|
||||
size_t free, total;
|
||||
CHECK_CUDA_ERROR(cudaMemGetInfo(&free, &total));
|
||||
memory_limit_ = total * 0.8;
|
||||
memory_limit_ = total * 0.95;
|
||||
max_pool_size_ = memory_limit_;
|
||||
}
|
||||
|
||||
|
||||
@@ -6,23 +6,33 @@
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace cu {
|
||||
|
||||
template <typename T>
|
||||
struct Arange {
|
||||
const T start;
|
||||
const T step;
|
||||
namespace cg = cooperative_groups;
|
||||
|
||||
__device__ T operator()(uint32_t i) const {
|
||||
return start + i * step;
|
||||
template <typename T, typename IdxT, int N_WRITES>
|
||||
__global__ void arange(T* out, IdxT size, T start, T step) {
|
||||
IdxT index = cg::this_grid().thread_rank();
|
||||
|
||||
if ((index + 1) * N_WRITES > size) {
|
||||
for (IdxT i = index * N_WRITES; i < size; ++i) {
|
||||
out[i] = start + i * step;
|
||||
}
|
||||
} else {
|
||||
AlignedVector<T, N_WRITES> out_vec;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < N_WRITES; ++i) {
|
||||
out_vec[i] = start + (index * N_WRITES + i) * step;
|
||||
}
|
||||
|
||||
store_vector<N_WRITES>(out, index, out_vec);
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
@@ -36,19 +46,23 @@ void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_output_array(out);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
dispatch_int_float_types(out.dtype(), "Arange", [&](auto type_tag) {
|
||||
using CTYPE = MLX_GET_TYPE(type_tag);
|
||||
using OutType = cuda_type_t<CTYPE>;
|
||||
CTYPE step =
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
|
||||
thrust::transform(
|
||||
cu::thrust_policy(encoder.stream()),
|
||||
thrust::counting_iterator<uint32_t>(0),
|
||||
thrust::counting_iterator<uint32_t>(out.data_size()),
|
||||
thrust::device_pointer_cast(out.data<OutType>()),
|
||||
cu::Arange<OutType>{
|
||||
static_cast<OutType>(start_), static_cast<OutType>(step)});
|
||||
constexpr int N_WRITES = 16 / sizeof(OutType);
|
||||
dispatch_bool(out.data_size() > INT32_MAX, [&](auto large) {
|
||||
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
||||
auto [num_blocks, block_dims] = get_launch_args(out, large(), N_WRITES);
|
||||
encoder.add_kernel_node(
|
||||
cu::arange<OutType, IdxT, N_WRITES>,
|
||||
num_blocks,
|
||||
block_dims,
|
||||
0,
|
||||
out.data<OutType>(),
|
||||
out.data_size(),
|
||||
static_cast<CTYPE>(start_),
|
||||
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_));
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
|
||||
@@ -332,9 +332,9 @@ void Compiled::eval_gpu(
|
||||
encoder.set_output_array(out);
|
||||
}
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
auto [kernel, max_block_dims] = mod.get_kernel_and_dims(kernel_name);
|
||||
auto [num_blocks, block_dims] =
|
||||
get_launch_args(outputs[0], large, work_per_thread);
|
||||
get_launch_args(outputs[0], large, work_per_thread, max_block_dims);
|
||||
encoder.add_kernel_node(kernel, num_blocks, block_dims, 0, args.args());
|
||||
}
|
||||
|
||||
|
||||
@@ -47,7 +47,7 @@ auto& conv_cache() {
|
||||
std::pair<
|
||||
cudnnBackendDescriptorType_t,
|
||||
std::optional<cudnn_frontend::ExecutionPlan>>>
|
||||
cache(/* capacity */ 128);
|
||||
cache("MLX_CUDA_CONV_CACHE_SIZE", /* default_capacity */ 128);
|
||||
return cache;
|
||||
}
|
||||
|
||||
@@ -382,20 +382,19 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out_) {
|
||||
}
|
||||
|
||||
if (op_graph) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
// Find a plan for the graph and execute it.
|
||||
auto plan = find_cudnn_plan_from_op_graph(
|
||||
encoder.device().cudnn_handle(), backend_type, dtype, *op_graph);
|
||||
if (!plan) {
|
||||
throw std::runtime_error("[conv] Unable to find an execution plan.");
|
||||
}
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
if (plan) {
|
||||
// Setup inputs and outputs.
|
||||
register_args(encoder, backend_type, in, wt, out, out_);
|
||||
|
||||
auto [x, w, y] = dispatch_args(backend_type, in, wt, out);
|
||||
if (encode_cudnn_plan(encoder, *plan, {'x', 'w', 'y'}, x, w, y)) {
|
||||
conv_cache().emplace(
|
||||
cache_key, std::make_pair(backend_type, std::move(*plan)));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -15,8 +15,8 @@ void copy_gpu_inplace(
|
||||
int64_t offset_out,
|
||||
CopyType ctype,
|
||||
const Stream& s,
|
||||
const std::optional<array>& dynamic_offset_in,
|
||||
const std::optional<array>& dynamic_offset_out) {
|
||||
std::optional<array> dynamic_offset_in,
|
||||
std::optional<array> dynamic_offset_out) {
|
||||
if (out.size() == 0) {
|
||||
return;
|
||||
}
|
||||
@@ -44,6 +44,16 @@ void copy_gpu_inplace(
|
||||
strides_vec[0]);
|
||||
} else {
|
||||
if (dynamic_offset_in || dynamic_offset_out) {
|
||||
if (!dynamic_offset_in) {
|
||||
dynamic_offset_in = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_in);
|
||||
}
|
||||
if (!dynamic_offset_out) {
|
||||
dynamic_offset_out = array(0, int64);
|
||||
encoder.add_temporary(*dynamic_offset_out);
|
||||
}
|
||||
encoder.set_input_array(*dynamic_offset_in);
|
||||
encoder.set_input_array(*dynamic_offset_out);
|
||||
copy_general_dynamic(
|
||||
encoder,
|
||||
ctype,
|
||||
@@ -54,8 +64,8 @@ void copy_gpu_inplace(
|
||||
shape_collapsed,
|
||||
strides_vec[0],
|
||||
strides_vec[1],
|
||||
dynamic_offset_in ? *dynamic_offset_in : array(0, int64),
|
||||
dynamic_offset_out ? *dynamic_offset_out : array(0, int64));
|
||||
*dynamic_offset_in,
|
||||
*dynamic_offset_out);
|
||||
} else {
|
||||
copy_general(
|
||||
encoder,
|
||||
|
||||
@@ -210,6 +210,9 @@ std::optional<cudnn_frontend::ExecutionPlan> find_cudnn_plan_from_op_graph(
|
||||
Dtype dtype,
|
||||
cudnn_frontend::OperationGraph& op_graph) {
|
||||
auto engine_configs = get_cudnn_engine_configs(backend_type, dtype, op_graph);
|
||||
if (engine_configs.empty()) {
|
||||
return std::nullopt;
|
||||
}
|
||||
return find_cudnn_plan_from_engine_configs(handle, engine_configs, op_graph);
|
||||
}
|
||||
|
||||
|
||||
@@ -14,10 +14,6 @@ namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
// This should be less than 255
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
#define CHECK_CUDNN_ERROR(cmd) check_cudnn_error(#cmd, (cmd))
|
||||
|
||||
void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
@@ -27,11 +23,11 @@ void check_cudnn_error(const char* name, cudnnStatus_t err) {
|
||||
}
|
||||
}
|
||||
|
||||
int cuda_graph_cache_size() {
|
||||
static int cache_size = []() {
|
||||
return env::get_var("MLX_CUDA_GRAPH_CACHE_SIZE", 100);
|
||||
bool use_cuda_graphs() {
|
||||
static bool use_graphs = []() {
|
||||
return env::get_var("MLX_USE_CUDA_GRAPHS", true);
|
||||
}();
|
||||
return cache_size;
|
||||
return use_graphs;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -68,8 +64,8 @@ Device::~Device() {
|
||||
|
||||
void Device::make_current() {
|
||||
// We need to set/get current CUDA device very frequently, cache it to reduce
|
||||
// actual calls of CUDA APIs. This function assumes single-thread in host.
|
||||
static int current = 0;
|
||||
// actual calls of CUDA APIs.
|
||||
static thread_local int current = 0;
|
||||
if (current != device_) {
|
||||
CHECK_CUDA_ERROR(cudaSetDevice(device_));
|
||||
current = device_;
|
||||
@@ -86,11 +82,19 @@ CommandEncoder& Device::get_command_encoder(Stream s) {
|
||||
|
||||
CommandEncoder::CaptureContext::CaptureContext(CommandEncoder& enc) : enc(enc) {
|
||||
enc.device().make_current();
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
CHECK_CUDA_ERROR(
|
||||
cudaStreamBeginCapture(enc.stream(), cudaStreamCaptureModeGlobal));
|
||||
}
|
||||
|
||||
CommandEncoder::CaptureContext::~CaptureContext() {
|
||||
if (!use_cuda_graphs()) {
|
||||
enc.node_count_++;
|
||||
return;
|
||||
}
|
||||
|
||||
graph.end_capture(enc.stream());
|
||||
if (discard) {
|
||||
return;
|
||||
@@ -105,6 +109,9 @@ CommandEncoder::ConcurrentContext::ConcurrentContext(CommandEncoder& enc)
|
||||
|
||||
CommandEncoder::ConcurrentContext::~ConcurrentContext() {
|
||||
enc.in_concurrent_ = false;
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Use an empty graph node for synchronization
|
||||
CommandEncoder::GraphNode empty{NULL, 'E', std::to_string(enc.node_count_++)};
|
||||
@@ -186,35 +193,43 @@ CommandEncoder::CommandEncoder(Device& d)
|
||||
: device_(d),
|
||||
stream_(d),
|
||||
graph_(d),
|
||||
graph_cache_(cuda_graph_cache_size()) {}
|
||||
worker_(d),
|
||||
graph_cache_("MLX_CUDA_GRAPH_CACHE_SIZE", /* default_capacity */ 400) {}
|
||||
|
||||
void CommandEncoder::add_completed_handler(std::function<void()> task) {
|
||||
worker_.add_task(std::move(task));
|
||||
}
|
||||
|
||||
void CommandEncoder::set_input_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::set_output_array(const array& arr) {
|
||||
if (!use_cuda_graphs()) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto id = reinterpret_cast<std::uintptr_t>(arr.buffer().ptr());
|
||||
active_deps_.push_back(id);
|
||||
active_outputs_.push_back(id);
|
||||
}
|
||||
|
||||
void CommandEncoder::maybe_commit() {
|
||||
if (node_count_ >= env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
commit();
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::add_kernel_node(
|
||||
void* func,
|
||||
dim3 grid_dim,
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cudaLaunchKernel(
|
||||
func, grid_dim, block_dim, params, smem_bytes, stream()));
|
||||
return;
|
||||
}
|
||||
cudaKernelNodeParams kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDim = grid_dim;
|
||||
@@ -230,6 +245,23 @@ void CommandEncoder::add_kernel_node(
|
||||
dim3 block_dim,
|
||||
uint32_t smem_bytes,
|
||||
void** params) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CHECK_CUDA_ERROR(cuLaunchKernel(
|
||||
func,
|
||||
grid_dim.x,
|
||||
grid_dim.y,
|
||||
grid_dim.z,
|
||||
block_dim.x,
|
||||
block_dim.y,
|
||||
block_dim.z,
|
||||
smem_bytes,
|
||||
stream(),
|
||||
params,
|
||||
nullptr));
|
||||
return;
|
||||
}
|
||||
|
||||
CUDA_KERNEL_NODE_PARAMS kernel_params = {0};
|
||||
kernel_params.func = func;
|
||||
kernel_params.gridDimX = grid_dim.x;
|
||||
@@ -256,20 +288,38 @@ void CommandEncoder::add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params) {
|
||||
}
|
||||
|
||||
void CommandEncoder::add_graph_node(cudaGraph_t child) {
|
||||
if (!use_cuda_graphs()) {
|
||||
node_count_++;
|
||||
CudaGraphExec graph_exec;
|
||||
graph_exec.instantiate(child);
|
||||
device_.make_current();
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream()));
|
||||
return;
|
||||
}
|
||||
cudaGraphNode_t node;
|
||||
CHECK_CUDA_ERROR(cudaGraphAddChildGraphNode(&node, graph_, NULL, 0, child));
|
||||
insert_graph_dependencies(GraphNode{node, 'G'});
|
||||
}
|
||||
|
||||
int CommandEncoder::get_num_ops() {
|
||||
return node_count_;
|
||||
}
|
||||
|
||||
void CommandEncoder::commit() {
|
||||
nvtx3::scoped_range r("CommandEncoder::commit");
|
||||
if (!temporaries_.empty()) {
|
||||
add_completed_handler([temporaries = std::move(temporaries_)]() {});
|
||||
}
|
||||
if (node_count_ > 0) {
|
||||
if (use_cuda_graphs() && node_count_ > 0) {
|
||||
if (!from_nodes_.empty()) {
|
||||
CHECK_CUDA_ERROR(cudaGraphAddDependencies(
|
||||
graph_, from_nodes_.data(), to_nodes_.data(), from_nodes_.size()));
|
||||
graph_,
|
||||
from_nodes_.data(),
|
||||
to_nodes_.data(),
|
||||
#if CUDART_VERSION >= 13000
|
||||
nullptr, // edgeData
|
||||
#endif // CUDART_VERSION >= 13000
|
||||
from_nodes_.size()));
|
||||
}
|
||||
|
||||
graph_key_ += ".";
|
||||
@@ -303,7 +353,6 @@ void CommandEncoder::commit() {
|
||||
CHECK_CUDA_ERROR(cudaGraphLaunch(graph_exec, stream_));
|
||||
|
||||
// Reset state
|
||||
node_count_ = 0;
|
||||
graph_node_count_ = 0;
|
||||
empty_node_count_ = 0;
|
||||
from_nodes_.clear();
|
||||
@@ -315,6 +364,7 @@ void CommandEncoder::commit() {
|
||||
|
||||
// Put completion handlers in a batch.
|
||||
worker_.commit(stream_);
|
||||
node_count_ = 0;
|
||||
}
|
||||
|
||||
void CommandEncoder::synchronize() {
|
||||
|
||||
@@ -76,9 +76,6 @@ class CommandEncoder {
|
||||
uint32_t smem_bytes,
|
||||
void** params);
|
||||
|
||||
// Low-level graph helpers.
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
void add_graph_node(cudaGraph_t child);
|
||||
|
||||
void add_temporary(const array& arr) {
|
||||
@@ -86,7 +83,7 @@ class CommandEncoder {
|
||||
}
|
||||
|
||||
void add_completed_handler(std::function<void()> task);
|
||||
void maybe_commit();
|
||||
int get_num_ops();
|
||||
void commit();
|
||||
|
||||
Device& device() {
|
||||
@@ -101,6 +98,9 @@ class CommandEncoder {
|
||||
void synchronize();
|
||||
|
||||
private:
|
||||
void add_kernel_node(const cudaKernelNodeParams& params);
|
||||
void add_kernel_node(const CUDA_KERNEL_NODE_PARAMS& params);
|
||||
|
||||
struct GraphNode {
|
||||
cudaGraphNode_t node;
|
||||
// K = kernel
|
||||
@@ -140,7 +140,7 @@ class Device {
|
||||
Device(const Device&) = delete;
|
||||
Device& operator=(const Device&) = delete;
|
||||
|
||||
// Make this device the current cuda device, required by some cuda calls.
|
||||
// Make this device the current cuda device, this method is thread-safe.
|
||||
void make_current();
|
||||
|
||||
CommandEncoder& get_command_encoder(Stream s);
|
||||
|
||||
@@ -204,6 +204,12 @@ struct Power {
|
||||
__device__ T operator()(T base, T exp) {
|
||||
if constexpr (cuda::std::is_integral_v<T>) {
|
||||
T res = 1;
|
||||
// Raising an integer to a negative power is undefined
|
||||
if constexpr (cuda::std::is_signed_v<T>) {
|
||||
if (exp < 0) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
while (exp) {
|
||||
if (exp & 1) {
|
||||
res *= base;
|
||||
|
||||
@@ -6,7 +6,6 @@
|
||||
|
||||
#include <cuda_bf16.h>
|
||||
#include <cuda_fp16.h>
|
||||
#include <thrust/iterator/transform_iterator.h>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
@@ -116,15 +115,4 @@ inline __host__ __device__ auto cast_to(SrcT x) {
|
||||
return CastOp<SrcT, DstT>{}(x);
|
||||
}
|
||||
|
||||
// Return an iterator that cast the value to DstT using CastOp.
|
||||
template <typename DstT, typename Iterator>
|
||||
inline __host__ __device__ auto make_cast_iterator(Iterator it) {
|
||||
using SrcT = typename cuda::std::iterator_traits<Iterator>::value_type;
|
||||
if constexpr (std::is_same_v<SrcT, DstT>) {
|
||||
return it;
|
||||
} else {
|
||||
return thrust::make_transform_iterator(it, CastOp<SrcT, DstT>{});
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -257,8 +257,8 @@ struct Round {
|
||||
struct Sigmoid {
|
||||
template <typename T>
|
||||
__device__ T operator()(T x) {
|
||||
T y = 1 / (1 + exp(-abs(x)));
|
||||
return (x < 0) ? 1 - y : y;
|
||||
T y = 1 / (1 + exp(abs(x)));
|
||||
return (x < 0) ? y : 1 - y;
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file must not include any host-only code, utilies that work under both
|
||||
// This file must not include any host-only code, utilities that work under both
|
||||
// host and device can be put here.
|
||||
//
|
||||
// See more about the requirements at:
|
||||
@@ -202,7 +202,7 @@ struct Limits<
|
||||
}
|
||||
};
|
||||
|
||||
// CUDA 11 does not have host side arithmatic operators for half types.
|
||||
// CUDA 11 does not have host side arithmetic operators for half types.
|
||||
template <typename T>
|
||||
struct Limits<
|
||||
T,
|
||||
|
||||
56
mlx/backend/cuda/distributed.cu
Normal file
56
mlx/backend/cuda/distributed.cu
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/distributed/primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
#include <cassert>
|
||||
|
||||
namespace mlx::core::distributed {
|
||||
void AllReduce::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 1);
|
||||
assert(outputs.size() == 1);
|
||||
|
||||
auto set_input_output =
|
||||
[s = stream()](const array& in, array& out) -> std::pair<array, array> {
|
||||
if (!in.flags().row_contiguous) {
|
||||
copy_gpu(in, out, CopyType::General, s);
|
||||
return {out, out};
|
||||
} else if (in.is_donatable()) {
|
||||
out.copy_shared_buffer(in);
|
||||
return {in, out};
|
||||
} else {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
return {in, out};
|
||||
}
|
||||
};
|
||||
|
||||
auto [input, output] = set_input_output(inputs[0], outputs[0]);
|
||||
|
||||
auto& encoder = cu::get_command_encoder(stream());
|
||||
encoder.set_input_array(input);
|
||||
encoder.set_output_array(output);
|
||||
|
||||
auto capture = encoder.capture_context();
|
||||
auto& s = stream();
|
||||
|
||||
switch (reduce_type_) {
|
||||
case Sum:
|
||||
distributed::detail::all_sum(group(), input, output, s);
|
||||
break;
|
||||
case Max:
|
||||
distributed::detail::all_max(group(), input, output, s);
|
||||
break;
|
||||
case Min:
|
||||
distributed::detail::all_min(group(), input, output, s);
|
||||
break;
|
||||
default:
|
||||
throw std::runtime_error(
|
||||
"Only all reduce sum, max, and min are supported.");
|
||||
}
|
||||
}
|
||||
} // namespace mlx::core::distributed
|
||||
@@ -5,18 +5,24 @@
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/gpu/available.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core::gpu {
|
||||
|
||||
// Can be tuned with MLX_MAX_OPS_PER_BUFFER
|
||||
constexpr int default_max_nodes_per_graph = 20;
|
||||
|
||||
bool is_available() {
|
||||
return true;
|
||||
}
|
||||
|
||||
void new_stream(Stream s) {
|
||||
// Force initalization of cuda, so cuda runtime get destroyed at last.
|
||||
// Force initalization of CUDA, so CUDA runtime get destroyed at last.
|
||||
cudaFree(nullptr);
|
||||
// Make sure CUDA event pool get destroyed after device and stream.
|
||||
cu::CudaEvent::init_pool();
|
||||
// Ensure the static stream objects get created.
|
||||
cu::get_command_encoder(s);
|
||||
}
|
||||
@@ -34,7 +40,8 @@ void eval(array& arr) {
|
||||
arr.primitive().eval_gpu(arr.inputs(), outputs);
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(arr.primitive().stream());
|
||||
auto& stream = arr.primitive().stream();
|
||||
auto& encoder = cu::get_command_encoder(stream);
|
||||
// Keep used buffers alive until kernel finishes running.
|
||||
for (auto& in : arr.inputs()) {
|
||||
// Except for the donated one.
|
||||
@@ -45,7 +52,14 @@ void eval(array& arr) {
|
||||
for (auto& s : arr.siblings()) {
|
||||
encoder.add_temporary(s);
|
||||
}
|
||||
encoder.maybe_commit();
|
||||
|
||||
if (encoder.get_num_ops() >=
|
||||
env::max_ops_per_buffer(default_max_nodes_per_graph)) {
|
||||
scheduler::notify_new_task(stream);
|
||||
encoder.add_completed_handler(
|
||||
[stream]() { scheduler::notify_task_completion(stream); });
|
||||
encoder.commit();
|
||||
}
|
||||
}
|
||||
|
||||
void finalize(Stream s) {
|
||||
|
||||
@@ -3,10 +3,12 @@
|
||||
#include "mlx/backend/cuda/allocator.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/event.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/event.h"
|
||||
#include "mlx/scheduler.h"
|
||||
|
||||
#include <map>
|
||||
#include <vector>
|
||||
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -17,104 +19,180 @@ namespace cu {
|
||||
// CudaEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
// Cuda event managed with RAII.
|
||||
class CudaEventHandle {
|
||||
namespace {
|
||||
|
||||
// Manage cached cudaEvent_t objects.
|
||||
class CudaEventPool {
|
||||
public:
|
||||
CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(
|
||||
&event_, cudaEventDisableTiming | cudaEventBlockingSync));
|
||||
CudaEventHandle create(Device& d, int flags) {
|
||||
if (!on_creation_thread()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
}
|
||||
auto& cache = cache_for(d, flags);
|
||||
if (cache.empty()) {
|
||||
return CudaEventHandle(d, flags);
|
||||
} else {
|
||||
CudaEventHandle ret = std::move(cache.back());
|
||||
cache.pop_back();
|
||||
return ret;
|
||||
}
|
||||
}
|
||||
|
||||
~CudaEventHandle() {
|
||||
CHECK_CUDA_ERROR(cudaEventDestroy(event_));
|
||||
}
|
||||
|
||||
CudaEventHandle(const CudaEventHandle&) = delete;
|
||||
CudaEventHandle& operator=(const CudaEventHandle&) = delete;
|
||||
|
||||
operator cudaEvent_t() const {
|
||||
return event_;
|
||||
void release(CudaEventHandle event) {
|
||||
if (!on_creation_thread()) {
|
||||
// Event will be destroyed directly instead of getting moved to cache.
|
||||
return;
|
||||
}
|
||||
cache_for(event.device, event.flags).push_back(std::move(event));
|
||||
}
|
||||
|
||||
private:
|
||||
cudaEvent_t event_;
|
||||
std::vector<CudaEventHandle>& cache_for(Device& d, int flags) {
|
||||
return cache_[d.cuda_device()][flags];
|
||||
}
|
||||
|
||||
bool on_creation_thread() {
|
||||
return std::this_thread::get_id() == thread_id_;
|
||||
}
|
||||
|
||||
// The CudaEvent may be created and destroyed on different threads (for
|
||||
// example when waiting on GPU work in CPU stream), we don't want to make
|
||||
// the cache thread-safe as it adds overhead, so we just skip cache when
|
||||
// using events in worker threads.
|
||||
std::thread::id thread_id_{std::this_thread::get_id()};
|
||||
|
||||
// {device: {flags: [events]}}
|
||||
std::map<int, std::map<int, std::vector<CudaEventHandle>>> cache_;
|
||||
};
|
||||
|
||||
CudaEvent::CudaEvent() : event_(std::make_shared<CudaEventHandle>()) {}
|
||||
CudaEventPool& cuda_event_pool() {
|
||||
static CudaEventPool pool;
|
||||
return pool;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
CudaEventHandle::CudaEventHandle(Device& d, int flags)
|
||||
: device(d), flags(flags) {
|
||||
device.make_current();
|
||||
CHECK_CUDA_ERROR(cudaEventCreateWithFlags(&handle_, flags));
|
||||
assert(handle_ != nullptr);
|
||||
}
|
||||
|
||||
CudaEvent::CudaEvent(Device& d, int flags)
|
||||
: event_(cuda_event_pool().create(d, flags)) {}
|
||||
|
||||
CudaEvent::~CudaEvent() {
|
||||
cuda_event_pool().release(std::move(event_));
|
||||
}
|
||||
|
||||
void CudaEvent::wait() {
|
||||
nvtx3::scoped_range r("cu::CudaEvent::wait");
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaEventSynchronize(*event_);
|
||||
event_.device.make_current();
|
||||
cudaEventSynchronize(event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(cudaStream_t stream) {
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error("Should not wait on a CudaEvent before record.");
|
||||
}
|
||||
cudaStreamWaitEvent(stream, *event_);
|
||||
}
|
||||
|
||||
void CudaEvent::wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable { wait(); });
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
wait(enc.stream());
|
||||
}
|
||||
event_.device.make_current();
|
||||
cudaStreamWaitEvent(stream, event_);
|
||||
}
|
||||
|
||||
void CudaEvent::record(cudaStream_t stream) {
|
||||
cudaEventRecord(*event_, stream);
|
||||
recorded_ = true;
|
||||
}
|
||||
|
||||
void CudaEvent::record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on cpu stream.");
|
||||
} else {
|
||||
auto& enc = cu::get_command_encoder(s);
|
||||
enc.commit();
|
||||
record(enc.stream());
|
||||
}
|
||||
event_.device.make_current();
|
||||
cudaEventRecord(event_, stream);
|
||||
}
|
||||
|
||||
bool CudaEvent::completed() const {
|
||||
return cudaEventQuery(*event_) == cudaSuccess;
|
||||
// Note: cudaEventQuery can be safely called from any device.
|
||||
return cudaEventQuery(event_) == cudaSuccess;
|
||||
}
|
||||
|
||||
// static
|
||||
void CudaEvent::init_pool() {
|
||||
cuda_event_pool();
|
||||
}
|
||||
|
||||
// Wraps CudaEvent with a few features:
|
||||
// 1. The class can be copied.
|
||||
// 2. Make wait/record work with CPU streams.
|
||||
// 3. Add checks for waiting on un-recorded event.
|
||||
class CopyableCudaEvent {
|
||||
public:
|
||||
explicit CopyableCudaEvent(Device& d)
|
||||
: event_(std::make_shared<CudaEvent>(
|
||||
d,
|
||||
cudaEventDisableTiming | cudaEventBlockingSync)) {}
|
||||
|
||||
void wait() {
|
||||
event_->wait();
|
||||
}
|
||||
|
||||
void wait(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this]() mutable {
|
||||
check_recorded();
|
||||
event_->wait();
|
||||
});
|
||||
} else {
|
||||
check_recorded();
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->wait(encoder.stream());
|
||||
}
|
||||
}
|
||||
|
||||
void record(Stream s) {
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
throw std::runtime_error("CudaEvent can not wait on CPU stream.");
|
||||
} else {
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.commit();
|
||||
event_->record(encoder.stream());
|
||||
recorded_ = true;
|
||||
}
|
||||
}
|
||||
|
||||
bool is_signaled() const {
|
||||
return recorded_ && event_->completed();
|
||||
}
|
||||
|
||||
private:
|
||||
void check_recorded() const {
|
||||
if (!recorded_) {
|
||||
throw std::runtime_error(
|
||||
"Should not wait on a CudaEvent before recording.");
|
||||
}
|
||||
}
|
||||
|
||||
std::shared_ptr<CudaEvent> event_;
|
||||
bool recorded_{false};
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// SharedEvent implementations
|
||||
// AtomicEvent implementations
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
__host__ __device__ void event_wait(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_wait(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
uint64_t current;
|
||||
while ((current = ac->load()) < value) {
|
||||
ac->wait(current);
|
||||
}
|
||||
}
|
||||
|
||||
__host__ __device__ void event_signal(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__host__ __device__ void event_signal(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
ac->store(value);
|
||||
ac->notify_all();
|
||||
}
|
||||
|
||||
__global__ void event_wait_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_wait_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
event_wait(ac, value);
|
||||
}
|
||||
|
||||
__global__ void event_signal_kernel(SharedEvent::Atomic* ac, uint64_t value) {
|
||||
__global__ void event_signal_kernel(AtomicEvent::Atomic* ac, uint64_t value) {
|
||||
event_signal(ac, value);
|
||||
}
|
||||
|
||||
SharedEvent::Atomic* to_atomic(std::shared_ptr<Buffer> buf) {
|
||||
return static_cast<SharedEvent::Atomic*>(buf->raw_ptr());
|
||||
}
|
||||
|
||||
SharedEvent::SharedEvent() {
|
||||
AtomicEvent::AtomicEvent() {
|
||||
buf_ = std::shared_ptr<Buffer>(
|
||||
new Buffer{allocator().malloc(sizeof(Atomic))}, [](Buffer* ptr) {
|
||||
allocator().free(*ptr);
|
||||
@@ -123,17 +201,17 @@ SharedEvent::SharedEvent() {
|
||||
*static_cast<uint64_t*>(buf_->raw_ptr()) = 0;
|
||||
}
|
||||
|
||||
void SharedEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait");
|
||||
event_wait(to_atomic(buf_), value);
|
||||
void AtomicEvent::wait(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait");
|
||||
event_wait(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
void AtomicEvent::wait(cudaStream_t stream, uint64_t value) {
|
||||
event_wait_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::wait(s)");
|
||||
void AtomicEvent::wait(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::wait(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
scheduler::enqueue(s, [*this, value]() mutable { wait(value); });
|
||||
} else {
|
||||
@@ -144,17 +222,17 @@ void SharedEvent::wait(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
void SharedEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal");
|
||||
event_signal(to_atomic(buf_), value);
|
||||
void AtomicEvent::signal(uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal");
|
||||
event_signal(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(to_atomic(buf_), value);
|
||||
void AtomicEvent::signal(cudaStream_t stream, uint64_t value) {
|
||||
event_signal_kernel<<<1, 1, 0, stream>>>(atomic(), value);
|
||||
}
|
||||
|
||||
void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::signal(s)");
|
||||
void AtomicEvent::signal(Stream s, uint64_t value) {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::signal(s)");
|
||||
if (s.device == mlx::core::Device::cpu) {
|
||||
// Signal through a GPU stream so the atomic is updated in GPU - updating
|
||||
// the atomic in CPU sometimes does not get GPU notified.
|
||||
@@ -168,14 +246,14 @@ void SharedEvent::signal(Stream s, uint64_t value) {
|
||||
}
|
||||
}
|
||||
|
||||
bool SharedEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::is_signaled");
|
||||
return to_atomic(buf_)->load() >= value;
|
||||
bool AtomicEvent::is_signaled(uint64_t value) const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::is_signaled");
|
||||
return atomic()->load() >= value;
|
||||
}
|
||||
|
||||
uint64_t SharedEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::SharedEvent::value");
|
||||
return to_atomic(buf_)->load();
|
||||
uint64_t AtomicEvent::value() const {
|
||||
nvtx3::scoped_range r("cu::AtomicEvent::value");
|
||||
return atomic()->load();
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
@@ -188,14 +266,14 @@ namespace {
|
||||
|
||||
struct EventImpl {
|
||||
// CudaEvent is preferred when possible because it is fast, however we have
|
||||
// to fallback to SharedEvent in following cases:
|
||||
// to fallback to AtomicEvent in following cases:
|
||||
// 1. the event is used to wait/signal a cpu stream;
|
||||
// 2. signal value other than 1 has been specified.
|
||||
std::unique_ptr<cu::CudaEvent> cuda;
|
||||
std::unique_ptr<cu::SharedEvent> shared;
|
||||
std::unique_ptr<cu::CopyableCudaEvent> cuda;
|
||||
std::unique_ptr<cu::AtomicEvent> atomic;
|
||||
|
||||
bool is_created() const {
|
||||
return cuda || shared;
|
||||
return cuda || atomic;
|
||||
}
|
||||
|
||||
void ensure_created(Stream s, uint64_t signal_value) {
|
||||
@@ -203,10 +281,10 @@ struct EventImpl {
|
||||
return;
|
||||
}
|
||||
if (s.device == mlx::core::Device::cpu || signal_value > 1) {
|
||||
nvtx3::mark("Using slow SharedEvent");
|
||||
shared = std::make_unique<cu::SharedEvent>();
|
||||
nvtx3::mark("Using slow AtomicEvent");
|
||||
atomic = std::make_unique<cu::AtomicEvent>();
|
||||
} else {
|
||||
cuda = std::make_unique<cu::CudaEvent>();
|
||||
cuda = std::make_unique<cu::CopyableCudaEvent>(cu::device(s.device));
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -225,7 +303,7 @@ void Event::wait() {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait();
|
||||
} else {
|
||||
event->shared->wait(value());
|
||||
event->atomic->wait(value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -236,7 +314,7 @@ void Event::wait(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->wait(s);
|
||||
} else {
|
||||
event->shared->wait(s, value());
|
||||
event->atomic->wait(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -247,7 +325,7 @@ void Event::signal(Stream s) {
|
||||
assert(value() == 1);
|
||||
event->cuda->record(s);
|
||||
} else {
|
||||
event->shared->signal(s, value());
|
||||
event->atomic->signal(s, value());
|
||||
}
|
||||
}
|
||||
|
||||
@@ -258,9 +336,9 @@ bool Event::is_signaled() const {
|
||||
}
|
||||
if (event->cuda) {
|
||||
assert(value() == 1);
|
||||
return event->cuda->recorded() && event->cuda->completed();
|
||||
return event->cuda->is_signaled();
|
||||
} else {
|
||||
return event->shared->is_signaled(value());
|
||||
return event->atomic->is_signaled(value());
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -3,49 +3,60 @@
|
||||
#pragma once
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/cuda/utils.h"
|
||||
#include "mlx/stream.h"
|
||||
|
||||
#include <memory>
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <cuda/atomic>
|
||||
|
||||
#include <memory>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
class CudaEventHandle;
|
||||
class Device;
|
||||
|
||||
// RAII-managed move-only wrapper of cudaEvent_t.
|
||||
struct CudaEventHandle : public CudaHandle<cudaEvent_t, cudaEventDestroy> {
|
||||
CudaEventHandle(Device& d, int flags);
|
||||
Device& device;
|
||||
int flags;
|
||||
};
|
||||
|
||||
// Wrapper of native cuda event. It can synchronize between GPU streams, or wait
|
||||
// on GPU stream in CPU stream, but can not wait on CPU stream.
|
||||
class CudaEvent {
|
||||
public:
|
||||
CudaEvent();
|
||||
CudaEvent(Device& d, int flags);
|
||||
~CudaEvent();
|
||||
|
||||
CudaEvent(CudaEvent&&) = default;
|
||||
CudaEvent& operator=(CudaEvent&&) = default;
|
||||
|
||||
CudaEvent(const CudaEvent&) = delete;
|
||||
CudaEvent& operator=(const CudaEvent&) = delete;
|
||||
|
||||
void wait();
|
||||
void wait(cudaStream_t stream);
|
||||
void wait(Stream s);
|
||||
void record(cudaStream_t stream);
|
||||
void record(Stream s);
|
||||
|
||||
// Return whether the recorded kernels have completed. Note that this method
|
||||
// returns true if record() has not been called.
|
||||
bool completed() const;
|
||||
|
||||
bool recorded() const {
|
||||
return recorded_;
|
||||
}
|
||||
// Internal: make sure event pool is initialized.
|
||||
static void init_pool();
|
||||
|
||||
private:
|
||||
bool recorded_{false};
|
||||
std::shared_ptr<CudaEventHandle> event_;
|
||||
CudaEventHandle event_;
|
||||
};
|
||||
|
||||
// Event that can synchronize between CPU and GPU. It is much slower than
|
||||
// CudaEvent so the latter should always be preferred when possible.
|
||||
class SharedEvent {
|
||||
class AtomicEvent {
|
||||
public:
|
||||
using Atomic = cuda::atomic<uint64_t>;
|
||||
|
||||
SharedEvent();
|
||||
AtomicEvent();
|
||||
|
||||
void wait(uint64_t value);
|
||||
void wait(cudaStream_t stream, uint64_t value);
|
||||
@@ -57,7 +68,11 @@ class SharedEvent {
|
||||
uint64_t value() const;
|
||||
|
||||
private:
|
||||
std::shared_ptr<mlx::core::allocator::Buffer> buf_;
|
||||
Atomic* atomic() const {
|
||||
return static_cast<AtomicEvent::Atomic*>(buf_->raw_ptr());
|
||||
}
|
||||
|
||||
std::shared_ptr<allocator::Buffer> buf_;
|
||||
};
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
|
||||
@@ -7,7 +7,7 @@ namespace mlx::core {
|
||||
|
||||
struct FenceImpl {
|
||||
uint32_t count;
|
||||
cu::SharedEvent event;
|
||||
cu::AtomicEvent event;
|
||||
};
|
||||
|
||||
Fence::Fence(Stream s) {
|
||||
|
||||
@@ -50,8 +50,10 @@ cublasComputeType_t dtype_to_compute_type(Dtype dtype) {
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
case float64:
|
||||
case complex64:
|
||||
return CUBLAS_COMPUTE_64F;
|
||||
case complex64:
|
||||
return mlx::core::env::enable_tf32() ? CUBLAS_COMPUTE_32F_FAST_TF32
|
||||
: CUBLAS_COMPUTE_32F;
|
||||
default:
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Unsupported dtype in CublasGemm: {}.", dtype_to_string(dtype)));
|
||||
@@ -85,10 +87,10 @@ cublasLtMatrixLayout_t create_matrix_layout(
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride) {
|
||||
cublasLtMatrixLayout_t desc;
|
||||
if (transposed) {
|
||||
std::swap(rows, cols);
|
||||
}
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutCreate(&desc, type, rows, cols, ld));
|
||||
cublasLtOrder_t order = transposed ? CUBLASLT_ORDER_COL : CUBLASLT_ORDER_ROW;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc, CUBLASLT_MATRIX_LAYOUT_ORDER, &order, sizeof(cublasLtOrder_t)));
|
||||
if (batch_count > 1) {
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutSetAttribute(
|
||||
desc,
|
||||
@@ -126,37 +128,47 @@ CublasGemm::CublasGemm(
|
||||
N_(b_cols) {
|
||||
heuristic_.state = CUBLAS_STATUS_NOT_INITIALIZED;
|
||||
|
||||
auto scale_type = dtype_to_cublas_type(dtype);
|
||||
scale_type_ = dtype_to_cublas_type(dtype);
|
||||
if (dtype == bfloat16 || dtype == float16) {
|
||||
scale_type = CUDA_R_32F;
|
||||
scale_type_ = CUDA_R_32F;
|
||||
}
|
||||
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescCreate(
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type));
|
||||
&matmul_desc_, dtype_to_compute_type(dtype), scale_type_));
|
||||
int32_t pointer_mode = CUBLASLT_POINTER_MODE_HOST;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_POINTER_MODE,
|
||||
&pointer_mode,
|
||||
sizeof(int32_t)));
|
||||
cublasOperation_t op = CUBLAS_OP_N;
|
||||
|
||||
// In cublasLt matrices use column-major layout, while it is possible to use
|
||||
// the CUBLASLT_ORDER_ROW option to switch to row-major layout, the bias
|
||||
// epilogue does not work with the option. So instead we swap A and B to make
|
||||
// cublasLt return the row-major result, which works because:
|
||||
// - the data of a matrix in row-major layout is identical to its transpose in
|
||||
// column-major layout
|
||||
// - C^T = (A @ B)^T = B^T @ A^T
|
||||
cublasOperation_t a_op = b_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSA,
|
||||
&op,
|
||||
&a_op,
|
||||
sizeof(cublasOperation_t)));
|
||||
cublasOperation_t b_op = a_transposed ? CUBLAS_OP_T : CUBLAS_OP_N;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_TRANSB,
|
||||
&op,
|
||||
&b_op,
|
||||
sizeof(cublasOperation_t)));
|
||||
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
a_desc_ = create_matrix_layout(
|
||||
type, a_rows, a_cols, a_transposed, lda, batch_count, a_batch_stride);
|
||||
type, b_cols, b_rows, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
b_desc_ = create_matrix_layout(
|
||||
type, b_rows, b_cols, b_transposed, ldb, batch_count, b_batch_stride);
|
||||
type, a_cols, a_rows, a_transposed, lda, batch_count, a_batch_stride);
|
||||
out_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, b_cols, batch_count, a_rows * b_cols);
|
||||
type, b_cols, a_rows, false, b_cols, batch_count, a_rows * b_cols);
|
||||
}
|
||||
|
||||
CublasGemm::CublasGemm(
|
||||
@@ -191,7 +203,7 @@ CublasGemm::CublasGemm(
|
||||
b_batch_stride) {
|
||||
auto type = dtype_to_cublas_type(dtype);
|
||||
c_desc_ = create_matrix_layout(
|
||||
type, a_rows, b_cols, false, ldc, batch_count, c_batch_stride);
|
||||
type, b_cols, a_rows, false, ldc, batch_count, c_batch_stride);
|
||||
}
|
||||
|
||||
CublasGemm::~CublasGemm() {
|
||||
@@ -213,14 +225,30 @@ void CublasGemm::set_out(
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatrixLayoutDestroy(out_desc_));
|
||||
out_desc_ = create_matrix_layout(
|
||||
dtype_to_cublas_type(dtype),
|
||||
rows,
|
||||
cols,
|
||||
rows,
|
||||
transposed,
|
||||
ld,
|
||||
batch_count,
|
||||
batch_stride);
|
||||
}
|
||||
|
||||
void CublasGemm::set_bias(cu::CommandEncoder& encoder, const array& bias) {
|
||||
encoder.set_input_array(bias);
|
||||
cublasLtEpilogue_t epilogue = CUBLASLT_EPILOGUE_BIAS;
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_EPILOGUE,
|
||||
&epilogue,
|
||||
sizeof(epilogue)));
|
||||
auto* bias_ptr = bias.data<void>();
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmulDescSetAttribute(
|
||||
matmul_desc_,
|
||||
CUBLASLT_MATMUL_DESC_BIAS_POINTER,
|
||||
&bias_ptr,
|
||||
sizeof(bias_ptr)));
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -228,11 +256,19 @@ void CublasGemm::run(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
if (batch_count / batch_shape.back() > 1) {
|
||||
run_batched(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
encoder,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
alpha);
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -240,7 +276,13 @@ void CublasGemm::run(
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
|
||||
execute(encoder, out.data<void>(), a.data<void>(), b.data<void>(), nullptr);
|
||||
execute(
|
||||
encoder,
|
||||
out.data<void>(),
|
||||
a.data<void>(),
|
||||
b.data<void>(),
|
||||
nullptr,
|
||||
alpha);
|
||||
}
|
||||
|
||||
void CublasGemm::run(
|
||||
@@ -313,6 +355,16 @@ void CublasGemm::execute(
|
||||
}
|
||||
}
|
||||
|
||||
const void* alpha_ptr = α
|
||||
const void* beta_ptr = β
|
||||
complex64_t alpha_c, beta_c;
|
||||
if (scale_type_ == CUDA_C_32F) {
|
||||
alpha_c = complex64_t{alpha, 0.0f};
|
||||
beta_c = complex64_t{beta, 0.0f};
|
||||
alpha_ptr = &alpha_c;
|
||||
beta_ptr = &beta_c;
|
||||
}
|
||||
|
||||
void* workspace_ptr = nullptr;
|
||||
if (heuristic_.workspaceSize > 0) {
|
||||
// Ensure workspace is 256-byte aligned
|
||||
@@ -329,12 +381,12 @@ void CublasGemm::execute(
|
||||
CHECK_CUBLAS_ERROR(cublasLtMatmul(
|
||||
handle_,
|
||||
matmul_desc_,
|
||||
&alpha,
|
||||
a,
|
||||
alpha_ptr,
|
||||
b, // a and b are swapped
|
||||
a_desc_,
|
||||
b,
|
||||
a,
|
||||
b_desc_,
|
||||
&beta,
|
||||
beta_ptr,
|
||||
c ? c : out,
|
||||
c ? c_desc_ : out_desc_,
|
||||
out,
|
||||
|
||||
@@ -55,6 +55,8 @@ class CublasGemm {
|
||||
int32_t batch_count,
|
||||
int64_t batch_stride);
|
||||
|
||||
void set_bias(cu::CommandEncoder& encoder, const array& bias);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
array& out,
|
||||
@@ -62,7 +64,8 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
const Strides& b_batch_strides,
|
||||
float alpha = 1.0f);
|
||||
|
||||
void run(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -85,7 +88,8 @@ class CublasGemm {
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides);
|
||||
const Strides& b_batch_strides,
|
||||
float alpha);
|
||||
|
||||
void run_batched(
|
||||
cu::CommandEncoder& encoder,
|
||||
@@ -111,6 +115,7 @@ class CublasGemm {
|
||||
|
||||
uint64_t M_;
|
||||
uint64_t N_;
|
||||
cudaDataType_t scale_type_;
|
||||
cublasLtMatmulPreference_t pref_{nullptr};
|
||||
cublasLtHandle_t handle_{nullptr};
|
||||
cublasLtMatmulDesc_t matmul_desc_{nullptr};
|
||||
|
||||
@@ -13,7 +13,8 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
@@ -27,7 +28,8 @@ void CublasGemm::run_batched(
|
||||
out.data<int8_t>() + out.itemsize() * i * batch_shape.back() * M_ * N_,
|
||||
a.data<int8_t>() + a.itemsize() * a_it.loc,
|
||||
b.data<int8_t>() + b.itemsize() * b_it.loc,
|
||||
nullptr);
|
||||
nullptr,
|
||||
alpha);
|
||||
a_it.step();
|
||||
b_it.step();
|
||||
}
|
||||
|
||||
@@ -154,7 +154,8 @@ void CublasGemm::run_batched(
|
||||
const array& b,
|
||||
const Shape& batch_shape,
|
||||
const Strides& a_batch_strides,
|
||||
const Strides& b_batch_strides) {
|
||||
const Strides& b_batch_strides,
|
||||
float alpha) {
|
||||
int batch_count = out.size() / (M_ * N_);
|
||||
set_pointer_mode(a_desc_, batch_count);
|
||||
set_pointer_mode(b_desc_, batch_count);
|
||||
@@ -226,7 +227,8 @@ void CublasGemm::run_batched(
|
||||
reinterpret_cast<void*>(out_pointers),
|
||||
reinterpret_cast<void*>(a_pointers),
|
||||
reinterpret_cast<void*>(b_pointers),
|
||||
nullptr);
|
||||
nullptr,
|
||||
alpha);
|
||||
}
|
||||
|
||||
void CublasGemm::run_batched(
|
||||
|
||||
@@ -1,396 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <cute/tensor.hpp>
|
||||
#include <cutlass/arch/arch.h>
|
||||
#include <cutlass/cutlass.h>
|
||||
#include <cutlass/gemm/device/gemm.h>
|
||||
#include <cutlass/layout/matrix.h>
|
||||
#include <cutlass/numeric_types.h>
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace cute;
|
||||
using bf16 = cute::bfloat16_t;
|
||||
|
||||
template <typename Kernel>
|
||||
void configure_matmul(Kernel kernel, int smem_size) {
|
||||
static bool initialized = false;
|
||||
if (!initialized) {
|
||||
initialized = true;
|
||||
cudaFuncSetAttribute(
|
||||
kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size);
|
||||
}
|
||||
}
|
||||
|
||||
template <bool transpose, typename Tiler>
|
||||
constexpr int get_feature_size(Tiler smem) {
|
||||
int feature_size = (transpose) ? size<0>(smem) : size<1>(smem);
|
||||
return (feature_size >= 64) ? 64 : feature_size;
|
||||
}
|
||||
|
||||
constexpr int constexpr_log2(int x) {
|
||||
return (x > 0) ? 1 + constexpr_log2(x >> 1) : -1;
|
||||
}
|
||||
|
||||
template <int feature_size, int itemsize, int copy_bits>
|
||||
constexpr int get_swizzle_bits() {
|
||||
constexpr int swizzle_bits =
|
||||
constexpr_log2(feature_size * itemsize / copy_bits);
|
||||
return (swizzle_bits > 3) ? 3 : swizzle_bits;
|
||||
}
|
||||
|
||||
template <int itemsize, bool transpose, int copy_bits, typename Tiler>
|
||||
constexpr auto make_smem_layout(Tiler smem) {
|
||||
constexpr int feature_size = get_feature_size<transpose>(smem);
|
||||
constexpr int swizzle_bits =
|
||||
get_swizzle_bits<feature_size, itemsize, copy_bits>();
|
||||
|
||||
using F = Int<feature_size>;
|
||||
using BaseLayout = std::conditional_t<
|
||||
transpose,
|
||||
Layout<cute::Shape<F, _8>, cute::Stride<_1, F>>,
|
||||
Layout<cute::Shape<_8, F>, cute::Stride<F, _1>>>;
|
||||
|
||||
auto swizzled =
|
||||
make_composed_layout(Swizzle<swizzle_bits, 3, 3>{}, 0, BaseLayout{});
|
||||
|
||||
return tile_to_shape(swizzled, smem);
|
||||
}
|
||||
|
||||
template <int itemsize, bool transpose, int copy_bits, typename Tiler>
|
||||
constexpr auto make_result_smem_layout(Tiler smem) {
|
||||
constexpr int feature_size = get_feature_size<transpose>(smem);
|
||||
constexpr int swizzle_bits =
|
||||
get_swizzle_bits<feature_size, itemsize, copy_bits>();
|
||||
|
||||
using F = Int<feature_size>;
|
||||
using BaseLayout = std::conditional_t<
|
||||
transpose,
|
||||
Layout<cute::Shape<F, _8>, cute::Stride<_1, F>>,
|
||||
Layout<cute::Shape<_8, F>, cute::Stride<F, _1>>>;
|
||||
|
||||
auto swizzled = make_composed_layout(
|
||||
Swizzle<transpose ? 0 : swizzle_bits, 3, 4>{}, 0, BaseLayout{});
|
||||
|
||||
return tile_to_shape(swizzled, smem);
|
||||
}
|
||||
|
||||
template <
|
||||
int num_threads,
|
||||
int itemsize,
|
||||
bool transpose,
|
||||
int copy_bits,
|
||||
typename Copier,
|
||||
typename Tiler>
|
||||
constexpr auto make_tiled_copy(Copier copy_op, Tiler smem) {
|
||||
constexpr int num_elements = copy_bits / itemsize;
|
||||
constexpr int feature_size = transpose ? size<0>(smem) : size<1>(smem);
|
||||
constexpr int copies_per_feature = feature_size / num_elements;
|
||||
|
||||
using E = Int<num_elements>;
|
||||
using C = Int<copies_per_feature>;
|
||||
using R = Int<num_threads / copies_per_feature>;
|
||||
|
||||
using ThreadLayout = std::conditional_t<
|
||||
transpose,
|
||||
Layout<cute::Shape<C, R>, cute::Stride<_1, C>>,
|
||||
Layout<cute::Shape<R, C>, cute::Stride<C, _1>>>;
|
||||
using ValueLayout = std::conditional_t<
|
||||
transpose,
|
||||
Layout<cute::Shape<E, _1>>,
|
||||
Layout<cute::Shape<_1, E>>>;
|
||||
|
||||
return make_tiled_copy(copy_op, ThreadLayout{}, ValueLayout{});
|
||||
}
|
||||
|
||||
template <int rasterization_factor>
|
||||
__device__ inline int2 raster_tile(int x, int y) {
|
||||
return {
|
||||
x / rasterization_factor,
|
||||
(x % rasterization_factor) + y * rasterization_factor};
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename SLayoutA,
|
||||
typename SLayoutB,
|
||||
typename SLayoutC,
|
||||
typename CopyA,
|
||||
typename CopyB,
|
||||
typename CopyC,
|
||||
typename MMA,
|
||||
int rasterization_factor>
|
||||
__global__ static __launch_bounds__(decltype(size(MMA{}))::value) void matmul_kernel(
|
||||
const T* __restrict__ A,
|
||||
const T* __restrict__ B,
|
||||
T* __restrict__ C,
|
||||
SLayoutA SA,
|
||||
SLayoutB SB,
|
||||
SLayoutC SC,
|
||||
CopyA copy_a,
|
||||
CopyB copy_b,
|
||||
CopyC copy_c,
|
||||
MMA mma,
|
||||
int M,
|
||||
int N,
|
||||
int K) {
|
||||
constexpr auto BM = size<0>(SA);
|
||||
constexpr auto BN = size<0>(SB);
|
||||
constexpr auto BK = size<1>(SA);
|
||||
constexpr auto PIPE = size<2>(SA);
|
||||
|
||||
const int2 tile = raster_tile<rasterization_factor>(blockIdx.x, blockIdx.y);
|
||||
const int blocks_m = ceil_div(M, BM);
|
||||
const int blocks_n = ceil_div(N, BN);
|
||||
|
||||
// Exit early if the tile is OOB
|
||||
if (tile.x >= blocks_m || tile.y >= blocks_n) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Make the full tensors
|
||||
Tensor full_A =
|
||||
make_tensor(make_gmem_ptr(A), make_shape(M, K), make_stride(K, _1{}));
|
||||
Tensor full_B =
|
||||
make_tensor(make_gmem_ptr(B), make_shape(N, K), make_stride(K, _1{}));
|
||||
Tensor full_C =
|
||||
make_tensor(make_gmem_ptr(C), make_shape(M, N), make_stride(N, _1{}));
|
||||
|
||||
// Partition the tensors into tiles and select the ones for this threadblock
|
||||
Tensor local_A =
|
||||
local_tile(full_A, make_shape(BM, BK), make_coord(tile.x, _));
|
||||
Tensor local_B =
|
||||
local_tile(full_B, make_shape(BN, BK), make_coord(tile.y, _));
|
||||
Tensor local_C =
|
||||
local_tile(full_C, make_shape(BM, BN), make_coord(tile.x, tile.y));
|
||||
|
||||
// Make shared memory tensors
|
||||
extern __shared__ char shared_memory[];
|
||||
T* shared_A_ptr = reinterpret_cast<T*>(shared_memory);
|
||||
T* shared_B_ptr =
|
||||
reinterpret_cast<T*>(shared_memory + cosize(SA) * sizeof(T));
|
||||
T* shared_C_ptr = reinterpret_cast<T*>(shared_memory);
|
||||
Tensor shared_A = make_tensor(make_smem_ptr(shared_A_ptr), SA);
|
||||
Tensor shared_B = make_tensor(make_smem_ptr(shared_B_ptr), SB);
|
||||
Tensor shared_C = make_tensor(make_smem_ptr(shared_C_ptr), SC);
|
||||
|
||||
// Get the copies that correspond to this thread
|
||||
auto thread_copy_a = copy_a.get_slice(threadIdx.x);
|
||||
Tensor local_A_src = thread_copy_a.partition_S(local_A);
|
||||
Tensor local_A_dst = thread_copy_a.partition_D(shared_A);
|
||||
auto thread_copy_b = copy_b.get_slice(threadIdx.x);
|
||||
Tensor local_B_src = thread_copy_a.partition_S(local_B);
|
||||
Tensor local_B_dst = thread_copy_a.partition_D(shared_B);
|
||||
auto thread_copy_c = copy_c.get_slice(threadIdx.x);
|
||||
Tensor local_C_src = thread_copy_c.partition_S(shared_C);
|
||||
Tensor local_C_dst = thread_copy_c.partition_D(local_C);
|
||||
|
||||
// Start fetches
|
||||
int k_tile_count = size<2>(local_A);
|
||||
int k_tile_next = 0;
|
||||
CUTE_UNROLL
|
||||
for (int k = 0; k < PIPE - 1; k++) {
|
||||
copy(copy_a, local_A_src(_, _, _, k_tile_next), local_A_dst(_, _, _, k));
|
||||
copy(copy_b, local_B_src(_, _, _, k_tile_next), local_B_dst(_, _, _, k));
|
||||
cp_async_fence();
|
||||
k_tile_count--;
|
||||
k_tile_next += (k_tile_count > 0);
|
||||
}
|
||||
|
||||
// Get the MMA that corresponds to this thread and allocate registers
|
||||
auto thread_mma = mma.get_slice(threadIdx.x);
|
||||
Tensor mma_shared_A = thread_mma.partition_A(shared_A);
|
||||
Tensor mma_shared_B = thread_mma.partition_B(shared_B);
|
||||
Tensor mma_shared_C = thread_mma.partition_C(shared_C);
|
||||
Tensor mma_global_C = thread_mma.partition_C(local_C);
|
||||
Tensor mma_frag_A = mma.make_fragment_A(mma_shared_A(_, _, _, 0));
|
||||
Tensor mma_frag_B = mma.make_fragment_B(mma_shared_B(_, _, _, 0));
|
||||
Tensor mma_frag_C = mma.make_fragment_C(mma_global_C);
|
||||
clear(mma_frag_C);
|
||||
|
||||
// Make shared to register copies
|
||||
Copy_Atom<SM75_U32x4_LDSM_N, bf16> s2r_atom_a;
|
||||
Copy_Atom<SM75_U32x4_LDSM_N, bf16> s2r_atom_b;
|
||||
auto s2r_copy_a = make_tiled_copy_A(s2r_atom_a, mma);
|
||||
auto s2r_thread_copy_a = s2r_copy_a.get_slice(threadIdx.x);
|
||||
auto s2r_copy_b = make_tiled_copy_B(s2r_atom_b, mma);
|
||||
auto s2r_thread_copy_b = s2r_copy_b.get_slice(threadIdx.x);
|
||||
Tensor mma_A_src = s2r_thread_copy_a.partition_S(shared_A);
|
||||
Tensor mma_A_dst = s2r_thread_copy_a.retile_D(mma_frag_A);
|
||||
Tensor mma_B_src = s2r_thread_copy_b.partition_S(shared_B);
|
||||
Tensor mma_B_dst = s2r_thread_copy_b.retile_D(mma_frag_B);
|
||||
|
||||
constexpr auto RPIPE = size<2>(mma_shared_A);
|
||||
int smem_read = 0;
|
||||
int smem_write = PIPE - 1;
|
||||
Tensor mma_A_src_p = mma_A_src(_, _, _, smem_read);
|
||||
Tensor mma_B_src_p = mma_B_src(_, _, _, smem_read);
|
||||
|
||||
// Start the register pipeline
|
||||
if constexpr (RPIPE > 1) {
|
||||
cp_async_wait<PIPE - 2>();
|
||||
__syncthreads();
|
||||
copy(s2r_copy_a, mma_A_src_p(_, _, Int<0>{}), mma_A_dst(_, _, Int<0>{}));
|
||||
copy(s2r_copy_b, mma_B_src_p(_, _, Int<0>{}), mma_B_dst(_, _, Int<0>{}));
|
||||
}
|
||||
|
||||
CUTE_NO_UNROLL
|
||||
while (k_tile_count > -(PIPE - 1)) {
|
||||
CUTE_UNROLL
|
||||
for (int k_block = 0; k_block < RPIPE; k_block++) {
|
||||
if (k_block == RPIPE - 1) {
|
||||
mma_A_src_p = mma_A_src(_, _, _, smem_read);
|
||||
mma_B_src_p = mma_B_src(_, _, _, smem_read);
|
||||
cp_async_wait<PIPE - 2>();
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
// Load the next register tile
|
||||
auto k_block_next = (k_block + 1) % RPIPE;
|
||||
copy(
|
||||
s2r_copy_a,
|
||||
mma_A_src_p(_, _, k_block_next),
|
||||
mma_A_dst(_, _, k_block_next));
|
||||
copy(
|
||||
s2r_copy_b,
|
||||
mma_B_src_p(_, _, k_block_next),
|
||||
mma_B_dst(_, _, k_block_next));
|
||||
|
||||
if (k_block == 0) {
|
||||
copy(
|
||||
copy_a,
|
||||
local_A_src(_, _, _, k_tile_next),
|
||||
local_A_dst(_, _, _, smem_write));
|
||||
copy(
|
||||
copy_b,
|
||||
local_B_src(_, _, _, k_tile_next),
|
||||
local_B_dst(_, _, _, smem_write));
|
||||
cp_async_fence();
|
||||
k_tile_count--;
|
||||
k_tile_next += (k_tile_count > 0);
|
||||
smem_write = smem_read;
|
||||
smem_read = (smem_read == PIPE - 1) ? 0 : (smem_read + 1);
|
||||
}
|
||||
|
||||
gemm(
|
||||
mma,
|
||||
mma_frag_A(_, _, k_block),
|
||||
mma_frag_B(_, _, k_block),
|
||||
mma_frag_C);
|
||||
}
|
||||
}
|
||||
|
||||
copy(mma_frag_C, mma_shared_C);
|
||||
__syncthreads();
|
||||
copy(copy_c, local_C_src, local_C_dst);
|
||||
|
||||
// if (threadIdx.x == 0) {
|
||||
// print("fC: "); print(mma_frag_C); print("\n");
|
||||
// print("sC: "); print(mma_shared_C); print("\n");
|
||||
// print("dC: "); print(local_C_dst); print("\n");
|
||||
//
|
||||
// print(s2r_atom_a); print("\n");
|
||||
// }
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void cutlass_gemm(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc) {
|
||||
enc.set_input_array(a);
|
||||
enc.set_input_array(b);
|
||||
enc.set_output_array(out);
|
||||
dispatch_float_types(a.dtype(), "simple_gemm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
if constexpr (std::is_same_v<DataType, __nv_bfloat16>) {
|
||||
using namespace cute;
|
||||
|
||||
// Tile definitions
|
||||
auto BM = Int<128>{};
|
||||
auto BN = Int<128>{};
|
||||
auto BK = Int<64>{};
|
||||
auto BP = Int<3>{};
|
||||
auto GM = Int<8>{};
|
||||
|
||||
// Thread definitions
|
||||
using TM = Int<2>;
|
||||
using TN = Int<2>;
|
||||
using TK = Int<1>;
|
||||
constexpr int num_threads = TM::value * TN::value * 32;
|
||||
|
||||
auto SA = make_smem_layout<16, false, 128>(make_shape(BM, BK, BP));
|
||||
auto SB = make_smem_layout<16, false, 128>(make_shape(BN, BK, BP));
|
||||
auto SC = make_result_smem_layout<16, false, 128>(make_shape(BM, BN));
|
||||
|
||||
constexpr auto smem_size = (cosize(SA) + cosize(SB)) * sizeof(bf16);
|
||||
|
||||
auto async_copy_op =
|
||||
Copy_Atom<SM80_CP_ASYNC_CACHEALWAYS<uint128_t>, bf16>{};
|
||||
auto tiled_copy_a = make_tiled_copy<num_threads, 16, false, 128>(
|
||||
async_copy_op, make_shape(BM, BK));
|
||||
auto tiled_copy_b = make_tiled_copy<num_threads, 16, false, 128>(
|
||||
async_copy_op, make_shape(BN, BK));
|
||||
|
||||
auto sync_copy_op = Copy_Atom<UniversalCopy<uint128_t>, bf16>{};
|
||||
auto tiled_copy_c = make_tiled_copy<num_threads, 16, false, 128>(
|
||||
sync_copy_op, make_shape(BM, BN));
|
||||
|
||||
auto mma_op = SM80_16x8x16_F32BF16BF16F32_TN{};
|
||||
auto tiled_mma = make_tiled_mma(
|
||||
mma_op, Layout<cute::Shape<TM, TN, TK>>{}, Tile<_32, _32, _16>{});
|
||||
|
||||
auto kernel = matmul_kernel<
|
||||
bf16,
|
||||
decltype(SA),
|
||||
decltype(SB),
|
||||
decltype(SC),
|
||||
decltype(tiled_copy_a),
|
||||
decltype(tiled_copy_b),
|
||||
decltype(tiled_copy_c),
|
||||
decltype(tiled_mma),
|
||||
GM.value>;
|
||||
configure_matmul(kernel, smem_size);
|
||||
|
||||
dim3 block(size(tiled_mma));
|
||||
dim3 grid(
|
||||
size(ceil_div(M, BM) * GM), size(ceil_div(ceil_div(N, BN), GM)));
|
||||
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
smem_size,
|
||||
a.data<bf16>(),
|
||||
b.data<bf16>(),
|
||||
out.data<bf16>(),
|
||||
SA,
|
||||
SB,
|
||||
SC,
|
||||
tiled_copy_a,
|
||||
tiled_copy_b,
|
||||
tiled_copy_c,
|
||||
tiled_mma,
|
||||
M,
|
||||
N,
|
||||
K);
|
||||
} else {
|
||||
throw std::runtime_error("Only bfloat16 supported");
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,18 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
void cutlass_gemm(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc);
|
||||
|
||||
}
|
||||
@@ -13,6 +13,37 @@ namespace cg = cooperative_groups;
|
||||
|
||||
static constexpr int rows_per_block = 8;
|
||||
|
||||
// Accumulator type selection per input element type T.
|
||||
template <typename T>
|
||||
struct GemvAccType {
|
||||
using type = T;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__half> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<__nv_bfloat16> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<float> {
|
||||
using type = float;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<double> {
|
||||
using type = double;
|
||||
};
|
||||
|
||||
template <>
|
||||
struct GemvAccType<cu::complex64_t> {
|
||||
using type = cu::complex64_t;
|
||||
};
|
||||
|
||||
template <typename T, int rows_per_block, int n_per_thread>
|
||||
__device__ void
|
||||
gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
@@ -24,7 +55,8 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
int row = g_idx.x * rows_per_block + t_idx.y;
|
||||
|
||||
if (row < rows) {
|
||||
float sum = 0.0f;
|
||||
using Acc = typename GemvAccType<T>::type;
|
||||
Acc sum = Acc(0);
|
||||
for (int col = n_per_thread * warp.thread_rank(); col < cols;
|
||||
col += (WARP_SIZE * n_per_thread)) {
|
||||
auto local_mat =
|
||||
@@ -32,12 +64,11 @@ gemv_impl(const T* mat, const T* vec, T* out, int rows, int cols) {
|
||||
auto local_vec = unsafe_load_vector<n_per_thread>(vec + col, 0);
|
||||
#pragma unroll
|
||||
for (int j = 0; j < n_per_thread; ++j) {
|
||||
sum +=
|
||||
static_cast<float>(local_mat[j]) * static_cast<float>(local_vec[j]);
|
||||
sum += static_cast<Acc>(local_mat[j]) * static_cast<Acc>(local_vec[j]);
|
||||
}
|
||||
}
|
||||
|
||||
sum = cg::reduce(warp, sum, cg::plus<float>{});
|
||||
sum = cg::reduce(warp, sum, cg::plus<Acc>{});
|
||||
if (warp.thread_rank() == 0) {
|
||||
out[row] = static_cast<T>(sum);
|
||||
}
|
||||
@@ -107,7 +138,7 @@ void gemv(
|
||||
encoder.set_input_array(a);
|
||||
encoder.set_input_array(b);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_float_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
dispatch_inexact_types(out.dtype(), "gemv", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
dim3 block_dims{WARP_SIZE, rows_per_block};
|
||||
const DataType* mat;
|
||||
|
||||
@@ -1,69 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/steel/gemm.cuh"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <iostream>
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename Kernel>
|
||||
static void configure_smem(Kernel kernel, int SM) {
|
||||
static bool done = false;
|
||||
if (done) {
|
||||
return;
|
||||
}
|
||||
std::cout << "configuring" << std::endl;
|
||||
cudaFuncSetAttribute(kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, SM);
|
||||
cudaFuncSetAttribute(
|
||||
kernel,
|
||||
cudaFuncAttributePreferredSharedMemoryCarveout,
|
||||
cudaSharedmemCarveoutMaxShared);
|
||||
done = true;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void simple_gemm(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc) {
|
||||
enc.set_input_array(a);
|
||||
enc.set_input_array(b);
|
||||
enc.set_output_array(out);
|
||||
dispatch_float_types(a.dtype(), "simple_gemm", [&](auto type_tag) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
constexpr int BM = 128;
|
||||
constexpr int BN = 128;
|
||||
constexpr int BK = 32;
|
||||
constexpr int PIPE = 3;
|
||||
constexpr int SM = PIPE * sizeof(DataType) * (BM * BK + BN * BK);
|
||||
constexpr int WM = 2;
|
||||
constexpr int WN = 4;
|
||||
|
||||
auto kernel = ab_t_aligned<DataType, BM, BN, BK, WM, WN, PIPE>;
|
||||
configure_smem(kernel, SM);
|
||||
|
||||
dim3 grid(N / BN, M / BM);
|
||||
enc.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
WM * WN * WARP_SIZE,
|
||||
SM,
|
||||
a.data<DataType>(),
|
||||
b.data<DataType>(),
|
||||
out.data<DataType>(),
|
||||
N,
|
||||
K);
|
||||
});
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
@@ -1,18 +0,0 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
void simple_gemm(
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
cu::CommandEncoder& enc);
|
||||
|
||||
}
|
||||
@@ -110,7 +110,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append<int32_t>(src.ndim());
|
||||
args.append_ndim(slice_sizes_);
|
||||
args.append(slice_size);
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
@@ -211,7 +211,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
args.append_ndim(out.shape());
|
||||
args.append_ndim(out.strides());
|
||||
args.append<int32_t>(out.ndim());
|
||||
args.append(SmallVector<int32_t>(axes_.begin(), axes_.end()));
|
||||
args.append(axes_);
|
||||
append_indices_arg(args, inputs, nidx, idx_ndim);
|
||||
|
||||
std::string kernel_name = fmt::format(
|
||||
|
||||
@@ -67,9 +67,11 @@ const std::string& cccl_dir() {
|
||||
return path.string();
|
||||
}
|
||||
// Finally check the environment variable.
|
||||
path = std::getenv("MLX_CCCL_DIR");
|
||||
if (!path.empty() && std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
if (const char* env = std::getenv("MLX_CCCL_DIR"); env) {
|
||||
path = env;
|
||||
if (!path.empty() && std::filesystem::exists(path)) {
|
||||
return path.string();
|
||||
}
|
||||
}
|
||||
return std::string();
|
||||
}();
|
||||
@@ -97,6 +99,30 @@ const std::filesystem::path& ptx_cache_dir() {
|
||||
return cache;
|
||||
}
|
||||
|
||||
std::filesystem::path get_ptx_path(
|
||||
const std::filesystem::path& cache_dir,
|
||||
const std::string& module_name) {
|
||||
#ifdef _WIN32
|
||||
constexpr int max_file_name_length = 140;
|
||||
#else
|
||||
constexpr int max_file_name_length = 245;
|
||||
#endif
|
||||
|
||||
if (module_name.size() <= max_file_name_length) {
|
||||
return cache_dir / (module_name + ".ptx");
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir;
|
||||
int offset = 0;
|
||||
while (module_name.size() - offset > max_file_name_length) {
|
||||
ptx_path /= module_name.substr(offset, max_file_name_length);
|
||||
offset += max_file_name_length;
|
||||
}
|
||||
ptx_path /= module_name.substr(offset) + ".ptx";
|
||||
|
||||
return ptx_path;
|
||||
}
|
||||
|
||||
// Try to read the cached |ptx| and |ptx_kernels| from |cache_dir|.
|
||||
bool read_cached_ptx(
|
||||
const std::filesystem::path& cache_dir,
|
||||
@@ -107,7 +133,7 @@ bool read_cached_ptx(
|
||||
return false;
|
||||
}
|
||||
|
||||
auto ptx_path = cache_dir / (module_name + ".ptx");
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
std::error_code error;
|
||||
auto ptx_size = std::filesystem::file_size(ptx_path, error);
|
||||
if (error) {
|
||||
@@ -120,7 +146,7 @@ bool read_cached_ptx(
|
||||
ptx.resize(ptx_size);
|
||||
ptx_file.read(ptx.data(), ptx_size);
|
||||
|
||||
std::ifstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
std::ifstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
std::string line;
|
||||
while (std::getline(txt_file, line)) {
|
||||
auto tab = line.find('\t');
|
||||
@@ -142,16 +168,26 @@ void write_cached_ptx(
|
||||
return;
|
||||
}
|
||||
|
||||
std::ofstream ptx_file(cache_dir / (module_name + ".ptx"), std::ios::binary);
|
||||
auto ptx_path = get_ptx_path(cache_dir, module_name);
|
||||
|
||||
// Ensure that the directory exists
|
||||
auto parent = ptx_path.parent_path();
|
||||
if (parent != cache_dir) {
|
||||
std::filesystem::create_directories(parent);
|
||||
}
|
||||
|
||||
// Write the compiled code and mangled names
|
||||
std::ofstream ptx_file(ptx_path, std::ios::binary);
|
||||
if (!ptx.empty()) {
|
||||
ptx_file.write(&ptx.front(), ptx.size());
|
||||
}
|
||||
std::ofstream txt_file(cache_dir / (module_name + ".txt"), std::ios::binary);
|
||||
std::ofstream txt_file(ptx_path.replace_extension(".txt"), std::ios::binary);
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
txt_file << name << "\t" << mangled << std::endl;
|
||||
}
|
||||
|
||||
std::ofstream source_file(cache_dir / (module_name + ".cu"));
|
||||
// Write the generated code
|
||||
std::ofstream source_file(ptx_path.replace_extension(".cu"));
|
||||
source_file << source_code;
|
||||
}
|
||||
|
||||
@@ -295,7 +331,8 @@ void load_module(
|
||||
const std::string& ptx,
|
||||
const std::vector<std::pair<std::string, std::string>>& ptx_kernels,
|
||||
CUmodule& module_,
|
||||
std::unordered_map<std::string, std::pair<CUfunction, bool>>& kernels) {
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>>&
|
||||
kernels) {
|
||||
// Load module.
|
||||
char jit_log[4089] = {};
|
||||
CUjit_option options[] = {
|
||||
@@ -312,7 +349,7 @@ void load_module(
|
||||
for (const auto& [name, mangled] : ptx_kernels) {
|
||||
CUfunction kernel;
|
||||
CHECK_CUDA_ERROR(cuModuleGetFunction(&kernel, module_, mangled.c_str()));
|
||||
kernels[name] = std::make_pair(kernel, false);
|
||||
kernels[name] = std::make_tuple(kernel, false, 0);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -356,7 +393,7 @@ JitModule::~JitModule() {
|
||||
CHECK_CUDA_ERROR(cuModuleUnload(module_));
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(
|
||||
std::pair<CUfunction, uint> JitModule::get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
auto it = kernels_.find(kernel_name);
|
||||
@@ -367,14 +404,22 @@ CUfunction JitModule::get_kernel(
|
||||
|
||||
// If it is the first time we run this kernel then configure it. Do it only
|
||||
// once!
|
||||
if (!it->second.second) {
|
||||
auto kernel = std::get<0>(it->second);
|
||||
if (!std::get<1>(it->second)) {
|
||||
if (configure_kernel) {
|
||||
configure_kernel(it->second.first);
|
||||
configure_kernel(kernel);
|
||||
}
|
||||
it->second.second = true;
|
||||
std::get<1>(it->second) = true;
|
||||
std::get<2>(it->second) = max_occupancy_block_dim(kernel);
|
||||
}
|
||||
|
||||
return it->second.first;
|
||||
return {kernel, std::get<2>(it->second)};
|
||||
}
|
||||
|
||||
CUfunction JitModule::get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel) {
|
||||
return get_kernel_and_dims(kernel_name, std::move(configure_kernel)).first;
|
||||
}
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache() {
|
||||
|
||||
@@ -46,6 +46,11 @@ struct KernelArgs {
|
||||
append_ptr(std::get<SmallVector<T>>(storage_.back()).data());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void append(const std::vector<T>& vec) {
|
||||
append(SmallVector<T>(vec.begin(), vec.end()));
|
||||
}
|
||||
|
||||
// Make sure the arg is copied to an array with size of NDIM.
|
||||
template <size_t NDIM = MAX_NDIM, typename T>
|
||||
void append_ndim(SmallVector<T> vec) {
|
||||
@@ -94,10 +99,13 @@ class JitModule {
|
||||
CUfunction get_kernel(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
std::pair<CUfunction, uint> get_kernel_and_dims(
|
||||
const std::string& kernel_name,
|
||||
std::function<void(CUfunction)> configure_kernel = nullptr);
|
||||
|
||||
private:
|
||||
CUmodule module_{nullptr};
|
||||
std::unordered_map<std::string, std::pair<CUfunction, bool>> kernels_;
|
||||
std::unordered_map<std::string, std::tuple<CUfunction, bool, uint>> kernels_;
|
||||
};
|
||||
|
||||
std::unordered_map<std::string, JitModule>& get_jit_module_cache();
|
||||
|
||||
@@ -35,12 +35,10 @@ std::tuple<dim3, uint> get_launch_args(
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread) {
|
||||
int work_per_thread /* = 1 */,
|
||||
uint max_block_dim /* = 1024 */) {
|
||||
size_t nthreads = cuda::ceil_div(size, work_per_thread);
|
||||
uint block_dim = 1024;
|
||||
if (block_dim > nthreads) {
|
||||
block_dim = nthreads;
|
||||
}
|
||||
uint block_dim = max_block_dim < nthreads ? max_block_dim : nthreads;
|
||||
dim3 num_blocks;
|
||||
if (large) {
|
||||
num_blocks = get_2d_grid_dims(shape, strides, work_per_thread);
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
// This file includes host-only utilies for writing CUDA kernels, the difference
|
||||
// from backend/cuda/device/utils.cuh is that the latter file only include
|
||||
// device-only code.
|
||||
// This file includes host-only utilities for writing CUDA kernels, the
|
||||
// difference from backend/cuda/device/utils.cuh is that the latter file only
|
||||
// include device-only code.
|
||||
|
||||
#pragma once
|
||||
|
||||
@@ -120,19 +120,28 @@ dim3 get_2d_grid_dims(
|
||||
size_t divisor);
|
||||
std::pair<dim3, dim3> get_grid_and_block(int dim0, int dim1, int dim2);
|
||||
|
||||
// Get the num_blocks and block_dims that maximize occupancy for |kernel|,
|
||||
// assuming each thread handles |work_per_thread| elements of |arr|.
|
||||
// Get the num_blocks and block_dims assuming each thread handles
|
||||
// |work_per_thread| elements of |arr|.
|
||||
std::tuple<dim3, uint> get_launch_args(
|
||||
size_t size,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
bool large,
|
||||
int work_per_thread = 1);
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024);
|
||||
|
||||
inline std::tuple<dim3, uint>
|
||||
get_launch_args(const array& arr, bool large, int work_per_thread = 1) {
|
||||
inline std::tuple<dim3, uint> get_launch_args(
|
||||
const array& arr,
|
||||
bool large,
|
||||
int work_per_thread = 1,
|
||||
uint max_block_dim = 1024) {
|
||||
return get_launch_args(
|
||||
arr.size(), arr.shape(), arr.strides(), large, work_per_thread);
|
||||
arr.size(),
|
||||
arr.shape(),
|
||||
arr.strides(),
|
||||
large,
|
||||
work_per_thread,
|
||||
max_block_dim);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -2,11 +2,15 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/utils.h"
|
||||
|
||||
#include <cstring>
|
||||
#include <list>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
#include <fmt/format.h>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <
|
||||
@@ -27,6 +31,14 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
// Initialize with capacity read from |env_name|.
|
||||
LRUCache(const char* env_name, int default_capacity)
|
||||
: LRUCache(env::get_var(env_name, default_capacity)) {
|
||||
if (env::get_var("MLX_ENABLE_CACHE_THRASHING_CHECK", 1)) {
|
||||
env_name_ = env_name;
|
||||
}
|
||||
}
|
||||
|
||||
size_t size() const {
|
||||
return map_.size();
|
||||
}
|
||||
@@ -76,6 +88,14 @@ class LRUCache {
|
||||
return {it->second, false};
|
||||
}
|
||||
|
||||
if (env_name_ && ++cache_misses_ > 2 * capacity_) {
|
||||
throw std::runtime_error(fmt::format(
|
||||
"Cache thrashing is happening, please set the environment variable "
|
||||
"{} to a larger value than {} to fix degraded performance.",
|
||||
env_name_,
|
||||
capacity_));
|
||||
}
|
||||
|
||||
vlist_.emplace_front(key, std::forward<U>(value));
|
||||
map_[key] = vlist_.begin();
|
||||
|
||||
@@ -106,6 +126,9 @@ class LRUCache {
|
||||
}
|
||||
}
|
||||
|
||||
const char* env_name_{nullptr};
|
||||
size_t cache_misses_{0};
|
||||
|
||||
list_type vlist_;
|
||||
map_type map_;
|
||||
size_t capacity_;
|
||||
|
||||
@@ -3,9 +3,7 @@
|
||||
#include "mlx/backend/common/matmul.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/gemms/cublas_gemm.h"
|
||||
#include "mlx/backend/cuda/gemms/cutlass_gemm.h"
|
||||
#include "mlx/backend/cuda/gemms/gemv.h"
|
||||
#include "mlx/backend/cuda/gemms/simple_gemm.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
@@ -16,11 +14,6 @@ namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
int get_test_gemm() {
|
||||
static int t = env::get_var("MLX_ENABLE_TEST_GEMM", 0);
|
||||
return t;
|
||||
}
|
||||
|
||||
std::tuple<bool, int64_t, array>
|
||||
check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
auto stx = arr.strides()[arr.ndim() - 2];
|
||||
@@ -36,6 +29,80 @@ check_transpose(cu::CommandEncoder& enc, const Stream& s, const array& arr) {
|
||||
}
|
||||
}
|
||||
|
||||
void gemm_and_bias(
|
||||
cu::CommandEncoder& encoder,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool a_transposed,
|
||||
int64_t lda,
|
||||
bool b_transposed,
|
||||
int64_t ldb,
|
||||
array& out,
|
||||
const array& a,
|
||||
const array& b,
|
||||
const std::optional<array>& bias = std::nullopt,
|
||||
float alpha = 1.0f) {
|
||||
// Check and collapse batch dimensions
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
// Use gemmv when possible
|
||||
if (!bias && cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
encoder.device(),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
if (bias) {
|
||||
if (a.dtype() == complex64) {
|
||||
throw std::runtime_error(
|
||||
"[gemm_and_bias] complex64 bias epilogue isn’t supported in cublasLtMatmul.");
|
||||
}
|
||||
gemm.set_bias(encoder, *bias);
|
||||
}
|
||||
gemm.run(
|
||||
encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides, alpha);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -56,9 +123,6 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Init checks and prep
|
||||
|
||||
int M = a_pre.shape(-2);
|
||||
int N = b_pre.shape(-1);
|
||||
int K = a_pre.shape(-1);
|
||||
@@ -68,70 +132,8 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Check and collapse batch dimensions
|
||||
|
||||
auto [batch_shape, a_batch_strides, b_batch_strides] = collapse_batches(a, b);
|
||||
|
||||
auto batch_count = out.size() / (M * N);
|
||||
|
||||
// Collapse batches into M if needed
|
||||
if (batch_count > 1 && !a_transposed && batch_shape.size() == 1 &&
|
||||
a.strides()[a.ndim() - 2] == K && a_batch_strides.back() == M * K &&
|
||||
b_batch_strides.back() == 0) {
|
||||
M *= batch_shape.back();
|
||||
batch_count = 1;
|
||||
|
||||
a_batch_strides = {0};
|
||||
b_batch_strides = {0};
|
||||
batch_shape = {1};
|
||||
}
|
||||
|
||||
if (cu::can_use_gemv(M, N, K, a_transposed, b_transposed)) {
|
||||
cu::gemv(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_count,
|
||||
batch_shape,
|
||||
a_batch_strides,
|
||||
b_batch_strides,
|
||||
encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
if (M % 512 == 0 && N % 512 == 0 && K % 512 == 0 && !a_transposed &&
|
||||
b_transposed && batch_count == 1 && get_test_gemm() == 1) {
|
||||
cu::simple_gemm(a, b, out, M, N, K, encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
if (M % 512 == 0 && N % 512 == 0 && K % 512 == 0 && !a_transposed &&
|
||||
b_transposed && batch_count == 1 && get_test_gemm() == 2) {
|
||||
cu::cutlass_gemm(a, b, out, M, N, K, encoder);
|
||||
return;
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
a.dtype(),
|
||||
a_transposed,
|
||||
M,
|
||||
K,
|
||||
lda,
|
||||
b_transposed,
|
||||
K,
|
||||
N,
|
||||
ldb,
|
||||
batch_shape.back(),
|
||||
a_batch_strides.back(),
|
||||
b_batch_strides.back());
|
||||
gemm.run(encoder, out, a, b, batch_shape, a_batch_strides, b_batch_strides);
|
||||
gemm_and_bias(
|
||||
encoder, M, N, K, a_transposed, lda, b_transposed, ldb, out, a, b);
|
||||
}
|
||||
|
||||
void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -156,6 +158,29 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [a_transposed, lda, a] = check_transpose(encoder, s, a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(encoder, s, b_pre);
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Dispatch to GEMM with epilogue or AddMM
|
||||
|
||||
if (beta_ == 1 && a.dtype() != complex64 && c.strides(-1) == 1 &&
|
||||
c.data_size() == out.shape(-1)) {
|
||||
out.set_data(allocator::malloc(out.nbytes()));
|
||||
gemm_and_bias(
|
||||
encoder,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
a_transposed,
|
||||
lda,
|
||||
b_transposed,
|
||||
ldb,
|
||||
out,
|
||||
a,
|
||||
b,
|
||||
c,
|
||||
alpha_);
|
||||
return;
|
||||
}
|
||||
|
||||
int64_t ldc;
|
||||
{
|
||||
auto stx = c.strides()[c.ndim() - 2];
|
||||
@@ -197,7 +222,7 @@ void AddMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Invoke cublasLt
|
||||
// Invoke cublasLt with AddMM settings
|
||||
|
||||
CublasGemm gemm(
|
||||
cu::device(s.device),
|
||||
|
||||
@@ -35,9 +35,9 @@ std::vector<array> precompiled_cuda_kernel(
|
||||
const std::vector<ScalarArg>&,
|
||||
std::tuple<int, int, int>,
|
||||
std::tuple<int, int, int>,
|
||||
int shared_memory,
|
||||
std::optional<float> init_value,
|
||||
bool ensure_row_contiguous,
|
||||
int /* shared_memory */,
|
||||
std::optional<float> /* init_value */,
|
||||
bool /* ensure_row_contiguous */,
|
||||
StreamOrDevice) {
|
||||
throw std::runtime_error("[cuda_kernel] No CUDA back-end.");
|
||||
}
|
||||
|
||||
@@ -24,8 +24,6 @@ namespace mlx::core {
|
||||
}
|
||||
|
||||
NO_GPU(BlockMaskedMM)
|
||||
NO_GPU(DynamicSlice)
|
||||
NO_GPU(DynamicSliceUpdate)
|
||||
NO_GPU(FFT)
|
||||
NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
@@ -42,7 +40,6 @@ NO_GPU_MULTI(Eig)
|
||||
NO_GPU_MULTI(Eigh)
|
||||
|
||||
namespace distributed {
|
||||
NO_GPU_MULTI(AllReduce)
|
||||
NO_GPU_MULTI(AllGather)
|
||||
NO_GPU_MULTI(Send)
|
||||
NO_GPU_MULTI(Recv)
|
||||
|
||||
@@ -46,10 +46,10 @@ inline array ensure_row_contiguous_matrix(
|
||||
|
||||
} // namespace
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
void fast::Quantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
nvtx3::scoped_range r("AffineQuantize::eval_gpu");
|
||||
nvtx3::scoped_range r("Quantize::eval_gpu");
|
||||
auto& s = stream();
|
||||
auto& d = cu::device(s.device);
|
||||
auto& enc = d.get_command_encoder(s);
|
||||
|
||||
@@ -181,6 +181,47 @@ col_reduce_looped(T* in, U* out, const __grid_constant__ ColReduceArgs args) {
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int N_READS = 4>
|
||||
__global__ void col_reduce_small(
|
||||
const T* in,
|
||||
U* out,
|
||||
const __grid_constant__ ColReduceArgs args,
|
||||
size_t total) {
|
||||
Op op;
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
|
||||
const auto idx = grid.thread_rank() * N_READS;
|
||||
const auto before_axis = idx / args.reduction_stride;
|
||||
const auto after_axis = idx % args.reduction_stride;
|
||||
const auto offset =
|
||||
before_axis * args.reduction_stride * args.reduction_size + after_axis;
|
||||
|
||||
if (idx >= total) {
|
||||
return;
|
||||
}
|
||||
|
||||
in += offset;
|
||||
out += idx;
|
||||
|
||||
AlignedVector<U, N_READS> accumulator;
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
accumulator[i] = ReduceInit<Op, T>::value();
|
||||
}
|
||||
|
||||
for (int i = 0; i < args.reduction_size; i++) {
|
||||
auto values = load_vector<N_READS>(in, 0);
|
||||
|
||||
for (int j = 0; j < N_READS; j++) {
|
||||
accumulator[j] = op(accumulator[j], cast_to<U>(values[j]));
|
||||
}
|
||||
|
||||
in += args.reduction_stride;
|
||||
}
|
||||
|
||||
store_vector(out, 0, accumulator);
|
||||
}
|
||||
|
||||
} // namespace cu
|
||||
|
||||
inline auto output_grid_for_col_reduce(
|
||||
@@ -206,7 +247,7 @@ void col_reduce_looped(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::ColReduceArgs args) {
|
||||
const cu::ColReduceArgs& args) {
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -230,12 +271,55 @@ void col_reduce_looped(
|
||||
auto kernel =
|
||||
cu::col_reduce_looped<T, U, OP, reduce_ndim(), BM, BN, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, blocks, 0, indata, out.data<U>(), args);
|
||||
kernel,
|
||||
grid,
|
||||
blocks,
|
||||
0,
|
||||
indata,
|
||||
out.data<U>(),
|
||||
static_cast<cu::ColReduceArgs>(args));
|
||||
});
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void col_reduce_small(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
const cu::ColReduceArgs& args) {
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
|
||||
encoder.set_input_array(in);
|
||||
encoder.set_output_array(out);
|
||||
dispatch_all_types(in.dtype(), [&](auto type_tag) {
|
||||
dispatch_reduce_ops(reduce_type, [&](auto reduce_type_tag) {
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
auto tmp_grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
auto [grid, block] = get_grid_and_block(tmp_grid.x, tmp_grid.y, 1);
|
||||
auto kernel = cu::col_reduce_small<T, U, OP, N_READS>;
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
block,
|
||||
0,
|
||||
in.data<T>(),
|
||||
out.data<U>(),
|
||||
static_cast<cu::ColReduceArgs>(args),
|
||||
out.size());
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
void col_reduce(
|
||||
cu::CommandEncoder& encoder,
|
||||
const array& in,
|
||||
@@ -258,6 +342,13 @@ void col_reduce(
|
||||
// Make the args struct to help route to the best kernel
|
||||
cu::ColReduceArgs args(in, plan, axes);
|
||||
|
||||
// Small col reduce with a single or contiguous reduction axis
|
||||
if (args.non_col_reductions == 1 && args.reduction_size <= 32 &&
|
||||
args.reduction_stride % (16 / in.itemsize()) == 0) {
|
||||
col_reduce_small(encoder, in, out, reduce_type, axes, plan, args);
|
||||
return;
|
||||
}
|
||||
|
||||
// Fallback col reduce
|
||||
col_reduce_looped(encoder, in, out, reduce_type, axes, plan, args);
|
||||
}
|
||||
|
||||
@@ -7,8 +7,6 @@
|
||||
|
||||
#include <cooperative_groups.h>
|
||||
#include <cooperative_groups/reduce.h>
|
||||
#include <cub/block/block_load.cuh>
|
||||
#include <cub/block/block_reduce.cuh>
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -83,7 +81,8 @@ struct RowReduceArgs {
|
||||
};
|
||||
|
||||
template <typename T, typename U, typename ReduceOp, int N = 4, int M = 1>
|
||||
__global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
__global__ void
|
||||
row_reduce_simple(const T* in, U* out, size_t n_rows, int size) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<WARP_SIZE>(block);
|
||||
@@ -91,8 +90,8 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
const U init = cu::ReduceInit<ReduceOp, T>::value();
|
||||
ReduceOp op;
|
||||
|
||||
T vals[M][N];
|
||||
U accs[M];
|
||||
AlignedVector<T, N> vals[M];
|
||||
AlignedVector<U, M> accs;
|
||||
for (int i = 0; i < M; i++) {
|
||||
accs[i] = init;
|
||||
}
|
||||
@@ -101,43 +100,31 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
min(n_rows - M, static_cast<size_t>(grid.block_rank() * M));
|
||||
const size_t full_blocks = size / (block.size() * N);
|
||||
const size_t final_offset = full_blocks * (block.size() * N);
|
||||
in += start_row * size;
|
||||
in += start_row * size + block.thread_rank() * N;
|
||||
out += start_row;
|
||||
|
||||
if (size % N == 0) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlockedVectorized<T, N>(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
} else {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + r * (block.size() * N),
|
||||
vals[k]);
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
vals[k] = load_vector<N>(in + k * size, 0);
|
||||
}
|
||||
for (int k = 0; k < M; k++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
}
|
||||
|
||||
in += block.size() * N;
|
||||
}
|
||||
|
||||
if (final_offset < size) {
|
||||
for (int k = 0; k < M; k++) {
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + k * size + final_offset,
|
||||
vals[k],
|
||||
size,
|
||||
cast_to<T>(init));
|
||||
for (int i = 0; i < N; i++) {
|
||||
vals[k][i] = ((final_offset + block.thread_rank() * N + i) < size)
|
||||
? in[k * size + i]
|
||||
: cast_to<T>(init);
|
||||
}
|
||||
}
|
||||
for (int k = 0; k < M; k++) {
|
||||
for (int j = 0; j < N; j++) {
|
||||
accs[k] = op(accs[k], cast_to<U>(vals[k][j]));
|
||||
}
|
||||
@@ -145,13 +132,11 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32 * M];
|
||||
block_reduce(block, warp, accs, shared_accumulators, op, init);
|
||||
block_reduce(block, warp, accs.val, shared_accumulators, op, init);
|
||||
|
||||
if (block.thread_rank() == 0) {
|
||||
if (grid.block_rank() * M + M <= n_rows) {
|
||||
for (int i = 0; i < M; i++) {
|
||||
out[i] = accs[i];
|
||||
}
|
||||
store_vector(out, 0, accs);
|
||||
} else {
|
||||
short offset = grid.block_rank() * M + M - n_rows;
|
||||
for (int i = offset; i < M; i++) {
|
||||
@@ -161,17 +146,10 @@ __global__ void row_reduce_simple(T* in, U* out, size_t n_rows, int size) {
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int NDIM,
|
||||
int BLOCK_DIM,
|
||||
int N_READS = 4>
|
||||
template <typename T, typename U, typename Op, int NDIM, int N_READS = 4>
|
||||
__global__ void row_reduce_looped(
|
||||
T* in,
|
||||
const T* in,
|
||||
U* out,
|
||||
size_t out_size,
|
||||
const __grid_constant__ RowReduceArgs args) {
|
||||
auto grid = cg::this_grid();
|
||||
auto block = cg::this_thread_block();
|
||||
@@ -185,36 +163,60 @@ __global__ void row_reduce_looped(
|
||||
U init = ReduceInit<Op, T>::value();
|
||||
total[0] = init;
|
||||
LoopedElemToLoc<NDIM, (NDIM > 2)> loop(args.reduce_ndim);
|
||||
size_t full_blocks = args.row_size / (BLOCK_DIM * N_READS);
|
||||
size_t final_offset = full_blocks * BLOCK_DIM * N_READS;
|
||||
const size_t full_blocks = args.row_size / (block.size() * N_READS);
|
||||
const size_t final_offset = full_blocks * (block.size() * N_READS);
|
||||
|
||||
in += elem_to_loc(out_idx, args.shape.data(), args.strides.data(), args.ndim);
|
||||
in += block.thread_rank() * N_READS;
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlockedVectorized<T, N_READS>(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + r * BLOCK_DIM * N_READS,
|
||||
vals);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
// Unaligned reduce
|
||||
if (final_offset < args.row_size) {
|
||||
bool mask[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
mask[i] =
|
||||
(final_offset + block.thread_rank() * N_READS + i) < args.row_size;
|
||||
}
|
||||
if (final_offset < args.row_size) {
|
||||
T vals[N_READS];
|
||||
cub::LoadDirectBlocked(
|
||||
block.thread_rank(),
|
||||
in + loop.location() + final_offset,
|
||||
vals,
|
||||
args.row_size - final_offset,
|
||||
cast_to<T>(init));
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
const T* inlocal = in + loop.location();
|
||||
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
auto vals = load_vector<N_READS>(inlocal, 0);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
inlocal += block.size() * N_READS;
|
||||
}
|
||||
|
||||
{
|
||||
T vals[N_READS];
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
vals[i] = mask[i] ? inlocal[i] : cast_to<T>(init);
|
||||
}
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
}
|
||||
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
}
|
||||
|
||||
// Aligned case
|
||||
else {
|
||||
for (size_t n = 0; n < args.non_row_reductions; n++) {
|
||||
const T* inlocal = in + loop.location();
|
||||
|
||||
for (size_t r = 0; r < full_blocks; r++) {
|
||||
auto vals = load_vector<N_READS>(inlocal, 0);
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total[0] = op(total[0], cast_to<U>(vals[i]));
|
||||
}
|
||||
inlocal += block.size() * N_READS;
|
||||
}
|
||||
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
// TODO: Maybe block.sync() here?
|
||||
loop.next(args.reduce_shape.data(), args.reduce_strides.data());
|
||||
}
|
||||
|
||||
__shared__ U shared_accumulators[32];
|
||||
@@ -234,8 +236,6 @@ void row_reduce_simple(
|
||||
Reduce::ReduceType reduce_type,
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to avoid elem_to_loc in the
|
||||
// kernel.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -250,14 +250,15 @@ void row_reduce_simple(
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
|
||||
// Calculate the grid and block dims
|
||||
size_t reductions = (plan.shape.back() + N_READS - 1) / N_READS;
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
||||
warps /= 4;
|
||||
warps = std::max(std::min(warps, 32), 1);
|
||||
int threads = warps * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
@@ -267,6 +268,7 @@ void row_reduce_simple(
|
||||
kernel = cu::row_reduce_simple<T, U, OP, N_READS, 2>;
|
||||
}
|
||||
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
int size = plan.shape.back();
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), size);
|
||||
@@ -282,8 +284,6 @@ void row_reduce_looped(
|
||||
const std::vector<int>& axes,
|
||||
const ReductionPlan& plan,
|
||||
cu::RowReduceArgs args) {
|
||||
constexpr int N_READS = 8;
|
||||
|
||||
// Allocate data for the output using in's layout to access them as
|
||||
// contiguously as possible.
|
||||
allocate_same_layout(out, in, axes);
|
||||
@@ -295,34 +295,27 @@ void row_reduce_looped(
|
||||
using OP = MLX_GET_TYPE(reduce_type_tag);
|
||||
using T = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
using U = typename cu::ReduceResult<OP, T>::type;
|
||||
// Cub doesn't like const pointers for vectorized loads. (sigh)
|
||||
T* indata = const_cast<T*>(in.data<T>());
|
||||
|
||||
constexpr int N_READS = 16 / sizeof(T);
|
||||
|
||||
// Calculate the grid and block dims
|
||||
args.sort_access_pattern(in, axes);
|
||||
dim3 grid = get_2d_grid_dims(out.shape(), out.strides());
|
||||
size_t reductions = (args.row_size + N_READS - 1) / N_READS;
|
||||
int threads = std::min(1024UL, reductions);
|
||||
threads = ((threads + WARP_SIZE - 1) / WARP_SIZE) * WARP_SIZE;
|
||||
int warps = (reductions + WARP_SIZE - 1) / WARP_SIZE;
|
||||
warps /= 4;
|
||||
warps = std::max(std::min(warps, 32), 1);
|
||||
int threads = warps * WARP_SIZE;
|
||||
dim3 block(threads, 1, 1);
|
||||
|
||||
// Pick the kernel
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, 32, N_READS>;
|
||||
auto kernel = cu::row_reduce_looped<T, U, OP, 1, N_READS>;
|
||||
dispatch_reduce_ndim(args.reduce_ndim, [&](auto reduce_ndim) {
|
||||
dispatch_block_dim(threads, [&](auto threads_constant) {
|
||||
kernel = cu::row_reduce_looped<
|
||||
T,
|
||||
U,
|
||||
OP,
|
||||
reduce_ndim.value,
|
||||
threads_constant.value,
|
||||
N_READS>;
|
||||
block.x = threads_constant.value;
|
||||
});
|
||||
kernel = cu::row_reduce_looped<T, U, OP, reduce_ndim.value, N_READS>;
|
||||
});
|
||||
|
||||
encoder.add_kernel_node(
|
||||
kernel, grid, block, 0, indata, out.data<U>(), out.size(), args);
|
||||
kernel, grid, block, 0, in.data<T>(), out.data<U>(), args);
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
@@ -103,15 +103,21 @@ template <typename T, bool traditional, bool forward, int N = 4>
|
||||
__device__ void rope_impl(
|
||||
const T* in,
|
||||
T* out,
|
||||
int offset,
|
||||
const int* offset,
|
||||
float inv_freq,
|
||||
float scale,
|
||||
const cuda::std::array<int64_t, 3> strides,
|
||||
const cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 pos,
|
||||
uint3 dims) {
|
||||
float L = scale * static_cast<float>(pos.y + offset);
|
||||
auto n_head_up = N * ((n_head + N - 1) / N);
|
||||
auto head_idx = static_cast<int>((pos.z * N) % n_head_up);
|
||||
auto batch_idx = (pos.z * N) / n_head_up;
|
||||
auto batch_offset = offset[batch_idx * offset_stride];
|
||||
float L = scale * static_cast<float>(pos.y + batch_offset);
|
||||
auto mat_idx = batch_idx * n_head + head_idx;
|
||||
|
||||
// Compute costheta, sintheta
|
||||
float theta = L * inv_freq;
|
||||
@@ -123,20 +129,19 @@ __device__ void rope_impl(
|
||||
size_t out_index_1, out_index_2;
|
||||
if (traditional) {
|
||||
out_index_1 = 2 * pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
mat_idx * out_strides[0];
|
||||
out_index_2 = out_index_1 + 1;
|
||||
in_index_1 =
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + mat_idx * strides[0];
|
||||
in_index_2 = in_index_1 + strides[2];
|
||||
} else {
|
||||
out_index_1 = pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
mat_idx * out_strides[0];
|
||||
out_index_2 = out_index_1 + dims.x * out_strides[2];
|
||||
in_index_1 =
|
||||
pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
in_index_1 = pos.x * strides[2] + pos.y * strides[1] + mat_idx * strides[0];
|
||||
in_index_2 = in_index_1 + dims.x * strides[2];
|
||||
}
|
||||
for (int i = 0; i < N && pos.z * N + i < n_batch; ++i) {
|
||||
for (int i = 0; i < N && head_idx + i < n_head; ++i) {
|
||||
// Read and write the output
|
||||
float x1 = static_cast<float>(in[in_index_1]);
|
||||
float x2 = static_cast<float>(in[in_index_2]);
|
||||
@@ -167,7 +172,8 @@ __global__ void rope(
|
||||
float base,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 dims) {
|
||||
uint3 pos = make_uint3(
|
||||
blockIdx.x * blockDim.x + threadIdx.x,
|
||||
@@ -182,12 +188,13 @@ __global__ void rope(
|
||||
rope_impl<T, traditional, forward>(
|
||||
in,
|
||||
out,
|
||||
*offset,
|
||||
offset,
|
||||
inv_freq,
|
||||
scale,
|
||||
strides,
|
||||
out_strides,
|
||||
n_batch,
|
||||
offset_stride,
|
||||
n_head,
|
||||
pos,
|
||||
dims);
|
||||
}
|
||||
@@ -202,7 +209,8 @@ __global__ void rope_freqs(
|
||||
float base,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> strides,
|
||||
const __grid_constant__ cuda::std::array<int64_t, 3> out_strides,
|
||||
int64_t n_batch,
|
||||
int64_t offset_stride,
|
||||
int n_head,
|
||||
uint3 dims,
|
||||
int64_t freq_stride) {
|
||||
uint3 pos = make_uint3(
|
||||
@@ -217,12 +225,13 @@ __global__ void rope_freqs(
|
||||
rope_impl<T, traditional, forward>(
|
||||
in,
|
||||
out,
|
||||
*offset,
|
||||
offset,
|
||||
inv_freq,
|
||||
scale,
|
||||
strides,
|
||||
out_strides,
|
||||
n_batch,
|
||||
offset_stride,
|
||||
n_head,
|
||||
pos,
|
||||
dims);
|
||||
}
|
||||
@@ -245,23 +254,28 @@ void RoPE::eval_gpu(
|
||||
auto& offset = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
if (in.ndim() < 3) {
|
||||
throw std::runtime_error("[RoPE] Input must have at least 3 dimensions");
|
||||
}
|
||||
|
||||
cuda::std::array<int64_t, 3> strides;
|
||||
cuda::std::array<int64_t, 3> out_strides;
|
||||
bool donated = false;
|
||||
int ndim = in.ndim();
|
||||
int dispatch_ndim = in.ndim();
|
||||
|
||||
int B = in.shape(0);
|
||||
int T = in.shape(-2);
|
||||
int D = in.shape(-1);
|
||||
size_t mat_size = T * D;
|
||||
int dispatch_ndim = ndim;
|
||||
while (in.shape(-dispatch_ndim) == 1 && dispatch_ndim > 3) {
|
||||
dispatch_ndim--;
|
||||
}
|
||||
size_t mat_size = in.shape(-2) * in.shape(-1);
|
||||
|
||||
int N = 1;
|
||||
for (int i = 1; i < (ndim - 2); ++i) {
|
||||
N *= in.shape(i);
|
||||
}
|
||||
|
||||
// We apply rope to less that the whole vector so copy to output and then
|
||||
// apply in-place.
|
||||
if (dims_ < in.shape(-1)) {
|
||||
if (dims_ < D) {
|
||||
donated = true;
|
||||
auto ctype =
|
||||
(in.flags().row_contiguous) ? CopyType::Vector : CopyType::General;
|
||||
@@ -302,7 +316,7 @@ void RoPE::eval_gpu(
|
||||
out_strides[2] = out.strides()[ndim - 1];
|
||||
|
||||
// Some flags to help us dispatch below
|
||||
bool single = in.flags().row_contiguous && (mat_size == in.shape(-1));
|
||||
bool single = in.flags().row_contiguous && B == 1 && T == 1;
|
||||
bool with_freqs = inputs.size() == 3;
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
@@ -319,7 +333,7 @@ void RoPE::eval_gpu(
|
||||
if (single && !with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_single<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
uint2 dims = make_uint2(dims_ / 2, N);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
@@ -336,7 +350,7 @@ void RoPE::eval_gpu(
|
||||
} else if (single) {
|
||||
auto kernel =
|
||||
cu::rope_single_freqs<DataType, traditional.value, forward.value>;
|
||||
uint2 dims = make_uint2(dims_ / 2, in.size() / mat_size);
|
||||
uint2 dims = make_uint2(dims_ / 2, N);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, 1);
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
@@ -354,10 +368,14 @@ void RoPE::eval_gpu(
|
||||
} else if (with_freqs) {
|
||||
auto kernel =
|
||||
cu::rope_freqs<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
int n_per_thread = 4;
|
||||
uint32_t dimz = B * ((N + n_per_thread - 1) / n_per_thread);
|
||||
uint3 dims = make_uint3(dims_ / 2, T, dimz);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
int64_t offset_stride = 0;
|
||||
if (inputs[1].ndim() > 0) {
|
||||
offset_stride = inputs[1].strides()[0];
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
@@ -371,15 +389,20 @@ void RoPE::eval_gpu(
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
offset_stride,
|
||||
N,
|
||||
dims,
|
||||
inputs[2].strides(0));
|
||||
} else {
|
||||
auto kernel = cu::rope<DataType, traditional.value, forward.value>;
|
||||
uint3 dims =
|
||||
make_uint3(dims_ / 2, in.shape(-2), in.size() / mat_size);
|
||||
dims.z = (dims.z + 3) / 4;
|
||||
int n_per_thread = 4;
|
||||
uint32_t dimz = B * ((N + n_per_thread - 1) / n_per_thread);
|
||||
uint3 dims = make_uint3(dims_ / 2, T, dimz);
|
||||
auto [grid, block] = get_grid_and_block(dims.x, dims.y, dims.z);
|
||||
int64_t offset_stride = 0;
|
||||
if (inputs[1].ndim() > 0) {
|
||||
offset_stride = inputs[1].strides()[0];
|
||||
}
|
||||
encoder.add_kernel_node(
|
||||
kernel,
|
||||
grid,
|
||||
@@ -392,7 +415,8 @@ void RoPE::eval_gpu(
|
||||
std::log2(base_),
|
||||
strides,
|
||||
out_strides,
|
||||
in.size() / mat_size,
|
||||
offset_stride,
|
||||
N,
|
||||
dims);
|
||||
}
|
||||
});
|
||||
|
||||
@@ -4,7 +4,6 @@
|
||||
#include "mlx/backend/cuda/device/config.h"
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
#include "mlx/backend/cuda/kernel_utils.cuh"
|
||||
#include "mlx/backend/cuda/lru_cache.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
@@ -46,6 +45,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
const T* K,
|
||||
const T* V,
|
||||
T* O,
|
||||
const T* sinks,
|
||||
__grid_constant__ const AttnParams params) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
@@ -65,7 +65,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
__shared__ U max_scores[BN];
|
||||
__shared__ U sum_exp_scores[BN];
|
||||
|
||||
const U scale_log2 = params.scale * 1.44269504089f;
|
||||
const U scale_log2 = params.scale * M_LOG2E;
|
||||
|
||||
auto block = cg::this_thread_block();
|
||||
auto warp = cg::tiled_partition<32>(block);
|
||||
@@ -108,8 +108,12 @@ __global__ void kernel_sdpav_1pass(
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -INFINITY;
|
||||
U max_score = Limits<U>::finite_min();
|
||||
U sum_exp_score = 0.f;
|
||||
if (sinks && warp_idx == 0) {
|
||||
max_score = M_LOG2E * static_cast<U>(sinks[head_idx]);
|
||||
sum_exp_score = 1.f;
|
||||
}
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += BN) {
|
||||
@@ -167,7 +171,7 @@ __global__ void kernel_sdpav_1pass(
|
||||
U factor = exp2f(max_score - new_max);
|
||||
sum_exp_score =
|
||||
cg::reduce(warp, sum_exp_scores[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
sum_exp_score = sum_exp_score == 0 ? 0 : __frcp_rn(sum_exp_score);
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
PRAGMA_LOOP_UNROLL
|
||||
@@ -193,6 +197,7 @@ __global__ void kernel_sdpav_2pass_1(
|
||||
const T* Q,
|
||||
const T* K,
|
||||
const T* V,
|
||||
const T* sinks,
|
||||
float* partials,
|
||||
float* sums,
|
||||
float* maxs,
|
||||
@@ -268,8 +273,12 @@ __global__ void kernel_sdpav_2pass_1(
|
||||
o[i] = 0.f;
|
||||
}
|
||||
|
||||
U max_score = -1e9;
|
||||
U max_score = Limits<U>::finite_min();
|
||||
U sum_exp_score = 0.f;
|
||||
if (sinks && warp_idx == 0 && block_idx == 0) {
|
||||
max_score = M_LOG2E * static_cast<U>(sinks[head_idx]);
|
||||
sum_exp_score = 1.f;
|
||||
}
|
||||
|
||||
// For each key
|
||||
for (int i = kv_seq_idx; i < params.kL; i += blocks * BN) {
|
||||
@@ -410,7 +419,7 @@ __global__ void kernel_sdpav_2pass_2(
|
||||
U new_max = cg::reduce(warp, max_score, cg::greater<U>());
|
||||
U factor = exp2f(max_score - new_max);
|
||||
U sum_exp_score = cg::reduce(warp, sums[lane_idx] * factor, cg::plus<U>());
|
||||
sum_exp_score = __frcp_rn(sum_exp_score);
|
||||
sum_exp_score = sum_exp_score == 0 ? 0 : __frcp_rn(sum_exp_score);
|
||||
|
||||
PRAGMA_LOOP_UNROLL
|
||||
for (int i = 0; i < v_per_thread; i++) {
|
||||
@@ -463,10 +472,14 @@ void sdpa_vector_1pass_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
if (sinks) {
|
||||
encoder.set_input_array(*sinks);
|
||||
}
|
||||
encoder.set_output_array(o);
|
||||
|
||||
cu::AttnParams params{
|
||||
@@ -489,7 +502,7 @@ void sdpa_vector_1pass_fallback(
|
||||
dim3 block_dim(1024, 1, 1);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_1pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_bool(do_causal, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
@@ -504,6 +517,7 @@ void sdpa_vector_1pass_fallback(
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
o.data<DataType>(),
|
||||
sinks ? (*sinks).data<DataType>() : nullptr,
|
||||
params);
|
||||
});
|
||||
});
|
||||
@@ -518,7 +532,8 @@ void sdpa_vector_2pass_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
cu::AttnParams params{
|
||||
/* int B = */ q.shape(0),
|
||||
/* int H = */ q.shape(1),
|
||||
@@ -559,7 +574,7 @@ void sdpa_vector_2pass_fallback(
|
||||
encoder.add_temporary(maxs);
|
||||
|
||||
dispatch_float_types(o.dtype(), "kernel_sdpav_2pass", [&](auto type_tag) {
|
||||
dispatch_bool(do_causal_, [&](auto do_causal) {
|
||||
dispatch_bool(do_causal, [&](auto do_causal) {
|
||||
dispatch_headdim(params.D, [&](auto headdim) {
|
||||
using DataType = cuda_type_t<MLX_GET_TYPE(type_tag)>;
|
||||
|
||||
@@ -570,6 +585,10 @@ void sdpa_vector_2pass_fallback(
|
||||
encoder.set_input_array(q);
|
||||
encoder.set_input_array(k);
|
||||
encoder.set_input_array(v);
|
||||
if (sinks) {
|
||||
encoder.set_input_array(*sinks);
|
||||
}
|
||||
|
||||
encoder.set_output_array(intermediate);
|
||||
encoder.set_output_array(sums);
|
||||
encoder.set_output_array(maxs);
|
||||
@@ -585,6 +604,7 @@ void sdpa_vector_2pass_fallback(
|
||||
q.data<DataType>(),
|
||||
k.data<DataType>(),
|
||||
v.data<DataType>(),
|
||||
sinks ? (*sinks).data<DataType>() : nullptr,
|
||||
intermediate.data<float>(),
|
||||
sums.data<float>(),
|
||||
maxs.data<float>(),
|
||||
@@ -627,15 +647,16 @@ void sdpa_vector_fallback(
|
||||
const array& v,
|
||||
const float scale,
|
||||
array& o,
|
||||
bool do_causal_ = false) {
|
||||
bool do_causal,
|
||||
const std::optional<array>& sinks) {
|
||||
int kL = k.shape(2);
|
||||
|
||||
if (kL > 1024) {
|
||||
return sdpa_vector_2pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
s, encoder, q, k, v, scale, o, do_causal, sinks);
|
||||
} else {
|
||||
return sdpa_vector_1pass_fallback(
|
||||
s, encoder, q, k, v, scale, o, do_causal_);
|
||||
s, encoder, q, k, v, scale, o, do_causal, sinks);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -691,7 +712,7 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
|
||||
// Define some copy functions to ensure the layout of the inputs is as
|
||||
// expected.
|
||||
copies.reserve(3);
|
||||
copies.reserve(inputs.size());
|
||||
auto copy_unless = [&copies, &s](
|
||||
auto predicate, const array& arr) -> const array& {
|
||||
if (!predicate(arr)) {
|
||||
@@ -703,6 +724,16 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
}
|
||||
};
|
||||
|
||||
// Checks that the headdim dimension has stride 1.
|
||||
auto is_matrix_contiguous = [](const array& arr) {
|
||||
return arr.strides(-1) == 1;
|
||||
};
|
||||
|
||||
std::optional<array> sinks = std::nullopt;
|
||||
if (has_sinks_) {
|
||||
sinks = copy_unless(is_matrix_contiguous, inputs.back());
|
||||
}
|
||||
|
||||
// We are in vector mode ie single query
|
||||
if (q_pre.shape(2) < 4) {
|
||||
auto q_copy_unless = [](const array& arr) {
|
||||
@@ -740,10 +771,6 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
const auto& k = copy_unless(kv_copy_unless, k_pre);
|
||||
const auto& v = copy_unless(kv_copy_unless, v_pre);
|
||||
|
||||
for (const auto& cp : copies) {
|
||||
encoder.add_temporary(cp);
|
||||
}
|
||||
|
||||
// Donate the query if possible
|
||||
if (q.is_donatable() && q.flags().row_contiguous && q.size() == o.size()) {
|
||||
o.copy_shared_buffer(q);
|
||||
@@ -752,22 +779,26 @@ void ScaledDotProductAttention::eval_gpu(
|
||||
int64_t str_oH = o.shape(3);
|
||||
int64_t str_oL = o.shape(1) * str_oH;
|
||||
int64_t str_oB = o.shape(2) * str_oL;
|
||||
size_t data_size = o.shape(0) * str_oB;
|
||||
|
||||
array::Flags flags{
|
||||
/* bool contiguous = */ 1,
|
||||
/* bool row_contiguous = */ o.shape(2) == 1,
|
||||
/* bool col_contiguous = */ 0,
|
||||
/* bool col_contiguous = */ o.size() == o.shape(3),
|
||||
};
|
||||
|
||||
o.set_data(
|
||||
allocator::malloc(o.nbytes()),
|
||||
data_size,
|
||||
o.size(),
|
||||
{str_oB, str_oH, str_oL, str_oD},
|
||||
flags);
|
||||
}
|
||||
|
||||
return sdpa_vector_fallback(s, encoder, q, k, v, scale_, o, do_causal_);
|
||||
for (const auto& cp : copies) {
|
||||
encoder.add_temporary(cp);
|
||||
}
|
||||
|
||||
return sdpa_vector_fallback(
|
||||
s, encoder, q, k, v, scale_, o, do_causal_, sinks);
|
||||
}
|
||||
|
||||
// Full attention mode should never reach here
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
// Copyright © 2025 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/slicing.h"
|
||||
#include "mlx/backend/cuda/device.h"
|
||||
#include "mlx/backend/cuda/jit_module.h"
|
||||
#include "mlx/backend/gpu/copy.h"
|
||||
#include "mlx/backend/gpu/slicing.h"
|
||||
#include "mlx/dtype_utils.h"
|
||||
|
||||
#include <numeric>
|
||||
|
||||
@@ -27,8 +30,7 @@ void concatenate_gpu(
|
||||
flags.row_contiguous = false;
|
||||
flags.col_contiguous = false;
|
||||
flags.contiguous = false;
|
||||
// TODO: Handle concurrent outputs:
|
||||
// https://github.com/ml-explore/mlx/pull/2145#discussion_r2070753816
|
||||
auto concurrent = cu::get_command_encoder(s).concurrent_context();
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
|
||||
size_t data_offset = strides[axis] * sizes[i];
|
||||
@@ -38,4 +40,71 @@ void concatenate_gpu(
|
||||
}
|
||||
}
|
||||
|
||||
array compute_dynamic_offset(
|
||||
const array& indices,
|
||||
const Strides& strides,
|
||||
const std::vector<int>& axes,
|
||||
const Stream& s) {
|
||||
Dtype dtype = indices.dtype();
|
||||
int nidx = axes.size();
|
||||
|
||||
std::string module_name =
|
||||
fmt::format("compute_dynamic_offset_{}_{}", dtype_to_string(dtype), nidx);
|
||||
std::string kernel_name = fmt::format(
|
||||
"mlx::core::cu::compute_dynamic_offset<{}, {}>",
|
||||
dtype_to_cuda_type(dtype),
|
||||
nidx);
|
||||
|
||||
cu::JitModule& mod = cu::get_jit_module(s.device, module_name, [&]() {
|
||||
std::string source = R"(
|
||||
#include "mlx/backend/cuda/device/utils.cuh"
|
||||
|
||||
namespace mlx::core::cu {
|
||||
|
||||
template <typename T, int NIDX>
|
||||
__global__ void compute_dynamic_offset(
|
||||
const T* indices,
|
||||
int64_t* offset,
|
||||
const __grid_constant__ Strides strides,
|
||||
const __grid_constant__ cuda::std::array<int, NIDX> axes) {
|
||||
int64_t acc = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0; i < NIDX; ++i) {
|
||||
acc += indices[i] * strides[axes[i]];
|
||||
}
|
||||
*offset = acc;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::cu
|
||||
)";
|
||||
return std::make_tuple(false, std::move(source), std::vector{kernel_name});
|
||||
});
|
||||
|
||||
// Prepare output.
|
||||
array offset({1}, int64, nullptr, {});
|
||||
bool donate = indices.is_donatable() &&
|
||||
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
|
||||
if (donate) {
|
||||
offset.copy_shared_buffer(indices);
|
||||
} else {
|
||||
offset.set_data(allocator::malloc(offset.itemsize()));
|
||||
}
|
||||
|
||||
auto& encoder = cu::get_command_encoder(s);
|
||||
encoder.add_temporary(offset);
|
||||
encoder.set_input_array(indices);
|
||||
encoder.set_output_array(offset);
|
||||
|
||||
cu::KernelArgs args;
|
||||
args.append(indices);
|
||||
args.append(offset);
|
||||
args.append_ndim(strides);
|
||||
args.append(axes);
|
||||
|
||||
auto kernel = mod.get_kernel(kernel_name);
|
||||
encoder.add_kernel_node(kernel, 1, 1, 0, args.args());
|
||||
|
||||
return offset;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#include <nvtx3/nvtx3.hpp>
|
||||
#include <thrust/device_ptr.h>
|
||||
#include <thrust/transform.h>
|
||||
#include <cub/device/device_segmented_sort.cuh>
|
||||
#include <cub/device/device_segmented_radix_sort.cuh>
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -79,7 +79,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
encoder.add_temporary(discard);
|
||||
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortPairs(
|
||||
nullptr,
|
||||
size,
|
||||
in.data<Type>(),
|
||||
@@ -90,6 +90,8 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
0,
|
||||
sizeof(Type) * 8,
|
||||
stream));
|
||||
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
@@ -104,7 +106,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
thrust::device_pointer_cast(indices.data<uint32_t>()),
|
||||
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
|
||||
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortPairs(
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortPairs(
|
||||
temp.data<void>(),
|
||||
size,
|
||||
in.data<Type>(),
|
||||
@@ -115,10 +117,12 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
0,
|
||||
sizeof(Type) * 8,
|
||||
stream));
|
||||
} else {
|
||||
size_t size;
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortKeys(
|
||||
nullptr,
|
||||
size,
|
||||
in.data<Type>(),
|
||||
@@ -127,6 +131,8 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
0,
|
||||
sizeof(Type) * 8,
|
||||
stream));
|
||||
|
||||
array temp(allocator::malloc(size), {static_cast<int>(size)}, uint8);
|
||||
@@ -134,7 +140,7 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
|
||||
// Start capturing after allocations
|
||||
auto capture = encoder.capture_context();
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedSort::StableSortKeys(
|
||||
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortKeys(
|
||||
temp.data<void>(),
|
||||
size,
|
||||
in.data<Type>(),
|
||||
@@ -143,6 +149,8 @@ void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
|
||||
in.data_size() / nsort,
|
||||
offsets,
|
||||
offsets + 1,
|
||||
0,
|
||||
sizeof(Type) * 8,
|
||||
stream));
|
||||
}
|
||||
} else {
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user