mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-07 09:14:34 +08:00
Compare commits
66 Commits
socket-dis
...
dynamic_re
Author | SHA1 | Date | |
---|---|---|---|
![]() |
0c1155faf5 | ||
![]() |
2b9c24c517 | ||
![]() |
ee59d50293 | ||
![]() |
40c62c1321 | ||
![]() |
35b412c099 | ||
![]() |
d0f471cff7 | ||
![]() |
6f316b8bf5 | ||
![]() |
7c10c93a1f | ||
![]() |
d92ea094f1 | ||
![]() |
6ae5423b4a | ||
![]() |
9635cffdc8 | ||
![]() |
96986fb362 | ||
![]() |
3ceb341a75 | ||
![]() |
50fa705125 | ||
![]() |
69a2991614 | ||
![]() |
fd3377dd1f | ||
![]() |
d0b6cb0425 | ||
![]() |
95c4a2e3af | ||
![]() |
bc2a29f033 | ||
![]() |
3bb5b4a302 | ||
![]() |
fc88fd9097 | ||
![]() |
c5b0928c1f | ||
![]() |
e047fd977d | ||
![]() |
9d40e521d7 | ||
![]() |
1445dcaa60 | ||
![]() |
e4eeb4e910 | ||
![]() |
aa86876813 | ||
![]() |
974bb54ab2 | ||
![]() |
9bc2183a31 | ||
![]() |
d4b222b6d3 | ||
![]() |
af2af818a6 | ||
![]() |
698e63a608 | ||
![]() |
211411faf2 | ||
![]() |
bb303c45a5 | ||
![]() |
6f7986d592 | ||
![]() |
7cbb4aef17 | ||
![]() |
02bec0bb6d | ||
![]() |
c79f6a4a8c | ||
![]() |
0c5eea226b | ||
![]() |
dcca0d7477 | ||
![]() |
0d5e7716ad | ||
![]() |
d8c824c594 | ||
![]() |
cb431dfc9f | ||
![]() |
61d787726a | ||
![]() |
5e89aace9b | ||
![]() |
2af7e8a9a6 | ||
![]() |
2419edd5b2 | ||
![]() |
bf481e8e5d | ||
![]() |
9d7fa6b8e6 | ||
![]() |
073076ac7d | ||
![]() |
9bd03dd9b4 | ||
![]() |
6931f84412 | ||
![]() |
16ec0556a0 | ||
![]() |
610af352d4 | ||
![]() |
b35f1e3c9c | ||
![]() |
dfa0b9aab4 | ||
![]() |
a4c47b0276 | ||
![]() |
111fefd5e9 | ||
![]() |
c1fe1ef081 | ||
![]() |
8c34c9dac4 | ||
![]() |
91c0277356 | ||
![]() |
9f0d5c12fc | ||
![]() |
59247c2b62 | ||
![]() |
9a3842a2d9 | ||
![]() |
726dbd9267 | ||
![]() |
54f05e7195 |
@@ -1,13 +1,14 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v18.1.8
|
||||
rev: v19.1.4
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 24.8.0
|
||||
rev: 24.10.0
|
||||
hooks:
|
||||
- id: black
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
|
@@ -24,7 +24,7 @@ option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.19.3)
|
||||
set(MLX_VERSION 0.21.1)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
@@ -34,8 +34,6 @@ message(
|
||||
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
|
||||
)
|
||||
|
||||
set(MLX_BUILD_ARM OFF)
|
||||
|
||||
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
if(NOT MLX_ENABLE_X64_MAC)
|
||||
@@ -57,10 +55,6 @@ else()
|
||||
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
|
||||
endif()
|
||||
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
set(MLX_BUILD_ARM ON)
|
||||
endif()
|
||||
|
||||
# ----------------------------- Lib -----------------------------
|
||||
|
||||
include(FetchContent)
|
||||
@@ -89,25 +83,27 @@ elseif(MLX_BUILD_METAL)
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
OUTPUT_VARIABLE MACOS_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
OUTPUT_VARIABLE MACOS_SDK_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if(${MACOS_VERSION} LESS 14.0)
|
||||
if(${MACOS_SDK_VERSION} LESS 14.0)
|
||||
message(
|
||||
FATAL_ERROR
|
||||
"MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON")
|
||||
endif()
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
message(STATUS "Building with macOS SDK version ${MACOS_SDK_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL
|
||||
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
|
||||
)
|
||||
# Get the metal version
|
||||
|
||||
if(NOT CMAKE_OSX_DEPLOYMENT_TARGET STREQUAL "")
|
||||
set(XCRUN_FLAGS "-mmacosx-version-min=${CMAKE_OSX_DEPLOYMENT_TARGET}")
|
||||
endif()
|
||||
execute_process(
|
||||
COMMAND
|
||||
zsh "-c"
|
||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal ${XCRUN_FLAGS} -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
@@ -115,13 +111,11 @@ elseif(MLX_BUILD_METAL)
|
||||
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
|
||||
$<INSTALL_INTERFACE:include/metal_cpp>)
|
||||
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
|
||||
|
||||
add_compile_definitions("MLX_METAL_VERSION=${MLX_METAL_VERSION}")
|
||||
endif()
|
||||
|
||||
if(MLX_BUILD_CPU)
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if(MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
if(ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||
@@ -160,6 +154,13 @@ if(MLX_BUILD_CPU)
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
|
||||
|
||||
if(WIN32)
|
||||
find_package(dlfcn-win32 REQUIRED)
|
||||
message(STATUS "dlfcn-win32 lib " ${dlfcn-win32_LIBRARIES})
|
||||
message(STATUS "dlfcn-win32 include " ${dlfcn-win32_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${dlfcn-win32_LIBRARIES})
|
||||
endif()
|
||||
endif()
|
||||
else()
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
|
@@ -1,62 +1,189 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
import numpy as np
|
||||
|
||||
MAX_SEQ = 300
|
||||
START_SEQ = 100
|
||||
SEQ_INCREMENT = 50
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 5
|
||||
N_iter_bench = 40
|
||||
N_iter_func = 8
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
def bench(f, *args):
|
||||
for i in range(N_warmup):
|
||||
f(*args)
|
||||
|
||||
def sdpa_primitives(qs, ks, vs, alpha):
|
||||
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ vs
|
||||
return o
|
||||
|
||||
time_fn(sdpa_primitives, q, k, v, scale)
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(*args)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
B = 2
|
||||
H = 38
|
||||
D = 64
|
||||
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
|
||||
q = mx.random.uniform(shape=(B, H, R, D))
|
||||
k = mx.random.uniform(shape=(B, H, R, D))
|
||||
v = mx.random.uniform(shape=(B, H, R, D))
|
||||
scale = 1.0 / math.sqrt(float(D))
|
||||
mx.eval(q, k, v)
|
||||
def mlx_sdpa_fused_inner(q, k, v, scale):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=None)
|
||||
|
||||
def sdpa_fused(qs, ks, vs, alpha):
|
||||
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
|
||||
return o
|
||||
|
||||
time_fn(sdpa_fused, q, k, v, scale)
|
||||
def mlx_sdpa_unfused_inner(q, k, v, scale, f32softmax=False):
|
||||
q_dtype = q.dtype
|
||||
q = q * mx.array(scale, q_dtype)
|
||||
n_q_heads = q.shape[-3]
|
||||
n_kv_heads = k.shape[-3]
|
||||
n_repeats = n_q_heads // n_kv_heads
|
||||
|
||||
B = q.shape[0]
|
||||
L = q.shape[2]
|
||||
|
||||
if n_repeats > 1:
|
||||
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
||||
k = mx.expand_dims(k, 2)
|
||||
v = mx.expand_dims(v, 2)
|
||||
|
||||
scores = q @ mx.swapaxes(k, -1, -2)
|
||||
if f32softmax:
|
||||
scores = mx.softmax(scores.astype(mx.float32), axis=-1).astype(q_dtype)
|
||||
else:
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
|
||||
out = scores @ v
|
||||
if n_repeats > 1:
|
||||
out = mx.reshape(out, [B, n_q_heads, L, -1])
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def mlx_spda_unfused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_unfused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def mlx_spda_fused(q, k, v, scale, transpose):
|
||||
q_out = q
|
||||
if transpose:
|
||||
k = mx.transpose(k, (0, 2, 1, 3))
|
||||
v = mx.transpose(v, (0, 2, 1, 3))
|
||||
|
||||
for i in range(N_iter_func):
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
q_out = mlx_sdpa_fused_inner(q_out, k, v, scale)
|
||||
if transpose:
|
||||
q_out = mx.transpose(q_out, (0, 2, 1, 3))
|
||||
|
||||
mx.eval(q_out)
|
||||
return q_out
|
||||
|
||||
|
||||
def bench_shape(B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose=True):
|
||||
shape_q = (
|
||||
(B, qsl, n_q_heads, head_dim) if transpose else (B, n_q_heads, qsl, head_dim)
|
||||
)
|
||||
shape_kv = (
|
||||
(B, ksl, n_kv_heads, head_dim) if transpose else (B, n_kv_heads, ksl, head_dim)
|
||||
)
|
||||
|
||||
q_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_q).astype(np_dtype)
|
||||
k_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
v_np = np.random.normal(0.0, 1.0 / math.sqrt(head_dim), shape_kv).astype(np_dtype)
|
||||
|
||||
scale = math.sqrt(1.0 / head_dim)
|
||||
|
||||
q_mx = mx.array(q_np)
|
||||
k_mx = mx.array(k_np)
|
||||
v_mx = mx.array(v_np)
|
||||
|
||||
time_mlx_unfused = bench(mlx_spda_unfused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
time_mlx_fused = bench(mlx_spda_fused, q_mx, k_mx, v_mx, scale, transpose)
|
||||
|
||||
if transpose:
|
||||
q_mx = mx.transpose(q_mx, (0, 2, 1, 3))
|
||||
k_mx = mx.transpose(k_mx, (0, 2, 1, 3))
|
||||
v_mx = mx.transpose(v_mx, (0, 2, 1, 3))
|
||||
|
||||
o_mlx_fused = mlx_sdpa_fused_inner(q_mx, k_mx, v_mx, scale)
|
||||
o_mlx_unfused = mlx_sdpa_unfused_inner(q_mx, k_mx, v_mx, scale, f32softmax=True)
|
||||
|
||||
atol = 1e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol):
|
||||
print(
|
||||
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
||||
)
|
||||
|
||||
return time_mlx_fused, time_mlx_unfused
|
||||
|
||||
|
||||
def get_gflop_count(B, M, N, K):
|
||||
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("MLX benchmarks.")
|
||||
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
|
||||
args = parser.parse_args()
|
||||
if args.gpu:
|
||||
mx.set_default_device(mx.gpu)
|
||||
else:
|
||||
mx.set_default_device(mx.cpu)
|
||||
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
||||
|
||||
time_self_attention_sdpa()
|
||||
time_self_attention_primitives()
|
||||
dtypes = ("float16", "float32")[:1]
|
||||
transposes = (False,)
|
||||
|
||||
# fmt: off
|
||||
shapes_64 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 32, 32, 64, 32, 32),
|
||||
( 1, 64, 64, 64, 32, 32),
|
||||
( 1, 128, 128, 64, 32, 32),
|
||||
( 1, 256, 256, 64, 32, 32),
|
||||
( 1, 512, 512, 64, 32, 32),
|
||||
( 1, 1024, 1024, 64, 32, 32),
|
||||
( 1, 2048, 2048, 64, 32, 32),
|
||||
( 1, 4096, 4096, 64, 32, 32),
|
||||
)
|
||||
|
||||
shapes_80 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 80, 32, 32),
|
||||
( 1, 2048, 2048, 80, 32, 32),
|
||||
( 1, 4096, 4096, 80, 32, 32),
|
||||
)
|
||||
|
||||
shapes_128 = (
|
||||
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
||||
( 1, 1024, 1024, 128, 32, 32),
|
||||
( 1, 2048, 2048, 128, 32, 32),
|
||||
( 1, 4096, 4096, 128, 32, 32),
|
||||
)
|
||||
# fmt: on
|
||||
|
||||
shapes = shapes_64 + shapes_80 + shapes_128
|
||||
|
||||
print(" B, qsl, ksl, hdim, n_qh, n_kvh, tpose, dtype, t_unfs, t_fuse, diff%")
|
||||
|
||||
for dtype in dtypes:
|
||||
for transpose in transposes:
|
||||
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx_fused, time_mlx_unfused = bench_shape(
|
||||
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, np_dtype, transpose
|
||||
)
|
||||
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
||||
t_str = 1 if transpose else 0
|
||||
print(
|
||||
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:5d}, {dtype}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
@@ -4,42 +4,51 @@ import math
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
L = 1024
|
||||
L = 16384
|
||||
H = 32
|
||||
H_k = 32 // 4
|
||||
H_k = H // 4
|
||||
D = 128
|
||||
dtype = mx.float16
|
||||
loops = 10
|
||||
|
||||
|
||||
def attention(q, k, v):
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
k = k[:, :, None, :, :]
|
||||
v = v[:, :, None, :, :]
|
||||
s = q @ k.transpose(0, 1, 2, 4, 3)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ v
|
||||
return o.reshape(B, Hq, L, D)
|
||||
def _sdpa(q, k, v):
|
||||
B, Hq, L, D = q.shape
|
||||
_, Hk, S, _ = k.shape
|
||||
q = q.reshape(B, Hk, Hq // Hk, L, D)
|
||||
k = k[:, :, None, :, :]
|
||||
v = v[:, :, None, :, :]
|
||||
s = q @ k.transpose(0, 1, 2, 4, 3)
|
||||
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
|
||||
o = p @ v
|
||||
return o.reshape(B, Hq, L, D)
|
||||
|
||||
for i in range(loops):
|
||||
q = _sdpa(q, k, v)
|
||||
return q
|
||||
|
||||
|
||||
def sdpa(q, k, v):
|
||||
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
for i in range(loops):
|
||||
q = mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
|
||||
return q
|
||||
|
||||
|
||||
def time_self_attention_primitives():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(attention, q, k, v)
|
||||
|
||||
|
||||
def time_self_attention_sdpa():
|
||||
mx.random.seed(3)
|
||||
q = mx.random.uniform(shape=(1, H, 1, D))
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D))
|
||||
q = mx.random.uniform(shape=(1, H, 1, D)).astype(dtype)
|
||||
k = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
v = mx.random.uniform(shape=(1, H_k, L, D)).astype(dtype)
|
||||
mx.eval(q, k, v)
|
||||
time_fn(sdpa, q, k, v)
|
||||
|
||||
|
@@ -420,8 +420,8 @@ element in the output.
|
||||
constant const float& alpha [[buffer(3)]],
|
||||
constant const float& beta [[buffer(4)]],
|
||||
constant const int* shape [[buffer(5)]],
|
||||
constant const size_t* x_strides [[buffer(6)]],
|
||||
constant const size_t* y_strides [[buffer(7)]],
|
||||
constant const int64_t* x_strides [[buffer(6)]],
|
||||
constant const int64_t* y_strides [[buffer(7)]],
|
||||
constant const int& ndim [[buffer(8)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
// Convert linear indices to offsets in array
|
||||
@@ -438,24 +438,10 @@ each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] \
|
||||
[[kernel]] void axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
instantiate_kernel("axpby_general_float32", axpby_general, float)
|
||||
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
|
||||
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
|
||||
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
@@ -494,7 +480,7 @@ below.
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel declaration at axpby.metal
|
||||
@@ -509,14 +495,14 @@ below.
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
compute_encoder.set_bytes(alpha_, 3);
|
||||
compute_encoder.set_bytes(beta_, 4);
|
||||
|
||||
// Encode shape, strides and ndim
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 8);
|
||||
compute_encoder.set_vector_bytes(x.shape(), 5);
|
||||
compute_encoder.set_vector_bytes(x.strides(), 6);
|
||||
compute_encoder.set_bytes(y.strides(), 7);
|
||||
compute_encoder.set_bytes(ndim, 8);
|
||||
|
||||
// We launch 1 thread for each input and make sure that the number of
|
||||
// threads in any given threadgroup is not higher than the max allowed
|
||||
@@ -530,7 +516,7 @@ below.
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
@@ -209,7 +209,7 @@ Metal library by run-time compiling kernels the first time they are used in MLX
|
||||
on a given machine. Note run-time compilation incurs a cold-start cost which can
|
||||
be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists accross reboots.
|
||||
Metal kernel cache persists across reboots.
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
@@ -12,5 +12,4 @@ Fast
|
||||
layer_norm
|
||||
rope
|
||||
scaled_dot_product_attention
|
||||
affine_quantize
|
||||
metal_kernel
|
||||
|
@@ -12,6 +12,7 @@ Layers
|
||||
ALiBi
|
||||
AvgPool1d
|
||||
AvgPool2d
|
||||
AvgPool3d
|
||||
BatchNorm
|
||||
CELU
|
||||
Conv1d
|
||||
@@ -41,6 +42,7 @@ Layers
|
||||
LSTM
|
||||
MaxPool1d
|
||||
MaxPool2d
|
||||
MaxPool3d
|
||||
Mish
|
||||
MultiHeadAttention
|
||||
PReLU
|
||||
|
@@ -184,8 +184,8 @@ Let's time these two different versions:
|
||||
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
|
||||
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
|
||||
|
||||
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
|
||||
vectorized version takes only ``0.025`` seconds, more than ten times faster.
|
||||
On an M1 Max the naive version takes in total ``5.639`` seconds whereas the
|
||||
vectorized version takes only ``0.024`` seconds, more than 200 times faster.
|
||||
|
||||
Of course, this operation is quite contrived. A better approach is to simply do
|
||||
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.
|
||||
|
@@ -257,7 +257,7 @@ void Axpby::eval_gpu(
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel declaration at axpby.metal
|
||||
@@ -272,15 +272,15 @@ void Axpby::eval_gpu(
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
compute_encoder.set_bytes(alpha_, 3);
|
||||
compute_encoder.set_bytes(beta_, 4);
|
||||
|
||||
// Encode shape, strides and ndim if needed
|
||||
if (!contiguous_kernel) {
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 8);
|
||||
compute_encoder.set_vector_bytes(x.shape(), 5);
|
||||
compute_encoder.set_vector_bytes(x.strides(), 6);
|
||||
compute_encoder.set_bytes(y.strides(), 7);
|
||||
compute_encoder.set_bytes(ndim, 8);
|
||||
}
|
||||
|
||||
// We launch 1 thread for each input and make sure that the number of
|
||||
@@ -295,7 +295,7 @@ void Axpby::eval_gpu(
|
||||
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
#else // Metal is not available
|
||||
|
@@ -2,7 +2,6 @@
|
||||
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
template <typename T>
|
||||
@@ -13,8 +12,8 @@ template <typename T>
|
||||
constant const float& alpha [[buffer(3)]],
|
||||
constant const float& beta [[buffer(4)]],
|
||||
constant const int* shape [[buffer(5)]],
|
||||
constant const size_t* x_strides [[buffer(6)]],
|
||||
constant const size_t* y_strides [[buffer(7)]],
|
||||
constant const int64_t* x_strides [[buffer(6)]],
|
||||
constant const int64_t* y_strides [[buffer(7)]],
|
||||
constant const int& ndim [[buffer(8)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
@@ -35,29 +34,14 @@ template <typename T>
|
||||
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
|
||||
}
|
||||
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] [[kernel]] void \
|
||||
axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("axpby_contiguous_" #type_name)]] [[kernel]] void \
|
||||
axpby_contiguous<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
// clang-format off
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
instantiate_kernel("axpby_general_" #type_name, axpby_general, type) \
|
||||
instantiate_kernel( \
|
||||
"axpby_contiguous_" #type_name, axpby_contiguous, type)
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
// clang-format on
|
||||
|
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.18.1
|
||||
mlx>=0.21.0
|
||||
nanobind==2.2.0
|
||||
|
15
mlx.pc.in
15
mlx.pc.in
@@ -28,10 +28,19 @@ endif()
|
||||
if (@MLX_BUILD_METAL@)
|
||||
set(MLX_BUILD_METAL @MLX_BUILD_METAL@)
|
||||
set(MLX_CXX_FLAGS ${MLX_CXX_FLAGS} -D_METAL_)
|
||||
set_and_check(MLX_INCLUDE_DIRS
|
||||
${MLX_INCLUDE_DIRS}
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/metal_cpp
|
||||
)
|
||||
if(@MLX_METAL_VERSION@ GREATER_EQUAL 310)
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_1)
|
||||
else()
|
||||
set(MLX_INCLUDE_DIRS
|
||||
"${MLX_INCLUDE_DIRS};"
|
||||
@PACKAGE_CMAKE_INSTALL_INCLUDEDIR@/mlx/backend/metal/kernels/metal_3_0)
|
||||
endif()
|
||||
endif()
|
||||
|
||||
set_target_properties(mlx PROPERTIES
|
||||
@@ -40,4 +49,4 @@ set_target_properties(mlx PROPERTIES
|
||||
)
|
||||
|
||||
include(FindPackageHandleStandardArgs)
|
||||
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)
|
||||
find_package_handle_standard_args(MLX DEFAULT_MSG MLX_LIBRARY MLX_INCLUDE_DIRS)
|
||||
|
@@ -19,7 +19,7 @@ Buffer malloc(size_t size) {
|
||||
}
|
||||
|
||||
void free(Buffer buffer) {
|
||||
return allocator().free(buffer);
|
||||
allocator().free(buffer);
|
||||
}
|
||||
|
||||
Buffer CommonAllocator::malloc(size_t size, bool) {
|
||||
|
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include <functional>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/ops.h"
|
||||
@@ -30,7 +31,7 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
}
|
||||
|
||||
array::array(
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
@@ -41,7 +42,7 @@ array::array(
|
||||
std::move(inputs))) {}
|
||||
|
||||
std::vector<array> array::make_arrays(
|
||||
std::vector<std::vector<int>> shapes,
|
||||
std::vector<Shape> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
@@ -73,11 +74,7 @@ array::array(std::initializer_list<int> data, Dtype dtype)
|
||||
}
|
||||
|
||||
/* Build an array from a shared buffer */
|
||||
array::array(
|
||||
allocator::Buffer data,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter)
|
||||
array::array(allocator::Buffer data, Shape shape, Dtype dtype, Deleter deleter)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
set_data(data, deleter);
|
||||
}
|
||||
@@ -125,7 +122,7 @@ bool array::is_tracer() const {
|
||||
return array_desc_->is_tracer && in_tracing() || retain_graph();
|
||||
}
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, deleter_t d) {
|
||||
void array::set_data(allocator::Buffer buffer, Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->data_size = size();
|
||||
@@ -138,9 +135,9 @@ void array::set_data(allocator::Buffer buffer, deleter_t d) {
|
||||
void array::set_data(
|
||||
allocator::Buffer buffer,
|
||||
size_t data_size,
|
||||
std::vector<size_t> strides,
|
||||
Strides strides,
|
||||
Flags flags,
|
||||
deleter_t d) {
|
||||
Deleter d) {
|
||||
array_desc_->data = std::make_shared<Data>(buffer, d);
|
||||
array_desc_->data_ptr = buffer.raw_ptr();
|
||||
array_desc_->data_size = data_size;
|
||||
@@ -150,7 +147,7 @@ void array::set_data(
|
||||
|
||||
void array::copy_shared_buffer(
|
||||
const array& other,
|
||||
const std::vector<size_t>& strides,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
@@ -169,7 +166,7 @@ void array::copy_shared_buffer(const array& other) {
|
||||
|
||||
void array::move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
@@ -214,6 +211,8 @@ array::~array() {
|
||||
if (do_detach) {
|
||||
for (auto& s : siblings()) {
|
||||
for (auto& ss : s.siblings()) {
|
||||
// Set to null here to avoid descending into array destructor
|
||||
// for siblings
|
||||
ss.array_desc_ = nullptr;
|
||||
}
|
||||
s.array_desc_->siblings.clear();
|
||||
@@ -234,13 +233,13 @@ void array::ArrayDesc::init() {
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
|
||||
array::ArrayDesc::ArrayDesc(Shape shape, Dtype dtype)
|
||||
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
@@ -292,6 +291,14 @@ array::ArrayDesc::~ArrayDesc() {
|
||||
auto top = std::move(for_deletion.back());
|
||||
for_deletion.pop_back();
|
||||
append_deletable_inputs(*top);
|
||||
|
||||
// Clear out possible siblings to break circular references
|
||||
for (auto& s : top->siblings) {
|
||||
// Set to null here to avoid descending into top-level
|
||||
// array destructor for siblings
|
||||
s.array_desc_ = nullptr;
|
||||
}
|
||||
top->siblings.clear();
|
||||
}
|
||||
}
|
||||
|
||||
|
51
mlx/array.h
51
mlx/array.h
@@ -15,7 +15,10 @@ namespace mlx::core {
|
||||
|
||||
// Forward declaration
|
||||
class Primitive;
|
||||
using deleter_t = std::function<void(allocator::Buffer)>;
|
||||
|
||||
using Deleter = std::function<void(allocator::Buffer)>;
|
||||
using Shape = std::vector<int32_t>;
|
||||
using Strides = std::vector<int64_t>;
|
||||
|
||||
class array {
|
||||
/* An array is really a node in a graph. It contains a shared ArrayDesc
|
||||
@@ -33,7 +36,7 @@ class array {
|
||||
template <typename It>
|
||||
array(
|
||||
It data,
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype =
|
||||
TypeToDtype<typename std::iterator_traits<It>::value_type>());
|
||||
|
||||
@@ -49,15 +52,15 @@ class array {
|
||||
template <typename T>
|
||||
array(
|
||||
std::initializer_list<T> data,
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype = TypeToDtype<T>());
|
||||
|
||||
/* Build an array from a buffer */
|
||||
array(
|
||||
allocator::Buffer data,
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter = allocator::free);
|
||||
Deleter deleter = allocator::free);
|
||||
|
||||
/** Assignment to rvalue does not compile. */
|
||||
array& operator=(const array& other) && = delete;
|
||||
@@ -96,7 +99,7 @@ class array {
|
||||
}
|
||||
|
||||
/** The shape of the array as a vector of integers. */
|
||||
const std::vector<int>& shape() const {
|
||||
const Shape& shape() const {
|
||||
return array_desc_->shape;
|
||||
}
|
||||
|
||||
@@ -105,12 +108,12 @@ class array {
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
int shape(int dim) const {
|
||||
auto shape(int dim) const {
|
||||
return shape().at(dim < 0 ? dim + ndim() : dim);
|
||||
}
|
||||
|
||||
/** The strides of the array. */
|
||||
const std::vector<size_t>& strides() const {
|
||||
const Strides& strides() const {
|
||||
return array_desc_->strides;
|
||||
}
|
||||
|
||||
@@ -119,7 +122,7 @@ class array {
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
size_t strides(int dim) const {
|
||||
auto strides(int dim) const {
|
||||
return strides().at(dim < 0 ? dim + ndim() : dim);
|
||||
}
|
||||
|
||||
@@ -184,13 +187,13 @@ class array {
|
||||
*/
|
||||
|
||||
array(
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
|
||||
static std::vector<array> make_arrays(
|
||||
std::vector<std::vector<int>> shapes,
|
||||
std::vector<Shape> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs);
|
||||
@@ -207,8 +210,8 @@ class array {
|
||||
|
||||
struct Data {
|
||||
allocator::Buffer buffer;
|
||||
deleter_t d;
|
||||
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
|
||||
Deleter d;
|
||||
Data(allocator::Buffer buffer, Deleter d = allocator::free)
|
||||
: buffer(buffer), d(d) {}
|
||||
// Not copyable
|
||||
Data(const Data& d) = delete;
|
||||
@@ -397,18 +400,18 @@ class array {
|
||||
// Check if the array is a tracer array
|
||||
bool is_tracer() const;
|
||||
|
||||
void set_data(allocator::Buffer buffer, deleter_t d = allocator::free);
|
||||
void set_data(allocator::Buffer buffer, Deleter d = allocator::free);
|
||||
|
||||
void set_data(
|
||||
allocator::Buffer buffer,
|
||||
size_t data_size,
|
||||
std::vector<size_t> strides,
|
||||
Strides strides,
|
||||
Flags flags,
|
||||
deleter_t d = allocator::free);
|
||||
Deleter d = allocator::free);
|
||||
|
||||
void copy_shared_buffer(
|
||||
const array& other,
|
||||
const std::vector<size_t>& strides,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
@@ -417,7 +420,7 @@ class array {
|
||||
|
||||
void move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
const Strides& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
@@ -436,8 +439,8 @@ class array {
|
||||
void init(const It src);
|
||||
|
||||
struct ArrayDesc {
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
Shape shape;
|
||||
Strides strides;
|
||||
size_t size;
|
||||
Dtype dtype;
|
||||
std::shared_ptr<Primitive> primitive;
|
||||
@@ -471,10 +474,10 @@ class array {
|
||||
// The arrays position in the output list
|
||||
uint32_t position{0};
|
||||
|
||||
explicit ArrayDesc(std::vector<int> shape, Dtype dtype);
|
||||
explicit ArrayDesc(Shape shape, Dtype dtype);
|
||||
|
||||
explicit ArrayDesc(
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
@@ -502,7 +505,7 @@ array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
|
||||
template <typename It>
|
||||
array::array(
|
||||
It data,
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype /* = TypeToDtype<typename std::iterator_traits<It>::value_type>() */) :
|
||||
array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
init(data);
|
||||
@@ -521,7 +524,7 @@ array::array(
|
||||
template <typename T>
|
||||
array::array(
|
||||
std::initializer_list<T> data,
|
||||
std::vector<int> shape,
|
||||
Shape shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
|
@@ -13,8 +13,8 @@ template <typename InT, typename OpT>
|
||||
void arg_reduce(const array& in, array& out, const OpT& op, int axis) {
|
||||
auto axis_size = in.shape()[axis];
|
||||
auto axis_stride = in.strides()[axis];
|
||||
std::vector<size_t> strides = in.strides();
|
||||
std::vector<int> shape = in.shape();
|
||||
Strides strides = in.strides();
|
||||
Shape shape = in.shape();
|
||||
strides.erase(strides.begin() + axis);
|
||||
shape.erase(shape.begin() + axis);
|
||||
for (uint32_t i = 0; i < out.size(); ++i) {
|
||||
|
@@ -178,10 +178,10 @@ void binary_op_dims(
|
||||
const T* b,
|
||||
U* out,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
@@ -212,10 +212,10 @@ void binary_op_dispatch_dims(
|
||||
array& out,
|
||||
Op op,
|
||||
int dim,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides) {
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides) {
|
||||
const T* a_ptr = a.data<T>();
|
||||
const T* b_ptr = b.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
@@ -258,10 +258,10 @@ void binary_op_dispatch_dims(
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
|
||||
size_t stride = out_strides[dim - 4];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
||||
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
||||
auto stride = out_strides[dim - 4];
|
||||
for (int64_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 3, Strided>(
|
||||
a_ptr + a_it.loc,
|
||||
b_ptr + b_it.loc,
|
||||
@@ -327,7 +327,7 @@ void binary_op(
|
||||
const auto& strides = new_strides[2];
|
||||
|
||||
// Get the left-most dim such that the array is row contiguous after
|
||||
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
|
||||
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
||||
}
|
||||
@@ -337,7 +337,7 @@ void binary_op(
|
||||
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
||||
|
||||
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
||||
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
|
||||
auto leftmost_s_dim = [](const auto& arr_strides) {
|
||||
int d = arr_strides.size() - 1;
|
||||
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
||||
}
|
||||
|
@@ -16,10 +16,10 @@ void binary_op_dims(
|
||||
U* out_a,
|
||||
U* out_b,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
@@ -96,9 +96,9 @@ void binary_op_dispatch_dims(
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
|
||||
size_t stride = out_strides[ndim - 3];
|
||||
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
||||
auto stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
binary_op_dims<T, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
|
@@ -39,7 +39,7 @@ void AsStrided::eval(const std::vector<array>& inputs, array& out) {
|
||||
// rely on data_size anyway.
|
||||
size_t data_size = out.size();
|
||||
|
||||
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
|
||||
return move_or_copy(in, out, strides_, flags, data_size, offset_);
|
||||
}
|
||||
|
||||
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
@@ -49,7 +49,7 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
out.set_data(nullptr);
|
||||
return;
|
||||
}
|
||||
std::vector<size_t> strides(out.ndim(), 0);
|
||||
Strides strides(out.ndim(), 0);
|
||||
int diff = out.ndim() - in.ndim();
|
||||
for (int i = in.ndim() - 1; i >= 0; --i) {
|
||||
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
|
||||
@@ -58,12 +58,12 @@ void Broadcast::eval(const std::vector<array>& inputs, array& out) {
|
||||
if (out.size() > in.size()) {
|
||||
flags.row_contiguous = flags.col_contiguous = false;
|
||||
}
|
||||
out.copy_shared_buffer(in, strides, flags, in.data_size());
|
||||
move_or_copy(in, out, strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
move_or_copy(inputs[0], out);
|
||||
}
|
||||
|
||||
void CustomTransforms::eval(
|
||||
@@ -72,7 +72,7 @@ void CustomTransforms::eval(
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
|
||||
i++, j++) {
|
||||
outputs[i].copy_shared_buffer(inputs[j]);
|
||||
move_or_copy(inputs[j], outputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -81,7 +81,7 @@ void Depends::eval(
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
for (int i = 0; i < outputs.size(); i++) {
|
||||
outputs[i].copy_shared_buffer(inputs[i]);
|
||||
move_or_copy(inputs[i], outputs[i]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -141,7 +141,7 @@ void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
std::pair<bool, Strides> Reshape::prepare_reshape(
|
||||
const array& in,
|
||||
const array& out) {
|
||||
// Special case for empty arrays or row contiguous arrays
|
||||
@@ -151,8 +151,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
|
||||
// Special case for scalars
|
||||
if (in.ndim() == 0) {
|
||||
std::vector<size_t> out_strides(out.ndim(), 0);
|
||||
return {false, out_strides};
|
||||
return {false, Strides(out.ndim(), 0)};
|
||||
}
|
||||
|
||||
// Firstly let's collapse all the contiguous dimensions of the input
|
||||
@@ -160,7 +159,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
|
||||
// If shapes fit exactly in the contiguous dims then no copy is necessary so
|
||||
// let's check.
|
||||
std::vector<size_t> out_strides;
|
||||
Strides out_strides;
|
||||
bool copy_necessary = false;
|
||||
int j = 0;
|
||||
for (int i = 0; i < out.ndim(); i++) {
|
||||
@@ -183,7 +182,7 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
|
||||
|
||||
void Reshape::shared_buffer_reshape(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Strides& out_strides,
|
||||
array& out) {
|
||||
auto flags = in.flags();
|
||||
if (flags.row_contiguous) {
|
||||
@@ -194,7 +193,7 @@ void Reshape::shared_buffer_reshape(
|
||||
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
|
||||
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
void Split::eval(
|
||||
@@ -249,26 +248,14 @@ void Split::eval(
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
|
||||
const array& in) {
|
||||
int64_t data_offset = 0;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices_[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides_[i];
|
||||
}
|
||||
|
||||
return std::make_tuple(data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
move_or_copy(inputs[0], out);
|
||||
}
|
||||
|
||||
void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
std::vector<size_t> out_strides(out.ndim());
|
||||
Strides out_strides(out.ndim());
|
||||
auto& in = inputs[0];
|
||||
for (int ax = 0; ax < axes_.size(); ++ax) {
|
||||
out_strides[ax] = in.strides()[axes_[ax]];
|
||||
@@ -285,8 +272,8 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
// true, they stay true)
|
||||
auto flags = in.flags();
|
||||
if (flags.contiguous && in.data_size() == in.size()) {
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
flags.col_contiguous = true;
|
||||
flags.row_contiguous = true;
|
||||
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
|
||||
@@ -297,7 +284,7 @@ void Transpose::eval(const std::vector<array>& inputs, array& out) {
|
||||
b_stride *= out.shape(ri);
|
||||
}
|
||||
}
|
||||
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
|
||||
move_or_copy(in, out, out_strides, flags, in.data_size());
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -165,7 +165,7 @@ void compiled_allocate_outputs(
|
||||
bool move_buffers /* = false */) {
|
||||
if (contiguous) {
|
||||
int o = 0;
|
||||
std::vector<size_t> strides;
|
||||
Strides strides;
|
||||
size_t data_size;
|
||||
array::Flags flags;
|
||||
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
|
||||
|
@@ -47,7 +47,7 @@ bool compile_available_for_device(const Device& device) {
|
||||
} // namespace detail
|
||||
|
||||
std::string get_temp_file(const std::string& name) {
|
||||
return std::filesystem::temp_directory_path().append(name);
|
||||
return std::filesystem::temp_directory_path().append(name).string();
|
||||
}
|
||||
|
||||
// Return a pointer to a compiled function
|
||||
@@ -279,7 +279,7 @@ void Compiled::eval_cpu(
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& shape = outputs[0].shape();
|
||||
bool contiguous = compiled_check_contiguity(inputs, shape);
|
||||
auto contiguous = compiled_check_contiguity(inputs, shape);
|
||||
|
||||
// Handle all broadcasting and collect function input arguments
|
||||
std::vector<void*> args;
|
||||
|
@@ -746,9 +746,9 @@ void explicit_gemm_conv_1D_cpu(
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
|
||||
|
||||
// Make strided view
|
||||
std::vector<int> strided_shape = {N, oH, wH, C};
|
||||
Shape strided_shape = {N, oH, wH, C};
|
||||
|
||||
std::vector<size_t> strided_strides = {
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[1],
|
||||
@@ -865,9 +865,9 @@ void explicit_gemm_conv_2D_cpu(
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
|
||||
|
||||
// Make strided view
|
||||
std::vector<int> strided_shape = {N, oH, oW, wH, wW, C};
|
||||
Shape strided_shape = {N, oH, oW, wH, wW, C};
|
||||
|
||||
std::vector<size_t> strided_strides = {
|
||||
Strides strided_strides = {
|
||||
in_padded.strides()[0],
|
||||
in_padded.strides()[1] * wt_strides[0],
|
||||
in_padded.strides()[2] * wt_strides[1],
|
||||
@@ -974,7 +974,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
|
||||
|
||||
// Make strided view
|
||||
std::vector<int> strided_shape(oDim.size() + wDim.size() + 2);
|
||||
Shape strided_shape(oDim.size() + wDim.size() + 2);
|
||||
strided_shape.front() = N;
|
||||
for (size_t i = 0; i < oDim.size(); i++) {
|
||||
strided_shape[i + 1] = oDim[i];
|
||||
@@ -984,7 +984,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
}
|
||||
strided_shape.back() = C;
|
||||
|
||||
std::vector<size_t> strided_strides(in.shape().size() * 2 - 2);
|
||||
Strides strided_strides(in.shape().size() * 2 - 2);
|
||||
strided_strides[0] = in_padded.strides()[0];
|
||||
for (size_t i = 0; i < wt_strides.size(); i++) {
|
||||
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
|
||||
@@ -1000,7 +1000,7 @@ void explicit_gemm_conv_ND_cpu(
|
||||
in_padded, strided_strides, flags, in_strided_view.size(), 0);
|
||||
|
||||
// Materialize strided view
|
||||
std::vector<int> strided_reshape = {N, C};
|
||||
Shape strided_reshape = {N, C};
|
||||
for (const auto& o : oDim) {
|
||||
strided_reshape[0] *= o;
|
||||
}
|
||||
|
@@ -26,13 +26,13 @@ void copy_vector(const array& src, array& dst) {
|
||||
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT, int D>
|
||||
template <typename SrcT, typename DstT, int D>
|
||||
inline void copy_dims(
|
||||
const SrcT* src,
|
||||
DstT* dst,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
const Shape& shape,
|
||||
const Strides& i_strides,
|
||||
const Strides& o_strides,
|
||||
int axis) {
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
@@ -40,7 +40,7 @@ inline void copy_dims(
|
||||
|
||||
for (int i = 0; i < N; i++) {
|
||||
if constexpr (D > 1) {
|
||||
copy_dims<SrcT, DstT, StrideT, D - 1>(
|
||||
copy_dims<SrcT, DstT, D - 1>(
|
||||
src, dst, shape, i_strides, o_strides, axis + 1);
|
||||
} else {
|
||||
*dst = static_cast<DstT>(*src);
|
||||
@@ -50,13 +50,13 @@ inline void copy_dims(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT>
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
const Shape& data_shape,
|
||||
const Strides& i_strides,
|
||||
const Strides& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
if (data_shape.empty()) {
|
||||
@@ -65,30 +65,30 @@ void copy_general_general(
|
||||
*dst_ptr = val;
|
||||
return;
|
||||
}
|
||||
auto [shape, strides] = collapse_contiguous_dims(
|
||||
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
|
||||
auto [shape, strides] =
|
||||
collapse_contiguous_dims(data_shape, {i_strides, o_strides});
|
||||
auto src_ptr = src.data<SrcT>() + i_offset;
|
||||
auto dst_ptr = dst.data<DstT>() + o_offset;
|
||||
int ndim = shape.size();
|
||||
if (ndim == 1) {
|
||||
copy_dims<SrcT, DstT, StrideT, 1>(
|
||||
copy_dims<SrcT, DstT, 1>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
} else if (ndim == 2) {
|
||||
copy_dims<SrcT, DstT, StrideT, 2>(
|
||||
copy_dims<SrcT, DstT, 2>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
} else if (ndim == 3) {
|
||||
copy_dims<SrcT, DstT, StrideT, 3>(
|
||||
copy_dims<SrcT, DstT, 3>(
|
||||
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
|
||||
return;
|
||||
}
|
||||
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
|
||||
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
|
||||
StrideT stride = std::accumulate(
|
||||
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
|
||||
for (StrideT elem = 0; elem < src.size(); elem += stride) {
|
||||
copy_dims<SrcT, DstT, StrideT, 3>(
|
||||
ContiguousIterator in(shape, strides[0], ndim - 3);
|
||||
ContiguousIterator out(shape, strides[1], ndim - 3);
|
||||
auto stride = std::accumulate(
|
||||
shape.end() - 3, shape.end(), 1, std::multiplies<int64_t>());
|
||||
for (int64_t elem = 0; elem < src.size(); elem += stride) {
|
||||
copy_dims<SrcT, DstT, 3>(
|
||||
src_ptr + in.loc,
|
||||
dst_ptr + out.loc,
|
||||
shape,
|
||||
@@ -102,37 +102,37 @@ void copy_general_general(
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general_general(const array& src, array& dst) {
|
||||
copy_general_general<SrcT, DstT, size_t>(
|
||||
copy_general_general<SrcT, DstT>(
|
||||
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT, typename StrideT>
|
||||
template <typename SrcT, typename DstT>
|
||||
void copy_general(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>&,
|
||||
const Shape& data_shape,
|
||||
const Strides& i_strides,
|
||||
const Strides&,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
copy_general_general<SrcT, DstT, StrideT>(
|
||||
copy_general_general<SrcT, DstT>(
|
||||
src,
|
||||
dst,
|
||||
data_shape,
|
||||
i_strides,
|
||||
make_contiguous_strides<StrideT>(data_shape),
|
||||
make_contiguous_strides(data_shape),
|
||||
i_offset,
|
||||
o_offset);
|
||||
}
|
||||
|
||||
template <typename SrcT, typename DstT>
|
||||
inline void copy_general(const array& src, array& dst) {
|
||||
copy_general_general<SrcT, DstT, size_t>(
|
||||
copy_general_general<SrcT, DstT>(
|
||||
src,
|
||||
dst,
|
||||
src.shape(),
|
||||
src.strides(),
|
||||
make_contiguous_strides<size_t>(src.shape()),
|
||||
make_contiguous_strides(src.shape()),
|
||||
0,
|
||||
0);
|
||||
}
|
||||
@@ -282,13 +282,12 @@ void copy(const array& src, array& dst, CopyType ctype) {
|
||||
copy_inplace(src, dst, ctype);
|
||||
}
|
||||
|
||||
template <typename StrideT>
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<StrideT>& i_strides,
|
||||
const std::vector<StrideT>& o_strides,
|
||||
const Shape& data_shape,
|
||||
const Strides& i_strides,
|
||||
const Strides& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype) {
|
||||
@@ -311,24 +310,4 @@ void copy_inplace(
|
||||
}
|
||||
}
|
||||
|
||||
template void copy_inplace<size_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<size_t>& i_strides,
|
||||
const std::vector<size_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
||||
template void copy_inplace<int64_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<int64_t>& i_strides,
|
||||
const std::vector<int64_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -26,13 +26,12 @@ enum class CopyType {
|
||||
void copy(const array& src, array& dst, CopyType ctype);
|
||||
void copy_inplace(const array& src, array& dst, CopyType ctype);
|
||||
|
||||
template <typename stride_t>
|
||||
void copy_inplace(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
const Shape& data_shape,
|
||||
const Strides& i_strides,
|
||||
const Strides& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
@@ -130,7 +130,7 @@ inline void matmul_common_general(
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
|
@@ -32,7 +32,7 @@ void gather(
|
||||
const std::vector<array>& inds,
|
||||
array& out,
|
||||
const std::vector<int>& axes,
|
||||
const std::vector<int>& slice_sizes) {
|
||||
const Shape& slice_sizes) {
|
||||
// If the array is row contiguous then we can do a contiguous copy given
|
||||
// two conditions on the slice size:
|
||||
// - Any number of leading ones in the slice sizes are allowed
|
||||
@@ -80,11 +80,10 @@ void gather(
|
||||
T* dst_ptr = out.data<T>();
|
||||
size_t out_idx = 0;
|
||||
|
||||
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
|
||||
ContiguousIterator<size_t> src_it;
|
||||
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
|
||||
ContiguousIterator src_it;
|
||||
if (!can_copy && src.ndim() > 0) {
|
||||
src_it = std::move(
|
||||
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
|
||||
src_it = ContiguousIterator(slice_sizes, src.strides(), src.ndim());
|
||||
}
|
||||
for (int idx = 0; idx < ind_size; idx++) {
|
||||
size_t src_idx = 0;
|
||||
@@ -119,7 +118,7 @@ void dispatch_gather(
|
||||
const std::vector<array>& inds,
|
||||
array& out,
|
||||
const std::vector<int>& axes,
|
||||
const std::vector<int>& size) {
|
||||
const Shape& size) {
|
||||
switch (out.dtype()) {
|
||||
case bool_:
|
||||
gather<bool, IdxT>(src, inds, out, axes, size);
|
||||
@@ -223,16 +222,16 @@ void scatter(
|
||||
auto inds_ndim = updates.ndim() - out.ndim();
|
||||
size_t n_updates = nind ? inds[0].size() : 1;
|
||||
|
||||
std::vector<int> update_shape(
|
||||
Shape update_shape(
|
||||
updates.shape().begin() + inds_ndim, updates.shape().end());
|
||||
size_t update_size = 1;
|
||||
for (auto us : update_shape) {
|
||||
update_size *= us;
|
||||
}
|
||||
|
||||
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
|
||||
ContiguousIterator<size_t> update_it(updates);
|
||||
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
|
||||
std::vector<ContiguousIterator> its(inds.begin(), inds.end());
|
||||
ContiguousIterator update_it(updates);
|
||||
ContiguousIterator out_it(update_shape, out.strides(), out.ndim());
|
||||
|
||||
for (int i = 0; i < n_updates; ++i) {
|
||||
size_t out_offset = 0;
|
||||
|
@@ -2,6 +2,15 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
// Required for Visual Studio.
|
||||
// https://github.com/OpenMathLib/OpenBLAS/blob/develop/docs/install.md
|
||||
#ifdef _MSC_VER
|
||||
#include <complex>
|
||||
#define LAPACK_COMPLEX_CUSTOM
|
||||
#define lapack_complex_float std::complex<float>
|
||||
#define lapack_complex_double std::complex<double>
|
||||
#endif
|
||||
|
||||
#ifdef ACCELERATE_NEW_LAPACK
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#else
|
||||
|
@@ -19,10 +19,10 @@ inline void mask_matrix(
|
||||
int block_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str,
|
||||
const int64_t X_data_str,
|
||||
const int64_t Y_data_str,
|
||||
const int64_t X_mask_str,
|
||||
const int64_t Y_mask_str,
|
||||
const size_t mask_offset) {
|
||||
int tX = (X + block_size - 1) / block_size;
|
||||
int tY = (Y + block_size - 1) / block_size;
|
||||
@@ -84,7 +84,7 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
int64_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
@@ -117,13 +117,13 @@ void BlockMaskedMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
int Y,
|
||||
size_t X_data_str,
|
||||
size_t Y_data_str) {
|
||||
size_t mask_offset = elem_to_loc(
|
||||
auto mask_offset = elem_to_loc(
|
||||
mask.shape(-1) * mask.shape(-2) * batch_idx,
|
||||
mask.shape(),
|
||||
mask.strides());
|
||||
|
||||
size_t X_mask_str = mask.strides()[mask.ndim() - 2];
|
||||
size_t Y_mask_str = mask.strides()[mask.ndim() - 1];
|
||||
auto X_mask_str = mask.strides()[mask.ndim() - 2];
|
||||
auto Y_mask_str = mask.strides()[mask.ndim() - 1];
|
||||
|
||||
if (mask.dtype() == bool_) {
|
||||
return mask_matrix(
|
||||
@@ -230,7 +230,7 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
size_t stx = arr.shape(-1);
|
||||
int64_t stx = arr.shape(-1);
|
||||
return std::make_tuple(false, stx, arr_copy);
|
||||
}
|
||||
};
|
||||
@@ -262,13 +262,13 @@ void GatherMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto& lhs_indices = inputs[2];
|
||||
auto& rhs_indices = inputs[3];
|
||||
|
||||
std::vector<int> batch_shape = get_batch_dims(out.shape());
|
||||
auto batch_shape = get_batch_dims(out.shape());
|
||||
int batch_ndim = batch_shape.size();
|
||||
|
||||
std::vector<int> batch_shape_A = get_batch_dims(a.shape());
|
||||
std::vector<size_t> batch_strides_A = get_batch_dims(a.strides());
|
||||
std::vector<int> batch_shape_B = get_batch_dims(b.shape());
|
||||
std::vector<size_t> batch_strides_B = get_batch_dims(b.strides());
|
||||
auto batch_shape_A = get_batch_dims(a.shape());
|
||||
auto batch_strides_A = get_batch_dims(a.strides());
|
||||
auto batch_shape_B = get_batch_dims(b.shape());
|
||||
auto batch_strides_B = get_batch_dims(b.strides());
|
||||
|
||||
const uint32_t* lhs_indices_ptr = lhs_indices.data<uint32_t>();
|
||||
const uint32_t* rhs_indices_ptr = rhs_indices.data<uint32_t>();
|
||||
|
@@ -500,7 +500,12 @@ struct Equal {
|
||||
struct NaNEqual {
|
||||
template <typename T>
|
||||
bool operator()(T x, T y) {
|
||||
return x == y || (std::isnan(x) && std::isnan(y));
|
||||
if constexpr (std::is_integral_v<T>) {
|
||||
// isnan always returns false for integers, and MSVC refuses to compile.
|
||||
return x == y;
|
||||
} else {
|
||||
return x == y || (std::isnan(x) && std::isnan(y));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
@@ -159,6 +159,17 @@ void Conjugate::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
if (in.flags().row_contiguous ||
|
||||
(allow_col_major_ && in.flags().col_contiguous)) {
|
||||
out.copy_shared_buffer(in);
|
||||
} else {
|
||||
copy(in, out, CopyType::General);
|
||||
}
|
||||
}
|
||||
|
||||
void Cos::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
const auto& in = inputs[0];
|
||||
@@ -487,14 +498,15 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [copy_needed, data_offset, inp_strides] =
|
||||
prepare_slice(in, start_indices_, strides_);
|
||||
auto [data_offset, inp_strides] = prepare_slice(in, start_indices_, strides_);
|
||||
auto copy_needed = std::any_of(
|
||||
strides_.begin(), strides_.end(), [](auto i) { return i < 0; });
|
||||
|
||||
// Do copy if needed
|
||||
if (copy_needed) {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
|
||||
copy_inplace<int64_t>(
|
||||
Strides ostrides{out.strides().begin(), out.strides().end()};
|
||||
copy_inplace(
|
||||
/* const array& src = */ in,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ out.shape(),
|
||||
@@ -512,7 +524,7 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
size_t data_size = data_end - data_offset;
|
||||
std::vector<size_t> ostrides{inp_strides.begin(), inp_strides.end()};
|
||||
Strides ostrides{inp_strides.begin(), inp_strides.end()};
|
||||
shared_buffer_slice(in, ostrides, data_offset, data_size, out);
|
||||
}
|
||||
}
|
||||
@@ -539,11 +551,11 @@ void SliceUpdate::eval(const std::vector<array>& inputs, array& out) {
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
|
||||
|
||||
// Calculate out strides, initial offset and if copy needs to be made
|
||||
auto [data_offset, out_strides] = prepare_slice(out);
|
||||
auto [data_offset, out_strides] = prepare_slice(in, start_indices_, strides_);
|
||||
|
||||
// Do copy
|
||||
std::vector<int64_t> upd_strides{upd.strides().begin(), upd.strides().end()};
|
||||
copy_inplace<int64_t>(
|
||||
Strides upd_strides{upd.strides().begin(), upd.strides().end()};
|
||||
copy_inplace(
|
||||
/* const array& src = */ upd,
|
||||
/* array& dst = */ out,
|
||||
/* const std::vector<int>& data_shape = */ upd.shape(),
|
||||
@@ -606,7 +618,7 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
if (ibytes == obytes || obytes < ibytes && in.strides().back() == 1 ||
|
||||
in.flags().row_contiguous) {
|
||||
auto strides = in.strides();
|
||||
for (int i = 0; i < strides.size() - 1; ++i) {
|
||||
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
|
||||
strides[i] *= ibytes;
|
||||
strides[i] /= obytes;
|
||||
}
|
||||
|
@@ -54,7 +54,7 @@ void qrf_impl(const array& a, array& q, array& r) {
|
||||
// Copy the input to be column contiguous
|
||||
flags.col_contiguous = num_matrices == 1;
|
||||
flags.row_contiguous = false;
|
||||
std::vector<size_t> strides = in.strides();
|
||||
auto strides = in.strides();
|
||||
strides[in.ndim() - 2] = 1;
|
||||
strides[in.ndim() - 1] = M;
|
||||
in.set_data(
|
||||
|
@@ -2,13 +2,38 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/ops.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
template <typename T, int bits>
|
||||
void extract_bits(const uint8_t* w_in, T* w_out) {
|
||||
assert(bits == 3 || bits == 6);
|
||||
if (bits == 3) {
|
||||
w_out[0] = static_cast<T>(w_in[0] & 0x7);
|
||||
w_out[1] = static_cast<T>((w_in[0] & 0x38) >> 3);
|
||||
w_out[2] = static_cast<T>(((w_in[0] & 0xc0) >> 6) + ((w_in[1] & 0x1) << 2));
|
||||
w_out[3] = static_cast<T>((w_in[1] & 0xe) >> 1);
|
||||
w_out[4] = static_cast<T>((w_in[1] & 0x70) >> 4);
|
||||
w_out[5] = static_cast<T>(((w_in[1] & 0x80) >> 7) + ((w_in[2] & 0x3) << 1));
|
||||
w_out[6] = static_cast<T>((w_in[2] & 0x1c) >> 2);
|
||||
w_out[7] = static_cast<T>((w_in[2] & 0xe0) >> 5);
|
||||
} else if (bits == 6) {
|
||||
w_out[0] = static_cast<T>(w_in[0] & 0x3f);
|
||||
w_out[1] =
|
||||
static_cast<T>(((w_in[0] >> 6) & 0x03) + ((w_in[1] & 0x0f) << 2));
|
||||
w_out[2] =
|
||||
static_cast<T>(((w_in[1] >> 4) & 0x0f) + ((w_in[2] & 0x03) << 4));
|
||||
w_out[3] = static_cast<T>((w_in[2] >> 2) & 0x3f);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm(
|
||||
T* result,
|
||||
@@ -20,13 +45,12 @@ void _qmm(
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
|
||||
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Ng = N / group_size;
|
||||
const int Nw = N / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const T* scales_local = scales;
|
||||
const T* biases_local = biases;
|
||||
|
||||
@@ -40,13 +64,25 @@ void _qmm(
|
||||
T scale = *scales_local++;
|
||||
T bias = *biases_local++;
|
||||
for (int ng = 0; ng < packs_in_group; ng++) {
|
||||
uint32_t wi = *w_local++;
|
||||
|
||||
if (bits == 3 || bits == 6) {
|
||||
T wl[pack_factor];
|
||||
extract_bits<T, bits>(w_local, wl);
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
wi >>= bits;
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) += xi * (scale * wl[p] + bias);
|
||||
}
|
||||
w_local += bytes_per_pack;
|
||||
|
||||
} else {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
(*result_local++) +=
|
||||
xi * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
if (bits != 8) {
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -67,13 +103,12 @@ void _qmm_t(
|
||||
int N,
|
||||
int K) {
|
||||
constexpr int bitmask = (1 << bits) - 1;
|
||||
constexpr int pack_factor = 32 / bits;
|
||||
constexpr int pack_factor = bits == 3 ? 8 : bits == 6 ? 4 : 8 / bits;
|
||||
constexpr int bytes_per_pack = (bits == 3 || bits == 6) ? 3 : 1;
|
||||
constexpr int packs_in_group = group_size / pack_factor;
|
||||
const int Kg = K / group_size;
|
||||
const int Kw = K / pack_factor;
|
||||
|
||||
for (int m = 0; m < M; m++) {
|
||||
const uint32_t* w_local = w;
|
||||
const uint8_t* w_local = (const uint8_t*)w;
|
||||
const T* scales_local = scales;
|
||||
const T* biases_local = biases;
|
||||
|
||||
@@ -85,12 +120,26 @@ void _qmm_t(
|
||||
T bias = *biases_local++;
|
||||
|
||||
for (int kw = 0; kw < packs_in_group; kw++) {
|
||||
uint32_t wi = *w_local++;
|
||||
|
||||
if (bits == 3 || bits == 6) {
|
||||
T wl[pack_factor];
|
||||
extract_bits<T, bits>(w_local, wl);
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum += (*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
wi >>= bits;
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum += x_local[p] * (scale * wl[p] + bias);
|
||||
}
|
||||
w_local += bytes_per_pack;
|
||||
x_local += pack_factor;
|
||||
|
||||
} else {
|
||||
uint8_t wi = *w_local++;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int p = 0; p < pack_factor; p++) {
|
||||
sum +=
|
||||
(*x_local++) * (scale * static_cast<T>(wi & bitmask) + bias);
|
||||
if (bits != 8) {
|
||||
wi >>= bits;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -102,6 +151,55 @@ void _qmm_t(
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits, int group_size>
|
||||
void _qmm_dispatch_transpose(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
bool transposed_w) {
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, bits, group_size>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int bits>
|
||||
void _qmm_dispatch_group(
|
||||
T* result,
|
||||
const T* x,
|
||||
const uint32_t* w,
|
||||
const T* scales,
|
||||
const T* biases,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int group_size,
|
||||
bool transposed_w) {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
_qmm_dispatch_transpose<T, bits, 32>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
case 64:
|
||||
_qmm_dispatch_transpose<T, bits, 64>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
case 128:
|
||||
_qmm_dispatch_transpose<T, bits, 128>(
|
||||
result, x, w, scales, biases, M, N, K, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument(
|
||||
"Quantization group size must be 32, 64 or 128.");
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void _qmm_dispatch_typed(
|
||||
T* result,
|
||||
@@ -116,79 +214,29 @@ void _qmm_dispatch_typed(
|
||||
int bits,
|
||||
bool transposed_w) {
|
||||
switch (bits) {
|
||||
case 2: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 2, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 4: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 4, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 8: {
|
||||
switch (group_size) {
|
||||
case 32:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 32>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 32>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 64:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 64>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
case 128:
|
||||
if (transposed_w) {
|
||||
return _qmm_t<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
} else {
|
||||
return _qmm<T, 8, 128>(result, x, w, scales, biases, M, N, K);
|
||||
}
|
||||
}
|
||||
}
|
||||
case 2:
|
||||
_qmm_dispatch_group<T, 2>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 3:
|
||||
_qmm_dispatch_group<T, 3>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 4:
|
||||
_qmm_dispatch_group<T, 4>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 6:
|
||||
_qmm_dispatch_group<T, 6>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
case 8:
|
||||
_qmm_dispatch_group<T, 8>(
|
||||
result, x, w, scales, biases, M, N, K, group_size, transposed_w);
|
||||
break;
|
||||
default:
|
||||
throw std::invalid_argument("Quantization bits must be 2, 3, 4, 6 or 8.");
|
||||
}
|
||||
std::ostringstream msg;
|
||||
msg << "Quantization type not supported. Provided bits=" << bits
|
||||
<< " and group_size=" << group_size
|
||||
<< ". The supported options are bits in "
|
||||
<< "{2, 4, 8} and group_size in {64, 128}.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
void _qmm_dispatch(
|
||||
@@ -404,4 +452,114 @@ void GatherQMM::eval(const std::vector<array>& inputs, array& out) {
|
||||
transpose_);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
void quantize(
|
||||
const array& w_,
|
||||
array& out_,
|
||||
array& scales_,
|
||||
array& biases_,
|
||||
int bits,
|
||||
int group_size) {
|
||||
const T* w = w_.data<T>();
|
||||
|
||||
auto out = out_.data<U>();
|
||||
T* scales = scales_.data<T>();
|
||||
T* biases = biases_.data<T>();
|
||||
|
||||
T n_bins = (1 << bits) - 1;
|
||||
T eps = 1e-7;
|
||||
bool power_of_2_bits = is_power_of_2(bits);
|
||||
int el_per_int = bits == 3 ? 8 : bits == 6 ? 4 : 32 / bits;
|
||||
// For 3/6 bits we read 3 uint8s at a time instead of 1 uint32
|
||||
int bytes_per_pack = power_of_2_bits ? 1 : 3;
|
||||
int int_per_group = group_size * bytes_per_pack / el_per_int;
|
||||
size_t n_groups = w_.size() / group_size;
|
||||
|
||||
for (size_t i = 0; i < n_groups; ++i) {
|
||||
size_t w_idx = i * group_size;
|
||||
T w_min = std::numeric_limits<float>::infinity();
|
||||
T w_max = -w_min;
|
||||
for (int j = 0; j < group_size; ++j) {
|
||||
w_max = std::max(w_max, w[w_idx + j]);
|
||||
w_min = std::min(w_min, w[w_idx + j]);
|
||||
}
|
||||
bool mask = std::abs(w_min) > std::abs(w_max);
|
||||
T scale = std::max(T((w_max - w_min) / n_bins), eps);
|
||||
scale = mask ? scale : -scale;
|
||||
|
||||
auto edge = mask ? w_min : w_max;
|
||||
auto q0 = std::rint(edge / scale);
|
||||
if (q0 == 0) {
|
||||
scales[i] = scale;
|
||||
biases[i] = 0;
|
||||
} else {
|
||||
scales[i] = edge / q0;
|
||||
biases[i] = edge;
|
||||
}
|
||||
size_t out_idx = i * int_per_group;
|
||||
for (int j = 0; j < int_per_group / bytes_per_pack; ++j) {
|
||||
uint32_t out_el = 0;
|
||||
for (int k = 0; k < el_per_int; ++k) {
|
||||
T w_el = w[w_idx + j * el_per_int + k];
|
||||
w_el = std::rint((w_el - biases[i]) / scales[i]);
|
||||
w_el = std::min(std::max(w_el, T(0)), n_bins);
|
||||
out_el |= static_cast<uint32_t>(w_el) << (k * bits);
|
||||
}
|
||||
if (power_of_2_bits) {
|
||||
out[out_idx + j] = out_el;
|
||||
} else {
|
||||
out[out_idx + bytes_per_pack * j] = out_el & 0xff;
|
||||
out[out_idx + bytes_per_pack * j + 1] = (out_el & 0xff00) >> 8;
|
||||
out[out_idx + bytes_per_pack * j + 2] = (out_el & 0xff0000) >> 16;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
auto ensure_row_contiguous = [](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy(arr, arr_copy, CopyType::General);
|
||||
return arr_copy;
|
||||
}
|
||||
};
|
||||
auto w = ensure_row_contiguous(inputs[0]);
|
||||
|
||||
auto& out = outputs[0];
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
|
||||
if (w.dtype() == float16) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<float16_t, uint32_t>(w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<float16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else if (w.dtype() == bfloat16) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<bfloat16_t, uint32_t>(
|
||||
w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<bfloat16_t, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else if (w.dtype() == float32) {
|
||||
if (is_power_of_2(bits_)) {
|
||||
quantize<float, uint32_t>(w, out, scales, biases, bits_, group_size_);
|
||||
} else {
|
||||
quantize<float, uint8_t>(w, out, scales, biases, bits_, group_size_);
|
||||
}
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"[fast::AffineQuantize::eval_cpu] Only supports floating point inputs");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -120,65 +120,73 @@ struct MinReduce {
|
||||
};
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_out(
|
||||
void reduce_dispatch_and_or(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
switch (rtype) {
|
||||
case Reduce::And: {
|
||||
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
|
||||
break;
|
||||
if (rtype == Reduce::And) {
|
||||
reduction_op<InT, bool>(in, out, axes, true, AndReduce());
|
||||
} else {
|
||||
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_sum_prod(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
if (rtype == Reduce::Sum) {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
|
||||
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 0, op);
|
||||
}
|
||||
case Reduce::Or: {
|
||||
reduction_op<InT, bool>(in, out, axes, false, OrReduce());
|
||||
break;
|
||||
}
|
||||
case Reduce::Sum: {
|
||||
auto op = [](auto y, auto x) { (*y) = (*y) + x; };
|
||||
if (out.dtype() == int32) {
|
||||
// special case since the input type can be bool
|
||||
reduction_op<InT, int32_t>(in, out, axes, 0, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 0, op);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case Reduce::Prod: {
|
||||
auto op = [](auto y, auto x) { (*y) *= x; };
|
||||
} else {
|
||||
auto op = [](auto y, auto x) { (*y) *= x; };
|
||||
if constexpr (std::is_integral_v<InT> && sizeof(InT) <= 4) {
|
||||
reduction_op<InT, int32_t>(in, out, axes, 1, op);
|
||||
} else {
|
||||
reduction_op<InT, InT>(in, out, axes, 1, op);
|
||||
break;
|
||||
}
|
||||
case Reduce::Max: {
|
||||
auto init = Limits<InT>::min;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
|
||||
break;
|
||||
}
|
||||
case Reduce::Min: {
|
||||
auto init = Limits<InT>::max;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename InT>
|
||||
void reduce_dispatch_min_max(
|
||||
const array& in,
|
||||
array& out,
|
||||
Reduce::ReduceType rtype,
|
||||
const std::vector<int>& axes) {
|
||||
if (rtype == Reduce::Max) {
|
||||
auto init = Limits<InT>::min;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MaxReduce());
|
||||
} else {
|
||||
auto init = Limits<InT>::max;
|
||||
reduction_op<InT, InT>(in, out, axes, init, MinReduce());
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void nd_loop(
|
||||
std::function<void(int)> callback,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides) {
|
||||
const Shape& shape,
|
||||
const Strides& strides) {
|
||||
std::function<void(int, int)> loop_inner;
|
||||
loop_inner = [&](int dim, int offset) {
|
||||
if (dim < shape.size() - 1) {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
auto size = shape[dim];
|
||||
auto stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
loop_inner(dim + 1, offset + i * stride);
|
||||
}
|
||||
} else {
|
||||
int size = shape[dim];
|
||||
size_t stride = strides[dim];
|
||||
auto size = shape[dim];
|
||||
auto stride = strides[dim];
|
||||
for (int i = 0; i < size; i++) {
|
||||
callback(offset + i * stride);
|
||||
}
|
||||
@@ -190,46 +198,114 @@ void nd_loop(
|
||||
void Reduce::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
reduce_dispatch_out<bool>(in, out, reduce_type_, axes_);
|
||||
switch (reduce_type_) {
|
||||
case Reduce::And:
|
||||
case Reduce::Or: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
case int8:
|
||||
reduce_dispatch_and_or<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
case float16:
|
||||
case bfloat16:
|
||||
reduce_dispatch_and_or<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
case int32:
|
||||
case float32:
|
||||
reduce_dispatch_and_or<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
case int64:
|
||||
case complex64:
|
||||
reduce_dispatch_and_or<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case uint8:
|
||||
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
|
||||
}
|
||||
case Reduce::Sum:
|
||||
case Reduce::Prod: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
case uint8:
|
||||
case int8:
|
||||
reduce_dispatch_sum_prod<int8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
case uint16:
|
||||
reduce_dispatch_sum_prod<int16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
case uint32:
|
||||
reduce_dispatch_sum_prod<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
case uint64:
|
||||
reduce_dispatch_sum_prod<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_sum_prod<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_sum_prod<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_sum_prod<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_sum_prod<complex64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_out<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_out<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_out<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_out<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_out<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
reduce_dispatch_out<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_out<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_out<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_out<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_out<complex64_t>(in, out, reduce_type_, axes_);
|
||||
}
|
||||
case Reduce::Max:
|
||||
case Reduce::Min: {
|
||||
switch (in.dtype()) {
|
||||
case bool_:
|
||||
reduce_dispatch_min_max<bool>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint8:
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint16:
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint32:
|
||||
reduce_dispatch_min_max<uint32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case uint64:
|
||||
reduce_dispatch_min_max<uint64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int8:
|
||||
reduce_dispatch_min_max<uint8_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int16:
|
||||
reduce_dispatch_min_max<uint16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int32:
|
||||
reduce_dispatch_min_max<int32_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case int64:
|
||||
reduce_dispatch_min_max<int64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float16:
|
||||
reduce_dispatch_min_max<float16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case float32:
|
||||
reduce_dispatch_min_max<float>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case bfloat16:
|
||||
reduce_dispatch_min_max<bfloat16_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
case complex64:
|
||||
reduce_dispatch_min_max<complex64_t>(in, out, reduce_type_, axes_);
|
||||
break;
|
||||
}
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -38,13 +38,10 @@ enum ReductionOpType {
|
||||
|
||||
struct ReductionPlan {
|
||||
ReductionOpType type;
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
Shape shape;
|
||||
Strides strides;
|
||||
|
||||
ReductionPlan(
|
||||
ReductionOpType type_,
|
||||
std::vector<int> shape_,
|
||||
std::vector<size_t> strides_)
|
||||
ReductionPlan(ReductionOpType type_, Shape shape_, Strides strides_)
|
||||
: type(type_), shape(std::move(shape_)), strides(std::move(strides_)) {}
|
||||
ReductionPlan(ReductionOpType type_) : type(type_) {}
|
||||
};
|
||||
@@ -55,10 +52,10 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes);
|
||||
// Should this be in utils?
|
||||
void nd_loop(
|
||||
std::function<void(int)> callback,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides);
|
||||
const Shape& shape,
|
||||
const Strides& strides);
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes);
|
||||
|
||||
@@ -113,9 +110,6 @@ void reduction_op(
|
||||
return;
|
||||
}
|
||||
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
|
||||
if (plan.type == ContiguousReduce && plan.shape.size() == 1) {
|
||||
int reduction_size = plan.shape[0];
|
||||
const T* x_ptr = x.data<T>();
|
||||
@@ -135,7 +129,7 @@ void reduction_op(
|
||||
U* out_ptr = out.data<U>();
|
||||
// Unrolling the following loop (and implementing it in order for
|
||||
// ContiguousReduce) should hold extra performance boost.
|
||||
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
|
||||
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
|
||||
if (plan.shape.size() == 0) {
|
||||
for (int i = 0; i < out.size(); i++, out_ptr++) {
|
||||
int offset = elem_to_loc(i, shape, strides);
|
||||
@@ -181,7 +175,7 @@ void reduction_op(
|
||||
plan.strides.pop_back();
|
||||
const T* x_ptr = x.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
|
||||
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
|
||||
if (plan.shape.size() == 0) {
|
||||
for (int i = 0; i < out.size(); i += reduction_stride) {
|
||||
int offset = elem_to_loc(i, shape, strides);
|
||||
@@ -211,7 +205,7 @@ void reduction_op(
|
||||
if (plan.type == GeneralReduce) {
|
||||
const T* x_ptr = x.data<T>();
|
||||
U* out_ptr = out.data<U>();
|
||||
std::tie(shape, strides) = shapes_without_reduction_axes(x, axes);
|
||||
auto [shape, strides] = shapes_without_reduction_axes(x, axes);
|
||||
for (int i = 0; i < out.size(); i++, out_ptr++) {
|
||||
int offset = elem_to_loc(i, shape, strides);
|
||||
U val = init;
|
||||
|
@@ -4,11 +4,11 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> shapes_without_reduction_axes(
|
||||
std::pair<Shape, Strides> shapes_without_reduction_axes(
|
||||
const array& x,
|
||||
const std::vector<int>& axes) {
|
||||
std::vector<int> shape = x.shape();
|
||||
std::vector<size_t> strides = x.strides();
|
||||
auto shape = x.shape();
|
||||
auto strides = x.strides();
|
||||
|
||||
for (int i = axes.size() - 1; i >= 0; i--) {
|
||||
int a = axes[i];
|
||||
@@ -29,8 +29,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// Row contiguous input so the output is row contiguous
|
||||
if (x.flags().row_contiguous) {
|
||||
// Merge consecutive axes
|
||||
std::vector<int> shape = {x.shape(axes[0])};
|
||||
std::vector<size_t> strides = {x.strides()[axes[0]]};
|
||||
Shape shape = {x.shape(axes[0])};
|
||||
Strides strides = {x.strides()[axes[0]]};
|
||||
for (int i = 1; i < axes.size(); i++) {
|
||||
if (axes[i] - 1 == axes[i - 1] && x.shape(axes[i]) > 1) {
|
||||
shape.back() *= x.shape(axes[i]);
|
||||
@@ -69,7 +69,7 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
|
||||
// Sort reduction axes by stride in order to merge them and figure out if we
|
||||
// have a contiguous reduction.
|
||||
std::vector<std::pair<int, size_t>> reductions;
|
||||
std::vector<std::pair<int, int64_t>> reductions;
|
||||
for (auto a : axes) {
|
||||
if (x.shape(a) > 1) {
|
||||
reductions.push_back(std::make_pair(x.shape(a), x.strides()[a]));
|
||||
@@ -93,8 +93,8 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> shape;
|
||||
std::vector<size_t> strides;
|
||||
Shape shape;
|
||||
Strides strides;
|
||||
for (auto r : reductions) {
|
||||
shape.push_back(r.first);
|
||||
strides.push_back(r.second);
|
||||
@@ -109,15 +109,15 @@ ReductionPlan get_reduction_plan(const array& x, const std::vector<int>& axes) {
|
||||
// Delegate to the general strided reduction op if the axes after
|
||||
// strides.back() are contiguous.
|
||||
if (strides.back() > 1) {
|
||||
int size = 1;
|
||||
int64_t size = 1;
|
||||
bool have_expand = false;
|
||||
for (int i = x.ndim() - 1; i >= 0; i--) {
|
||||
if (axes.back() == i) {
|
||||
continue;
|
||||
}
|
||||
|
||||
size_t stride_i = x.strides()[i];
|
||||
int shape_i = x.shape(i);
|
||||
auto stride_i = x.strides()[i];
|
||||
auto shape_i = x.shape(i);
|
||||
if (stride_i == 0) {
|
||||
if (shape_i == 1) {
|
||||
continue;
|
||||
|
@@ -4,24 +4,22 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
std::tuple<int64_t, Strides> prepare_slice(
|
||||
const array& in,
|
||||
const std::vector<int>& start_indices,
|
||||
const std::vector<int>& strides) {
|
||||
const Shape& start_indices,
|
||||
const Shape& strides) {
|
||||
int64_t data_offset = 0;
|
||||
bool copy_needed = false;
|
||||
std::vector<int64_t> inp_strides(in.ndim(), 0);
|
||||
Strides inp_strides(in.ndim(), 0);
|
||||
for (int i = 0; i < in.ndim(); ++i) {
|
||||
data_offset += start_indices[i] * in.strides()[i];
|
||||
inp_strides[i] = in.strides()[i] * strides[i];
|
||||
copy_needed |= strides[i] < 0;
|
||||
}
|
||||
return std::make_tuple(copy_needed, data_offset, inp_strides);
|
||||
return std::make_tuple(data_offset, inp_strides);
|
||||
}
|
||||
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Strides& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
array& out) {
|
||||
@@ -34,7 +32,7 @@ void shared_buffer_slice(
|
||||
flags.col_contiguous = is_col_contiguous;
|
||||
flags.contiguous = (no_bsx_size == data_size);
|
||||
|
||||
out.copy_shared_buffer(in, out_strides, flags, data_size, data_offset);
|
||||
move_or_copy(in, out, out_strides, flags, data_size, data_offset);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -6,14 +6,14 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::tuple<bool, int64_t, std::vector<int64_t>> prepare_slice(
|
||||
std::tuple<int64_t, Strides> prepare_slice(
|
||||
const array& in,
|
||||
const std::vector<int>& start_indices,
|
||||
const std::vector<int>& strides);
|
||||
const Shape& start_indices,
|
||||
const Shape& strides);
|
||||
|
||||
void shared_buffer_slice(
|
||||
const array& in,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Strides& out_strides,
|
||||
size_t data_offset,
|
||||
size_t data_size,
|
||||
array& out);
|
||||
|
@@ -25,7 +25,7 @@ struct StridedIterator {
|
||||
// Constructors
|
||||
StridedIterator() = default;
|
||||
|
||||
explicit StridedIterator(T* ptr, size_t stride, difference_type offset = 0)
|
||||
explicit StridedIterator(T* ptr, int64_t stride, difference_type offset = 0)
|
||||
: ptr_(ptr + offset * stride), stride_(stride) {}
|
||||
|
||||
explicit StridedIterator(array& arr, int axis, difference_type offset = 0)
|
||||
@@ -99,7 +99,7 @@ struct StridedIterator {
|
||||
}
|
||||
|
||||
private:
|
||||
size_t stride_;
|
||||
int64_t stride_;
|
||||
T* ptr_;
|
||||
};
|
||||
|
||||
@@ -120,11 +120,11 @@ void sort(const array& in, array& out, int axis) {
|
||||
auto remaining_strides = out.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
size_t axis_stride = out.strides()[axis];
|
||||
int axis_size = out.shape(axis);
|
||||
auto axis_stride = out.strides()[axis];
|
||||
auto axis_size = out.shape(axis);
|
||||
|
||||
// Perform sorting in place
|
||||
ContiguousIterator<size_t> src_it(
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out.data<T>() + src_it.loc;
|
||||
@@ -158,14 +158,14 @@ void argsort(const array& in, array& out, int axis) {
|
||||
auto out_remaining_strides = out.strides();
|
||||
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
|
||||
|
||||
size_t in_stride = in.strides()[axis];
|
||||
size_t out_stride = out.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
auto in_stride = in.strides()[axis];
|
||||
auto out_stride = out.strides()[axis];
|
||||
auto axis_size = in.shape(axis);
|
||||
|
||||
// Perform sorting
|
||||
ContiguousIterator<size_t> in_it(
|
||||
ContiguousIterator in_it(
|
||||
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
|
||||
ContiguousIterator<size_t> out_it(
|
||||
ContiguousIterator out_it(
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in.data<T>() + in_it.loc;
|
||||
@@ -208,13 +208,13 @@ void partition(const array& in, array& out, int axis, int kth) {
|
||||
auto remaining_strides = in.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
auto axis_stride = in.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
|
||||
kth = kth < 0 ? kth + axis_size : kth;
|
||||
|
||||
// Perform partition in place
|
||||
ContiguousIterator<size_t> src_it(
|
||||
ContiguousIterator src_it(
|
||||
remaining_shape, remaining_strides, remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
T* data_ptr = out.data<T>() + src_it.loc;
|
||||
@@ -249,16 +249,16 @@ void argpartition(const array& in, array& out, int axis, int kth) {
|
||||
auto out_remaining_strides = out.strides();
|
||||
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
|
||||
|
||||
size_t in_stride = in.strides()[axis];
|
||||
size_t out_stride = out.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
auto in_stride = in.strides()[axis];
|
||||
auto out_stride = out.strides()[axis];
|
||||
auto axis_size = in.shape(axis);
|
||||
|
||||
kth = kth < 0 ? kth + axis_size : kth;
|
||||
|
||||
// Perform partition
|
||||
ContiguousIterator<size_t> in_it(
|
||||
ContiguousIterator in_it(
|
||||
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
|
||||
ContiguousIterator<size_t> out_it(
|
||||
ContiguousIterator out_it(
|
||||
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
const T* data_ptr = in.data<T>() + in_it.loc;
|
||||
|
@@ -78,11 +78,11 @@ void ternary_op_dims(
|
||||
const T3* c,
|
||||
U* out,
|
||||
Op op,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& a_strides,
|
||||
const std::vector<size_t>& b_strides,
|
||||
const std::vector<size_t>& c_strides,
|
||||
const std::vector<size_t>& out_strides,
|
||||
const Shape& shape,
|
||||
const Strides& a_strides,
|
||||
const Strides& b_strides,
|
||||
const Strides& c_strides,
|
||||
const Strides& out_strides,
|
||||
int axis) {
|
||||
auto stride_a = a_strides[axis];
|
||||
auto stride_b = b_strides[axis];
|
||||
@@ -164,10 +164,10 @@ void ternary_op_dispatch_dims(
|
||||
return;
|
||||
}
|
||||
|
||||
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
|
||||
ContiguousIterator<size_t> c_it(shape, c_strides, ndim - 2);
|
||||
size_t stride = out_strides[ndim - 3];
|
||||
ContiguousIterator a_it(shape, a_strides, ndim - 2);
|
||||
ContiguousIterator b_it(shape, b_strides, ndim - 2);
|
||||
ContiguousIterator c_it(shape, c_strides, ndim - 2);
|
||||
auto stride = out_strides[ndim - 3];
|
||||
for (size_t elem = 0; elem < a.size(); elem += stride) {
|
||||
ternary_op_dims<T1, T2, T3, U, Op, 2>(
|
||||
a_ptr + a_it.loc,
|
||||
|
@@ -4,15 +4,35 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename StrideT>
|
||||
std::tuple<std::vector<int>, std::vector<std::vector<StrideT>>>
|
||||
collapse_contiguous_dims_impl(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<StrideT>>& strides,
|
||||
StrideT size_cap) {
|
||||
void move_or_copy(const array& in, array& out) {
|
||||
if (in.is_donatable()) {
|
||||
out.move_shared_buffer(in);
|
||||
} else {
|
||||
out.copy_shared_buffer(in);
|
||||
}
|
||||
}
|
||||
|
||||
void move_or_copy(
|
||||
const array& in,
|
||||
array& out,
|
||||
const Strides& strides,
|
||||
array::Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
if (in.is_donatable()) {
|
||||
out.move_shared_buffer(in, strides, flags, data_size, offset);
|
||||
} else {
|
||||
out.copy_shared_buffer(in, strides, flags, data_size, offset);
|
||||
}
|
||||
}
|
||||
|
||||
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
const Shape& shape,
|
||||
const std::vector<Strides>& strides,
|
||||
int64_t size_cap) {
|
||||
// Make a vector that has axes separated with -1. Collapse all axes between
|
||||
// -1.
|
||||
std::vector<int> to_collapse;
|
||||
Shape to_collapse;
|
||||
if (shape.size() > 0) {
|
||||
if (shape[0] != 1) {
|
||||
to_collapse.push_back(0);
|
||||
@@ -21,7 +41,7 @@ collapse_contiguous_dims_impl(
|
||||
for (int i = 1; i < shape.size(); i++) {
|
||||
bool contiguous = true;
|
||||
size *= shape[i];
|
||||
for (const std::vector<StrideT>& st : strides) {
|
||||
for (const auto& st : strides) {
|
||||
if (st[i] * shape[i] != st[i - 1] || size > size_cap) {
|
||||
contiguous = false;
|
||||
size = shape[i];
|
||||
@@ -38,8 +58,8 @@ collapse_contiguous_dims_impl(
|
||||
to_collapse.push_back(-1);
|
||||
}
|
||||
|
||||
std::vector<int> out_shape;
|
||||
std::vector<std::vector<StrideT>> out_strides(strides.size());
|
||||
Shape out_shape;
|
||||
std::vector<Strides> out_strides(strides.size());
|
||||
for (int i = 0;;) {
|
||||
while (i < to_collapse.size() && to_collapse[i] == -1) {
|
||||
++i;
|
||||
@@ -54,7 +74,7 @@ collapse_contiguous_dims_impl(
|
||||
}
|
||||
out_shape.push_back(current_shape);
|
||||
for (int j = 0; j < strides.size(); j++) {
|
||||
const std::vector<StrideT>& st = strides[j];
|
||||
const auto& st = strides[j];
|
||||
out_strides[j].push_back(st[to_collapse[k - 1]]);
|
||||
}
|
||||
i = k + 1;
|
||||
@@ -69,29 +89,12 @@ collapse_contiguous_dims_impl(
|
||||
return std::make_tuple(out_shape, out_strides);
|
||||
}
|
||||
|
||||
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
|
||||
collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<int64_t>>& strides,
|
||||
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
|
||||
return collapse_contiguous_dims_impl(shape, strides, size_cap);
|
||||
}
|
||||
|
||||
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
|
||||
collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<size_t>>& strides,
|
||||
size_t size_cap /* = std::numeric_limits<int32>::max() */) {
|
||||
return collapse_contiguous_dims_impl(shape, strides, size_cap);
|
||||
}
|
||||
|
||||
template <typename StrideT>
|
||||
std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& strides,
|
||||
StrideT size_cap) {
|
||||
std::vector<int> collapsed_shape;
|
||||
std::vector<StrideT> collapsed_strides;
|
||||
std::pair<Shape, Strides> collapse_contiguous_dims(
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
int64_t size_cap) {
|
||||
Shape collapsed_shape;
|
||||
Strides collapsed_strides;
|
||||
|
||||
if (shape.size() > 0) {
|
||||
collapsed_shape.push_back(shape[0]);
|
||||
@@ -101,7 +104,7 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
|
||||
continue;
|
||||
} else if (
|
||||
strides[i] * shape[i] != collapsed_strides.back() ||
|
||||
collapsed_shape.back() * static_cast<StrideT>(shape[i]) > size_cap) {
|
||||
collapsed_shape.back() * static_cast<int64_t>(shape[i]) > size_cap) {
|
||||
collapsed_shape.push_back(shape[i]);
|
||||
collapsed_strides.push_back(strides[i]);
|
||||
} else {
|
||||
@@ -114,25 +117,10 @@ std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
|
||||
return std::make_pair(collapsed_shape, collapsed_strides);
|
||||
}
|
||||
|
||||
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<int64_t>& strides,
|
||||
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
|
||||
return collapse_contiguous_dims_impl<int64_t>(shape, strides, size_cap);
|
||||
}
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides,
|
||||
size_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
|
||||
return collapse_contiguous_dims_impl<size_t>(shape, strides, size_cap);
|
||||
}
|
||||
|
||||
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
|
||||
std::pair<Shape, Strides> collapse_contiguous_dims(
|
||||
const array& a,
|
||||
size_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
|
||||
return collapse_contiguous_dims_impl<size_t>(
|
||||
a.shape(), a.strides(), size_cap);
|
||||
int64_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
|
||||
return collapse_contiguous_dims(a.shape(), a.strides(), size_cap);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -8,12 +8,9 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
template <typename StrideT>
|
||||
inline StrideT elem_to_loc(
|
||||
int elem,
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& strides) {
|
||||
StrideT loc = 0;
|
||||
inline int64_t
|
||||
elem_to_loc(int elem, const Shape& shape, const Strides& strides) {
|
||||
int64_t loc = 0;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
auto q_and_r = ldiv(elem, shape[i]);
|
||||
loc += q_and_r.rem * strides[i];
|
||||
@@ -22,16 +19,15 @@ inline StrideT elem_to_loc(
|
||||
return loc;
|
||||
}
|
||||
|
||||
inline size_t elem_to_loc(int elem, const array& a) {
|
||||
inline int64_t elem_to_loc(int elem, const array& a) {
|
||||
if (a.flags().row_contiguous) {
|
||||
return elem;
|
||||
}
|
||||
return elem_to_loc(elem, a.shape(), a.strides());
|
||||
}
|
||||
|
||||
template <typename StrideT>
|
||||
std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
|
||||
std::vector<StrideT> strides(shape.size(), 1);
|
||||
inline Strides make_contiguous_strides(const Shape& shape) {
|
||||
Strides strides(shape.size(), 1);
|
||||
for (int i = shape.size() - 1; i > 0; i--) {
|
||||
strides[i - 1] = strides[i] * shape[i];
|
||||
}
|
||||
@@ -44,22 +40,15 @@ std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
|
||||
//
|
||||
// When multiple arrays are passed they should all have the same shape. The
|
||||
// collapsed axes are also the same so one shape is returned.
|
||||
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
|
||||
collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<int64_t>>& strides,
|
||||
std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
const Shape& shape,
|
||||
const std::vector<Strides>& strides,
|
||||
int64_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
|
||||
collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<std::vector<size_t>>& strides,
|
||||
size_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
|
||||
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
|
||||
collapse_contiguous_dims(
|
||||
inline std::tuple<Shape, std::vector<Strides>> collapse_contiguous_dims(
|
||||
const std::vector<array>& xs,
|
||||
size_t size_cap = std::numeric_limits<int32_t>::max()) {
|
||||
std::vector<std::vector<size_t>> strides;
|
||||
std::vector<Strides> strides;
|
||||
for (auto& x : xs) {
|
||||
strides.emplace_back(x.strides());
|
||||
}
|
||||
@@ -73,19 +62,14 @@ inline auto collapse_contiguous_dims(Arrays&&... xs) {
|
||||
}
|
||||
|
||||
// The single array version of the above.
|
||||
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<int64_t>& strides,
|
||||
std::pair<Shape, Strides> collapse_contiguous_dims(
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
int64_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides,
|
||||
size_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
|
||||
std::pair<Shape, Strides> collapse_contiguous_dims(
|
||||
const array& a,
|
||||
size_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
int64_t size_cap = std::numeric_limits<int32_t>::max());
|
||||
|
||||
template <typename StrideT>
|
||||
struct ContiguousIterator {
|
||||
inline void step() {
|
||||
int dims = shape_.size();
|
||||
@@ -102,7 +86,7 @@ struct ContiguousIterator {
|
||||
loc += strides_[i];
|
||||
}
|
||||
|
||||
void seek(StrideT n) {
|
||||
void seek(int64_t n) {
|
||||
loc = 0;
|
||||
for (int i = shape_.size() - 1; i >= 0; --i) {
|
||||
auto q_and_r = ldiv(n, shape_[i]);
|
||||
@@ -128,32 +112,29 @@ struct ContiguousIterator {
|
||||
}
|
||||
|
||||
explicit ContiguousIterator(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& strides,
|
||||
const Shape& shape,
|
||||
const Strides& strides,
|
||||
int dims)
|
||||
: shape_(shape.begin(), shape.begin() + dims),
|
||||
strides_(strides.begin(), strides.begin() + dims) {
|
||||
if (!shape_.empty()) {
|
||||
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
|
||||
pos_ = std::vector<int>(shape_.size(), 0);
|
||||
pos_ = Shape(shape_.size(), 0);
|
||||
}
|
||||
}
|
||||
|
||||
StrideT loc{0};
|
||||
int64_t loc{0};
|
||||
|
||||
private:
|
||||
std::vector<int> shape_;
|
||||
std::vector<StrideT> strides_;
|
||||
std::vector<int> pos_;
|
||||
Shape shape_;
|
||||
Strides strides_;
|
||||
Shape pos_;
|
||||
};
|
||||
|
||||
template <typename StrideT>
|
||||
inline auto check_contiguity(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<StrideT>& strides) {
|
||||
inline auto check_contiguity(const Shape& shape, const Strides& strides) {
|
||||
size_t no_broadcast_data_size = 1;
|
||||
size_t f_stride = 1;
|
||||
size_t b_stride = 1;
|
||||
int64_t f_stride = 1;
|
||||
int64_t b_stride = 1;
|
||||
bool is_row_contiguous = true;
|
||||
bool is_col_contiguous = true;
|
||||
|
||||
@@ -178,4 +159,13 @@ inline bool is_donatable(const array& in, const array& out) {
|
||||
in.buffer_size() <= out.nbytes() + donation_extra;
|
||||
}
|
||||
|
||||
void move_or_copy(const array& in, array& out);
|
||||
void move_or_copy(
|
||||
const array& in,
|
||||
array& out,
|
||||
const Strides& strides,
|
||||
array::Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -14,14 +14,21 @@ function(make_jit_source SRC_FILE)
|
||||
COMMAND
|
||||
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
|
||||
${CMAKE_CURRENT_BINARY_DIR}/jit ${CMAKE_C_COMPILER} ${PROJECT_SOURCE_DIR}
|
||||
${SRC_FILE} "-DMLX_METAL_VERSION=${MLX_METAL_VERSION}"
|
||||
${SRC_FILE}
|
||||
DEPENDS make_compiled_preamble.sh kernels/${SRC_FILE}.h ${ARGN})
|
||||
add_custom_target(${SRC_NAME} DEPENDS jit/${SRC_NAME}.cpp)
|
||||
add_dependencies(mlx ${SRC_NAME})
|
||||
target_sources(mlx PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/jit/${SRC_NAME}.cpp)
|
||||
endfunction(make_jit_source)
|
||||
|
||||
make_jit_source(utils kernels/bf16.h kernels/complex.h kernels/defines.h)
|
||||
make_jit_source(
|
||||
utils
|
||||
kernels/jit/bf16.h
|
||||
kernels/metal_3_0/bf16.h
|
||||
kernels/metal_3_1/bf16.h
|
||||
kernels/bf16_math.h
|
||||
kernels/complex.h
|
||||
kernels/defines.h)
|
||||
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
|
||||
make_jit_source(binary_ops)
|
||||
make_jit_source(ternary_ops)
|
||||
|
@@ -30,7 +30,7 @@ BufferCache::BufferCache(MTL::Device* device)
|
||||
: device_(device), head_(nullptr), tail_(nullptr), pool_size_(0) {}
|
||||
|
||||
BufferCache::~BufferCache() {
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
clear();
|
||||
}
|
||||
|
||||
@@ -155,11 +155,13 @@ MetalAllocator::MetalAllocator()
|
||||
}
|
||||
|
||||
size_t MetalAllocator::set_cache_limit(size_t limit) {
|
||||
std::unique_lock lk(mutex_);
|
||||
std::swap(limit, max_pool_size_);
|
||||
return limit;
|
||||
};
|
||||
|
||||
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
|
||||
std::unique_lock lk(mutex_);
|
||||
std::swap(limit, block_limit_);
|
||||
relaxed_ = relaxed;
|
||||
gc_limit_ = std::min(
|
||||
@@ -169,6 +171,7 @@ size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
|
||||
};
|
||||
|
||||
size_t MetalAllocator::set_wired_limit(size_t limit) {
|
||||
std::unique_lock lk(mutex_);
|
||||
std::swap(limit, wired_limit_);
|
||||
residency_set_.resize(wired_limit_);
|
||||
return limit;
|
||||
@@ -205,7 +208,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
return Buffer{nullptr};
|
||||
}
|
||||
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
|
||||
// If we have a lot of memory pressure or are over the maximum cache size,
|
||||
// try to reclaim memory from the cache
|
||||
@@ -226,7 +229,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
|
||||
// Maintain the cache below the requested limit
|
||||
if (get_cache_memory() >= max_pool_size_) {
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
|
||||
}
|
||||
|
||||
@@ -237,11 +240,15 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
|
||||
|
||||
void MetalAllocator::clear_cache() {
|
||||
std::unique_lock lk(mutex_);
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
buffer_cache_.clear();
|
||||
}
|
||||
|
||||
void MetalAllocator::free(Buffer buffer) {
|
||||
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
|
||||
if (buf == nullptr) {
|
||||
return;
|
||||
}
|
||||
std::unique_lock lk(mutex_);
|
||||
residency_set_.erase(buf);
|
||||
active_memory_ -= buf->length();
|
||||
@@ -249,7 +256,7 @@ void MetalAllocator::free(Buffer buffer) {
|
||||
buffer_cache_.recycle_to_cache(buf);
|
||||
} else {
|
||||
lk.unlock();
|
||||
auto thread_pool = metal::new_scoped_memory_pool();
|
||||
auto pool = metal::new_scoped_memory_pool();
|
||||
buf->release();
|
||||
}
|
||||
}
|
||||
|
@@ -22,37 +22,37 @@ std::string get_kernel_name(
|
||||
BinaryOpType bopt,
|
||||
const std::string& op,
|
||||
const array& a,
|
||||
bool use_2d,
|
||||
bool large,
|
||||
int ndim,
|
||||
int work_per_thread) {
|
||||
std::ostringstream kname;
|
||||
std::string kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
kname = "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << (use_2d ? "sv2" : "sv");
|
||||
kname = (large ? "sv2" : "sv");
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << (use_2d ? "vs2" : "vs");
|
||||
kname = (large ? "vs2" : "vs");
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << (use_2d ? "vv2" : "vv");
|
||||
kname = (large ? "vv2" : "vv");
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
kname = "g";
|
||||
if (ndim <= 3) {
|
||||
kname << ndim;
|
||||
kname += std::to_string(ndim);
|
||||
} else {
|
||||
kname << "n";
|
||||
if (work_per_thread > 1) {
|
||||
kname << work_per_thread;
|
||||
}
|
||||
concatenate(kname, "n", std::to_string(work_per_thread));
|
||||
}
|
||||
if (large) {
|
||||
kname += "large";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << "_" << op << type_to_name(a);
|
||||
return kname.str();
|
||||
concatenate(kname, "_", op, type_to_name(a));
|
||||
return kname;
|
||||
}
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
@@ -75,24 +75,30 @@ void binary_op_gpu_inplace(
|
||||
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
|
||||
return std::make_tuple(shape, strides[0], strides[1], strides[2]);
|
||||
} else {
|
||||
std::vector<size_t> e;
|
||||
return std::make_tuple(std::vector<int>{}, e, e, e);
|
||||
decltype(a.strides()) e{};
|
||||
return std::make_tuple(decltype(a.shape()){}, e, e, e);
|
||||
}
|
||||
};
|
||||
auto [shape, strides_a, strides_b, strides_out] = maybe_collapse();
|
||||
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
bool large = out.data_size() > UINT32_MAX;
|
||||
auto ndim = shape.size();
|
||||
int work_per_thread = (bopt == BinaryOpType::General) ? 4 : 1;
|
||||
int work_per_thread;
|
||||
if (bopt == BinaryOpType::General) {
|
||||
large |= (a.data_size() > UINT32_MAX || b.data_size() > UINT32_MAX);
|
||||
work_per_thread = large ? 4 : 2;
|
||||
} else {
|
||||
work_per_thread = 1;
|
||||
}
|
||||
std::string kernel_name =
|
||||
get_kernel_name(bopt, op, a, use_2d, shape.size(), work_per_thread);
|
||||
get_kernel_name(bopt, op, a, large, shape.size(), work_per_thread);
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto kernel = outputs.size() == 2
|
||||
? get_binary_two_kernel(d, kernel_name, a.dtype(), out.dtype(), op)
|
||||
: get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// - If a is donated it goes to the first output
|
||||
// - If b is donated it goes to the first output if a was not donated
|
||||
@@ -117,19 +123,15 @@ void binary_op_gpu_inplace(
|
||||
size_t rest = out.size() / (dim0 * dim1);
|
||||
|
||||
if (ndim > 3) {
|
||||
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), arg_idx++);
|
||||
compute_encoder->setBytes(
|
||||
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
|
||||
compute_encoder->setBytes(
|
||||
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), arg_idx++);
|
||||
compute_encoder.set_vector_bytes(shape, arg_idx++);
|
||||
compute_encoder.set_vector_bytes(strides_a, arg_idx++);
|
||||
compute_encoder.set_vector_bytes(strides_b, arg_idx++);
|
||||
compute_encoder.set_bytes<int>(ndim, arg_idx++);
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
} else {
|
||||
// The shape is implicit in the grid for <= 3D
|
||||
compute_encoder->setBytes(
|
||||
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
|
||||
compute_encoder->setBytes(
|
||||
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
|
||||
compute_encoder.set_vector_bytes(strides_a, arg_idx++);
|
||||
compute_encoder.set_vector_bytes(strides_b, arg_idx++);
|
||||
}
|
||||
|
||||
if (thread_group_size != 1024) {
|
||||
@@ -137,7 +139,7 @@ void binary_op_gpu_inplace(
|
||||
}
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
} else {
|
||||
// Launch a 1D or 2D grid of threads
|
||||
size_t nthreads = out.data_size();
|
||||
@@ -145,9 +147,9 @@ void binary_op_gpu_inplace(
|
||||
thread_group_size = nthreads;
|
||||
}
|
||||
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <fmt/format.h>
|
||||
#include <iostream> //TODO
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
@@ -11,12 +12,12 @@
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
using namespace fmt::literals;
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
constexpr int WORK_PER_THREAD = 4;
|
||||
|
||||
inline void build_kernel(
|
||||
std::ostream& os,
|
||||
std::string& os,
|
||||
const std::string& kernel_name,
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs,
|
||||
@@ -41,8 +42,8 @@ inline void build_kernel(
|
||||
int cnt = 0;
|
||||
|
||||
// Start the kernel
|
||||
os << "[[host_name(\"" << kernel_name << "\")]]\n"
|
||||
<< "[[kernel]] void " << kernel_name << "(\n";
|
||||
os += fmt::format(
|
||||
"[[host_name(\"{0}\")]]\n[[kernel]] void {0}(\n", kernel_name);
|
||||
|
||||
// Add the input arguments
|
||||
for (auto& x : inputs) {
|
||||
@@ -54,51 +55,61 @@ inline void build_kernel(
|
||||
}
|
||||
|
||||
// Scalars and contiguous need no strides
|
||||
if (is_scalar(x) || contiguous) {
|
||||
os << " device const " << get_type_string(x.dtype()) << "* " << xname
|
||||
<< " [[buffer(" << cnt++ << ")]],\n";
|
||||
} else {
|
||||
if (!is_scalar(x) && !contiguous) {
|
||||
add_indices = true;
|
||||
os << " device const " << get_type_string(x.dtype()) << "* " << xname
|
||||
<< " [[buffer(" << cnt++ << ")]],\n";
|
||||
}
|
||||
os += fmt::format(
|
||||
" device const {0}* {1} [[buffer({2})]],\n",
|
||||
get_type_string(x.dtype()),
|
||||
xname,
|
||||
cnt++);
|
||||
}
|
||||
|
||||
if (add_indices) {
|
||||
os << " constant const size_t* in_strides [[buffer(" << cnt++
|
||||
<< ")]],\n";
|
||||
os += fmt::format(
|
||||
" constant const int64_t* in_strides [[buffer({0})]],\n", cnt++);
|
||||
}
|
||||
|
||||
// Add the output arguments
|
||||
for (auto& x : outputs) {
|
||||
os << " device " << get_type_string(x.dtype()) << "* "
|
||||
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]],\n";
|
||||
os += fmt::format(
|
||||
" device {0}* {1} [[buffer({2})]],\n",
|
||||
get_type_string(x.dtype()),
|
||||
namer.get_name(x),
|
||||
cnt++);
|
||||
}
|
||||
// Add output strides and shape to extract the indices.
|
||||
if (!contiguous) {
|
||||
os << " constant const size_t* output_strides [[buffer(" << cnt++
|
||||
<< ")]],\n"
|
||||
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],\n";
|
||||
os += fmt::format(
|
||||
" constant const int64_t* output_strides [[buffer({0})]],\n", cnt++);
|
||||
os += fmt::format(
|
||||
" constant const int* output_shape [[buffer({0})]],\n", cnt++);
|
||||
}
|
||||
if (dynamic_dims) {
|
||||
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],\n";
|
||||
os += fmt::format(" constant const int& ndim [[buffer({0})]],\n", cnt++);
|
||||
}
|
||||
|
||||
// The thread index in the whole grid
|
||||
os << " uint3 pos [[thread_position_in_grid]],\n"
|
||||
<< " uint3 grid [[threads_per_grid]]) {\n";
|
||||
os += " uint3 pos [[thread_position_in_grid]],\n";
|
||||
os += " uint3 grid [[threads_per_grid]]) {\n";
|
||||
|
||||
if (use_big_index) {
|
||||
std::string idx_type = use_big_index ? "int64_t" : "uint";
|
||||
if (contiguous && use_big_index) {
|
||||
// This is only used for contiguous kernels which don't have
|
||||
// a third grid dimension
|
||||
os << " size_t index = pos.x + grid.x * size_t(pos.y);\n";
|
||||
os += " int64_t index = pos.x + grid.x * int64_t(pos.y);\n";
|
||||
} else if (work_per_thread > 1) {
|
||||
os << " constexpr int N_ = " << std::to_string(work_per_thread) << ";\n"
|
||||
<< " int xshape = output_shape["
|
||||
<< (dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1)) << "];\n"
|
||||
<< " size_t index = N_ * pos.x + xshape * (pos.y + size_t(grid.y) * pos.z);\n";
|
||||
os += fmt::format(" constexpr int N_ = {0};\n", work_per_thread);
|
||||
os += fmt::format(
|
||||
" int xshape = output_shape[{0}];\n",
|
||||
dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1));
|
||||
os += fmt::format(
|
||||
" {0} index = N_ * pos.x + xshape * (pos.y + {0}(grid.y) * pos.z);\n",
|
||||
idx_type);
|
||||
} else {
|
||||
os << " size_t index = pos.x + grid.x * (pos.y + size_t(grid.y) * pos.z);\n";
|
||||
os += fmt::format(
|
||||
" {0} index = pos.x + grid.x * (pos.y + {0}(grid.y) * pos.z);\n",
|
||||
idx_type);
|
||||
}
|
||||
|
||||
// Read constant / contiguous inputs in tmps
|
||||
@@ -109,16 +120,19 @@ inline void build_kernel(
|
||||
|
||||
if (is_constant(x)) {
|
||||
auto type_str = get_type_string(x.dtype());
|
||||
os << " auto tmp_" << xname << " = static_cast<"
|
||||
<< get_type_string(x.dtype()) << ">(";
|
||||
print_constant(os, x);
|
||||
os << ");\n";
|
||||
std::ostringstream ss;
|
||||
print_constant(ss, x);
|
||||
os += fmt::format(
|
||||
" auto tmp_{0} = static_cast<{1}>({2});\n",
|
||||
xname,
|
||||
get_type_string(x.dtype()),
|
||||
ss.str());
|
||||
} else if (is_scalar(x)) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[0];\n";
|
||||
os += fmt::format(
|
||||
" {0} tmp_{1} = {1}[0];\n", get_type_string(x.dtype()), xname);
|
||||
} else if (contiguous) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[index];\n";
|
||||
os += fmt::format(
|
||||
" {0} tmp_{1} = {1}[index];\n", get_type_string(x.dtype()), xname);
|
||||
} else {
|
||||
nc_inputs.push_back(x);
|
||||
}
|
||||
@@ -127,83 +141,96 @@ inline void build_kernel(
|
||||
// Initialize the indices for non-contiguous inputs
|
||||
for (int i = 0; i < nc_inputs.size(); ++i) {
|
||||
auto& xname = namer.get_name(nc_inputs[i]);
|
||||
os += fmt::format(" {0} index_{1} = ", idx_type, xname);
|
||||
if (ndim == 1) {
|
||||
int offset = i * ndim;
|
||||
os << " size_t index_" << xname << " = elem_to_loc_1(pos.x, "
|
||||
<< "in_strides[" << offset << "]);\n";
|
||||
os +=
|
||||
fmt::format("elem_to_loc_1<uint>(pos.x, in_strides[{0}]);\n", offset);
|
||||
} else if (ndim == 2) {
|
||||
int offset = i * ndim;
|
||||
os << " size_t index_" << xname << " = elem_to_loc_2({pos.x, pos.y}, "
|
||||
<< "in_strides + " << offset << ");\n";
|
||||
os += fmt::format(
|
||||
"elem_to_loc_2<{0}>({{pos.x, pos.y}}, in_strides + {1});\n",
|
||||
idx_type,
|
||||
offset);
|
||||
} else if (ndim == 3) {
|
||||
int offset = i * ndim;
|
||||
os << " size_t index_" << xname << " = elem_to_loc_3(pos, "
|
||||
<< "in_strides + " << offset << ");\n";
|
||||
os += fmt::format(
|
||||
"elem_to_loc_3<{0}>(pos, in_strides + {1});\n", idx_type, offset);
|
||||
} else if (!dynamic_dims) {
|
||||
int offset = i * ndim;
|
||||
os << " size_t index_" << xname << " = N_ * pos.x * in_strides["
|
||||
<< offset + ndim - 1 << "]"
|
||||
<< " + pos.y * in_strides[" << offset + ndim - 2 << "];\n";
|
||||
int offset = (i + 1) * ndim;
|
||||
os += fmt::format(
|
||||
"N_ * pos.x * {0}(in_strides[{1}]) + pos.y * {0}(in_strides[{2}]);\n",
|
||||
idx_type,
|
||||
offset - 1,
|
||||
offset - 2);
|
||||
} else {
|
||||
os << " size_t index_" << xname << " = N_ * pos.x * in_strides[ndim * "
|
||||
<< i << " + ndim - 1]"
|
||||
<< " + pos.y * in_strides[ndim * " << i << " + ndim - 2];\n";
|
||||
os += fmt::format(
|
||||
"N_ * pos.x * {0}(in_strides[ndim * {1} + ndim - 1]) + pos.y * {0}(in_strides[ndim * {1} + ndim - 2]);\n",
|
||||
idx_type,
|
||||
i);
|
||||
}
|
||||
}
|
||||
|
||||
if (!nc_inputs.empty() && (ndim > 3 || dynamic_dims)) {
|
||||
os << " uint zpos = pos.z;\n";
|
||||
os += " uint zpos = pos.z;\n";
|
||||
if (dynamic_dims) {
|
||||
os << " for (int d = ndim - 3; d >= 0; --d) {\n";
|
||||
os += " for (int d = ndim - 3; d >= 0; --d) {\n";
|
||||
} else {
|
||||
os << " for (int d = " << ndim - 3 << "; d >= 0; --d) {\n";
|
||||
os += fmt::format(" for (int d = {0}; d >= 0; --d) {{\n", ndim - 3);
|
||||
}
|
||||
os << " uint l = zpos % output_shape[d];\n";
|
||||
os += " uint l = zpos % output_shape[d];\n";
|
||||
for (int i = 0; i < nc_inputs.size(); ++i) {
|
||||
auto& xname = namer.get_name(nc_inputs[i]);
|
||||
os << " index_" << xname << " += ";
|
||||
os += fmt::format(" index_{0} += ", xname);
|
||||
if (dynamic_dims) {
|
||||
os << "l * in_strides[" << i << " * ndim + d];\n";
|
||||
os +=
|
||||
fmt::format("l * {0}(in_strides[{1} * ndim + d]);\n", idx_type, i);
|
||||
} else {
|
||||
os << "l * in_strides[" << i * ndim << " + d];\n";
|
||||
os +=
|
||||
fmt::format("l * {0}(in_strides[{1} + d]);\n", idx_type, i * ndim);
|
||||
}
|
||||
}
|
||||
os << " zpos /= output_shape[d];\n }\n";
|
||||
os += " zpos /= output_shape[d];\n }\n";
|
||||
}
|
||||
|
||||
// Open per-thread loop
|
||||
if (work_per_thread > 1) {
|
||||
os << " for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
|
||||
os +=
|
||||
" for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
|
||||
}
|
||||
|
||||
// Read non-contiguous inputs into tmps
|
||||
for (int i = 0; i < nc_inputs.size(); ++i) {
|
||||
auto& x = nc_inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
|
||||
<< xname << "[index_" << xname << "];\n";
|
||||
os += fmt::format(
|
||||
" {0} tmp_{1} = {1}[index_{1}];\n", get_type_string(x.dtype()), xname);
|
||||
}
|
||||
|
||||
// Actually write the computation
|
||||
for (auto& x : tape) {
|
||||
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
|
||||
<< " = ";
|
||||
os += fmt::format(
|
||||
" {0} tmp_{1} = ", get_type_string(x.dtype()), namer.get_name(x));
|
||||
if (is_static_cast(x.primitive())) {
|
||||
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
|
||||
<< namer.get_name(x.inputs()[0]) << ");\n";
|
||||
os += fmt::format(
|
||||
"static_cast<{0}>(tmp_{1});\n",
|
||||
get_type_string(x.dtype()),
|
||||
namer.get_name(x.inputs()[0]));
|
||||
} else {
|
||||
x.primitive().print(os);
|
||||
os << "()(";
|
||||
std::ostringstream ss;
|
||||
x.primitive().print(ss);
|
||||
os += ss.str();
|
||||
os += "()(";
|
||||
for (int i = 0; i < x.inputs().size() - 1; i++) {
|
||||
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
|
||||
os += fmt::format("tmp_{0}, ", namer.get_name(x.inputs()[i]));
|
||||
}
|
||||
os << "tmp_" << namer.get_name(x.inputs().back()) << ");\n";
|
||||
os += fmt::format("tmp_{0});\n", namer.get_name(x.inputs().back()));
|
||||
}
|
||||
}
|
||||
|
||||
// Write the outputs from tmps
|
||||
for (auto& x : outputs) {
|
||||
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
|
||||
<< ";\n";
|
||||
os += fmt::format(" {0}[index] = tmp_{0};\n", namer.get_name(x));
|
||||
}
|
||||
// Increment indices and close per thread loop
|
||||
if (work_per_thread > 1) {
|
||||
@@ -211,18 +238,18 @@ inline void build_kernel(
|
||||
auto& x = nc_inputs[i];
|
||||
auto& xname = namer.get_name(x);
|
||||
if (!dynamic_dims) {
|
||||
os << " index_" << xname << " += "
|
||||
<< "in_strides[" << i * ndim + ndim - 1 << "];\n";
|
||||
os += fmt::format(
|
||||
" index_{0} += in_strides[{1}];\n", xname, i * ndim + ndim - 1);
|
||||
} else {
|
||||
os << " index_" << xname << " += "
|
||||
<< "in_strides[" << i << " * ndim + ndim - 1];\n";
|
||||
os += fmt::format(
|
||||
" index_{0} += in_strides[{1} * ndim + ndim - 1];\n", xname, i);
|
||||
}
|
||||
}
|
||||
os << " index++;\n }\n";
|
||||
os += " index++;\n }\n";
|
||||
}
|
||||
|
||||
// Finish the kernel
|
||||
os << "}\n";
|
||||
os += "}\n";
|
||||
|
||||
if (cnt > 31) {
|
||||
std::ostringstream msg;
|
||||
@@ -246,9 +273,9 @@ void Compiled::eval_gpu(
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
auto lib = d.get_library(kernel_lib_, [&]() {
|
||||
std::ostringstream kernel;
|
||||
kernel << metal::utils() << metal::unary_ops() << metal::binary_ops()
|
||||
<< metal::ternary_ops();
|
||||
std::string kernel = metal::utils();
|
||||
concatenate(
|
||||
kernel, metal::unary_ops(), metal::binary_ops(), metal::ternary_ops());
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_lib_ + "_contiguous",
|
||||
@@ -261,7 +288,7 @@ void Compiled::eval_gpu(
|
||||
/* dynamic_dims = */ false);
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_lib_ + "_contiguous_big",
|
||||
kernel_lib_ + "_contiguous_large",
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
@@ -282,7 +309,21 @@ void Compiled::eval_gpu(
|
||||
/* ndim = */ i,
|
||||
/* dynamic_dims = */ false,
|
||||
/* use_big_index = */ false,
|
||||
/* work_per_thread = */ i > 3 ? WORK_PER_THREAD : 1);
|
||||
/* work_per_thread = */ i > 3 ? 2 : 1);
|
||||
if (i > 1) {
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_lib_ + "_strided_" + std::to_string(i) + "_large",
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ i,
|
||||
/* dynamic_dims = */ false,
|
||||
/* use_big_index = */ true,
|
||||
/* work_per_thread = */ i > 3 ? 4 : 1);
|
||||
}
|
||||
}
|
||||
build_kernel(
|
||||
kernel,
|
||||
@@ -295,20 +336,32 @@ void Compiled::eval_gpu(
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ true,
|
||||
/* use_big_index = */ false,
|
||||
/* work_per_thread = */ WORK_PER_THREAD);
|
||||
return kernel.str();
|
||||
/* work_per_thread = */ 2);
|
||||
build_kernel(
|
||||
kernel,
|
||||
kernel_lib_ + "_strided_dynamic_large",
|
||||
inputs_,
|
||||
outputs_,
|
||||
tape_,
|
||||
constant_ids_,
|
||||
/* contiguous = */ false,
|
||||
/* ndim = */ 0,
|
||||
/* dynamic_dims = */ true,
|
||||
/* use_big_index = */ true,
|
||||
/* work_per_thread = */ 4);
|
||||
return kernel;
|
||||
});
|
||||
|
||||
// Figure out which kernel we are using
|
||||
auto& output_shape = outputs[0].shape();
|
||||
bool contiguous = compiled_check_contiguity(inputs, output_shape);
|
||||
auto contiguous = compiled_check_contiguity(inputs, output_shape);
|
||||
|
||||
// Collapse contiguous dims to route to a faster kernel if possible. Also
|
||||
// handle all broadcasting.
|
||||
std::vector<std::vector<size_t>> initial_strides;
|
||||
std::vector<Strides> initial_strides;
|
||||
initial_strides.push_back(outputs[0].strides());
|
||||
std::vector<int> shape;
|
||||
std::vector<std::vector<size_t>> strides;
|
||||
Shape shape;
|
||||
std::vector<Strides> strides;
|
||||
if (!contiguous) {
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
// Skip constants.
|
||||
@@ -323,7 +376,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
|
||||
// Broadcast the inputs to the output shape.
|
||||
std::vector<size_t> xstrides;
|
||||
Strides xstrides;
|
||||
int j = 0;
|
||||
for (; j < output_shape.size() - x.ndim(); j++) {
|
||||
if (output_shape[j] == 1) {
|
||||
@@ -349,13 +402,19 @@ void Compiled::eval_gpu(
|
||||
collapse_contiguous_dims(output_shape, initial_strides, INT32_MAX);
|
||||
}
|
||||
|
||||
bool use_2d = false;
|
||||
bool large;
|
||||
if (contiguous) {
|
||||
size_t max_size = 0;
|
||||
for (auto& in : inputs) {
|
||||
max_size = std::max(max_size, in.data_size());
|
||||
}
|
||||
use_2d = (max_size > UINT32_MAX);
|
||||
large = (max_size > UINT32_MAX);
|
||||
} else {
|
||||
size_t max_size = 0;
|
||||
for (auto& o : outputs) {
|
||||
max_size = std::max(max_size, o.size());
|
||||
}
|
||||
large = (max_size > UINT32_MAX);
|
||||
}
|
||||
|
||||
// Get the kernel from the lib
|
||||
@@ -368,17 +427,18 @@ void Compiled::eval_gpu(
|
||||
} else {
|
||||
kernel_name += std::to_string(shape.size());
|
||||
}
|
||||
} else if (use_2d) {
|
||||
kernel_name += "_big";
|
||||
}
|
||||
if (large) {
|
||||
kernel_name += "_large";
|
||||
}
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Put the inputs in
|
||||
int cnt = 0;
|
||||
int stride_idx = 1; // idx 0 is the output strides
|
||||
std::vector<size_t> in_strides;
|
||||
Strides in_strides;
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
|
||||
continue;
|
||||
@@ -394,8 +454,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
}
|
||||
if (!in_strides.empty()) {
|
||||
compute_encoder->setBytes(
|
||||
in_strides.data(), in_strides.size() * sizeof(size_t), cnt++);
|
||||
compute_encoder.set_vector_bytes(in_strides, cnt++);
|
||||
}
|
||||
|
||||
compiled_allocate_outputs(
|
||||
@@ -408,14 +467,13 @@ void Compiled::eval_gpu(
|
||||
|
||||
// Put the output shape and strides in
|
||||
if (!contiguous) {
|
||||
compute_encoder->setBytes(
|
||||
strides[0].data(), strides[0].size() * sizeof(size_t), cnt++);
|
||||
compute_encoder->setBytes(shape.data(), shape.size() * sizeof(int), cnt++);
|
||||
compute_encoder.set_vector_bytes(strides[0], cnt++);
|
||||
compute_encoder.set_vector_bytes(shape, cnt++);
|
||||
}
|
||||
|
||||
// Put the number of dims in if it is dynamic
|
||||
if (dynamic) {
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), cnt++);
|
||||
compute_encoder.set_bytes(ndim, cnt++);
|
||||
}
|
||||
|
||||
// Launch the kernel
|
||||
@@ -424,15 +482,15 @@ void Compiled::eval_gpu(
|
||||
MTL::Size group_dims(
|
||||
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
|
||||
|
||||
MTL::Size grid_dims = use_2d
|
||||
MTL::Size grid_dims = large
|
||||
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
} else {
|
||||
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
size_t rest = outputs[0].size() / (dim0 * dim1);
|
||||
int work_per_thread = ndim > 3 ? WORK_PER_THREAD : 1;
|
||||
int work_per_thread = ndim > 3 ? (large ? 4 : 2) : 1;
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
int pow2;
|
||||
@@ -445,7 +503,7 @@ void Compiled::eval_gpu(
|
||||
}
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest, pow2);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -44,27 +44,28 @@ void explicit_gemm_conv_ND_gpu(
|
||||
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_output_array(in_unfolded, 1);
|
||||
|
||||
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
|
||||
compute_encoder.set_bytes(conv_params, 2);
|
||||
|
||||
// Launch unfolding kernel
|
||||
int tgp_x = std::min(conv_params.C, 64);
|
||||
size_t tgp_x = std::min(conv_params.C, 64);
|
||||
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
|
||||
int tgp_y = 256 / tgp_x;
|
||||
size_t tgp_y = 256 / tgp_x;
|
||||
|
||||
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
|
||||
MTL::Size grid_dims = MTL::Size(
|
||||
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
|
||||
MTL::Size group_dims = MTL::Size(
|
||||
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
|
||||
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
|
||||
// Reshape weight
|
||||
std::vector<int> wt_reshape{implicit_K, implicit_N};
|
||||
std::vector<size_t> wt_restride{1, static_cast<size_t>(implicit_K)};
|
||||
Shape wt_reshape{implicit_K, implicit_N};
|
||||
Strides wt_restride{1, implicit_K};
|
||||
array wt_reshaped(wt_reshape, wt.dtype(), nullptr, {});
|
||||
auto wt_flags = wt.flags();
|
||||
wt_flags.row_contiguous = false;
|
||||
@@ -122,33 +123,31 @@ void explicit_gemm_conv_group_ND_gpu(
|
||||
<< N;
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_output_array(in_unfolded, 1);
|
||||
|
||||
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
|
||||
compute_encoder.set_bytes(conv_params, 2);
|
||||
|
||||
// Launch unfolding kernel
|
||||
int tgp_x = std::min(conv_params.C, 64);
|
||||
size_t tgp_x = std::min(conv_params.C, 64);
|
||||
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
|
||||
int tgp_y = 256 / tgp_x;
|
||||
size_t tgp_y = 256 / tgp_x;
|
||||
|
||||
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
|
||||
MTL::Size grid_dims = MTL::Size(
|
||||
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
|
||||
MTL::Size group_dims = MTL::Size(
|
||||
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
|
||||
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
|
||||
// Transpose kernel weights so that we can slice them by contiguous chunks
|
||||
// of channel groups.
|
||||
array wt_view(
|
||||
{wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
|
||||
wt_view.copy_shared_buffer(
|
||||
wt,
|
||||
{wt.strides(0), 1, static_cast<size_t>(C_per_group)},
|
||||
wt.flags(),
|
||||
wt.size());
|
||||
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
|
||||
|
||||
// Materialize
|
||||
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
|
||||
@@ -237,7 +236,7 @@ void slow_conv_2D_gpu(
|
||||
// Encode and dispatch kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
size_t n_pixels = conv_params.oS[0] * conv_params.oS[1];
|
||||
|
||||
@@ -252,8 +251,8 @@ void slow_conv_2D_gpu(
|
||||
compute_encoder.set_input_array(wt, 1);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.set_bytes(conv_params, 3);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void implicit_gemm_conv_2D_gpu(
|
||||
@@ -352,7 +351,7 @@ void implicit_gemm_conv_2D_gpu(
|
||||
wn,
|
||||
n_channel_specialization,
|
||||
small_filter);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Deduce grid launch dimensions
|
||||
int tile = 1 << swizzle_log;
|
||||
@@ -368,11 +367,11 @@ void implicit_gemm_conv_2D_gpu(
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode params
|
||||
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
|
||||
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
|
||||
compute_encoder.set_bytes(conv_params, 3);
|
||||
compute_encoder.set_bytes(gemm_params, 4);
|
||||
|
||||
// Launch kernel
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void implicit_gemm_conv_2D_general_gpu(
|
||||
@@ -506,7 +505,7 @@ void implicit_gemm_conv_2D_general_gpu(
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel =
|
||||
get_steel_conv_general_kernel(d, kname.str(), out, bm, bn, bk, wm, wn);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Deduce grid launch dimensions
|
||||
int tile = 1 << swizzle_log;
|
||||
@@ -523,17 +522,15 @@ void implicit_gemm_conv_2D_general_gpu(
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode params
|
||||
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
|
||||
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
|
||||
compute_encoder->setBytes(&jump_params, sizeof(Conv2DGeneralJumpParams), 5);
|
||||
compute_encoder.set_bytes(conv_params, 3);
|
||||
compute_encoder.set_bytes(gemm_params, 4);
|
||||
compute_encoder.set_bytes(jump_params, 5);
|
||||
|
||||
compute_encoder->setBytes(
|
||||
base_h.data(), sizeof(Conv2DGeneralBaseInfo) * base_h.size(), 6);
|
||||
compute_encoder->setBytes(
|
||||
base_w.data(), sizeof(Conv2DGeneralBaseInfo) * base_w.size(), 7);
|
||||
compute_encoder.set_vector_bytes(base_h, 6);
|
||||
compute_encoder.set_vector_bytes(base_w, 7);
|
||||
|
||||
// Launch kernel
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void winograd_conv_2D_gpu(
|
||||
@@ -622,18 +619,18 @@ void winograd_conv_2D_gpu(
|
||||
<< bc;
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(wt, 0);
|
||||
compute_encoder.set_output_array(filt_wg, 1);
|
||||
|
||||
compute_encoder->setBytes(&C_c, sizeof(int), 2);
|
||||
compute_encoder->setBytes(&O_c, sizeof(int), 3);
|
||||
compute_encoder.set_bytes(C_c, 2);
|
||||
compute_encoder.set_bytes(O_c, 3);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(32, bo, 1);
|
||||
MTL::Size grid_dims = MTL::Size(O_c / bo, 1, 1);
|
||||
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
// Do input transform
|
||||
@@ -650,18 +647,17 @@ void winograd_conv_2D_gpu(
|
||||
<< bc;
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(in_padded, 0);
|
||||
compute_encoder.set_output_array(inp_wg, 1);
|
||||
|
||||
compute_encoder->setBytes(
|
||||
&conv_params_updated, sizeof(MLXConvParams<2>), 2);
|
||||
compute_encoder.set_bytes(conv_params_updated, 2);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
||||
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
|
||||
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
// Do batched gemm
|
||||
@@ -698,18 +694,17 @@ void winograd_conv_2D_gpu(
|
||||
<< bc;
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(out_wg, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
|
||||
compute_encoder->setBytes(
|
||||
&conv_params_updated, sizeof(MLXConvParams<2>), 2);
|
||||
compute_encoder.set_bytes(conv_params_updated, 2);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(32, wn, wm);
|
||||
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
|
||||
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -43,13 +43,12 @@ void copy_gpu(const array& in, array& out, CopyType ctype) {
|
||||
copy_gpu(in, out, ctype, out.primitive().stream());
|
||||
}
|
||||
|
||||
template <typename stride_t>
|
||||
void copy_gpu_inplace(
|
||||
const array& in,
|
||||
array& out,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& strides_in_pre,
|
||||
const std::vector<stride_t>& strides_out_pre,
|
||||
const Shape& data_shape,
|
||||
const Strides& strides_in_pre,
|
||||
const Strides& strides_out_pre,
|
||||
int64_t inp_offset,
|
||||
int64_t out_offset,
|
||||
CopyType ctype,
|
||||
@@ -68,50 +67,52 @@ void copy_gpu_inplace(
|
||||
/* size_cap = */ INT32_MAX);
|
||||
return std::make_tuple(shape, strides[0], strides[1]);
|
||||
} else {
|
||||
std::vector<stride_t> e;
|
||||
return std::make_tuple(std::vector<int>{}, e, e);
|
||||
Strides e{};
|
||||
return std::make_tuple(Shape{}, e, e);
|
||||
}
|
||||
};
|
||||
auto [shape, strides_in_, strides_out_] = maybe_collapse();
|
||||
int ndim = shape.size();
|
||||
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
bool large;
|
||||
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
|
||||
// Allow for negative strides
|
||||
large = in.data_size() > INT32_MAX || out.data_size() > INT32_MAX;
|
||||
} else {
|
||||
large = out.data_size() > UINT32_MAX;
|
||||
}
|
||||
auto& d = metal::device(s.device);
|
||||
int work_per_thread = 1;
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (ctype) {
|
||||
case CopyType::Scalar:
|
||||
kname << (use_2d ? "s2" : "s");
|
||||
break;
|
||||
case CopyType::Vector:
|
||||
kname << (use_2d ? "v2" : "v");
|
||||
break;
|
||||
case CopyType::General:
|
||||
kname << "g";
|
||||
break;
|
||||
case CopyType::GeneralGeneral:
|
||||
kname << "gg";
|
||||
break;
|
||||
}
|
||||
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
|
||||
if (shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
} else {
|
||||
work_per_thread = 4;
|
||||
kname << "n4";
|
||||
}
|
||||
}
|
||||
kname << "_copy";
|
||||
kname << type_to_name(in) << type_to_name(out);
|
||||
kernel_name = kname.str();
|
||||
switch (ctype) {
|
||||
case CopyType::Scalar:
|
||||
kernel_name = (large ? "s2" : "s");
|
||||
break;
|
||||
case CopyType::Vector:
|
||||
kernel_name = (large ? "v2" : "v");
|
||||
break;
|
||||
case CopyType::General:
|
||||
kernel_name = "g";
|
||||
break;
|
||||
case CopyType::GeneralGeneral:
|
||||
kernel_name = "gg";
|
||||
break;
|
||||
}
|
||||
|
||||
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
|
||||
if (shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
|
||||
kernel_name += std::to_string(shape.size());
|
||||
} else {
|
||||
work_per_thread = large ? 4 : 2;
|
||||
concatenate(kernel_name, "n", std::to_string(work_per_thread));
|
||||
}
|
||||
if (large) {
|
||||
kernel_name += "large";
|
||||
}
|
||||
}
|
||||
concatenate(kernel_name, "_copy", type_to_name(in), type_to_name(out));
|
||||
auto kernel = get_copy_kernel(d, kernel_name, in, out);
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
bool donate_in = in.data_shared_ptr() == nullptr;
|
||||
|
||||
inp_offset *= size_of(in.dtype());
|
||||
@@ -122,26 +123,26 @@ void copy_gpu_inplace(
|
||||
|
||||
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
|
||||
std::vector<int64_t> strides_in{strides_in_.begin(), strides_in_.end()};
|
||||
std::vector<int64_t> strides_out{strides_out_.begin(), strides_out_.end()};
|
||||
Strides strides_in{strides_in_.begin(), strides_in_.end()};
|
||||
Strides strides_out{strides_out_.begin(), strides_out_.end()};
|
||||
if (ndim > 3) {
|
||||
set_vector_bytes(compute_encoder, shape, ndim, 2);
|
||||
compute_encoder.set_vector_bytes(shape, ndim, 2);
|
||||
}
|
||||
set_vector_bytes(compute_encoder, strides_in, ndim, 3);
|
||||
compute_encoder.set_vector_bytes(strides_in, ndim, 3);
|
||||
if (ctype == CopyType::GeneralGeneral) {
|
||||
set_vector_bytes(compute_encoder, strides_out, ndim, 4);
|
||||
compute_encoder.set_vector_bytes(strides_out, ndim, 4);
|
||||
}
|
||||
|
||||
int dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
int dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
||||
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
||||
|
||||
size_t data_size = 1;
|
||||
for (auto& s : shape)
|
||||
data_size *= s;
|
||||
int rest = data_size / (dim0 * dim1);
|
||||
size_t rest = data_size / (dim0 * dim1);
|
||||
|
||||
if (ndim > MAX_COPY_SPECIALIZED_DIMS) {
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), 5);
|
||||
compute_encoder.set_bytes(ndim, 5);
|
||||
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
||||
}
|
||||
|
||||
@@ -152,16 +153,16 @@ void copy_gpu_inplace(
|
||||
|
||||
auto group_dims = get_block_dims(dim0, dim1, rest);
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
} else {
|
||||
size_t nthreads = out.data_size();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
}
|
||||
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -178,14 +179,13 @@ void copy_gpu_inplace(
|
||||
void copy_gpu_inplace(
|
||||
const array& in,
|
||||
array& out,
|
||||
const std::vector<int64_t>& istride,
|
||||
const Strides& istride,
|
||||
int64_t ioffset,
|
||||
CopyType ctype,
|
||||
const Stream& s) {
|
||||
assert(in.shape() == out.shape());
|
||||
std::vector<int64_t> ostrides{out.strides().begin(), out.strides().end()};
|
||||
return copy_gpu_inplace(
|
||||
in, out, in.shape(), istride, ostrides, ioffset, 0, ctype, s);
|
||||
in, out, in.shape(), istride, out.strides(), ioffset, 0, ctype, s);
|
||||
}
|
||||
|
||||
void fill_gpu(const array& val, array& out, const Stream& s) {
|
||||
@@ -193,13 +193,13 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
|
||||
return;
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
bool large = out.data_size() > UINT32_MAX;
|
||||
auto& d = metal::device(s.device);
|
||||
std::string kernel_name = std::string(use_2d ? "s2" : "s") + "_copy" +
|
||||
std::string kernel_name = std::string(large ? "s2" : "s") + "_copy" +
|
||||
type_to_name(val) + type_to_name(out);
|
||||
auto kernel = get_copy_kernel(d, kernel_name, val, out);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
compute_encoder.set_input_array(val, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
@@ -210,9 +210,9 @@ void fill_gpu(const array& val, array& out, const Stream& s) {
|
||||
thread_group_size = nthreads;
|
||||
}
|
||||
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -8,13 +8,12 @@
|
||||
namespace mlx::core {
|
||||
|
||||
// Generic copy inplace
|
||||
template <typename stride_t>
|
||||
void copy_gpu_inplace(
|
||||
const array& in,
|
||||
array& out,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
const Shape& data_shape,
|
||||
const Strides& i_strides,
|
||||
const Strides& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype,
|
||||
@@ -32,7 +31,7 @@ void copy_gpu_inplace(
|
||||
void copy_gpu_inplace(
|
||||
const array& in,
|
||||
array& out,
|
||||
const std::vector<int64_t>& istride,
|
||||
const Strides& istride,
|
||||
int64_t ioffset,
|
||||
CopyType ctype,
|
||||
const Stream& s);
|
||||
|
@@ -43,7 +43,7 @@ void CustomKernel::eval_gpu(
|
||||
d.get_library(lib_name, [this] { return metal::utils() + source_; });
|
||||
auto kernel = d.get_kernel(name_, lib);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
int index = 0;
|
||||
for (int i = 0; i < checked_inputs.size(); i++) {
|
||||
const array& in = checked_inputs[i];
|
||||
@@ -53,15 +53,15 @@ void CustomKernel::eval_gpu(
|
||||
if (in.ndim() > 0) {
|
||||
int ndim = in.ndim();
|
||||
if (shape_info.shape) {
|
||||
set_vector_bytes(compute_encoder, in.shape(), ndim, index);
|
||||
compute_encoder.set_vector_bytes(in.shape(), ndim, index);
|
||||
index++;
|
||||
}
|
||||
if (shape_info.strides) {
|
||||
set_vector_bytes(compute_encoder, in.strides(), ndim, index);
|
||||
compute_encoder.set_vector_bytes(in.strides(), ndim, index);
|
||||
index++;
|
||||
}
|
||||
if (shape_info.ndim) {
|
||||
compute_encoder->setBytes(&ndim, sizeof(int), index);
|
||||
compute_encoder.set_bytes(ndim, index);
|
||||
index++;
|
||||
}
|
||||
}
|
||||
@@ -72,10 +72,11 @@ void CustomKernel::eval_gpu(
|
||||
}
|
||||
|
||||
const auto [tx, ty, tz] = threadgroup_;
|
||||
MTL::Size group_dims = MTL::Size(tx, ty, tz);
|
||||
const auto [gx, gy, gz] = grid_;
|
||||
MTL::Size group_dims =
|
||||
MTL::Size(std::min(tx, gx), std::min(ty, gy), std::min(tz, gz));
|
||||
MTL::Size grid_dims = MTL::Size(gx, gy, gz);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
|
||||
d.add_temporaries(std::move(copies), s.index);
|
||||
}
|
||||
|
@@ -23,14 +23,18 @@ constexpr int MAX_BUFFERS_PER_QUEUE = 12;
|
||||
|
||||
constexpr const char* default_mtllib_path = METAL_PATH;
|
||||
|
||||
constexpr auto get_metal_version() {
|
||||
#if (MLX_METAL_VERSION >= 320)
|
||||
return MTL::LanguageVersion3_2;
|
||||
#elif (MLX_METAL_VERSION >= 310)
|
||||
return MTL::LanguageVersion3_1;
|
||||
#else
|
||||
return MTL::LanguageVersion3_0;
|
||||
#endif
|
||||
auto get_metal_version() {
|
||||
auto get_metal_version_ = []() {
|
||||
if (__builtin_available(macOS 15, iOS 18, tvOS 18, visionOS 2, *)) {
|
||||
return MTL::LanguageVersion3_2;
|
||||
} else if (__builtin_available(macOS 14, iOS 17, tvOS 17, visionOS 1, *)) {
|
||||
return MTL::LanguageVersion3_1;
|
||||
} else {
|
||||
return MTL::LanguageVersion3_0;
|
||||
}
|
||||
};
|
||||
static auto metal_version_ = get_metal_version_();
|
||||
return metal_version_;
|
||||
}
|
||||
|
||||
auto load_device() {
|
||||
@@ -171,14 +175,14 @@ void CommandEncoder::maybeInsertBarrier() {
|
||||
next_outputs_.clear();
|
||||
}
|
||||
|
||||
void CommandEncoder::dispatchThreadgroups(
|
||||
void CommandEncoder::dispatch_threadgroups(
|
||||
MTL::Size grid_dims,
|
||||
MTL::Size group_dims) {
|
||||
maybeInsertBarrier();
|
||||
enc_->dispatchThreadgroups(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void CommandEncoder::dispatchThreads(
|
||||
void CommandEncoder::dispatch_threads(
|
||||
MTL::Size grid_dims,
|
||||
MTL::Size group_dims) {
|
||||
maybeInsertBarrier();
|
||||
@@ -276,7 +280,7 @@ void Device::end_encoding(int index) {
|
||||
// - Update the map of outputs to include this command encoder's outputs.
|
||||
// - Always signal this command encoders fence.
|
||||
// - Add a completion handler for this command encoder that removes outputs
|
||||
// from the map to limit the growth of the map and avoid unecessary waits
|
||||
// from the map to limit the growth of the map and avoid unnecessary waits
|
||||
// - Temporaries are a special case as they do not cross command encoder
|
||||
// boundaries. These can be removed early from the encoders inputs and
|
||||
// outputs since they don't need synchronization.
|
||||
@@ -298,7 +302,7 @@ void Device::end_encoding(int index) {
|
||||
if (auto it = stream.outputs.find(in); it != stream.outputs.end()) {
|
||||
// If we've already waited on a fence, don't wait on it again.
|
||||
if (waiting_on.find(it->second) == waiting_on.end()) {
|
||||
enc->waitForFence(it->second->fence);
|
||||
enc.wait_for_fence(it->second->fence);
|
||||
waiting_on.insert(it->second);
|
||||
}
|
||||
}
|
||||
@@ -307,7 +311,7 @@ void Device::end_encoding(int index) {
|
||||
stream.outputs[out] = stream.fence;
|
||||
}
|
||||
}
|
||||
enc->updateFence(stream.fence->fence);
|
||||
enc.update_fence(stream.fence->fence);
|
||||
stream.buffer->addCompletedHandler(
|
||||
[&stream,
|
||||
waiting_on = std::move(waiting_on),
|
||||
@@ -641,21 +645,27 @@ void new_stream(Stream stream) {
|
||||
|
||||
std::unordered_map<std::string, std::variant<std::string, size_t>>
|
||||
device_info() {
|
||||
auto raw_device = device(default_device()).mtl_device();
|
||||
auto arch = std::string(raw_device->architecture()->name()->utf8String());
|
||||
auto init_device_info = []()
|
||||
-> std::unordered_map<std::string, std::variant<std::string, size_t>> {
|
||||
auto pool = new_scoped_memory_pool();
|
||||
auto raw_device = device(default_device()).mtl_device();
|
||||
auto arch = std::string(raw_device->architecture()->name()->utf8String());
|
||||
|
||||
int mib[] = {CTL_HW, HW_MEMSIZE};
|
||||
size_t memsize = 0;
|
||||
size_t length = sizeof(memsize);
|
||||
int mib[] = {CTL_HW, HW_MEMSIZE};
|
||||
size_t memsize = 0;
|
||||
size_t length = sizeof(memsize);
|
||||
|
||||
sysctl(mib, 2, &memsize, &length, NULL, 0);
|
||||
sysctl(mib, 2, &memsize, &length, NULL, 0);
|
||||
|
||||
return {
|
||||
{"architecture", arch},
|
||||
{"max_buffer_length", raw_device->maxBufferLength()},
|
||||
{"max_recommended_working_set_size",
|
||||
raw_device->recommendedMaxWorkingSetSize()},
|
||||
{"memory_size", memsize}};
|
||||
return {
|
||||
{"architecture", arch},
|
||||
{"max_buffer_length", raw_device->maxBufferLength()},
|
||||
{"max_recommended_working_set_size",
|
||||
raw_device->recommendedMaxWorkingSetSize()},
|
||||
{"memory_size", memsize}};
|
||||
};
|
||||
static auto device_info_ = init_device_info();
|
||||
return device_info_;
|
||||
}
|
||||
|
||||
} // namespace mlx::core::metal
|
||||
|
@@ -58,16 +58,43 @@ struct CommandEncoder {
|
||||
CommandEncoder& enc;
|
||||
};
|
||||
|
||||
MTL::ComputeCommandEncoder* operator->() {
|
||||
return enc_;
|
||||
}
|
||||
|
||||
void set_input_array(const array& a, int idx, int64_t offset = 0);
|
||||
void set_output_array(array& a, int idx, int64_t offset = 0);
|
||||
void dispatchThreadgroups(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
void dispatchThreads(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
void dispatch_threadgroups(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
void dispatch_threads(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
void maybeInsertBarrier();
|
||||
|
||||
void set_compute_pipeline_state(MTL::ComputePipelineState* kernel) {
|
||||
enc_->setComputePipelineState(kernel);
|
||||
}
|
||||
|
||||
void wait_for_fence(MTL::Fence* fence) {
|
||||
enc_->waitForFence(fence);
|
||||
}
|
||||
|
||||
void update_fence(MTL::Fence* fence) {
|
||||
enc_->updateFence(fence);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_vector_bytes(const std::vector<T>& vec, size_t nelems, int idx) {
|
||||
enc_->setBytes(vec.data(), nelems * sizeof(T), idx);
|
||||
}
|
||||
template <typename T>
|
||||
void set_vector_bytes(const std::vector<T>& vec, int idx) {
|
||||
return set_vector_bytes(vec, vec.size(), idx);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_bytes(const T* v, int n, int idx) {
|
||||
return enc_->setBytes(v, n * sizeof(T), idx);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void set_bytes(const T& v, int idx) {
|
||||
return enc_->setBytes(&v, sizeof(T), idx);
|
||||
}
|
||||
|
||||
ConcurrentContext start_concurrent() {
|
||||
return ConcurrentContext(*this);
|
||||
}
|
||||
|
@@ -363,7 +363,7 @@ void multi_upload_bluestein_fft(
|
||||
auto [w_k, w_q] = compute_bluestein_constants(n, plan.bluestein_n);
|
||||
|
||||
// Broadcast w_q and w_k to the batch size
|
||||
std::vector<size_t> b_strides(in.ndim(), 0);
|
||||
Strides b_strides(in.ndim(), 0);
|
||||
b_strides[axis] = 1;
|
||||
array w_k_broadcast({}, complex64, nullptr, {});
|
||||
array w_q_broadcast({}, complex64, nullptr, {});
|
||||
@@ -386,8 +386,8 @@ void multi_upload_bluestein_fft(
|
||||
copies.push_back(slice_temp);
|
||||
copies.push_back(conj_temp);
|
||||
|
||||
std::vector<int> rstarts(in.ndim(), 0);
|
||||
std::vector<int> rstrides(in.ndim(), 1);
|
||||
Shape rstarts(in.ndim(), 0);
|
||||
Shape rstrides(in.ndim(), 1);
|
||||
rstarts[axis] = in.shape(axis) - back_offset;
|
||||
rstrides[axis] = -1;
|
||||
unary_op_gpu({in}, conj_temp, "Conjugate", s);
|
||||
@@ -431,19 +431,19 @@ void multi_upload_bluestein_fft(
|
||||
s);
|
||||
|
||||
int offset = plan.bluestein_n - (2 * n - 1);
|
||||
std::vector<int> starts(in.ndim(), 0);
|
||||
std::vector<int> strides(in.ndim(), 1);
|
||||
Shape starts(in.ndim(), 0);
|
||||
Shape strides(in.ndim(), 1);
|
||||
starts[axis] = plan.bluestein_n - offset - n;
|
||||
slice_gpu(pad_temp1, temp, starts, strides, s);
|
||||
|
||||
binary_op_gpu_inplace({temp, w_k_broadcast}, temp1, "Multiply", s);
|
||||
|
||||
if (real && !inverse) {
|
||||
std::vector<int> rstarts(in.ndim(), 0);
|
||||
std::vector<int> rstrides(in.ndim(), 1);
|
||||
Shape rstarts(in.ndim(), 0);
|
||||
Shape rstrides(in.ndim(), 1);
|
||||
slice_gpu(temp1, out, rstarts, strides, s);
|
||||
} else if (real && inverse) {
|
||||
std::vector<size_t> b_strides(in.ndim(), 0);
|
||||
Strides b_strides(in.ndim(), 0);
|
||||
auto inv_n = array({1.0f / n}, {1}, float32);
|
||||
array temp_float(out.shape(), out.dtype(), nullptr, {});
|
||||
copies.push_back(temp_float);
|
||||
@@ -531,8 +531,8 @@ void fft_op(
|
||||
return x;
|
||||
} else {
|
||||
array x_copy(x.shape(), x.dtype(), nullptr, {});
|
||||
std::vector<size_t> strides;
|
||||
size_t cur_stride = x.shape(axis);
|
||||
Strides strides;
|
||||
int64_t cur_stride = x.shape(axis);
|
||||
for (int a = 0; a < x.ndim(); a++) {
|
||||
if (a == axis) {
|
||||
strides.push_back(1);
|
||||
@@ -699,7 +699,7 @@ void fft_op(
|
||||
auto kernel =
|
||||
get_fft_kernel(d, base_name, hash_name, func_consts, template_def);
|
||||
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
compute_encoder.set_input_array(in_contiguous, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
|
||||
@@ -711,9 +711,9 @@ void fft_op(
|
||||
|
||||
compute_encoder.set_input_array(w_q, 2); // w_q
|
||||
compute_encoder.set_input_array(w_k, 3); // w_k
|
||||
compute_encoder->setBytes(&n, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&plan.bluestein_n, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&total_batch_size, sizeof(int), 6);
|
||||
compute_encoder.set_bytes(n, 4);
|
||||
compute_encoder.set_bytes(plan.bluestein_n, 5);
|
||||
compute_encoder.set_bytes(total_batch_size, 6);
|
||||
} else if (plan.rader_n > 1) {
|
||||
auto [b_q, g_q, g_minus_q] = compute_raders_constants(plan.rader_n, s);
|
||||
copies.push_back(b_q);
|
||||
@@ -723,22 +723,22 @@ void fft_op(
|
||||
compute_encoder.set_input_array(b_q, 2);
|
||||
compute_encoder.set_input_array(g_q, 3);
|
||||
compute_encoder.set_input_array(g_minus_q, 4);
|
||||
compute_encoder->setBytes(&n, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&total_batch_size, sizeof(int), 6);
|
||||
compute_encoder->setBytes(&plan.rader_n, sizeof(int), 7);
|
||||
compute_encoder.set_bytes(n, 5);
|
||||
compute_encoder.set_bytes(total_batch_size, 6);
|
||||
compute_encoder.set_bytes(plan.rader_n, 7);
|
||||
} else if (four_step_params.required) {
|
||||
compute_encoder->setBytes(&four_step_params.n1, sizeof(int), 2);
|
||||
compute_encoder->setBytes(&four_step_params.n2, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&total_batch_size, sizeof(int), 4);
|
||||
compute_encoder.set_bytes(four_step_params.n1, 2);
|
||||
compute_encoder.set_bytes(four_step_params.n2, 3);
|
||||
compute_encoder.set_bytes(total_batch_size, 4);
|
||||
} else {
|
||||
compute_encoder->setBytes(&n, sizeof(int), 2);
|
||||
compute_encoder->setBytes(&total_batch_size, sizeof(int), 3);
|
||||
compute_encoder.set_bytes(n, 2);
|
||||
compute_encoder.set_bytes(total_batch_size, 3);
|
||||
}
|
||||
|
||||
auto group_dims = MTL::Size(1, threadgroup_batch_size, threads_per_fft);
|
||||
auto grid_dims =
|
||||
MTL::Size(batch_size, threadgroup_batch_size, threads_per_fft);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
d.add_temporaries(std::move(copies), s.index);
|
||||
@@ -777,7 +777,7 @@ void nd_fft_op(
|
||||
// Mirror np.fft.(i)rfftn and perform a real transform
|
||||
// only on the final axis.
|
||||
bool step_real = (real && index == axes.size() - 1);
|
||||
int step_shape = inverse ? out.shape(axis) : in.shape(axis);
|
||||
auto step_shape = inverse ? out.shape(axis) : in.shape(axis);
|
||||
const array& in_arr = i == axes.size() - 1 ? in : temp_arrs[1 - i % 2];
|
||||
array& out_arr = i == 0 ? out : temp_arrs[i % 2];
|
||||
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
|
||||
|
@@ -137,14 +137,14 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
|
||||
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
compute_encoder->setBytes(&scale, sizeof(float), 2);
|
||||
compute_encoder.set_bytes(scale, 2);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
|
||||
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
};
|
||||
|
||||
if (m > 1) {
|
||||
|
@@ -53,27 +53,31 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
int idx_ndim = nidx ? inputs[1].ndim() : 0;
|
||||
size_t ndim = src.ndim();
|
||||
|
||||
std::string lib_name;
|
||||
std::string kernel_name;
|
||||
bool large_index = nidx && inputs[1].size() > UINT32_MAX;
|
||||
bool large_src = src.size() > UINT32_MAX;
|
||||
bool large_out = out.size() > UINT32_MAX;
|
||||
bool large = large_index || large_src || large_out;
|
||||
|
||||
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
|
||||
{
|
||||
std::ostringstream kname;
|
||||
kname << "gather" << type_to_name(out) << idx_type_name << "_" << nidx
|
||||
<< "_" << idx_ndim;
|
||||
lib_name = kname.str();
|
||||
kernel_name = lib_name;
|
||||
}
|
||||
std::string kernel_name = fmt::format(
|
||||
"gather{0}{1}_{2}_{3}_{4}",
|
||||
type_to_name(out),
|
||||
idx_type_name,
|
||||
nidx,
|
||||
idx_ndim,
|
||||
large ? "int64_t" : "uint");
|
||||
std::string lib_name = kernel_name;
|
||||
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::gather();
|
||||
std::string kernel_source = metal::utils();
|
||||
kernel_source += metal::gather();
|
||||
std::string out_type_str = get_type_string(out.dtype());
|
||||
std::string idx_type_str =
|
||||
nidx ? get_type_string(inputs[1].dtype()) : "bool";
|
||||
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
|
||||
|
||||
// Index dimension specializations
|
||||
kernel_source << fmt::format(
|
||||
kernel_source += fmt::format(
|
||||
gather_kernels,
|
||||
type_to_name(out) + idx_type_name,
|
||||
out_type_str,
|
||||
@@ -81,13 +85,14 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nidx,
|
||||
idx_args,
|
||||
idx_arr,
|
||||
idx_ndim);
|
||||
return kernel_source.str();
|
||||
idx_ndim,
|
||||
large ? "int64_t" : "uint");
|
||||
return kernel_source;
|
||||
});
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
size_t slice_size = 1;
|
||||
for (auto s : slice_sizes_) {
|
||||
@@ -131,20 +136,20 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
|
||||
// Set source info
|
||||
set_vector_bytes(compute_encoder, src.shape(), 2);
|
||||
set_vector_bytes(compute_encoder, src.strides(), 3);
|
||||
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
|
||||
set_vector_bytes(compute_encoder, slice_sizes_, 5);
|
||||
set_vector_bytes(compute_encoder, axes_, 6);
|
||||
compute_encoder.set_vector_bytes(src.shape(), 2);
|
||||
compute_encoder.set_vector_bytes(src.strides(), 3);
|
||||
compute_encoder.set_bytes(ndim, 4);
|
||||
compute_encoder.set_vector_bytes(slice_sizes_, 5);
|
||||
compute_encoder.set_vector_bytes(axes_, 6);
|
||||
|
||||
// Set index info
|
||||
//
|
||||
// We don't need to check for empty idx_shapes because gather has a
|
||||
// idx_ndim == 0 specialization
|
||||
set_vector_bytes(compute_encoder, idx_shapes, 7);
|
||||
set_vector_bytes(compute_encoder, idx_strides, 8);
|
||||
set_vector_bytes(compute_encoder, idx_contigs, 9);
|
||||
compute_encoder->setBytes(&idx_ndim, sizeof(int), 10);
|
||||
compute_encoder.set_vector_bytes(idx_shapes, 7);
|
||||
compute_encoder.set_vector_bytes(idx_strides, 8);
|
||||
compute_encoder.set_vector_bytes(idx_contigs, 9);
|
||||
compute_encoder.set_bytes(idx_ndim, 10);
|
||||
|
||||
// Set index buffers
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
@@ -152,7 +157,7 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
// Launch grid
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -209,8 +214,6 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
nwork = 32;
|
||||
}
|
||||
|
||||
std::string lib_name;
|
||||
std::string kernel_name;
|
||||
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
|
||||
std::string op_name;
|
||||
switch (reduce_type_) {
|
||||
@@ -231,18 +234,24 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
break;
|
||||
}
|
||||
auto upd_contig = upd.flags().row_contiguous;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
kname << "scatter" << type_to_name(out) << idx_type_name;
|
||||
kname << "_" << op_name << "_" << nidx << "_"
|
||||
<< (upd_contig ? "updc_true" : "updc_false") << "_nwork" << nwork;
|
||||
lib_name = kname.str();
|
||||
kernel_name = kname.str();
|
||||
}
|
||||
bool large_out = out.size() > UINT32_MAX;
|
||||
bool large_idx = nidx && (inputs[1].size() > UINT32_MAX);
|
||||
bool large_upd = upd.size() > UINT32_MAX;
|
||||
bool large = large_out || large_idx || large_upd;
|
||||
std::string kernel_name = fmt::format(
|
||||
"scatter{0}{1}_{2}_{3}_{4}_nwork{5}_{6}",
|
||||
type_to_name(out),
|
||||
idx_type_name,
|
||||
op_name,
|
||||
nidx,
|
||||
upd_contig ? "updc_true" : "updc_false",
|
||||
nwork,
|
||||
large ? "int64_t" : "uint");
|
||||
std::string lib_name = kernel_name;
|
||||
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::reduce_utils()
|
||||
<< metal::scatter();
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::reduce_utils(), metal::scatter());
|
||||
|
||||
std::string out_type_str = get_type_string(out.dtype());
|
||||
std::string idx_type_str =
|
||||
@@ -270,7 +279,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
|
||||
|
||||
kernel_source << fmt::format(
|
||||
kernel_source += fmt::format(
|
||||
scatter_kernels,
|
||||
type_to_name(out) + idx_type_name + "_" + op_name,
|
||||
out_type_str,
|
||||
@@ -280,8 +289,9 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
idx_args,
|
||||
idx_arr,
|
||||
upd_contig,
|
||||
nwork);
|
||||
return kernel_source.str();
|
||||
nwork,
|
||||
large ? "int64_t" : "uint");
|
||||
return kernel_source;
|
||||
});
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
@@ -289,7 +299,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
||||
size_t nthreads = upd.size();
|
||||
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_compute_pipeline_state(kernel);
|
||||
|
||||
// Set all the buffers
|
||||
compute_encoder.set_input_array(upd, 1);
|
||||
@@ -302,8 +312,8 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
upd_size *= upd.shape(i);
|
||||
}
|
||||
// Collect all idx shapes and strides into one place
|
||||
std::vector<int> idx_shapes;
|
||||
std::vector<size_t> idx_strides;
|
||||
Shape idx_shapes;
|
||||
Strides idx_strides;
|
||||
// To access .data() use char instead of bool
|
||||
// bool is 1 byte in Metal so this is safe
|
||||
std::vector<char> idx_contigs;
|
||||
@@ -322,30 +332,30 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (upd_ndim == 0) {
|
||||
// Need placeholders so Metal doesn't compalain
|
||||
int shape_ = 0;
|
||||
size_t stride_ = 0;
|
||||
compute_encoder->setBytes(&shape_, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
|
||||
int64_t stride_ = 0;
|
||||
compute_encoder.set_bytes(shape_, 3);
|
||||
compute_encoder.set_bytes(stride_, 4);
|
||||
} else {
|
||||
set_vector_bytes(compute_encoder, upd.shape(), 3);
|
||||
set_vector_bytes(compute_encoder, upd.strides(), 4);
|
||||
compute_encoder.set_vector_bytes(upd.shape(), 3);
|
||||
compute_encoder.set_vector_bytes(upd.strides(), 4);
|
||||
}
|
||||
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
|
||||
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
|
||||
compute_encoder.set_bytes(upd_ndim, 5);
|
||||
compute_encoder.set_bytes(upd_size, 6);
|
||||
|
||||
// Set output info
|
||||
size_t out_ndim = out.ndim();
|
||||
if (out_ndim == 0) {
|
||||
// Need placeholders so Metal doesn't compalain
|
||||
int shape_ = 0;
|
||||
size_t stride_ = 0;
|
||||
compute_encoder->setBytes(&shape_, sizeof(int), 7);
|
||||
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
|
||||
int64_t stride_ = 0;
|
||||
compute_encoder.set_bytes(shape_, 7);
|
||||
compute_encoder.set_bytes(stride_, 8);
|
||||
} else {
|
||||
set_vector_bytes(compute_encoder, out.shape(), 7);
|
||||
set_vector_bytes(compute_encoder, out.strides(), 8);
|
||||
compute_encoder.set_vector_bytes(out.shape(), 7);
|
||||
compute_encoder.set_vector_bytes(out.strides(), 8);
|
||||
}
|
||||
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
|
||||
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
|
||||
compute_encoder.set_bytes(out_ndim, 9);
|
||||
compute_encoder.set_vector_bytes(axes_, 10);
|
||||
|
||||
// Set index info
|
||||
if (idx_ndim == 0) {
|
||||
@@ -355,11 +365,11 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
idx_strides.push_back(0);
|
||||
idx_contigs.push_back(false);
|
||||
}
|
||||
set_vector_bytes(compute_encoder, idx_shapes, 11);
|
||||
set_vector_bytes(compute_encoder, idx_strides, 12);
|
||||
set_vector_bytes(compute_encoder, idx_contigs, 13);
|
||||
compute_encoder->setBytes(&idx_ndim, sizeof(int), 14);
|
||||
compute_encoder->setBytes(&idx_size, sizeof(size_t), 15);
|
||||
compute_encoder.set_vector_bytes(idx_shapes, 11);
|
||||
compute_encoder.set_vector_bytes(idx_strides, 12);
|
||||
compute_encoder.set_vector_bytes(idx_contigs, 13);
|
||||
compute_encoder.set_bytes(idx_ndim, 14);
|
||||
compute_encoder.set_bytes(idx_size, 15);
|
||||
|
||||
// Set index buffers
|
||||
for (int i = 0; i < nidx; ++i) {
|
||||
@@ -375,7 +385,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
throw std::runtime_error("[Scatter::eval_gpu] Invalid number of threads");
|
||||
}
|
||||
MTL::Size group_dims = get_block_dims(upd_size, grid_y, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -11,13 +11,13 @@ gemv_{trans}masked<{itype}, {outm_t}, {opm_t}, {bm}, {bn}, {sm}, {sn}, {tm}, {tn
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device {outm_t}* out_mask [[buffer(20)]],
|
||||
const device {opm_t}* mat_mask [[buffer(21)]],
|
||||
const device {opm_t}* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
const constant int64_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
|
@@ -1,16 +1,16 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
constexpr std::string_view gather_kernels = R"(
|
||||
[[kernel]] void gather{0}_{3}_{6}(
|
||||
[[kernel]] void gather{0}_{3}_{6}_{7}(
|
||||
const device {1}* src [[buffer(0)]],
|
||||
device {1}* out [[buffer(1)]],
|
||||
const constant int* src_shape [[buffer(2)]],
|
||||
const constant size_t* src_strides [[buffer(3)]],
|
||||
const constant int64_t* src_strides [[buffer(3)]],
|
||||
const constant size_t& src_ndim [[buffer(4)]],
|
||||
const constant int* slice_sizes [[buffer(5)]],
|
||||
const constant int* axes [[buffer(6)]],
|
||||
const constant int* idx_shapes [[buffer(7)]],
|
||||
const constant size_t* idx_strides [[buffer(8)]],
|
||||
const constant int64_t* idx_strides [[buffer(8)]],
|
||||
const constant bool* idx_contigs [[buffer(9)]],
|
||||
const constant int& idx_ndim [[buffer(10)]],
|
||||
{4}
|
||||
@@ -19,7 +19,7 @@ constexpr std::string_view gather_kernels = R"(
|
||||
Indices<{2}, {3}> idxs{{
|
||||
{{ {5} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
|
||||
|
||||
return gather_impl<{1}, {2}, {3}, {6}>(
|
||||
return gather_impl<{1}, {2}, {3}, {6}, {7}>(
|
||||
src,
|
||||
out,
|
||||
src_shape,
|
||||
@@ -34,19 +34,19 @@ constexpr std::string_view gather_kernels = R"(
|
||||
)";
|
||||
|
||||
constexpr std::string_view scatter_kernels = R"(
|
||||
[[kernel]] void scatter{0}_{4}_updc_{7}_nwork{8}(
|
||||
[[kernel]] void scatter{0}_{4}_updc_{7}_nwork{8}_{9}(
|
||||
const device {1}* updates [[buffer(1)]],
|
||||
device mlx_atomic<{1}>* out [[buffer(2)]],
|
||||
const constant int* upd_shape [[buffer(3)]],
|
||||
const constant size_t* upd_strides [[buffer(4)]],
|
||||
const constant int64_t* upd_strides [[buffer(4)]],
|
||||
const constant size_t& upd_ndim [[buffer(5)]],
|
||||
const constant size_t& upd_size [[buffer(6)]],
|
||||
const constant int* out_shape [[buffer(7)]],
|
||||
const constant size_t* out_strides [[buffer(8)]],
|
||||
const constant int64_t* out_strides [[buffer(8)]],
|
||||
const constant size_t& out_ndim [[buffer(9)]],
|
||||
const constant int* axes [[buffer(10)]],
|
||||
const constant int* idx_shapes [[buffer(11)]],
|
||||
const constant size_t* idx_strides [[buffer(12)]],
|
||||
const constant int64_t* idx_strides [[buffer(12)]],
|
||||
const constant bool* idx_contigs [[buffer(13)]],
|
||||
const constant int& idx_ndim [[buffer(14)]],
|
||||
const constant size_t& idx_size [[buffer(15)]],
|
||||
@@ -54,7 +54,7 @@ constexpr std::string_view scatter_kernels = R"(
|
||||
uint2 gid [[thread_position_in_grid]]) {{
|
||||
Indices<{2}, {4}> idxs{{ {{ {6} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
|
||||
|
||||
return scatter_impl<{1}, {2}, {3}, {4}, {7}, {8}>(
|
||||
return scatter_impl<{1}, {2}, {3}, {4}, {7}, {8}, {9}>(
|
||||
updates,
|
||||
out,
|
||||
upd_shape,
|
||||
|
@@ -10,12 +10,12 @@ template [[host_name("{name}")]]
|
||||
const constant GEMMParams* params [[buffer(4)]],
|
||||
const constant GEMMAddMMParams* addmm_params [[buffer(5), function_constant(use_out_source)]],
|
||||
const constant int* batch_shape [[buffer(6)]],
|
||||
const constant size_t* batch_strides [[buffer(7)]],
|
||||
const constant int64_t* batch_strides [[buffer(7)]],
|
||||
const constant uint32_t* lhs_indices [[buffer(10), function_constant(do_gather)]],
|
||||
const constant uint32_t* rhs_indices [[buffer(11), function_constant(do_gather)]],
|
||||
const constant uint32_t* C_indices [[buffer(12), function_constant(gather_bias)]],
|
||||
const constant int* operand_shape [[buffer(13), function_constant(do_gather)]],
|
||||
const constant size_t* operand_strides [[buffer(14), function_constant(do_gather)]],
|
||||
const constant int64_t* operand_strides [[buffer(14), function_constant(do_gather)]],
|
||||
const constant packed_int3& operand_batch_ndim [[buffer(15), function_constant(do_gather)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
@@ -43,7 +43,7 @@ block_masked_gemm<
|
||||
device {itype}* D [[buffer(3)]],
|
||||
const constant GEMMParams* params [[buffer(4)]],
|
||||
const constant int* batch_shape [[buffer(6)]],
|
||||
const constant size_t* batch_strides [[buffer(7)]],
|
||||
const constant int64_t* batch_strides [[buffer(7)]],
|
||||
const device {outmasktype}* out_mask [[buffer(10)]],
|
||||
const device {opmasktype}* lhs_mask [[buffer(11)]],
|
||||
const device {opmasktype}* rhs_mask [[buffer(12)]],
|
||||
|
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/metal/jit/arange.h"
|
||||
#include "mlx/backend/metal/jit/gemv_masked.h"
|
||||
@@ -46,25 +45,27 @@ MTL::ComputePipelineState* get_unary_kernel(
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
auto in_t = get_type_string(in_type);
|
||||
auto out_t = get_type_string(out_type);
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::unary_ops() << metal::unary();
|
||||
kernel_source << get_template_definition(
|
||||
"v_" + lib_name, "unary_v", in_t, out_t, op);
|
||||
kernel_source << get_template_definition(
|
||||
"v2_" + lib_name, "unary_v2", in_t, out_t, op);
|
||||
kernel_source << get_template_definition(
|
||||
"gn4_" + lib_name, "unary_g", in_t, out_t, op, 4);
|
||||
return kernel_source.str();
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::unary_ops(), metal::unary());
|
||||
kernel_source +=
|
||||
get_template_definition("v_" + lib_name, "unary_v", in_t, out_t, op);
|
||||
kernel_source +=
|
||||
get_template_definition("v2_" + lib_name, "unary_v2", in_t, out_t, op);
|
||||
kernel_source += get_template_definition(
|
||||
"gn1_" + lib_name, "unary_g", in_t, out_t, op, 1, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"gn4large_" + lib_name, "unary_g", in_t, out_t, op, 4);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
|
||||
void add_binary_kernels(
|
||||
void append_binary_kernels(
|
||||
const std::string lib_name,
|
||||
Dtype in_type,
|
||||
Dtype out_type,
|
||||
const std::string op,
|
||||
std::ostringstream& kernel_source) {
|
||||
std::string& kernel_source) {
|
||||
const std::array<std::pair<std::string, std::string>, 10> kernel_types = {{
|
||||
{"ss", "binary_ss"},
|
||||
{"vs", "binary_vs"},
|
||||
@@ -74,26 +75,24 @@ void add_binary_kernels(
|
||||
{"sv2", "binary_sv2"},
|
||||
{"vv2", "binary_vv2"},
|
||||
{"g1", "binary_g_nd1"},
|
||||
{"g2", "binary_g_nd2"},
|
||||
{"g3", "binary_g_nd3"},
|
||||
{"g2large", "binary_g_nd2"},
|
||||
{"g3large", "binary_g_nd3"},
|
||||
}};
|
||||
auto in_t = get_type_string(in_type);
|
||||
auto out_t = get_type_string(out_type);
|
||||
|
||||
for (auto& [name, func] : kernel_types) {
|
||||
std::string template_def;
|
||||
template_def = get_template_definition(
|
||||
name + "_" + lib_name,
|
||||
func,
|
||||
get_type_string(in_type),
|
||||
get_type_string(out_type),
|
||||
op);
|
||||
kernel_source << template_def;
|
||||
kernel_source +=
|
||||
get_template_definition(name + "_" + lib_name, func, in_t, out_t, op);
|
||||
}
|
||||
kernel_source << get_template_definition(
|
||||
"gn4_" + lib_name,
|
||||
"binary_g",
|
||||
get_type_string(in_type),
|
||||
get_type_string(out_type),
|
||||
op,
|
||||
4);
|
||||
kernel_source += get_template_definition(
|
||||
"g2_" + lib_name, "binary_g_nd2", in_t, out_t, op, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"g3_" + lib_name, "binary_g_nd3", in_t, out_t, op, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"gn2_" + lib_name, "binary_g", in_t, out_t, op, 2, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"gn4large_" + lib_name, "binary_g", in_t, out_t, op, 4);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_binary_kernel(
|
||||
@@ -104,10 +103,11 @@ MTL::ComputePipelineState* get_binary_kernel(
|
||||
const std::string op) {
|
||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::binary_ops() << metal::binary();
|
||||
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
|
||||
return kernel_source.str();
|
||||
std::string kernel_source;
|
||||
kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::binary_ops(), metal::binary());
|
||||
append_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
@@ -120,11 +120,10 @@ MTL::ComputePipelineState* get_binary_two_kernel(
|
||||
const std::string op) {
|
||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::binary_ops()
|
||||
<< metal::binary_two();
|
||||
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
|
||||
return kernel_source.str();
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::binary_ops(), metal::binary_two());
|
||||
append_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
@@ -136,24 +135,29 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
||||
const std::string op) {
|
||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
auto t_str = get_type_string(type);
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::ternary_ops(), metal::ternary());
|
||||
const std::array<std::pair<std::string, std::string>, 5> kernel_types = {{
|
||||
{"v", "ternary_v"},
|
||||
{"v2", "ternary_v2"},
|
||||
{"g1", "ternary_g_nd1"},
|
||||
{"g2", "ternary_g_nd2"},
|
||||
{"g3", "ternary_g_nd3"},
|
||||
{"g2large", "ternary_g_nd2"},
|
||||
{"g3large", "ternary_g_nd3"},
|
||||
}};
|
||||
kernel_source << metal::utils() << metal::ternary_ops() << metal::ternary();
|
||||
for (auto& [name, func] : kernel_types) {
|
||||
std::string template_def;
|
||||
template_def = get_template_definition(
|
||||
name + "_" + lib_name, func, get_type_string(type), op);
|
||||
kernel_source << template_def;
|
||||
kernel_source +=
|
||||
get_template_definition(name + "_" + lib_name, func, t_str, op);
|
||||
}
|
||||
kernel_source << get_template_definition(
|
||||
"gn4_" + lib_name, "ternary_g", get_type_string(type), op, 4);
|
||||
return kernel_source.str();
|
||||
kernel_source += get_template_definition(
|
||||
"g2_" + lib_name, "ternary_g_nd2", t_str, op, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"g3_" + lib_name, "ternary_g_nd3", t_str, op, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"gn2_" + lib_name, "ternary_g", t_str, op, 2, "uint");
|
||||
kernel_source += get_template_definition(
|
||||
"gn4large_" + lib_name, "ternary_g", t_str, op, 4);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
@@ -165,31 +169,43 @@ MTL::ComputePipelineState* get_copy_kernel(
|
||||
const array& out) {
|
||||
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
|
||||
auto lib = d.get_library(lib_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
std::string kernel_source = metal::utils();
|
||||
kernel_source += metal::copy();
|
||||
auto in_type = get_type_string(in.dtype());
|
||||
auto out_type = get_type_string(out.dtype());
|
||||
kernel_source << metal::utils() << metal::copy()
|
||||
<< get_template_definition(
|
||||
"s_" + lib_name, "copy_s", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"v_" + lib_name, "copy_v", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"g1_" + lib_name, "copy_g_nd1", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"g2_" + lib_name, "copy_g_nd2", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"g3_" + lib_name, "copy_g_nd3", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"gn4_" + lib_name, "copy_g", in_type, out_type, 4)
|
||||
<< get_template_definition(
|
||||
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type)
|
||||
<< get_template_definition(
|
||||
"ggn4_" + lib_name, "copy_gg", in_type, out_type, 4);
|
||||
return kernel_source.str();
|
||||
kernel_source +=
|
||||
get_template_definition("s_" + lib_name, "copy_s", in_type, out_type);
|
||||
kernel_source +=
|
||||
get_template_definition("v_" + lib_name, "copy_v", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"g1_" + lib_name, "copy_g_nd1", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"g2_" + lib_name, "copy_g_nd2", in_type, out_type, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"g3_" + lib_name, "copy_g_nd3", in_type, out_type, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"gn2_" + lib_name, "copy_g", in_type, out_type, 2, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"ggn2_" + lib_name, "copy_gg", in_type, out_type, 2, "int");
|
||||
kernel_source += get_template_definition(
|
||||
"g2large_" + lib_name, "copy_g_nd2", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"g3large_" + lib_name, "copy_g_nd3", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"gn4large_" + lib_name, "copy_g", in_type, out_type, 4);
|
||||
kernel_source += get_template_definition(
|
||||
"gg2large_" + lib_name, "copy_gg_nd2", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"gg3large_" + lib_name, "copy_gg_nd3", in_type, out_type);
|
||||
kernel_source += get_template_definition(
|
||||
"ggn4large_" + lib_name, "copy_gg", in_type, out_type, 4);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
@@ -321,17 +337,17 @@ MTL::ComputePipelineState* get_reduce_init_kernel(
|
||||
const std::string& kernel_name,
|
||||
const std::string& func_name,
|
||||
const std::string& op_name,
|
||||
const array& out) {
|
||||
const Dtype& out_type) {
|
||||
auto lib = d.get_library(kernel_name, [&]() {
|
||||
std::ostringstream kernel_source;
|
||||
std::string op_type = op_name;
|
||||
op_type[0] = std::toupper(op_name[0]);
|
||||
auto out_type = get_type_string(out.dtype());
|
||||
std::string op = op_type + "<" + out_type + ">";
|
||||
kernel_source << metal::utils() << metal::reduce_utils() << metal::reduce();
|
||||
kernel_source << get_template_definition(
|
||||
kernel_name, func_name, out_type, op);
|
||||
return kernel_source.str();
|
||||
auto out_t = get_type_string(out_type);
|
||||
std::string op = op_type + "<" + out_t + ">";
|
||||
std::string kernel_source = metal::utils();
|
||||
kernel_source += metal::reduce_utils();
|
||||
kernel_source += metal::reduce();
|
||||
kernel_source += get_template_definition(kernel_name, func_name, out_t, op);
|
||||
return kernel_source;
|
||||
});
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
@@ -341,30 +357,31 @@ MTL::ComputePipelineState* get_reduce_kernel(
|
||||
const std::string& kernel_name,
|
||||
const std::string& func_name,
|
||||
const std::string& op_name,
|
||||
const array& in,
|
||||
const array& out,
|
||||
const Dtype& in_type,
|
||||
const Dtype& out_type,
|
||||
const std::string& idx_t,
|
||||
int ndim /* = -1 */,
|
||||
int bm /* = -1 */,
|
||||
int bn /* = -1 */) {
|
||||
auto lib = d.get_library(kernel_name, [&]() {
|
||||
std::string op_type = op_name;
|
||||
op_type[0] = std::toupper(op_name[0]);
|
||||
std::ostringstream kernel_source;
|
||||
auto in_type = get_type_string(in.dtype());
|
||||
auto out_type = get_type_string(out.dtype());
|
||||
std::string op = op_type + "<" + out_type + ">";
|
||||
kernel_source << metal::utils() << metal::reduce_utils() << metal::reduce();
|
||||
auto in_t = get_type_string(in_type);
|
||||
auto out_t = get_type_string(out_type);
|
||||
std::string op = op_type + "<" + out_t + ">";
|
||||
std::string kernel_source = metal::utils();
|
||||
concatenate(kernel_source, metal::reduce_utils(), metal::reduce());
|
||||
if (bm >= 0) {
|
||||
kernel_source << get_template_definition(
|
||||
kernel_name, func_name, in_type, out_type, op, ndim, bm, bn);
|
||||
kernel_source += get_template_definition(
|
||||
kernel_name, func_name, in_t, out_t, op, idx_t, ndim, bm, bn);
|
||||
} else if (ndim >= 0) {
|
||||
kernel_source << get_template_definition(
|
||||
kernel_name, func_name, in_type, out_type, op, ndim);
|
||||
kernel_source += get_template_definition(
|
||||
kernel_name, func_name, in_t, out_t, op, idx_t, ndim);
|
||||
} else {
|
||||
kernel_source << get_template_definition(
|
||||
kernel_name, func_name, in_type, out_type, op);
|
||||
kernel_source += get_template_definition(
|
||||
kernel_name, func_name, in_t, out_t, op, idx_t);
|
||||
}
|
||||
return kernel_source.str();
|
||||
return kernel_source;
|
||||
});
|
||||
auto st = d.get_kernel(kernel_name, lib);
|
||||
return st;
|
||||
|
@@ -81,15 +81,16 @@ MTL::ComputePipelineState* get_reduce_init_kernel(
|
||||
const std::string& kernel_name,
|
||||
const std::string& func_name,
|
||||
const std::string& op_name,
|
||||
const array& out);
|
||||
const Dtype& out_type);
|
||||
|
||||
MTL::ComputePipelineState* get_reduce_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const std::string& func_name,
|
||||
const std::string& op_name,
|
||||
const array& in,
|
||||
const array& out,
|
||||
const Dtype& in_type,
|
||||
const Dtype& out_type,
|
||||
const std::string& idx_t,
|
||||
int ndim = -1,
|
||||
int bm = -1,
|
||||
int bn = -1);
|
||||
|
@@ -1,13 +1,27 @@
|
||||
set(BASE_HEADERS bf16.h bf16_math.h complex.h defines.h expm1f.h utils.h)
|
||||
set(BASE_HEADERS
|
||||
metal_3_1/bf16.h
|
||||
metal_3_0/bf16.h
|
||||
bf16_math.h
|
||||
complex.h
|
||||
defines.h
|
||||
expm1f.h
|
||||
utils.h)
|
||||
|
||||
function(build_kernel_base TARGET SRCFILE DEPS)
|
||||
set(METAL_FLAGS -Wall -Wextra -fno-fast-math)
|
||||
if(MLX_METAL_DEBUG)
|
||||
set(METAL_FLAGS ${METAL_FLAGS} -gline-tables-only -frecord-sources)
|
||||
endif()
|
||||
if(MLX_METAL_VERSION GREATER_EQUAL 310)
|
||||
set(VERSION_INCLUDES
|
||||
${PROJECT_SOURCE_DIR}/mlx/backend/metal/kernels/metal_3_1)
|
||||
else()
|
||||
set(VERSION_INCLUDES
|
||||
${PROJECT_SOURCE_DIR}/mlx/backend/metal/kernels/metal_3_0)
|
||||
endif()
|
||||
add_custom_command(
|
||||
COMMAND xcrun -sdk macosx metal ${METAL_FLAGS} -c ${SRCFILE}
|
||||
-I${PROJECT_SOURCE_DIR} -o ${TARGET}.air
|
||||
-I${PROJECT_SOURCE_DIR} -I${VERSION_INCLUDES} -o ${TARGET}.air
|
||||
DEPENDS ${SRCFILE} ${DEPS} ${BASE_HEADERS}
|
||||
OUTPUT ${TARGET}.air
|
||||
COMMENT "Building ${TARGET}.air"
|
||||
@@ -30,9 +44,7 @@ build_kernel(layer_norm)
|
||||
build_kernel(random)
|
||||
build_kernel(rms_norm)
|
||||
build_kernel(rope)
|
||||
build_kernel(
|
||||
scaled_dot_product_attention scaled_dot_product_attention_params.h
|
||||
sdpa_vector.h steel/defines.h steel/gemm/transforms.h steel/utils.h)
|
||||
build_kernel(scaled_dot_product_attention sdpa_vector.h)
|
||||
|
||||
set(STEEL_HEADERS
|
||||
steel/defines.h
|
||||
@@ -54,6 +66,24 @@ set(STEEL_HEADERS
|
||||
steel/utils/type_traits.h
|
||||
steel/utils/integral_constant.h)
|
||||
|
||||
set(STEEL_ATTN_HEADERS
|
||||
steel/defines.h
|
||||
steel/utils.h
|
||||
steel/gemm/gemm.h
|
||||
steel/gemm/mma.h
|
||||
steel/gemm/loader.h
|
||||
steel/gemm/transforms.h
|
||||
steel/utils/type_traits.h
|
||||
steel/utils/integral_constant.h
|
||||
steel/attn/attn.h
|
||||
steel/attn/loader.h
|
||||
steel/attn/mma.h
|
||||
steel/attn/params.h
|
||||
steel/attn/transforms.h
|
||||
steel/attn/kernels/steel_attention.h)
|
||||
|
||||
build_kernel(steel/attn/kernels/steel_attention ${STEEL_ATTN_HEADERS})
|
||||
|
||||
if(NOT MLX_METAL_JIT)
|
||||
build_kernel(arange arange.h)
|
||||
build_kernel(binary binary.h binary_ops.h)
|
||||
|
@@ -1,7 +1,7 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/arange.h"
|
||||
|
||||
#define instantiate_arange(tname, type) \
|
||||
|
@@ -75,10 +75,10 @@ template <typename T, typename Op, int N_READS = 4>
|
||||
const device T* in [[buffer(0)]],
|
||||
device uint32_t* out [[buffer(1)]],
|
||||
const constant int* shape [[buffer(2)]],
|
||||
const constant size_t* in_strides [[buffer(3)]],
|
||||
const constant size_t* out_strides [[buffer(4)]],
|
||||
const constant int64_t* in_strides [[buffer(3)]],
|
||||
const constant int64_t* out_strides [[buffer(4)]],
|
||||
const constant size_t& ndim [[buffer(5)]],
|
||||
const constant size_t& axis_stride [[buffer(6)]],
|
||||
const constant int64_t& axis_stride [[buffer(6)]],
|
||||
const constant size_t& axis_size [[buffer(7)]],
|
||||
uint gid [[thread_position_in_grid]],
|
||||
uint lid [[thread_position_in_threadgroup]],
|
||||
|
@@ -2,8 +2,6 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Metal math for bfloat16
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
@@ -369,18 +367,6 @@ instantiate_metal_math_funcs(
|
||||
return static_cast<otype>(__metal_simd_xor(static_cast<ctype>(data))); \
|
||||
}
|
||||
|
||||
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
|
||||
|
||||
#define bfloat16_to_uint16(x) as_type<uint16_t>(x)
|
||||
#define uint16_to_bfloat16(x) as_type<bfloat16_t>(x)
|
||||
|
||||
#else
|
||||
|
||||
#define bfloat16_to_uint16(x) x.bits_
|
||||
#define uint16_to_bfloat16(x) _MLX_BFloat16(x, _MLX_BFloat16::bits_to_bfloat())
|
||||
|
||||
#endif
|
||||
|
||||
namespace metal {
|
||||
|
||||
instantiate_metal_simd_comm_funcs(
|
||||
|
@@ -43,7 +43,7 @@ template <typename T, typename U, typename Op>
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
c[offset] = Op()(a[0], b[offset]);
|
||||
}
|
||||
|
||||
@@ -54,7 +54,7 @@ template <typename T, typename U, typename Op>
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
c[offset] = Op()(a[offset], b[0]);
|
||||
}
|
||||
|
||||
@@ -65,72 +65,75 @@ template <typename T, typename U, typename Op>
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
int64_t offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
c[offset] = Op()(a[offset], b[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd1(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
constant const size_t& a_stride,
|
||||
constant const size_t& b_stride,
|
||||
constant const int64_t& a_stride,
|
||||
constant const int64_t& b_stride,
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto a_idx = elem_to_loc_1(index, a_stride);
|
||||
auto b_idx = elem_to_loc_1(index, b_stride);
|
||||
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
|
||||
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
|
||||
c[index] = Op()(a[a_idx], b[b_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
constant const size_t a_strides[2],
|
||||
constant const size_t b_strides[2],
|
||||
constant const int64_t a_strides[2],
|
||||
constant const int64_t b_strides[2],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
auto a_idx = elem_to_loc_2(index, a_strides);
|
||||
auto b_idx = elem_to_loc_2(index, b_strides);
|
||||
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
|
||||
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
|
||||
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
|
||||
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
|
||||
c[out_idx] = Op()(a[a_idx], b[b_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd3(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
constant const size_t a_strides[3],
|
||||
constant const size_t b_strides[3],
|
||||
constant const int64_t a_strides[3],
|
||||
constant const int64_t b_strides[3],
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto a_idx = elem_to_loc_3(index, a_strides);
|
||||
auto b_idx = elem_to_loc_3(index, b_strides);
|
||||
size_t out_idx =
|
||||
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
|
||||
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
|
||||
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
|
||||
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
c[out_idx] = Op()(a[a_idx], b[b_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int N = 1>
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int N = 1,
|
||||
typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
constant const int* shape,
|
||||
constant const size_t* a_strides,
|
||||
constant const size_t* b_strides,
|
||||
constant const int64_t* a_strides,
|
||||
constant const int64_t* b_strides,
|
||||
constant const int& ndim,
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto idx = elem_to_loc_2_nd(
|
||||
auto idx = elem_to_loc_2_nd<IdxT>(
|
||||
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
|
||||
auto xshape = shape[ndim - 1];
|
||||
size_t out_idx =
|
||||
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
|
||||
auto a_xstride = a_strides[ndim - 1];
|
||||
auto b_xstride = b_strides[ndim - 1];
|
||||
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
IdxT a_xstride = a_strides[ndim - 1];
|
||||
IdxT b_xstride = b_strides[ndim - 1];
|
||||
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
|
||||
c[out_idx++] = Op()(a[idx.x], b[idx.y]);
|
||||
idx.x += a_xstride;
|
||||
|
@@ -9,18 +9,22 @@
|
||||
#include "mlx/backend/metal/kernels/binary_ops.h"
|
||||
#include "mlx/backend/metal/kernels/binary.h"
|
||||
|
||||
#define instantiate_binary_all(op, tname, itype, otype) \
|
||||
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
|
||||
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
|
||||
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
|
||||
#define instantiate_binary_all(op, tname, itype, otype) \
|
||||
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
|
||||
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
|
||||
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
|
||||
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
|
||||
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
|
||||
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
|
||||
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
|
||||
|
||||
#define instantiate_binary_integer(op) \
|
||||
instantiate_binary_all(op, uint8, uint8_t, uint8_t) \
|
||||
|
@@ -56,7 +56,7 @@ template <typename T, typename U, typename Op>
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
auto out = Op()(a[0], b[offset]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
@@ -70,7 +70,7 @@ template <typename T, typename U, typename Op>
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
auto out = Op()(a[offset], b[0]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
@@ -84,84 +84,87 @@ template <typename T, typename U, typename Op>
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
auto out = Op()(a[offset], b[offset]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd1(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
constant const size_t& a_stride,
|
||||
constant const size_t& b_stride,
|
||||
constant const int64_t& a_stride,
|
||||
constant const int64_t& b_stride,
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto a_idx = elem_to_loc_1(index, a_stride);
|
||||
auto b_idx = elem_to_loc_1(index, b_stride);
|
||||
auto a_idx = elem_to_loc_1<IdxT>(index, a_stride);
|
||||
auto b_idx = elem_to_loc_1<IdxT>(index, b_stride);
|
||||
auto out = Op()(a[a_idx], b[b_idx]);
|
||||
c[index] = out[0];
|
||||
d[index] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
constant const size_t a_strides[2],
|
||||
constant const size_t b_strides[2],
|
||||
constant const int64_t a_strides[2],
|
||||
constant const int64_t b_strides[2],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
auto a_idx = elem_to_loc_2(index, a_strides);
|
||||
auto b_idx = elem_to_loc_2(index, b_strides);
|
||||
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
|
||||
auto a_idx = elem_to_loc_2<IdxT>(index, a_strides);
|
||||
auto b_idx = elem_to_loc_2<IdxT>(index, b_strides);
|
||||
IdxT out_idx = index.x + IdxT(grid_dim.x) * index.y;
|
||||
auto out = Op()(a[a_idx], b[b_idx]);
|
||||
c[out_idx] = out[0];
|
||||
d[out_idx] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
template <typename T, typename U, typename Op, typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g_nd3(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
constant const size_t a_strides[3],
|
||||
constant const size_t b_strides[3],
|
||||
constant const int64_t a_strides[3],
|
||||
constant const int64_t b_strides[3],
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto a_idx = elem_to_loc_3(index, a_strides);
|
||||
auto b_idx = elem_to_loc_3(index, b_strides);
|
||||
size_t out_idx =
|
||||
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
|
||||
auto a_idx = elem_to_loc_3<IdxT>(index, a_strides);
|
||||
auto b_idx = elem_to_loc_3<IdxT>(index, b_strides);
|
||||
IdxT out_idx = index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
auto out = Op()(a[a_idx], b[b_idx]);
|
||||
c[out_idx] = out[0];
|
||||
d[out_idx] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int N = 1>
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
int N = 1,
|
||||
typename IdxT = int64_t>
|
||||
[[kernel]] void binary_g(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
constant const int* shape,
|
||||
constant const size_t* a_strides,
|
||||
constant const size_t* b_strides,
|
||||
constant const int64_t* a_strides,
|
||||
constant const int64_t* b_strides,
|
||||
constant const int& ndim,
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto idx = elem_to_loc_2_nd(
|
||||
auto idx = elem_to_loc_2_nd<IdxT>(
|
||||
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
|
||||
auto xshape = shape[ndim - 1];
|
||||
size_t out_idx =
|
||||
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
|
||||
auto a_xstride = a_strides[ndim - 1];
|
||||
auto b_xstride = b_strides[ndim - 1];
|
||||
IdxT out_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
IdxT a_xstride = a_strides[ndim - 1];
|
||||
IdxT b_xstride = b_strides[ndim - 1];
|
||||
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
|
||||
auto out = Op()(a[idx.x], b[idx.y]);
|
||||
c[out_idx] = out[0];
|
||||
|
@@ -7,18 +7,22 @@
|
||||
#include "mlx/backend/metal/kernels/binary_ops.h"
|
||||
#include "mlx/backend/metal/kernels/binary_two.h"
|
||||
|
||||
#define instantiate_binary_all(op, tname, itype, otype) \
|
||||
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
|
||||
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
|
||||
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
|
||||
#define instantiate_binary_all(op, tname, itype, otype) \
|
||||
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
|
||||
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn2_" #op #tname, binary_g, itype, otype, op, 2, uint) \
|
||||
instantiate_kernel("gn4large_" #op #tname, binary_g, itype, otype, op, 4) \
|
||||
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op, uint) \
|
||||
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op, uint) \
|
||||
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op, uint) \
|
||||
instantiate_kernel("g1large_" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2large_" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
instantiate_kernel("g3large_" #op #tname, binary_g_nd3, itype, otype, op)
|
||||
|
||||
#define instantiate_binary_float(op) \
|
||||
instantiate_binary_all(op, float16, half, half) \
|
||||
|
@@ -4,8 +4,8 @@
|
||||
#include <metal_simdgroup_matrix>
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/steel/conv/params.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#define MLX_MTL_CONST static constant constexpr const
|
||||
|
||||
|
@@ -22,7 +22,7 @@ template <typename T, typename U>
|
||||
device U* dst [[buffer(1)]],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
dst[offset] = static_cast<U>(src[0]);
|
||||
}
|
||||
|
||||
@@ -32,46 +32,46 @@ template <typename T, typename U>
|
||||
device U* dst [[buffer(1)]],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto offset = index.x + grid_dim.x * int64_t(index.y);
|
||||
dst[offset] = static_cast<U>(src[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_g_nd1(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t& src_stride [[buffer(3)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto src_idx = elem_to_loc_1(index, src_stride);
|
||||
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
|
||||
dst[index] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_g_nd2(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t* src_strides [[buffer(3)]],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
auto src_idx = elem_to_loc_2(index, src_strides);
|
||||
int64_t dst_idx = index.x + (int64_t)grid_dim.x * index.y;
|
||||
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
|
||||
IdxT dst_idx = index.x + IdxT(grid_dim.x) * index.y;
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_g_nd3(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t* src_strides [[buffer(3)]],
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto src_idx = elem_to_loc_3(index, src_strides);
|
||||
int64_t dst_idx =
|
||||
index.x + (int64_t)grid_dim.x * (index.y + (int64_t)grid_dim.y * index.z);
|
||||
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
|
||||
IdxT dst_idx =
|
||||
index.x + IdxT(grid_dim.x) * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, int N = 1>
|
||||
template <typename T, typename U, int N = 1, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_g(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
@@ -80,17 +80,16 @@ template <typename T, typename U, int N = 1>
|
||||
constant const int& ndim [[buffer(5)]],
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
auto src_idx = elem_to_loc(
|
||||
auto src_idx = elem_to_loc<IdxT>(
|
||||
{N * index.x, index.y, index.z}, src_shape, src_strides, ndim);
|
||||
if (N == 1) {
|
||||
int64_t dst_idx =
|
||||
index.x + grid_dim.x * (index.y + int64_t(grid_dim.y) * index.z);
|
||||
IdxT dst_idx =
|
||||
index.x + grid_dim.x * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
return;
|
||||
}
|
||||
auto xshape = src_shape[ndim - 1];
|
||||
int64_t dst_idx =
|
||||
N * index.x + xshape * (index.y + int64_t(grid_dim.y) * index.z);
|
||||
IdxT dst_idx = N * index.x + xshape * (index.y + IdxT(grid_dim.y) * index.z);
|
||||
auto src_xstride = src_strides[ndim - 1];
|
||||
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
|
||||
dst[dst_idx + i] = static_cast<U>(src[src_idx]);
|
||||
@@ -98,43 +97,43 @@ template <typename T, typename U, int N = 1>
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_gg_nd1(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t& src_stride [[buffer(3)]],
|
||||
constant const int64_t& dst_stride [[buffer(4)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto src_idx = elem_to_loc_1(index, src_stride);
|
||||
auto dst_idx = elem_to_loc_1(index, dst_stride);
|
||||
auto src_idx = elem_to_loc_1<IdxT>(index, src_stride);
|
||||
auto dst_idx = elem_to_loc_1<IdxT>(index, dst_stride);
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_gg_nd2(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t* src_strides [[buffer(3)]],
|
||||
constant const int64_t* dst_strides [[buffer(4)]],
|
||||
uint2 index [[thread_position_in_grid]]) {
|
||||
auto src_idx = elem_to_loc_2(index, src_strides);
|
||||
auto dst_idx = elem_to_loc_2(index, dst_strides);
|
||||
auto src_idx = elem_to_loc_2<IdxT>(index, src_strides);
|
||||
auto dst_idx = elem_to_loc_2<IdxT>(index, dst_strides);
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
template <typename T, typename U, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_gg_nd3(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
constant const int64_t* src_strides [[buffer(3)]],
|
||||
constant const int64_t* dst_strides [[buffer(4)]],
|
||||
uint3 index [[thread_position_in_grid]]) {
|
||||
auto src_idx = elem_to_loc_3(index, src_strides);
|
||||
auto dst_idx = elem_to_loc_3(index, dst_strides);
|
||||
auto src_idx = elem_to_loc_3<IdxT>(index, src_strides);
|
||||
auto dst_idx = elem_to_loc_3<IdxT>(index, dst_strides);
|
||||
dst[dst_idx] = static_cast<U>(src[src_idx]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, int N = 1>
|
||||
template <typename T, typename U, int N = 1, typename IdxT = int64_t>
|
||||
[[kernel]] void copy_gg(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
@@ -143,7 +142,7 @@ template <typename T, typename U, int N = 1>
|
||||
constant const int64_t* dst_strides [[buffer(4)]],
|
||||
constant const int& ndim [[buffer(5)]],
|
||||
uint3 index [[thread_position_in_grid]]) {
|
||||
auto idx = elem_to_loc_2_nd(
|
||||
auto idx = elem_to_loc_2_nd<IdxT>(
|
||||
{N * index.x, index.y, index.z},
|
||||
src_shape,
|
||||
src_strides,
|
||||
@@ -153,8 +152,8 @@ template <typename T, typename U, int N = 1>
|
||||
dst[idx.y] = static_cast<U>(src[idx.x]);
|
||||
return;
|
||||
}
|
||||
auto src_xstride = src_strides[ndim - 1];
|
||||
auto dst_xstride = dst_strides[ndim - 1];
|
||||
IdxT src_xstride = src_strides[ndim - 1];
|
||||
IdxT dst_xstride = dst_strides[ndim - 1];
|
||||
auto xshape = src_shape[ndim - 1];
|
||||
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
|
||||
dst[idx.y] = static_cast<U>(src[idx.x]);
|
||||
|
@@ -2,22 +2,29 @@
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/copy.h"
|
||||
|
||||
#define instantiate_copy_all(tname, itype, otype) \
|
||||
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
|
||||
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
|
||||
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
|
||||
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
|
||||
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype) \
|
||||
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype) \
|
||||
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype) \
|
||||
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype) \
|
||||
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype) \
|
||||
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype) \
|
||||
instantiate_kernel("gn4_copy" #tname, copy_g, itype, otype, 4) \
|
||||
instantiate_kernel("ggn4_copy" #tname, copy_gg, itype, otype, 4)
|
||||
#define instantiate_copy_all(tname, itype, otype) \
|
||||
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
|
||||
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
|
||||
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
|
||||
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
|
||||
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype, int) \
|
||||
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype, int) \
|
||||
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype, int) \
|
||||
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype, int) \
|
||||
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype, int) \
|
||||
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype, int) \
|
||||
instantiate_kernel("gn2_copy" #tname, copy_g, itype, otype, 2, int) \
|
||||
instantiate_kernel("ggn2_copy" #tname, copy_gg, itype, otype, 2, int) \
|
||||
instantiate_kernel("g1large_copy" #tname, copy_g_nd1, itype, otype) \
|
||||
instantiate_kernel("g2large_copy" #tname, copy_g_nd2, itype, otype) \
|
||||
instantiate_kernel("g3large_copy" #tname, copy_g_nd3, itype, otype) \
|
||||
instantiate_kernel("gg1large_copy" #tname, copy_gg_nd1, itype, otype) \
|
||||
instantiate_kernel("gg2large_copy" #tname, copy_gg_nd2, itype, otype) \
|
||||
instantiate_kernel("gg3large_copy" #tname, copy_gg_nd3, itype, otype) \
|
||||
instantiate_kernel("gn4large_copy" #tname, copy_g, itype, otype, 4) \
|
||||
instantiate_kernel("ggn4large_copy" #tname, copy_gg, itype, otype, 4)
|
||||
|
||||
#define instantiate_copy_itype(itname, itype) \
|
||||
instantiate_copy_all(itname ##bool_, itype, bool) \
|
||||
|
@@ -4,30 +4,30 @@
|
||||
|
||||
#include "mlx/backend/metal/kernels/indexing.h"
|
||||
|
||||
template <typename T, typename IdxT, int NIDX, int IDX_NDIM>
|
||||
template <typename T, typename IdxT, int NIDX, int IDX_NDIM, typename LocT>
|
||||
METAL_FUNC void gather_impl(
|
||||
const device T* src [[buffer(0)]],
|
||||
device T* out [[buffer(1)]],
|
||||
const constant int* src_shape [[buffer(2)]],
|
||||
const constant size_t* src_strides [[buffer(3)]],
|
||||
const constant int64_t* src_strides [[buffer(3)]],
|
||||
const constant size_t& src_ndim [[buffer(4)]],
|
||||
const constant int* slice_sizes [[buffer(5)]],
|
||||
const constant int* axes [[buffer(6)]],
|
||||
const thread Indices<IdxT, NIDX>& indices,
|
||||
uint3 index [[thread_position_in_grid]],
|
||||
uint3 grid_dim [[threads_per_grid]]) {
|
||||
size_t src_idx = 0;
|
||||
LocT src_idx = 0;
|
||||
for (int i = 0; i < NIDX; ++i) {
|
||||
size_t idx_loc;
|
||||
LocT idx_loc;
|
||||
if (IDX_NDIM == 0) {
|
||||
idx_loc = 0;
|
||||
} else if (IDX_NDIM == 1) {
|
||||
idx_loc = index.x * indices.strides[indices.ndim * i];
|
||||
idx_loc = index.x * static_cast<LocT>(indices.strides[indices.ndim * i]);
|
||||
} else {
|
||||
idx_loc = index.x * indices.strides[indices.ndim * i];
|
||||
idx_loc = index.x * static_cast<LocT>(indices.strides[indices.ndim * i]);
|
||||
idx_loc += indices.row_contiguous[i]
|
||||
? index.y
|
||||
: elem_to_loc(
|
||||
: elem_to_loc<LocT>(
|
||||
index.y,
|
||||
&indices.shapes[indices.ndim * i + 1],
|
||||
&indices.strides[indices.ndim * i + 1],
|
||||
@@ -35,17 +35,17 @@ METAL_FUNC void gather_impl(
|
||||
}
|
||||
auto ax = axes[i];
|
||||
auto idx_val = offset_neg_idx(indices.buffers[i][idx_loc], src_shape[ax]);
|
||||
src_idx += idx_val * src_strides[ax];
|
||||
src_idx += static_cast<LocT>(idx_val) * static_cast<LocT>(src_strides[ax]);
|
||||
}
|
||||
|
||||
auto src_offset = elem_to_loc(index.z, slice_sizes, src_strides, src_ndim);
|
||||
auto src_offset =
|
||||
elem_to_loc<LocT>(index.z, slice_sizes, src_strides, src_ndim);
|
||||
|
||||
size_t out_idx = index.z;
|
||||
LocT out_idx = index.z;
|
||||
if (IDX_NDIM == 1) {
|
||||
out_idx += static_cast<size_t>(grid_dim.z) * index.x;
|
||||
out_idx += static_cast<LocT>(grid_dim.z) * index.x;
|
||||
} else if (IDX_NDIM >= 2) {
|
||||
out_idx +=
|
||||
grid_dim.z * (index.x * static_cast<size_t>(grid_dim.y) + index.y);
|
||||
out_idx += grid_dim.z * (index.x * static_cast<LocT>(grid_dim.y) + index.y);
|
||||
}
|
||||
out[out_idx] = src[src_offset + src_idx];
|
||||
}
|
||||
|
@@ -3,8 +3,6 @@
|
||||
#include <metal_simdgroup>
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/utils.h"
|
||||
@@ -438,9 +436,9 @@ template <
|
||||
const constant float& beta [[buffer(8)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant size_t* bias_batch_stride [[buffer(13)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant int64_t* bias_batch_stride [[buffer(13)]],
|
||||
const constant int& bias_stride [[buffer(14)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
@@ -488,31 +486,21 @@ template <
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
#define instantiate_gemv_helper( \
|
||||
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
|
||||
template [[host_name("gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
|
||||
"_tm" #tm "_tn" #tn "_nc" #nc \
|
||||
"_axpby" #axpby)]] [[kernel]] void \
|
||||
gemv<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
const device itype* bias [[buffer(2)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant float& alpha [[buffer(7)]], \
|
||||
const constant float& beta [[buffer(8)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]], \
|
||||
const constant size_t* bias_batch_stride [[buffer(13)]], \
|
||||
const constant int& bias_stride [[buffer(14)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
#define instantiate_gemv_helper( \
|
||||
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
|
||||
instantiate_kernel( \
|
||||
"gemv_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
|
||||
"_tn" #tn "_nc" #nc "_axpby" #axpby, \
|
||||
gemv, \
|
||||
itype, \
|
||||
bm, \
|
||||
bn, \
|
||||
sm, \
|
||||
sn, \
|
||||
tm, \
|
||||
tn, \
|
||||
nc, \
|
||||
axpby)
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv(name, itype, bm, bn, tm, tn) \
|
||||
@@ -551,13 +539,13 @@ template <
|
||||
const constant float& beta [[buffer(8)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* index_batch_strides [[buffer(11)]],
|
||||
const constant int64_t* index_batch_strides [[buffer(11)]],
|
||||
const constant int& vector_batch_ndim [[buffer(12)]],
|
||||
const constant int* vector_batch_shape [[buffer(13)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(14)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(14)]],
|
||||
const constant int& matrix_batch_ndim [[buffer(15)]],
|
||||
const constant int* matrix_batch_shape [[buffer(16)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(17)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(17)]],
|
||||
const constant uint32_t* vec_indices [[buffer(18)]],
|
||||
const constant uint32_t* mat_indices [[buffer(19)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
@@ -573,8 +561,8 @@ template <
|
||||
|
||||
// Update batch offsets
|
||||
if (batch_ndim > 1) {
|
||||
const constant size_t* veci_bstrides = index_batch_strides;
|
||||
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
|
||||
const constant auto* veci_bstrides = index_batch_strides;
|
||||
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
|
||||
@@ -621,37 +609,14 @@ template <
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
|
||||
template [[host_name("gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
|
||||
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
|
||||
gemv_gather<itype, bm, bn, sm, sn, tm, tn>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
const device itype* bias [[buffer(2)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant float& alpha [[buffer(7)]], \
|
||||
const constant float& beta [[buffer(8)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* index_batch_strides [[buffer(11)]], \
|
||||
const constant int& vector_batch_ndim [[buffer(12)]], \
|
||||
const constant int* vector_batch_shape [[buffer(13)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(14)]], \
|
||||
const constant int& matrix_batch_ndim [[buffer(15)]], \
|
||||
const constant int* matrix_batch_shape [[buffer(16)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(17)]], \
|
||||
const constant uint32_t* vec_indices [[buffer(18)]], \
|
||||
const constant uint32_t* mat_indices [[buffer(19)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_bs_blocks(name, itype) \
|
||||
#define instantiate_gemv_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
|
||||
instantiate_kernel( \
|
||||
"gemv_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
|
||||
"_sn" #sn "_tm" #tm "_tn" #tn, \
|
||||
gemv_gather, itype, bm, bn, sm, sn, tm, tn)
|
||||
|
||||
#define instantiate_gemv_bs_blocks(name, itype) \
|
||||
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 1, 4) \
|
||||
instantiate_gemv_bs_helper(name, itype, 4, 1, 1, 32, 4, 4) \
|
||||
instantiate_gemv_bs_helper(name, itype, 8, 1, 1, 32, 4, 4) // clang-format on
|
||||
@@ -686,9 +651,9 @@ template <
|
||||
const constant float& beta [[buffer(8)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant size_t* bias_batch_stride [[buffer(13)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant int64_t* bias_batch_stride [[buffer(13)]],
|
||||
const constant int& bias_stride [[buffer(14)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
@@ -736,33 +701,14 @@ template <
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
#define instantiate_gemv_t_helper( \
|
||||
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
|
||||
template [[host_name("gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
|
||||
"_tm" #tm "_tn" #tn "_nc" #nc \
|
||||
"_axpby" #axpby)]] [[kernel]] void \
|
||||
gemv_t<itype, bm, bn, sm, sn, tm, tn, nc, axpby>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
const device itype* bias [[buffer(2)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant float& alpha [[buffer(7)]], \
|
||||
const constant float& beta [[buffer(8)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]], \
|
||||
const constant size_t* bias_batch_stride [[buffer(13)]], \
|
||||
const constant int& bias_stride [[buffer(14)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_t_helper( \
|
||||
name, itype, bm, bn, sm, sn, tm, tn, nc, axpby) \
|
||||
instantiate_kernel( \
|
||||
"gemv_t_" #name "_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn \
|
||||
"_tm" #tm "_tn" #tn "_nc" #nc "_axpby" #axpby, \
|
||||
gemv_t, itype, bm, bn, sm, sn, tm, tn, nc, axpby)
|
||||
|
||||
#define instantiate_gemv_t(name, itype, bm, bn, sm, sn, tm, tn) \
|
||||
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 0) \
|
||||
instantiate_gemv_t_helper(name, itype, bm, bn, sm, sn, tm, tn, 0, 1) \
|
||||
@@ -802,13 +748,13 @@ template <
|
||||
const constant float& beta [[buffer(8)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* index_batch_strides [[buffer(11)]],
|
||||
const constant int64_t* index_batch_strides [[buffer(11)]],
|
||||
const constant int& vector_batch_ndim [[buffer(12)]],
|
||||
const constant int* vector_batch_shape [[buffer(13)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(14)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(14)]],
|
||||
const constant int& matrix_batch_ndim [[buffer(15)]],
|
||||
const constant int* matrix_batch_shape [[buffer(16)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(17)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(17)]],
|
||||
const constant uint32_t* vec_indices [[buffer(18)]],
|
||||
const constant uint32_t* mat_indices [[buffer(19)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
@@ -824,8 +770,8 @@ template <
|
||||
|
||||
// Update batch offsets
|
||||
if (batch_ndim > 1) {
|
||||
const constant size_t* veci_bstrides = index_batch_strides;
|
||||
const constant size_t* mati_bstrides = index_batch_strides + batch_ndim;
|
||||
const constant auto* veci_bstrides = index_batch_strides;
|
||||
const constant auto* mati_bstrides = index_batch_strides + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, veci_bstrides, mati_bstrides, batch_ndim);
|
||||
@@ -872,36 +818,14 @@ template <
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
#define instantiate_gemv_t_bs_helper(nm, itype, bm, bn, sm, sn, tm, tn) \
|
||||
template [[host_name("gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
|
||||
"_sn" #sn "_tm" #tm "_tn" #tn)]] [[kernel]] void \
|
||||
gemv_t_gather<itype, bm, bn, sm, sn, tm, tn>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
const device itype* bias [[buffer(2)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant float& alpha [[buffer(7)]], \
|
||||
const constant float& beta [[buffer(8)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* index_batch_strides [[buffer(11)]], \
|
||||
const constant int& vector_batch_ndim [[buffer(12)]], \
|
||||
const constant int* vector_batch_shape [[buffer(13)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(14)]], \
|
||||
const constant int& matrix_batch_ndim [[buffer(15)]], \
|
||||
const constant int* matrix_batch_shape [[buffer(16)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(17)]], \
|
||||
const constant uint32_t* vec_indices [[buffer(18)]], \
|
||||
const constant uint32_t* mat_indices [[buffer(19)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_t_bs_helper( \
|
||||
nm, itype, bm, bn, sm, sn, tm, tn) \
|
||||
instantiate_kernel( \
|
||||
"gemv_t_gather_" #nm "_bm" #bm "_bn" #bn "_sm" #sm \
|
||||
"_sn" #sn "_tm" #tm "_tn" #tn, \
|
||||
gemv_t_gather, itype, bm, bn, sm, sn, tm, tn)
|
||||
|
||||
#define instantiate_gemv_t_bs_blocks(name, itype) \
|
||||
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 1) \
|
||||
instantiate_gemv_t_bs_helper(name, itype, 1, 2, 8, 4, 4, 4) \
|
||||
@@ -912,4 +836,4 @@ template <
|
||||
// clang-format off
|
||||
instantiate_gemv_t_bs_blocks(float32, float);
|
||||
instantiate_gemv_t_bs_blocks(float16, half);
|
||||
instantiate_gemv_t_bs_blocks(bfloat16, bfloat16_t); // clang-format on
|
||||
instantiate_gemv_t_bs_blocks(bfloat16, bfloat16_t); // clang-format on
|
||||
|
@@ -642,13 +642,13 @@ template <
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
const constant int64_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
@@ -673,8 +673,8 @@ template <
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
const constant auto* mask_strides_mat = mask_batch_strides;
|
||||
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
@@ -742,13 +742,13 @@ template <
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const constant int64_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant int64_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
const constant int64_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
@@ -773,8 +773,8 @@ template <
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
const constant auto* mask_strides_mat = mask_batch_strides;
|
||||
const constant auto* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
|
@@ -4,37 +4,17 @@
|
||||
#include <metal_simdgroup>
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#include "mlx/backend/metal/kernels/gemv_masked.h"
|
||||
|
||||
#define instantiate_gemv_helper( \
|
||||
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
template [[host_name("gemv_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
|
||||
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
|
||||
"_tn" #tn "_nc" #nc)]] [[kernel]] void \
|
||||
gemv_masked<itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]], \
|
||||
const device outm_t* out_mask [[buffer(20)]], \
|
||||
const device opm_t* mat_mask [[buffer(21)]], \
|
||||
const device opm_t* vec_mask [[buffer(22)]], \
|
||||
const constant int* mask_strides [[buffer(23)]], \
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
instantiate_kernel( \
|
||||
"gemv_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
|
||||
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
|
||||
"_tn" #tn "_nc" #nc, \
|
||||
gemv_masked, itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc)
|
||||
|
||||
#define instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
@@ -63,29 +43,11 @@ instantiate_gemv_blocks(bfloat16, bfloat16_t);
|
||||
|
||||
#define instantiate_gemv_t_helper( \
|
||||
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
template [[host_name("gemv_t_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
|
||||
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
|
||||
"_tn" #tn "_nc" #nc)]] [[kernel]] void \
|
||||
gemv_t_masked<itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc>( \
|
||||
const device itype* mat [[buffer(0)]], \
|
||||
const device itype* in_vec [[buffer(1)]], \
|
||||
device itype* out_vec [[buffer(3)]], \
|
||||
const constant int& in_vec_size [[buffer(4)]], \
|
||||
const constant int& out_vec_size [[buffer(5)]], \
|
||||
const constant int& marix_ld [[buffer(6)]], \
|
||||
const constant int& batch_ndim [[buffer(9)]], \
|
||||
const constant int* batch_shape [[buffer(10)]], \
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]], \
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]], \
|
||||
const device outm_t* out_mask [[buffer(20)]], \
|
||||
const device opm_t* mat_mask [[buffer(21)]], \
|
||||
const device opm_t* vec_mask [[buffer(22)]], \
|
||||
const constant int* mask_strides [[buffer(23)]], \
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
instantiate_kernel( \
|
||||
"gemv_t_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
|
||||
"_bm" #bm "_bn" #bn "_sm" #sm "_sn" #sn "_tm" #tm \
|
||||
"_tn" #tn "_nc" #nc, \
|
||||
gemv_t_masked, itype, outm_t, opm_t, bm, bn, sm, sn, tm, tn, nc)
|
||||
|
||||
#define instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
|
@@ -8,13 +8,13 @@ template <typename IdxT, int NIDX>
|
||||
struct Indices {
|
||||
const array<const device IdxT*, NIDX> buffers;
|
||||
const constant int* shapes;
|
||||
const constant size_t* strides;
|
||||
const constant int64_t* strides;
|
||||
const constant bool* row_contiguous;
|
||||
const int ndim;
|
||||
};
|
||||
|
||||
template <typename IdxT>
|
||||
METAL_FUNC size_t offset_neg_idx(IdxT idx, size_t size) {
|
||||
METAL_FUNC size_t offset_neg_idx(IdxT idx, int size) {
|
||||
if (is_unsigned_v<IdxT>) {
|
||||
return idx;
|
||||
} else {
|
||||
|
16
mlx/backend/metal/kernels/jit/bf16.h
Normal file
16
mlx/backend/metal/kernels/jit/bf16.h
Normal file
@@ -0,0 +1,16 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#define jit_if #if
|
||||
#define jit_else #else
|
||||
#define jit_endif #endif
|
||||
|
||||
jit_if (__METAL_VERSION__ >= 310)
|
||||
|
||||
#include "mlx/backend/metal/kernels/metal_3_1/bf16.h"
|
||||
|
||||
jit_else
|
||||
|
||||
#include "mlx/backend/metal/kernels/metal_3_0/bf16.h"
|
||||
|
||||
jit_endif // clang-format on
|
@@ -3,8 +3,6 @@
|
||||
#include <metal_common>
|
||||
#include <metal_simdgroup>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
|
@@ -6,12 +6,6 @@
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
|
||||
|
||||
typedef bfloat bfloat16_t;
|
||||
|
||||
#else
|
||||
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Helpers
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
@@ -311,7 +305,10 @@ METAL_FUNC bool isnan(_MLX_BFloat16 x) {
|
||||
} // namespace metal
|
||||
|
||||
#pragma METAL internals : disable
|
||||
inline uint16_t bfloat16_to_uint16(const bfloat16_t x) {
|
||||
return x.bits_;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16_math.h"
|
||||
inline bfloat16_t uint16_to_bfloat16(const uint16_t x) {
|
||||
return _MLX_BFloat16(x, _MLX_BFloat16::bits_to_bfloat());
|
||||
}
|
16
mlx/backend/metal/kernels/metal_3_1/bf16.h
Normal file
16
mlx/backend/metal/kernels/metal_3_1/bf16.h
Normal file
@@ -0,0 +1,16 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <metal_stdlib>
|
||||
|
||||
using namespace metal;
|
||||
|
||||
typedef bfloat bfloat16_t;
|
||||
inline uint16_t bfloat16_to_uint16(const bfloat16_t x) {
|
||||
return as_type<uint16_t>(x);
|
||||
}
|
||||
|
||||
inline bfloat16_t uint16_to_bfloat16(const uint16_t x) {
|
||||
return as_type<bfloat16_t>(x);
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@@ -72,7 +72,6 @@
|
||||
|
||||
#define instantiate_quantized_all_single(type, group_size, bits) \
|
||||
instantiate_quantized(affine_quantize, type, group_size, bits) \
|
||||
instantiate_quantized(affine_quantize_scales_biases, type, group_size, bits) \
|
||||
instantiate_quantized(affine_dequantize, type, group_size, bits) \
|
||||
instantiate_quantized(bs_qmv_fast, type, group_size, bits) \
|
||||
instantiate_quantized(bs_qmv, type, group_size, bits) \
|
||||
@@ -116,7 +115,9 @@
|
||||
|
||||
#define instantiate_quantized_all() \
|
||||
instantiate_quantized_groups(2) \
|
||||
instantiate_quantized_groups(3) \
|
||||
instantiate_quantized_groups(4) \
|
||||
instantiate_quantized_groups(6) \
|
||||
instantiate_quantized_groups(8)
|
||||
|
||||
instantiate_quantized_all() // clang-format on
|
||||
|
@@ -71,7 +71,7 @@ rbits threefry2x32_hash(const thread uint2& key, uint2 count) {
|
||||
constant const uint& bytes_per_key,
|
||||
constant const int& ndim,
|
||||
constant const int* key_shape,
|
||||
constant const size_t* key_strides,
|
||||
constant const int64_t* key_strides,
|
||||
uint2 grid_dim [[threads_per_grid]],
|
||||
uint2 index [[thread_position_in_grid]]) {
|
||||
auto kidx = 2 * index.x;
|
||||
|
@@ -10,186 +10,156 @@
|
||||
#include "mlx/backend/metal/kernels/reduction/ops.h"
|
||||
#include "mlx/backend/metal/kernels/reduce.h"
|
||||
|
||||
#define instantiate_reduce_helper_floats(inst_f, name, op) \
|
||||
inst_f(name, float16, half, op) \
|
||||
inst_f(name, float32, float, op) \
|
||||
inst_f(name, bfloat16, bfloat16_t, op)
|
||||
#define instantiate_init_reduce(name, tname, type, op) \
|
||||
instantiate_kernel("init_reduce_" #name #tname, init_reduce, type, op<type>)
|
||||
|
||||
#define instantiate_reduce_helper_uints(inst_f, name, op) \
|
||||
inst_f(name, uint8, uint8_t, op) \
|
||||
inst_f(name, uint16, uint16_t, op) \
|
||||
inst_f(name, uint32, uint32_t, op)
|
||||
instantiate_init_reduce(and, bool_, bool, And)
|
||||
instantiate_init_reduce(or, bool_, bool, Or)
|
||||
|
||||
#define instantiate_reduce_helper_ints(inst_f, name, op) \
|
||||
inst_f(name, int8, int8_t, op) \
|
||||
inst_f(name, int16, int16_t, op) \
|
||||
inst_f(name, int32, int32_t, op)
|
||||
#define instantiate_init_sum_prod(name, op) \
|
||||
instantiate_init_reduce(name, int32, int32_t, op) \
|
||||
instantiate_init_reduce(name, int64, int64_t, op) \
|
||||
instantiate_init_reduce(name, float16, float16_t, op) \
|
||||
instantiate_init_reduce(name, bfloat16, bfloat16_t, op) \
|
||||
instantiate_init_reduce(name, float32, float, op) \
|
||||
instantiate_init_reduce(name, complex64, complex64_t, op)
|
||||
|
||||
#define instantiate_reduce_helper_64b(inst_f, name, op) \
|
||||
inst_f(name, int64, int64_t, op) \
|
||||
inst_f(name, uint64, uint64_t, op) \
|
||||
inst_f(name, complex64, complex64_t, op)
|
||||
instantiate_init_sum_prod(sum, Sum)
|
||||
instantiate_init_sum_prod(prod, Prod)
|
||||
|
||||
#define instantiate_reduce_helper_types(inst_f, name, op) \
|
||||
instantiate_reduce_helper_floats(inst_f, name, op) \
|
||||
instantiate_reduce_helper_uints(inst_f, name, op) \
|
||||
instantiate_reduce_helper_ints(inst_f, name, op)
|
||||
#define instantiate_init_min_max(name, op) \
|
||||
instantiate_init_reduce(name, bool_, bool, op) \
|
||||
instantiate_init_reduce(name, int8, int8_t, op) \
|
||||
instantiate_init_reduce(name, int16, int16_t, op) \
|
||||
instantiate_init_reduce(name, int32, int32_t, op) \
|
||||
instantiate_init_reduce(name, int64, int64_t, op) \
|
||||
instantiate_init_reduce(name, uint8, uint8_t, op) \
|
||||
instantiate_init_reduce(name, uint16, uint16_t, op) \
|
||||
instantiate_init_reduce(name, uint32, uint32_t, op) \
|
||||
instantiate_init_reduce(name, uint64, uint64_t, op) \
|
||||
instantiate_init_reduce(name, float16, float16_t, op) \
|
||||
instantiate_init_reduce(name, bfloat16, bfloat16_t, op) \
|
||||
instantiate_init_reduce(name, float32, float, op) \
|
||||
instantiate_init_reduce(name, complex64, complex64_t, op)
|
||||
|
||||
#define instantiate_reduce_ops(inst_f, type_f) \
|
||||
type_f(inst_f, sum, Sum) \
|
||||
type_f(inst_f, prod, Prod) \
|
||||
type_f(inst_f, min, Min) \
|
||||
type_f(inst_f, max, Max)
|
||||
|
||||
// Special case for bool reductions
|
||||
#define instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, tname, itype, otype, op) \
|
||||
inst_f(name##tname, itype, otype, op)
|
||||
|
||||
#define instantiate_reduce_from_types(inst_f, name, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, bool_, bool, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, uint8, uint8_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, uint16, uint16_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, uint32, uint32_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, uint64, uint64_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, int8, int8_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, int16, int16_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, int32, int32_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, int64, int64_t, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, name, float16, half, otype, op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, \
|
||||
name, \
|
||||
float32, \
|
||||
float, \
|
||||
otype, \
|
||||
op) \
|
||||
instantiate_reduce_from_types_helper( \
|
||||
inst_f, \
|
||||
name, \
|
||||
bfloat16, \
|
||||
bfloat16_t, \
|
||||
otype, \
|
||||
op)
|
||||
|
||||
#define instantiate_init_reduce(name, otype, op) \
|
||||
instantiate_kernel("init_reduce_" #name, \
|
||||
init_reduce, \
|
||||
otype, op)
|
||||
|
||||
#define instantiate_init_reduce_helper(name, tname, type, op) \
|
||||
instantiate_init_reduce(name##tname, type, op<type>)
|
||||
|
||||
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_types)
|
||||
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_64b)
|
||||
|
||||
instantiate_init_reduce(andbool_, bool, And<bool>)
|
||||
instantiate_init_reduce(orbool_, bool, Or<bool>)
|
||||
instantiate_init_min_max(min, Min)
|
||||
instantiate_init_min_max(max, Max)
|
||||
|
||||
#define instantiate_all_reduce(name, itype, otype, op) \
|
||||
instantiate_kernel("all_reduce_" #name, \
|
||||
all_reduce, \
|
||||
itype, otype, op)
|
||||
|
||||
#define instantiate_same_all_reduce_helper(name, tname, type, op) \
|
||||
instantiate_all_reduce(name##tname, type, type, op<type>)
|
||||
#define instantiate_col_reduce_small(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("col_reduce_small_" #dim "_reduce_" #name, \
|
||||
col_reduce_small, \
|
||||
itype, otype, op, uint, dim) \
|
||||
instantiate_kernel("col_reduce_longcolumn_" #dim "_reduce_" #name, \
|
||||
col_reduce_longcolumn, \
|
||||
itype, otype, op, uint, dim) \
|
||||
instantiate_kernel("col_reduce_small_large_" #dim "_reduce_" #name, \
|
||||
col_reduce_small, \
|
||||
itype, otype, op, int64_t, dim) \
|
||||
instantiate_kernel("col_reduce_longcolumn_large_" #dim "_reduce_" #name, \
|
||||
col_reduce_longcolumn, \
|
||||
itype, otype, op, int64_t, dim)
|
||||
|
||||
instantiate_reduce_ops(instantiate_same_all_reduce_helper, instantiate_reduce_helper_types)
|
||||
instantiate_reduce_ops(instantiate_same_all_reduce_helper, instantiate_reduce_helper_64b)
|
||||
#define instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_looped_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_looped, \
|
||||
itype, otype, op, uint, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_looped_large_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_looped, \
|
||||
itype, otype, op, int64_t, dim, bm, bn)
|
||||
|
||||
instantiate_reduce_from_types(instantiate_all_reduce, and, bool, And<bool>)
|
||||
instantiate_reduce_from_types(instantiate_all_reduce, or, bool, Or<bool>)
|
||||
|
||||
// special case bool with larger output type
|
||||
instantiate_all_reduce(sumbool_, bool, uint32_t, Sum<uint32_t>)
|
||||
|
||||
#define instantiate_col_reduce_small(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("col_reduce_small_" #dim "_reduce_" #name, \
|
||||
col_reduce_small, \
|
||||
itype, otype, op, dim) \
|
||||
instantiate_kernel("col_reduce_longcolumn_" #dim "_reduce_" #name, \
|
||||
col_reduce_longcolumn, \
|
||||
itype, otype, op, dim)
|
||||
|
||||
#define instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_looped_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_looped, \
|
||||
itype, otype, op, dim, bm, bn)
|
||||
|
||||
#define instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_2pass_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_2pass, \
|
||||
itype, otype, op, dim, bm, bn)
|
||||
#define instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_2pass_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_2pass, \
|
||||
itype, otype, op, uint, dim, bm, bn) \
|
||||
instantiate_kernel("col_reduce_2pass_large_" #dim "_" #bm "_" #bn "_reduce_" #name, \
|
||||
col_reduce_2pass, \
|
||||
itype, otype, op, int64_t, dim, bm, bn)
|
||||
|
||||
#define instantiate_col_reduce_looped(name, itype, otype, op, dim) \
|
||||
instantiate_col_reduce_looped_tile(name, itype, otype, op, dim, 32, 32) \
|
||||
instantiate_col_reduce_2pass_tile(name, itype, otype, op, dim, 32, 32)
|
||||
|
||||
#define instantiate_col_reduce_general(name, itype, otype, op) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 0) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 1) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 2) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 3) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 4) \
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 0) \
|
||||
instantiate_col_reduce_small(name, itype, otype, op, 5) \
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 1) \
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 2) \
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 3) \
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 4)
|
||||
instantiate_col_reduce_looped(name, itype, otype, op, 5)
|
||||
|
||||
#define instantiate_same_col_reduce_helper(name, tname, type, op) \
|
||||
instantiate_col_reduce_general(name##tname, type, type, op<type>)
|
||||
#define instantiate_row_reduce_small(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("row_reduce_small_" #dim "_reduce_" #name, \
|
||||
row_reduce_small, \
|
||||
itype, otype, op, uint, dim) \
|
||||
instantiate_kernel("row_reduce_small_large_" #dim "_reduce_" #name, \
|
||||
row_reduce_small, \
|
||||
itype, otype, op, int64_t, dim)
|
||||
|
||||
instantiate_reduce_ops(instantiate_same_col_reduce_helper, instantiate_reduce_helper_types)
|
||||
instantiate_reduce_ops(instantiate_same_col_reduce_helper, instantiate_reduce_helper_64b)
|
||||
|
||||
instantiate_col_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)
|
||||
instantiate_reduce_from_types(instantiate_col_reduce_general, and, bool, And<bool>)
|
||||
instantiate_reduce_from_types(instantiate_col_reduce_general, or, bool, Or<bool>)
|
||||
|
||||
#define instantiate_row_reduce_small(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("row_reduce_small_" #dim "_reduce_" #name, \
|
||||
row_reduce_small, \
|
||||
itype, otype, op, dim)
|
||||
|
||||
#define instantiate_row_reduce_looped(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("row_reduce_looped_" #dim "_reduce_" #name, \
|
||||
row_reduce_looped, \
|
||||
itype, otype, op, dim)
|
||||
#define instantiate_row_reduce_looped(name, itype, otype, op, dim) \
|
||||
instantiate_kernel("row_reduce_looped_" #dim "_reduce_" #name, \
|
||||
row_reduce_looped, \
|
||||
itype, otype, op, uint, dim) \
|
||||
instantiate_kernel("row_reduce_looped_large_" #dim "_reduce_" #name, \
|
||||
row_reduce_looped, \
|
||||
itype, otype, op, int64_t, dim)
|
||||
|
||||
#define instantiate_row_reduce_general(name, itype, otype, op) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 0) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 1) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 2) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 3) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 4) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 0) \
|
||||
instantiate_row_reduce_small(name, itype, otype, op, 5) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 1) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 2) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 3) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 4) \
|
||||
instantiate_row_reduce_looped(name, itype, otype, op, 5) \
|
||||
instantiate_kernel("row_reduce_simple_" #name, \
|
||||
row_reduce_simple, \
|
||||
itype, otype, op)
|
||||
|
||||
#define instantiate_same_row_reduce_helper(name, tname, type, op) \
|
||||
instantiate_row_reduce_general(name##tname, type, type, op<type>)
|
||||
#define instantiate_reduce_functions(name, tname, itype, otype, op) \
|
||||
instantiate_all_reduce(name##tname, itype, otype, op<otype>) \
|
||||
instantiate_row_reduce_general(name##tname, itype, otype, op<otype>) \
|
||||
instantiate_col_reduce_general(name##tname, itype, otype, op<otype>)
|
||||
|
||||
instantiate_reduce_ops(instantiate_same_row_reduce_helper, instantiate_reduce_helper_types)
|
||||
instantiate_reduce_ops(instantiate_same_row_reduce_helper, instantiate_reduce_helper_64b)
|
||||
#define instantiate_and_or(name, op) \
|
||||
instantiate_reduce_functions(name, bool_, bool, bool, op) \
|
||||
instantiate_reduce_functions(name, int16, int16_t, bool, op) \
|
||||
instantiate_reduce_functions(name, int32, int32_t, bool, op) \
|
||||
instantiate_reduce_functions(name, int64, int64_t, bool, op)
|
||||
|
||||
instantiate_reduce_from_types(instantiate_row_reduce_general, and, bool, And<bool>)
|
||||
instantiate_reduce_from_types(instantiate_row_reduce_general, or, bool, Or<bool>)
|
||||
instantiate_and_or(and, And)
|
||||
instantiate_and_or(or, Or)
|
||||
|
||||
instantiate_row_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)
|
||||
#define instantiate_sum_prod(name, op) \
|
||||
instantiate_reduce_functions(name, int8, int8_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int16, int16_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int64, int64_t, int64_t, op) \
|
||||
instantiate_reduce_functions(name, float16, float16_t, float16_t, op) \
|
||||
instantiate_reduce_functions(name, bfloat16, bfloat16_t, bfloat16_t, op) \
|
||||
instantiate_reduce_functions(name, float32, float, float, op) \
|
||||
instantiate_reduce_functions(name, complex64, complex64_t, complex64_t, op)
|
||||
|
||||
instantiate_sum_prod(sum, Sum)
|
||||
instantiate_sum_prod(prod, Prod)
|
||||
|
||||
#define instantiate_min_max(name, op) \
|
||||
instantiate_reduce_functions(name, int8, int8_t, int8_t, op) \
|
||||
instantiate_reduce_functions(name, int16, int16_t, int16_t, op) \
|
||||
instantiate_reduce_functions(name, int32, int32_t, int32_t, op) \
|
||||
instantiate_reduce_functions(name, int64, int64_t, int64_t, op) \
|
||||
instantiate_reduce_functions(name, uint8, uint8_t, uint8_t, op) \
|
||||
instantiate_reduce_functions(name, uint16, uint16_t, uint16_t, op) \
|
||||
instantiate_reduce_functions(name, uint32, uint32_t, uint32_t, op) \
|
||||
instantiate_reduce_functions(name, uint64, uint64_t, uint64_t, op) \
|
||||
instantiate_reduce_functions(name, float16, float16_t, float16_t, op) \
|
||||
instantiate_reduce_functions(name, bfloat16, bfloat16_t, bfloat16_t, op) \
|
||||
instantiate_reduce_functions(name, float32, float, float, op) \
|
||||
instantiate_reduce_functions(name, complex64, complex64_t, complex64_t, op)
|
||||
|
||||
instantiate_min_max(min, Min)
|
||||
instantiate_min_max(max, Max)
|
||||
// clang-format on
|
||||
|
@@ -1,6 +1,11 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT = int64_t,
|
||||
int N_READS = REDUCE_N_READS>
|
||||
[[kernel]] void all_reduce(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
@@ -16,10 +21,10 @@ template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
|
||||
threadgroup U shared_vals[simd_size];
|
||||
|
||||
U total = Op::init;
|
||||
int64_t start_idx = gid.y * row_size;
|
||||
int64_t actual_row =
|
||||
IdxT start_idx = gid.y * IdxT(row_size);
|
||||
IdxT actual_row =
|
||||
(start_idx + row_size <= in_size) ? row_size : in_size - start_idx;
|
||||
int64_t blocks = actual_row / (lsize.x * N_READS);
|
||||
IdxT blocks = actual_row / (lsize.x * N_READS);
|
||||
int extra = actual_row - blocks * (lsize.x * N_READS);
|
||||
extra -= lid.x * N_READS;
|
||||
start_idx += lid.x * N_READS;
|
||||
@@ -30,7 +35,7 @@ template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
|
||||
extra = 0;
|
||||
}
|
||||
|
||||
for (int64_t b = 0; b < blocks; b++) {
|
||||
for (IdxT b = 0; b < blocks; b++) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
total = op(static_cast<U>(in[i]), total);
|
||||
}
|
||||
|
@@ -1,16 +1,16 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
template <typename T, typename U, typename Op, int NDIMS>
|
||||
template <typename T, typename U, typename Op, typename IdxT, int NDIMS>
|
||||
[[kernel]] void col_reduce_small(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& reduction_size [[buffer(2)]],
|
||||
const constant size_t& reduction_stride [[buffer(3)]],
|
||||
const constant int64_t& reduction_stride [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
const constant size_t& non_col_reductions [[buffer(10)]],
|
||||
uint3 gid [[threadgroup_position_in_grid]],
|
||||
@@ -19,7 +19,7 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
uint3 lsize [[threads_per_threadgroup]]) {
|
||||
constexpr int n_reads = 4;
|
||||
Op op;
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
const device T* row;
|
||||
|
||||
U totals[n_reads];
|
||||
@@ -27,20 +27,20 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
totals[i] = Op::init;
|
||||
}
|
||||
|
||||
size_t column = size_t(gid.x) * lsize.x * n_reads + lid.x * n_reads;
|
||||
IdxT column = IdxT(gid.x) * lsize.x * n_reads + lid.x * n_reads;
|
||||
if (column >= reduction_stride) {
|
||||
return;
|
||||
}
|
||||
bool safe = column + n_reads <= reduction_stride;
|
||||
|
||||
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
|
||||
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
|
||||
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
in += in_idx + column;
|
||||
|
||||
size_t total_rows = non_col_reductions * reduction_size;
|
||||
IdxT total_rows = IdxT(non_col_reductions) * IdxT(reduction_size);
|
||||
loop.next(lid.y, reduce_shape, reduce_strides);
|
||||
for (size_t r = lid.y; r < total_rows; r += lsize.y) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
for (IdxT r = lid.y; r < total_rows; r += lsize.y) {
|
||||
row = in + loop.location();
|
||||
if (safe) {
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
totals[i] = op(static_cast<U>(row[i]), totals[i]);
|
||||
@@ -80,7 +80,7 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
}
|
||||
|
||||
if (lid.y == 0) {
|
||||
out += out_idx * reduction_stride + column;
|
||||
out += out_idx * IdxT(reduction_stride) + column;
|
||||
if (safe) {
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
out[i] = totals[i];
|
||||
@@ -93,17 +93,17 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int NDIMS>
|
||||
template <typename T, typename U, typename Op, typename IdxT, int NDIMS>
|
||||
[[kernel]] void col_reduce_longcolumn(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& reduction_size [[buffer(2)]],
|
||||
const constant size_t& reduction_stride [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
const constant size_t& non_col_reductions [[buffer(10)]],
|
||||
const constant size_t& out_size [[buffer(11)]],
|
||||
@@ -112,19 +112,19 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint3 lsize [[threads_per_threadgroup]]) {
|
||||
Op op;
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
const device T* row;
|
||||
|
||||
size_t out_idx = gid.x + gsize.x * size_t(gid.y);
|
||||
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT out_idx = gid.x + gsize.x * IdxT(gid.y);
|
||||
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
in += in_idx + lid.x;
|
||||
|
||||
U total = Op::init;
|
||||
size_t total_rows = non_col_reductions * reduction_size;
|
||||
IdxT total_rows = IdxT(non_col_reductions) * IdxT(reduction_size);
|
||||
loop.next(gid.z * lsize.y + lid.y, reduce_shape, reduce_strides);
|
||||
for (size_t r = gid.z * lsize.y + lid.y; r < total_rows;
|
||||
for (IdxT r = gid.z * lsize.y + lid.y; r < total_rows;
|
||||
r += lsize.y * gsize.z) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
row = in + loop.location();
|
||||
total = op(static_cast<U>(*row), total);
|
||||
loop.next(lsize.y * gsize.z, reduce_shape, reduce_strides);
|
||||
}
|
||||
@@ -136,7 +136,8 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
for (uint i = 1; i < lsize.y; i++) {
|
||||
total = op(total, shared_vals[i * lsize.x + lid.x]);
|
||||
}
|
||||
out[gid.z * out_size + out_idx * reduction_stride + lid.x] = total;
|
||||
out[gid.z * IdxT(out_size) + out_idx * IdxT(reduction_stride) + lid.x] =
|
||||
total;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -151,17 +152,24 @@ template <typename T, typename U, typename Op, int NDIMS>
|
||||
* totals with a loop.
|
||||
* 7. Write them to the output
|
||||
*/
|
||||
template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT,
|
||||
int NDIMS,
|
||||
int BM,
|
||||
int BN>
|
||||
[[kernel]] void col_reduce_looped(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& reduction_size [[buffer(2)]],
|
||||
const constant size_t& reduction_stride [[buffer(3)]],
|
||||
const constant int64_t& reduction_stride [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
const constant size_t& non_col_reductions [[buffer(10)]],
|
||||
uint3 gid [[threadgroup_position_in_grid]],
|
||||
@@ -176,7 +184,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
threadgroup U shared_vals[BN * BM];
|
||||
U totals[n_reads];
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
const device T* row;
|
||||
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
@@ -185,17 +193,17 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
short lid = simd_group_id * simd_size + simd_lane_id;
|
||||
short2 offset((lid % n_read_blocks) * n_reads, lid / n_read_blocks);
|
||||
size_t column = BN * gid.x + offset.x;
|
||||
IdxT column = BN * gid.x + offset.x;
|
||||
bool safe = column + n_reads <= reduction_stride;
|
||||
|
||||
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
|
||||
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
|
||||
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
in += in_idx + column;
|
||||
|
||||
size_t total = non_col_reductions * reduction_size;
|
||||
IdxT total = IdxT(non_col_reductions) * IdxT(reduction_size);
|
||||
loop.next(offset.y, reduce_shape, reduce_strides);
|
||||
for (size_t r = offset.y; r < total; r += BM) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
for (IdxT r = offset.y; r < total; r += BM) {
|
||||
row = in + loop.location();
|
||||
|
||||
if (safe) {
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
@@ -235,8 +243,8 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
// Write the output.
|
||||
if (simd_lane_id == 0) {
|
||||
size_t out_column = BN * gid.x + out_offset.x;
|
||||
out += out_idx * reduction_stride + out_column;
|
||||
IdxT out_column = BN * gid.x + out_offset.x;
|
||||
out += out_idx * IdxT(reduction_stride) + out_column;
|
||||
if (out_column + n_outputs <= reduction_stride) {
|
||||
for (int i = 0; i < n_outputs; i++) {
|
||||
out[i] = totals[i];
|
||||
@@ -269,7 +277,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
// Write the output.
|
||||
if (offset.y == 0) {
|
||||
out += out_idx * reduction_stride + column;
|
||||
out += out_idx * IdxT(reduction_stride) + column;
|
||||
if (safe) {
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
out[i] = totals[i];
|
||||
@@ -283,17 +291,24 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT,
|
||||
int NDIMS,
|
||||
int BM,
|
||||
int BN>
|
||||
[[kernel]] void col_reduce_2pass(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& reduction_size [[buffer(2)]],
|
||||
const constant size_t& reduction_stride [[buffer(3)]],
|
||||
const constant int64_t& reduction_stride [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
const constant size_t& non_col_reductions [[buffer(10)]],
|
||||
const constant size_t& out_size [[buffer(11)]],
|
||||
@@ -312,7 +327,7 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
threadgroup U shared_vals[BN * BM];
|
||||
U totals[n_reads];
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
const device T* row;
|
||||
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
@@ -321,20 +336,19 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
short lid = simd_group_id * simd_size + simd_lane_id;
|
||||
short2 offset((lid % n_read_blocks) * n_reads, lid / n_read_blocks);
|
||||
size_t column = BN * gid.x + offset.x;
|
||||
IdxT column = BN * gid.x + offset.x;
|
||||
bool safe = column + n_reads <= reduction_stride;
|
||||
|
||||
size_t full_idx = gid.y + gsize.y * size_t(gid.z);
|
||||
size_t block_idx = full_idx / out_size;
|
||||
size_t out_idx = full_idx % out_size;
|
||||
size_t in_idx = elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT full_idx = gid.y + gsize.y * IdxT(gid.z);
|
||||
IdxT block_idx = full_idx / IdxT(out_size);
|
||||
IdxT out_idx = full_idx % IdxT(out_size);
|
||||
IdxT in_idx = elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
in += in_idx + column;
|
||||
|
||||
size_t total = non_col_reductions * reduction_size;
|
||||
IdxT total = IdxT(non_col_reductions) * IdxT(reduction_size);
|
||||
loop.next(offset.y + block_idx * BM, reduce_shape, reduce_strides);
|
||||
for (size_t r = offset.y + block_idx * BM; r < total;
|
||||
r += outer_blocks * BM) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
for (IdxT r = offset.y + block_idx * BM; r < total; r += outer_blocks * BM) {
|
||||
row = in + loop.location();
|
||||
|
||||
if (safe) {
|
||||
for (int i = 0; i < n_reads; i++) {
|
||||
@@ -369,8 +383,8 @@ template <typename T, typename U, typename Op, int NDIMS, int BM, int BN>
|
||||
|
||||
// Write the output.
|
||||
if (simd_lane_id == 0) {
|
||||
size_t out_column = BN * gid.x + out_offset.x;
|
||||
out += full_idx * reduction_stride + out_column;
|
||||
IdxT out_column = BN * gid.x + out_offset.x;
|
||||
out += full_idx * IdxT(reduction_stride) + out_column;
|
||||
if (out_column + n_outputs <= reduction_stride) {
|
||||
for (int i = 0; i < n_outputs; i++) {
|
||||
out[i] = totals[i];
|
||||
|
@@ -98,11 +98,11 @@ template <
|
||||
METAL_FUNC void per_thread_row_reduce(
|
||||
thread U totals[N_WRITES],
|
||||
const device T* in,
|
||||
const size_t row_idx,
|
||||
const int64_t row_idx,
|
||||
int blocks,
|
||||
int extra,
|
||||
const constant int* shape,
|
||||
const constant size_t* strides,
|
||||
const constant int64_t* strides,
|
||||
const constant int& ndim,
|
||||
uint lsize_x,
|
||||
uint lid_x) {
|
||||
@@ -193,18 +193,19 @@ template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT,
|
||||
int NDIMS,
|
||||
int N_READS = REDUCE_N_READS>
|
||||
[[kernel]] void row_reduce_small(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& row_size [[buffer(2)]],
|
||||
const constant size_t& non_row_reductions [[buffer(3)]],
|
||||
const constant int64_t& row_size [[buffer(2)]],
|
||||
const constant int64_t& non_row_reductions [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint3 gid [[threadgroup_position_in_grid]],
|
||||
@@ -214,20 +215,20 @@ template <
|
||||
Op op;
|
||||
|
||||
U total_val = Op::init;
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
|
||||
// Precompute some row reduction numbers
|
||||
const device T* row;
|
||||
int blocks = row_size / N_READS;
|
||||
int extra = row_size % N_READS;
|
||||
int blocks = IdxT(row_size) / N_READS;
|
||||
int extra = IdxT(row_size) % N_READS;
|
||||
|
||||
if ((non_row_reductions < 32 && row_size <= 8) || non_row_reductions <= 8) {
|
||||
// Simple loop over non_row_reductions and reduce the row in the thread.
|
||||
size_t out_idx = tid.x + tsize.y * size_t(tid.y);
|
||||
in += elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT out_idx = tid.x + tsize.y * IdxT(tid.y);
|
||||
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
|
||||
for (uint r = 0; r < non_row_reductions; r++) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
row = in + loop.location();
|
||||
thread_reduce<T, U, Op, N_READS>(total_val, row, blocks, extra);
|
||||
loop.next(reduce_shape, reduce_strides);
|
||||
}
|
||||
@@ -236,13 +237,13 @@ template <
|
||||
} else {
|
||||
// Collaboratively reduce over non_row_reductions in the simdgroup. Each
|
||||
// thread reduces every 32nd row and then a simple simd reduce.
|
||||
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
|
||||
in += elem_to_loc(out_idx, shape, strides, ndim);
|
||||
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
|
||||
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim);
|
||||
|
||||
loop.next(simd_lane_id, reduce_shape, reduce_strides);
|
||||
|
||||
for (uint r = simd_lane_id; r < non_row_reductions; r += simd_size) {
|
||||
row = in + loop.location(r, reduce_shape, reduce_strides, reduce_ndim);
|
||||
row = in + loop.location();
|
||||
thread_reduce<T, U, Op, N_READS>(total_val, row, blocks, extra);
|
||||
loop.next(simd_size, reduce_shape, reduce_strides);
|
||||
}
|
||||
@@ -259,13 +260,14 @@ template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT = int64_t,
|
||||
int N_READS = REDUCE_N_READS,
|
||||
int N_WRITES = REDUCE_N_WRITES>
|
||||
[[kernel]] void row_reduce_simple(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& reduction_size [[buffer(2)]],
|
||||
const constant size_t& out_size [[buffer(3)]],
|
||||
const constant int64_t& out_size [[buffer(3)]],
|
||||
uint3 gid [[threadgroup_position_in_grid]],
|
||||
uint3 gsize [[threadgroups_per_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
@@ -277,15 +279,15 @@ template <
|
||||
U totals[N_WRITES];
|
||||
|
||||
// Move to the row
|
||||
size_t out_idx = N_WRITES * (gid.y + gsize.y * size_t(gid.z));
|
||||
IdxT out_idx = N_WRITES * (gid.y + gsize.y * IdxT(gid.z));
|
||||
if (out_idx + N_WRITES > out_size) {
|
||||
out_idx = out_size - N_WRITES;
|
||||
}
|
||||
in += out_idx * reduction_size;
|
||||
in += out_idx * IdxT(reduction_size);
|
||||
out += out_idx;
|
||||
|
||||
// Each thread reduces across the row
|
||||
int blocks = reduction_size / (lsize.x * N_READS);
|
||||
int blocks = IdxT(reduction_size) / (lsize.x * N_READS);
|
||||
int extra = reduction_size - blocks * (lsize.x * N_READS);
|
||||
per_thread_row_reduce<T, U, Op, N_READS, N_WRITES>(
|
||||
totals, in, reduction_size, blocks, extra, lsize.x, lid.x);
|
||||
@@ -306,18 +308,19 @@ template <
|
||||
typename T,
|
||||
typename U,
|
||||
typename Op,
|
||||
typename IdxT,
|
||||
int NDIMS,
|
||||
int N_READS = REDUCE_N_READS>
|
||||
[[kernel]] void row_reduce_looped(
|
||||
const device T* in [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant size_t& row_size [[buffer(2)]],
|
||||
const constant size_t& non_row_reductions [[buffer(3)]],
|
||||
const constant int64_t& row_size [[buffer(2)]],
|
||||
const constant int64_t& non_row_reductions [[buffer(3)]],
|
||||
const constant int* shape [[buffer(4)]],
|
||||
const constant size_t* strides [[buffer(5)]],
|
||||
const constant int64_t* strides [[buffer(5)]],
|
||||
const constant int& ndim [[buffer(6)]],
|
||||
const constant int* reduce_shape [[buffer(7)]],
|
||||
const constant size_t* reduce_strides [[buffer(8)]],
|
||||
const constant int64_t* reduce_strides [[buffer(8)]],
|
||||
const constant int& reduce_ndim [[buffer(9)]],
|
||||
uint3 gid [[threadgroup_position_in_grid]],
|
||||
uint3 gsize [[threadgroups_per_grid]],
|
||||
@@ -330,19 +333,19 @@ template <
|
||||
threadgroup U shared_vals[simd_size];
|
||||
U total = Op::init;
|
||||
|
||||
size_t out_idx = gid.y + gsize.y * size_t(gid.z);
|
||||
IdxT out_idx = gid.y + gsize.y * IdxT(gid.z);
|
||||
|
||||
// lid.x * N_READS breaks the per_thread_row_reduce interface a bit. Maybe it
|
||||
// needs a small refactor.
|
||||
in += elem_to_loc(out_idx, shape, strides, ndim) + lid.x * N_READS;
|
||||
in += elem_to_loc<IdxT>(out_idx, shape, strides, ndim) + lid.x * N_READS;
|
||||
|
||||
looped_elem_to_loc<NDIMS> loop;
|
||||
LoopedElemToLoc<NDIMS, IdxT, (NDIMS > 2)> loop(reduce_ndim);
|
||||
const device T* row;
|
||||
int blocks = row_size / (lsize.x * N_READS);
|
||||
int blocks = IdxT(row_size) / (lsize.x * N_READS);
|
||||
int extra = row_size - blocks * (lsize.x * N_READS);
|
||||
|
||||
for (size_t i = 0; i < non_row_reductions; i++) {
|
||||
row = in + loop.location(i, reduce_shape, reduce_strides, reduce_ndim);
|
||||
for (IdxT i = 0; i < non_row_reductions; i++) {
|
||||
row = in + loop.location();
|
||||
|
||||
// Each thread reduces across the row
|
||||
U row_total;
|
||||
|
@@ -3,8 +3,6 @@
|
||||
#include <metal_common>
|
||||
#include <metal_simdgroup>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
@@ -17,12 +15,15 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
constant float& eps,
|
||||
constant uint& axis_size,
|
||||
constant uint& w_stride,
|
||||
threadgroup float* local_inv_mean [[threadgroup(0)]],
|
||||
threadgroup float* local_sums [[threadgroup(1)]],
|
||||
uint gid [[threadgroup_position_in_grid]],
|
||||
uint lid [[thread_position_in_threadgroup]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
constexpr int SIMD_SIZE = 32;
|
||||
|
||||
threadgroup float local_inv_mean[1];
|
||||
threadgroup float local_sums[SIMD_SIZE];
|
||||
|
||||
float acc = 0;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
@@ -84,13 +85,15 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
constant float& eps,
|
||||
constant uint& axis_size,
|
||||
constant uint& w_stride,
|
||||
threadgroup float* local_inv_mean [[threadgroup(0)]],
|
||||
threadgroup float* local_sums [[threadgroup(1)]],
|
||||
uint gid [[threadgroup_position_in_grid]],
|
||||
uint lid [[thread_position_in_threadgroup]],
|
||||
uint lsize [[threads_per_threadgroup]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
constexpr int SIMD_SIZE = 32;
|
||||
threadgroup float local_inv_mean[1];
|
||||
threadgroup float local_sums[SIMD_SIZE];
|
||||
|
||||
float acc = 0;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
@@ -376,8 +379,6 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
constant float& eps, \
|
||||
constant uint& axis_size, \
|
||||
constant uint& w_stride, \
|
||||
threadgroup float* local_inv_mean [[threadgroup(0)]], \
|
||||
threadgroup float* local_sums [[threadgroup(1)]], \
|
||||
uint gid [[thread_position_in_grid]], \
|
||||
uint lid [[thread_position_in_threadgroup]], \
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
||||
@@ -407,8 +408,6 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
constant float& eps, \
|
||||
constant uint& axis_size, \
|
||||
constant uint& w_stride, \
|
||||
threadgroup float* local_inv_mean [[threadgroup(0)]], \
|
||||
threadgroup float* local_sums [[threadgroup(1)]], \
|
||||
uint gid [[thread_position_in_grid]], \
|
||||
uint lid [[thread_position_in_threadgroup]], \
|
||||
uint lsize [[threads_per_threadgroup]], \
|
||||
|
@@ -2,7 +2,6 @@
|
||||
|
||||
#include <metal_math>
|
||||
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
template <typename T, bool traditional, bool forward>
|
||||
void rope_single_impl(
|
||||
|
@@ -1,946 +1,16 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
#include "mlx/backend/metal/kernels/scaled_dot_product_attention_params.h"
|
||||
#include "mlx/backend/metal/kernels/sdpa_vector.h"
|
||||
#include "mlx/backend/metal/kernels/steel/defines.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/transforms.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
|
||||
using namespace mlx::steel;
|
||||
|
||||
template <
|
||||
typename T,
|
||||
short BROWS,
|
||||
short BCOLS,
|
||||
short dst_ld,
|
||||
short reduction_dim,
|
||||
short tgp_size,
|
||||
short alignment = 1,
|
||||
short n_reads = (BCOLS * BROWS) / (tgp_size),
|
||||
short TCOLS = BCOLS / n_reads,
|
||||
short TROWS = tgp_size / TCOLS>
|
||||
struct BlockLoaderFA {
|
||||
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
|
||||
STEEL_CONST short vec_size = n_reads;
|
||||
|
||||
// Leading dimension for src
|
||||
const int src_ld;
|
||||
const int tile_stride;
|
||||
|
||||
// Thread location indices
|
||||
const short thread_idx;
|
||||
const short bi;
|
||||
const short bj;
|
||||
|
||||
// threadgroup and device memory
|
||||
threadgroup T* dst;
|
||||
const device T* src;
|
||||
|
||||
struct alignas(alignment * sizeof(T)) ReadVector {
|
||||
uint8_t v[sizeof(T) * vec_size];
|
||||
};
|
||||
|
||||
/* Constructor */
|
||||
METAL_FUNC BlockLoaderFA(
|
||||
const device T* src_,
|
||||
const int src_ld_,
|
||||
threadgroup T* dst_,
|
||||
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
ushort simd_lane_id [[thread_index_in_simdgroup]])
|
||||
: src_ld(src_ld_),
|
||||
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
|
||||
thread_idx(simd_group_id * 32 + simd_lane_id),
|
||||
bi(thread_idx / TCOLS),
|
||||
bj(vec_size * (thread_idx % TCOLS)),
|
||||
dst(dst_ + bi * dst_ld + bj),
|
||||
src(src_ + bi * src_ld + bj) {}
|
||||
|
||||
/* Load from device memory into threadgroup memory - without bound checking */
|
||||
METAL_FUNC void load_unsafe() const {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
*((threadgroup ReadVector*)(&dst[i * dst_ld])) =
|
||||
*((const device ReadVector*)(&src[i * src_ld]));
|
||||
}
|
||||
}
|
||||
|
||||
/* Load from device memory into threadgroup memory - with bound checking */
|
||||
METAL_FUNC void load_safe(short2 src_tile_dim) const {
|
||||
src_tile_dim = src_tile_dim - short2(bj, bi);
|
||||
|
||||
// Skip loading if thread has no valid reads
|
||||
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * dst_ld + j] = T(0);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Use fast thread memory for bound checks
|
||||
bool tmp_idx[vec_size];
|
||||
T tmp_val[vec_size];
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
// Make sure tmp_idx only contains valid indices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
|
||||
}
|
||||
|
||||
// Read valid indices into tmp_val
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
|
||||
}
|
||||
|
||||
// Zero out uneeded values
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
|
||||
}
|
||||
|
||||
// Copy values to threadgroup memory
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * dst_ld + j] = tmp_val[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Iteration helper */
|
||||
METAL_FUNC void next() {
|
||||
src += tile_stride;
|
||||
}
|
||||
METAL_FUNC void next(short n) {
|
||||
src += n * tile_stride;
|
||||
}
|
||||
};
|
||||
|
||||
template <bool M_aligned, bool N_aligned, bool K_aligned>
|
||||
struct LoopAlignment {};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
short lda_tgp,
|
||||
short ldb_tgp,
|
||||
typename AccumType = float,
|
||||
typename Epilogue = TransformNone<U, AccumType>>
|
||||
struct BlockMMAFA {
|
||||
// Warp tile simdgroup matrix strides along M
|
||||
STEEL_CONST short TM_stride = 8 * WM;
|
||||
// Warp tile simdgroup matrix strides along M
|
||||
STEEL_CONST short TN_stride = 8 * WN;
|
||||
|
||||
// Warp tile size along M
|
||||
STEEL_CONST short TM = BM / TM_stride;
|
||||
// Warp tile size along N
|
||||
STEEL_CONST short TN = BN / TN_stride;
|
||||
|
||||
// Strides of A, B along reduction axis
|
||||
STEEL_CONST short simd_stride_a = {
|
||||
transpose_a ? TM_stride : TM_stride * lda_tgp};
|
||||
STEEL_CONST short simd_stride_b = {
|
||||
transpose_b ? TN_stride * ldb_tgp : TN_stride};
|
||||
|
||||
// Jump between elements
|
||||
STEEL_CONST short jump_a = {transpose_a ? lda_tgp : 1};
|
||||
STEEL_CONST short jump_b = {transpose_b ? ldb_tgp : 1};
|
||||
|
||||
STEEL_CONST short tile_stride_a = {transpose_a ? 8 * lda_tgp : 8};
|
||||
STEEL_CONST short tile_stride_b = {transpose_b ? 8 : 8 * ldb_tgp};
|
||||
|
||||
// Simdgroup matrices
|
||||
simdgroup_matrix<AccumType, 8, 8> Asimd[TM];
|
||||
simdgroup_matrix<AccumType, 8, 8> Bsimd[TN];
|
||||
simdgroup_matrix<AccumType, 8, 8> results[TM * TN] = {
|
||||
simdgroup_matrix<AccumType, 8, 8>(0)};
|
||||
|
||||
// Offsets within threadgroup
|
||||
const short tm;
|
||||
const short tn;
|
||||
|
||||
short sm;
|
||||
short sn;
|
||||
|
||||
ushort sid;
|
||||
ushort slid;
|
||||
|
||||
short As_offset;
|
||||
short Bs_offset;
|
||||
|
||||
/* Constructor */
|
||||
METAL_FUNC BlockMMAFA(
|
||||
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
ushort simd_lane_id [[thread_index_in_simdgroup]])
|
||||
: tm(8 * (simd_group_id / WN)), tn(8 * (simd_group_id % WN)) {
|
||||
// Determine thread position in simdgroup matrix
|
||||
short qid = simd_lane_id / 4;
|
||||
slid = simd_lane_id;
|
||||
sid = simd_group_id;
|
||||
|
||||
sm = (qid & 4) + (simd_lane_id / 2) % 4;
|
||||
sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
|
||||
|
||||
// Determine thread and simdgroup offset
|
||||
As_offset =
|
||||
transpose_a ? ((sn)*lda_tgp + (tm + sm)) : ((sn) + (tm + sm) * lda_tgp);
|
||||
Bs_offset =
|
||||
transpose_b ? ((tn + sn) * ldb_tgp + (sm)) : ((sm)*ldb_tgp + (tn + sn));
|
||||
}
|
||||
|
||||
/* (BM, BK) X (BK, BN) multiply accumulate function */
|
||||
METAL_FUNC void mma(const threadgroup T* As, const threadgroup T* Bs) {
|
||||
// Adjust for simdgroup and thread location
|
||||
As += As_offset;
|
||||
Bs += Bs_offset;
|
||||
|
||||
// Iterate over BK in blocks of 8
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short kk = 0; kk < BK; kk += 8) {
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Load elements from threadgroup A as simdgroup matrices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < TM; i++) {
|
||||
Asimd[i].thread_elements()[0] =
|
||||
static_cast<AccumType>(As[i * simd_stride_a + 0]);
|
||||
Asimd[i].thread_elements()[1] =
|
||||
static_cast<AccumType>(As[i * simd_stride_a + jump_a]);
|
||||
}
|
||||
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Load elements from threadgroup B as simdgroup matrices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < TN; j++) {
|
||||
Bsimd[j].thread_elements()[0] =
|
||||
static_cast<AccumType>(Bs[j * simd_stride_b + 0]);
|
||||
Bsimd[j].thread_elements()[1] =
|
||||
static_cast<AccumType>(Bs[j * simd_stride_b + jump_b]);
|
||||
}
|
||||
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Multiply and accumulate into result simdgroup matrices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < TM; i++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < TN; j++) {
|
||||
short j_serp = (i % 2) ? (TN - 1 - j) : j;
|
||||
|
||||
simdgroup_multiply_accumulate(
|
||||
results[i * TN + j_serp],
|
||||
Asimd[i],
|
||||
Bsimd[j_serp],
|
||||
results[i * TN + j_serp]);
|
||||
}
|
||||
}
|
||||
|
||||
// Progress to next simdgroup tile
|
||||
As += tile_stride_a;
|
||||
Bs += tile_stride_b;
|
||||
}
|
||||
}
|
||||
|
||||
METAL_FUNC void rescale_output(const threadgroup float* Corrections) {
|
||||
// Loop over all simdgroup tiles
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < TM; i++) {
|
||||
short row = sm + tm + i * TM_stride;
|
||||
float scale_value = Corrections[row];
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread auto& accum = results[i * TN + j].thread_elements();
|
||||
// int offset = (i * TM_stride) * ldc + (j * TN_stride);
|
||||
accum[0] *= scale_value;
|
||||
accum[1] *= scale_value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Store results from simdgroup_matrix results into device memory */
|
||||
METAL_FUNC void store_result(device U* C, const int ldc) const {
|
||||
// Adjust for simdgroup and thread location
|
||||
C += (sm + tm) * ldc + tn + sn;
|
||||
|
||||
// Loop over all simdgroup tiles
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < TM; i++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread const auto& accum = results[i * TN + j].thread_elements();
|
||||
int offset = (i * TM_stride) * ldc + (j * TN_stride);
|
||||
|
||||
// Apply epilogue
|
||||
U outs[2] = {Epilogue::apply(accum[0]), Epilogue::apply(accum[1])};
|
||||
|
||||
// Write out C
|
||||
C[offset] = outs[0];
|
||||
C[offset + 1] = outs[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METAL_FUNC void store_result_to_tgp_memory(
|
||||
threadgroup U* C,
|
||||
const int ldc,
|
||||
short2 dst_tile_dims) const {
|
||||
// Adjust for simdgroup and thread location
|
||||
C += (sm + tm) * ldc + (tn + sn);
|
||||
dst_tile_dims -= short2(tn + sn, sm + tm);
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int i = 0; i < TM; i++) {
|
||||
if (i * TM_stride < dst_tile_dims.y) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread const auto& accum = results[i * TN + j].thread_elements();
|
||||
int offset = (i * TM_stride) * ldc + (j * TN_stride);
|
||||
|
||||
// Apply epilogue and output C
|
||||
if (j * TN_stride < dst_tile_dims.x) {
|
||||
C[offset] = Epilogue::apply(accum[0]);
|
||||
}
|
||||
|
||||
if (j * TN_stride + 1 < dst_tile_dims.x) {
|
||||
C[offset + 1] = Epilogue::apply(accum[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METAL_FUNC void
|
||||
store_result_safe(device U* C, const int ldc, short2 dst_tile_dims) const {
|
||||
// Adjust for simdgroup and thread location
|
||||
C += (sm + tm) * ldc + (tn + sn);
|
||||
dst_tile_dims -= short2(tn + sn, sm + tm);
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int i = 0; i < TM; i++) {
|
||||
if (i * TM_stride < dst_tile_dims.y) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread const auto& accum = results[i * TN + j].thread_elements();
|
||||
int offset = (i * TM_stride) * ldc + (j * TN_stride);
|
||||
|
||||
// Apply epilogue and output C
|
||||
if (j * TN_stride < dst_tile_dims.x) {
|
||||
C[offset] = Epilogue::apply(accum[0]);
|
||||
}
|
||||
|
||||
if (j * TN_stride + 1 < dst_tile_dims.x) {
|
||||
C[offset + 1] = Epilogue::apply(accum[1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Store results from simdgroup_matrix results into device memory */
|
||||
METAL_FUNC void store_result(
|
||||
device U* D,
|
||||
const int ldd,
|
||||
const device U* C,
|
||||
const int ldc,
|
||||
const int fdc,
|
||||
thread const Epilogue& epilogue_op) const {
|
||||
// Adjust for simdgroup and thread location
|
||||
C += (sm + tm) * ldc + (tn + sn) * fdc;
|
||||
D += (sm + tm) * ldd + tn + sn;
|
||||
|
||||
// Loop over all simdgroup tiles
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < TM; i++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread const auto& accum = results[i * TN + j].thread_elements();
|
||||
int offset_c = (i * TM_stride) * ldc + (j * TN_stride) * fdc;
|
||||
int offset_d = (i * TM_stride) * ldd + (j * TN_stride);
|
||||
|
||||
// Apply epilogue
|
||||
U outs[2] = {
|
||||
epilogue_op.apply(accum[0], C[offset_c]),
|
||||
epilogue_op.apply(accum[1], C[offset_c + fdc])};
|
||||
|
||||
// Write out D
|
||||
D[offset_d] = outs[0];
|
||||
D[offset_d + 1] = outs[1];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METAL_FUNC void store_result_safe(
|
||||
device U* D,
|
||||
const int ldd,
|
||||
const device U* C,
|
||||
const int ldc,
|
||||
const int fdc,
|
||||
short2 dst_tile_dims,
|
||||
thread const Epilogue& epilogue_op) const {
|
||||
// Adjust for simdgroup and thread location
|
||||
C += (sm + tm) * ldc + (tn + sn) * fdc;
|
||||
D += (sm + tm) * ldd + tn + sn;
|
||||
dst_tile_dims -= short2(tn + sn, sm + tm);
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int i = 0; i < TM; i++) {
|
||||
if (i * TM_stride < dst_tile_dims.y) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
// Get accumulated result and associated offset in C
|
||||
thread const auto& accum = results[i * TN + j].thread_elements();
|
||||
int offset_c = (i * TM_stride) * ldc + (j * TN_stride) * fdc;
|
||||
int offset_d = (i * TM_stride) * ldd + (j * TN_stride);
|
||||
|
||||
// Apply epilogue and output C
|
||||
if (j * TN_stride < dst_tile_dims.x) {
|
||||
D[offset_d] = epilogue_op.apply(accum[0], C[offset_c]);
|
||||
}
|
||||
|
||||
if (j * TN_stride + 1 < dst_tile_dims.x) {
|
||||
D[offset_d + 1] = epilogue_op.apply(accum[1], C[offset_c + fdc]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
METAL_FUNC void clear_results() {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int i = 0; i < TM; i++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
results[i * TN + j] = simdgroup_matrix<AccumType, 8, 8>(0);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_q,
|
||||
bool transpose_k,
|
||||
bool transpose_v,
|
||||
bool MN_aligned,
|
||||
bool K_aligned,
|
||||
typename AccumType = typename AccumHelper<T>::accum_type,
|
||||
typename Epilogue = TransformNone<U, AccumType>>
|
||||
struct FastAttentionKernel {
|
||||
STEEL_CONST short tgp_padding = 16 / sizeof(T);
|
||||
STEEL_CONST short float_padding = 16 / sizeof(float);
|
||||
STEEL_CONST short tgp_mem_size_q =
|
||||
transpose_q ? BK * (BM + tgp_padding) : BM * (BK + tgp_padding);
|
||||
STEEL_CONST short tgp_mem_size_k =
|
||||
transpose_k ? BK * (BN + tgp_padding) : BN * (BK + tgp_padding);
|
||||
STEEL_CONST short tgp_mem_size_v =
|
||||
transpose_v ? BK * (BN + tgp_padding) : BN * (BK + tgp_padding);
|
||||
STEEL_CONST short tgp_mem_size_s = BM * (BN + tgp_padding);
|
||||
|
||||
// maxes, rowsums, rescale
|
||||
STEEL_CONST short tgp_mem_size_corrections =
|
||||
4 * (BM * sizeof(float) + float_padding);
|
||||
|
||||
STEEL_CONST bool share_kv_smem = transpose_k != transpose_v;
|
||||
|
||||
STEEL_CONST short tgp_mem_size = share_kv_smem
|
||||
? tgp_mem_size_q + tgp_mem_size_k + tgp_mem_size_s +
|
||||
tgp_mem_size_corrections
|
||||
: tgp_mem_size_q + tgp_mem_size_k + tgp_mem_size_s +
|
||||
tgp_mem_size_corrections + tgp_mem_size_v;
|
||||
|
||||
STEEL_CONST short tgp_size = WM * WN * 32;
|
||||
|
||||
static_assert(transpose_q == false, "Expected Q not transposed.");
|
||||
static_assert(transpose_k == true, "Expected K transposed.");
|
||||
static_assert(transpose_v == false, "Expected V not transposed.");
|
||||
static_assert(tgp_mem_size <= 32768, "Excessive tgp memory requested.");
|
||||
|
||||
using loader_q_t = BlockLoaderFA<
|
||||
T,
|
||||
transpose_q ? BK : BM,
|
||||
transpose_q ? BM : BK,
|
||||
transpose_q ? BM + tgp_padding : BK + tgp_padding,
|
||||
!transpose_q,
|
||||
tgp_size>;
|
||||
|
||||
using loader_k_t = BlockLoaderFA<
|
||||
T,
|
||||
transpose_k ? BN : BK,
|
||||
transpose_k ? BK : BN,
|
||||
transpose_k ? BK + tgp_padding : BN + tgp_padding,
|
||||
transpose_k,
|
||||
tgp_size>;
|
||||
|
||||
using loader_v_t = BlockLoaderFA<
|
||||
T,
|
||||
transpose_v ? BK : BN,
|
||||
transpose_v ? BN : BK,
|
||||
transpose_v ? BN + tgp_padding : BK + tgp_padding,
|
||||
transpose_v,
|
||||
tgp_size>;
|
||||
|
||||
using mma_qk_t = BlockMMAFA<
|
||||
T,
|
||||
U,
|
||||
BM,
|
||||
BN,
|
||||
BK,
|
||||
WM,
|
||||
WN,
|
||||
transpose_q,
|
||||
transpose_k,
|
||||
transpose_q ? BM + tgp_padding : BK + tgp_padding,
|
||||
transpose_k ? BK + tgp_padding : BN + tgp_padding,
|
||||
AccumType,
|
||||
Epilogue>;
|
||||
|
||||
using mma_sv_t = BlockMMAFA<
|
||||
T,
|
||||
U,
|
||||
BM,
|
||||
BK,
|
||||
BN,
|
||||
WM,
|
||||
WN,
|
||||
false,
|
||||
transpose_v,
|
||||
BN + tgp_padding,
|
||||
BK + tgp_padding,
|
||||
AccumType,
|
||||
Epilogue>;
|
||||
|
||||
/* Main kernel function */
|
||||
template <bool M_aligned, bool N_aligned, bool K_aligned_>
|
||||
static METAL_FUNC void gemm_loop(
|
||||
threadgroup T* As [[threadgroup(0)]],
|
||||
threadgroup T* Bs [[threadgroup(1)]],
|
||||
const int gemm_k_iterations,
|
||||
thread loader_k_t& loader_b,
|
||||
thread mma_qk_t& mma_op,
|
||||
thread const short& tgp_bm,
|
||||
thread const short& tgp_bn,
|
||||
LoopAlignment<M_aligned, N_aligned, K_aligned_> l = {}) {
|
||||
// Appease the compiler
|
||||
(void)l;
|
||||
(void)tgp_bm;
|
||||
|
||||
short2 tile_dims_B = transpose_k ? short2(BK, tgp_bn) : short2(tgp_bn, BK);
|
||||
|
||||
// not valid for gemm_k_iterations > 1 (so, BK == d_k)
|
||||
for (int k = 0; k < gemm_k_iterations; k++) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
if (N_aligned) {
|
||||
loader_b.load_unsafe();
|
||||
} else {
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void initialize_corrections(
|
||||
threadgroup float* C,
|
||||
uint simd_lane_id,
|
||||
uint simd_group_id) {
|
||||
if (simd_group_id == 0) {
|
||||
threadgroup float* maxes = C;
|
||||
threadgroup float* sums = C + (BM + float_padding);
|
||||
threadgroup float* o_rescale = sums + (BM + float_padding);
|
||||
threadgroup float* output_rescale = o_rescale + (BM + float_padding);
|
||||
|
||||
if (simd_lane_id < BM) {
|
||||
maxes[simd_lane_id] = -INFINITY; // m_i
|
||||
sums[simd_lane_id] = 0.f; // l_i
|
||||
o_rescale[simd_lane_id] = 1.f; // li * exp(mi - mi_new)
|
||||
output_rescale[simd_lane_id] = 1.f; // 1.0 / l_i
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void rescale_ss(
|
||||
threadgroup T* Ss,
|
||||
threadgroup float* Corrections,
|
||||
uint simd_group_id,
|
||||
uint simd_lane_id,
|
||||
short2 local_blocks,
|
||||
float alpha) {
|
||||
if (simd_group_id == 0) {
|
||||
short row_offset = BM + float_padding;
|
||||
threadgroup float* maxes = Corrections;
|
||||
threadgroup float* sums = Corrections + row_offset;
|
||||
threadgroup float* o_rescale = sums + row_offset;
|
||||
threadgroup float* output_scales = o_rescale + row_offset;
|
||||
|
||||
if (simd_lane_id < uint(local_blocks.y)) {
|
||||
float m_i_old = maxes[simd_lane_id];
|
||||
float l_i_old = sums[simd_lane_id];
|
||||
|
||||
float m_i_new = m_i_old;
|
||||
float l_i_new = l_i_old;
|
||||
|
||||
short offset = simd_lane_id * (BN + tgp_padding);
|
||||
|
||||
float m_ij = -INFINITY;
|
||||
|
||||
for (short j = 0; j < local_blocks.x; j++) {
|
||||
float val = alpha * float(Ss[offset + j]);
|
||||
m_ij = max(m_ij, val);
|
||||
}
|
||||
|
||||
m_i_new = max(m_ij, m_i_new);
|
||||
|
||||
float rowsum = 0.f; // lij
|
||||
|
||||
for (short j = 0; j < local_blocks.x; j++) {
|
||||
float val = alpha * float(Ss[offset + j]);
|
||||
float P_i_j = exp(val - m_ij);
|
||||
rowsum += P_i_j;
|
||||
P_i_j = P_i_j * exp(m_ij - m_i_new);
|
||||
Ss[offset + j] = T(P_i_j);
|
||||
}
|
||||
|
||||
l_i_new =
|
||||
exp(m_i_old - m_i_new) * l_i_old + exp(m_ij - m_i_new) * rowsum;
|
||||
maxes[simd_lane_id] = m_i_new;
|
||||
sums[simd_lane_id] = l_i_new;
|
||||
float rescale = l_i_old * exp(m_i_old - m_i_new);
|
||||
o_rescale[simd_lane_id] = rescale;
|
||||
output_scales[simd_lane_id] = 1.0 / l_i_new;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Main kernel function */
|
||||
static METAL_FUNC void run(
|
||||
const device T* Q [[buffer(0)]],
|
||||
const device T* K [[buffer(1)]],
|
||||
const device T* V [[buffer(2)]],
|
||||
device U* O [[buffer(3)]],
|
||||
const constant MLXFastAttentionParams* params [[buffer(4)]],
|
||||
threadgroup T* Qs [[threadgroup(0)]],
|
||||
threadgroup T* Ks [[threadgroup(1)]],
|
||||
threadgroup T* Ss [[threadgroup(2)]],
|
||||
threadgroup T* Vs [[threadgroup(3)]],
|
||||
threadgroup float* Corrections [[threadgroup(4)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
// Pacifying compiler
|
||||
(void)lid;
|
||||
|
||||
const int tid_y = ((tid.y) << params->swizzle_log) +
|
||||
((tid.x) & ((1 << params->swizzle_log) - 1));
|
||||
const int tid_x = (tid.x) >> params->swizzle_log;
|
||||
|
||||
if (params->tiles_n <= tid_x || params->tiles_m <= tid_y) {
|
||||
return;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Find block in Q, O; and head in K, V.
|
||||
const int c_row = tid_y * BM;
|
||||
|
||||
Q += transpose_q ? c_row : c_row * params->ldq;
|
||||
thread loader_q_t loader_q(Q, params->ldq, Qs, simd_group_id, simd_lane_id);
|
||||
|
||||
short tgp_bm = min(BM, params->M - c_row);
|
||||
short2 tile_dims_Q = transpose_q ? short2(tgp_bm, BK) : short2(BK, tgp_bm);
|
||||
|
||||
loader_q.load_safe(tile_dims_Q);
|
||||
|
||||
initialize_corrections(Corrections, simd_lane_id, simd_group_id);
|
||||
|
||||
O += c_row * params->ldo;
|
||||
|
||||
// Prepare threadgroup mma operation
|
||||
thread mma_qk_t mma_qk_op(simd_group_id, simd_lane_id);
|
||||
thread mma_sv_t mma_softmax_sv_op(simd_group_id, simd_lane_id);
|
||||
thread loader_k_t loader_k(K, params->ldk, Ks, simd_group_id, simd_lane_id);
|
||||
thread loader_v_t loader_v(V, params->ldv, Vs, simd_group_id, simd_lane_id);
|
||||
|
||||
for (short n_block = 0; n_block < params->gemm_n_iterations_aligned;
|
||||
n_block++) {
|
||||
short c_col = BN;
|
||||
|
||||
// Prepare threadgroup loading operations
|
||||
short gemm_k_iterations = params->gemm_k_iterations_aligned;
|
||||
short tgp_bn_qk = min(BN, params->N - c_col * n_block);
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
{ // Loop over K - unaligned case
|
||||
|
||||
if (tgp_bm == BM && tgp_bn_qk == BN) {
|
||||
gemm_loop<true, true, K_aligned>(
|
||||
Qs,
|
||||
Ks,
|
||||
gemm_k_iterations,
|
||||
loader_k,
|
||||
mma_qk_op,
|
||||
tgp_bm,
|
||||
tgp_bn_qk);
|
||||
} else if (tgp_bn_qk == BN) {
|
||||
gemm_loop<false, true, K_aligned>(
|
||||
Qs,
|
||||
Ks,
|
||||
gemm_k_iterations,
|
||||
loader_k,
|
||||
mma_qk_op,
|
||||
tgp_bm,
|
||||
tgp_bn_qk);
|
||||
|
||||
} else if (tgp_bm == BM) {
|
||||
gemm_loop<true, false, K_aligned>(
|
||||
Qs,
|
||||
Ks,
|
||||
gemm_k_iterations,
|
||||
loader_k,
|
||||
mma_qk_op,
|
||||
tgp_bm,
|
||||
tgp_bn_qk);
|
||||
|
||||
} else {
|
||||
gemm_loop<false, false, K_aligned>(
|
||||
Qs,
|
||||
Ks,
|
||||
gemm_k_iterations,
|
||||
loader_k,
|
||||
mma_qk_op,
|
||||
tgp_bm,
|
||||
tgp_bn_qk);
|
||||
}
|
||||
}
|
||||
|
||||
mma_qk_op.store_result_to_tgp_memory(
|
||||
Ss, BN + tgp_padding, short2(BN, BM));
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
rescale_ss(
|
||||
Ss,
|
||||
Corrections,
|
||||
simd_group_id,
|
||||
simd_lane_id,
|
||||
short2(tgp_bn_qk, tgp_bm),
|
||||
params->alpha);
|
||||
|
||||
loader_v.load_safe(short2(BK, tgp_bn_qk));
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
threadgroup float* o_scales = Corrections + 2 * (BM + float_padding);
|
||||
mma_softmax_sv_op.rescale_output(o_scales);
|
||||
|
||||
mma_softmax_sv_op.mma(Ss, Vs);
|
||||
|
||||
threadgroup float* final_output_scales =
|
||||
Corrections + 3 * (BM + float_padding);
|
||||
|
||||
mma_softmax_sv_op.rescale_output(final_output_scales);
|
||||
|
||||
loader_v.next();
|
||||
loader_k.next(BN);
|
||||
|
||||
mma_qk_op.clear_results();
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
mma_softmax_sv_op.store_result_safe(O, params->ldo, short2(BK, tgp_bm));
|
||||
}
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_q,
|
||||
bool transpose_k,
|
||||
bool transpose_v,
|
||||
bool MN_aligned,
|
||||
bool K_aligned>
|
||||
[[kernel, max_total_threads_per_threadgroup(WM* WN * 32)]] void attention(
|
||||
const device T* Q [[buffer(0)]],
|
||||
const device T* K [[buffer(1)]],
|
||||
const device T* V [[buffer(2)]],
|
||||
device T* O [[buffer(3)]],
|
||||
const constant MLXFastAttentionParams* params [[buffer(4)]],
|
||||
const constant int* batch_shape [[buffer(6)]],
|
||||
const constant size_t* batch_strides [[buffer(7)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
using attention_kernel = FastAttentionKernel<
|
||||
T,
|
||||
T,
|
||||
BM,
|
||||
BN,
|
||||
BK,
|
||||
WM,
|
||||
WN,
|
||||
transpose_q,
|
||||
transpose_k,
|
||||
transpose_v,
|
||||
MN_aligned,
|
||||
K_aligned>;
|
||||
|
||||
// Adjust for batch
|
||||
if (params->batch_ndim > 1) {
|
||||
const constant size_t* Q_bstrides = batch_strides;
|
||||
const constant size_t* KV_bstrides = batch_strides + params->batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, Q_bstrides, KV_bstrides, params->batch_ndim);
|
||||
|
||||
Q += batch_offsets.x;
|
||||
K += batch_offsets.y;
|
||||
V += batch_offsets.y;
|
||||
|
||||
} else {
|
||||
Q += params->batch_stride_q * tid.z;
|
||||
K += params->batch_stride_k * tid.z;
|
||||
V += params->batch_stride_v * tid.z;
|
||||
}
|
||||
|
||||
// same shape as input
|
||||
O += params->batch_stride_o * tid.z;
|
||||
threadgroup T Qs[attention_kernel::tgp_mem_size_q];
|
||||
threadgroup T Ss[attention_kernel::tgp_mem_size_s];
|
||||
threadgroup float Corrections[attention_kernel::tgp_mem_size_corrections];
|
||||
|
||||
if (attention_kernel::share_kv_smem) {
|
||||
threadgroup T Ks[attention_kernel::tgp_mem_size_k];
|
||||
threadgroup T* Vs = Ks; //[attention_kernel::tgp_mem_size_v];
|
||||
attention_kernel::run(
|
||||
Q,
|
||||
K,
|
||||
V,
|
||||
O,
|
||||
params,
|
||||
Qs,
|
||||
Ks,
|
||||
Ss,
|
||||
Vs,
|
||||
Corrections,
|
||||
simd_lane_id,
|
||||
simd_group_id,
|
||||
tid,
|
||||
lid);
|
||||
} else {
|
||||
threadgroup T Ks[attention_kernel::tgp_mem_size_k];
|
||||
threadgroup T Vs[attention_kernel::tgp_mem_size_v];
|
||||
attention_kernel::run(
|
||||
Q,
|
||||
K,
|
||||
V,
|
||||
O,
|
||||
params,
|
||||
Qs,
|
||||
Ks,
|
||||
Ss,
|
||||
Vs,
|
||||
Corrections,
|
||||
simd_lane_id,
|
||||
simd_group_id,
|
||||
tid,
|
||||
lid);
|
||||
}
|
||||
}
|
||||
|
||||
// clang-format off
|
||||
|
||||
// SDPA full instantiations
|
||||
#define instantiate_fast_inference_self_attention_kernel( \
|
||||
itype, otype, bm, bn, bk, wm, wn) \
|
||||
template [[host_name("steel_gemm_attention_bm_" #bm "_bn_" #bn "_bk_" #bk \
|
||||
"_itype_" #itype)]] [[kernel]] void \
|
||||
attention<itype, bm, bn, bk, wm, wn, false, true, false, false, true>( \
|
||||
const device itype* Q [[buffer(0)]], \
|
||||
const device itype* K [[buffer(1)]], \
|
||||
const device itype* V [[buffer(2)]], \
|
||||
device otype* O [[buffer(3)]], \
|
||||
const constant MLXFastAttentionParams* params [[buffer(4)]], \
|
||||
const constant int* batch_shape [[buffer(6)]], \
|
||||
const constant size_t* batch_strides [[buffer(7)]], \
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
|
||||
instantiate_fast_inference_self_attention_kernel(
|
||||
float,
|
||||
float,
|
||||
16,
|
||||
16,
|
||||
64,
|
||||
2,
|
||||
2);
|
||||
instantiate_fast_inference_self_attention_kernel(
|
||||
float,
|
||||
float,
|
||||
16,
|
||||
16,
|
||||
128,
|
||||
2,
|
||||
2);
|
||||
instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 64, 2, 2);
|
||||
instantiate_fast_inference_self_attention_kernel(half, half, 16, 16, 128, 2, 2);
|
||||
|
||||
// SDPA vector instantiations
|
||||
#define instantiate_sdpa_vector(type, head_dim) \
|
||||
template [[host_name("sdpa_vector_" #type "_" #head_dim)]] \
|
||||
[[kernel]] void sdpa_vector<type, head_dim>( \
|
||||
const device type* queries [[buffer(0)]], \
|
||||
const device type* keys [[buffer(1)]], \
|
||||
const device type* values [[buffer(2)]], \
|
||||
device type* out [[buffer(3)]], \
|
||||
const constant int& gqa_factor, \
|
||||
const constant int& N, \
|
||||
const constant size_t& k_stride, \
|
||||
const constant size_t& v_stride, \
|
||||
const constant float& scale, \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
#define instantiate_sdpa_vector(type, head_dim) \
|
||||
instantiate_kernel("sdpa_vector_" #type "_" #head_dim, sdpa_vector, type, head_dim) \
|
||||
instantiate_kernel("sdpa_vector_2pass_1_" #type "_" #head_dim, sdpa_vector_2pass_1, type, head_dim) \
|
||||
instantiate_kernel("sdpa_vector_2pass_2_" #type "_" #head_dim, sdpa_vector_2pass_2, type, head_dim)
|
||||
|
||||
#define instantiate_sdpa_vector_heads(type) \
|
||||
instantiate_sdpa_vector(type, 64) \
|
||||
|
@@ -1,42 +0,0 @@
|
||||
//
|
||||
// scaled_dot_product_attention_params.h
|
||||
// mlx
|
||||
|
||||
#pragma once
|
||||
|
||||
struct MLXFastAttentionParams {
|
||||
const int M;
|
||||
const int N;
|
||||
const int K;
|
||||
|
||||
const int ldq; // ldq == ldo
|
||||
const int ldk;
|
||||
const int ldv;
|
||||
const int lds;
|
||||
const int ldo;
|
||||
|
||||
const int tiles_n;
|
||||
const int tiles_m;
|
||||
|
||||
const int batch_stride_q;
|
||||
const int batch_stride_k;
|
||||
const int batch_stride_v;
|
||||
const int batch_stride_o;
|
||||
|
||||
const int swizzle_log;
|
||||
const int gemm_n_iterations_aligned;
|
||||
const int gemm_k_iterations_aligned;
|
||||
const int gemm_sv_m_block_iterations;
|
||||
|
||||
const int batch_ndim;
|
||||
const float alpha;
|
||||
};
|
||||
|
||||
struct MLXScaledDotProductAttentionParams {
|
||||
// Associated dimensions & transposition information
|
||||
const uint QUERY_SEQUENCE_LENGTH = 1;
|
||||
const uint N_Q_HEADS = 32;
|
||||
const uint N_KV_HEADS = 32;
|
||||
const uint KV_TILES = 1;
|
||||
const float INV_ALPHA = 0.08838834764831843f;
|
||||
};
|
@@ -10,16 +10,17 @@ template <
|
||||
typename Op,
|
||||
int NIDX,
|
||||
bool UPD_ROW_CONTIG,
|
||||
int NWORK>
|
||||
int NWORK,
|
||||
typename LocT>
|
||||
METAL_FUNC void scatter_impl(
|
||||
const device T* updates,
|
||||
device mlx_atomic<T>* out,
|
||||
const constant int* upd_shape,
|
||||
const constant size_t* upd_strides,
|
||||
const constant int64_t* upd_strides,
|
||||
const constant size_t& upd_ndim,
|
||||
const constant size_t& upd_size,
|
||||
const constant int* out_shape,
|
||||
const constant size_t* out_strides,
|
||||
const constant int64_t* out_strides,
|
||||
const constant size_t& out_ndim,
|
||||
const constant int* axes,
|
||||
const constant size_t& idx_size,
|
||||
@@ -28,29 +29,30 @@ METAL_FUNC void scatter_impl(
|
||||
Op op;
|
||||
|
||||
auto ind_idx = gid.y * NWORK;
|
||||
size_t out_offset = 0;
|
||||
LocT out_offset = 0;
|
||||
if (upd_size > 1) {
|
||||
out_offset =
|
||||
elem_to_loc(gid.x, upd_shape + indices.ndim, out_strides, out_ndim);
|
||||
out_offset = elem_to_loc<LocT>(
|
||||
gid.x, upd_shape + indices.ndim, out_strides, out_ndim);
|
||||
}
|
||||
|
||||
for (int j = 0; j < NWORK && ind_idx < idx_size; ++j, ind_idx++) {
|
||||
size_t out_idx = out_offset;
|
||||
LocT out_idx = out_offset;
|
||||
for (int i = 0; i < NIDX; ++i) {
|
||||
auto idx_loc = indices.row_contiguous[i]
|
||||
? ind_idx
|
||||
: elem_to_loc(
|
||||
: elem_to_loc<LocT>(
|
||||
ind_idx,
|
||||
&indices.shapes[indices.ndim * i],
|
||||
&indices.strides[indices.ndim * i],
|
||||
indices.ndim);
|
||||
auto ax = axes[i];
|
||||
auto idx_val = offset_neg_idx(indices.buffers[i][idx_loc], out_shape[ax]);
|
||||
out_idx += idx_val * out_strides[ax];
|
||||
out_idx +=
|
||||
static_cast<LocT>(idx_val) * static_cast<LocT>(out_strides[ax]);
|
||||
}
|
||||
auto upd_idx = ind_idx * upd_size + gid.x;
|
||||
auto upd_idx = ind_idx * static_cast<LocT>(upd_size) + gid.x;
|
||||
if constexpr (!UPD_ROW_CONTIG) {
|
||||
upd_idx = elem_to_loc(upd_idx, upd_shape, upd_strides, upd_ndim);
|
||||
upd_idx = elem_to_loc<LocT>(upd_idx, upd_shape, upd_strides, upd_ndim);
|
||||
}
|
||||
op.atomic_update(out, updates[upd_idx], out_idx);
|
||||
}
|
||||
|
@@ -21,8 +21,7 @@ template <typename T, int D>
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
constexpr int elem_per_thread = D / BD;
|
||||
|
||||
const int stride = BN * D;
|
||||
constexpr int stride = BN * D;
|
||||
|
||||
typedef float U;
|
||||
|
||||
@@ -84,7 +83,6 @@ template <typename T, int D>
|
||||
keys += stride;
|
||||
values += stride;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Each thread has a partial part of the output so we need to combine them.
|
||||
|
||||
@@ -114,3 +112,181 @@ template <typename T, int D>
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int D>
|
||||
[[kernel]] void sdpa_vector_2pass_1(
|
||||
const device T* queries [[buffer(0)]],
|
||||
const device T* keys [[buffer(1)]],
|
||||
const device T* values [[buffer(2)]],
|
||||
device float* out [[buffer(3)]],
|
||||
device float* sums [[buffer(4)]],
|
||||
device float* maxs [[buffer(5)]],
|
||||
const constant int& gqa_factor,
|
||||
const constant int& N,
|
||||
const constant size_t& k_stride,
|
||||
const constant size_t& v_stride,
|
||||
const constant float& scale,
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
constexpr int BN = 8;
|
||||
constexpr int BD = 32;
|
||||
constexpr int elem_per_thread = D / BD;
|
||||
constexpr int stride = BN * D;
|
||||
constexpr int blocks = 32;
|
||||
|
||||
typedef float U;
|
||||
|
||||
thread U q[elem_per_thread];
|
||||
thread U k[elem_per_thread];
|
||||
thread U o[elem_per_thread];
|
||||
|
||||
threadgroup U outputs[BN * BD];
|
||||
threadgroup U max_scores[BN];
|
||||
threadgroup U sum_exp_scores[BN];
|
||||
|
||||
// Adjust positions
|
||||
const int block_idx = tid.z;
|
||||
const int head_idx = tid.y;
|
||||
const int kv_head_idx = head_idx / gqa_factor;
|
||||
queries += head_idx * D + simd_lid * elem_per_thread;
|
||||
keys += kv_head_idx * k_stride + (block_idx * BN + simd_gid) * D +
|
||||
simd_lid * elem_per_thread;
|
||||
values += kv_head_idx * v_stride + (block_idx * BN + simd_gid) * D +
|
||||
simd_lid * elem_per_thread;
|
||||
out += head_idx * blocks * D + block_idx * D + simd_lid * elem_per_thread;
|
||||
sums += head_idx * blocks + block_idx;
|
||||
maxs += head_idx * blocks + block_idx;
|
||||
|
||||
// Read the query and 0 the output accumulator
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
q[i] = static_cast<U>(scale) * queries[i];
|
||||
}
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = 0;
|
||||
}
|
||||
|
||||
U max_score = -1e9;
|
||||
U sum_exp_score = 0;
|
||||
|
||||
// For each key
|
||||
for (int i = block_idx * BN + simd_gid; i < N; i += blocks * BN) {
|
||||
// Read the key
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
k[i] = keys[i];
|
||||
}
|
||||
|
||||
// Compute the i-th score
|
||||
U score = 0;
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
score += q[i] * k[i];
|
||||
}
|
||||
score = simd_sum(score);
|
||||
|
||||
// Update the accumulators
|
||||
U new_max = max(max_score, score);
|
||||
U factor = fast::exp(max_score - new_max);
|
||||
U exp_score = fast::exp(score - new_max);
|
||||
|
||||
max_score = new_max;
|
||||
sum_exp_score = sum_exp_score * factor + exp_score;
|
||||
|
||||
// Update the output accumulator
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = o[i] * factor + exp_score * values[i];
|
||||
}
|
||||
|
||||
// Move the pointers to the next kv
|
||||
keys += blocks * stride;
|
||||
values += blocks * stride;
|
||||
}
|
||||
|
||||
// Each thread has a partial part of the output so we need to combine them.
|
||||
|
||||
// First let's communicate the max and sum_exp
|
||||
if (simd_lid == 0) {
|
||||
max_scores[simd_gid] = max_score;
|
||||
sum_exp_scores[simd_gid] = sum_exp_score;
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
max_score = (simd_lid < BN) ? max_scores[simd_lid] : -1e9;
|
||||
U new_max = simd_max(max_score);
|
||||
U factor = fast::exp(max_score - new_max);
|
||||
sum_exp_score = (simd_lid < BN) ? sum_exp_scores[simd_lid] : 0;
|
||||
sum_exp_score = simd_sum(sum_exp_score * factor);
|
||||
|
||||
// Write the sum and new max
|
||||
if (simd_gid == 0) {
|
||||
sums[0] = sum_exp_score;
|
||||
maxs[0] = new_max;
|
||||
}
|
||||
|
||||
// Now we need to aggregate all the outputs
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
outputs[simd_lid * BN + simd_gid] =
|
||||
o[i] * fast::exp(max_scores[simd_gid] - new_max);
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// And write the output
|
||||
if (simd_gid == 0) {
|
||||
U output = outputs[simd_lid * BN];
|
||||
for (int j = 1; j < BN; j++) {
|
||||
output += outputs[simd_lid * BN + j];
|
||||
}
|
||||
out[i] = static_cast<T>(output);
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int D>
|
||||
[[kernel]] void sdpa_vector_2pass_2(
|
||||
const device float* partials [[buffer(0)]],
|
||||
const device float* sums [[buffer(1)]],
|
||||
const device float* maxs [[buffer(2)]],
|
||||
device T* out [[buffer(3)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
constexpr int BN = 32;
|
||||
constexpr int BD = 32;
|
||||
constexpr int elem_per_thread = D / BD;
|
||||
constexpr int blocks = 32;
|
||||
|
||||
typedef float U;
|
||||
|
||||
thread U o[elem_per_thread];
|
||||
threadgroup U outputs[BN * BD];
|
||||
|
||||
// Adjust positions
|
||||
const int head_idx = tid.y;
|
||||
partials += head_idx * blocks * D + simd_gid * D + simd_lid * elem_per_thread;
|
||||
sums += head_idx * blocks;
|
||||
maxs += head_idx * blocks;
|
||||
out += head_idx * D + simd_gid * elem_per_thread;
|
||||
|
||||
// First everybody reads the max and sum_exp
|
||||
U max_score = maxs[simd_lid];
|
||||
U new_max = simd_max(max_score);
|
||||
U factor = fast::exp(max_score - new_max);
|
||||
U sum_exp_score = simd_sum(sums[simd_lid] * factor);
|
||||
|
||||
// Now read the block into registers and then use shared memory to transpose
|
||||
// it
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
o[i] = partials[i];
|
||||
}
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
outputs[simd_lid * BD + simd_gid] = o[i];
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
o[i] = simd_sum(outputs[simd_gid * BD + simd_lid] * factor) / sum_exp_score;
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// And write the output
|
||||
if (simd_lid == 0) {
|
||||
for (int i = 0; i < elem_per_thread; i++) {
|
||||
out[i] = static_cast<T>(o[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -6,8 +6,6 @@
|
||||
using namespace metal;
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/softmax.h"
|
||||
|
||||
|
@@ -343,8 +343,8 @@ template <
|
||||
const constant int& out_stride_sorted_axis [[buffer(4)]],
|
||||
const constant int& nc_dim [[buffer(5)]],
|
||||
const constant int* nc_shape [[buffer(6)]],
|
||||
const constant size_t* in_nc_strides [[buffer(7)]],
|
||||
const constant size_t* out_nc_strides [[buffer(8)]],
|
||||
const constant int64_t* in_nc_strides [[buffer(7)]],
|
||||
const constant int64_t* out_nc_strides [[buffer(8)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
using sort_kernel =
|
||||
@@ -486,7 +486,7 @@ template <
|
||||
const constant int& stride_sorted_axis [[buffer(4)]],
|
||||
const constant int& nc_dim [[buffer(5)]],
|
||||
const constant int* nc_shape [[buffer(6)]],
|
||||
const constant size_t* nc_strides [[buffer(7)]],
|
||||
const constant int64_t* nc_strides [[buffer(7)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
using sort_kernel = KernelMultiBlockMergeSort<
|
||||
|
@@ -3,8 +3,6 @@
|
||||
#include <metal_stdlib>
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
#include "mlx/backend/metal/kernels/sort.h"
|
||||
|
||||
|
296
mlx/backend/metal/kernels/steel/attn/attn.h
Normal file
296
mlx/backend/metal/kernels/steel/attn/attn.h
Normal file
@@ -0,0 +1,296 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/attn/loader.h"
|
||||
#include "mlx/backend/metal/kernels/steel/attn/mma.h"
|
||||
#include "mlx/backend/metal/kernels/steel/attn/params.h"
|
||||
#include "mlx/backend/metal/kernels/steel/attn/transforms.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/params.h"
|
||||
#include "mlx/backend/metal/kernels/steel/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// GEMM kernel class
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace mlx {
|
||||
namespace steel {
|
||||
|
||||
template <bool M_aligned, bool N_aligned, bool K_aligned>
|
||||
struct LoopAlignment {};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename U,
|
||||
int BM,
|
||||
int BN,
|
||||
int BK,
|
||||
int WM,
|
||||
int WN,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
bool MN_aligned,
|
||||
bool K_aligned,
|
||||
typename AccumType = typename AccumHelper<T>::accum_type,
|
||||
typename Epilogue = TransformNone<U, AccumType>>
|
||||
struct GEMMKernel {
|
||||
STEEL_CONST short tgp_padding_a = 16 / sizeof(T);
|
||||
STEEL_CONST short tgp_padding_b = 16 / sizeof(T);
|
||||
STEEL_CONST short tgp_mem_size_a =
|
||||
transpose_a ? BK * (BM + tgp_padding_a) : BM * (BK + tgp_padding_a);
|
||||
STEEL_CONST short tgp_mem_size_b =
|
||||
transpose_b ? BN * (BK + tgp_padding_b) : BK * (BN + tgp_padding_b);
|
||||
STEEL_CONST short tgp_mem_size = tgp_mem_size_a + tgp_mem_size_b;
|
||||
|
||||
STEEL_CONST short tgp_size = WM * WN * 32;
|
||||
|
||||
using loader_a_t = BlockLoader<
|
||||
T,
|
||||
transpose_a ? BK : BM,
|
||||
transpose_a ? BM : BK,
|
||||
transpose_a ? BM + tgp_padding_a : BK + tgp_padding_a,
|
||||
!transpose_a,
|
||||
tgp_size>;
|
||||
using loader_b_t = BlockLoader<
|
||||
T,
|
||||
transpose_b ? BN : BK,
|
||||
transpose_b ? BK : BN,
|
||||
transpose_b ? BK + tgp_padding_b : BN + tgp_padding_b,
|
||||
transpose_b,
|
||||
tgp_size>;
|
||||
using mma_t = BlockMMA<
|
||||
T,
|
||||
U,
|
||||
BM,
|
||||
BN,
|
||||
BK,
|
||||
WM,
|
||||
WN,
|
||||
transpose_a,
|
||||
transpose_b,
|
||||
transpose_a ? BM + tgp_padding_a : BK + tgp_padding_a,
|
||||
transpose_b ? BK + tgp_padding_b : BN + tgp_padding_b,
|
||||
AccumType,
|
||||
Epilogue>;
|
||||
|
||||
/* Main kernel function */
|
||||
template <bool M_aligned, bool N_aligned, bool K_aligned_>
|
||||
static METAL_FUNC void gemm_loop(
|
||||
threadgroup T* As [[threadgroup(0)]],
|
||||
threadgroup T* Bs [[threadgroup(1)]],
|
||||
const int gemm_k_iterations,
|
||||
thread loader_a_t& loader_a,
|
||||
thread loader_b_t& loader_b,
|
||||
thread mma_t& mma_op,
|
||||
thread const short& tgp_bm,
|
||||
thread const short& tgp_bn,
|
||||
thread const short& lbk,
|
||||
LoopAlignment<M_aligned, N_aligned, K_aligned_> l = {}) {
|
||||
// Appease the compiler
|
||||
(void)l;
|
||||
|
||||
short2 tile_dims_A = transpose_a ? short2(tgp_bm, BK) : short2(BK, tgp_bm);
|
||||
|
||||
short2 tile_dims_B = transpose_b ? short2(BK, tgp_bn) : short2(tgp_bn, BK);
|
||||
|
||||
for (int k = 0; k < gemm_k_iterations; k++) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
// Load elements into threadgroup
|
||||
if (M_aligned) {
|
||||
loader_a.load_unsafe();
|
||||
} else {
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
}
|
||||
|
||||
if (N_aligned) {
|
||||
loader_b.load_unsafe();
|
||||
} else {
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
|
||||
if (!K_aligned_) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
short2 tile_dims_A_last =
|
||||
transpose_a ? short2(tgp_bm, lbk) : short2(lbk, tgp_bm);
|
||||
short2 tile_dims_B_last =
|
||||
transpose_b ? short2(lbk, tgp_bn) : short2(tgp_bn, lbk);
|
||||
|
||||
loader_a.load_safe(tile_dims_A_last);
|
||||
loader_b.load_safe(tile_dims_B_last);
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
}
|
||||
|
||||
/* Main kernel function */
|
||||
static METAL_FUNC void run(
|
||||
const device T* A [[buffer(0)]],
|
||||
const device T* B [[buffer(1)]],
|
||||
device U* D [[buffer(2)]],
|
||||
const constant GEMMParams* params [[buffer(3)]],
|
||||
threadgroup T* As [[threadgroup(0)]],
|
||||
threadgroup T* Bs [[threadgroup(1)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
// Pacifying compiler
|
||||
(void)lid;
|
||||
|
||||
const int tid_y = ((tid.y) << params->swizzle_log) +
|
||||
((tid.x) & ((1 << params->swizzle_log) - 1));
|
||||
const int tid_x = (tid.x) >> params->swizzle_log;
|
||||
|
||||
if (params->tiles_n <= tid_x || params->tiles_m <= tid_y) {
|
||||
return;
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Find block in A, B, C
|
||||
const int c_row = tid_y * BM;
|
||||
const int c_col = tid_x * BN;
|
||||
const size_t c_row_long = size_t(c_row);
|
||||
const size_t c_col_long = size_t(c_col);
|
||||
|
||||
A += transpose_a ? c_row_long : c_row_long * params->lda;
|
||||
B += transpose_b ? c_col_long * params->ldb : c_col_long;
|
||||
D += c_row_long * params->ldd + c_col_long;
|
||||
|
||||
// Prepare threadgroup loading operations
|
||||
thread loader_a_t loader_a(A, params->lda, As, simd_group_id, simd_lane_id);
|
||||
thread loader_b_t loader_b(B, params->ldb, Bs, simd_group_id, simd_lane_id);
|
||||
|
||||
// Prepare threadgroup mma operation
|
||||
thread mma_t mma_op(simd_group_id, simd_lane_id);
|
||||
|
||||
int gemm_k_iterations = params->gemm_k_iterations_aligned;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// MNK aligned loop
|
||||
if (MN_aligned) {
|
||||
for (int k = 0; k < gemm_k_iterations; k++) {
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
// Load elements into threadgroup
|
||||
loader_a.load_unsafe();
|
||||
loader_b.load_unsafe();
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Multiply and accumulate threadgroup elements
|
||||
mma_op.mma(As, Bs);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_a.next();
|
||||
loader_b.next();
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Loop tail
|
||||
if (!K_aligned) {
|
||||
int lbk = params->K - params->gemm_k_iterations_aligned * BK;
|
||||
short2 tile_dims_A = transpose_a ? short2(BM, lbk) : short2(lbk, BM);
|
||||
short2 tile_dims_B = transpose_b ? short2(lbk, BN) : short2(BN, lbk);
|
||||
|
||||
loader_a.load_safe(tile_dims_A);
|
||||
loader_b.load_safe(tile_dims_B);
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
mma_op.mma(As, Bs);
|
||||
}
|
||||
|
||||
// Store results to device memory
|
||||
mma_op.store_result(D, params->ldd);
|
||||
return;
|
||||
|
||||
}
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// MN unaligned loop
|
||||
else { // Loop over K - unaligned case
|
||||
short tgp_bm = min(BM, params->M - c_row);
|
||||
short tgp_bn = min(BN, params->N - c_col);
|
||||
short leftover_bk = params->K - params->gemm_k_iterations_aligned * BK;
|
||||
|
||||
if (tgp_bm == BM && tgp_bn == BN) {
|
||||
gemm_loop<true, true, K_aligned>(
|
||||
As,
|
||||
Bs,
|
||||
gemm_k_iterations,
|
||||
loader_a,
|
||||
loader_b,
|
||||
mma_op,
|
||||
tgp_bm,
|
||||
tgp_bn,
|
||||
leftover_bk);
|
||||
|
||||
mma_op.store_result(D, params->ldd);
|
||||
return;
|
||||
|
||||
} else if (tgp_bn == BN) {
|
||||
gemm_loop<false, true, K_aligned>(
|
||||
As,
|
||||
Bs,
|
||||
gemm_k_iterations,
|
||||
loader_a,
|
||||
loader_b,
|
||||
mma_op,
|
||||
tgp_bm,
|
||||
tgp_bn,
|
||||
leftover_bk);
|
||||
|
||||
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
return;
|
||||
|
||||
} else if (tgp_bm == BM) {
|
||||
gemm_loop<true, false, K_aligned>(
|
||||
As,
|
||||
Bs,
|
||||
gemm_k_iterations,
|
||||
loader_a,
|
||||
loader_b,
|
||||
mma_op,
|
||||
tgp_bm,
|
||||
tgp_bn,
|
||||
leftover_bk);
|
||||
|
||||
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
return;
|
||||
|
||||
} else {
|
||||
gemm_loop<false, false, K_aligned>(
|
||||
As,
|
||||
Bs,
|
||||
gemm_k_iterations,
|
||||
loader_a,
|
||||
loader_b,
|
||||
mma_op,
|
||||
tgp_bm,
|
||||
tgp_bn,
|
||||
leftover_bk);
|
||||
|
||||
mma_op.store_result_safe(D, params->ldd, short2(tgp_bn, tgp_bm));
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace steel
|
||||
} // namespace mlx
|
349
mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h
Normal file
349
mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h
Normal file
@@ -0,0 +1,349 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
using namespace mlx::steel;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// GEMM kernels
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
constant bool align_Q [[function_constant(200)]];
|
||||
constant bool align_K [[function_constant(201)]];
|
||||
|
||||
template <typename T>
|
||||
struct TransformScale {
|
||||
T scale;
|
||||
METAL_FUNC TransformScale(T scale_) : scale(scale_) {}
|
||||
|
||||
METAL_FUNC T apply(T x) const {
|
||||
return scale * x;
|
||||
}
|
||||
};
|
||||
|
||||
struct MaxOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return metal::max(x, y);
|
||||
}
|
||||
};
|
||||
|
||||
struct SumOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return x + y;
|
||||
}
|
||||
};
|
||||
|
||||
struct MulOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return x * y;
|
||||
}
|
||||
};
|
||||
|
||||
struct SubOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return x - y;
|
||||
}
|
||||
};
|
||||
|
||||
struct ExpSubOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return fast::exp(x - y);
|
||||
}
|
||||
};
|
||||
|
||||
struct DivOp {
|
||||
template <typename T>
|
||||
METAL_FUNC static constexpr T apply(T x, T y) {
|
||||
return x / y;
|
||||
}
|
||||
};
|
||||
|
||||
// clang-format off
|
||||
template <
|
||||
typename T,
|
||||
int BQ,
|
||||
int BK,
|
||||
int BD,
|
||||
int WM,
|
||||
int WN,
|
||||
typename AccumType = float>
|
||||
[[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void attention(
|
||||
const device T* Q [[buffer(0)]],
|
||||
const device T* K [[buffer(1)]],
|
||||
const device T* V [[buffer(2)]],
|
||||
device T* O [[buffer(3)]],
|
||||
const constant AttnParams* params [[buffer(4)]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) { // clang-format on
|
||||
|
||||
// Pacifying compiler
|
||||
(void)lid;
|
||||
|
||||
// Move to correct block
|
||||
ulong3 tidl{tid.x, tid.y, tid.z};
|
||||
|
||||
Q += tidl.z * params->Q_strides[0] + // Batch
|
||||
tidl.y * params->Q_strides[1] + // Head
|
||||
tidl.x * BQ * params->Q_strides[2]; // Seqeunce
|
||||
|
||||
ulong kv_head_idx = int(tid.y) / params->gqa_factor;
|
||||
K += tidl.z * params->K_strides[0] + // Batch
|
||||
kv_head_idx * params->K_strides[1]; // Head
|
||||
|
||||
V += tidl.z * params->V_strides[0] + // Batch
|
||||
kv_head_idx * params->V_strides[1]; // Head
|
||||
|
||||
O += tidl.z * params->O_strides[0] + // Batch
|
||||
tidl.y * params->O_strides[1] + // Head
|
||||
tidl.x * BQ * params->O_strides[2]; // Seqeunce
|
||||
|
||||
// Prepare threadgroup memory
|
||||
constexpr short padQ = 0; // 16 / sizeof(T);
|
||||
constexpr short padK = 0; // 16 / sizeof(T);
|
||||
constexpr short padV = 0; // 16 / sizeof(T);
|
||||
|
||||
constexpr short LDQ_tgp = BD + padQ;
|
||||
constexpr short LDK_tgp = BK + padK;
|
||||
constexpr short LDV_tgp = BD + padV;
|
||||
|
||||
threadgroup T Qs[BQ * (BD + padQ)];
|
||||
threadgroup T Ks[(BK + padK) * BD];
|
||||
threadgroup T Vs[BK * (BD + padV)];
|
||||
|
||||
// Prepare block loaders
|
||||
using QBlockLoader = BlockLoaderT<
|
||||
/* typename T = */ T,
|
||||
/* short BROWS = */ BQ,
|
||||
/* short BCOLS = */ BD,
|
||||
/* short kDstStrRow = */ LDQ_tgp,
|
||||
/* short kDstStrCol = */ 1,
|
||||
/* short reduction_dim = */ 1,
|
||||
/* short tgp_size = */ WM * WN * 32>;
|
||||
|
||||
// K is loaded in transposed
|
||||
using KBlockLoader = BlockLoaderT<
|
||||
/* typename T = */ T,
|
||||
/* short BROWS = */ BK,
|
||||
/* short BCOLS = */ BD,
|
||||
/* short kDstStrRow = */ 1,
|
||||
/* short kDstStrCol = */ LDK_tgp,
|
||||
/* short reduction_dim = */ 0,
|
||||
/* short tgp_size = */ WM * WN * 32>;
|
||||
|
||||
using VBlockLoader = BlockLoaderT<
|
||||
/* typename T = */ T,
|
||||
/* short BROWS = */ BK,
|
||||
/* short BCOLS = */ BD,
|
||||
/* short kDstStrRow = */ LDV_tgp,
|
||||
/* short kDstStrCol = */ 1,
|
||||
/* short reduction_dim = */ 0,
|
||||
/* short tgp_size = */ WM * WN * 32>;
|
||||
|
||||
QBlockLoader loader_q(
|
||||
Q, params->Q_strides[2], Qs, simd_group_id, simd_lane_id);
|
||||
KBlockLoader loader_k(
|
||||
K, params->K_strides[2], Ks, simd_group_id, simd_lane_id);
|
||||
VBlockLoader loader_v(
|
||||
V, params->V_strides[2], Vs, simd_group_id, simd_lane_id);
|
||||
|
||||
TransformScale<T> ts(static_cast<T>(params->scale));
|
||||
|
||||
// Prepare MMA tiles
|
||||
constexpr short kFragSize = 8; // MMAFrag size
|
||||
using MMAFrag_acc_t = BaseMMAFrag<AccumType, kFragSize, kFragSize>;
|
||||
|
||||
constexpr int kNWarps = WM * WN;
|
||||
static_assert(
|
||||
BQ >= (kNWarps * kFragSize) && BQ % (kNWarps * kFragSize) == 0,
|
||||
"Each simdgroup must host atleast 1 simdgroup matrix along Q sequence.");
|
||||
|
||||
// Q seq frags per warp
|
||||
constexpr int TQ = BQ / (kNWarps * kFragSize);
|
||||
// KV sequence frags (all warps load the same frags)
|
||||
constexpr int TK = BK / kFragSize;
|
||||
// HeadDim frags (all warps load the same frags)
|
||||
constexpr int TD = BD / kFragSize;
|
||||
|
||||
static_assert(TQ == 1, "Check TQ");
|
||||
|
||||
MMATile<AccumType, TQ, 1, MMAFrag_acc_t> Qtile;
|
||||
MMATile<AccumType, 1, TK, MMAFrag_acc_t> Ktile;
|
||||
MMATile<AccumType, TQ, TK, MMAFrag_acc_t> Stile;
|
||||
MMATile<AccumType, TK, TD, MMAFrag_acc_t> Vtile;
|
||||
MMATile<AccumType, TQ, TD, MMAFrag_acc_t> Otile;
|
||||
|
||||
Otile.clear();
|
||||
|
||||
// Prepare mma tile offsets
|
||||
const short2 simd_coord = MMAFrag_acc_t::get_coord(simd_lane_id);
|
||||
const short sm = simd_coord.y;
|
||||
const short sn = simd_coord.x;
|
||||
const short tm = kFragSize * TQ * simd_group_id;
|
||||
|
||||
const short Qs_offset = (tm + sm) * LDQ_tgp + sn;
|
||||
const short Ks_offset = sm * LDK_tgp + sn;
|
||||
const short Vs_offset = sm * LDV_tgp + sn;
|
||||
|
||||
constexpr short Qs_tile_stride = kFragSize;
|
||||
constexpr short Ks_tile_stride = kFragSize * LDK_tgp;
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Load Q blocks apply scale
|
||||
if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
|
||||
loader_q.load_safe(short2(BD, params->qL - params->NQ_aligned * BQ));
|
||||
} else {
|
||||
loader_q.load_unsafe();
|
||||
}
|
||||
loader_q.apply_inplace_op(ts);
|
||||
|
||||
// Init row reduction variables
|
||||
constexpr short kRowsPT = decltype(Stile)::kRowsPerThread;
|
||||
|
||||
AccumType max_score[kRowsPT];
|
||||
AccumType sum_score[kRowsPT] = {0};
|
||||
|
||||
// Init to -Inf
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < kRowsPT; ++i) {
|
||||
max_score[i] = Limits<AccumType>::min;
|
||||
}
|
||||
|
||||
// Loop over KV seq length
|
||||
for (int kb = 0; kb < params->NK; kb++) {
|
||||
// Load K block and apply scale
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (!align_K && kb == (params->NK_aligned)) {
|
||||
loader_k.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
|
||||
} else {
|
||||
loader_k.load_unsafe();
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Do S = Q @ K.T
|
||||
Stile.clear();
|
||||
|
||||
for (short dd = 0; dd < TD; dd++) {
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
Qtile.template load<T, 1, 1, LDQ_tgp, 1>(
|
||||
&Qs[Qs_offset + dd * Qs_tile_stride]);
|
||||
Ktile.template load<T, 1, 1, LDK_tgp, 1>(
|
||||
&Ks[Ks_offset + dd * Ks_tile_stride]);
|
||||
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
tile_matmad(Stile, Qtile, Ktile, Stile);
|
||||
}
|
||||
|
||||
// Mask out of length sequence
|
||||
if (!align_K && kb == (params->NK_aligned)) {
|
||||
using stile_t = decltype(Stile);
|
||||
using selem_t = typename stile_t::elem_type;
|
||||
constexpr auto neg_inf = -metal::numeric_limits<selem_t>::infinity();
|
||||
const short lim = params->kL - params->NK_aligned * BK;
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < stile_t::kTileRows; i++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < stile_t::kTileCols; j++) {
|
||||
short col_pos = sn + (j * stile_t::kFragCols);
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short jj = 0; jj < stile_t::MMAFrag_t::kElemCols; jj++) {
|
||||
if ((col_pos + jj) >= lim) {
|
||||
Stile.frag_at(i, j)[jj] = neg_inf;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Load V blocks
|
||||
if (!align_K && kb == (params->NK_aligned)) {
|
||||
loader_v.load_safe(short2(BD, params->kL - params->NK_aligned * BK));
|
||||
} else {
|
||||
loader_v.load_unsafe();
|
||||
}
|
||||
|
||||
// Do softmax
|
||||
|
||||
// Temp variables
|
||||
AccumType new_max[kRowsPT];
|
||||
AccumType factor[kRowsPT];
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < kRowsPT; ++i) {
|
||||
new_max[i] = max_score[i];
|
||||
}
|
||||
|
||||
// Row max
|
||||
Stile.template row_reduce<MaxOp>(new_max);
|
||||
|
||||
// exp(Si - rowmax(Si))
|
||||
Stile.template row_bin_op<ExpSubOp>(new_max);
|
||||
|
||||
// Factor exp(rowmax(Si) - rowmax(Si-1))
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < kRowsPT; ++i) {
|
||||
factor[i] = fast::exp(max_score[i] - new_max[i]);
|
||||
}
|
||||
|
||||
// Save max for next iteration
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < kRowsPT; ++i) {
|
||||
max_score[i] = new_max[i];
|
||||
}
|
||||
|
||||
// Row Sum
|
||||
AccumType sum_score_tmp[kRowsPT] = {0};
|
||||
Stile.template row_reduce<SumOp>(sum_score_tmp);
|
||||
|
||||
// Update norm
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < kRowsPT; ++i) {
|
||||
sum_score[i] = sum_score[i] * factor[i] + sum_score_tmp[i];
|
||||
}
|
||||
|
||||
// Update O
|
||||
Otile.template row_bin_op<MulOp>(factor);
|
||||
|
||||
// Load V into registers
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
Vtile.template load<T, 1, 1, LDV_tgp, 1>(&Vs[Vs_offset]);
|
||||
|
||||
simdgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Do O = S @ V
|
||||
tile_matmad(Otile, Stile, Vtile, Otile);
|
||||
|
||||
// Prepare for next iteration
|
||||
loader_k.next();
|
||||
loader_v.next();
|
||||
}
|
||||
|
||||
// Normalize output
|
||||
Otile.template row_bin_op<DivOp>(sum_score);
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
// Store results
|
||||
O += (tm + sm) * params->O_strides[2] + sn;
|
||||
|
||||
if (!align_Q && int(tid.x) == (params->NQ_aligned)) {
|
||||
auto dst_tile_dims =
|
||||
short2(BD - sn, params->qL - BQ * params->NQ_aligned - (tm + sm));
|
||||
|
||||
if (dst_tile_dims.x <= 0 || dst_tile_dims.y <= 0)
|
||||
return;
|
||||
|
||||
Otile.template store_safe<T, 1, 1>(O, params->O_strides[2], dst_tile_dims);
|
||||
} else {
|
||||
Otile.template store<T, 1, 1>(O, params->O_strides[2]);
|
||||
}
|
||||
}
|
@@ -0,0 +1,31 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/attn/attn.h"
|
||||
#include "mlx/backend/metal/kernels/steel/attn/kernels/steel_attention.h"
|
||||
|
||||
#define instantiate_attn(tname, dtype, bq, bk, bd, wm, wn) \
|
||||
template [[host_name("steel_attention_" #tname "_bq" #bq "_bk" #bk "_bd" #bd "_wm" #wm "_wn" #wn)]] \
|
||||
[[kernel]] void attention<dtype, bq, bk, bd, wm, wn, float>( \
|
||||
const device dtype* Q [[buffer(0)]], \
|
||||
const device dtype* K [[buffer(1)]], \
|
||||
const device dtype* V [[buffer(2)]], \
|
||||
device dtype* O [[buffer(3)]],\
|
||||
const constant AttnParams* params [[buffer(4)]], \
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]], \
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
|
||||
#define instantiate_attn_shapes_helper(iname, itype) \
|
||||
instantiate_attn(iname, itype, 32, 16, 128, 4, 1) \
|
||||
instantiate_attn(iname, itype, 32, 32, 80, 4, 1) \
|
||||
instantiate_attn(iname, itype, 32, 32, 64, 4, 1)
|
||||
|
||||
instantiate_attn_shapes_helper(float16, half);
|
||||
instantiate_attn_shapes_helper(bfloat16, bfloat16_t);
|
||||
|
||||
instantiate_attn_shapes_helper(float32, float);
|
||||
// clang-format on
|
264
mlx/backend/metal/kernels/steel/attn/loader.h
Normal file
264
mlx/backend/metal/kernels/steel/attn/loader.h
Normal file
@@ -0,0 +1,264 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/defines.h"
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// Loading helper
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace mlx {
|
||||
namespace steel {
|
||||
|
||||
template <
|
||||
typename T,
|
||||
short BROWS,
|
||||
short BCOLS,
|
||||
short dst_ld,
|
||||
short reduction_dim,
|
||||
short tgp_size,
|
||||
short alignment = 1,
|
||||
short n_reads = (BCOLS * BROWS) / (tgp_size),
|
||||
short TCOLS = BCOLS / n_reads,
|
||||
short TROWS = tgp_size / TCOLS>
|
||||
struct BlockLoader {
|
||||
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
|
||||
STEEL_CONST short vec_size = n_reads;
|
||||
|
||||
// Leading dimension for src
|
||||
const int src_ld;
|
||||
const int tile_stride;
|
||||
|
||||
// Thread location indices
|
||||
const short thread_idx;
|
||||
const short bi;
|
||||
const short bj;
|
||||
|
||||
// threadgroup and device memory
|
||||
threadgroup T* dst;
|
||||
const device T* src;
|
||||
|
||||
struct alignas(alignment * sizeof(T)) ReadVector {
|
||||
uint8_t v[sizeof(T) * vec_size];
|
||||
};
|
||||
|
||||
/* Constructor */
|
||||
METAL_FUNC BlockLoader(
|
||||
const device T* src_,
|
||||
const int src_ld_,
|
||||
threadgroup T* dst_,
|
||||
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
ushort simd_lane_id [[thread_index_in_simdgroup]])
|
||||
: src_ld(src_ld_),
|
||||
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
|
||||
thread_idx(simd_group_id * 32 + simd_lane_id),
|
||||
bi(thread_idx / TCOLS),
|
||||
bj(vec_size * (thread_idx % TCOLS)),
|
||||
dst(dst_ + bi * dst_ld + bj),
|
||||
src(src_ + bi * src_ld + bj) {}
|
||||
|
||||
/* Apply operation to threadgroup without bound checking */
|
||||
template <typename UnaryOp>
|
||||
METAL_FUNC void apply_inplace_op(thread const UnaryOp& op) const {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * dst_ld + j] = op.apply(dst[i * dst_ld + j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Load from device memory into threadgroup memory - without bound checking */
|
||||
METAL_FUNC void load_unsafe() const {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
*((threadgroup ReadVector*)(&dst[i * dst_ld])) =
|
||||
*((const device ReadVector*)(&src[i * src_ld]));
|
||||
}
|
||||
}
|
||||
|
||||
/* Load from device memory into threadgroup memory - with bound checking */
|
||||
METAL_FUNC void load_safe(short2 src_tile_dim) const {
|
||||
src_tile_dim = src_tile_dim - short2(bj, bi);
|
||||
|
||||
// Skip loading if thread has no valid reads
|
||||
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * dst_ld + j] = T(0);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Use fast thread memory for bound checks
|
||||
bool tmp_idx[vec_size];
|
||||
T tmp_val[vec_size];
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
// Make sure tmp_idx only contains valid indices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
|
||||
}
|
||||
|
||||
// Read valid indices into tmp_val
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
|
||||
}
|
||||
|
||||
// Zero out uneeded values
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
|
||||
}
|
||||
|
||||
// Copy values to threadgroup memory
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * dst_ld + j] = tmp_val[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Iteration helper */
|
||||
METAL_FUNC void next() {
|
||||
src += tile_stride;
|
||||
}
|
||||
};
|
||||
|
||||
template <int R, int C>
|
||||
struct CShape {
|
||||
STEEL_CONST int kRows = R;
|
||||
STEEL_CONST int kCols = C;
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
short BROWS,
|
||||
short BCOLS,
|
||||
short kDstStrRow,
|
||||
short kDstStrCol,
|
||||
short reduction_dim,
|
||||
short tgp_size,
|
||||
short n_reads = (BCOLS * BROWS) / (tgp_size),
|
||||
short TCOLS = BCOLS / n_reads,
|
||||
short TROWS = tgp_size / TCOLS>
|
||||
struct BlockLoaderT {
|
||||
STEEL_CONST short n_rows = (BROWS + TROWS - 1) / TROWS;
|
||||
STEEL_CONST short vec_size = n_reads;
|
||||
|
||||
// Leading dimension for src
|
||||
const int src_ld;
|
||||
const int tile_stride;
|
||||
|
||||
// Thread location indices
|
||||
const short thread_idx;
|
||||
const short bi;
|
||||
const short bj;
|
||||
|
||||
// threadgroup and device memory
|
||||
threadgroup T* dst;
|
||||
const device T* src;
|
||||
|
||||
/* Constructor */
|
||||
METAL_FUNC BlockLoaderT(
|
||||
const device T* src_,
|
||||
const int src_ld_,
|
||||
threadgroup T* dst_,
|
||||
ushort simd_group_id [[simdgroup_index_in_threadgroup]],
|
||||
ushort simd_lane_id [[thread_index_in_simdgroup]])
|
||||
: src_ld(src_ld_),
|
||||
tile_stride(reduction_dim ? BCOLS : BROWS * src_ld),
|
||||
thread_idx(simd_group_id * 32 + simd_lane_id),
|
||||
bi(thread_idx / TCOLS),
|
||||
bj(vec_size * (thread_idx % TCOLS)),
|
||||
dst(dst_ + bi * kDstStrRow + bj * kDstStrCol),
|
||||
src(src_ + bi * src_ld + bj) {}
|
||||
|
||||
/* Apply operation to threadgroup without bound checking */
|
||||
template <typename UnaryOp>
|
||||
METAL_FUNC void apply_inplace_op(thread const UnaryOp& op) const {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * kDstStrRow + j * kDstStrCol] =
|
||||
op.apply(dst[i * kDstStrRow + j * kDstStrCol]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Load from device memory into threadgroup memory - without bound checking */
|
||||
METAL_FUNC void load_unsafe() const {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * kDstStrRow + j * kDstStrCol] = src[i * src_ld + j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Load from device memory into threadgroup memory - with bound checking */
|
||||
METAL_FUNC void load_safe(short2 src_tile_dim) const {
|
||||
src_tile_dim = src_tile_dim - short2(bj, bi);
|
||||
|
||||
// Skip loading if thread has no valid reads
|
||||
if (src_tile_dim.x <= 0 || src_tile_dim.y <= 0) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * kDstStrRow + j * kDstStrCol] = T(0);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Use fast thread memory for bound checks
|
||||
bool tmp_idx[vec_size];
|
||||
T tmp_val[vec_size];
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < BROWS; i += TROWS) {
|
||||
// Make sure tmp_idx only contains valid indices
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_idx[j] = (i < src_tile_dim.y) && (j < src_tile_dim.x);
|
||||
}
|
||||
|
||||
// Read valid indices into tmp_val
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = src[(tmp_idx[j] ? i * src_ld + j : 0)];
|
||||
}
|
||||
|
||||
// Zero out uneeded values
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
tmp_val[j] = tmp_idx[j] ? tmp_val[j] : T(0);
|
||||
}
|
||||
|
||||
// Copy values to threadgroup memory
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < vec_size; j++) {
|
||||
dst[i * kDstStrRow + j * kDstStrCol] = tmp_val[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Iteration helper */
|
||||
METAL_FUNC void next() {
|
||||
src += tile_stride;
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace steel
|
||||
} // namespace mlx
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user