Compare commits

..

66 Commits

Author SHA1 Message Date
Awni Hannun
0c1155faf5 binding + tests 2024-12-09 12:57:36 -08:00
Awni Hannun
2b9c24c517 works 2024-12-09 12:57:36 -08:00
Awni Hannun
ee59d50293 try dynamic reshape 2024-12-09 12:57:36 -08:00
Awni Hannun
40c62c1321 Use int64 stride everywhere (#1671)
* use int64 stride everywhere

* fix ext

* fix ext

* more shape + cleanup

* one more

* few more
2024-12-09 11:09:02 -08:00
Awni Hannun
35b412c099 Fix compile hasher for string constants. (#1677)
* fix hash

* add test

* nit
2024-12-09 09:26:18 -08:00
Cheng
d0f471cff7 Using math defines requires switch in MSVC (#1665)
* Using math defines requires switch in MSVC

* Fix more math macros

* Fix type

* Remove _MSC_VER guard for math defines
2024-12-08 08:16:28 -08:00
Cheng
6f316b8bf5 Use int64_t instead of ssize_t (#1673) 2024-12-07 20:10:44 -08:00
Cheng
7c10c93a1f Convert filesystem path to std::string explicitly (#1672) 2024-12-07 20:10:06 -08:00
Cheng
d92ea094f1 Use && instead of and (#1663)
* Use && instead of and

* Remove "and" in ops.cpp
2024-12-07 18:26:39 -08:00
Cheng
6ae5423b4a Do not pass integers to isnan (#1664) 2024-12-07 18:26:23 -08:00
Cheng
9635cffdc8 Include io.h in MSVC for IO functions (#1661) 2024-12-07 18:26:06 -08:00
Cheng
96986fb362 Use auto* for pointers (#1662) 2024-12-07 18:25:40 -08:00
Cheng
3ceb341a75 Use correct complex type for MSVC (#1660) 2024-12-07 18:25:22 -08:00
Awni Hannun
50fa705125 patch bump (#1656) 2024-12-06 13:16:19 -08:00
Awni Hannun
69a2991614 allow compiling lambdas in C++ (#1650)
* allow compiling lambdas in C++

* fix test

* more tests

* auto detect capture-less lambda
2024-12-06 13:13:21 -08:00
mt_caret
fd3377dd1f Support bias correction in Adam and AdamW optimizers (#1640) 2024-12-06 12:13:34 -08:00
Awni Hannun
d0b6cb0425 More primitives for compiling with shapeless (#1653)
* more shapeless and more Shape

* more shape

* fix

* fix
2024-12-06 11:29:18 -08:00
Alex Barron
95c4a2e3af add back conditionaltype (#1655) 2024-12-06 11:12:01 -08:00
Awni Hannun
bc2a29f033 fix (#1654) 2024-12-06 10:48:58 -08:00
Nripesh Niketan
3bb5b4a302 Chore: Add default language in pre-commit and bump hooks (#1652) 2024-12-06 07:54:29 -08:00
Awni Hannun
fc88fd9097 Shape and Strides 1 / N (#1645)
* shape and stride type def

* more shape
2024-12-05 12:53:43 -08:00
Awni Hannun
c5b0928c1f fix fallback (#1646) 2024-12-05 11:59:53 -08:00
Awni Hannun
e047fd977d compile changes if stream changes (#1644) 2024-12-03 14:37:44 -08:00
Jagrit Digani
9d40e521d7 Stop matrix copies with new attention kernel (#1639) 2024-12-02 14:12:38 -08:00
Alex Barron
1445dcaa60 let class predicate specify quantization parameters (#1638) 2024-12-02 14:09:28 -08:00
Jesper Stemann Andersen
e4eeb4e910 Added missing unordered_map includes (#1635)
* Added missing includes in mlx/io.h and mlx/backend/metal/metal.h

* Added additional missing unordered_map includes that fixes build on FreeBSD
2024-12-02 07:03:03 -08:00
Awni Hannun
aa86876813 fix transformer decoder post norm LN (#1637) 2024-12-02 07:02:17 -08:00
Jesper Stemann Andersen
974bb54ab2 CMake: Enabled using Accelerate on x86_64 / x64 (#1625)
* CMake: Enabled using Accelerate on x86_64 / x64

Cf. https://github.com/JuliaPackaging/Yggdrasil/pull/9761

* CMake: Removed superfluous MLX_BUILD_ARM
2024-11-28 10:55:45 -08:00
Ikko Eltociear Ashimine
9bc2183a31 docs: update device.cpp (#1632)
unecessary -> unnecessary
2024-11-27 20:58:26 -08:00
Awni Hannun
d4b222b6d3 Fix some leaks and races (#1629)
* fix leak and fix potential race

* more leak fixes

* fix one more
2024-11-27 20:01:20 -08:00
Jesper Stemann Andersen
af2af818a6 Enables build for *-linux-musl (#1627)
Also contributes to being able to build for *-w64-mingw32.

Cf. https://github.com/JuliaPackaging/Yggdrasil/pull/9761
2024-11-27 13:14:24 -08:00
Jesper Stemann Andersen
698e63a608 CMake: Build with dlfcn-win32 to have dlopen etc. on win32 (#1628)
Cf. https://github.com/JuliaPackaging/Yggdrasil/pull/9761
2024-11-27 13:14:13 -08:00
Awni Hannun
211411faf2 fix large ops (#1620) 2024-11-24 09:17:10 -08:00
Awni Hannun
bb303c45a5 version (#1617) 2024-11-22 12:00:03 -08:00
Alex Barron
6f7986d592 Cleaner qmv/qvm (#1616) 2024-11-22 11:14:08 -08:00
Awni Hannun
7cbb4aef17 Doc fix (#1615) 2024-11-22 11:12:25 -08:00
Jagrit Digani
02bec0bb6d Matrix Attention kernel (#1610)
* Rough INIT

* [WIP]: Loading and Matmuls added

* [WIP]: Reductions and min working aligned kernel at headdim = 64

* [WIP] Added headdim 80 for testing

* [WIP] Update dispatch params for testing

* [WIP] Add support for unaligned seq lengths - still looks messy

* Update sdpa_benchmarks

* Update sdpa_benchmarks

* Update sdpa_benchmarks

* Enable gqa support

* Update benchmark and switch off 128 headdim

* Update headdim 128 tuning

* Remove older fast attention code. Write out O strided

* Disable hd=128 until further optimizations

* Enable bf16

* Fix data size bug

* Enable attn build outside of jit
2024-11-22 10:34:05 -08:00
Alex Barron
c79f6a4a8c 3 and 6 bit quantization (#1613)
* Support 3 and 6 bit quantization
2024-11-22 10:22:13 -08:00
Awni Hannun
0c5eea226b Reduce specializations (#1607)
* start of reduce specializations

* fix all reduce

* fix many dims

* fix

* non-jit tests clear

* cleanup instantiations

* cpu merges

* change dim specializations

* optimize

* fix jit

* fix jit

* use higher precision for integer sum+prod

* fixes
2024-11-21 19:53:00 -08:00
Awni Hannun
dcca0d7477 contiguous op / prim (#1612) 2024-11-21 19:51:49 -08:00
Cocoa
0d5e7716ad fix typo: accross -> across (#1609)
Signed-off-by: Cocoa <i@uwucocoa.moe>
2024-11-20 15:30:51 -08:00
Angelos Katharopoulos
d8c824c594 Formatting fixes (#1606) 2024-11-20 15:30:36 -08:00
Saanidhya
cb431dfc9f Adds 3D pooling (#1526) 2024-11-19 16:45:24 -08:00
Awni Hannun
61d787726a Fix view scalar bug segfault (#1603)
* fix view scalar bug

* fix view scalar bug

* one more fix
2024-11-19 10:54:05 -08:00
Angelos Katharopoulos
5e89aace9b Fix concatenate vmap (#1600) 2024-11-19 10:44:04 -08:00
Awni Hannun
2af7e8a9a6 fix cmake version (#1601) 2024-11-19 08:45:05 -08:00
Awni Hannun
2419edd5b2 Faster indexing math in a few kernels (#1589)
* wip: faster compiled kernels

* faster general unary with uint specialization

* index type in compiled, unary, binary, ternary, copy

* fix jit

* jit fix

* specialize gather + scatter

* nit in docs
2024-11-18 19:52:00 -08:00
Awni Hannun
bf481e8e5d Fix sibling leak (#1590)
* add test

* fix + test

* fix fix
2024-11-18 19:17:01 -08:00
Awni Hannun
9d7fa6b8e6 Use osx deployment target to pick Metal version (#1595)
* choose metal based on deployment target rather than system version

* nit

* unused compile def
2024-11-18 19:16:49 -08:00
Angelos Katharopoulos
073076ac7d 2-Pass Sdpa Inference Kernel (#1597) 2024-11-18 17:31:53 -08:00
Awni Hannun
9bd03dd9b4 More buffer donation with no-ops (#1591)
* more donation

* fix test

* fix build
2024-11-18 08:35:41 -08:00
Awni Hannun
6931f84412 fix dispatch threads for a few kernels (#1594) 2024-11-18 08:35:25 -08:00
xnorai
16ec0556a0 Allocate raw JSON metadata buffer on the heap, and limit its size (#1596)
* Allocate raw JSON metadata buffer on the heap, and limit its size to 1GiB

* Set the upper size limit for the header to 100K as in Rust safetensors
2024-11-18 07:22:51 -08:00
Awni Hannun
610af352d4 Dispatch bf16 at run time when using the JIT (#1584)
* Dispatch bf16 at run time when using the JIT

* fix extension

* fix extension build

* fix extension build

* Update utils.h
2024-11-15 16:54:36 -08:00
Awni Hannun
b35f1e3c9c fix donation in sdpa (#1587) 2024-11-13 17:21:13 -08:00
Awni Hannun
dfa0b9aab4 Cpu fast quantize (#1578)
* cpu quantize

* fix
2024-11-08 20:10:39 -08:00
Alex Barron
a4c47b0276 OOB QMV fix (#1579)
* fix oob access in qmv

* skip more

* fix small case
2024-11-08 17:59:45 -08:00
Alex Barron
111fefd5e9 Fix OOB access in qmv (#1577)
* fix oob access in qmv

* skip more
2024-11-08 15:41:30 -08:00
Awni Hannun
c1fe1ef081 Bfs width limit (#1568)
* width limit

* fix

* large limit

* put env vars in env namespace
2024-11-08 15:00:46 -08:00
Awni Hannun
8c34c9dac4 throw for invalid case and remove test (#1575) 2024-11-08 12:04:03 -08:00
Awni Hannun
91c0277356 fix per-example mask + docs in sdpa (#1574) 2024-11-08 11:51:15 -08:00
Awni Hannun
9f0d5c12fc Fully wrap the command encoder (#1572)
* fully wrap the command encoder

* use consistent style + fix extensions
2024-11-08 11:50:21 -08:00
Awni Hannun
59247c2b62 add groups in conv2d (#1569) 2024-11-07 13:57:53 -08:00
Awni Hannun
9a3842a2d9 fix (#1566) 2024-11-06 17:10:33 -08:00
Alex Barron
726dbd9267 v0.20.0 (#1565) 2024-11-05 12:37:57 -08:00
Awni Hannun
54f05e7195 Fix gather vmap (#1563)
* fix gather

* fix
2024-11-05 11:29:20 -08:00
213 changed files with 7990 additions and 6254 deletions

View File

@@ -1,13 +1,14 @@
repos:
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v18.1.8
rev: v19.1.4
hooks:
- id: clang-format
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 24.8.0
rev: 24.10.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
rev: 5.13.2
hooks:

View File

@@ -24,7 +24,7 @@ option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.19.3)
set(MLX_VERSION 0.21.1)
endif()
# --------------------- Processor tests -------------------------
@@ -34,8 +34,6 @@ message(
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
)
set(MLX_BUILD_ARM OFF)
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
if(NOT MLX_ENABLE_X64_MAC)
@@ -57,10 +55,6 @@ else()
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
set(MLX_BUILD_ARM ON)
endif()
# ----------------------------- Lib -----------------------------
include(FetchContent)
@@ -89,25 +83,27 @@ elseif(MLX_BUILD_METAL)
# Throw an error if xcrun not found
execute_process(
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION COMMAND_ERROR_IS_FATAL ANY)
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
if(${MACOS_VERSION} LESS 14.0)
if(${MACOS_SDK_VERSION} LESS 14.0)
message(
FATAL_ERROR
"MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON")
endif()
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
)
# Get the metal version
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
endif()
execute_process(
COMMAND
zsh "-c"
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
FetchContent_MakeAvailable(metal_cpp)
@@ -115,13 +111,11 @@ elseif(MLX_BUILD_METAL)
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/metal_cpp>)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
add_compile_definitions("MLX_METAL_VERSION=${MLX_METAL_VERSION}")
endif()
if(MLX_BUILD_CPU)
find_library(ACCELERATE_LIBRARY Accelerate)
if(MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
if(ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
@@ -160,6 +154,13 @@ if(MLX_BUILD_CPU)
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
if(WIN32)
find_package(dlfcn-win32 REQUIRED)
message(STATUS "dlfcn-win32 lib " ${dlfcn-win32_LIBRARIES})
message(STATUS "dlfcn-win32 include " ${dlfcn-win32_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${dlfcn-win32_LIBRARIES})
endif()
endif()
else()
set(MLX_BUILD_ACCELERATE OFF)

View File

@@ -1,62 +1,189 @@
# Copyright © 2024 Apple Inc.
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
from time_utils import time_fn
import numpy as np
MAX_SEQ = 300
START_SEQ = 100
SEQ_INCREMENT = 50
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
device_name = device_name.decode("utf-8").strip("\n")
N_warmup = 5
N_iter_bench = 40
N_iter_func = 8
def time_self_attention_primitives():
mx.random.seed(3)
B = 2
H = 38
D = 64
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
q = mx.random.uniform(shape=(B, H, R, D))
k = mx.random.uniform(shape=(B, H, R, D))
v = mx.random.uniform(shape=(B, H, R, D))
scale = 1.0 / math.sqrt(float(D))
mx.eval(q, k, v)
def bench(f, *args):
for i in range(N_warmup):
f(*args)
def sdpa_primitives(qs, ks, vs, alpha):
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ vs
return o
time_fn(sdpa_primitives, q, k, v, scale)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(*args)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def time_self_attention_sdpa():
mx.random.seed(3)
B = 2
H = 38
D = 64
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
q = mx.random.uniform(shape=(B, H, R, D))
k = mx.random.uniform(shape=(B, H, R, D))
v = mx.random.uniform(shape=(B, H, R, D))
scale = 1.0 / math.sqrt(float(D))
mx.eval(q, k, v)
def mlx_sdpa_fused_inner(q, k, v, scale):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
def sdpa_fused(qs, ks, vs, alpha):
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
return o
time_fn(sdpa_fused, q, k, v, scale)
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
q_dtype = q.dtype
q = q * mx.array(scale, q_dtype)
n_q_heads = q.shape[-3]
n_kv_heads = k.shape[-3]
n_repeats = n_q_heads // n_kv_heads
B = q.shape[0]
L = q.shape[2]
if n_repeats > 1:
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
k = mx.expand_dims(k, 2)
v = mx.expand_dims(v, 2)
scores = q @ mx.swapaxes(k, -1, -2)
if f32softmax:
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
else:
scores = mx.softmax(scores, axis=-1)
out = scores @ v
if n_repeats > 1:
out = mx.reshape(out, [B, n_q_heads, L, -1])
return out
def mlx_spda_unfused(q, k, v, scale, transpose):
q_out = q
if transpose:
k = mx.transpose(k, (0, 2, 1, 3))
v = mx.transpose(v, (0, 2, 1, 3))
for i in range(N_iter_func):
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
mx.eval(q_out)
return q_out
def mlx_spda_fused(q, k, v, scale, transpose):
q_out = q
if transpose:
k = mx.transpose(k, (0, 2, 1, 3))
v = mx.transpose(v, (0, 2, 1, 3))
for i in range(N_iter_func):
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
if transpose:
q_out = mx.transpose(q_out, (0, 2, 1, 3))
mx.eval(q_out)
return q_out
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
shape_q = (
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
)
shape_kv = (
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
)
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
scale = math.sqrt(1.0 / head_dim)
q_mx = mx.array(q_np)
k_mx = mx.array(k_np)
v_mx = mx.array(v_np)
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
if transpose:
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
atol = 1e-5 if np_dtype == np.float32 else 1e-4
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
print(
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
)
return time_mlx_fused, time_mlx_unfused
def get_gflop_count(B, M, N, K):
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
if __name__ == "__main__":
parser = argparse.ArgumentParser("MLX benchmarks.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
args = parser.parse_args()
if args.gpu:
mx.set_default_device(mx.gpu)
else:
mx.set_default_device(mx.cpu)
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
time_self_attention_sdpa()
time_self_attention_primitives()
dtypes = ("float16", "float32")[:1]
transposes = (False,)
# fmt: off
shapes_64 = (
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
( 1, 32, 32, 64, 32, 32),
( 1, 64, 64, 64, 32, 32),
( 1, 128, 128, 64, 32, 32),
( 1, 256, 256, 64, 32, 32),
( 1, 512, 512, 64, 32, 32),
( 1, 1024, 1024, 64, 32, 32),
( 1, 2048, 2048, 64, 32, 32),
( 1, 4096, 4096, 64, 32, 32),
)
shapes_80 = (
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
( 1, 1024, 1024, 80, 32, 32),
( 1, 2048, 2048, 80, 32, 32),
( 1, 4096, 4096, 80, 32, 32),
)
shapes_128 = (
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
( 1, 1024, 1024, 128, 32, 32),
( 1, 2048, 2048, 128, 32, 32),
( 1, 4096, 4096, 128, 32, 32),
)
# fmt: on
shapes = shapes_64 + shapes_80 + shapes_128
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
for dtype in dtypes:
for transpose in transposes:
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
np_dtype = getattr(np, dtype)
time_mlx_fused, time_mlx_unfused = bench_shape(
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
)
diff = time_mlx_unfused / time_mlx_fused - 1.0
t_str = 1 if transpose else 0
print(
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
)

View File

@@ -4,42 +4,51 @@ import math
import mlx.core as mx
from time_utils import time_fn
L = 1024
L = 16384
H = 32
H_k = 32 // 4
H_k = H // 4
D = 128
dtype = mx.float16
loops = 10
def attention(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
def _sdpa(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
for i in range(loops):
q = _sdpa(q, k, v)
return q
def sdpa(q, k, v):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
for i in range(loops):
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
return q
def time_self_attention_primitives():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
mx.eval(q, k, v)
time_fn(attention, q, k, v)
def time_self_attention_sdpa():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
mx.eval(q, k, v)
time_fn(sdpa, q, k, v)

View File

@@ -420,8 +420,8 @@ element in the output.
constant const float& alpha [[buffer(3)]],
constant const float& beta [[buffer(4)]],
constant const int* shape [[buffer(5)]],
constant const size_t* x_strides [[buffer(6)]],
constant const size_t* y_strides [[buffer(7)]],
constant const int64_t* x_strides [[buffer(6)]],
constant const int64_t* y_strides [[buffer(7)]],
constant const int& ndim [[buffer(8)]],
uint index [[thread_position_in_grid]]) {
// Convert linear indices to offsets in array
@@ -438,24 +438,10 @@ each instantiation a unique host name so we can identify it.
.. code-block:: C++
#define instantiate_axpby(type_name, type) \
template [[host_name("axpby_general_" #type_name)]] \
[[kernel]] void axpby_general<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
constant const int* shape [[buffer(5)]], \
constant const size_t* x_strides [[buffer(6)]], \
constant const size_t* y_strides [[buffer(7)]], \
constant const int& ndim [[buffer(8)]], \
uint index [[thread_position_in_grid]]);
instantiate_axpby(float32, float);
instantiate_axpby(float16, half);
instantiate_axpby(bfloat16, bfloat16_t);
instantiate_axpby(complex64, complex64_t);
instantiate_kernel("axpby_general_float32", axpby_general, float)
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
@@ -494,7 +480,7 @@ below.
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Kernel parameters are registered with buffer indices corresponding to
// those in the kernel declaration at axpby.metal
@@ -509,14 +495,14 @@ below.
compute_encoder.set_output_array(out, 2);
// Encode alpha and beta
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
compute_encoder->setBytes(&beta_, sizeof(float), 4);
compute_encoder.set_bytes(alpha_, 3);
compute_encoder.set_bytes(beta_, 4);
// Encode shape, strides and ndim
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
compute_encoder->setBytes(&ndim, sizeof(int), 8);
compute_encoder.set_vector_bytes(x.shape(), 5);
compute_encoder.set_vector_bytes(x.strides(), 6);
compute_encoder.set_bytes(y.strides(), 7);
compute_encoder.set_bytes(ndim, 8);
// We launch 1 thread for each input and make sure that the number of
// threads in any given threadgroup is not higher than the max allowed
@@ -530,7 +516,7 @@ below.
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
We can now call the :meth:`axpby` operation on both the CPU and the GPU!

View File

@@ -209,7 +209,7 @@ Metal library by run-time compiling kernels the first time they are used in MLX
on a given machine. Note run-time compilation incurs a cold-start cost which can
be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists accross reboots.
Metal kernel cache persists across reboots.
Troubleshooting
^^^^^^^^^^^^^^^

View File

@@ -12,5 +12,4 @@ Fast
layer_norm
rope
scaled_dot_product_attention
affine_quantize
metal_kernel

View File

@@ -12,6 +12,7 @@ Layers
ALiBi
AvgPool1d
AvgPool2d
AvgPool3d
BatchNorm
CELU
Conv1d
@@ -41,6 +42,7 @@ Layers
LSTM
MaxPool1d
MaxPool2d
MaxPool3d
Mish
MultiHeadAttention
PReLU

View File

@@ -184,8 +184,8 @@ Let's time these two different versions:
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
vectorized version takes only ``0.025`` seconds, more than ten times faster.
On an M1 Max the naive version takes in total ``5.639`` seconds whereas the
vectorized version takes only ``0.024`` seconds, more than 200 times faster.
Of course, this operation is quite contrived. A better approach is to simply do
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.

View File

@@ -257,7 +257,7 @@ void Axpby::eval_gpu(
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Kernel parameters are registered with buffer indices corresponding to
// those in the kernel declaration at axpby.metal
@@ -272,15 +272,15 @@ void Axpby::eval_gpu(
compute_encoder.set_output_array(out, 2);
// Encode alpha and beta
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
compute_encoder->setBytes(&beta_, sizeof(float), 4);
compute_encoder.set_bytes(alpha_, 3);
compute_encoder.set_bytes(beta_, 4);
// Encode shape, strides and ndim if needed
if (!contiguous_kernel) {
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
compute_encoder->setBytes(&ndim, sizeof(int), 8);
compute_encoder.set_vector_bytes(x.shape(), 5);
compute_encoder.set_vector_bytes(x.strides(), 6);
compute_encoder.set_bytes(y.strides(), 7);
compute_encoder.set_bytes(ndim, 8);
}
// We launch 1 thread for each input and make sure that the number of
@@ -295,7 +295,7 @@ void Axpby::eval_gpu(
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
#else // Metal is not available

View File

@@ -2,7 +2,6 @@
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/utils.h"
template <typename T>
@@ -13,8 +12,8 @@ template <typename T>
constant const float& alpha [[buffer(3)]],
constant const float& beta [[buffer(4)]],
constant const int* shape [[buffer(5)]],
constant const size_t* x_strides [[buffer(6)]],
constant const size_t* y_strides [[buffer(7)]],
constant const int64_t* x_strides [[buffer(6)]],
constant const int64_t* y_strides [[buffer(7)]],
constant const int& ndim [[buffer(8)]],
uint index [[thread_position_in_grid]]) {
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
@@ -35,29 +34,14 @@ template <typename T>
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
}
#define instantiate_axpby(type_name, type) \
template [[host_name("axpby_general_" #type_name)]] [[kernel]] void \
axpby_general<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
constant const int* shape [[buffer(5)]], \
constant const size_t* x_strides [[buffer(6)]], \
constant const size_t* y_strides [[buffer(7)]], \
constant const int& ndim [[buffer(8)]], \
uint index [[thread_position_in_grid]]); \
template [[host_name("axpby_contiguous_" #type_name)]] [[kernel]] void \
axpby_contiguous<type>( \
device const type* x [[buffer(0)]], \
device const type* y [[buffer(1)]], \
device type* out [[buffer(2)]], \
constant const float& alpha [[buffer(3)]], \
constant const float& beta [[buffer(4)]], \
uint index [[thread_position_in_grid]]);
// clang-format off
#define instantiate_axpby(type_name, type) \
instantiate_kernel("axpby_general_" #type_name, axpby_general, type) \
instantiate_kernel( \
"axpby_contiguous_" #type_name, axpby_contiguous, type)
instantiate_axpby(float32, float);
instantiate_axpby(float16, half);
instantiate_axpby(bfloat16, bfloat16_t);
instantiate_axpby(complex64, complex64_t);
instantiate_axpby(complex64, complex64_t);
// clang-format on

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.24
mlx>=0.18.1
mlx>=0.21.0
nanobind==2.2.0

View File

@@ -28,10 +28,19 @@ endif()
if (@MLX_BUILD_METAL@)
set(MLX_BUILD_METAL @MLX_BUILD_METAL@)
set(MLX_CXX_FLAGS ${MLX_CXX_FLAGS} -D_METAL_)
set_and_check(MLX_INCLUDE_DIRS
${MLX_INCLUDE_DIRS}
set(MLX_INCLUDE_DIRS
"${MLX_INCLUDE_DIRS};"
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/metal_cpp
)
if(@MLX_METAL_VERSION@ GREATER_EQUAL 310)
set(MLX_INCLUDE_DIRS
"${MLX_INCLUDE_DIRS};"
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_1)
else()
set(MLX_INCLUDE_DIRS
"${MLX_INCLUDE_DIRS};"
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_0)
endif()
endif()
set_target_properties(mlx PROPERTIES
@@ -40,4 +49,4 @@ set_target_properties(mlx PROPERTIES
)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)

View File

@@ -19,7 +19,7 @@ Buffer malloc(size_t size) {
}
void free(Buffer buffer) {
return allocator().free(buffer);
allocator().free(buffer);
}
Buffer CommonAllocator::malloc(size_t size, bool) {

View File

@@ -1,5 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include <functional>
#include <unordered_map>
#include "mlx/array.h"
#include "mlx/ops.h"
@@ -30,7 +31,7 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
}
array::array(
std::vector<int> shape,
Shape shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array> inputs)
@@ -41,7 +42,7 @@ array::array(
std::move(inputs))) {}
std::vector<array> array::make_arrays(
std::vector<std::vector<int>> shapes,
std::vector<Shape> shapes,
const std::vector<Dtype>& dtypes,
const std::shared_ptr<Primitive>& primitive,
const std::vector<array>& inputs) {
@@ -73,11 +74,7 @@ array::array(std::initializer_list<int> data, Dtype dtype)
}
/* Build an array from a shared buffer */
array::array(
allocator::Buffer data,
std::vector<int> shape,
Dtype dtype,
deleter_t deleter)
array::array(allocator::Buffer data, Shape shape, Dtype dtype, Deleter deleter)
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
set_data(data, deleter);
}
@@ -125,7 +122,7 @@ bool array::is_tracer() const {
return array_desc_->is_tracer && in_tracing() || retain_graph();
}
void array::set_data(allocator::Buffer buffer, deleter_t d) {
void array::set_data(allocator::Buffer buffer, Deleter d) {
array_desc_->data = std::make_shared<Data>(buffer, d);
array_desc_->data_ptr = buffer.raw_ptr();
array_desc_->data_size = size();
@@ -138,9 +135,9 @@ void array::set_data(allocator::Buffer buffer, deleter_t d) {
void array::set_data(
allocator::Buffer buffer,
size_t data_size,
std::vector<size_t> strides,
Strides strides,
Flags flags,
deleter_t d) {
Deleter d) {
array_desc_->data = std::make_shared<Data>(buffer, d);
array_desc_->data_ptr = buffer.raw_ptr();
array_desc_->data_size = data_size;
@@ -150,7 +147,7 @@ void array::set_data(
void array::copy_shared_buffer(
const array& other,
const std::vector<size_t>& strides,
const Strides& strides,
Flags flags,
size_t data_size,
size_t offset /* = 0 */) {
@@ -169,7 +166,7 @@ void array::copy_shared_buffer(const array& other) {
void array::move_shared_buffer(
array other,
const std::vector<size_t>& strides,
const Strides& strides,
Flags flags,
size_t data_size,
size_t offset /* = 0 */) {
@@ -214,6 +211,8 @@ array::~array() {
if (do_detach) {
for (auto& s : siblings()) {
for (auto& ss : s.siblings()) {
// Set to null here to avoid descending into array destructor
// for siblings
ss.array_desc_ = nullptr;
}
s.array_desc_->siblings.clear();
@@ -234,13 +233,13 @@ void array::ArrayDesc::init() {
}
}
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
array::ArrayDesc::ArrayDesc(Shape shape, Dtype dtype)
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
init();
}
array::ArrayDesc::ArrayDesc(
std::vector<int> shape,
Shape shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array> inputs)
@@ -292,6 +291,14 @@ array::ArrayDesc::~ArrayDesc() {
auto top = std::move(for_deletion.back());
for_deletion.pop_back();
append_deletable_inputs(*top);
// Clear out possible siblings to break circular references
for (auto& s : top->siblings) {
// Set to null here to avoid descending into top-level
// array destructor for siblings
s.array_desc_ = nullptr;
}
top->siblings.clear();
}
}

View File

@@ -15,7 +15,10 @@ namespace mlx::core {
// Forward declaration
class Primitive;
using deleter_t = std::function<void(allocator::Buffer)>;
using Deleter = std::function<void(allocator::Buffer)>;
using Shape = std::vector<int32_t>;
using Strides = std::vector<int64_t>;
class array {
/* An array is really a node in a graph. It contains a shared ArrayDesc
@@ -33,7 +36,7 @@ class array {
template <typename It>
array(
It data,
std::vector<int> shape,
Shape shape,
Dtype dtype =
TypeToDtype<typename std::iterator_traits<It>::value_type>());
@@ -49,15 +52,15 @@ class array {
template <typename T>
array(
std::initializer_list<T> data,
std::vector<int> shape,
Shape shape,
Dtype dtype = TypeToDtype<T>());
/* Build an array from a buffer */
array(
allocator::Buffer data,
std::vector<int> shape,
Shape shape,
Dtype dtype,
deleter_t deleter = allocator::free);
Deleter deleter = allocator::free);
/** Assignment to rvalue does not compile. */
array& operator=(const array& other) && = delete;
@@ -96,7 +99,7 @@ class array {
}
/** The shape of the array as a vector of integers. */
const std::vector<int>& shape() const {
const Shape& shape() const {
return array_desc_->shape;
}
@@ -105,12 +108,12 @@ class array {
*
* This function supports negative indexing and provides
* bounds checking. */
int shape(int dim) const {
auto shape(int dim) const {
return shape().at(dim < 0 ? dim + ndim() : dim);
}
/** The strides of the array. */
const std::vector<size_t>& strides() const {
const Strides& strides() const {
return array_desc_->strides;
}
@@ -119,7 +122,7 @@ class array {
*
* This function supports negative indexing and provides
* bounds checking. */
size_t strides(int dim) const {
auto strides(int dim) const {
return strides().at(dim < 0 ? dim + ndim() : dim);
}
@@ -184,13 +187,13 @@ class array {
*/
array(
std::vector<int> shape,
Shape shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array> inputs);
static std::vector<array> make_arrays(
std::vector<std::vector<int>> shapes,
std::vector<Shape> shapes,
const std::vector<Dtype>& dtypes,
const std::shared_ptr<Primitive>& primitive,
const std::vector<array>& inputs);
@@ -207,8 +210,8 @@ class array {
struct Data {
allocator::Buffer buffer;
deleter_t d;
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
Deleter d;
Data(allocator::Buffer buffer, Deleter d = allocator::free)
: buffer(buffer), d(d) {}
// Not copyable
Data(const Data& d) = delete;
@@ -397,18 +400,18 @@ class array {
// Check if the array is a tracer array
bool is_tracer() const;
void set_data(allocator::Buffer buffer, deleter_t d = allocator::free);
void set_data(allocator::Buffer buffer, Deleter d = allocator::free);
void set_data(
allocator::Buffer buffer,
size_t data_size,
std::vector<size_t> strides,
Strides strides,
Flags flags,
deleter_t d = allocator::free);
Deleter d = allocator::free);
void copy_shared_buffer(
const array& other,
const std::vector<size_t>& strides,
const Strides& strides,
Flags flags,
size_t data_size,
size_t offset = 0);
@@ -417,7 +420,7 @@ class array {
void move_shared_buffer(
array other,
const std::vector<size_t>& strides,
const Strides& strides,
Flags flags,
size_t data_size,
size_t offset = 0);
@@ -436,8 +439,8 @@ class array {
void init(const It src);
struct ArrayDesc {
std::vector<int> shape;
std::vector<size_t> strides;
Shape shape;
Strides strides;
size_t size;
Dtype dtype;
std::shared_ptr<Primitive> primitive;
@@ -471,10 +474,10 @@ class array {
// The arrays position in the output list
uint32_t position{0};
explicit ArrayDesc(std::vector<int> shape, Dtype dtype);
explicit ArrayDesc(Shape shape, Dtype dtype);
explicit ArrayDesc(
std::vector<int> shape,
Shape shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array> inputs);
@@ -502,7 +505,7 @@ array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
template <typename It>
array::array(
It data,
std::vector<int> shape,
Shape shape,
Dtype dtype /* = TypeToDtype<typename std::iterator_traits<It>::value_type>() */) :
array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
init(data);
@@ -521,7 +524,7 @@ array::array(
template <typename T>
array::array(
std::initializer_list<T> data,
std::vector<int> shape,
Shape shape,
Dtype dtype /* = TypeToDtype<T>() */)
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
if (data.size() != size()) {

View File

@@ -13,8 +13,8 @@ template <typename InT, typename OpT>
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
auto axis_size = in.shape()[axis];
auto axis_stride = in.strides()[axis];
std::vector<size_t> strides = in.strides();
std::vector<int> shape = in.shape();
Strides strides = in.strides();
Shape shape = in.shape();
strides.erase(strides.begin() + axis);
shape.erase(shape.begin() + axis);
for (uint32_t i = 0; i < out.size(); ++i) {

View File

@@ -178,10 +178,10 @@ void binary_op_dims(
const T* b,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -212,10 +212,10 @@ void binary_op_dispatch_dims(
array& out,
Op op,
int dim,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides) {
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
@@ -258,10 +258,10 @@ void binary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
size_t stride = out_strides[dim - 4];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ContiguousIterator a_it(shape, a_strides, dim - 3);
ContiguousIterator b_it(shape, b_strides, dim - 3);
auto stride = out_strides[dim - 4];
for (int64_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
@@ -327,7 +327,7 @@ void binary_op(
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
@@ -337,7 +337,7 @@ void binary_op(
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
auto leftmost_s_dim = [](const auto& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}

View File

@@ -16,10 +16,10 @@ void binary_op_dims(
U* out_a,
U* out_b,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -96,9 +96,9 @@ void binary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 2>(
a_ptr + a_it.loc,

View File

@@ -39,7 +39,7 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
// rely on data_size anyway.
size_t data_size = out.size();
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
return move_or_copy(in, out, strides_, flags, data_size, offset_);
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
@@ -49,7 +49,7 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
out.set_data(nullptr);
return;
}
std::vector<size_t> strides(out.ndim(), 0);
Strides strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
@@ -58,12 +58,12 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
move_or_copy(in, out, strides, flags, in.data_size());
}
void Copy::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.copy_shared_buffer(inputs[0]);
move_or_copy(inputs[0], out);
}
void CustomTransforms::eval(
@@ -72,7 +72,7 @@ void CustomTransforms::eval(
assert(inputs.size() > outputs.size());
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
i++, j++) {
outputs[i].copy_shared_buffer(inputs[j]);
move_or_copy(inputs[j], outputs[i]);
}
}
@@ -81,7 +81,7 @@ void Depends::eval(
std::vector<array>& outputs) {
assert(inputs.size() > outputs.size());
for (int i = 0; i < outputs.size(); i++) {
outputs[i].copy_shared_buffer(inputs[i]);
move_or_copy(inputs[i], outputs[i]);
}
}
@@ -141,7 +141,7 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
}
}
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
std::pair<bool, Strides> Reshape::prepare_reshape(
const array& in,
const array& out) {
// Special case for empty arrays or row contiguous arrays
@@ -151,8 +151,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
// Special case for scalars
if (in.ndim() == 0) {
std::vector<size_t> out_strides(out.ndim(), 0);
return {false, out_strides};
return {false, Strides(out.ndim(), 0)};
}
// Firstly let's collapse all the contiguous dimensions of the input
@@ -160,7 +159,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
// If shapes fit exactly in the contiguous dims then no copy is necessary so
// let's check.
std::vector<size_t> out_strides;
Strides out_strides;
bool copy_necessary = false;
int j = 0;
for (int i = 0; i < out.ndim(); i++) {
@@ -183,7 +182,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
void Reshape::shared_buffer_reshape(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
array& out) {
auto flags = in.flags();
if (flags.row_contiguous) {
@@ -194,7 +193,7 @@ void Reshape::shared_buffer_reshape(
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
move_or_copy(in, out, out_strides, flags, in.data_size());
}
void Split::eval(
@@ -249,26 +248,14 @@ void Split::eval(
}
}
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
const array& in) {
int64_t data_offset = 0;
std::vector<int64_t> inp_strides(in.ndim(), 0);
for (int i = 0; i < in.ndim(); ++i) {
data_offset += start_indices_[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides_[i];
}
return std::make_tuple(data_offset, inp_strides);
}
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.copy_shared_buffer(inputs[0]);
move_or_copy(inputs[0], out);
}
void Transpose::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
std::vector<size_t> out_strides(out.ndim());
Strides out_strides(out.ndim());
auto& in = inputs[0];
for (int ax = 0; ax < axes_.size(); ++ax) {
out_strides[ax] = in.strides()[axes_[ax]];
@@ -285,8 +272,8 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
size_t f_stride = 1;
size_t b_stride = 1;
int64_t f_stride = 1;
int64_t b_stride = 1;
flags.col_contiguous = true;
flags.row_contiguous = true;
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
@@ -297,7 +284,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
b_stride *= out.shape(ri);
}
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
move_or_copy(in, out, out_strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@@ -165,7 +165,7 @@ void compiled_allocate_outputs(
bool move_buffers /* = false */) {
if (contiguous) {
int o = 0;
std::vector<size_t> strides;
Strides strides;
size_t data_size;
array::Flags flags;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {

View File

@@ -47,7 +47,7 @@ bool compile_available_for_device(const Device& device) {
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
return std::filesystem::temp_directory_path().append(name).string();
}
// Return a pointer to a compiled function
@@ -279,7 +279,7 @@ void Compiled::eval_cpu(
// Figure out which kernel we are using
auto& shape = outputs[0].shape();
bool contiguous = compiled_check_contiguity(inputs, shape);
auto contiguous = compiled_check_contiguity(inputs, shape);
// Handle all broadcasting and collect function input arguments
std::vector<void*> args;

View File

@@ -746,9 +746,9 @@ void explicit_gemm_conv_1D_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape = {N, oH, wH, C};
Shape strided_shape = {N, oH, wH, C};
std::vector<size_t> strided_strides = {
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[1],
@@ -865,9 +865,9 @@ void explicit_gemm_conv_2D_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape = {N, oH, oW, wH, wW, C};
Shape strided_shape = {N, oH, oW, wH, wW, C};
std::vector<size_t> strided_strides = {
Strides strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * wt_strides[0],
in_padded.strides()[2] * wt_strides[1],
@@ -974,7 +974,7 @@ void explicit_gemm_conv_ND_cpu(
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape(oDim.size() + wDim.size() + 2);
Shape strided_shape(oDim.size() + wDim.size() + 2);
strided_shape.front() = N;
for (size_t i = 0; i < oDim.size(); i++) {
strided_shape[i + 1] = oDim[i];
@@ -984,7 +984,7 @@ void explicit_gemm_conv_ND_cpu(
}
strided_shape.back() = C;
std::vector<size_t> strided_strides(in.shape().size() * 2 - 2);
Strides strided_strides(in.shape().size() * 2 - 2);
strided_strides[0] = in_padded.strides()[0];
for (size_t i = 0; i < wt_strides.size(); i++) {
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
@@ -1000,7 +1000,7 @@ void explicit_gemm_conv_ND_cpu(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
std::vector<int> strided_reshape = {N, C};
Shape strided_reshape = {N, C};
for (const auto& o : oDim) {
strided_reshape[0] *= o;
}

View File

@@ -26,13 +26,13 @@ void copy_vector(const array& src, array& dst) {
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
}
template <typename SrcT, typename DstT, typename StrideT, int D>
template <typename SrcT, typename DstT, int D>
inline void copy_dims(
const SrcT* src,
DstT* dst,
const std::vector<int>& shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& shape,
const Strides& i_strides,
const Strides& o_strides,
int axis) {
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
@@ -40,7 +40,7 @@ inline void copy_dims(
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
copy_dims<SrcT, DstT, StrideT, D - 1>(
copy_dims<SrcT, DstT, D - 1>(
src, dst, shape, i_strides, o_strides, axis + 1);
} else {
*dst = static_cast<DstT>(*src);
@@ -50,13 +50,13 @@ inline void copy_dims(
}
}
template <typename SrcT, typename DstT, typename StrideT>
template <typename SrcT, typename DstT>
void copy_general_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset) {
if (data_shape.empty()) {
@@ -65,30 +65,30 @@ void copy_general_general(
*dst_ptr = val;
return;
}
auto [shape, strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
auto [shape, strides] =
collapse_contiguous_dims(data_shape, {i_strides, o_strides});
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>() + o_offset;
int ndim = shape.size();
if (ndim == 1) {
copy_dims<SrcT, DstT, StrideT, 1>(
copy_dims<SrcT, DstT, 1>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 2) {
copy_dims<SrcT, DstT, StrideT, 2>(
copy_dims<SrcT, DstT, 2>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 3) {
copy_dims<SrcT, DstT, StrideT, 3>(
copy_dims<SrcT, DstT, 3>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
}
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
StrideT stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
for (StrideT elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, StrideT, 3>(
ContiguousIterator in(shape, strides[0], ndim - 3);
ContiguousIterator out(shape, strides[1], ndim - 3);
auto stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<int64_t>());
for (int64_t elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, 3>(
src_ptr + in.loc,
dst_ptr + out.loc,
shape,
@@ -102,37 +102,37 @@ void copy_general_general(
template <typename SrcT, typename DstT>
inline void copy_general_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
copy_general_general<SrcT, DstT>(
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
}
template <typename SrcT, typename DstT, typename StrideT>
template <typename SrcT, typename DstT>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>&,
const Shape& data_shape,
const Strides& i_strides,
const Strides&,
int64_t i_offset,
int64_t o_offset) {
copy_general_general<SrcT, DstT, StrideT>(
copy_general_general<SrcT, DstT>(
src,
dst,
data_shape,
i_strides,
make_contiguous_strides<StrideT>(data_shape),
make_contiguous_strides(data_shape),
i_offset,
o_offset);
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
copy_general_general<SrcT, DstT>(
src,
dst,
src.shape(),
src.strides(),
make_contiguous_strides<size_t>(src.shape()),
make_contiguous_strides(src.shape()),
0,
0);
}
@@ -282,13 +282,12 @@ void copy(const array& src, array& dst, CopyType ctype) {
copy_inplace(src, dst, ctype);
}
template <typename StrideT>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype) {
@@ -311,24 +310,4 @@ void copy_inplace(
}
}
template void copy_inplace<size_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<size_t>& i_strides,
const std::vector<size_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
template void copy_inplace<int64_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<int64_t>& i_strides,
const std::vector<int64_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
} // namespace mlx::core

View File

@@ -26,13 +26,12 @@ enum class CopyType {
void copy(const array& src, array& dst, CopyType ctype);
void copy_inplace(const array& src, array& dst, CopyType ctype);
template <typename stride_t>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);

View File

@@ -130,7 +130,7 @@ inline void matmul_common_general(
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};

View File

@@ -32,7 +32,7 @@ void gather(
const std::vector<array>& inds,
array& out,
const std::vector<int>& axes,
const std::vector<int>& slice_sizes) {
const Shape& slice_sizes) {
// If the array is row contiguous then we can do a contiguous copy given
// two conditions on the slice size:
// - Any number of leading ones in the slice sizes are allowed
@@ -80,11 +80,10 @@ void gather(
T* dst_ptr = out.data<T>();
size_t out_idx = 0;
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> src_it;
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
ContiguousIterator src_it;
if (!can_copy && src.ndim() > 0) {
src_it = std::move(
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
}
for (int idx = 0; idx < ind_size; idx++) {
size_t src_idx = 0;
@@ -119,7 +118,7 @@ void dispatch_gather(
const std::vector<array>& inds,
array& out,
const std::vector<int>& axes,
const std::vector<int>& size) {
const Shape& size) {
switch (out.dtype()) {
case bool_:
gather<bool, IdxT>(src, inds, out, axes, size);
@@ -223,16 +222,16 @@ void scatter(
auto inds_ndim = updates.ndim() - out.ndim();
size_t n_updates = nind ? inds[0].size() : 1;
std::vector<int> update_shape(
Shape update_shape(
updates.shape().begin() + inds_ndim, updates.shape().end());
size_t update_size = 1;
for (auto us : update_shape) {
update_size *= us;
}
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> update_it(updates);
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
ContiguousIterator update_it(updates);
ContiguousIterator out_it(update_shape, out.strides(), out.ndim());
for (int i = 0; i < n_updates; ++i) {
size_t out_offset = 0;

View File

@@ -2,6 +2,15 @@
#pragma once
// Required for Visual Studio.
// https://github.com/OpenMathLib/OpenBLAS/blob/develop/docs/install.md
#ifdef _MSC_VER
#include <complex>
#define LAPACK_COMPLEX_CUSTOM
#define lapack_complex_float std::complex<float>
#define lapack_complex_double std::complex<double>
#endif
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else

View File

@@ -19,10 +19,10 @@ inline void mask_matrix(
int block_size,
const int X,
const int Y,
const size_t X_data_str,
const size_t Y_data_str,
const size_t X_mask_str,
const size_t Y_mask_str,
const int64_t X_data_str,
const int64_t Y_data_str,
const int64_t X_mask_str,
const int64_t Y_mask_str,
const size_t mask_offset) {
int tX = (X + block_size - 1) / block_size;
int tY = (Y + block_size - 1) / block_size;
@@ -84,7 +84,7 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
@@ -117,13 +117,13 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
int Y,
size_t X_data_str,
size_t Y_data_str) {
size_t mask_offset = elem_to_loc(
auto mask_offset = elem_to_loc(
mask.shape(-1) * mask.shape(-2) * batch_idx,
mask.shape(),
mask.strides());
size_t X_mask_str = mask.strides()[mask.ndim() - 2];
size_t Y_mask_str = mask.strides()[mask.ndim() - 1];
auto X_mask_str = mask.strides()[mask.ndim() - 2];
auto Y_mask_str = mask.strides()[mask.ndim() - 1];
if (mask.dtype() == bool_) {
return mask_matrix(
@@ -230,7 +230,7 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
size_t stx = arr.shape(-1);
int64_t stx = arr.shape(-1);
return std::make_tuple(false, stx, arr_copy);
}
};
@@ -262,13 +262,13 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
auto& lhs_indices = inputs[2];
auto& rhs_indices = inputs[3];
std::vector<int> batch_shape = get_batch_dims(out.shape());
auto batch_shape = get_batch_dims(out.shape());
int batch_ndim = batch_shape.size();
std::vector<int> batch_shape_A = get_batch_dims(a.shape());
std::vector<size_t> batch_strides_A = get_batch_dims(a.strides());
std::vector<int> batch_shape_B = get_batch_dims(b.shape());
std::vector<size_t> batch_strides_B = get_batch_dims(b.strides());
auto batch_shape_A = get_batch_dims(a.shape());
auto batch_strides_A = get_batch_dims(a.strides());
auto batch_shape_B = get_batch_dims(b.shape());
auto batch_strides_B = get_batch_dims(b.strides());
const uint32_t* lhs_indices_ptr = lhs_indices.data<uint32_t>();
const uint32_t* rhs_indices_ptr = rhs_indices.data<uint32_t>();

View File

@@ -500,7 +500,12 @@ struct Equal {
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
return x == y || (std::isnan(x) && std::isnan(y));
if constexpr (std::is_integral_v<T>) {
// isnan always returns false for integers, and MSVC refuses to compile.
return x == y;
} else {
return x == y || (std::isnan(x) && std::isnan(y));
}
}
};

View File

@@ -159,6 +159,17 @@ void Conjugate::eval(const std::vector<array>& inputs, array& out) {
}
}
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous)) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General);
}
}
void Cos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
@@ -487,14 +498,15 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
// Calculate out strides, initial offset and if copy needs to be made
auto [copy_needed, data_offset, inp_strides] =
prepare_slice(in, start_indices_, strides_);
auto [data_offset, inp_strides] = prepare_slice(in, start_indices_, strides_);
auto copy_needed = std::any_of(
strides_.begin(), strides_.end(), [](auto i) { return i < 0; });
// Do copy if needed
if (copy_needed) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
copy_inplace<int64_t>(
Strides ostrides{out.strides().begin(), out.strides().end()};
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ out.shape(),
@@ -512,7 +524,7 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
}
}
size_t data_size = data_end - data_offset;
std::vector<size_t> ostrides{inp_strides.begin(), inp_strides.end()};
Strides ostrides{inp_strides.begin(), inp_strides.end()};
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
}
}
@@ -539,11 +551,11 @@ void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] = prepare_slice(out);
auto [data_offset, out_strides] = prepare_slice(in, start_indices_, strides_);
// Do copy
std::vector<int64_t> upd_strides{upd.strides().begin(), upd.strides().end()};
copy_inplace<int64_t>(
Strides upd_strides{upd.strides().begin(), upd.strides().end()};
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
@@ -606,7 +618,7 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < strides.size() - 1; ++i) {
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}

View File

@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r) {
// Copy the input to be column contiguous
flags.col_contiguous = num_matrices == 1;
flags.row_contiguous = false;
std::vector<size_t> strides = in.strides();
auto strides = in.strides();
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(

View File

@@ -2,13 +2,38 @@
#include <cassert>
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/ops.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
namespace {
template <typename T, int bits>
void extract_bits(const uint8_t* w_in, T* w_out) {
assert(bits == 3 || bits == 6);
if (bits == 3) {
w_out[0] = static_cast<T>(w_in[0] & 0x7);
w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
w_out[2] = static_cast<T>(((w_in[0] & 0xc0) >> 6) + ((w_in[1] & 0x1) << 2));
w_out[3] = static_cast<T>((w_in[1] & 0xe) >> 1);
w_out[4] = static_cast<T>((w_in[1] & 0x70) >> 4);
w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
} else if (bits == 6) {
w_out[0] = static_cast<T>(w_in[0] & 0x3f);
w_out[1] =
static_cast<T>(((w_in[0] >> 6) & 0x03) + ((w_in[1] & 0x0f) << 2));
w_out[2] =
static_cast<T>(((w_in[1] >> 4) & 0x0f) + ((w_in[2] & 0x03) << 4));
w_out[3] = static_cast<T>((w_in[2] >> 2) & 0x3f);
}
}
template <typename T, int bits, int group_size>
void _qmm(
T* result,
@@ -20,13 +45,12 @@ void _qmm(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int packs_in_group = group_size / pack_factor;
const int Ng = N / group_size;
const int Nw = N / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const uint8_t* w_local = (const uint8_t*)w;
const T* scales_local = scales;
const T* biases_local = biases;
@@ -40,13 +64,25 @@ void _qmm(
T scale = *scales_local++;
T bias = *biases_local++;
for (int ng = 0; ng < packs_in_group; ng++) {
uint32_t wi = *w_local++;
if (bits == 3 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
(*result_local++) +=
xi * (scale * static_cast<T>(wi & bitmask) + bias);
wi >>= bits;
for (int p = 0; p < pack_factor; p++) {
(*result_local++) += xi * (scale * wl[p] + bias);
}
w_local += bytes_per_pack;
} else {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
(*result_local++) +=
xi * (scale * static_cast<T>(wi & bitmask) + bias);
if (bits != 8) {
wi >>= bits;
}
}
}
}
}
@@ -67,13 +103,12 @@ void _qmm_t(
int N,
int K) {
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
constexpr int packs_in_group = group_size / pack_factor;
const int Kg = K / group_size;
const int Kw = K / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const uint8_t* w_local = (const uint8_t*)w;
const T* scales_local = scales;
const T* biases_local = biases;
@@ -85,12 +120,26 @@ void _qmm_t(
T bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw++) {
uint32_t wi = *w_local++;
if (bits == 3 || bits == 6) {
T wl[pack_factor];
extract_bits<T, bits>(w_local, wl);
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
sum += (*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
wi >>= bits;
for (int p = 0; p < pack_factor; p++) {
sum += x_local[p] * (scale * wl[p] + bias);
}
w_local += bytes_per_pack;
x_local += pack_factor;
} else {
uint8_t wi = *w_local++;
#pragma clang loop unroll(full)
for (int p = 0; p < pack_factor; p++) {
sum +=
(*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
if (bits != 8) {
wi >>= bits;
}
}
}
}
}
@@ -102,6 +151,55 @@ void _qmm_t(
}
}
template <typename T, int bits, int group_size>
void _qmm_dispatch_transpose(
T* result,
const T* x,
const uint32_t* w,
const T* scales,
const T* biases,
int M,
int N,
int K,
bool transposed_w) {
if (transposed_w) {
return _qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
}
}
template <typename T, int bits>
void _qmm_dispatch_group(
T* result,
const T* x,
const uint32_t* w,
const T* scales,
const T* biases,
int M,
int N,
int K,
int group_size,
bool transposed_w) {
switch (group_size) {
case 32:
_qmm_dispatch_transpose<T, bits, 32>(
result, x, w, scales, biases, M, N, K, transposed_w);
break;
case 64:
_qmm_dispatch_transpose<T, bits, 64>(
result, x, w, scales, biases, M, N, K, transposed_w);
break;
case 128:
_qmm_dispatch_transpose<T, bits, 128>(
result, x, w, scales, biases, M, N, K, transposed_w);
break;
default:
throw std::invalid_argument(
"Quantization group size must be 32, 64 or 128.");
}
}
template <typename T>
void _qmm_dispatch_typed(
T* result,
@@ -116,79 +214,29 @@ void _qmm_dispatch_typed(
int bits,
bool transposed_w) {
switch (bits) {
case 2: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 2, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 2, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 2, 64>(result, x, w, scales, biases, M, N, K);
}
case 128:
if (transposed_w) {
return _qmm_t<T, 2, 128>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 2, 128>(result, x, w, scales, biases, M, N, K);
}
}
}
case 4: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 4, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 4, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 4, 64>(result, x, w, scales, biases, M, N, K);
}
case 128:
if (transposed_w) {
return _qmm_t<T, 4, 128>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 4, 128>(result, x, w, scales, biases, M, N, K);
}
}
}
case 8: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 8, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 8, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 8, 64>(result, x, w, scales, biases, M, N, K);
}
case 128:
if (transposed_w) {
return _qmm_t<T, 8, 128>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 8, 128>(result, x, w, scales, biases, M, N, K);
}
}
}
case 2:
_qmm_dispatch_group<T, 2>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 3:
_qmm_dispatch_group<T, 3>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 4:
_qmm_dispatch_group<T, 4>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 6:
_qmm_dispatch_group<T, 6>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
case 8:
_qmm_dispatch_group<T, 8>(
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
break;
default:
throw std::invalid_argument("Quantization bits must be 2, 3, 4, 6 or 8.");
}
std::ostringstream msg;
msg << "Quantization type not supported. Provided bits=" << bits
<< " and group_size=" << group_size
<< ". The supported options are bits in "
<< "{2, 4, 8} and group_size in {64, 128}.";
throw std::invalid_argument(msg.str());
}
void _qmm_dispatch(
@@ -404,4 +452,114 @@ void GatherQMM::eval(const std::vector<array>& inputs, array& out) {
transpose_);
}
template <typename T, typename U>
void quantize(
const array& w_,
array& out_,
array& scales_,
array& biases_,
int bits,
int group_size) {
const T* w = w_.data<T>();
auto out = out_.data<U>();
T* scales = scales_.data<T>();
T* biases = biases_.data<T>();
T n_bins = (1 << bits) - 1;
T eps = 1e-7;
bool power_of_2_bits = is_power_of_2(bits);
int el_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
// For 3/6 bits we read 3 uint8s at a time instead of 1 uint32
int bytes_per_pack = power_of_2_bits ? 1 : 3;
int int_per_group = group_size * bytes_per_pack / el_per_int;
size_t n_groups = w_.size() / group_size;
for (size_t i = 0; i < n_groups; ++i) {
size_t w_idx = i * group_size;
T w_min = std::numeric_limits<float>::infinity();
T w_max = -w_min;
for (int j = 0; j < group_size; ++j) {
w_max = std::max(w_max, w[w_idx + j]);
w_min = std::min(w_min, w[w_idx + j]);
}
bool mask = std::abs(w_min) > std::abs(w_max);
T scale = std::max(T((w_max - w_min) / n_bins), eps);
scale = mask ? scale : -scale;
auto edge = mask ? w_min : w_max;
auto q0 = std::rint(edge / scale);
if (q0 == 0) {
scales[i] = scale;
biases[i] = 0;
} else {
scales[i] = edge / q0;
biases[i] = edge;
}
size_t out_idx = i * int_per_group;
for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
uint32_t out_el = 0;
for (int k = 0; k < el_per_int; ++k) {
T w_el = w[w_idx + j * el_per_int + k];
w_el = std::rint((w_el - biases[i]) / scales[i]);
w_el = std::min(std::max(w_el, T(0)), n_bins);
out_el |= static_cast<uint32_t>(w_el) << (k * bits);
}
if (power_of_2_bits) {
out[out_idx + j] = out_el;
} else {
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
}
}
}
}
void fast::AffineQuantize::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto ensure_row_contiguous = [](const array& arr) {
if (arr.flags().row_contiguous) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy(arr, arr_copy, CopyType::General);
return arr_copy;
}
};
auto w = ensure_row_contiguous(inputs[0]);
auto& out = outputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
if (w.dtype() == float16) {
if (is_power_of_2(bits_)) {
quantize<float16_t, uint32_t>(w, out, scales, biases, bits_, group_size_);
} else {
quantize<float16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
}
} else if (w.dtype() == bfloat16) {
if (is_power_of_2(bits_)) {
quantize<bfloat16_t, uint32_t>(
w, out, scales, biases, bits_, group_size_);
} else {
quantize<bfloat16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
}
} else if (w.dtype() == float32) {
if (is_power_of_2(bits_)) {
quantize<float, uint32_t>(w, out, scales, biases, bits_, group_size_);
} else {
quantize<float, uint8_t>(w, out, scales, biases, bits_, group_size_);
}
} else {
throw std::runtime_error(
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
}
}
} // namespace mlx::core

View File

@@ -120,65 +120,73 @@ struct MinReduce {
};
template <typename InT>
void reduce_dispatch_out(
void reduce_dispatch_and_or(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
switch (rtype) {
case Reduce::And: {
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
break;
if (rtype == Reduce::And) {
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
} else {
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
}
}
template <typename InT>
void reduce_dispatch_sum_prod(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Sum) {
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 0, op);
} else {
reduction_op<InT, InT>(in, out, axes, 0, op);
}
case Reduce::Or: {
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
break;
}
case Reduce::Sum: {
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
if (out.dtype() == int32) {
// special case since the input type can be bool
reduction_op<InT, int32_t>(in, out, axes, 0, op);
} else {
reduction_op<InT, InT>(in, out, axes, 0, op);
}
break;
}
case Reduce::Prod: {
auto op = [](auto y, auto x) { (*y) *= x; };
} else {
auto op = [](auto y, auto x) { (*y) *= x; };
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
reduction_op<InT, int32_t>(in, out, axes, 1, op);
} else {
reduction_op<InT, InT>(in, out, axes, 1, op);
break;
}
case Reduce::Max: {
auto init = Limits<InT>::min;
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
break;
}
case Reduce::Min: {
auto init = Limits<InT>::max;
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
break;
}
}
}
template <typename InT>
void reduce_dispatch_min_max(
const array& in,
array& out,
Reduce::ReduceType rtype,
const std::vector<int>& axes) {
if (rtype == Reduce::Max) {
auto init = Limits<InT>::min;
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
} else {
auto init = Limits<InT>::max;
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
}
}
} // namespace
void nd_loop(
std::function<void(int)> callback,
const std::vector<int>& shape,
const std::vector<size_t>& strides) {
const Shape& shape,
const Strides& strides) {
std::function<void(int, int)> loop_inner;
loop_inner = [&](int dim, int offset) {
if (dim < shape.size() - 1) {
int size = shape[dim];
size_t stride = strides[dim];
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
loop_inner(dim + 1, offset + i * stride);
}
} else {
int size = shape[dim];
size_t stride = strides[dim];
auto size = shape[dim];
auto stride = strides[dim];
for (int i = 0; i < size; i++) {
callback(offset + i * stride);
}
@@ -190,46 +198,114 @@ void nd_loop(
void Reduce::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
switch (in.dtype()) {
case bool_:
reduce_dispatch_out<bool>(in, out, reduce_type_, axes_);
switch (reduce_type_) {
case Reduce::And:
case Reduce::Or: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
case float16:
case bfloat16:
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
case int32:
case float32:
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
case int64:
case complex64:
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
break;
}
break;
case uint8:
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
}
case Reduce::Sum:
case Reduce::Prod: {
switch (in.dtype()) {
case bool_:
case uint8:
case int8:
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
break;
case int16:
case uint16:
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
break;
case int32:
case uint32:
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
case uint64:
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
case uint16:
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_out<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_out<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_out<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
reduce_dispatch_out<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_out<float16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_out<float>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_out<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_out<complex64_t>(in, out, reduce_type_, axes_);
}
case Reduce::Max:
case Reduce::Min: {
switch (in.dtype()) {
case bool_:
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
break;
case uint8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case uint16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case uint32:
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
break;
case uint64:
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
break;
case int8:
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
break;
case int16:
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
break;
case int32:
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
break;
case int64:
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
break;
case float16:
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
break;
case float32:
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
break;
case bfloat16:
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
break;
case complex64:
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
break;
}
break;
}
}
}

View File

@@ -38,13 +38,10 @@ enum ReductionOpType {
struct ReductionPlan {
ReductionOpType type;
std::vector<int> shape;
std::vector<size_t> strides;
Shape shape;
Strides strides;
ReductionPlan(
ReductionOpType type_,
std::vector<int> shape_,
std::vector<size_t> strides_)
ReductionPlan(ReductionOpType type_, Shape shape_, Strides strides_)
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
ReductionPlan(ReductionOpType type_) : type(type_) {}
};
@@ -55,10 +52,10 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
// Should this be in utils?
void nd_loop(
std::function<void(int)> callback,
const std::vector<int>& shape,
const std::vector<size_t>& strides);
const Shape& shape,
const Strides& strides);
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes);
@@ -113,9 +110,6 @@ void reduction_op(
return;
}
std::vector<int> shape;
std::vector<size_t> strides;
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
int reduction_size = plan.shape[0];
const T* x_ptr = x.data<T>();
@@ -135,7 +129,7 @@ void reduction_op(
U* out_ptr = out.data<U>();
// Unrolling the following loop (and implementing it in order for
// ContiguousReduce) should hold extra performance boost.
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
@@ -181,7 +175,7 @@ void reduction_op(
plan.strides.pop_back();
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
if (plan.shape.size() == 0) {
for (int i = 0; i < out.size(); i += reduction_stride) {
int offset = elem_to_loc(i, shape, strides);
@@ -211,7 +205,7 @@ void reduction_op(
if (plan.type == GeneralReduce) {
const T* x_ptr = x.data<T>();
U* out_ptr = out.data<U>();
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
for (int i = 0; i < out.size(); i++, out_ptr++) {
int offset = elem_to_loc(i, shape, strides);
U val = init;

View File

@@ -4,11 +4,11 @@
namespace mlx::core {
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
std::pair<Shape, Strides> shapes_without_reduction_axes(
const array& x,
const std::vector<int>& axes) {
std::vector<int> shape = x.shape();
std::vector<size_t> strides = x.strides();
auto shape = x.shape();
auto strides = x.strides();
for (int i = axes.size() - 1; i >= 0; i--) {
int a = axes[i];
@@ -29,8 +29,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Row contiguous input so the output is row contiguous
if (x.flags().row_contiguous) {
// Merge consecutive axes
std::vector<int> shape = {x.shape(axes[0])};
std::vector<size_t> strides = {x.strides()[axes[0]]};
Shape shape = {x.shape(axes[0])};
Strides strides = {x.strides()[axes[0]]};
for (int i = 1; i < axes.size(); i++) {
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
shape.back() *= x.shape(axes[i]);
@@ -69,7 +69,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Sort reduction axes by stride in order to merge them and figure out if we
// have a contiguous reduction.
std::vector<std::pair<int, size_t>> reductions;
std::vector<std::pair<int, int64_t>> reductions;
for (auto a : axes) {
if (x.shape(a) > 1) {
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
@@ -93,8 +93,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
}
}
std::vector<int> shape;
std::vector<size_t> strides;
Shape shape;
Strides strides;
for (auto r : reductions) {
shape.push_back(r.first);
strides.push_back(r.second);
@@ -109,15 +109,15 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
// Delegate to the general strided reduction op if the axes after
// strides.back() are contiguous.
if (strides.back() > 1) {
int size = 1;
int64_t size = 1;
bool have_expand = false;
for (int i = x.ndim() - 1; i >= 0; i--) {
if (axes.back() == i) {
continue;
}
size_t stride_i = x.strides()[i];
int shape_i = x.shape(i);
auto stride_i = x.strides()[i];
auto shape_i = x.shape(i);
if (stride_i == 0) {
if (shape_i == 1) {
continue;

View File

@@ -4,24 +4,22 @@
namespace mlx::core {
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
std::tuple<int64_t, Strides> prepare_slice(
const array& in,
const std::vector<int>& start_indices,
const std::vector<int>& strides) {
const Shape& start_indices,
const Shape& strides) {
int64_t data_offset = 0;
bool copy_needed = false;
std::vector<int64_t> inp_strides(in.ndim(), 0);
Strides inp_strides(in.ndim(), 0);
for (int i = 0; i < in.ndim(); ++i) {
data_offset += start_indices[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides[i];
copy_needed |= strides[i] < 0;
}
return std::make_tuple(copy_needed, data_offset, inp_strides);
return std::make_tuple(data_offset, inp_strides);
}
void shared_buffer_slice(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out) {
@@ -34,7 +32,7 @@ void shared_buffer_slice(
flags.col_contiguous = is_col_contiguous;
flags.contiguous = (no_bsx_size == data_size);
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
move_or_copy(in, out, out_strides, flags, data_size, data_offset);
}
} // namespace mlx::core

View File

@@ -6,14 +6,14 @@
namespace mlx::core {
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
std::tuple<int64_t, Strides> prepare_slice(
const array& in,
const std::vector<int>& start_indices,
const std::vector<int>& strides);
const Shape& start_indices,
const Shape& strides);
void shared_buffer_slice(
const array& in,
const std::vector<size_t>& out_strides,
const Strides& out_strides,
size_t data_offset,
size_t data_size,
array& out);

View File

@@ -25,7 +25,7 @@ struct StridedIterator {
// Constructors
StridedIterator() = default;
explicit StridedIterator(T* ptr, size_t stride, difference_type offset = 0)
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
: ptr_(ptr + offset * stride), stride_(stride) {}
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
@@ -99,7 +99,7 @@ struct StridedIterator {
}
private:
size_t stride_;
int64_t stride_;
T* ptr_;
};
@@ -120,11 +120,11 @@ void sort(const array& in, array& out, int axis) {
auto remaining_strides = out.strides();
remaining_strides.erase(remaining_strides.begin() + axis);
size_t axis_stride = out.strides()[axis];
int axis_size = out.shape(axis);
auto axis_stride = out.strides()[axis];
auto axis_size = out.shape(axis);
// Perform sorting in place
ContiguousIterator<size_t> src_it(
ContiguousIterator src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
@@ -158,14 +158,14 @@ void argsort(const array& in, array& out, int axis) {
auto out_remaining_strides = out.strides();
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
size_t in_stride = in.strides()[axis];
size_t out_stride = out.strides()[axis];
int axis_size = in.shape(axis);
auto in_stride = in.strides()[axis];
auto out_stride = out.strides()[axis];
auto axis_size = in.shape(axis);
// Perform sorting
ContiguousIterator<size_t> in_it(
ContiguousIterator in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
ContiguousIterator out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;
@@ -208,13 +208,13 @@ void partition(const array& in, array& out, int axis, int kth) {
auto remaining_strides = in.strides();
remaining_strides.erase(remaining_strides.begin() + axis);
size_t axis_stride = in.strides()[axis];
auto axis_stride = in.strides()[axis];
int axis_size = in.shape(axis);
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition in place
ContiguousIterator<size_t> src_it(
ContiguousIterator src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
@@ -249,16 +249,16 @@ void argpartition(const array& in, array& out, int axis, int kth) {
auto out_remaining_strides = out.strides();
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
size_t in_stride = in.strides()[axis];
size_t out_stride = out.strides()[axis];
int axis_size = in.shape(axis);
auto in_stride = in.strides()[axis];
auto out_stride = out.strides()[axis];
auto axis_size = in.shape(axis);
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition
ContiguousIterator<size_t> in_it(
ContiguousIterator in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
ContiguousIterator out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;

View File

@@ -78,11 +78,11 @@ void ternary_op_dims(
const T3* c,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& c_strides,
const std::vector<size_t>& out_strides,
const Shape& shape,
const Strides& a_strides,
const Strides& b_strides,
const Strides& c_strides,
const Strides& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
@@ -164,10 +164,10 @@ void ternary_op_dispatch_dims(
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
ContiguousIterator<size_t> c_it(shape, c_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
ContiguousIterator a_it(shape, a_strides, ndim - 2);
ContiguousIterator b_it(shape, b_strides, ndim - 2);
ContiguousIterator c_it(shape, c_strides, ndim - 2);
auto stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,

View File

@@ -4,15 +4,35 @@
namespace mlx::core {
template <typename StrideT>
std::tuple<std::vector<int>, std::vector<std::vector<StrideT>>>
collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<std::vector<StrideT>>& strides,
StrideT size_cap) {
void move_or_copy(const array& in, array& out) {
if (in.is_donatable()) {
out.move_shared_buffer(in);
} else {
out.copy_shared_buffer(in);
}
}
void move_or_copy(
const array& in,
array& out,
const Strides& strides,
array::Flags flags,
size_t data_size,
size_t offset /* = 0 */) {
if (in.is_donatable()) {
out.move_shared_buffer(in, strides, flags, data_size, offset);
} else {
out.copy_shared_buffer(in, strides, flags, data_size, offset);
}
}
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
int64_t size_cap) {
// Make a vector that has axes separated with -1. Collapse all axes between
// -1.
std::vector<int> to_collapse;
Shape to_collapse;
if (shape.size() > 0) {
if (shape[0] != 1) {
to_collapse.push_back(0);
@@ -21,7 +41,7 @@ collapse_contiguous_dims_impl(
for (int i = 1; i < shape.size(); i++) {
bool contiguous = true;
size *= shape[i];
for (const std::vector<StrideT>& st : strides) {
for (const auto& st : strides) {
if (st[i] * shape[i] != st[i - 1] || size > size_cap) {
contiguous = false;
size = shape[i];
@@ -38,8 +58,8 @@ collapse_contiguous_dims_impl(
to_collapse.push_back(-1);
}
std::vector<int> out_shape;
std::vector<std::vector<StrideT>> out_strides(strides.size());
Shape out_shape;
std::vector<Strides> out_strides(strides.size());
for (int i = 0;;) {
while (i < to_collapse.size() && to_collapse[i] == -1) {
++i;
@@ -54,7 +74,7 @@ collapse_contiguous_dims_impl(
}
out_shape.push_back(current_shape);
for (int j = 0; j < strides.size(); j++) {
const std::vector<StrideT>& st = strides[j];
const auto& st = strides[j];
out_strides[j].push_back(st[to_collapse[k - 1]]);
}
i = k + 1;
@@ -69,29 +89,12 @@ collapse_contiguous_dims_impl(
return std::make_tuple(out_shape, out_strides);
}
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap /* = std::numeric_limits<int32>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
template <typename StrideT>
std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
StrideT size_cap) {
std::vector<int> collapsed_shape;
std::vector<StrideT> collapsed_strides;
std::pair<Shape, Strides> collapse_contiguous_dims(
const Shape& shape,
const Strides& strides,
int64_t size_cap) {
Shape collapsed_shape;
Strides collapsed_strides;
if (shape.size() > 0) {
collapsed_shape.push_back(shape[0]);
@@ -101,7 +104,7 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
continue;
} else if (
strides[i] * shape[i] != collapsed_strides.back() ||
collapsed_shape.back() * static_cast<StrideT>(shape[i]) > size_cap) {
collapsed_shape.back() * static_cast<int64_t>(shape[i]) > size_cap) {
collapsed_shape.push_back(shape[i]);
collapsed_strides.push_back(strides[i]);
} else {
@@ -114,25 +117,10 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
return std::make_pair(collapsed_shape, collapsed_strides);
}
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<int64_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<size_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
size_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
return collapse_contiguous_dims_impl<size_t>(
a.shape(), a.strides(), size_cap);
int64_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
}
} // namespace mlx::core

View File

@@ -8,12 +8,9 @@
namespace mlx::core {
template <typename StrideT>
inline StrideT elem_to_loc(
int elem,
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
StrideT loc = 0;
inline int64_t
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
int64_t loc = 0;
for (int i = shape.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(elem, shape[i]);
loc += q_and_r.rem * strides[i];
@@ -22,16 +19,15 @@ inline StrideT elem_to_loc(
return loc;
}
inline size_t elem_to_loc(int elem, const array& a) {
inline int64_t elem_to_loc(int elem, const array& a) {
if (a.flags().row_contiguous) {
return elem;
}
return elem_to_loc(elem, a.shape(), a.strides());
}
template <typename StrideT>
std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
std::vector<StrideT> strides(shape.size(), 1);
inline Strides make_contiguous_strides(const Shape& shape) {
Strides strides(shape.size(), 1);
for (int i = shape.size() - 1; i > 0; i--) {
strides[i - 1] = strides[i] * shape[i];
}
@@ -44,22 +40,15 @@ std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
//
// When multiple arrays are passed they should all have the same shape. The
// collapsed axes are also the same so one shape is returned.
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const Shape& shape,
const std::vector<Strides>& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
inline std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
const std::vector<array>& xs,
size_t size_cap = std::numeric_limits<int32_t>::max()) {
std::vector<std::vector<size_t>> strides;
std::vector<Strides> strides;
for (auto& x : xs) {
strides.emplace_back(x.strides());
}
@@ -73,19 +62,14 @@ inline auto collapse_contiguous_dims(Arrays&&... xs) {
}
// The single array version of the above.
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
std::pair<Shape, Strides> collapse_contiguous_dims(
const Shape& shape,
const Strides& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
std::pair<Shape, Strides> collapse_contiguous_dims(
const array& a,
size_t size_cap = std::numeric_limits<int32_t>::max());
int64_t size_cap = std::numeric_limits<int32_t>::max());
template <typename StrideT>
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
@@ -102,7 +86,7 @@ struct ContiguousIterator {
loc += strides_[i];
}
void seek(StrideT n) {
void seek(int64_t n) {
loc = 0;
for (int i = shape_.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(n, shape_[i]);
@@ -128,32 +112,29 @@ struct ContiguousIterator {
}
explicit ContiguousIterator(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
const Shape& shape,
const Strides& strides,
int dims)
: shape_(shape.begin(), shape.begin() + dims),
strides_(strides.begin(), strides.begin() + dims) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = std::vector<int>(shape_.size(), 0);
pos_ = Shape(shape_.size(), 0);
}
}
StrideT loc{0};
int64_t loc{0};
private:
std::vector<int> shape_;
std::vector<StrideT> strides_;
std::vector<int> pos_;
Shape shape_;
Strides strides_;
Shape pos_;
};
template <typename StrideT>
inline auto check_contiguity(
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
size_t no_broadcast_data_size = 1;
size_t f_stride = 1;
size_t b_stride = 1;
int64_t f_stride = 1;
int64_t b_stride = 1;
bool is_row_contiguous = true;
bool is_col_contiguous = true;
@@ -178,4 +159,13 @@ inline bool is_donatable(const array& in, const array& out) {
in.buffer_size() <= out.nbytes() + donation_extra;
}
void move_or_copy(const array& in, array& out);
void move_or_copy(
const array& in,
array& out,
const Strides& strides,
array::Flags flags,
size_t data_size,
size_t offset = 0);
} // namespace mlx::core

View File

@@ -14,14 +14,21 @@ function(make_jit_source SRC_FILE)
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/jit ${CMAKE_C_COMPILER} ${PROJECT_SOURCE_DIR}
${SRC_FILE} "-DMLX_METAL_VERSION=${MLX_METAL_VERSION}"
${SRC_FILE}
DEPENDS make_compiled_preamble.sh kernels/${SRC_FILE}.h ${ARGN})
add_custom_target(${SRC_NAME} DEPENDS jit/${SRC_NAME}.cpp)
add_dependencies(mlx ${SRC_NAME})
target_sources(mlx PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/jit/${SRC_NAME}.cpp)
endfunction(make_jit_source)
make_jit_source(utils kernels/bf16.h kernels/complex.h kernels/defines.h)
make_jit_source(
utils
kernels/jit/bf16.h
kernels/metal_3_0/bf16.h
kernels/metal_3_1/bf16.h
kernels/bf16_math.h
kernels/complex.h
kernels/defines.h)
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
make_jit_source(binary_ops)
make_jit_source(ternary_ops)

View File

@@ -30,7 +30,7 @@ BufferCache::BufferCache(MTL::Device* device)
: device_(device), head_(nullptr), tail_(nullptr), pool_size_(0) {}
BufferCache::~BufferCache() {
auto thread_pool = metal::new_scoped_memory_pool();
auto pool = metal::new_scoped_memory_pool();
clear();
}
@@ -155,11 +155,13 @@ MetalAllocator::MetalAllocator()
}
size_t MetalAllocator::set_cache_limit(size_t limit) {
std::unique_lock lk(mutex_);
std::swap(limit, max_pool_size_);
return limit;
};
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
std::unique_lock lk(mutex_);
std::swap(limit, block_limit_);
relaxed_ = relaxed;
gc_limit_ = std::min(
@@ -169,6 +171,7 @@ size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
};
size_t MetalAllocator::set_wired_limit(size_t limit) {
std::unique_lock lk(mutex_);
std::swap(limit, wired_limit_);
residency_set_.resize(wired_limit_);
return limit;
@@ -205,7 +208,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
return Buffer{nullptr};
}
auto thread_pool = metal::new_scoped_memory_pool();
auto pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache
@@ -226,7 +229,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Maintain the cache below the requested limit
if (get_cache_memory() >= max_pool_size_) {
auto thread_pool = metal::new_scoped_memory_pool();
auto pool = metal::new_scoped_memory_pool();
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
@@ -237,11 +240,15 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
void MetalAllocator::clear_cache() {
std::unique_lock lk(mutex_);
auto pool = metal::new_scoped_memory_pool();
buffer_cache_.clear();
}
void MetalAllocator::free(Buffer buffer) {
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
if (buf == nullptr) {
return;
}
std::unique_lock lk(mutex_);
residency_set_.erase(buf);
active_memory_ -= buf->length();
@@ -249,7 +256,7 @@ void MetalAllocator::free(Buffer buffer) {
buffer_cache_.recycle_to_cache(buf);
} else {
lk.unlock();
auto thread_pool = metal::new_scoped_memory_pool();
auto pool = metal::new_scoped_memory_pool();
buf->release();
}
}

View File

@@ -22,37 +22,37 @@ std::string get_kernel_name(
BinaryOpType bopt,
const std::string& op,
const array& a,
bool use_2d,
bool large,
int ndim,
int work_per_thread) {
std::ostringstream kname;
std::string kname;
switch (bopt) {
case BinaryOpType::ScalarScalar:
kname << "ss";
kname = "ss";
break;
case BinaryOpType::ScalarVector:
kname << (use_2d ? "sv2" : "sv");
kname = (large ? "sv2" : "sv");
break;
case BinaryOpType::VectorScalar:
kname << (use_2d ? "vs2" : "vs");
kname = (large ? "vs2" : "vs");
break;
case BinaryOpType::VectorVector:
kname << (use_2d ? "vv2" : "vv");
kname = (large ? "vv2" : "vv");
break;
case BinaryOpType::General:
kname << "g";
kname = "g";
if (ndim <= 3) {
kname << ndim;
kname += std::to_string(ndim);
} else {
kname << "n";
if (work_per_thread > 1) {
kname << work_per_thread;
}
concatenate(kname, "n", std::to_string(work_per_thread));
}
if (large) {
kname += "large";
}
break;
}
kname << "_" << op << type_to_name(a);
return kname.str();
concatenate(kname, "_", op, type_to_name(a));
return kname;
}
void binary_op_gpu_inplace(
@@ -75,24 +75,30 @@ void binary_op_gpu_inplace(
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
return std::make_tuple(shape, strides[0], strides[1], strides[2]);
} else {
std::vector<size_t> e;
return std::make_tuple(std::vector<int>{}, e, e, e);
decltype(a.strides()) e{};
return std::make_tuple(decltype(a.shape()){}, e, e, e);
}
};
auto [shape, strides_a, strides_b, strides_out] = maybe_collapse();
bool use_2d = out.data_size() > UINT32_MAX;
bool large = out.data_size() > UINT32_MAX;
auto ndim = shape.size();
int work_per_thread = (bopt == BinaryOpType::General) ? 4 : 1;
int work_per_thread;
if (bopt == BinaryOpType::General) {
large |= (a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX);
work_per_thread = large ? 4 : 2;
} else {
work_per_thread = 1;
}
std::string kernel_name =
get_kernel_name(bopt, op, a, use_2d, shape.size(), work_per_thread);
get_kernel_name(bopt, op, a, large, shape.size(), work_per_thread);
auto& d = metal::device(s.device);
auto kernel = outputs.size() == 2
? get_binary_two_kernel(d, kernel_name, a.dtype(), out.dtype(), op)
: get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// - If a is donated it goes to the first output
// - If b is donated it goes to the first output if a was not donated
@@ -117,19 +123,15 @@ void binary_op_gpu_inplace(
size_t rest = out.size() / (dim0 * dim1);
if (ndim > 3) {
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), arg_idx++);
compute_encoder->setBytes(
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(&ndim, sizeof(int), arg_idx++);
compute_encoder.set_vector_bytes(shape, arg_idx++);
compute_encoder.set_vector_bytes(strides_a, arg_idx++);
compute_encoder.set_vector_bytes(strides_b, arg_idx++);
compute_encoder.set_bytes<int>(ndim, arg_idx++);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
} else {
// The shape is implicit in the grid for <= 3D
compute_encoder->setBytes(
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder.set_vector_bytes(strides_a, arg_idx++);
compute_encoder.set_vector_bytes(strides_b, arg_idx++);
}
if (thread_group_size != 1024) {
@@ -137,7 +139,7 @@ void binary_op_gpu_inplace(
}
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = out.data_size();
@@ -145,9 +147,9 @@ void binary_op_gpu_inplace(
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}

View File

@@ -1,5 +1,6 @@
// Copyright © 2023-2024 Apple Inc.
#include <fmt/format.h>
#include <iostream> //TODO
#include <sstream>
#include "mlx/backend/common/compiled.h"
@@ -11,12 +12,12 @@
#include "mlx/primitives.h"
#include "mlx/utils.h"
using namespace fmt::literals;
namespace mlx::core {
constexpr int WORK_PER_THREAD = 4;
inline void build_kernel(
std::ostream& os,
std::string& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
@@ -41,8 +42,8 @@ inline void build_kernel(
int cnt = 0;
// Start the kernel
os << "[[host_name(\"" << kernel_name << "\")]]\n"
<< "[[kernel]] void " << kernel_name << "(\n";
os += fmt::format(
"[[host_name(\"{0}\")]]\n[[kernel]] void {0}(\n", kernel_name);
// Add the input arguments
for (auto& x : inputs) {
@@ -54,51 +55,61 @@ inline void build_kernel(
}
// Scalars and contiguous need no strides
if (is_scalar(x) || contiguous) {
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
} else {
if (!is_scalar(x) && !contiguous) {
add_indices = true;
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
}
os += fmt::format(
" device const {0}* {1} [[buffer({2})]],\n",
get_type_string(x.dtype()),
xname,
cnt++);
}
if (add_indices) {
os << " constant const size_t* in_strides [[buffer(" << cnt++
<< ")]],\n";
os += fmt::format(
" constant const int64_t* in_strides [[buffer({0})]],\n", cnt++);
}
// Add the output arguments
for (auto& x : outputs) {
os << " device " << get_type_string(x.dtype()) << "* "
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]],\n";
os += fmt::format(
" device {0}* {1} [[buffer({2})]],\n",
get_type_string(x.dtype()),
namer.get_name(x),
cnt++);
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " constant const size_t* output_strides [[buffer(" << cnt++
<< ")]],\n"
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],\n";
os += fmt::format(
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
os += fmt::format(
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
}
if (dynamic_dims) {
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],\n";
os += fmt::format(" constant const int& ndim [[buffer({0})]],\n", cnt++);
}
// The thread index in the whole grid
os << " uint3 pos [[thread_position_in_grid]],\n"
<< " uint3 grid [[threads_per_grid]]) {\n";
os += " uint3 pos [[thread_position_in_grid]],\n";
os += " uint3 grid [[threads_per_grid]]) {\n";
if (use_big_index) {
std::string idx_type = use_big_index ? "int64_t" : "uint";
if (contiguous && use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os << " size_t index = pos.x + grid.x * size_t(pos.y);\n";
os += " int64_t index = pos.x + grid.x * int64_t(pos.y);\n";
} else if (work_per_thread > 1) {
os << " constexpr int N_ = " << std::to_string(work_per_thread) << ";\n"
<< " int xshape = output_shape["
<< (dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1)) << "];\n"
<< " size_t index = N_ * pos.x + xshape * (pos.y + size_t(grid.y) * pos.z);\n";
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
os += fmt::format(
" int xshape = output_shape[{0}];\n",
dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1));
os += fmt::format(
" {0} index = N_ * pos.x + xshape * (pos.y + {0}(grid.y) * pos.z);\n",
idx_type);
} else {
os << " size_t index = pos.x + grid.x * (pos.y + size_t(grid.y) * pos.z);\n";
os += fmt::format(
" {0} index = pos.x + grid.x * (pos.y + {0}(grid.y) * pos.z);\n",
idx_type);
}
// Read constant / contiguous inputs in tmps
@@ -109,16 +120,19 @@ inline void build_kernel(
if (is_constant(x)) {
auto type_str = get_type_string(x.dtype());
os << " auto tmp_" << xname << " = static_cast<"
<< get_type_string(x.dtype()) << ">(";
print_constant(os, x);
os << ");\n";
std::ostringstream ss;
print_constant(ss, x);
os += fmt::format(
" auto tmp_{0} = static_cast<{1}>({2});\n",
xname,
get_type_string(x.dtype()),
ss.str());
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];\n";
os += fmt::format(
" {0} tmp_{1} = {1}[0];\n", get_type_string(x.dtype()), xname);
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index];\n";
os += fmt::format(
" {0} tmp_{1} = {1}[index];\n", get_type_string(x.dtype()), xname);
} else {
nc_inputs.push_back(x);
}
@@ -127,83 +141,96 @@ inline void build_kernel(
// Initialize the indices for non-contiguous inputs
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
os += fmt::format(" {0} index_{1} = ", idx_type, xname);
if (ndim == 1) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_1(pos.x, "
<< "in_strides[" << offset << "]);\n";
os +=
fmt::format("elem_to_loc_1<uint>(pos.x, in_strides[{0}]);\n", offset);
} else if (ndim == 2) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_2({pos.x, pos.y}, "
<< "in_strides + " << offset << ");\n";
os += fmt::format(
"elem_to_loc_2<{0}>({{pos.x, pos.y}}, in_strides + {1});\n",
idx_type,
offset);
} else if (ndim == 3) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_3(pos, "
<< "in_strides + " << offset << ");\n";
os += fmt::format(
"elem_to_loc_3<{0}>(pos, in_strides + {1});\n", idx_type, offset);
} else if (!dynamic_dims) {
int offset = i * ndim;
os << " size_t index_" << xname << " = N_ * pos.x * in_strides["
<< offset + ndim - 1 << "]"
<< " + pos.y * in_strides[" << offset + ndim - 2 << "];\n";
int offset = (i + 1) * ndim;
os += fmt::format(
"N_ * pos.x * {0}(in_strides[{1}]) + pos.y * {0}(in_strides[{2}]);\n",
idx_type,
offset - 1,
offset - 2);
} else {
os << " size_t index_" << xname << " = N_ * pos.x * in_strides[ndim * "
<< i << " + ndim - 1]"
<< " + pos.y * in_strides[ndim * " << i << " + ndim - 2];\n";
os += fmt::format(
"N_ * pos.x * {0}(in_strides[ndim * {1} + ndim - 1]) + pos.y * {0}(in_strides[ndim * {1} + ndim - 2]);\n",
idx_type,
i);
}
}
if (!nc_inputs.empty() && (ndim > 3 || dynamic_dims)) {
os << " uint zpos = pos.z;\n";
os += " uint zpos = pos.z;\n";
if (dynamic_dims) {
os << " for (int d = ndim - 3; d >= 0; --d) {\n";
os += " for (int d = ndim - 3; d >= 0; --d) {\n";
} else {
os << " for (int d = " << ndim - 3 << "; d >= 0; --d) {\n";
os += fmt::format(" for (int d = {0}; d >= 0; --d) {{\n", ndim - 3);
}
os << " uint l = zpos % output_shape[d];\n";
os += " uint l = zpos % output_shape[d];\n";
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
os << " index_" << xname << " += ";
os += fmt::format(" index_{0} += ", xname);
if (dynamic_dims) {
os << "l * in_strides[" << i << " * ndim + d];\n";
os +=
fmt::format("l * {0}(in_strides[{1} * ndim + d]);\n", idx_type, i);
} else {
os << "l * in_strides[" << i * ndim << " + d];\n";
os +=
fmt::format("l * {0}(in_strides[{1} + d]);\n", idx_type, i * ndim);
}
}
os << " zpos /= output_shape[d];\n }\n";
os += " zpos /= output_shape[d];\n }\n";
}
// Open per-thread loop
if (work_per_thread > 1) {
os << " for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
os +=
" for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
}
// Read non-contiguous inputs into tmps
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index_" << xname << "];\n";
os += fmt::format(
" {0} tmp_{1} = {1}[index_{1}];\n", get_type_string(x.dtype()), xname);
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
os += fmt::format(
" {0} tmp_{1} = ", get_type_string(x.dtype()), namer.get_name(x));
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");\n";
os += fmt::format(
"static_cast<{0}>(tmp_{1});\n",
get_type_string(x.dtype()),
namer.get_name(x.inputs()[0]));
} else {
x.primitive().print(os);
os << "()(";
std::ostringstream ss;
x.primitive().print(ss);
os += ss.str();
os += "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i]));
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");\n";
os += fmt::format("tmp_{0});\n", namer.get_name(x.inputs().back()));
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
<< ";\n";
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
}
// Increment indices and close per thread loop
if (work_per_thread > 1) {
@@ -211,18 +238,18 @@ inline void build_kernel(
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
if (!dynamic_dims) {
os << " index_" << xname << " += "
<< "in_strides[" << i * ndim + ndim - 1 << "];\n";
os += fmt::format(
" index_{0} += in_strides[{1}];\n", xname, i * ndim + ndim - 1);
} else {
os << " index_" << xname << " += "
<< "in_strides[" << i << " * ndim + ndim - 1];\n";
os += fmt::format(
" index_{0} += in_strides[{1} * ndim + ndim - 1];\n", xname, i);
}
}
os << " index++;\n }\n";
os += " index++;\n }\n";
}
// Finish the kernel
os << "}\n";
os += "}\n";
if (cnt > 31) {
std::ostringstream msg;
@@ -246,9 +273,9 @@ void Compiled::eval_gpu(
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_, [&]() {
std::ostringstream kernel;
kernel << metal::utils() << metal::unary_ops() << metal::binary_ops()
<< metal::ternary_ops();
std::string kernel = metal::utils();
concatenate(
kernel, metal::unary_ops(), metal::binary_ops(), metal::ternary_ops());
build_kernel(
kernel,
kernel_lib_ + "_contiguous",
@@ -261,7 +288,7 @@ void Compiled::eval_gpu(
/* dynamic_dims = */ false);
build_kernel(
kernel,
kernel_lib_ + "_contiguous_big",
kernel_lib_ + "_contiguous_large",
inputs_,
outputs_,
tape_,
@@ -282,7 +309,21 @@ void Compiled::eval_gpu(
/* ndim = */ i,
/* dynamic_dims = */ false,
/* use_big_index = */ false,
/* work_per_thread = */ i > 3 ? WORK_PER_THREAD : 1);
/* work_per_thread = */ i > 3 ? 2 : 1);
if (i > 1) {
build_kernel(
kernel,
kernel_lib_ + "_strided_" + std::to_string(i) + "_large",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ i,
/* dynamic_dims = */ false,
/* use_big_index = */ true,
/* work_per_thread = */ i > 3 ? 4 : 1);
}
}
build_kernel(
kernel,
@@ -295,20 +336,32 @@ void Compiled::eval_gpu(
/* ndim = */ 0,
/* dynamic_dims = */ true,
/* use_big_index = */ false,
/* work_per_thread = */ WORK_PER_THREAD);
return kernel.str();
/* work_per_thread = */ 2);
build_kernel(
kernel,
kernel_lib_ + "_strided_dynamic_large",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ 0,
/* dynamic_dims = */ true,
/* use_big_index = */ true,
/* work_per_thread = */ 4);
return kernel;
});
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
bool contiguous = compiled_check_contiguity(inputs, output_shape);
auto contiguous = compiled_check_contiguity(inputs, output_shape);
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
std::vector<std::vector<size_t>> initial_strides;
std::vector<Strides> initial_strides;
initial_strides.push_back(outputs[0].strides());
std::vector<int> shape;
std::vector<std::vector<size_t>> strides;
Shape shape;
std::vector<Strides> strides;
if (!contiguous) {
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
@@ -323,7 +376,7 @@ void Compiled::eval_gpu(
}
// Broadcast the inputs to the output shape.
std::vector<size_t> xstrides;
Strides xstrides;
int j = 0;
for (; j < output_shape.size() - x.ndim(); j++) {
if (output_shape[j] == 1) {
@@ -349,13 +402,19 @@ void Compiled::eval_gpu(
collapse_contiguous_dims(output_shape, initial_strides, INT32_MAX);
}
bool use_2d = false;
bool large;
if (contiguous) {
size_t max_size = 0;
for (auto& in : inputs) {
max_size = std::max(max_size, in.data_size());
}
use_2d = (max_size > UINT32_MAX);
large = (max_size > UINT32_MAX);
} else {
size_t max_size = 0;
for (auto& o : outputs) {
max_size = std::max(max_size, o.size());
}
large = (max_size > UINT32_MAX);
}
// Get the kernel from the lib
@@ -368,17 +427,18 @@ void Compiled::eval_gpu(
} else {
kernel_name += std::to_string(shape.size());
}
} else if (use_2d) {
kernel_name += "_big";
}
if (large) {
kernel_name += "_large";
}
auto kernel = d.get_kernel(kernel_name, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Put the inputs in
int cnt = 0;
int stride_idx = 1; // idx 0 is the output strides
std::vector<size_t> in_strides;
Strides in_strides;
for (int i = 0; i < inputs.size(); i++) {
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
@@ -394,8 +454,7 @@ void Compiled::eval_gpu(
}
}
if (!in_strides.empty()) {
compute_encoder->setBytes(
in_strides.data(), in_strides.size() * sizeof(size_t), cnt++);
compute_encoder.set_vector_bytes(in_strides, cnt++);
}
compiled_allocate_outputs(
@@ -408,14 +467,13 @@ void Compiled::eval_gpu(
// Put the output shape and strides in
if (!contiguous) {
compute_encoder->setBytes(
strides[0].data(), strides[0].size() * sizeof(size_t), cnt++);
compute_encoder->setBytes(shape.data(), shape.size() * sizeof(int), cnt++);
compute_encoder.set_vector_bytes(strides[0], cnt++);
compute_encoder.set_vector_bytes(shape, cnt++);
}
// Put the number of dims in if it is dynamic
if (dynamic) {
compute_encoder->setBytes(&ndim, sizeof(int), cnt++);
compute_encoder.set_bytes(ndim, cnt++);
}
// Launch the kernel
@@ -424,15 +482,15 @@ void Compiled::eval_gpu(
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
MTL::Size grid_dims = use_2d
MTL::Size grid_dims = large
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = outputs[0].size() / (dim0 * dim1);
int work_per_thread = ndim > 3 ? WORK_PER_THREAD : 1;
int work_per_thread = ndim > 3 ? (large ? 4 : 2) : 1;
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
int pow2;
@@ -445,7 +503,7 @@ void Compiled::eval_gpu(
}
auto group_dims = get_block_dims(dim0, dim1, rest, pow2);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}

View File

@@ -44,27 +44,28 @@ void explicit_gemm_conv_ND_gpu(
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(in_unfolded, 1);
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
compute_encoder.set_bytes(conv_params, 2);
// Launch unfolding kernel
int tgp_x = std::min(conv_params.C, 64);
size_t tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
int tgp_y = 256 / tgp_x;
size_t tgp_y = 256 / tgp_x;
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
MTL::Size group_dims = MTL::Size(
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
// Reshape weight
std::vector<int> wt_reshape{implicit_K, implicit_N};
std::vector<size_t> wt_restride{1, static_cast<size_t>(implicit_K)};
Shape wt_reshape{implicit_K, implicit_N};
Strides wt_restride{1, implicit_K};
array wt_reshaped(wt_reshape, wt.dtype(), nullptr, {});
auto wt_flags = wt.flags();
wt_flags.row_contiguous = false;
@@ -122,33 +123,31 @@ void explicit_gemm_conv_group_ND_gpu(
<< N;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(in_unfolded, 1);
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
compute_encoder.set_bytes(conv_params, 2);
// Launch unfolding kernel
int tgp_x = std::min(conv_params.C, 64);
size_t tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
int tgp_y = 256 / tgp_x;
size_t tgp_y = 256 / tgp_x;
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
MTL::Size group_dims = MTL::Size(
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
// Transpose kernel weights so that we can slice them by contiguous chunks
// of channel groups.
array wt_view(
{wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
wt_view.copy_shared_buffer(
wt,
{wt.strides(0), 1, static_cast<size_t>(C_per_group)},
wt.flags(),
wt.size());
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
// Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
@@ -237,7 +236,7 @@ void slow_conv_2D_gpu(
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
size_t n_pixels = conv_params.oS[0] * conv_params.oS[1];
@@ -252,8 +251,8 @@ void slow_conv_2D_gpu(
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void implicit_gemm_conv_2D_gpu(
@@ -352,7 +351,7 @@ void implicit_gemm_conv_2D_gpu(
wn,
n_channel_specialization,
small_filter);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
@@ -368,11 +367,11 @@ void implicit_gemm_conv_2D_gpu(
compute_encoder.set_output_array(out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.set_bytes(gemm_params, 4);
// Launch kernel
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void implicit_gemm_conv_2D_general_gpu(
@@ -506,7 +505,7 @@ void implicit_gemm_conv_2D_general_gpu(
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel =
get_steel_conv_general_kernel(d, kname.str(), out, bm, bn, bk, wm, wn);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
@@ -523,17 +522,15 @@ void implicit_gemm_conv_2D_general_gpu(
compute_encoder.set_output_array(out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
compute_encoder->setBytes(&jump_params, sizeof(Conv2DGeneralJumpParams), 5);
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.set_bytes(gemm_params, 4);
compute_encoder.set_bytes(jump_params, 5);
compute_encoder->setBytes(
base_h.data(), sizeof(Conv2DGeneralBaseInfo) * base_h.size(), 6);
compute_encoder->setBytes(
base_w.data(), sizeof(Conv2DGeneralBaseInfo) * base_w.size(), 7);
compute_encoder.set_vector_bytes(base_h, 6);
compute_encoder.set_vector_bytes(base_w, 7);
// Launch kernel
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_gpu(
@@ -622,18 +619,18 @@ void winograd_conv_2D_gpu(
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(wt, 0);
compute_encoder.set_output_array(filt_wg, 1);
compute_encoder->setBytes(&C_c, sizeof(int), 2);
compute_encoder->setBytes(&O_c, sizeof(int), 3);
compute_encoder.set_bytes(C_c, 2);
compute_encoder.set_bytes(O_c, 3);
MTL::Size group_dims = MTL::Size(32, bo, 1);
MTL::Size grid_dims = MTL::Size(O_c / bo, 1, 1);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
// Do input transform
@@ -650,18 +647,17 @@ void winograd_conv_2D_gpu(
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in_padded, 0);
compute_encoder.set_output_array(inp_wg, 1);
compute_encoder->setBytes(
&conv_params_updated, sizeof(MLXConvParams<2>), 2);
compute_encoder.set_bytes(conv_params_updated, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
// Do batched gemm
@@ -698,18 +694,17 @@ void winograd_conv_2D_gpu(
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(out_wg, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder->setBytes(
&conv_params_updated, sizeof(MLXConvParams<2>), 2);
compute_encoder.set_bytes(conv_params_updated, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
}

View File

@@ -43,13 +43,12 @@ void copy_gpu(const array& in, array& out, CopyType ctype) {
copy_gpu(in, out, ctype, out.primitive().stream());
}
template <typename stride_t>
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int>& data_shape,
const std::vector<stride_t>& strides_in_pre,
const std::vector<stride_t>& strides_out_pre,
const Shape& data_shape,
const Strides& strides_in_pre,
const Strides& strides_out_pre,
int64_t inp_offset,
int64_t out_offset,
CopyType ctype,
@@ -68,50 +67,52 @@ void copy_gpu_inplace(
/* size_cap = */ INT32_MAX);
return std::make_tuple(shape, strides[0], strides[1]);
} else {
std::vector<stride_t> e;
return std::make_tuple(std::vector<int>{}, e, e);
Strides e{};
return std::make_tuple(Shape{}, e, e);
}
};
auto [shape, strides_in_, strides_out_] = maybe_collapse();
int ndim = shape.size();
bool use_2d = out.data_size() > UINT32_MAX;
bool large;
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
// Allow for negative strides
large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
} else {
large = out.data_size() > UINT32_MAX;
}
auto& d = metal::device(s.device);
int work_per_thread = 1;
std::string kernel_name;
{
std::ostringstream kname;
switch (ctype) {
case CopyType::Scalar:
kname << (use_2d ? "s2" : "s");
break;
case CopyType::Vector:
kname << (use_2d ? "v2" : "v");
break;
case CopyType::General:
kname << "g";
break;
case CopyType::GeneralGeneral:
kname << "gg";
break;
}
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
if (shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
kname << shape.size();
} else {
work_per_thread = 4;
kname << "n4";
}
}
kname << "_copy";
kname << type_to_name(in) << type_to_name(out);
kernel_name = kname.str();
switch (ctype) {
case CopyType::Scalar:
kernel_name = (large ? "s2" : "s");
break;
case CopyType::Vector:
kernel_name = (large ? "v2" : "v");
break;
case CopyType::General:
kernel_name = "g";
break;
case CopyType::GeneralGeneral:
kernel_name = "gg";
break;
}
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
if (shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
kernel_name += std::to_string(shape.size());
} else {
work_per_thread = large ? 4 : 2;
concatenate(kernel_name, "n", std::to_string(work_per_thread));
}
if (large) {
kernel_name += "large";
}
}
concatenate(kernel_name, "_copy", type_to_name(in), type_to_name(out));
auto kernel = get_copy_kernel(d, kernel_name, in, out);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
bool donate_in = in.data_shared_ptr() == nullptr;
inp_offset *= size_of(in.dtype());
@@ -122,26 +123,26 @@ void copy_gpu_inplace(
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
std::vector<int64_t> strides_in{strides_in_.begin(), strides_in_.end()};
std::vector<int64_t> strides_out{strides_out_.begin(), strides_out_.end()};
Strides strides_in{strides_in_.begin(), strides_in_.end()};
Strides strides_out{strides_out_.begin(), strides_out_.end()};
if (ndim > 3) {
set_vector_bytes(compute_encoder, shape, ndim, 2);
compute_encoder.set_vector_bytes(shape, ndim, 2);
}
set_vector_bytes(compute_encoder, strides_in, ndim, 3);
compute_encoder.set_vector_bytes(strides_in, ndim, 3);
if (ctype == CopyType::GeneralGeneral) {
set_vector_bytes(compute_encoder, strides_out, ndim, 4);
compute_encoder.set_vector_bytes(strides_out, ndim, 4);
}
int dim0 = ndim > 0 ? shape[ndim - 1] : 1;
int dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t data_size = 1;
for (auto& s : shape)
data_size *= s;
int rest = data_size / (dim0 * dim1);
size_t rest = data_size / (dim0 * dim1);
if (ndim > MAX_COPY_SPECIALIZED_DIMS) {
compute_encoder->setBytes(&ndim, sizeof(int), 5);
compute_encoder.set_bytes(ndim, 5);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
}
@@ -152,16 +153,16 @@ void copy_gpu_inplace(
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
size_t nthreads = out.data_size();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
@@ -178,14 +179,13 @@ void copy_gpu_inplace(
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int64_t>& istride,
const Strides& istride,
int64_t ioffset,
CopyType ctype,
const Stream& s) {
assert(in.shape() == out.shape());
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
return copy_gpu_inplace(
in, out, in.shape(), istride, ostrides, ioffset, 0, ctype, s);
in, out, in.shape(), istride, out.strides(), ioffset, 0, ctype, s);
}
void fill_gpu(const array& val, array& out, const Stream& s) {
@@ -193,13 +193,13 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
return;
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
bool use_2d = out.data_size() > UINT32_MAX;
bool large = out.data_size() > UINT32_MAX;
auto& d = metal::device(s.device);
std::string kernel_name = std::string(use_2d ? "s2" : "s") + "_copy" +
std::string kernel_name = std::string(large ? "s2" : "s") + "_copy" +
type_to_name(val) + type_to_name(out);
auto kernel = get_copy_kernel(d, kernel_name, val, out);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(val, 0);
compute_encoder.set_output_array(out, 1);
@@ -210,9 +210,9 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
} // namespace mlx::core

View File

@@ -8,13 +8,12 @@
namespace mlx::core {
// Generic copy inplace
template <typename stride_t>
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
const Shape& data_shape,
const Strides& i_strides,
const Strides& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype,
@@ -32,7 +31,7 @@ void copy_gpu_inplace(
void copy_gpu_inplace(
const array& in,
array& out,
const std::vector<int64_t>& istride,
const Strides& istride,
int64_t ioffset,
CopyType ctype,
const Stream& s);

View File

@@ -43,7 +43,7 @@ void CustomKernel::eval_gpu(
d.get_library(lib_name, [this] { return metal::utils() + source_; });
auto kernel = d.get_kernel(name_, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
int index = 0;
for (int i = 0; i < checked_inputs.size(); i++) {
const array& in = checked_inputs[i];
@@ -53,15 +53,15 @@ void CustomKernel::eval_gpu(
if (in.ndim() > 0) {
int ndim = in.ndim();
if (shape_info.shape) {
set_vector_bytes(compute_encoder, in.shape(), ndim, index);
compute_encoder.set_vector_bytes(in.shape(), ndim, index);
index++;
}
if (shape_info.strides) {
set_vector_bytes(compute_encoder, in.strides(), ndim, index);
compute_encoder.set_vector_bytes(in.strides(), ndim, index);
index++;
}
if (shape_info.ndim) {
compute_encoder->setBytes(&ndim, sizeof(int), index);
compute_encoder.set_bytes(ndim, index);
index++;
}
}
@@ -72,10 +72,11 @@ void CustomKernel::eval_gpu(
}
const auto [tx, ty, tz] = threadgroup_;
MTL::Size group_dims = MTL::Size(tx, ty, tz);
const auto [gx, gy, gz] = grid_;
MTL::Size group_dims =
MTL::Size(std::min(tx, gx), std::min(ty, gy), std::min(tz, gz));
MTL::Size grid_dims = MTL::Size(gx, gy, gz);
compute_encoder->dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
}

View File

@@ -23,14 +23,18 @@ constexpr int MAX_BUFFERS_PER_QUEUE = 12;
constexpr const char* default_mtllib_path = METAL_PATH;
constexpr auto get_metal_version() {
#if (MLX_METAL_VERSION >= 320)
return MTL::LanguageVersion3_2;
#elif (MLX_METAL_VERSION >= 310)
return MTL::LanguageVersion3_1;
#else
return MTL::LanguageVersion3_0;
#endif
auto get_metal_version() {
auto get_metal_version_ = []() {
if (__builtin_available(macOS 15, iOS 18, tvOS 18, visionOS 2, *)) {
return MTL::LanguageVersion3_2;
} else if (__builtin_available(macOS 14, iOS 17, tvOS 17, visionOS 1, *)) {
return MTL::LanguageVersion3_1;
} else {
return MTL::LanguageVersion3_0;
}
};
static auto metal_version_ = get_metal_version_();
return metal_version_;
}
auto load_device() {
@@ -171,14 +175,14 @@ void CommandEncoder::maybeInsertBarrier() {
next_outputs_.clear();
}
void CommandEncoder::dispatchThreadgroups(
void CommandEncoder::dispatch_threadgroups(
MTL::Size grid_dims,
MTL::Size group_dims) {
maybeInsertBarrier();
enc_->dispatchThreadgroups(grid_dims, group_dims);
}
void CommandEncoder::dispatchThreads(
void CommandEncoder::dispatch_threads(
MTL::Size grid_dims,
MTL::Size group_dims) {
maybeInsertBarrier();
@@ -276,7 +280,7 @@ void Device::end_encoding(int index) {
// - Update the map of outputs to include this command encoder's outputs.
// - Always signal this command encoders fence.
// - Add a completion handler for this command encoder that removes outputs
// from the map to limit the growth of the map and avoid unecessary waits
// from the map to limit the growth of the map and avoid unnecessary waits
// - Temporaries are a special case as they do not cross command encoder
// boundaries. These can be removed early from the encoders inputs and
// outputs since they don't need synchronization.
@@ -298,7 +302,7 @@ void Device::end_encoding(int index) {
if (auto it = stream.outputs.find(in); it != stream.outputs.end()) {
// If we've already waited on a fence, don't wait on it again.
if (waiting_on.find(it->second) == waiting_on.end()) {
enc->waitForFence(it->second->fence);
enc.wait_for_fence(it->second->fence);
waiting_on.insert(it->second);
}
}
@@ -307,7 +311,7 @@ void Device::end_encoding(int index) {
stream.outputs[out] = stream.fence;
}
}
enc->updateFence(stream.fence->fence);
enc.update_fence(stream.fence->fence);
stream.buffer->addCompletedHandler(
[&stream,
waiting_on = std::move(waiting_on),
@@ -641,21 +645,27 @@ void new_stream(Stream stream) {
std::unordered_map<std::string, std::variant<std::string, size_t>>
device_info() {
auto raw_device = device(default_device()).mtl_device();
auto arch = std::string(raw_device->architecture()->name()->utf8String());
auto init_device_info = []()
-> std::unordered_map<std::string, std::variant<std::string, size_t>> {
auto pool = new_scoped_memory_pool();
auto raw_device = device(default_device()).mtl_device();
auto arch = std::string(raw_device->architecture()->name()->utf8String());
int mib[] = {CTL_HW, HW_MEMSIZE};
size_t memsize = 0;
size_t length = sizeof(memsize);
int mib[] = {CTL_HW, HW_MEMSIZE};
size_t memsize = 0;
size_t length = sizeof(memsize);
sysctl(mib, 2, &memsize, &length, NULL, 0);
sysctl(mib, 2, &memsize, &length, NULL, 0);
return {
{"architecture", arch},
{"max_buffer_length", raw_device->maxBufferLength()},
{"max_recommended_working_set_size",
raw_device->recommendedMaxWorkingSetSize()},
{"memory_size", memsize}};
return {
{"architecture", arch},
{"max_buffer_length", raw_device->maxBufferLength()},
{"max_recommended_working_set_size",
raw_device->recommendedMaxWorkingSetSize()},
{"memory_size", memsize}};
};
static auto device_info_ = init_device_info();
return device_info_;
}
} // namespace mlx::core::metal

View File

@@ -58,16 +58,43 @@ struct CommandEncoder {
CommandEncoder& enc;
};
MTL::ComputeCommandEncoder* operator->() {
return enc_;
}
void set_input_array(const array& a, int idx, int64_t offset = 0);
void set_output_array(array& a, int idx, int64_t offset = 0);
void dispatchThreadgroups(MTL::Size grid_dims, MTL::Size group_dims);
void dispatchThreads(MTL::Size grid_dims, MTL::Size group_dims);
void dispatch_threadgroups(MTL::Size grid_dims, MTL::Size group_dims);
void dispatch_threads(MTL::Size grid_dims, MTL::Size group_dims);
void maybeInsertBarrier();
void set_compute_pipeline_state(MTL::ComputePipelineState* kernel) {
enc_->setComputePipelineState(kernel);
}
void wait_for_fence(MTL::Fence* fence) {
enc_->waitForFence(fence);
}
void update_fence(MTL::Fence* fence) {
enc_->updateFence(fence);
}
template <typename T>
void set_vector_bytes(const std::vector<T>& vec, size_t nelems, int idx) {
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
}
template <typename T>
void set_vector_bytes(const std::vector<T>& vec, int idx) {
return set_vector_bytes(vec, vec.size(), idx);
}
template <typename T>
void set_bytes(const T* v, int n, int idx) {
return enc_->setBytes(v, n * sizeof(T), idx);
}
template <typename T>
void set_bytes(const T& v, int idx) {
return enc_->setBytes(&v, sizeof(T), idx);
}
ConcurrentContext start_concurrent() {
return ConcurrentContext(*this);
}

View File

@@ -363,7 +363,7 @@ void multi_upload_bluestein_fft(
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
// Broadcast w_q and w_k to the batch size
std::vector<size_t> b_strides(in.ndim(), 0);
Strides b_strides(in.ndim(), 0);
b_strides[axis] = 1;
array w_k_broadcast({}, complex64, nullptr, {});
array w_q_broadcast({}, complex64, nullptr, {});
@@ -386,8 +386,8 @@ void multi_upload_bluestein_fft(
copies.push_back(slice_temp);
copies.push_back(conj_temp);
std::vector<int> rstarts(in.ndim(), 0);
std::vector<int> rstrides(in.ndim(), 1);
Shape rstarts(in.ndim(), 0);
Shape rstrides(in.ndim(), 1);
rstarts[axis] = in.shape(axis) - back_offset;
rstrides[axis] = -1;
unary_op_gpu({in}, conj_temp, "Conjugate", s);
@@ -431,19 +431,19 @@ void multi_upload_bluestein_fft(
s);
int offset = plan.bluestein_n - (2 * n - 1);
std::vector<int> starts(in.ndim(), 0);
std::vector<int> strides(in.ndim(), 1);
Shape starts(in.ndim(), 0);
Shape strides(in.ndim(), 1);
starts[axis] = plan.bluestein_n - offset - n;
slice_gpu(pad_temp1, temp, starts, strides, s);
binary_op_gpu_inplace({temp, w_k_broadcast}, temp1, "Multiply", s);
if (real && !inverse) {
std::vector<int> rstarts(in.ndim(), 0);
std::vector<int> rstrides(in.ndim(), 1);
Shape rstarts(in.ndim(), 0);
Shape rstrides(in.ndim(), 1);
slice_gpu(temp1, out, rstarts, strides, s);
} else if (real && inverse) {
std::vector<size_t> b_strides(in.ndim(), 0);
Strides b_strides(in.ndim(), 0);
auto inv_n = array({1.0f / n}, {1}, float32);
array temp_float(out.shape(), out.dtype(), nullptr, {});
copies.push_back(temp_float);
@@ -531,8 +531,8 @@ void fft_op(
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});
std::vector<size_t> strides;
size_t cur_stride = x.shape(axis);
Strides strides;
int64_t cur_stride = x.shape(axis);
for (int a = 0; a < x.ndim(); a++) {
if (a == axis) {
strides.push_back(1);
@@ -699,7 +699,7 @@ void fft_op(
auto kernel =
get_fft_kernel(d, base_name, hash_name, func_consts, template_def);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in_contiguous, 0);
compute_encoder.set_output_array(out, 1);
@@ -711,9 +711,9 @@ void fft_op(
compute_encoder.set_input_array(w_q, 2); // w_q
compute_encoder.set_input_array(w_k, 3); // w_k
compute_encoder->setBytes(&n, sizeof(int), 4);
compute_encoder->setBytes(&plan.bluestein_n, sizeof(int), 5);
compute_encoder->setBytes(&total_batch_size, sizeof(int), 6);
compute_encoder.set_bytes(n, 4);
compute_encoder.set_bytes(plan.bluestein_n, 5);
compute_encoder.set_bytes(total_batch_size, 6);
} else if (plan.rader_n > 1) {
auto [b_q, g_q, g_minus_q] = compute_raders_constants(plan.rader_n, s);
copies.push_back(b_q);
@@ -723,22 +723,22 @@ void fft_op(
compute_encoder.set_input_array(b_q, 2);
compute_encoder.set_input_array(g_q, 3);
compute_encoder.set_input_array(g_minus_q, 4);
compute_encoder->setBytes(&n, sizeof(int), 5);
compute_encoder->setBytes(&total_batch_size, sizeof(int), 6);
compute_encoder->setBytes(&plan.rader_n, sizeof(int), 7);
compute_encoder.set_bytes(n, 5);
compute_encoder.set_bytes(total_batch_size, 6);
compute_encoder.set_bytes(plan.rader_n, 7);
} else if (four_step_params.required) {
compute_encoder->setBytes(&four_step_params.n1, sizeof(int), 2);
compute_encoder->setBytes(&four_step_params.n2, sizeof(int), 3);
compute_encoder->setBytes(&total_batch_size, sizeof(int), 4);
compute_encoder.set_bytes(four_step_params.n1, 2);
compute_encoder.set_bytes(four_step_params.n2, 3);
compute_encoder.set_bytes(total_batch_size, 4);
} else {
compute_encoder->setBytes(&n, sizeof(int), 2);
compute_encoder->setBytes(&total_batch_size, sizeof(int), 3);
compute_encoder.set_bytes(n, 2);
compute_encoder.set_bytes(total_batch_size, 3);
}
auto group_dims = MTL::Size(1, threadgroup_batch_size, threads_per_fft);
auto grid_dims =
MTL::Size(batch_size, threadgroup_batch_size, threads_per_fft);
compute_encoder->dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
d.add_temporaries(std::move(copies), s.index);
@@ -777,7 +777,7 @@ void nd_fft_op(
// Mirror np.fft.(i)rfftn and perform a real transform
// only on the final axis.
bool step_real = (real && index == axes.size() - 1);
int step_shape = inverse ? out.shape(axis) : in.shape(axis);
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);

View File

@@ -137,14 +137,14 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto kernel = d.get_kernel(kernel_name, lib);
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder->setBytes(&scale, sizeof(float), 2);
compute_encoder.set_bytes(scale, 2);
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
};
if (m > 1) {

View File

@@ -53,27 +53,31 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
std::string lib_name;
std::string kernel_name;
bool large_index = nidx && inputs[1].size() > UINT32_MAX;
bool large_src = src.size() > UINT32_MAX;
bool large_out = out.size() > UINT32_MAX;
bool large = large_index || large_src || large_out;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
{
std::ostringstream kname;
kname << "gather" << type_to_name(out) << idx_type_name << "_" << nidx
<< "_" << idx_ndim;
lib_name = kname.str();
kernel_name = lib_name;
}
std::string kernel_name = fmt::format(
"gather{0}{1}_{2}_{3}_{4}",
type_to_name(out),
idx_type_name,
nidx,
idx_ndim,
large ? "int64_t" : "uint");
std::string lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gather();
std::string kernel_source = metal::utils();
kernel_source += metal::gather();
std::string out_type_str = get_type_string(out.dtype());
std::string idx_type_str =
nidx ? get_type_string(inputs[1].dtype()) : "bool";
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
// Index dimension specializations
kernel_source << fmt::format(
kernel_source += fmt::format(
gather_kernels,
type_to_name(out) + idx_type_name,
out_type_str,
@@ -81,13 +85,14 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
nidx,
idx_args,
idx_arr,
idx_ndim);
return kernel_source.str();
idx_ndim,
large ? "int64_t" : "uint");
return kernel_source;
});
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
size_t slice_size = 1;
for (auto s : slice_sizes_) {
@@ -131,20 +136,20 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.set_output_array(out, 1);
// Set source info
set_vector_bytes(compute_encoder, src.shape(), 2);
set_vector_bytes(compute_encoder, src.strides(), 3);
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
set_vector_bytes(compute_encoder, slice_sizes_, 5);
set_vector_bytes(compute_encoder, axes_, 6);
compute_encoder.set_vector_bytes(src.shape(), 2);
compute_encoder.set_vector_bytes(src.strides(), 3);
compute_encoder.set_bytes(ndim, 4);
compute_encoder.set_vector_bytes(slice_sizes_, 5);
compute_encoder.set_vector_bytes(axes_, 6);
// Set index info
//
// We don't need to check for empty idx_shapes because gather has a
// idx_ndim == 0 specialization
set_vector_bytes(compute_encoder, idx_shapes, 7);
set_vector_bytes(compute_encoder, idx_strides, 8);
set_vector_bytes(compute_encoder, idx_contigs, 9);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 10);
compute_encoder.set_vector_bytes(idx_shapes, 7);
compute_encoder.set_vector_bytes(idx_strides, 8);
compute_encoder.set_vector_bytes(idx_contigs, 9);
compute_encoder.set_bytes(idx_ndim, 10);
// Set index buffers
for (int i = 0; i < nidx; ++i) {
@@ -152,7 +157,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
}
// Launch grid
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -209,8 +214,6 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
nwork = 32;
}
std::string lib_name;
std::string kernel_name;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
std::string op_name;
switch (reduce_type_) {
@@ -231,18 +234,24 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
break;
}
auto upd_contig = upd.flags().row_contiguous;
{
std::ostringstream kname;
kname << "scatter" << type_to_name(out) << idx_type_name;
kname << "_" << op_name << "_" << nidx << "_"
<< (upd_contig ? "updc_true" : "updc_false") << "_nwork" << nwork;
lib_name = kname.str();
kernel_name = kname.str();
}
bool large_out = out.size() > UINT32_MAX;
bool large_idx = nidx && (inputs[1].size() > UINT32_MAX);
bool large_upd = upd.size() > UINT32_MAX;
bool large = large_out || large_idx || large_upd;
std::string kernel_name = fmt::format(
"scatter{0}{1}_{2}_{3}_{4}_nwork{5}_{6}",
type_to_name(out),
idx_type_name,
op_name,
nidx,
upd_contig ? "updc_true" : "updc_false",
nwork,
large ? "int64_t" : "uint");
std::string lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::reduce_utils()
<< metal::scatter();
std::string kernel_source = metal::utils();
concatenate(kernel_source, metal::reduce_utils(), metal::scatter());
std::string out_type_str = get_type_string(out.dtype());
std::string idx_type_str =
@@ -270,7 +279,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
}
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
kernel_source << fmt::format(
kernel_source += fmt::format(
scatter_kernels,
type_to_name(out) + idx_type_name + "_" + op_name,
out_type_str,
@@ -280,8 +289,9 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_args,
idx_arr,
upd_contig,
nwork);
return kernel_source.str();
nwork,
large ? "int64_t" : "uint");
return kernel_source;
});
auto& compute_encoder = d.get_command_encoder(s.index);
@@ -289,7 +299,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
size_t nthreads = upd.size();
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_compute_pipeline_state(kernel);
// Set all the buffers
compute_encoder.set_input_array(upd, 1);
@@ -302,8 +312,8 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
upd_size *= upd.shape(i);
}
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
Shape idx_shapes;
Strides idx_strides;
// To access .data() use char instead of bool
// bool is 1 byte in Metal so this is safe
std::vector<char> idx_contigs;
@@ -322,30 +332,30 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
int64_t stride_ = 0;
compute_encoder.set_bytes(shape_, 3);
compute_encoder.set_bytes(stride_, 4);
} else {
set_vector_bytes(compute_encoder, upd.shape(), 3);
set_vector_bytes(compute_encoder, upd.strides(), 4);
compute_encoder.set_vector_bytes(upd.shape(), 3);
compute_encoder.set_vector_bytes(upd.strides(), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
compute_encoder.set_bytes(upd_ndim, 5);
compute_encoder.set_bytes(upd_size, 6);
// Set output info
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
int64_t stride_ = 0;
compute_encoder.set_bytes(shape_, 7);
compute_encoder.set_bytes(stride_, 8);
} else {
set_vector_bytes(compute_encoder, out.shape(), 7);
set_vector_bytes(compute_encoder, out.strides(), 8);
compute_encoder.set_vector_bytes(out.shape(), 7);
compute_encoder.set_vector_bytes(out.strides(), 8);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
compute_encoder.set_bytes(out_ndim, 9);
compute_encoder.set_vector_bytes(axes_, 10);
// Set index info
if (idx_ndim == 0) {
@@ -355,11 +365,11 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_strides.push_back(0);
idx_contigs.push_back(false);
}
set_vector_bytes(compute_encoder, idx_shapes, 11);
set_vector_bytes(compute_encoder, idx_strides, 12);
set_vector_bytes(compute_encoder, idx_contigs, 13);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 14);
compute_encoder->setBytes(&idx_size, sizeof(size_t), 15);
compute_encoder.set_vector_bytes(idx_shapes, 11);
compute_encoder.set_vector_bytes(idx_strides, 12);
compute_encoder.set_vector_bytes(idx_contigs, 13);
compute_encoder.set_bytes(idx_ndim, 14);
compute_encoder.set_bytes(idx_size, 15);
// Set index buffers
for (int i = 0; i < nidx; ++i) {
@@ -375,7 +385,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
throw std::runtime_error("[Scatter::eval_gpu] Invalid number of threads");
}
MTL::Size group_dims = get_block_dims(upd_size, grid_y, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
} // namespace mlx::core

View File

@@ -11,13 +11,13 @@ gemv_{trans}masked<{itype}, {outm_t}, {opm_t}, {bm}, {bn}, {sm}, {sn}, {tm}, {tn
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device {outm_t}* out_mask [[buffer(20)]],
const device {opm_t}* mat_mask [[buffer(21)]],
const device {opm_t}* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],

View File

@@ -1,16 +1,16 @@
// Copyright © 2023-2024 Apple Inc.
constexpr std::string_view gather_kernels = R"(
[[kernel]] void gather{0}_{3}_{6}(
[[kernel]] void gather{0}_{3}_{6}_{7}(
const device {1}* src [[buffer(0)]],
device {1}* out [[buffer(1)]],
const constant int* src_shape [[buffer(2)]],
const constant size_t* src_strides [[buffer(3)]],
const constant int64_t* src_strides [[buffer(3)]],
const constant size_t& src_ndim [[buffer(4)]],
const constant int* slice_sizes [[buffer(5)]],
const constant int* axes [[buffer(6)]],
const constant int* idx_shapes [[buffer(7)]],
const constant size_t* idx_strides [[buffer(8)]],
const constant int64_t* idx_strides [[buffer(8)]],
const constant bool* idx_contigs [[buffer(9)]],
const constant int& idx_ndim [[buffer(10)]],
{4}
@@ -19,7 +19,7 @@ constexpr std::string_view gather_kernels = R"(
Indices<{2}, {3}> idxs{{
{{ {5} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
return gather_impl<{1}, {2}, {3}, {6}>(
return gather_impl<{1}, {2}, {3}, {6}, {7}>(
src,
out,
src_shape,
@@ -34,19 +34,19 @@ constexpr std::string_view gather_kernels = R"(
)";
constexpr std::string_view scatter_kernels = R"(
[[kernel]] void scatter{0}_{4}_updc_{7}_nwork{8}(
[[kernel]] void scatter{0}_{4}_updc_{7}_nwork{8}_{9}(
const device {1}* updates [[buffer(1)]],
device mlx_atomic<{1}>* out [[buffer(2)]],
const constant int* upd_shape [[buffer(3)]],
const constant size_t* upd_strides [[buffer(4)]],
const constant int64_t* upd_strides [[buffer(4)]],
const constant size_t& upd_ndim [[buffer(5)]],
const constant size_t& upd_size [[buffer(6)]],
const constant int* out_shape [[buffer(7)]],
const constant size_t* out_strides [[buffer(8)]],
const constant int64_t* out_strides [[buffer(8)]],
const constant size_t& out_ndim [[buffer(9)]],
const constant int* axes [[buffer(10)]],
const constant int* idx_shapes [[buffer(11)]],
const constant size_t* idx_strides [[buffer(12)]],
const constant int64_t* idx_strides [[buffer(12)]],
const constant bool* idx_contigs [[buffer(13)]],
const constant int& idx_ndim [[buffer(14)]],
const constant size_t& idx_size [[buffer(15)]],
@@ -54,7 +54,7 @@ constexpr std::string_view scatter_kernels = R"(
uint2 gid [[thread_position_in_grid]]) {{
Indices<{2}, {4}> idxs{{ {{ {6} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
return scatter_impl<{1}, {2}, {3}, {4}, {7}, {8}>(
return scatter_impl<{1}, {2}, {3}, {4}, {7}, {8}, {9}>(
updates,
out,
upd_shape,

View File

@@ -10,12 +10,12 @@ template [[host_name("{name}")]]
const constant GEMMParams* params [[buffer(4)]],
const constant GEMMAddMMParams* addmm_params [[buffer(5), function_constant(use_out_source)]],
const constant int* batch_shape [[buffer(6)]],
const constant size_t* batch_strides [[buffer(7)]],
const constant int64_t* batch_strides [[buffer(7)]],
const constant uint32_t* lhs_indices [[buffer(10), function_constant(do_gather)]],
const constant uint32_t* rhs_indices [[buffer(11), function_constant(do_gather)]],
const constant uint32_t* C_indices [[buffer(12), function_constant(gather_bias)]],
const constant int* operand_shape [[buffer(13), function_constant(do_gather)]],
const constant size_t* operand_strides [[buffer(14), function_constant(do_gather)]],
const constant int64_t* operand_strides [[buffer(14), function_constant(do_gather)]],
const constant packed_int3& operand_batch_ndim [[buffer(15), function_constant(do_gather)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
@@ -43,7 +43,7 @@ block_masked_gemm<
device {itype}* D [[buffer(3)]],
const constant GEMMParams* params [[buffer(4)]],
const constant int* batch_shape [[buffer(6)]],
const constant size_t* batch_strides [[buffer(7)]],
const constant int64_t* batch_strides [[buffer(7)]],
const device {outmasktype}* out_mask [[buffer(10)]],
const device {opmasktype}* lhs_mask [[buffer(11)]],
const device {opmasktype}* rhs_mask [[buffer(12)]],

View File

@@ -1,5 +1,4 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/jit/arange.h"
#include "mlx/backend/metal/jit/gemv_masked.h"
@@ -46,25 +45,27 @@ MTL::ComputePipelineState* get_unary_kernel(
auto lib = d.get_library(lib_name, [&]() {
auto in_t = get_type_string(in_type);
auto out_t = get_type_string(out_type);
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::unary_ops() << metal::unary();
kernel_source << get_template_definition(
"v_" + lib_name, "unary_v", in_t, out_t, op);
kernel_source << get_template_definition(
"v2_" + lib_name, "unary_v2", in_t, out_t, op);
kernel_source << get_template_definition(
"gn4_" + lib_name, "unary_g", in_t, out_t, op, 4);
return kernel_source.str();
std::string kernel_source = metal::utils();
concatenate(kernel_source, metal::unary_ops(), metal::unary());
kernel_source +=
get_template_definition("v_" + lib_name, "unary_v", in_t, out_t, op);
kernel_source +=
get_template_definition("v2_" + lib_name, "unary_v2", in_t, out_t, op);
kernel_source += get_template_definition(
"gn1_" + lib_name, "unary_g", in_t, out_t, op, 1, "uint");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "unary_g", in_t, out_t, op, 4);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
void add_binary_kernels(
void append_binary_kernels(
const std::string lib_name,
Dtype in_type,
Dtype out_type,
const std::string op,
std::ostringstream& kernel_source) {
std::string& kernel_source) {
const std::array<std::pair<std::string, std::string>, 10> kernel_types = {{
{"ss", "binary_ss"},
{"vs", "binary_vs"},
@@ -74,26 +75,24 @@ void add_binary_kernels(
{"sv2", "binary_sv2"},
{"vv2", "binary_vv2"},
{"g1", "binary_g_nd1"},
{"g2", "binary_g_nd2"},
{"g3", "binary_g_nd3"},
{"g2large", "binary_g_nd2"},
{"g3large", "binary_g_nd3"},
}};
auto in_t = get_type_string(in_type);
auto out_t = get_type_string(out_type);
for (auto& [name, func] : kernel_types) {
std::string template_def;
template_def = get_template_definition(
name + "_" + lib_name,
func,
get_type_string(in_type),
get_type_string(out_type),
op);
kernel_source << template_def;
kernel_source +=
get_template_definition(name + "_" + lib_name, func, in_t, out_t, op);
}
kernel_source << get_template_definition(
"gn4_" + lib_name,
"binary_g",
get_type_string(in_type),
get_type_string(out_type),
op,
4);
kernel_source += get_template_definition(
"g2_" + lib_name, "binary_g_nd2", in_t, out_t, op, "uint");
kernel_source += get_template_definition(
"g3_" + lib_name, "binary_g_nd3", in_t, out_t, op, "uint");
kernel_source += get_template_definition(
"gn2_" + lib_name, "binary_g", in_t, out_t, op, 2, "uint");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "binary_g", in_t, out_t, op, 4);
}
MTL::ComputePipelineState* get_binary_kernel(
@@ -104,10 +103,11 @@ MTL::ComputePipelineState* get_binary_kernel(
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::binary_ops() << metal::binary();
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source.str();
std::string kernel_source;
kernel_source = metal::utils();
concatenate(kernel_source, metal::binary_ops(), metal::binary());
append_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -120,11 +120,10 @@ MTL::ComputePipelineState* get_binary_two_kernel(
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::binary_ops()
<< metal::binary_two();
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source.str();
std::string kernel_source = metal::utils();
concatenate(kernel_source, metal::binary_ops(), metal::binary_two());
append_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -136,24 +135,29 @@ MTL::ComputePipelineState* get_ternary_kernel(
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
auto t_str = get_type_string(type);
std::string kernel_source = metal::utils();
concatenate(kernel_source, metal::ternary_ops(), metal::ternary());
const std::array<std::pair<std::string, std::string>, 5> kernel_types = {{
{"v", "ternary_v"},
{"v2", "ternary_v2"},
{"g1", "ternary_g_nd1"},
{"g2", "ternary_g_nd2"},
{"g3", "ternary_g_nd3"},
{"g2large", "ternary_g_nd2"},
{"g3large", "ternary_g_nd3"},
}};
kernel_source << metal::utils() << metal::ternary_ops() << metal::ternary();
for (auto& [name, func] : kernel_types) {
std::string template_def;
template_def = get_template_definition(
name + "_" + lib_name, func, get_type_string(type), op);
kernel_source << template_def;
kernel_source +=
get_template_definition(name + "_" + lib_name, func, t_str, op);
}
kernel_source << get_template_definition(
"gn4_" + lib_name, "ternary_g", get_type_string(type), op, 4);
return kernel_source.str();
kernel_source += get_template_definition(
"g2_" + lib_name, "ternary_g_nd2", t_str, op, "uint");
kernel_source += get_template_definition(
"g3_" + lib_name, "ternary_g_nd3", t_str, op, "uint");
kernel_source += get_template_definition(
"gn2_" + lib_name, "ternary_g", t_str, op, 2, "uint");
kernel_source += get_template_definition(
"gn4large_" + lib_name, "ternary_g", t_str, op, 4);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -165,31 +169,43 @@ MTL::ComputePipelineState* get_copy_kernel(
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::ostringstream kernel_source;
std::string kernel_source = metal::utils();
kernel_source += metal::copy();
auto in_type = get_type_string(in.dtype());
auto out_type = get_type_string(out.dtype());
kernel_source << metal::utils() << metal::copy()
<< get_template_definition(
"s_" + lib_name, "copy_s", in_type, out_type)
<< get_template_definition(
"v_" + lib_name, "copy_v", in_type, out_type)
<< get_template_definition(
"g1_" + lib_name, "copy_g_nd1", in_type, out_type)
<< get_template_definition(
"g2_" + lib_name, "copy_g_nd2", in_type, out_type)
<< get_template_definition(
"g3_" + lib_name, "copy_g_nd3", in_type, out_type)
<< get_template_definition(
"gn4_" + lib_name, "copy_g", in_type, out_type, 4)
<< get_template_definition(
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type)
<< get_template_definition(
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type)
<< get_template_definition(
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type)
<< get_template_definition(
"ggn4_" + lib_name, "copy_gg", in_type, out_type, 4);
return kernel_source.str();
kernel_source +=
get_template_definition("s_" + lib_name, "copy_s", in_type, out_type);
kernel_source +=
get_template_definition("v_" + lib_name, "copy_v", in_type, out_type);
kernel_source += get_template_definition(
"g1_" + lib_name, "copy_g_nd1", in_type, out_type);
kernel_source += get_template_definition(
"g2_" + lib_name, "copy_g_nd2", in_type, out_type, "int");
kernel_source += get_template_definition(
"g3_" + lib_name, "copy_g_nd3", in_type, out_type, "int");
kernel_source += get_template_definition(
"gn2_" + lib_name, "copy_g", in_type, out_type, 2, "int");
kernel_source += get_template_definition(
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type);
kernel_source += get_template_definition(
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type, "int");
kernel_source += get_template_definition(
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type, "int");
kernel_source += get_template_definition(
"ggn2_" + lib_name, "copy_gg", in_type, out_type, 2, "int");
kernel_source += get_template_definition(
"g2large_" + lib_name, "copy_g_nd2", in_type, out_type);
kernel_source += get_template_definition(
"g3large_" + lib_name, "copy_g_nd3", in_type, out_type);
kernel_source += get_template_definition(
"gn4large_" + lib_name, "copy_g", in_type, out_type, 4);
kernel_source += get_template_definition(
"gg2large_" + lib_name, "copy_gg_nd2", in_type, out_type);
kernel_source += get_template_definition(
"gg3large_" + lib_name, "copy_gg_nd3", in_type, out_type);
kernel_source += get_template_definition(
"ggn4large_" + lib_name, "copy_gg", in_type, out_type, 4);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -321,17 +337,17 @@ MTL::ComputePipelineState* get_reduce_init_kernel(
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& out) {
const Dtype& out_type) {
auto lib = d.get_library(kernel_name, [&]() {
std::ostringstream kernel_source;
std::string op_type = op_name;
op_type[0] = std::toupper(op_name[0]);
auto out_type = get_type_string(out.dtype());
std::string op = op_type + "<" + out_type + ">";
kernel_source << metal::utils() << metal::reduce_utils() << metal::reduce();
kernel_source << get_template_definition(
kernel_name, func_name, out_type, op);
return kernel_source.str();
auto out_t = get_type_string(out_type);
std::string op = op_type + "<" + out_t + ">";
std::string kernel_source = metal::utils();
kernel_source += metal::reduce_utils();
kernel_source += metal::reduce();
kernel_source += get_template_definition(kernel_name, func_name, out_t, op);
return kernel_source;
});
return d.get_kernel(kernel_name, lib);
}
@@ -341,30 +357,31 @@ MTL::ComputePipelineState* get_reduce_kernel(
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& in,
const array& out,
const Dtype& in_type,
const Dtype& out_type,
const std::string& idx_t,
int ndim /* = -1 */,
int bm /* = -1 */,
int bn /* = -1 */) {
auto lib = d.get_library(kernel_name, [&]() {
std::string op_type = op_name;
op_type[0] = std::toupper(op_name[0]);
std::ostringstream kernel_source;
auto in_type = get_type_string(in.dtype());
auto out_type = get_type_string(out.dtype());
std::string op = op_type + "<" + out_type + ">";
kernel_source << metal::utils() << metal::reduce_utils() << metal::reduce();
auto in_t = get_type_string(in_type);
auto out_t = get_type_string(out_type);
std::string op = op_type + "<" + out_t + ">";
std::string kernel_source = metal::utils();
concatenate(kernel_source, metal::reduce_utils(), metal::reduce());
if (bm >= 0) {
kernel_source << get_template_definition(
kernel_name, func_name, in_type, out_type, op, ndim, bm, bn);
kernel_source += get_template_definition(
kernel_name, func_name, in_t, out_t, op, idx_t, ndim, bm, bn);
} else if (ndim >= 0) {
kernel_source << get_template_definition(
kernel_name, func_name, in_type, out_type, op, ndim);
kernel_source += get_template_definition(
kernel_name, func_name, in_t, out_t, op, idx_t, ndim);
} else {
kernel_source << get_template_definition(
kernel_name, func_name, in_type, out_type, op);
kernel_source += get_template_definition(
kernel_name, func_name, in_t, out_t, op, idx_t);
}
return kernel_source.str();
return kernel_source;
});
auto st = d.get_kernel(kernel_name, lib);
return st;

View File

@@ -81,15 +81,16 @@ MTL::ComputePipelineState* get_reduce_init_kernel(
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& out);
const Dtype& out_type);
MTL::ComputePipelineState* get_reduce_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& in,
const array& out,
const Dtype& in_type,
const Dtype& out_type,
const std::string& idx_t,
int ndim = -1,
int bm = -1,
int bn = -1);

View File

@@ -1,13 +1,27 @@
set(BASE_HEADERS bf16.h bf16_math.h complex.h defines.h expm1f.h utils.h)
set(BASE_HEADERS
metal_3_1/bf16.h
metal_3_0/bf16.h
bf16_math.h
complex.h
defines.h
expm1f.h
utils.h)
function(build_kernel_base TARGET SRCFILE DEPS)
set(METAL_FLAGS -Wall -Wextra -fno-fast-math)
if(MLX_METAL_DEBUG)
set(METAL_FLAGS ${METAL_FLAGS} -gline-tables-only -frecord-sources)
endif()
if(MLX_METAL_VERSION GREATER_EQUAL 310)
set(VERSION_INCLUDES
${PROJECT_SOURCE_DIR}/mlx/backend/metal/kernels/metal_3_1)
else()
set(VERSION_INCLUDES
${PROJECT_SOURCE_DIR}/mlx/backend/metal/kernels/metal_3_0)
endif()
add_custom_command(
COMMAND xcrun -sdk macosx metal ${METAL_FLAGS} -c ${SRCFILE}
-I${PROJECT_SOURCE_DIR} -o ${TARGET}.air
-I${PROJECT_SOURCE_DIR} -I${VERSION_INCLUDES} -o ${TARGET}.air
DEPENDS ${SRCFILE} ${DEPS} ${BASE_HEADERS}
OUTPUT ${TARGET}.air
COMMENT "Building ${TARGET}.air"
@@ -30,9 +44,7 @@ build_kernel(layer_norm)
build_kernel(random)
build_kernel(rms_norm)
build_kernel(rope)
build_kernel(
scaled_dot_product_attention scaled_dot_product_attention_params.h
sdpa_vector.h steel/defines.h steel/gemm/transforms.h steel/utils.h)
build_kernel(scaled_dot_product_attention sdpa_vector.h)
set(STEEL_HEADERS
steel/defines.h
@@ -54,6 +66,24 @@ set(STEEL_HEADERS
steel/utils/type_traits.h
steel/utils/integral_constant.h)
set(STEEL_ATTN_HEADERS
steel/defines.h
steel/utils.h
steel/gemm/gemm.h
steel/gemm/mma.h
steel/gemm/loader.h
steel/gemm/transforms.h
steel/utils/type_traits.h
steel/utils/integral_constant.h
steel/attn/attn.h
steel/attn/loader.h
steel/attn/mma.h
steel/attn/params.h
steel/attn/transforms.h
steel/attn/kernels/steel_attention.h)
build_kernel(steel/attn/kernels/steel_attention ${STEEL_ATTN_HEADERS})
if(NOT MLX_METAL_JIT)
build_kernel(arange arange.h)
build_kernel(binary binary.h binary_ops.h)

View File

@@ -1,7 +1,7 @@
// Copyright © 2023-2024 Apple Inc.
// clang-format off
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/arange.h"
#define instantiate_arange(tname, type) \

View File

@@ -75,10 +75,10 @@ template <typename T, typename Op, int N_READS = 4>
const device T* in [[buffer(0)]],
device uint32_t* out [[buffer(1)]],
const constant int* shape [[buffer(2)]],
const constant size_t* in_strides [[buffer(3)]],
const constant size_t* out_strides [[buffer(4)]],
const constant int64_t* in_strides [[buffer(3)]],
const constant int64_t* out_strides [[buffer(4)]],
const constant size_t& ndim [[buffer(5)]],
const constant size_t& axis_stride [[buffer(6)]],
const constant int64_t& axis_stride [[buffer(6)]],
const constant size_t& axis_size [[buffer(7)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],

View File

@@ -2,8 +2,6 @@
#pragma once
#include "mlx/backend/metal/kernels/bf16.h"
///////////////////////////////////////////////////////////////////////////////
// Metal math for bfloat16
///////////////////////////////////////////////////////////////////////////////
@@ -369,18 +367,6 @@ instantiate_metal_math_funcs(
return static_cast<otype>(__metal_simd_xor(static_cast<ctype>(data))); \
}
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
#define bfloat16_to_uint16(x) as_type<uint16_t>(x)
#define uint16_to_bfloat16(x) as_type<bfloat16_t>(x)
#else
#define bfloat16_to_uint16(x) x.bits_
#define uint16_to_bfloat16(x) _MLX_BFloat16(x, _MLX_BFloat16::bits_to_bfloat())
#endif
namespace metal {
instantiate_metal_simd_comm_funcs(

View File

@@ -43,7 +43,7 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[0], b[offset]);
}
@@ -54,7 +54,7 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[0]);
}
@@ -65,72 +65,75 @@ template <typename T, typename U, typename Op>
device U* c,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
c[offset] = Op()(a[offset], b[offset]);
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd1(
device const T* a,
device const T* b,
device U* c,
constant const size_t& a_stride,
constant const size_t& b_stride,
constant const int64_t& a_stride,
constant const int64_t& b_stride,
uint index [[thread_position_in_grid]]) {
auto a_idx = elem_to_loc_1(index, a_stride);
auto b_idx = elem_to_loc_1(index, b_stride);
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
c[index] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd2(
device const T* a,
device const T* b,
device U* c,
constant const size_t a_strides[2],
constant const size_t b_strides[2],
constant const int64_t a_strides[2],
constant const int64_t b_strides[2],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2(index, a_strides);
auto b_idx = elem_to_loc_2(index, b_strides);
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd3(
device const T* a,
device const T* b,
device U* c,
constant const size_t a_strides[3],
constant const size_t b_strides[3],
constant const int64_t a_strides[3],
constant const int64_t b_strides[3],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_3(index, a_strides);
auto b_idx = elem_to_loc_3(index, b_strides);
size_t out_idx =
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op, int N = 1>
template <
typename T,
typename U,
typename Op,
int N = 1,
typename IdxT = int64_t>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
device U* c,
constant const int* shape,
constant const size_t* a_strides,
constant const size_t* b_strides,
constant const int64_t* a_strides,
constant const int64_t* b_strides,
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
size_t out_idx =
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
auto a_xstride = a_strides[ndim - 1];
auto b_xstride = b_strides[ndim - 1];
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
IdxT a_xstride = a_strides[ndim - 1];
IdxT b_xstride = b_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
c[out_idx++] = Op()(a[idx.x], b[idx.y]);
idx.x += a_xstride;

View File

@@ -9,18 +9,22 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
#define instantiate_binary_integer(op) \
instantiate_binary_all(op, uint8, uint8_t, uint8_t) \

View File

@@ -56,7 +56,7 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[0], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
@@ -70,7 +70,7 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[0]);
c[offset] = out[0];
d[offset] = out[1];
@@ -84,84 +84,87 @@ template <typename T, typename U, typename Op>
device U* d,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
auto out = Op()(a[offset], b[offset]);
c[offset] = out[0];
d[offset] = out[1];
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd1(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t& a_stride,
constant const size_t& b_stride,
constant const int64_t& a_stride,
constant const int64_t& b_stride,
uint index [[thread_position_in_grid]]) {
auto a_idx = elem_to_loc_1(index, a_stride);
auto b_idx = elem_to_loc_1(index, b_stride);
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
auto out = Op()(a[a_idx], b[b_idx]);
c[index] = out[0];
d[index] = out[1];
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd2(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t a_strides[2],
constant const size_t b_strides[2],
constant const int64_t a_strides[2],
constant const int64_t b_strides[2],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2(index, a_strides);
auto b_idx = elem_to_loc_2(index, b_strides);
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}
template <typename T, typename U, typename Op>
template <typename T, typename U, typename Op, typename IdxT = int64_t>
[[kernel]] void binary_g_nd3(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const size_t a_strides[3],
constant const size_t b_strides[3],
constant const int64_t a_strides[3],
constant const int64_t b_strides[3],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_3(index, a_strides);
auto b_idx = elem_to_loc_3(index, b_strides);
size_t out_idx =
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}
template <typename T, typename U, typename Op, int N = 1>
template <
typename T,
typename U,
typename Op,
int N = 1,
typename IdxT = int64_t>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const int* shape,
constant const size_t* a_strides,
constant const size_t* b_strides,
constant const int64_t* a_strides,
constant const int64_t* b_strides,
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
size_t out_idx =
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
auto a_xstride = a_strides[ndim - 1];
auto b_xstride = b_strides[ndim - 1];
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
IdxT a_xstride = a_strides[ndim - 1];
IdxT b_xstride = b_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
auto out = Op()(a[idx.x], b[idx.y]);
c[out_idx] = out[0];

View File

@@ -7,18 +7,22 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary_two.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
#define instantiate_binary_float(op) \
instantiate_binary_all(op, float16, half, half) \

View File

@@ -4,8 +4,8 @@
#include <metal_simdgroup_matrix>
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/steel/conv/params.h"
#include "mlx/backend/metal/kernels/utils.h"
#define MLX_MTL_CONST static constant constexpr const

View File

@@ -22,7 +22,7 @@ template <typename T, typename U>
device U* dst [[buffer(1)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[0]);
}
@@ -32,46 +32,46 @@ template <typename T, typename U>
device U* dst [[buffer(1)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
size_t offset = index.x + grid_dim.x * size_t(index.y);
auto offset = index.x + grid_dim.x * int64_t(index.y);
dst[offset] = static_cast<U>(src[offset]);
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_g_nd1(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
uint index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_1(index, src_stride);
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
dst[index] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_g_nd2(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc_2(index, src_strides);
int64_t dst_idx = index.x + (int64_t)grid_dim.x * index.y;
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
IdxT dst_idx = index.x + IdxT(grid_dim.x) * index.y;
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_g_nd3(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc_3(index, src_strides);
int64_t dst_idx =
index.x + (int64_t)grid_dim.x * (index.y + (int64_t)grid_dim.y * index.z);
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
IdxT dst_idx =
index.x + IdxT(grid_dim.x) * (index.y + IdxT(grid_dim.y) * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U, int N = 1>
template <typename T, typename U, int N = 1, typename IdxT = int64_t>
[[kernel]] void copy_g(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
@@ -80,17 +80,16 @@ template <typename T, typename U, int N = 1>
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc(
auto src_idx = elem_to_loc<IdxT>(
{N * index.x, index.y, index.z}, src_shape, src_strides, ndim);
if (N == 1) {
int64_t dst_idx =
index.x + grid_dim.x * (index.y + int64_t(grid_dim.y) * index.z);
IdxT dst_idx =
index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
return;
}
auto xshape = src_shape[ndim - 1];
int64_t dst_idx =
N * index.x + xshape * (index.y + int64_t(grid_dim.y) * index.z);
IdxT dst_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
auto src_xstride = src_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
dst[dst_idx + i] = static_cast<U>(src[src_idx]);
@@ -98,43 +97,43 @@ template <typename T, typename U, int N = 1>
}
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_nd1(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
constant const int64_t& dst_stride [[buffer(4)]],
uint index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_1(index, src_stride);
auto dst_idx = elem_to_loc_1(index, dst_stride);
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
auto dst_idx = elem_to_loc_1<IdxT>(index, dst_stride);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_nd2(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint2 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_2(index, src_strides);
auto dst_idx = elem_to_loc_2(index, dst_strides);
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_2<IdxT>(index, dst_strides);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
template <typename T, typename U, typename IdxT = int64_t>
[[kernel]] void copy_gg_nd3(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_3(index, src_strides);
auto dst_idx = elem_to_loc_3(index, dst_strides);
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
auto dst_idx = elem_to_loc_3<IdxT>(index, dst_strides);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U, int N = 1>
template <typename T, typename U, int N = 1, typename IdxT = int64_t>
[[kernel]] void copy_gg(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
@@ -143,7 +142,7 @@ template <typename T, typename U, int N = 1>
constant const int64_t* dst_strides [[buffer(4)]],
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]]) {
auto idx = elem_to_loc_2_nd(
auto idx = elem_to_loc_2_nd<IdxT>(
{N * index.x, index.y, index.z},
src_shape,
src_strides,
@@ -153,8 +152,8 @@ template <typename T, typename U, int N = 1>
dst[idx.y] = static_cast<U>(src[idx.x]);
return;
}
auto src_xstride = src_strides[ndim - 1];
auto dst_xstride = dst_strides[ndim - 1];
IdxT src_xstride = src_strides[ndim - 1];
IdxT dst_xstride = dst_strides[ndim - 1];
auto xshape = src_shape[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
dst[idx.y] = static_cast<U>(src[idx.x]);

View File

@@ -2,22 +2,29 @@
// clang-format off
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/copy.h"
#define instantiate_copy_all(tname, itype, otype) \
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype) \
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype) \
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype) \
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype) \
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype) \
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype) \
instantiate_kernel("gn4_copy" #tname, copy_g, itype, otype, 4) \
instantiate_kernel("ggn4_copy" #tname, copy_gg, itype, otype, 4)
#define instantiate_copy_all(tname, itype, otype) \
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype, int) \
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype, int) \
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype, int) \
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype, int) \
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype, int) \
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype, int) \
instantiate_kernel("gn2_copy" #tname, copy_g, itype, otype, 2, int) \
instantiate_kernel("ggn2_copy" #tname, copy_gg, itype, otype, 2, int) \
instantiate_kernel("g1large_copy" #tname, copy_g_nd1, itype, otype) \
instantiate_kernel("g2large_copy" #tname, copy_g_nd2, itype, otype) \
instantiate_kernel("g3large_copy" #tname, copy_g_nd3, itype, otype) \
instantiate_kernel("gg1large_copy" #tname, copy_gg_nd1, itype, otype) \
instantiate_kernel("gg2large_copy" #tname, copy_gg_nd2, itype, otype) \
instantiate_kernel("gg3large_copy" #tname, copy_gg_nd3, itype, otype) \
instantiate_kernel("gn4large_copy" #tname, copy_g, itype, otype, 4) \
instantiate_kernel("ggn4large_copy" #tname, copy_gg, itype, otype, 4)
#define instantiate_copy_itype(itname, itype) \
instantiate_copy_all(itname ##bool_, itype, bool) \

View File

@@ -4,30 +4,30 @@
#include "mlx/backend/metal/kernels/indexing.h"
template <typename T, typename IdxT, int NIDX, int IDX_NDIM>
template <typename T, typename IdxT, int NIDX, int IDX_NDIM, typename LocT>
METAL_FUNC void gather_impl(
const device T* src [[buffer(0)]],
device T* out [[buffer(1)]],
const constant int* src_shape [[buffer(2)]],
const constant size_t* src_strides [[buffer(3)]],
const constant int64_t* src_strides [[buffer(3)]],
const constant size_t& src_ndim [[buffer(4)]],
const constant int* slice_sizes [[buffer(5)]],
const constant int* axes [[buffer(6)]],
const thread Indices<IdxT, NIDX>& indices,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
size_t src_idx = 0;
LocT src_idx = 0;
for (int i = 0; i < NIDX; ++i) {
size_t idx_loc;
LocT idx_loc;
if (IDX_NDIM == 0) {
idx_loc = 0;
} else if (IDX_NDIM == 1) {
idx_loc = index.x * indices.strides[indices.ndim * i];
idx_loc = index.x * static_cast<LocT>(indices.strides[indices.ndim * i]);
} else {
idx_loc = index.x * indices.strides[indices.ndim * i];
idx_loc = index.x * static_cast<LocT>(indices.strides[indices.ndim * i]);
idx_loc += indices.row_contiguous[i]
? index.y
: elem_to_loc(
: elem_to_loc<LocT>(
index.y,
&indices.shapes[indices.ndim * i + 1],
&indices.strides[indices.ndim * i + 1],
@@ -35,17 +35,17 @@ METAL_FUNC void gather_impl(
}
auto ax = axes[i];
auto idx_val = offset_neg_idx(indices.buffers[i][idx_loc], src_shape[ax]);
src_idx += idx_val * src_strides[ax];
src_idx += static_cast<LocT>(idx_val) * static_cast<LocT>(src_strides[ax]);
}
auto src_offset = elem_to_loc(index.z, slice_sizes, src_strides, src_ndim);
auto src_offset =
elem_to_loc<LocT>(index.z, slice_sizes, src_strides, src_ndim);
size_t out_idx = index.z;
LocT out_idx = index.z;
if (IDX_NDIM == 1) {
out_idx += static_cast<size_t>(grid_dim.z) * index.x;
out_idx += static_cast<LocT>(grid_dim.z) * index.x;
} else if (IDX_NDIM >= 2) {
out_idx +=
grid_dim.z * (index.x * static_cast<size_t>(grid_dim.y) + index.y);
out_idx += grid_dim.z * (index.x * static_cast<LocT>(grid_dim.y) + index.y);
}
out[out_idx] = src[src_offset + src_idx];
}

View File

@@ -3,8 +3,6 @@
#include <metal_simdgroup>
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/steel/utils.h"
@@ -438,9 +436,9 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant size_t* bias_batch_stride [[buffer(13)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* bias_batch_stride [[buffer(13)]],
const constant int& bias_stride [[buffer(14)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
@@ -488,31 +486,21 @@ template <
simd_lid);
}
#define instantiate_gemv_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
template [[host_name("gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc \
"_axpby" #axpby)]] [[kernel]] void \
gemv<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const constant size_t* bias_batch_stride [[buffer(13)]], \
const constant int& bias_stride [[buffer(14)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define instantiate_gemv_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
instantiate_kernel( \
"gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc "_axpby" #axpby, \
gemv, \
itype, \
bm, \
bn, \
sm, \
sn, \
tm, \
tn, \
nc, \
axpby)
// clang-format off
#define instantiate_gemv(name, itype, bm, bn, tm, tn) \
@@ -551,13 +539,13 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* index_batch_strides [[buffer(11)]],
const constant int64_t* index_batch_strides [[buffer(11)]],
const constant int& vector_batch_ndim [[buffer(12)]],
const constant int* vector_batch_shape [[buffer(13)]],
const constant size_t* vector_batch_stride [[buffer(14)]],
const constant int64_t* vector_batch_stride [[buffer(14)]],
const constant int& matrix_batch_ndim [[buffer(15)]],
const constant int* matrix_batch_shape [[buffer(16)]],
const constant size_t* matrix_batch_stride [[buffer(17)]],
const constant int64_t* matrix_batch_stride [[buffer(17)]],
const constant uint32_t* vec_indices [[buffer(18)]],
const constant uint32_t* mat_indices [[buffer(19)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -573,8 +561,8 @@ template <
// Update batch offsets
if (batch_ndim > 1) {
const constant size_t* veci_bstrides = index_batch_strides;
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
const constant auto* veci_bstrides = index_batch_strides;
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
@@ -621,37 +609,14 @@ template <
simd_lid);
}
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
template [[host_name("gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
gemv_gather<itype, bm, bn, sm, sn, tm, tn>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* index_batch_strides [[buffer(11)]], \
const constant int& vector_batch_ndim [[buffer(12)]], \
const constant int* vector_batch_shape [[buffer(13)]], \
const constant size_t* vector_batch_stride [[buffer(14)]], \
const constant int& matrix_batch_ndim [[buffer(15)]], \
const constant int* matrix_batch_shape [[buffer(16)]], \
const constant size_t* matrix_batch_stride [[buffer(17)]], \
const constant uint32_t* vec_indices [[buffer(18)]], \
const constant uint32_t* mat_indices [[buffer(19)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_bs_blocks(name, itype) \
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
instantiate_kernel( \
"gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn, \
gemv_gather, itype, bm, bn, sm, sn, tm, tn)
#define instantiate_gemv_bs_blocks(name, itype) \
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 1, 4) \
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 4, 4) \
instantiate_gemv_bs_helper(name, itype, 8, 1, 1, 32, 4, 4) // clang-format on
@@ -686,9 +651,9 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant size_t* bias_batch_stride [[buffer(13)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* bias_batch_stride [[buffer(13)]],
const constant int& bias_stride [[buffer(14)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
@@ -736,33 +701,14 @@ template <
simd_lid);
}
#define instantiate_gemv_t_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
template [[host_name("gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc \
"_axpby" #axpby)]] [[kernel]] void \
gemv_t<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const constant size_t* bias_batch_stride [[buffer(13)]], \
const constant int& bias_stride [[buffer(14)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_t_helper( \
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
instantiate_kernel( \
"gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
"_tm" #tm "_tn" #tn "_nc" #nc "_axpby" #axpby, \
gemv_t, itype, bm, bn, sm, sn, tm, tn, nc, axpby)
#define instantiate_gemv_t(name, itype, bm, bn, sm, sn, tm, tn) \
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 0) \
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 1) \
@@ -802,13 +748,13 @@ template <
const constant float& beta [[buffer(8)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* index_batch_strides [[buffer(11)]],
const constant int64_t* index_batch_strides [[buffer(11)]],
const constant int& vector_batch_ndim [[buffer(12)]],
const constant int* vector_batch_shape [[buffer(13)]],
const constant size_t* vector_batch_stride [[buffer(14)]],
const constant int64_t* vector_batch_stride [[buffer(14)]],
const constant int& matrix_batch_ndim [[buffer(15)]],
const constant int* matrix_batch_shape [[buffer(16)]],
const constant size_t* matrix_batch_stride [[buffer(17)]],
const constant int64_t* matrix_batch_stride [[buffer(17)]],
const constant uint32_t* vec_indices [[buffer(18)]],
const constant uint32_t* mat_indices [[buffer(19)]],
uint3 tid [[threadgroup_position_in_grid]],
@@ -824,8 +770,8 @@ template <
// Update batch offsets
if (batch_ndim > 1) {
const constant size_t* veci_bstrides = index_batch_strides;
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
const constant auto* veci_bstrides = index_batch_strides;
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
@@ -872,36 +818,14 @@ template <
simd_lid);
}
#define instantiate_gemv_t_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
template [[host_name("gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
gemv_t_gather<itype, bm, bn, sm, sn, tm, tn>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
const device itype* bias [[buffer(2)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant float& alpha [[buffer(7)]], \
const constant float& beta [[buffer(8)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* index_batch_strides [[buffer(11)]], \
const constant int& vector_batch_ndim [[buffer(12)]], \
const constant int* vector_batch_shape [[buffer(13)]], \
const constant size_t* vector_batch_stride [[buffer(14)]], \
const constant int& matrix_batch_ndim [[buffer(15)]], \
const constant int* matrix_batch_shape [[buffer(16)]], \
const constant size_t* matrix_batch_stride [[buffer(17)]], \
const constant uint32_t* vec_indices [[buffer(18)]], \
const constant uint32_t* mat_indices [[buffer(19)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
// clang-format off
#define instantiate_gemv_t_bs_helper( \
nm, itype, bm, bn, sm, sn, tm, tn) \
instantiate_kernel( \
"gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
"_sn" #sn "_tm" #tm "_tn" #tn, \
gemv_t_gather, itype, bm, bn, sm, sn, tm, tn)
#define instantiate_gemv_t_bs_blocks(name, itype) \
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 1) \
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 4) \
@@ -912,4 +836,4 @@ template <
// clang-format off
instantiate_gemv_t_bs_blocks(float32, float);
instantiate_gemv_t_bs_blocks(float16, half);
instantiate_gemv_t_bs_blocks(bfloat16, bfloat16_t); // clang-format on
instantiate_gemv_t_bs_blocks(bfloat16, bfloat16_t); // clang-format on

View File

@@ -642,13 +642,13 @@ template <
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device out_mask_t* out_mask [[buffer(20)]],
const device op_mask_t* mat_mask [[buffer(21)]],
const device op_mask_t* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@@ -673,8 +673,8 @@ template <
}
if (has_operand_mask) {
const constant size_t* mask_strides_mat = mask_batch_strides;
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
const constant auto* mask_strides_mat = mask_batch_strides;
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
@@ -742,13 +742,13 @@ template <
const constant int& marix_ld [[buffer(6)]],
const constant int& batch_ndim [[buffer(9)]],
const constant int* batch_shape [[buffer(10)]],
const constant size_t* vector_batch_stride [[buffer(11)]],
const constant size_t* matrix_batch_stride [[buffer(12)]],
const constant int64_t* vector_batch_stride [[buffer(11)]],
const constant int64_t* matrix_batch_stride [[buffer(12)]],
const device out_mask_t* out_mask [[buffer(20)]],
const device op_mask_t* mat_mask [[buffer(21)]],
const device op_mask_t* vec_mask [[buffer(22)]],
const constant int* mask_strides [[buffer(23)]],
const constant size_t* mask_batch_strides [[buffer(24)]],
const constant int64_t* mask_batch_strides [[buffer(24)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
@@ -773,8 +773,8 @@ template <
}
if (has_operand_mask) {
const constant size_t* mask_strides_mat = mask_batch_strides;
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
const constant auto* mask_strides_mat = mask_batch_strides;
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);

View File

@@ -4,37 +4,17 @@
#include <metal_simdgroup>
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/gemv_masked.h"
#define instantiate_gemv_helper( \
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
template [[host_name("gemv_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc)]] [[kernel]] void \
gemv_masked<itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const device outm_t* out_mask [[buffer(20)]], \
const device opm_t* mat_mask [[buffer(21)]], \
const device opm_t* vec_mask [[buffer(22)]], \
const constant int* mask_strides [[buffer(23)]], \
const constant size_t* mask_batch_strides [[buffer(24)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
instantiate_kernel( \
"gemv_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc, \
gemv_masked, itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc)
#define instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
instantiate_gemv_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
@@ -63,29 +43,11 @@ instantiate_gemv_blocks(bfloat16, bfloat16_t);
#define instantiate_gemv_t_helper( \
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
template [[host_name("gemv_t_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc)]] [[kernel]] void \
gemv_t_masked<itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc>( \
const device itype* mat [[buffer(0)]], \
const device itype* in_vec [[buffer(1)]], \
device itype* out_vec [[buffer(3)]], \
const constant int& in_vec_size [[buffer(4)]], \
const constant int& out_vec_size [[buffer(5)]], \
const constant int& marix_ld [[buffer(6)]], \
const constant int& batch_ndim [[buffer(9)]], \
const constant int* batch_shape [[buffer(10)]], \
const constant size_t* vector_batch_stride [[buffer(11)]], \
const constant size_t* matrix_batch_stride [[buffer(12)]], \
const device outm_t* out_mask [[buffer(20)]], \
const device opm_t* mat_mask [[buffer(21)]], \
const device opm_t* vec_mask [[buffer(22)]], \
const constant int* mask_strides [[buffer(23)]], \
const constant size_t* mask_batch_strides [[buffer(24)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
instantiate_kernel( \
"gemv_t_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
"_tn" #tn "_nc" #nc, \
gemv_t_masked, itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc)
#define instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
instantiate_gemv_t_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \

View File

@@ -8,13 +8,13 @@ template <typename IdxT, int NIDX>
struct Indices {
const array<const device IdxT*, NIDX> buffers;
const constant int* shapes;
const constant size_t* strides;
const constant int64_t* strides;
const constant bool* row_contiguous;
const int ndim;
};
template <typename IdxT>
METAL_FUNC size_t offset_neg_idx(IdxT idx, size_t size) {
METAL_FUNC size_t offset_neg_idx(IdxT idx, int size) {
if (is_unsigned_v<IdxT>) {
return idx;
} else {

View File

@@ -0,0 +1,16 @@
// Copyright © 2024 Apple Inc.
// clang-format off
#define jit_if #if
#define jit_else #else
#define jit_endif #endif
jit_if (__METAL_VERSION__ >= 310)
#include "mlx/backend/metal/kernels/metal_3_1/bf16.h"
jit_else
#include "mlx/backend/metal/kernels/metal_3_0/bf16.h"
jit_endif // clang-format on

View File

@@ -3,8 +3,6 @@
#include <metal_common>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;

View File

@@ -6,12 +6,6 @@
using namespace metal;
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
typedef bfloat bfloat16_t;
#else
/////////////////////////////////////////////////////////////////////////////
// Helpers
/////////////////////////////////////////////////////////////////////////////
@@ -311,7 +305,10 @@ METAL_FUNC bool isnan(_MLX_BFloat16 x) {
} // namespace metal
#pragma METAL internals : disable
inline uint16_t bfloat16_to_uint16(const bfloat16_t x) {
return x.bits_;
}
#endif
#include "mlx/backend/metal/kernels/bf16_math.h"
inline bfloat16_t uint16_to_bfloat16(const uint16_t x) {
return _MLX_BFloat16(x, _MLX_BFloat16::bits_to_bfloat());
}

View File

@@ -0,0 +1,16 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <metal_stdlib>
using namespace metal;
typedef bfloat bfloat16_t;
inline uint16_t bfloat16_to_uint16(const bfloat16_t x) {
return as_type<uint16_t>(x);
}
inline bfloat16_t uint16_to_bfloat16(const uint16_t x) {
return as_type<bfloat16_t>(x);
}

File diff suppressed because it is too large Load Diff

View File

@@ -72,7 +72,6 @@
#define instantiate_quantized_all_single(type, group_size, bits) \
instantiate_quantized(affine_quantize, type, group_size, bits) \
instantiate_quantized(affine_quantize_scales_biases, type, group_size, bits) \
instantiate_quantized(affine_dequantize, type, group_size, bits) \
instantiate_quantized(bs_qmv_fast, type, group_size, bits) \
instantiate_quantized(bs_qmv, type, group_size, bits) \
@@ -116,7 +115,9 @@
#define instantiate_quantized_all() \
instantiate_quantized_groups(2) \
instantiate_quantized_groups(3) \
instantiate_quantized_groups(4) \
instantiate_quantized_groups(6) \
instantiate_quantized_groups(8)
instantiate_quantized_all() // clang-format on

View File

@@ -71,7 +71,7 @@ rbits threefry2x32_hash(const thread uint2& key, uint2 count) {
constant const uint& bytes_per_key,
constant const int& ndim,
constant const int* key_shape,
constant const size_t* key_strides,
constant const int64_t* key_strides,
uint2 grid_dim [[threads_per_grid]],
uint2 index [[thread_position_in_grid]]) {
auto kidx = 2 * index.x;

View File

@@ -10,186 +10,156 @@
#include "mlx/backend/metal/kernels/reduction/ops.h"
#include "mlx/backend/metal/kernels/reduce.h"
#define instantiate_reduce_helper_floats(inst_f, name, op) \
inst_f(name, float16, half, op) \
inst_f(name, float32, float, op) \
inst_f(name, bfloat16, bfloat16_t, op)
#define instantiate_init_reduce(name, tname, type, op) \
instantiate_kernel("init_reduce_" #name #tname, init_reduce, type, op<type>)
#define instantiate_reduce_helper_uints(inst_f, name, op) \
inst_f(name, uint8, uint8_t, op) \
inst_f(name, uint16, uint16_t, op) \
inst_f(name, uint32, uint32_t, op)
instantiate_init_reduce(and, bool_, bool, And)
instantiate_init_reduce(or, bool_, bool, Or)
#define instantiate_reduce_helper_ints(inst_f, name, op) \
inst_f(name, int8, int8_t, op) \
inst_f(name, int16, int16_t, op) \
inst_f(name, int32, int32_t, op)
#define instantiate_init_sum_prod(name, op) \
instantiate_init_reduce(name, int32, int32_t, op) \
instantiate_init_reduce(name, int64, int64_t, op) \
instantiate_init_reduce(name, float16, float16_t, op) \
instantiate_init_reduce(name, bfloat16, bfloat16_t, op) \
instantiate_init_reduce(name, float32, float, op) \
instantiate_init_reduce(name, complex64, complex64_t, op)
#define instantiate_reduce_helper_64b(inst_f, name, op) \
inst_f(name, int64, int64_t, op) \
inst_f(name, uint64, uint64_t, op) \
inst_f(name, complex64, complex64_t, op)
instantiate_init_sum_prod(sum, Sum)
instantiate_init_sum_prod(prod, Prod)
#define instantiate_reduce_helper_types(inst_f, name, op) \
instantiate_reduce_helper_floats(inst_f, name, op) \
instantiate_reduce_helper_uints(inst_f, name, op) \
instantiate_reduce_helper_ints(inst_f, name, op)
#define instantiate_init_min_max(name, op) \
instantiate_init_reduce(name, bool_, bool, op) \
instantiate_init_reduce(name, int8, int8_t, op) \
instantiate_init_reduce(name, int16, int16_t, op) \
instantiate_init_reduce(name, int32, int32_t, op) \
instantiate_init_reduce(name, int64, int64_t, op) \
instantiate_init_reduce(name, uint8, uint8_t, op) \
instantiate_init_reduce(name, uint16, uint16_t, op) \
instantiate_init_reduce(name, uint32, uint32_t, op) \
instantiate_init_reduce(name, uint64, uint64_t, op) \
instantiate_init_reduce(name, float16, float16_t, op) \
instantiate_init_reduce(name, bfloat16, bfloat16_t, op) \
instantiate_init_reduce(name, float32, float, op) \
instantiate_init_reduce(name, complex64, complex64_t, op)
#define instantiate_reduce_ops(inst_f, type_f) \
type_f(inst_f, sum, Sum) \
type_f(inst_f, prod, Prod) \
type_f(inst_f, min, Min) \
type_f(inst_f, max, Max)
// Special case for bool reductions
#define instantiate_reduce_from_types_helper( \
inst_f, name, tname, itype, otype, op) \
inst_f(name##tname, itype, otype, op)
#define instantiate_reduce_from_types(inst_f, name, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, bool_, bool, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint8, uint8_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint16, uint16_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint32, uint32_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint64, uint64_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int8, int8_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int16, int16_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int32, int32_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int64, int64_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, float16, half, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, \
name, \
float32, \
float, \
otype, \
op) \
instantiate_reduce_from_types_helper( \
inst_f, \
name, \
bfloat16, \
bfloat16_t, \
otype, \
op)
#define instantiate_init_reduce(name, otype, op) \
instantiate_kernel("init_reduce_" #name, \
init_reduce, \
otype, op)
#define instantiate_init_reduce_helper(name, tname, type, op) \
instantiate_init_reduce(name##tname, type, op<type>)
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_64b)
instantiate_init_reduce(andbool_, bool, And<bool>)
instantiate_init_reduce(orbool_, bool, Or<bool>)
instantiate_init_min_max(min, Min)
instantiate_init_min_max(max, Max)
#define instantiate_all_reduce(name, itype, otype, op) \
instantiate_kernel("all_reduce_" #name, \
all_reduce, \
itype, otype, op)
#define instantiate_same_all_reduce_helper(name, tname, type, op) \
instantiate_all_reduce(name##tname, type, type, op<type>)
#define instantiate_col_reduce_small(name, itype, otype, op, dim) \
instantiate_kernel("col_reduce_small_" #dim "_reduce_" #name, \
col_reduce_small, \
itype, otype, op, uint, dim) \
instantiate_kernel("col_reduce_longcolumn_" #dim "_reduce_" #name, \
col_reduce_longcolumn, \
itype, otype, op, uint, dim) \
instantiate_kernel("col_reduce_small_large_" #dim "_reduce_" #name, \
col_reduce_small, \
itype, otype, op, int64_t, dim) \
instantiate_kernel("col_reduce_longcolumn_large_" #dim "_reduce_" #name, \
col_reduce_longcolumn, \
itype, otype, op, int64_t, dim)
instantiate_reduce_ops(instantiate_same_all_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_all_reduce_helper, instantiate_reduce_helper_64b)
#define instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, bm, bn) \
instantiate_kernel("col_reduce_looped_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_looped, \
itype, otype, op, uint, dim, bm, bn) \
instantiate_kernel("col_reduce_looped_large_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_looped, \
itype, otype, op, int64_t, dim, bm, bn)
instantiate_reduce_from_types(instantiate_all_reduce, and, bool, And<bool>)
instantiate_reduce_from_types(instantiate_all_reduce, or, bool, Or<bool>)
// special case bool with larger output type
instantiate_all_reduce(sumbool_, bool, uint32_t, Sum<uint32_t>)
#define instantiate_col_reduce_small(name, itype, otype, op, dim) \
instantiate_kernel("col_reduce_small_" #dim "_reduce_" #name, \
col_reduce_small, \
itype, otype, op, dim) \
instantiate_kernel("col_reduce_longcolumn_" #dim "_reduce_" #name, \
col_reduce_longcolumn, \
itype, otype, op, dim)
#define instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, bm, bn) \
instantiate_kernel("col_reduce_looped_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_looped, \
itype, otype, op, dim, bm, bn)
#define instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, bm, bn) \
instantiate_kernel("col_reduce_2pass_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_2pass, \
itype, otype, op, dim, bm, bn)
#define instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, bm, bn) \
instantiate_kernel("col_reduce_2pass_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_2pass, \
itype, otype, op, uint, dim, bm, bn) \
instantiate_kernel("col_reduce_2pass_large_" #dim "_" #bm "_" #bn "_reduce_" #name, \
col_reduce_2pass, \
itype, otype, op, int64_t, dim, bm, bn)
#define instantiate_col_reduce_looped(name, itype, otype, op, dim) \
instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, 32, 32) \
instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, 32, 32)
#define instantiate_col_reduce_general(name, itype, otype, op) \
instantiate_col_reduce_small(name, itype, otype, op, 0) \
instantiate_col_reduce_small(name, itype, otype, op, 1) \
instantiate_col_reduce_small(name, itype, otype, op, 2) \
instantiate_col_reduce_small(name, itype, otype, op, 3) \
instantiate_col_reduce_small(name, itype, otype, op, 4) \
instantiate_col_reduce_looped(name, itype, otype, op, 0) \
instantiate_col_reduce_small(name, itype, otype, op, 5) \
instantiate_col_reduce_looped(name, itype, otype, op, 1) \
instantiate_col_reduce_looped(name, itype, otype, op, 2) \
instantiate_col_reduce_looped(name, itype, otype, op, 3) \
instantiate_col_reduce_looped(name, itype, otype, op, 4)
instantiate_col_reduce_looped(name, itype, otype, op, 5)
#define instantiate_same_col_reduce_helper(name, tname, type, op) \
instantiate_col_reduce_general(name##tname, type, type, op<type>)
#define instantiate_row_reduce_small(name, itype, otype, op, dim) \
instantiate_kernel("row_reduce_small_" #dim "_reduce_" #name, \
row_reduce_small, \
itype, otype, op, uint, dim) \
instantiate_kernel("row_reduce_small_large_" #dim "_reduce_" #name, \
row_reduce_small, \
itype, otype, op, int64_t, dim)
instantiate_reduce_ops(instantiate_same_col_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_col_reduce_helper, instantiate_reduce_helper_64b)
instantiate_col_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)
instantiate_reduce_from_types(instantiate_col_reduce_general, and, bool, And<bool>)
instantiate_reduce_from_types(instantiate_col_reduce_general, or, bool, Or<bool>)
#define instantiate_row_reduce_small(name, itype, otype, op, dim) \
instantiate_kernel("row_reduce_small_" #dim "_reduce_" #name, \
row_reduce_small, \
itype, otype, op, dim)
#define instantiate_row_reduce_looped(name, itype, otype, op, dim) \
instantiate_kernel("row_reduce_looped_" #dim "_reduce_" #name, \
row_reduce_looped, \
itype, otype, op, dim)
#define instantiate_row_reduce_looped(name, itype, otype, op, dim) \
instantiate_kernel("row_reduce_looped_" #dim "_reduce_" #name, \
row_reduce_looped, \
itype, otype, op, uint, dim) \
instantiate_kernel("row_reduce_looped_large_" #dim "_reduce_" #name, \
row_reduce_looped, \
itype, otype, op, int64_t, dim)
#define instantiate_row_reduce_general(name, itype, otype, op) \
instantiate_row_reduce_small(name, itype, otype, op, 0) \
instantiate_row_reduce_small(name, itype, otype, op, 1) \
instantiate_row_reduce_small(name, itype, otype, op, 2) \
instantiate_row_reduce_small(name, itype, otype, op, 3) \
instantiate_row_reduce_small(name, itype, otype, op, 4) \
instantiate_row_reduce_looped(name, itype, otype, op, 0) \
instantiate_row_reduce_small(name, itype, otype, op, 5) \
instantiate_row_reduce_looped(name, itype, otype, op, 1) \
instantiate_row_reduce_looped(name, itype, otype, op, 2) \
instantiate_row_reduce_looped(name, itype, otype, op, 3) \
instantiate_row_reduce_looped(name, itype, otype, op, 4) \
instantiate_row_reduce_looped(name, itype, otype, op, 5) \
instantiate_kernel("row_reduce_simple_" #name, \
row_reduce_simple, \
itype, otype, op)
#define instantiate_same_row_reduce_helper(name, tname, type, op) \
instantiate_row_reduce_general(name##tname, type, type, op<type>)
#define instantiate_reduce_functions(name, tname, itype, otype, op) \
instantiate_all_reduce(name##tname, itype, otype, op<otype>) \
instantiate_row_reduce_general(name##tname, itype, otype, op<otype>) \
instantiate_col_reduce_general(name##tname, itype, otype, op<otype>)
instantiate_reduce_ops(instantiate_same_row_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_row_reduce_helper, instantiate_reduce_helper_64b)
#define instantiate_and_or(name, op) \
instantiate_reduce_functions(name, bool_, bool, bool, op) \
instantiate_reduce_functions(name, int16, int16_t, bool, op) \
instantiate_reduce_functions(name, int32, int32_t, bool, op) \
instantiate_reduce_functions(name, int64, int64_t, bool, op)
instantiate_reduce_from_types(instantiate_row_reduce_general, and, bool, And<bool>)
instantiate_reduce_from_types(instantiate_row_reduce_general, or, bool, Or<bool>)
instantiate_and_or(and, And)
instantiate_and_or(or, Or)
instantiate_row_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)
#define instantiate_sum_prod(name, op) \
instantiate_reduce_functions(name, int8, int8_t, int32_t, op) \
instantiate_reduce_functions(name, int16, int16_t, int32_t, op) \
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \
instantiate_reduce_functions(name, int64, int64_t, int64_t, op) \
instantiate_reduce_functions(name, float16, float16_t, float16_t, op) \
instantiate_reduce_functions(name, bfloat16, bfloat16_t, bfloat16_t, op) \
instantiate_reduce_functions(name, float32, float, float, op) \
instantiate_reduce_functions(name, complex64, complex64_t, complex64_t, op)
instantiate_sum_prod(sum, Sum)
instantiate_sum_prod(prod, Prod)
#define instantiate_min_max(name, op) \
instantiate_reduce_functions(name, int8, int8_t, int8_t, op) \
instantiate_reduce_functions(name, int16, int16_t, int16_t, op) \
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \
instantiate_reduce_functions(name, int64, int64_t, int64_t, op) \
instantiate_reduce_functions(name, uint8, uint8_t, uint8_t, op) \
instantiate_reduce_functions(name, uint16, uint16_t, uint16_t, op) \
instantiate_reduce_functions(name, uint32, uint32_t, uint32_t, op) \
instantiate_reduce_functions(name, uint64, uint64_t, uint64_t, op) \
instantiate_reduce_functions(name, float16, float16_t, float16_t, op) \
instantiate_reduce_functions(name, bfloat16, bfloat16_t, bfloat16_t, op) \
instantiate_reduce_functions(name, float32, float, float, op) \
instantiate_reduce_functions(name, complex64, complex64_t, complex64_t, op)
instantiate_min_max(min, Min)
instantiate_min_max(max, Max)
// clang-format on

View File

@@ -1,6 +1,11 @@
// Copyright © 2023-2024 Apple Inc.
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
template <
typename T,
typename U,
typename Op,
typename IdxT = int64_t,
int N_READS = REDUCE_N_READS>
[[kernel]] void all_reduce(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
@@ -16,10 +21,10 @@ template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
threadgroup U shared_vals[simd_size];
U total = Op::init;
int64_t start_idx = gid.y * row_size;
int64_t actual_row =
IdxT start_idx = gid.y * IdxT(row_size);
IdxT actual_row =
(start_idx + row_size <= in_size) ? row_size : in_size - start_idx;
int64_t blocks = actual_row / (lsize.x * N_READS);
IdxT blocks = actual_row / (lsize.x * N_READS);
int extra = actual_row - blocks * (lsize.x * N_READS);
extra -= lid.x * N_READS;
start_idx += lid.x * N_READS;
@@ -30,7 +35,7 @@ template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
extra = 0;
}
for (int64_t b = 0; b < blocks; b++) {
for (IdxT b = 0; b < blocks; b++) {
for (int i = 0; i < N_READS; i++) {
total = op(static_cast<U>(in[i]), total);
}

View File

@@ -1,16 +1,16 @@
// Copyright © 2023-2024 Apple Inc.
template <typename T, typename U, typename Op, int NDIMS>
template <typename T, typename U, typename Op, typename IdxT, int NDIMS>
[[kernel]] void col_reduce_small(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant int64_t& reduction_stride [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
const constant size_t& non_col_reductions [[buffer(10)]],
uint3 gid [[threadgroup_position_in_grid]],
@@ -19,7 +19,7 @@ template <typename T, typename U, typename Op, int NDIMS>
uint3 lsize [[threads_per_threadgroup]]) {
constexpr int n_reads = 4;
Op op;
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
const device T* row;
U totals[n_reads];
@@ -27,20 +27,20 @@ template <typename T, typename U, typename Op, int NDIMS>
totals[i] = Op::init;
}
size_t column = size_t(gid.x) * lsize.x * n_reads + lid.x * n_reads;
IdxT column = IdxT(gid.x) * lsize.x * n_reads + lid.x * n_reads;
if (column >= reduction_stride) {
return;
}
bool safe = column + n_reads <= reduction_stride;
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
in += in_idx + column;
size_t total_rows = non_col_reductions * reduction_size;
IdxT total_rows = IdxT(non_col_reductions) * IdxT(reduction_size);
loop.next(lid.y, reduce_shape, reduce_strides);
for (size_t r = lid.y; r < total_rows; r += lsize.y) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
for (IdxT r = lid.y; r < total_rows; r += lsize.y) {
row = in + loop.location();
if (safe) {
for (int i = 0; i < n_reads; i++) {
totals[i] = op(static_cast<U>(row[i]), totals[i]);
@@ -80,7 +80,7 @@ template <typename T, typename U, typename Op, int NDIMS>
}
if (lid.y == 0) {
out += out_idx * reduction_stride + column;
out += out_idx * IdxT(reduction_stride) + column;
if (safe) {
for (int i = 0; i < n_reads; i++) {
out[i] = totals[i];
@@ -93,17 +93,17 @@ template <typename T, typename U, typename Op, int NDIMS>
}
}
template <typename T, typename U, typename Op, int NDIMS>
template <typename T, typename U, typename Op, typename IdxT, int NDIMS>
[[kernel]] void col_reduce_longcolumn(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
const constant size_t& non_col_reductions [[buffer(10)]],
const constant size_t& out_size [[buffer(11)]],
@@ -112,19 +112,19 @@ template <typename T, typename U, typename Op, int NDIMS>
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]]) {
Op op;
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
const device T* row;
size_t out_idx = gid.x + gsize.x * size_t(gid.y);
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
IdxT out_idx = gid.x + gsize.x * IdxT(gid.y);
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
in += in_idx + lid.x;
U total = Op::init;
size_t total_rows = non_col_reductions * reduction_size;
IdxT total_rows = IdxT(non_col_reductions) * IdxT(reduction_size);
loop.next(gid.z * lsize.y + lid.y, reduce_shape, reduce_strides);
for (size_t r = gid.z * lsize.y + lid.y; r < total_rows;
for (IdxT r = gid.z * lsize.y + lid.y; r < total_rows;
r += lsize.y * gsize.z) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
row = in + loop.location();
total = op(static_cast<U>(*row), total);
loop.next(lsize.y * gsize.z, reduce_shape, reduce_strides);
}
@@ -136,7 +136,8 @@ template <typename T, typename U, typename Op, int NDIMS>
for (uint i = 1; i < lsize.y; i++) {
total = op(total, shared_vals[i * lsize.x + lid.x]);
}
out[gid.z * out_size + out_idx * reduction_stride + lid.x] = total;
out[gid.z * IdxT(out_size) + out_idx * IdxT(reduction_stride) + lid.x] =
total;
}
}
@@ -151,17 +152,24 @@ template <typename T, typename U, typename Op, int NDIMS>
* totals with a loop.
* 7. Write them to the output
*/
template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
template <
typename T,
typename U,
typename Op,
typename IdxT,
int NDIMS,
int BM,
int BN>
[[kernel]] void col_reduce_looped(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant int64_t& reduction_stride [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
const constant size_t& non_col_reductions [[buffer(10)]],
uint3 gid [[threadgroup_position_in_grid]],
@@ -176,7 +184,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
threadgroup U shared_vals[BN * BM];
U totals[n_reads];
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
const device T* row;
for (int i = 0; i < n_reads; i++) {
@@ -185,17 +193,17 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
short lid = simd_group_id * simd_size + simd_lane_id;
short2 offset((lid % n_read_blocks) * n_reads, lid / n_read_blocks);
size_t column = BN * gid.x + offset.x;
IdxT column = BN * gid.x + offset.x;
bool safe = column + n_reads <= reduction_stride;
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
in += in_idx + column;
size_t total = non_col_reductions * reduction_size;
IdxT total = IdxT(non_col_reductions) * IdxT(reduction_size);
loop.next(offset.y, reduce_shape, reduce_strides);
for (size_t r = offset.y; r < total; r += BM) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
for (IdxT r = offset.y; r < total; r += BM) {
row = in + loop.location();
if (safe) {
for (int i = 0; i < n_reads; i++) {
@@ -235,8 +243,8 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
// Write the output.
if (simd_lane_id == 0) {
size_t out_column = BN * gid.x + out_offset.x;
out += out_idx * reduction_stride + out_column;
IdxT out_column = BN * gid.x + out_offset.x;
out += out_idx * IdxT(reduction_stride) + out_column;
if (out_column + n_outputs <= reduction_stride) {
for (int i = 0; i < n_outputs; i++) {
out[i] = totals[i];
@@ -269,7 +277,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
// Write the output.
if (offset.y == 0) {
out += out_idx * reduction_stride + column;
out += out_idx * IdxT(reduction_stride) + column;
if (safe) {
for (int i = 0; i < n_reads; i++) {
out[i] = totals[i];
@@ -283,17 +291,24 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
}
}
template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
template <
typename T,
typename U,
typename Op,
typename IdxT,
int NDIMS,
int BM,
int BN>
[[kernel]] void col_reduce_2pass(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant int64_t& reduction_stride [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
const constant size_t& non_col_reductions [[buffer(10)]],
const constant size_t& out_size [[buffer(11)]],
@@ -312,7 +327,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
threadgroup U shared_vals[BN * BM];
U totals[n_reads];
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
const device T* row;
for (int i = 0; i < n_reads; i++) {
@@ -321,20 +336,19 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
short lid = simd_group_id * simd_size + simd_lane_id;
short2 offset((lid % n_read_blocks) * n_reads, lid / n_read_blocks);
size_t column = BN * gid.x + offset.x;
IdxT column = BN * gid.x + offset.x;
bool safe = column + n_reads <= reduction_stride;
size_t full_idx = gid.y + gsize.y * size_t(gid.z);
size_t block_idx = full_idx / out_size;
size_t out_idx = full_idx % out_size;
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
IdxT full_idx = gid.y + gsize.y * IdxT(gid.z);
IdxT block_idx = full_idx / IdxT(out_size);
IdxT out_idx = full_idx % IdxT(out_size);
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
in += in_idx + column;
size_t total = non_col_reductions * reduction_size;
IdxT total = IdxT(non_col_reductions) * IdxT(reduction_size);
loop.next(offset.y + block_idx * BM, reduce_shape, reduce_strides);
for (size_t r = offset.y + block_idx * BM; r < total;
r += outer_blocks * BM) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
for (IdxT r = offset.y + block_idx * BM; r < total; r += outer_blocks * BM) {
row = in + loop.location();
if (safe) {
for (int i = 0; i < n_reads; i++) {
@@ -369,8 +383,8 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
// Write the output.
if (simd_lane_id == 0) {
size_t out_column = BN * gid.x + out_offset.x;
out += full_idx * reduction_stride + out_column;
IdxT out_column = BN * gid.x + out_offset.x;
out += full_idx * IdxT(reduction_stride) + out_column;
if (out_column + n_outputs <= reduction_stride) {
for (int i = 0; i < n_outputs; i++) {
out[i] = totals[i];

View File

@@ -98,11 +98,11 @@ template <
METAL_FUNC void per_thread_row_reduce(
thread U totals[N_WRITES],
const device T* in,
const size_t row_idx,
const int64_t row_idx,
int blocks,
int extra,
const constant int* shape,
const constant size_t* strides,
const constant int64_t* strides,
const constant int& ndim,
uint lsize_x,
uint lid_x) {
@@ -193,18 +193,19 @@ template <
typename T,
typename U,
typename Op,
typename IdxT,
int NDIMS,
int N_READS = REDUCE_N_READS>
[[kernel]] void row_reduce_small(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& row_size [[buffer(2)]],
const constant size_t& non_row_reductions [[buffer(3)]],
const constant int64_t& row_size [[buffer(2)]],
const constant int64_t& non_row_reductions [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint3 gid [[threadgroup_position_in_grid]],
@@ -214,20 +215,20 @@ template <
Op op;
U total_val = Op::init;
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
// Precompute some row reduction numbers
const device T* row;
int blocks = row_size / N_READS;
int extra = row_size % N_READS;
int blocks = IdxT(row_size) / N_READS;
int extra = IdxT(row_size) % N_READS;
if ((non_row_reductions < 32 && row_size <= 8) || non_row_reductions <= 8) {
// Simple loop over non_row_reductions and reduce the row in the thread.
size_t out_idx = tid.x + tsize.y * size_t(tid.y);
in += elem_to_loc(out_idx, shape, strides, ndim);
IdxT out_idx = tid.x + tsize.y * IdxT(tid.y);
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
for (uint r = 0; r < non_row_reductions; r++) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
row = in + loop.location();
thread_reduce<T, U, Op, N_READS>(total_val, row, blocks, extra);
loop.next(reduce_shape, reduce_strides);
}
@@ -236,13 +237,13 @@ template <
} else {
// Collaboratively reduce over non_row_reductions in the simdgroup. Each
// thread reduces every 32nd row and then a simple simd reduce.
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
in += elem_to_loc(out_idx, shape, strides, ndim);
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
loop.next(simd_lane_id, reduce_shape, reduce_strides);
for (uint r = simd_lane_id; r < non_row_reductions; r += simd_size) {
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
row = in + loop.location();
thread_reduce<T, U, Op, N_READS>(total_val, row, blocks, extra);
loop.next(simd_size, reduce_shape, reduce_strides);
}
@@ -259,13 +260,14 @@ template <
typename T,
typename U,
typename Op,
typename IdxT = int64_t,
int N_READS = REDUCE_N_READS,
int N_WRITES = REDUCE_N_WRITES>
[[kernel]] void row_reduce_simple(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant int64_t& out_size [[buffer(3)]],
uint3 gid [[threadgroup_position_in_grid]],
uint3 gsize [[threadgroups_per_grid]],
uint3 lid [[thread_position_in_threadgroup]],
@@ -277,15 +279,15 @@ template <
U totals[N_WRITES];
// Move to the row
size_t out_idx = N_WRITES * (gid.y + gsize.y * size_t(gid.z));
IdxT out_idx = N_WRITES * (gid.y + gsize.y * IdxT(gid.z));
if (out_idx + N_WRITES > out_size) {
out_idx = out_size - N_WRITES;
}
in += out_idx * reduction_size;
in += out_idx * IdxT(reduction_size);
out += out_idx;
// Each thread reduces across the row
int blocks = reduction_size / (lsize.x * N_READS);
int blocks = IdxT(reduction_size) / (lsize.x * N_READS);
int extra = reduction_size - blocks * (lsize.x * N_READS);
per_thread_row_reduce<T, U, Op, N_READS, N_WRITES>(
totals, in, reduction_size, blocks, extra, lsize.x, lid.x);
@@ -306,18 +308,19 @@ template <
typename T,
typename U,
typename Op,
typename IdxT,
int NDIMS,
int N_READS = REDUCE_N_READS>
[[kernel]] void row_reduce_looped(
const device T* in [[buffer(0)]],
device U* out [[buffer(1)]],
const constant size_t& row_size [[buffer(2)]],
const constant size_t& non_row_reductions [[buffer(3)]],
const constant int64_t& row_size [[buffer(2)]],
const constant int64_t& non_row_reductions [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int64_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
const constant int* reduce_shape [[buffer(7)]],
const constant size_t* reduce_strides [[buffer(8)]],
const constant int64_t* reduce_strides [[buffer(8)]],
const constant int& reduce_ndim [[buffer(9)]],
uint3 gid [[threadgroup_position_in_grid]],
uint3 gsize [[threadgroups_per_grid]],
@@ -330,19 +333,19 @@ template <
threadgroup U shared_vals[simd_size];
U total = Op::init;
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
// lid.x * N_READS breaks the per_thread_row_reduce interface a bit. Maybe it
// needs a small refactor.
in += elem_to_loc(out_idx, shape, strides, ndim) + lid.x * N_READS;
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim) + lid.x * N_READS;
looped_elem_to_loc<NDIMS> loop;
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
const device T* row;
int blocks = row_size / (lsize.x * N_READS);
int blocks = IdxT(row_size) / (lsize.x * N_READS);
int extra = row_size - blocks * (lsize.x * N_READS);
for (size_t i = 0; i < non_row_reductions; i++) {
row = in + loop.location(i, reduce_shape, reduce_strides, reduce_ndim);
for (IdxT i = 0; i < non_row_reductions; i++) {
row = in + loop.location();
// Each thread reduces across the row
U row_total;

View File

@@ -3,8 +3,6 @@
#include <metal_common>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
@@ -17,12 +15,15 @@ template <typename T, int N_READS = RMS_N_READS>
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
threadgroup float* local_inv_mean [[threadgroup(0)]],
threadgroup float* local_sums [[threadgroup(1)]],
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
constexpr int SIMD_SIZE = 32;
threadgroup float local_inv_mean[1];
threadgroup float local_sums[SIMD_SIZE];
float acc = 0;
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
@@ -84,13 +85,15 @@ template <typename T, int N_READS = RMS_N_READS>
constant float& eps,
constant uint& axis_size,
constant uint& w_stride,
threadgroup float* local_inv_mean [[threadgroup(0)]],
threadgroup float* local_sums [[threadgroup(1)]],
uint gid [[threadgroup_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
constexpr int SIMD_SIZE = 32;
threadgroup float local_inv_mean[1];
threadgroup float local_sums[SIMD_SIZE];
float acc = 0;
x += gid * size_t(axis_size) + lid * N_READS;
w += w_stride * lid * N_READS;
@@ -376,8 +379,6 @@ template <typename T, int N_READS = RMS_N_READS>
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
threadgroup float* local_inv_mean [[threadgroup(0)]], \
threadgroup float* local_sums [[threadgroup(1)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
@@ -407,8 +408,6 @@ template <typename T, int N_READS = RMS_N_READS>
constant float& eps, \
constant uint& axis_size, \
constant uint& w_stride, \
threadgroup float* local_inv_mean [[threadgroup(0)]], \
threadgroup float* local_sums [[threadgroup(1)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \

View File

@@ -2,7 +2,6 @@
#include <metal_math>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/utils.h"
template <typename T, bool traditional, bool forward>
void rope_single_impl(

View File

@@ -1,946 +1,16 @@
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/scaled_dot_product_attention_params.h"
#include "mlx/backend/metal/kernels/sdpa_vector.h"
#include "mlx/backend/metal/kernels/steel/defines.h"
#include "mlx/backend/metal/kernels/steel/gemm/transforms.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
using namespace mlx::steel;
template <
typename T,
short BROWS,
short BCOLS,
short dst_ld,
short reduction_dim,
short tgp_size,
short alignment = 1,
short n_reads = (BCOLS * BROWS) / (tgp_size),
short TCOLS = BCOLS / n_reads,
short TROWS = tgp_size / TCOLS>
struct BlockLoaderFA {
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
STEEL_CONST short vec_size = n_reads;
// Leading dimension for src
const int src_ld;
const int tile_stride;
// Thread location indices
const short thread_idx;
const short bi;
const short bj;
// threadgroup and device memory
threadgroup T* dst;
const device T* src;
struct alignas(alignment * sizeof(T)) ReadVector {
uint8_t v[sizeof(T) * vec_size];
};
/* Constructor */
METAL_FUNC BlockLoaderFA(
const device T* src_,
const int src_ld_,
threadgroup T* dst_,
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
ushort simd_lane_id [[thread_index_in_simdgroup]])
: src_ld(src_ld_),
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
thread_idx(simd_group_id * 32 + simd_lane_id),
bi(thread_idx / TCOLS),
bj(vec_size * (thread_idx % TCOLS)),
dst(dst_ + bi * dst_ld + bj),
src(src_ + bi * src_ld + bj) {}
/* Load from device memory into threadgroup memory - without bound checking */
METAL_FUNC void load_unsafe() const {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
*((threadgroup ReadVector*)(&dst[i * dst_ld])) =
*((const device ReadVector*)(&src[i * src_ld]));
}
}
/* Load from device memory into threadgroup memory - with bound checking */
METAL_FUNC void load_safe(short2 src_tile_dim) const {
src_tile_dim = src_tile_dim - short2(bj, bi);
// Skip loading if thread has no valid reads
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = T(0);
}
}
return;
}
// Use fast thread memory for bound checks
bool tmp_idx[vec_size];
T tmp_val[vec_size];
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
// Make sure tmp_idx only contains valid indices
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
}
// Read valid indices into tmp_val
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
}
// Copy values to threadgroup memory
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = tmp_val[j];
}
}
}
/* Iteration helper */
METAL_FUNC void next() {
src += tile_stride;
}
METAL_FUNC void next(short n) {
src += n * tile_stride;
}
};
template <bool M_aligned, bool N_aligned, bool K_aligned>
struct LoopAlignment {};
template <
typename T,
typename U,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
short lda_tgp,
short ldb_tgp,
typename AccumType = float,
typename Epilogue = TransformNone<U, AccumType>>
struct BlockMMAFA {
// Warp tile simdgroup matrix strides along M
STEEL_CONST short TM_stride = 8 * WM;
// Warp tile simdgroup matrix strides along M
STEEL_CONST short TN_stride = 8 * WN;
// Warp tile size along M
STEEL_CONST short TM = BM / TM_stride;
// Warp tile size along N
STEEL_CONST short TN = BN / TN_stride;
// Strides of A, B along reduction axis
STEEL_CONST short simd_stride_a = {
transpose_a ? TM_stride : TM_stride * lda_tgp};
STEEL_CONST short simd_stride_b = {
transpose_b ? TN_stride * ldb_tgp : TN_stride};
// Jump between elements
STEEL_CONST short jump_a = {transpose_a ? lda_tgp : 1};
STEEL_CONST short jump_b = {transpose_b ? ldb_tgp : 1};
STEEL_CONST short tile_stride_a = {transpose_a ? 8 * lda_tgp : 8};
STEEL_CONST short tile_stride_b = {transpose_b ? 8 : 8 * ldb_tgp};
// Simdgroup matrices
simdgroup_matrix<AccumType, 8, 8> Asimd[TM];
simdgroup_matrix<AccumType, 8, 8> Bsimd[TN];
simdgroup_matrix<AccumType, 8, 8> results[TM * TN] = {
simdgroup_matrix<AccumType, 8, 8>(0)};
// Offsets within threadgroup
const short tm;
const short tn;
short sm;
short sn;
ushort sid;
ushort slid;
short As_offset;
short Bs_offset;
/* Constructor */
METAL_FUNC BlockMMAFA(
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
ushort simd_lane_id [[thread_index_in_simdgroup]])
: tm(8 * (simd_group_id / WN)), tn(8 * (simd_group_id % WN)) {
// Determine thread position in simdgroup matrix
short qid = simd_lane_id / 4;
slid = simd_lane_id;
sid = simd_group_id;
sm = (qid & 4) + (simd_lane_id / 2) % 4;
sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
// Determine thread and simdgroup offset
As_offset =
transpose_a ? ((sn)*lda_tgp + (tm + sm)) : ((sn) + (tm + sm) * lda_tgp);
Bs_offset =
transpose_b ? ((tn + sn) * ldb_tgp + (sm)) : ((sm)*ldb_tgp + (tn + sn));
}
/* (BM, BK) X (BK, BN) multiply accumulate function */
METAL_FUNC void mma(const threadgroup T* As, const threadgroup T* Bs) {
// Adjust for simdgroup and thread location
As += As_offset;
Bs += Bs_offset;
// Iterate over BK in blocks of 8
STEEL_PRAGMA_UNROLL
for (short kk = 0; kk < BK; kk += 8) {
simdgroup_barrier(mem_flags::mem_none);
// Load elements from threadgroup A as simdgroup matrices
STEEL_PRAGMA_UNROLL
for (short i = 0; i < TM; i++) {
Asimd[i].thread_elements()[0] =
static_cast<AccumType>(As[i * simd_stride_a + 0]);
Asimd[i].thread_elements()[1] =
static_cast<AccumType>(As[i * simd_stride_a + jump_a]);
}
simdgroup_barrier(mem_flags::mem_none);
// Load elements from threadgroup B as simdgroup matrices
STEEL_PRAGMA_UNROLL
for (short j = 0; j < TN; j++) {
Bsimd[j].thread_elements()[0] =
static_cast<AccumType>(Bs[j * simd_stride_b + 0]);
Bsimd[j].thread_elements()[1] =
static_cast<AccumType>(Bs[j * simd_stride_b + jump_b]);
}
simdgroup_barrier(mem_flags::mem_none);
// Multiply and accumulate into result simdgroup matrices
STEEL_PRAGMA_UNROLL
for (short i = 0; i < TM; i++) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < TN; j++) {
short j_serp = (i % 2) ? (TN - 1 - j) : j;
simdgroup_multiply_accumulate(
results[i * TN + j_serp],
Asimd[i],
Bsimd[j_serp],
results[i * TN + j_serp]);
}
}
// Progress to next simdgroup tile
As += tile_stride_a;
Bs += tile_stride_b;
}
}
METAL_FUNC void rescale_output(const threadgroup float* Corrections) {
// Loop over all simdgroup tiles
STEEL_PRAGMA_UNROLL
for (short i = 0; i < TM; i++) {
short row = sm + tm + i * TM_stride;
float scale_value = Corrections[row];
STEEL_PRAGMA_UNROLL
for (short j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread auto& accum = results[i * TN + j].thread_elements();
// int offset = (i * TM_stride) * ldc + (j * TN_stride);
accum[0] *= scale_value;
accum[1] *= scale_value;
}
}
}
/* Store results from simdgroup_matrix results into device memory */
METAL_FUNC void store_result(device U* C, const int ldc) const {
// Adjust for simdgroup and thread location
C += (sm + tm) * ldc + tn + sn;
// Loop over all simdgroup tiles
STEEL_PRAGMA_UNROLL
for (short i = 0; i < TM; i++) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread const auto& accum = results[i * TN + j].thread_elements();
int offset = (i * TM_stride) * ldc + (j * TN_stride);
// Apply epilogue
U outs[2] = {Epilogue::apply(accum[0]), Epilogue::apply(accum[1])};
// Write out C
C[offset] = outs[0];
C[offset + 1] = outs[1];
}
}
}
METAL_FUNC void store_result_to_tgp_memory(
threadgroup U* C,
const int ldc,
short2 dst_tile_dims) const {
// Adjust for simdgroup and thread location
C += (sm + tm) * ldc + (tn + sn);
dst_tile_dims -= short2(tn + sn, sm + tm);
STEEL_PRAGMA_UNROLL
for (int i = 0; i < TM; i++) {
if (i * TM_stride < dst_tile_dims.y) {
STEEL_PRAGMA_UNROLL
for (int j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread const auto& accum = results[i * TN + j].thread_elements();
int offset = (i * TM_stride) * ldc + (j * TN_stride);
// Apply epilogue and output C
if (j * TN_stride < dst_tile_dims.x) {
C[offset] = Epilogue::apply(accum[0]);
}
if (j * TN_stride + 1 < dst_tile_dims.x) {
C[offset + 1] = Epilogue::apply(accum[1]);
}
}
}
}
}
METAL_FUNC void
store_result_safe(device U* C, const int ldc, short2 dst_tile_dims) const {
// Adjust for simdgroup and thread location
C += (sm + tm) * ldc + (tn + sn);
dst_tile_dims -= short2(tn + sn, sm + tm);
STEEL_PRAGMA_UNROLL
for (int i = 0; i < TM; i++) {
if (i * TM_stride < dst_tile_dims.y) {
STEEL_PRAGMA_UNROLL
for (int j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread const auto& accum = results[i * TN + j].thread_elements();
int offset = (i * TM_stride) * ldc + (j * TN_stride);
// Apply epilogue and output C
if (j * TN_stride < dst_tile_dims.x) {
C[offset] = Epilogue::apply(accum[0]);
}
if (j * TN_stride + 1 < dst_tile_dims.x) {
C[offset + 1] = Epilogue::apply(accum[1]);
}
}
}
}
}
/* Store results from simdgroup_matrix results into device memory */
METAL_FUNC void store_result(
device U* D,
const int ldd,
const device U* C,
const int ldc,
const int fdc,
thread const Epilogue& epilogue_op) const {
// Adjust for simdgroup and thread location
C += (sm + tm) * ldc + (tn + sn) * fdc;
D += (sm + tm) * ldd + tn + sn;
// Loop over all simdgroup tiles
STEEL_PRAGMA_UNROLL
for (short i = 0; i < TM; i++) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread const auto& accum = results[i * TN + j].thread_elements();
int offset_c = (i * TM_stride) * ldc + (j * TN_stride) * fdc;
int offset_d = (i * TM_stride) * ldd + (j * TN_stride);
// Apply epilogue
U outs[2] = {
epilogue_op.apply(accum[0], C[offset_c]),
epilogue_op.apply(accum[1], C[offset_c + fdc])};
// Write out D
D[offset_d] = outs[0];
D[offset_d + 1] = outs[1];
}
}
}
METAL_FUNC void store_result_safe(
device U* D,
const int ldd,
const device U* C,
const int ldc,
const int fdc,
short2 dst_tile_dims,
thread const Epilogue& epilogue_op) const {
// Adjust for simdgroup and thread location
C += (sm + tm) * ldc + (tn + sn) * fdc;
D += (sm + tm) * ldd + tn + sn;
dst_tile_dims -= short2(tn + sn, sm + tm);
STEEL_PRAGMA_UNROLL
for (int i = 0; i < TM; i++) {
if (i * TM_stride < dst_tile_dims.y) {
STEEL_PRAGMA_UNROLL
for (int j = 0; j < TN; j++) {
// Get accumulated result and associated offset in C
thread const auto& accum = results[i * TN + j].thread_elements();
int offset_c = (i * TM_stride) * ldc + (j * TN_stride) * fdc;
int offset_d = (i * TM_stride) * ldd + (j * TN_stride);
// Apply epilogue and output C
if (j * TN_stride < dst_tile_dims.x) {
D[offset_d] = epilogue_op.apply(accum[0], C[offset_c]);
}
if (j * TN_stride + 1 < dst_tile_dims.x) {
D[offset_d + 1] = epilogue_op.apply(accum[1], C[offset_c + fdc]);
}
}
}
}
}
METAL_FUNC void clear_results() {
STEEL_PRAGMA_UNROLL
for (int i = 0; i < TM; i++) {
STEEL_PRAGMA_UNROLL
for (int j = 0; j < TN; j++) {
results[i * TN + j] = simdgroup_matrix<AccumType, 8, 8>(0);
}
}
}
};
template <
typename T,
typename U,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_q,
bool transpose_k,
bool transpose_v,
bool MN_aligned,
bool K_aligned,
typename AccumType = typename AccumHelper<T>::accum_type,
typename Epilogue = TransformNone<U, AccumType>>
struct FastAttentionKernel {
STEEL_CONST short tgp_padding = 16 / sizeof(T);
STEEL_CONST short float_padding = 16 / sizeof(float);
STEEL_CONST short tgp_mem_size_q =
transpose_q ? BK * (BM + tgp_padding) : BM * (BK + tgp_padding);
STEEL_CONST short tgp_mem_size_k =
transpose_k ? BK * (BN + tgp_padding) : BN * (BK + tgp_padding);
STEEL_CONST short tgp_mem_size_v =
transpose_v ? BK * (BN + tgp_padding) : BN * (BK + tgp_padding);
STEEL_CONST short tgp_mem_size_s = BM * (BN + tgp_padding);
// maxes, rowsums, rescale
STEEL_CONST short tgp_mem_size_corrections =
4 * (BM * sizeof(float) + float_padding);
STEEL_CONST bool share_kv_smem = transpose_k != transpose_v;
STEEL_CONST short tgp_mem_size = share_kv_smem
? tgp_mem_size_q + tgp_mem_size_k + tgp_mem_size_s +
tgp_mem_size_corrections
: tgp_mem_size_q + tgp_mem_size_k + tgp_mem_size_s +
tgp_mem_size_corrections + tgp_mem_size_v;
STEEL_CONST short tgp_size = WM * WN * 32;
static_assert(transpose_q == false, "Expected Q not transposed.");
static_assert(transpose_k == true, "Expected K transposed.");
static_assert(transpose_v == false, "Expected V not transposed.");
static_assert(tgp_mem_size <= 32768, "Excessive tgp memory requested.");
using loader_q_t = BlockLoaderFA<
T,
transpose_q ? BK : BM,
transpose_q ? BM : BK,
transpose_q ? BM + tgp_padding : BK + tgp_padding,
!transpose_q,
tgp_size>;
using loader_k_t = BlockLoaderFA<
T,
transpose_k ? BN : BK,
transpose_k ? BK : BN,
transpose_k ? BK + tgp_padding : BN + tgp_padding,
transpose_k,
tgp_size>;
using loader_v_t = BlockLoaderFA<
T,
transpose_v ? BK : BN,
transpose_v ? BN : BK,
transpose_v ? BN + tgp_padding : BK + tgp_padding,
transpose_v,
tgp_size>;
using mma_qk_t = BlockMMAFA<
T,
U,
BM,
BN,
BK,
WM,
WN,
transpose_q,
transpose_k,
transpose_q ? BM + tgp_padding : BK + tgp_padding,
transpose_k ? BK + tgp_padding : BN + tgp_padding,
AccumType,
Epilogue>;
using mma_sv_t = BlockMMAFA<
T,
U,
BM,
BK,
BN,
WM,
WN,
false,
transpose_v,
BN + tgp_padding,
BK + tgp_padding,
AccumType,
Epilogue>;
/* Main kernel function */
template <bool M_aligned, bool N_aligned, bool K_aligned_>
static METAL_FUNC void gemm_loop(
threadgroup T* As [[threadgroup(0)]],
threadgroup T* Bs [[threadgroup(1)]],
const int gemm_k_iterations,
thread loader_k_t& loader_b,
thread mma_qk_t& mma_op,
thread const short& tgp_bm,
thread const short& tgp_bn,
LoopAlignment<M_aligned, N_aligned, K_aligned_> l = {}) {
// Appease the compiler
(void)l;
(void)tgp_bm;
short2 tile_dims_B = transpose_k ? short2(BK, tgp_bn) : short2(tgp_bn, BK);
// not valid for gemm_k_iterations > 1 (so, BK == d_k)
for (int k = 0; k < gemm_k_iterations; k++) {
threadgroup_barrier(mem_flags::mem_threadgroup);
if (N_aligned) {
loader_b.load_unsafe();
} else {
loader_b.load_safe(tile_dims_B);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
}
}
static METAL_FUNC void initialize_corrections(
threadgroup float* C,
uint simd_lane_id,
uint simd_group_id) {
if (simd_group_id == 0) {
threadgroup float* maxes = C;
threadgroup float* sums = C + (BM + float_padding);
threadgroup float* o_rescale = sums + (BM + float_padding);
threadgroup float* output_rescale = o_rescale + (BM + float_padding);
if (simd_lane_id < BM) {
maxes[simd_lane_id] = -INFINITY; // m_i
sums[simd_lane_id] = 0.f; // l_i
o_rescale[simd_lane_id] = 1.f; // li * exp(mi - mi_new)
output_rescale[simd_lane_id] = 1.f; // 1.0 / l_i
}
}
}
static METAL_FUNC void rescale_ss(
threadgroup T* Ss,
threadgroup float* Corrections,
uint simd_group_id,
uint simd_lane_id,
short2 local_blocks,
float alpha) {
if (simd_group_id == 0) {
short row_offset = BM + float_padding;
threadgroup float* maxes = Corrections;
threadgroup float* sums = Corrections + row_offset;
threadgroup float* o_rescale = sums + row_offset;
threadgroup float* output_scales = o_rescale + row_offset;
if (simd_lane_id < uint(local_blocks.y)) {
float m_i_old = maxes[simd_lane_id];
float l_i_old = sums[simd_lane_id];
float m_i_new = m_i_old;
float l_i_new = l_i_old;
short offset = simd_lane_id * (BN + tgp_padding);
float m_ij = -INFINITY;
for (short j = 0; j < local_blocks.x; j++) {
float val = alpha * float(Ss[offset + j]);
m_ij = max(m_ij, val);
}
m_i_new = max(m_ij, m_i_new);
float rowsum = 0.f; // lij
for (short j = 0; j < local_blocks.x; j++) {
float val = alpha * float(Ss[offset + j]);
float P_i_j = exp(val - m_ij);
rowsum += P_i_j;
P_i_j = P_i_j * exp(m_ij - m_i_new);
Ss[offset + j] = T(P_i_j);
}
l_i_new =
exp(m_i_old - m_i_new) * l_i_old + exp(m_ij - m_i_new) * rowsum;
maxes[simd_lane_id] = m_i_new;
sums[simd_lane_id] = l_i_new;
float rescale = l_i_old * exp(m_i_old - m_i_new);
o_rescale[simd_lane_id] = rescale;
output_scales[simd_lane_id] = 1.0 / l_i_new;
}
}
}
/* Main kernel function */
static METAL_FUNC void run(
const device T* Q [[buffer(0)]],
const device T* K [[buffer(1)]],
const device T* V [[buffer(2)]],
device U* O [[buffer(3)]],
const constant MLXFastAttentionParams* params [[buffer(4)]],
threadgroup T* Qs [[threadgroup(0)]],
threadgroup T* Ks [[threadgroup(1)]],
threadgroup T* Ss [[threadgroup(2)]],
threadgroup T* Vs [[threadgroup(3)]],
threadgroup float* Corrections [[threadgroup(4)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
// Pacifying compiler
(void)lid;
const int tid_y = ((tid.y) << params->swizzle_log) +
((tid.x) & ((1 << params->swizzle_log) - 1));
const int tid_x = (tid.x) >> params->swizzle_log;
if (params->tiles_n <= tid_x || params->tiles_m <= tid_y) {
return;
}
threadgroup_barrier(mem_flags::mem_none);
// Find block in Q, O; and head in K, V.
const int c_row = tid_y * BM;
Q += transpose_q ? c_row : c_row * params->ldq;
thread loader_q_t loader_q(Q, params->ldq, Qs, simd_group_id, simd_lane_id);
short tgp_bm = min(BM, params->M - c_row);
short2 tile_dims_Q = transpose_q ? short2(tgp_bm, BK) : short2(BK, tgp_bm);
loader_q.load_safe(tile_dims_Q);
initialize_corrections(Corrections, simd_lane_id, simd_group_id);
O += c_row * params->ldo;
// Prepare threadgroup mma operation
thread mma_qk_t mma_qk_op(simd_group_id, simd_lane_id);
thread mma_sv_t mma_softmax_sv_op(simd_group_id, simd_lane_id);
thread loader_k_t loader_k(K, params->ldk, Ks, simd_group_id, simd_lane_id);
thread loader_v_t loader_v(V, params->ldv, Vs, simd_group_id, simd_lane_id);
for (short n_block = 0; n_block < params->gemm_n_iterations_aligned;
n_block++) {
short c_col = BN;
// Prepare threadgroup loading operations
short gemm_k_iterations = params->gemm_k_iterations_aligned;
short tgp_bn_qk = min(BN, params->N - c_col * n_block);
threadgroup_barrier(mem_flags::mem_none);
///////////////////////////////////////////////////////////////////////////////
{ // Loop over K - unaligned case
if (tgp_bm == BM && tgp_bn_qk == BN) {
gemm_loop<true, true, K_aligned>(
Qs,
Ks,
gemm_k_iterations,
loader_k,
mma_qk_op,
tgp_bm,
tgp_bn_qk);
} else if (tgp_bn_qk == BN) {
gemm_loop<false, true, K_aligned>(
Qs,
Ks,
gemm_k_iterations,
loader_k,
mma_qk_op,
tgp_bm,
tgp_bn_qk);
} else if (tgp_bm == BM) {
gemm_loop<true, false, K_aligned>(
Qs,
Ks,
gemm_k_iterations,
loader_k,
mma_qk_op,
tgp_bm,
tgp_bn_qk);
} else {
gemm_loop<false, false, K_aligned>(
Qs,
Ks,
gemm_k_iterations,
loader_k,
mma_qk_op,
tgp_bm,
tgp_bn_qk);
}
}
mma_qk_op.store_result_to_tgp_memory(
Ss, BN + tgp_padding, short2(BN, BM));
threadgroup_barrier(mem_flags::mem_threadgroup);
rescale_ss(
Ss,
Corrections,
simd_group_id,
simd_lane_id,
short2(tgp_bn_qk, tgp_bm),
params->alpha);
loader_v.load_safe(short2(BK, tgp_bn_qk));
threadgroup_barrier(mem_flags::mem_threadgroup);
threadgroup float* o_scales = Corrections + 2 * (BM + float_padding);
mma_softmax_sv_op.rescale_output(o_scales);
mma_softmax_sv_op.mma(Ss, Vs);
threadgroup float* final_output_scales =
Corrections + 3 * (BM + float_padding);
mma_softmax_sv_op.rescale_output(final_output_scales);
loader_v.next();
loader_k.next(BN);
mma_qk_op.clear_results();
}
threadgroup_barrier(mem_flags::mem_threadgroup);
mma_softmax_sv_op.store_result_safe(O, params->ldo, short2(BK, tgp_bm));
}
};
template <
typename T,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_q,
bool transpose_k,
bool transpose_v,
bool MN_aligned,
bool K_aligned>
[[kernel, max_total_threads_per_threadgroup(WM* WN * 32)]] void attention(
const device T* Q [[buffer(0)]],
const device T* K [[buffer(1)]],
const device T* V [[buffer(2)]],
device T* O [[buffer(3)]],
const constant MLXFastAttentionParams* params [[buffer(4)]],
const constant int* batch_shape [[buffer(6)]],
const constant size_t* batch_strides [[buffer(7)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
using attention_kernel = FastAttentionKernel<
T,
T,
BM,
BN,
BK,
WM,
WN,
transpose_q,
transpose_k,
transpose_v,
MN_aligned,
K_aligned>;
// Adjust for batch
if (params->batch_ndim > 1) {
const constant size_t* Q_bstrides = batch_strides;
const constant size_t* KV_bstrides = batch_strides + params->batch_ndim;
ulong2 batch_offsets = elem_to_loc_broadcast(
tid.z, batch_shape, Q_bstrides, KV_bstrides, params->batch_ndim);
Q += batch_offsets.x;
K += batch_offsets.y;
V += batch_offsets.y;
} else {
Q += params->batch_stride_q * tid.z;
K += params->batch_stride_k * tid.z;
V += params->batch_stride_v * tid.z;
}
// same shape as input
O += params->batch_stride_o * tid.z;
threadgroup T Qs[attention_kernel::tgp_mem_size_q];
threadgroup T Ss[attention_kernel::tgp_mem_size_s];
threadgroup float Corrections[attention_kernel::tgp_mem_size_corrections];
if (attention_kernel::share_kv_smem) {
threadgroup T Ks[attention_kernel::tgp_mem_size_k];
threadgroup T* Vs = Ks; //[attention_kernel::tgp_mem_size_v];
attention_kernel::run(
Q,
K,
V,
O,
params,
Qs,
Ks,
Ss,
Vs,
Corrections,
simd_lane_id,
simd_group_id,
tid,
lid);
} else {
threadgroup T Ks[attention_kernel::tgp_mem_size_k];
threadgroup T Vs[attention_kernel::tgp_mem_size_v];
attention_kernel::run(
Q,
K,
V,
O,
params,
Qs,
Ks,
Ss,
Vs,
Corrections,
simd_lane_id,
simd_group_id,
tid,
lid);
}
}
// clang-format off
// SDPA full instantiations
#define instantiate_fast_inference_self_attention_kernel( \
itype, otype, bm, bn, bk, wm, wn) \
template [[host_name("steel_gemm_attention_bm_" #bm "_bn_" #bn "_bk_" #bk \
"_itype_" #itype)]] [[kernel]] void \
attention<itype, bm, bn, bk, wm, wn, false, true, false, false, true>( \
const device itype* Q [[buffer(0)]], \
const device itype* K [[buffer(1)]], \
const device itype* V [[buffer(2)]], \
device otype* O [[buffer(3)]], \
const constant MLXFastAttentionParams* params [[buffer(4)]], \
const constant int* batch_shape [[buffer(6)]], \
const constant size_t* batch_strides [[buffer(7)]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]]);
instantiate_fast_inference_self_attention_kernel(
float,
float,
16,
16,
64,
2,
2);
instantiate_fast_inference_self_attention_kernel(
float,
float,
16,
16,
128,
2,
2);
instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 64, 2, 2);
instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 128, 2, 2);
// SDPA vector instantiations
#define instantiate_sdpa_vector(type, head_dim) \
template [[host_name("sdpa_vector_" #type "_" #head_dim)]] \
[[kernel]] void sdpa_vector<type, head_dim>( \
const device type* queries [[buffer(0)]], \
const device type* keys [[buffer(1)]], \
const device type* values [[buffer(2)]], \
device type* out [[buffer(3)]], \
const constant int& gqa_factor, \
const constant int& N, \
const constant size_t& k_stride, \
const constant size_t& v_stride, \
const constant float& scale, \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define instantiate_sdpa_vector(type, head_dim) \
instantiate_kernel("sdpa_vector_" #type "_" #head_dim, sdpa_vector, type, head_dim) \
instantiate_kernel("sdpa_vector_2pass_1_" #type "_" #head_dim, sdpa_vector_2pass_1, type, head_dim) \
instantiate_kernel("sdpa_vector_2pass_2_" #type "_" #head_dim, sdpa_vector_2pass_2, type, head_dim)
#define instantiate_sdpa_vector_heads(type) \
instantiate_sdpa_vector(type, 64) \

View File

@@ -1,42 +0,0 @@
//
// scaled_dot_product_attention_params.h
// mlx
#pragma once
struct MLXFastAttentionParams {
const int M;
const int N;
const int K;
const int ldq; // ldq == ldo
const int ldk;
const int ldv;
const int lds;
const int ldo;
const int tiles_n;
const int tiles_m;
const int batch_stride_q;
const int batch_stride_k;
const int batch_stride_v;
const int batch_stride_o;
const int swizzle_log;
const int gemm_n_iterations_aligned;
const int gemm_k_iterations_aligned;
const int gemm_sv_m_block_iterations;
const int batch_ndim;
const float alpha;
};
struct MLXScaledDotProductAttentionParams {
// Associated dimensions & transposition information
const uint QUERY_SEQUENCE_LENGTH = 1;
const uint N_Q_HEADS = 32;
const uint N_KV_HEADS = 32;
const uint KV_TILES = 1;
const float INV_ALPHA = 0.08838834764831843f;
};

View File

@@ -10,16 +10,17 @@ template <
typename Op,
int NIDX,
bool UPD_ROW_CONTIG,
int NWORK>
int NWORK,
typename LocT>
METAL_FUNC void scatter_impl(
const device T* updates,
device mlx_atomic<T>* out,
const constant int* upd_shape,
const constant size_t* upd_strides,
const constant int64_t* upd_strides,
const constant size_t& upd_ndim,
const constant size_t& upd_size,
const constant int* out_shape,
const constant size_t* out_strides,
const constant int64_t* out_strides,
const constant size_t& out_ndim,
const constant int* axes,
const constant size_t& idx_size,
@@ -28,29 +29,30 @@ METAL_FUNC void scatter_impl(
Op op;
auto ind_idx = gid.y * NWORK;
size_t out_offset = 0;
LocT out_offset = 0;
if (upd_size > 1) {
out_offset =
elem_to_loc(gid.x, upd_shape + indices.ndim, out_strides, out_ndim);
out_offset = elem_to_loc<LocT>(
gid.x, upd_shape + indices.ndim, out_strides, out_ndim);
}
for (int j = 0; j < NWORK && ind_idx < idx_size; ++j, ind_idx++) {
size_t out_idx = out_offset;
LocT out_idx = out_offset;
for (int i = 0; i < NIDX; ++i) {
auto idx_loc = indices.row_contiguous[i]
? ind_idx
: elem_to_loc(
: elem_to_loc<LocT>(
ind_idx,
&indices.shapes[indices.ndim * i],
&indices.strides[indices.ndim * i],
indices.ndim);
auto ax = axes[i];
auto idx_val = offset_neg_idx(indices.buffers[i][idx_loc], out_shape[ax]);
out_idx += idx_val * out_strides[ax];
out_idx +=
static_cast<LocT>(idx_val) * static_cast<LocT>(out_strides[ax]);
}
auto upd_idx = ind_idx * upd_size + gid.x;
auto upd_idx = ind_idx * static_cast<LocT>(upd_size) + gid.x;
if constexpr (!UPD_ROW_CONTIG) {
upd_idx = elem_to_loc(upd_idx, upd_shape, upd_strides, upd_ndim);
upd_idx = elem_to_loc<LocT>(upd_idx, upd_shape, upd_strides, upd_ndim);
}
op.atomic_update(out, updates[upd_idx], out_idx);
}

View File

@@ -21,8 +21,7 @@ template <typename T, int D>
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
const int stride = BN * D;
constexpr int stride = BN * D;
typedef float U;
@@ -84,7 +83,6 @@ template <typename T, int D>
keys += stride;
values += stride;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Each thread has a partial part of the output so we need to combine them.
@@ -114,3 +112,181 @@ template <typename T, int D>
}
}
}
template <typename T, int D>
[[kernel]] void sdpa_vector_2pass_1(
const device T* queries [[buffer(0)]],
const device T* keys [[buffer(1)]],
const device T* values [[buffer(2)]],
device float* out [[buffer(3)]],
device float* sums [[buffer(4)]],
device float* maxs [[buffer(5)]],
const constant int& gqa_factor,
const constant int& N,
const constant size_t& k_stride,
const constant size_t& v_stride,
const constant float& scale,
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int BN = 8;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
constexpr int stride = BN * D;
constexpr int blocks = 32;
typedef float U;
thread U q[elem_per_thread];
thread U k[elem_per_thread];
thread U o[elem_per_thread];
threadgroup U outputs[BN * BD];
threadgroup U max_scores[BN];
threadgroup U sum_exp_scores[BN];
// Adjust positions
const int block_idx = tid.z;
const int head_idx = tid.y;
const int kv_head_idx = head_idx / gqa_factor;
queries += head_idx * D + simd_lid * elem_per_thread;
keys += kv_head_idx * k_stride + (block_idx * BN + simd_gid) * D +
simd_lid * elem_per_thread;
values += kv_head_idx * v_stride + (block_idx * BN + simd_gid) * D +
simd_lid * elem_per_thread;
out += head_idx * blocks * D + block_idx * D + simd_lid * elem_per_thread;
sums += head_idx * blocks + block_idx;
maxs += head_idx * blocks + block_idx;
// Read the query and 0 the output accumulator
for (int i = 0; i < elem_per_thread; i++) {
q[i] = static_cast<U>(scale) * queries[i];
}
for (int i = 0; i < elem_per_thread; i++) {
o[i] = 0;
}
U max_score = -1e9;
U sum_exp_score = 0;
// For each key
for (int i = block_idx * BN + simd_gid; i < N; i += blocks * BN) {
// Read the key
for (int i = 0; i < elem_per_thread; i++) {
k[i] = keys[i];
}
// Compute the i-th score
U score = 0;
for (int i = 0; i < elem_per_thread; i++) {
score += q[i] * k[i];
}
score = simd_sum(score);
// Update the accumulators
U new_max = max(max_score, score);
U factor = fast::exp(max_score - new_max);
U exp_score = fast::exp(score - new_max);
max_score = new_max;
sum_exp_score = sum_exp_score * factor + exp_score;
// Update the output accumulator
for (int i = 0; i < elem_per_thread; i++) {
o[i] = o[i] * factor + exp_score * values[i];
}
// Move the pointers to the next kv
keys += blocks * stride;
values += blocks * stride;
}
// Each thread has a partial part of the output so we need to combine them.
// First let's communicate the max and sum_exp
if (simd_lid == 0) {
max_scores[simd_gid] = max_score;
sum_exp_scores[simd_gid] = sum_exp_score;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
max_score = (simd_lid < BN) ? max_scores[simd_lid] : -1e9;
U new_max = simd_max(max_score);
U factor = fast::exp(max_score - new_max);
sum_exp_score = (simd_lid < BN) ? sum_exp_scores[simd_lid] : 0;
sum_exp_score = simd_sum(sum_exp_score * factor);
// Write the sum and new max
if (simd_gid == 0) {
sums[0] = sum_exp_score;
maxs[0] = new_max;
}
// Now we need to aggregate all the outputs
for (int i = 0; i < elem_per_thread; i++) {
outputs[simd_lid * BN + simd_gid] =
o[i] * fast::exp(max_scores[simd_gid] - new_max);
threadgroup_barrier(mem_flags::mem_threadgroup);
// And write the output
if (simd_gid == 0) {
U output = outputs[simd_lid * BN];
for (int j = 1; j < BN; j++) {
output += outputs[simd_lid * BN + j];
}
out[i] = static_cast<T>(output);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
}
template <typename T, int D>
[[kernel]] void sdpa_vector_2pass_2(
const device float* partials [[buffer(0)]],
const device float* sums [[buffer(1)]],
const device float* maxs [[buffer(2)]],
device T* out [[buffer(3)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int BN = 32;
constexpr int BD = 32;
constexpr int elem_per_thread = D / BD;
constexpr int blocks = 32;
typedef float U;
thread U o[elem_per_thread];
threadgroup U outputs[BN * BD];
// Adjust positions
const int head_idx = tid.y;
partials += head_idx * blocks * D + simd_gid * D + simd_lid * elem_per_thread;
sums += head_idx * blocks;
maxs += head_idx * blocks;
out += head_idx * D + simd_gid * elem_per_thread;
// First everybody reads the max and sum_exp
U max_score = maxs[simd_lid];
U new_max = simd_max(max_score);
U factor = fast::exp(max_score - new_max);
U sum_exp_score = simd_sum(sums[simd_lid] * factor);
// Now read the block into registers and then use shared memory to transpose
// it
for (int i = 0; i < elem_per_thread; i++) {
o[i] = partials[i];
}
for (int i = 0; i < elem_per_thread; i++) {
outputs[simd_lid * BD + simd_gid] = o[i];
threadgroup_barrier(mem_flags::mem_threadgroup);
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid] * factor) / sum_exp_score;
threadgroup_barrier(mem_flags::mem_threadgroup);
}
// And write the output
if (simd_lid == 0) {
for (int i = 0; i < elem_per_thread; i++) {
out[i] = static_cast<T>(o[i]);
}
}
}

View File

@@ -6,8 +6,6 @@
using namespace metal;
// clang-format off
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/softmax.h"

View File

@@ -343,8 +343,8 @@ template <
const constant int& out_stride_sorted_axis [[buffer(4)]],
const constant int& nc_dim [[buffer(5)]],
const constant int* nc_shape [[buffer(6)]],
const constant size_t* in_nc_strides [[buffer(7)]],
const constant size_t* out_nc_strides [[buffer(8)]],
const constant int64_t* in_nc_strides [[buffer(7)]],
const constant int64_t* out_nc_strides [[buffer(8)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
using sort_kernel =
@@ -486,7 +486,7 @@ template <
const constant int& stride_sorted_axis [[buffer(4)]],
const constant int& nc_dim [[buffer(5)]],
const constant int* nc_shape [[buffer(6)]],
const constant size_t* nc_strides [[buffer(7)]],
const constant int64_t* nc_strides [[buffer(7)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
using sort_kernel = KernelMultiBlockMergeSort<

View File

@@ -3,8 +3,6 @@
#include <metal_stdlib>
// clang-format off
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/sort.h"

View File

@@ -0,0 +1,296 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/backend/metal/kernels/steel/attn/loader.h"
#include "mlx/backend/metal/kernels/steel/attn/mma.h"
#include "mlx/backend/metal/kernels/steel/attn/params.h"
#include "mlx/backend/metal/kernels/steel/attn/transforms.h"
#include "mlx/backend/metal/kernels/steel/gemm/params.h"
#include "mlx/backend/metal/kernels/steel/utils.h"
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// GEMM kernel class
///////////////////////////////////////////////////////////////////////////////
namespace mlx {
namespace steel {
template <bool M_aligned, bool N_aligned, bool K_aligned>
struct LoopAlignment {};
template <
typename T,
typename U,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
bool MN_aligned,
bool K_aligned,
typename AccumType = typename AccumHelper<T>::accum_type,
typename Epilogue = TransformNone<U, AccumType>>
struct GEMMKernel {
STEEL_CONST short tgp_padding_a = 16 / sizeof(T);
STEEL_CONST short tgp_padding_b = 16 / sizeof(T);
STEEL_CONST short tgp_mem_size_a =
transpose_a ? BK * (BM + tgp_padding_a) : BM * (BK + tgp_padding_a);
STEEL_CONST short tgp_mem_size_b =
transpose_b ? BN * (BK + tgp_padding_b) : BK * (BN + tgp_padding_b);
STEEL_CONST short tgp_mem_size = tgp_mem_size_a + tgp_mem_size_b;
STEEL_CONST short tgp_size = WM * WN * 32;
using loader_a_t = BlockLoader<
T,
transpose_a ? BK : BM,
transpose_a ? BM : BK,
transpose_a ? BM + tgp_padding_a : BK + tgp_padding_a,
!transpose_a,
tgp_size>;
using loader_b_t = BlockLoader<
T,
transpose_b ? BN : BK,
transpose_b ? BK : BN,
transpose_b ? BK + tgp_padding_b : BN + tgp_padding_b,
transpose_b,
tgp_size>;
using mma_t = BlockMMA<
T,
U,
BM,
BN,
BK,
WM,
WN,
transpose_a,
transpose_b,
transpose_a ? BM + tgp_padding_a : BK + tgp_padding_a,
transpose_b ? BK + tgp_padding_b : BN + tgp_padding_b,
AccumType,
Epilogue>;
/* Main kernel function */
template <bool M_aligned, bool N_aligned, bool K_aligned_>
static METAL_FUNC void gemm_loop(
threadgroup T* As [[threadgroup(0)]],
threadgroup T* Bs [[threadgroup(1)]],
const int gemm_k_iterations,
thread loader_a_t& loader_a,
thread loader_b_t& loader_b,
thread mma_t& mma_op,
thread const short& tgp_bm,
thread const short& tgp_bn,
thread const short& lbk,
LoopAlignment<M_aligned, N_aligned, K_aligned_> l = {}) {
// Appease the compiler
(void)l;
short2 tile_dims_A = transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm);
short2 tile_dims_B = transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK);
for (int k = 0; k < gemm_k_iterations; k++) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load elements into threadgroup
if (M_aligned) {
loader_a.load_unsafe();
} else {
loader_a.load_safe(tile_dims_A);
}
if (N_aligned) {
loader_b.load_unsafe();
} else {
loader_b.load_safe(tile_dims_B);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
// Prepare for next iteration
loader_a.next();
loader_b.next();
}
if (!K_aligned_) {
threadgroup_barrier(mem_flags::mem_threadgroup);
short2 tile_dims_A_last =
transpose_a ? short2(tgp_bm, lbk) : short2(lbk, tgp_bm);
short2 tile_dims_B_last =
transpose_b ? short2(lbk, tgp_bn) : short2(tgp_bn, lbk);
loader_a.load_safe(tile_dims_A_last);
loader_b.load_safe(tile_dims_B_last);
threadgroup_barrier(mem_flags::mem_threadgroup);
mma_op.mma(As, Bs);
}
}
/* Main kernel function */
static METAL_FUNC void run(
const device T* A [[buffer(0)]],
const device T* B [[buffer(1)]],
device U* D [[buffer(2)]],
const constant GEMMParams* params [[buffer(3)]],
threadgroup T* As [[threadgroup(0)]],
threadgroup T* Bs [[threadgroup(1)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
// Pacifying compiler
(void)lid;
const int tid_y = ((tid.y) << params->swizzle_log) +
((tid.x) & ((1 << params->swizzle_log) - 1));
const int tid_x = (tid.x) >> params->swizzle_log;
if (params->tiles_n <= tid_x || params->tiles_m <= tid_y) {
return;
}
threadgroup_barrier(mem_flags::mem_none);
// Find block in A, B, C
const int c_row = tid_y * BM;
const int c_col = tid_x * BN;
const size_t c_row_long = size_t(c_row);
const size_t c_col_long = size_t(c_col);
A += transpose_a ? c_row_long : c_row_long * params->lda;
B += transpose_b ? c_col_long * params->ldb : c_col_long;
D += c_row_long * params->ldd + c_col_long;
// Prepare threadgroup loading operations
thread loader_a_t loader_a(A, params->lda, As, simd_group_id, simd_lane_id);
thread loader_b_t loader_b(B, params->ldb, Bs, simd_group_id, simd_lane_id);
// Prepare threadgroup mma operation
thread mma_t mma_op(simd_group_id, simd_lane_id);
int gemm_k_iterations = params->gemm_k_iterations_aligned;
///////////////////////////////////////////////////////////////////////////////
// MNK aligned loop
if (MN_aligned) {
for (int k = 0; k < gemm_k_iterations; k++) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load elements into threadgroup
loader_a.load_unsafe();
loader_b.load_unsafe();
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
// Prepare for next iteration
loader_a.next();
loader_b.next();
}
threadgroup_barrier(mem_flags::mem_none);
// Loop tail
if (!K_aligned) {
int lbk = params->K - params->gemm_k_iterations_aligned * BK;
short2 tile_dims_A = transpose_a ? short2(BM, lbk) : short2(lbk, BM);
short2 tile_dims_B = transpose_b ? short2(lbk, BN) : short2(BN, lbk);
loader_a.load_safe(tile_dims_A);
loader_b.load_safe(tile_dims_B);
threadgroup_barrier(mem_flags::mem_threadgroup);
mma_op.mma(As, Bs);
}
// Store results to device memory
mma_op.store_result(D, params->ldd);
return;
}
///////////////////////////////////////////////////////////////////////////////
// MN unaligned loop
else { // Loop over K - unaligned case
short tgp_bm = min(BM, params->M - c_row);
short tgp_bn = min(BN, params->N - c_col);
short leftover_bk = params->K - params->gemm_k_iterations_aligned * BK;
if (tgp_bm == BM && tgp_bn == BN) {
gemm_loop<true, true, K_aligned>(
As,
Bs,
gemm_k_iterations,
loader_a,
loader_b,
mma_op,
tgp_bm,
tgp_bn,
leftover_bk);
mma_op.store_result(D, params->ldd);
return;
} else if (tgp_bn == BN) {
gemm_loop<false, true, K_aligned>(
As,
Bs,
gemm_k_iterations,
loader_a,
loader_b,
mma_op,
tgp_bm,
tgp_bn,
leftover_bk);
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
return;
} else if (tgp_bm == BM) {
gemm_loop<true, false, K_aligned>(
As,
Bs,
gemm_k_iterations,
loader_a,
loader_b,
mma_op,
tgp_bm,
tgp_bn,
leftover_bk);
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
return;
} else {
gemm_loop<false, false, K_aligned>(
As,
Bs,
gemm_k_iterations,
loader_a,
loader_b,
mma_op,
tgp_bm,
tgp_bn,
leftover_bk);
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
return;
}
}
}
};
} // namespace steel
} // namespace mlx

View File

@@ -0,0 +1,349 @@
// Copyright © 2024 Apple Inc.
using namespace mlx::steel;
///////////////////////////////////////////////////////////////////////////////
// GEMM kernels
///////////////////////////////////////////////////////////////////////////////
constant bool align_Q [[function_constant(200)]];
constant bool align_K [[function_constant(201)]];
template <typename T>
struct TransformScale {
T scale;
METAL_FUNC TransformScale(T scale_) : scale(scale_) {}
METAL_FUNC T apply(T x) const {
return scale * x;
}
};
struct MaxOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return metal::max(x, y);
}
};
struct SumOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return x + y;
}
};
struct MulOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return x * y;
}
};
struct SubOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return x - y;
}
};
struct ExpSubOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return fast::exp(x - y);
}
};
struct DivOp {
template <typename T>
METAL_FUNC static constexpr T apply(T x, T y) {
return x / y;
}
};
// clang-format off
template <
typename T,
int BQ,
int BK,
int BD,
int WM,
int WN,
typename AccumType = float>
[[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void attention(
const device T* Q [[buffer(0)]],
const device T* K [[buffer(1)]],
const device T* V [[buffer(2)]],
device T* O [[buffer(3)]],
const constant AttnParams* params [[buffer(4)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) { // clang-format on
// Pacifying compiler
(void)lid;
// Move to correct block
ulong3 tidl{tid.x, tid.y, tid.z};
Q += tidl.z * params->Q_strides[0] + // Batch
tidl.y * params->Q_strides[1] + // Head
tidl.x * BQ * params->Q_strides[2]; // Seqeunce
ulong kv_head_idx = int(tid.y) / params->gqa_factor;
K += tidl.z * params->K_strides[0] + // Batch
kv_head_idx * params->K_strides[1]; // Head
V += tidl.z * params->V_strides[0] + // Batch
kv_head_idx * params->V_strides[1]; // Head
O += tidl.z * params->O_strides[0] + // Batch
tidl.y * params->O_strides[1] + // Head
tidl.x * BQ * params->O_strides[2]; // Seqeunce
// Prepare threadgroup memory
constexpr short padQ = 0; // 16 / sizeof(T);
constexpr short padK = 0; // 16 / sizeof(T);
constexpr short padV = 0; // 16 / sizeof(T);
constexpr short LDQ_tgp = BD + padQ;
constexpr short LDK_tgp = BK + padK;
constexpr short LDV_tgp = BD + padV;
threadgroup T Qs[BQ * (BD + padQ)];
threadgroup T Ks[(BK + padK) * BD];
threadgroup T Vs[BK * (BD + padV)];
// Prepare block loaders
using QBlockLoader = BlockLoaderT<
/* typename T = */ T,
/* short BROWS = */ BQ,
/* short BCOLS = */ BD,
/* short kDstStrRow = */ LDQ_tgp,
/* short kDstStrCol = */ 1,
/* short reduction_dim = */ 1,
/* short tgp_size = */ WM * WN * 32>;
// K is loaded in transposed
using KBlockLoader = BlockLoaderT<
/* typename T = */ T,
/* short BROWS = */ BK,
/* short BCOLS = */ BD,
/* short kDstStrRow = */ 1,
/* short kDstStrCol = */ LDK_tgp,
/* short reduction_dim = */ 0,
/* short tgp_size = */ WM * WN * 32>;
using VBlockLoader = BlockLoaderT<
/* typename T = */ T,
/* short BROWS = */ BK,
/* short BCOLS = */ BD,
/* short kDstStrRow = */ LDV_tgp,
/* short kDstStrCol = */ 1,
/* short reduction_dim = */ 0,
/* short tgp_size = */ WM * WN * 32>;
QBlockLoader loader_q(
Q, params->Q_strides[2], Qs, simd_group_id, simd_lane_id);
KBlockLoader loader_k(
K, params->K_strides[2], Ks, simd_group_id, simd_lane_id);
VBlockLoader loader_v(
V, params->V_strides[2], Vs, simd_group_id, simd_lane_id);
TransformScale<T> ts(static_cast<T>(params->scale));
// Prepare MMA tiles
constexpr short kFragSize = 8; // MMAFrag size
using MMAFrag_acc_t = BaseMMAFrag<AccumType, kFragSize, kFragSize>;
constexpr int kNWarps = WM * WN;
static_assert(
BQ >= (kNWarps * kFragSize) && BQ % (kNWarps * kFragSize) == 0,
"Each simdgroup must host atleast 1 simdgroup matrix along Q sequence.");
// Q seq frags per warp
constexpr int TQ = BQ / (kNWarps * kFragSize);
// KV sequence frags (all warps load the same frags)
constexpr int TK = BK / kFragSize;
// HeadDim frags (all warps load the same frags)
constexpr int TD = BD / kFragSize;
static_assert(TQ == 1, "Check TQ");
MMATile<AccumType, TQ, 1, MMAFrag_acc_t> Qtile;
MMATile<AccumType, 1, TK, MMAFrag_acc_t> Ktile;
MMATile<AccumType, TQ, TK, MMAFrag_acc_t> Stile;
MMATile<AccumType, TK, TD, MMAFrag_acc_t> Vtile;
MMATile<AccumType, TQ, TD, MMAFrag_acc_t> Otile;
Otile.clear();
// Prepare mma tile offsets
const short2 simd_coord = MMAFrag_acc_t::get_coord(simd_lane_id);
const short sm = simd_coord.y;
const short sn = simd_coord.x;
const short tm = kFragSize * TQ * simd_group_id;
const short Qs_offset = (tm + sm) * LDQ_tgp + sn;
const short Ks_offset = sm * LDK_tgp + sn;
const short Vs_offset = sm * LDV_tgp + sn;
constexpr short Qs_tile_stride = kFragSize;
constexpr short Ks_tile_stride = kFragSize * LDK_tgp;
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load Q blocks apply scale
if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
loader_q.load_safe(short2(BD, params->qL - params->NQ_aligned * BQ));
} else {
loader_q.load_unsafe();
}
loader_q.apply_inplace_op(ts);
// Init row reduction variables
constexpr short kRowsPT = decltype(Stile)::kRowsPerThread;
AccumType max_score[kRowsPT];
AccumType sum_score[kRowsPT] = {0};
// Init to -Inf
STEEL_PRAGMA_UNROLL
for (short i = 0; i < kRowsPT; ++i) {
max_score[i] = Limits<AccumType>::min;
}
// Loop over KV seq length
for (int kb = 0; kb < params->NK; kb++) {
// Load K block and apply scale
threadgroup_barrier(mem_flags::mem_threadgroup);
if (!align_K && kb == (params->NK_aligned)) {
loader_k.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
} else {
loader_k.load_unsafe();
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Do S = Q @ K.T
Stile.clear();
for (short dd = 0; dd < TD; dd++) {
simdgroup_barrier(mem_flags::mem_none);
Qtile.template load<T, 1, 1, LDQ_tgp, 1>(
&Qs[Qs_offset + dd * Qs_tile_stride]);
Ktile.template load<T, 1, 1, LDK_tgp, 1>(
&Ks[Ks_offset + dd * Ks_tile_stride]);
simdgroup_barrier(mem_flags::mem_none);
tile_matmad(Stile, Qtile, Ktile, Stile);
}
// Mask out of length sequence
if (!align_K && kb == (params->NK_aligned)) {
using stile_t = decltype(Stile);
using selem_t = typename stile_t::elem_type;
constexpr auto neg_inf = -metal::numeric_limits<selem_t>::infinity();
const short lim = params->kL - params->NK_aligned * BK;
STEEL_PRAGMA_UNROLL
for (short i = 0; i < stile_t::kTileRows; i++) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < stile_t::kTileCols; j++) {
short col_pos = sn + (j * stile_t::kFragCols);
STEEL_PRAGMA_UNROLL
for (short jj = 0; jj < stile_t::MMAFrag_t::kElemCols; jj++) {
if ((col_pos + jj) >= lim) {
Stile.frag_at(i, j)[jj] = neg_inf;
}
}
}
}
}
simdgroup_barrier(mem_flags::mem_none);
// Load V blocks
if (!align_K && kb == (params->NK_aligned)) {
loader_v.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
} else {
loader_v.load_unsafe();
}
// Do softmax
// Temp variables
AccumType new_max[kRowsPT];
AccumType factor[kRowsPT];
STEEL_PRAGMA_UNROLL
for (short i = 0; i < kRowsPT; ++i) {
new_max[i] = max_score[i];
}
// Row max
Stile.template row_reduce<MaxOp>(new_max);
// exp(Si - rowmax(Si))
Stile.template row_bin_op<ExpSubOp>(new_max);
// Factor exp(rowmax(Si) - rowmax(Si-1))
STEEL_PRAGMA_UNROLL
for (short i = 0; i < kRowsPT; ++i) {
factor[i] = fast::exp(max_score[i] - new_max[i]);
}
// Save max for next iteration
STEEL_PRAGMA_UNROLL
for (short i = 0; i < kRowsPT; ++i) {
max_score[i] = new_max[i];
}
// Row Sum
AccumType sum_score_tmp[kRowsPT] = {0};
Stile.template row_reduce<SumOp>(sum_score_tmp);
// Update norm
STEEL_PRAGMA_UNROLL
for (short i = 0; i < kRowsPT; ++i) {
sum_score[i] = sum_score[i] * factor[i] + sum_score_tmp[i];
}
// Update O
Otile.template row_bin_op<MulOp>(factor);
// Load V into registers
threadgroup_barrier(mem_flags::mem_threadgroup);
Vtile.template load<T, 1, 1, LDV_tgp, 1>(&Vs[Vs_offset]);
simdgroup_barrier(mem_flags::mem_none);
// Do O = S @ V
tile_matmad(Otile, Stile, Vtile, Otile);
// Prepare for next iteration
loader_k.next();
loader_v.next();
}
// Normalize output
Otile.template row_bin_op<DivOp>(sum_score);
threadgroup_barrier(mem_flags::mem_none);
// Store results
O += (tm + sm) * params->O_strides[2] + sn;
if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
auto dst_tile_dims =
short2(BD - sn, params->qL - BQ * params->NQ_aligned - (tm + sm));
if (dst_tile_dims.x <= 0 || dst_tile_dims.y <= 0)
return;
Otile.template store_safe<T, 1, 1>(O, params->O_strides[2], dst_tile_dims);
} else {
Otile.template store<T, 1, 1>(O, params->O_strides[2]);
}
}

View File

@@ -0,0 +1,31 @@
// Copyright © 2024 Apple Inc.
// clang-format off
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/steel/attn/attn.h"
#include "mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h"
#define instantiate_attn(tname, dtype, bq, bk, bd, wm, wn) \
template [[host_name("steel_attention_" #tname "_bq" #bq "_bk" #bk "_bd" #bd "_wm" #wm "_wn" #wn)]] \
[[kernel]] void attention<dtype, bq, bk, bd, wm, wn, float>( \
const device dtype* Q [[buffer(0)]], \
const device dtype* K [[buffer(1)]], \
const device dtype* V [[buffer(2)]], \
device dtype* O [[buffer(3)]],\
const constant AttnParams* params [[buffer(4)]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]]);
#define instantiate_attn_shapes_helper(iname, itype) \
instantiate_attn(iname, itype, 32, 16, 128, 4, 1) \
instantiate_attn(iname, itype, 32, 32, 80, 4, 1) \
instantiate_attn(iname, itype, 32, 32, 64, 4, 1)
instantiate_attn_shapes_helper(float16, half);
instantiate_attn_shapes_helper(bfloat16, bfloat16_t);
instantiate_attn_shapes_helper(float32, float);
// clang-format on

View File

@@ -0,0 +1,264 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include "mlx/backend/metal/kernels/steel/defines.h"
///////////////////////////////////////////////////////////////////////////////
// Loading helper
///////////////////////////////////////////////////////////////////////////////
namespace mlx {
namespace steel {
template <
typename T,
short BROWS,
short BCOLS,
short dst_ld,
short reduction_dim,
short tgp_size,
short alignment = 1,
short n_reads = (BCOLS * BROWS) / (tgp_size),
short TCOLS = BCOLS / n_reads,
short TROWS = tgp_size / TCOLS>
struct BlockLoader {
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
STEEL_CONST short vec_size = n_reads;
// Leading dimension for src
const int src_ld;
const int tile_stride;
// Thread location indices
const short thread_idx;
const short bi;
const short bj;
// threadgroup and device memory
threadgroup T* dst;
const device T* src;
struct alignas(alignment * sizeof(T)) ReadVector {
uint8_t v[sizeof(T) * vec_size];
};
/* Constructor */
METAL_FUNC BlockLoader(
const device T* src_,
const int src_ld_,
threadgroup T* dst_,
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
ushort simd_lane_id [[thread_index_in_simdgroup]])
: src_ld(src_ld_),
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
thread_idx(simd_group_id * 32 + simd_lane_id),
bi(thread_idx / TCOLS),
bj(vec_size * (thread_idx % TCOLS)),
dst(dst_ + bi * dst_ld + bj),
src(src_ + bi * src_ld + bj) {}
/* Apply operation to threadgroup without bound checking */
template <typename UnaryOp>
METAL_FUNC void apply_inplace_op(thread const UnaryOp& op) const {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = op.apply(dst[i * dst_ld + j]);
}
}
}
/* Load from device memory into threadgroup memory - without bound checking */
METAL_FUNC void load_unsafe() const {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
*((threadgroup ReadVector*)(&dst[i * dst_ld])) =
*((const device ReadVector*)(&src[i * src_ld]));
}
}
/* Load from device memory into threadgroup memory - with bound checking */
METAL_FUNC void load_safe(short2 src_tile_dim) const {
src_tile_dim = src_tile_dim - short2(bj, bi);
// Skip loading if thread has no valid reads
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = T(0);
}
}
return;
}
// Use fast thread memory for bound checks
bool tmp_idx[vec_size];
T tmp_val[vec_size];
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
// Make sure tmp_idx only contains valid indices
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
}
// Read valid indices into tmp_val
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
}
// Copy values to threadgroup memory
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = tmp_val[j];
}
}
}
/* Iteration helper */
METAL_FUNC void next() {
src += tile_stride;
}
};
template <int R, int C>
struct CShape {
STEEL_CONST int kRows = R;
STEEL_CONST int kCols = C;
};
template <
typename T,
short BROWS,
short BCOLS,
short kDstStrRow,
short kDstStrCol,
short reduction_dim,
short tgp_size,
short n_reads = (BCOLS * BROWS) / (tgp_size),
short TCOLS = BCOLS / n_reads,
short TROWS = tgp_size / TCOLS>
struct BlockLoaderT {
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
STEEL_CONST short vec_size = n_reads;
// Leading dimension for src
const int src_ld;
const int tile_stride;
// Thread location indices
const short thread_idx;
const short bi;
const short bj;
// threadgroup and device memory
threadgroup T* dst;
const device T* src;
/* Constructor */
METAL_FUNC BlockLoaderT(
const device T* src_,
const int src_ld_,
threadgroup T* dst_,
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
ushort simd_lane_id [[thread_index_in_simdgroup]])
: src_ld(src_ld_),
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
thread_idx(simd_group_id * 32 + simd_lane_id),
bi(thread_idx / TCOLS),
bj(vec_size * (thread_idx % TCOLS)),
dst(dst_ + bi * kDstStrRow + bj * kDstStrCol),
src(src_ + bi * src_ld + bj) {}
/* Apply operation to threadgroup without bound checking */
template <typename UnaryOp>
METAL_FUNC void apply_inplace_op(thread const UnaryOp& op) const {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * kDstStrRow + j * kDstStrCol] =
op.apply(dst[i * kDstStrRow + j * kDstStrCol]);
}
}
}
/* Load from device memory into threadgroup memory - without bound checking */
METAL_FUNC void load_unsafe() const {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * kDstStrRow + j * kDstStrCol] = src[i * src_ld + j];
}
}
}
/* Load from device memory into threadgroup memory - with bound checking */
METAL_FUNC void load_safe(short2 src_tile_dim) const {
src_tile_dim = src_tile_dim - short2(bj, bi);
// Skip loading if thread has no valid reads
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * kDstStrRow + j * kDstStrCol] = T(0);
}
}
return;
}
// Use fast thread memory for bound checks
bool tmp_idx[vec_size];
T tmp_val[vec_size];
STEEL_PRAGMA_UNROLL
for (short i = 0; i < BROWS; i += TROWS) {
// Make sure tmp_idx only contains valid indices
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
}
// Read valid indices into tmp_val
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
}
// Zero out uneeded values
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
}
// Copy values to threadgroup memory
STEEL_PRAGMA_UNROLL
for (short j = 0; j < vec_size; j++) {
dst[i * kDstStrRow + j * kDstStrCol] = tmp_val[j];
}
}
}
/* Iteration helper */
METAL_FUNC void next() {
src += tile_stride;
}
};
} // namespace steel
} // namespace mlx

Some files were not shown because too many files have changed in this diff Show More