Compare commits

..

6 Commits

Author SHA1 Message Date
Angelos Katharopoulos
3fe98bacc7 Raw sockets 2024-09-09 00:38:15 -07:00
Angelos Katharopoulos
2e267bd6a8 Fix run without distributed 2024-09-06 11:03:01 -07:00
Angelos Katharopoulos
a9746587f1 TCP socket distributed 2024-09-06 11:03:01 -07:00
Angelos Katharopoulos
97a9561e34 Change the send message size 2024-09-06 11:03:01 -07:00
Angelos Katharopoulos
4aefacf0bc Make it work even for donated inputs 2024-09-06 11:03:01 -07:00
Angelos Katharopoulos
794a48a9f6 Start a sockets based distributed backend 2024-09-06 11:03:01 -07:00
231 changed files with 6648 additions and 11285 deletions

View File

@@ -13,62 +13,8 @@ parameters:
test_release:
type: boolean
default: false
linux_release:
type: boolean
default: false
jobs:
build_documentation:
parameters:
upload-docs:
type: boolean
default: false
macos:
xcode: "15.2.0"
resource_class: macos.m1.medium.gen1
steps:
- checkout
- run:
name: Install
command: |
brew install python@3.9
brew install doxygen
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
steps:
- run:
name: Build documentation
command: |
source env/bin/activate
cd docs && doxygen && make html O=-W
- when:
condition: << parameters.upload-docs >>
steps:
- add_ssh_keys:
fingerprints:
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
- run:
name: Upload documentation
command: |
source env/bin/activate
git config user.email "mlx@group.apple.com"
git config user.name "CircleCI Docs"
git checkout gh-pages
git rebase main
cd docs
git rm -rf build/html
doxygen && make html O=-W
git add -f build/html
git commit -m "rebase"
git push -f origin gh-pages
linux_build_and_test:
docker:
- image: cimg/python:3.9
@@ -85,19 +31,15 @@ jobs:
name: Install dependencies
command: |
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.1.0
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
- run:
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py develop
- run:
name: Generate package stubs
command: |
@@ -111,9 +53,7 @@ jobs:
- run:
name: Build CPP only
command: |
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
mkdir -p build && cd build && cmake .. -DMLX_BUILD_METAL=OFF && make -j
- run:
name: Run CPP tests
command: ./build/tests/tests
@@ -131,13 +71,13 @@ jobs:
- run:
name: Install dependencies
command: |
brew install python@3.9
brew install python@3.8
brew install openmpi
python3.9 -m venv env
python3.8 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.1.0
pip install numpy
pip install torch
pip install tensorflow
@@ -146,7 +86,7 @@ jobs:
name: Install Python package
command: |
source env/bin/activate
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install -e . -v
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
- run:
name: Generate package stubs
command: |
@@ -159,7 +99,7 @@ jobs:
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
mpirun -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
- run:
name: Build example extension
command: |
@@ -173,7 +113,7 @@ jobs:
name: Build CPP only
command: |
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
mkdir -p build && cd build && cmake .. && make -j
- run:
name: Run CPP tests
command: |
@@ -183,23 +123,14 @@ jobs:
command: |
source env/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
make -j `sysctl -n hw.ncpu`
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel -DBUILD_SHARED_LIBS=ON -DMLX_BUILD_CPU=OFF -DMLX_BUILD_SAFETENSORS=OFF -DMLX_BUILD_GGUF=OFF -DMLX_METAL_JIT=ON
make -j
- run:
name: Run Python tests with JIT
command: |
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
pip install -e . -v
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
CMAKE_BUILD_PARALLEL_LEVEL="" CMAKE_ARGS="-DMLX_METAL_JIT=ON" pip install -e . -v
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
build_release:
parameters:
@@ -226,7 +157,7 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.1.0
pip install --upgrade setuptools
pip install numpy
pip install twine
@@ -236,7 +167,7 @@ jobs:
command: |
source env/bin/activate
DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_BUILD_PARALLEL_LEVEL="" \
pip install . -v
- run:
name: Generate package stubs
@@ -249,7 +180,7 @@ jobs:
command: |
source env/bin/activate
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python -m build -w
- when:
condition: << parameters.build_env >>
@@ -262,7 +193,7 @@ jobs:
- store_artifacts:
path: dist/
build_linux_release:
build_linux_test_release:
parameters:
python_version:
type: string
@@ -291,28 +222,22 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install nanobind==2.2.0
pip install nanobind==2.1.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
CMAKE_BUILD_PARALLEL_LEVEL="" \
pip install . -v
pip install typing_extensions
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- run:
name: Upload package
command: |
source env/bin/activate
twine upload wheelhouse/*
- store_artifacts:
path: wheelhouse/
@@ -330,9 +255,8 @@ workflows:
- mac_build_and_test:
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
xcode_version: ["15.0.0", "15.2.0"]
- linux_build_and_test
- build_documentation
build_pypi_release:
when:
@@ -349,17 +273,9 @@ workflows:
ignore: /.*/
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
build_env: ["PYPI_RELEASE=1"]
- build_documentation:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
upload-docs: true
prb:
when:
matches:
@@ -374,7 +290,7 @@ workflows:
requires: [ hold ]
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
xcode_version: ["15.0.0", "15.2.0"]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
@@ -386,7 +302,7 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
weekly_build:
when:
@@ -397,17 +313,17 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
build_env: ["DEV_RELEASE=1"]
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.linux_release >>
- << pipeline.parameters.test_release >>
jobs:
- build_linux_release:
- build_linux_test_release:
matrix:
parameters:
python_version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -14,7 +14,3 @@ repos:
- id: isort
args:
- --profile=black
- repo: https://github.com/cheshirekow/cmake-format-precommit
rev: v0.6.13
hooks:
- id: cmake-format

View File

@@ -7,7 +7,7 @@ with a short description of your contribution(s) below. For example:
MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`. Added `cross`.
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream`, safetensors support, `einsum`, and `einsum_path`.
@@ -18,7 +18,6 @@ MLX was developed with contributions from the following individuals:
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

View File

@@ -1,24 +0,0 @@
cff-version: 1.2.0
title: mlx
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Awni
family-names: Hannun
affiliation: Apple
- given-names: Jagrit
family-names: Digani
affiliation: Apple
- given-names: Angelos
family-names: Katharopoulos
affiliation: Apple
- given-names: Ronan
family-names: Collobert
affiliation: Apple
repository-code: 'https://github.com/ml-explore'
abstract: >-
MLX: efficient and flexible machine learning on Apple
silicon
license: MIT

View File

@@ -24,43 +24,35 @@ option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.19.3)
set(MLX_VERSION 0.17.2)
endif()
# --------------------- Processor tests -------------------------
message(
STATUS
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
)
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
set(MLX_BUILD_ARM OFF)
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
if(NOT MLX_ENABLE_X64_MAC)
message(
FATAL_ERROR
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, check the build"
" documentation for possible fixes: "
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source"
)
message(FATAL_ERROR
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, check the build"
" documentation for possible fixes: "
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
else()
set(MLX_BUILD_METAL OFF)
message(WARNING "Building for x86_64 arch is not officially supported.")
endif()
set(MLX_BUILD_METAL OFF)
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
set(MLX_BUILD_ARM ON)
endif()
else()
set(MLX_BUILD_METAL OFF)
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
set(MLX_BUILD_ARM ON)
endif()
# ----------------------------- Lib -----------------------------
include(FetchContent)
@@ -69,59 +61,63 @@ cmake_policy(SET CMP0135 NEW)
add_library(mlx)
if(MLX_BUILD_METAL)
set(METAL_LIB "-framework Metal")
set(FOUNDATION_LIB "-framework Foundation")
set(QUARTZ_LIB "-framework QuartzCore")
if (MLX_BUILD_METAL)
find_library(METAL_LIB Metal)
find_library(FOUNDATION_LIB Foundation)
find_library(QUARTZ_LIB QuartzCore)
endif()
if(MLX_BUILD_METAL AND NOT METAL_LIB)
if (MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
set(MLX_METAL_DEBUG OFF)
elseif(MLX_BUILD_METAL)
elseif (MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
if(MLX_METAL_DEBUG)
if (MLX_METAL_DEBUG)
add_compile_definitions(MLX_METAL_DEBUG)
endif()
# Throw an error if xcrun not found
execute_process(
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION COMMAND_ERROR_IS_FATAL ANY)
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION
COMMAND_ERROR_IS_FATAL ANY)
if(${MACOS_VERSION} LESS 14.0)
message(
FATAL_ERROR
"MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON")
if (${MACOS_VERSION} LESS 14.0)
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
endif()
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip)
# Get the metal version
execute_process(
COMMAND
zsh "-c"
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
COMMAND zsh "-c" "echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION
COMMAND_ERROR_IS_FATAL ANY)
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
FetchContent_Declare(
metal_cpp
URL ${METAL_CPP_URL}
)
FetchContent_MakeAvailable(metal_cpp)
target_include_directories(
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/metal_cpp>)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
mlx PUBLIC
$<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/metal_cpp>
)
target_link_libraries(
mlx PUBLIC
${METAL_LIB}
${FOUNDATION_LIB}
${QUARTZ_LIB})
add_compile_definitions("MLX_METAL_VERSION=${MLX_METAL_VERSION}")
endif()
if(MLX_BUILD_CPU)
if (MLX_BUILD_CPU)
find_library(ACCELERATE_LIBRARY Accelerate)
if(MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
@@ -133,29 +129,32 @@ if(MLX_BUILD_CPU)
# The blas shipped in macOS SDK is not supported, search homebrew for
# openblas instead.
set(BLA_VENDOR OpenBLAS)
set(LAPACK_ROOT
"${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
endif()
# Search and link with lapack.
find_package(LAPACK REQUIRED)
if(NOT LAPACK_FOUND)
if (NOT LAPACK_FOUND)
message(FATAL_ERROR "Must have LAPACK installed")
endif()
find_path(LAPACK_INCLUDE_DIRS lapacke.h /usr/include /usr/local/include
/usr/local/opt/openblas/include)
find_path(LAPACK_INCLUDE_DIRS lapacke.h
/usr/include
/usr/local/include
/usr/local/opt/openblas/include)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
# List blas after lapack otherwise we may accidentally incldue an old
# version of lapack.h from the include dirs of blas.
# List blas after lapack otherwise we may accidentally incldue an old version
# of lapack.h from the include dirs of blas.
find_package(BLAS REQUIRED)
if(NOT BLAS_FOUND)
if (NOT BLAS_FOUND)
message(FATAL_ERROR "Must have BLAS installed")
endif()
# TODO find a cleaner way to do this
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include /usr/local/include
$ENV{BLAS_HOME}/include)
find_path(BLAS_INCLUDE_DIRS cblas.h
/usr/include
/usr/local/include
$ENV{BLAS_HOME}/include)
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
@@ -166,95 +165,103 @@ else()
endif()
find_package(MPI)
if(MPI_FOUND)
if (MPI_FOUND)
execute_process(
COMMAND zsh "-c" "mpirun --version"
OUTPUT_VARIABLE MPI_VERSION
ERROR_QUIET)
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
ERROR_QUIET
)
if (${MPI_VERSION} MATCHES ".*Open MPI.*")
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
elseif(MPI_VERSION STREQUAL "")
elseif (MPI_VERSION STREQUAL "")
set(MPI_FOUND FALSE)
message(
WARNING "MPI found but mpirun is not available. Building without MPI.")
WARNING
"MPI found but mpirun is not available. Building without MPI."
)
else()
set(MPI_FOUND FALSE)
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
endif()
message(
WARNING
"MPI which is not OpenMPI found. Building without MPI."
)
endif()
endif()
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
target_include_directories(
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>)
mlx
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>
)
FetchContent_Declare(
fmt
FetchContent_Declare(fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL
)
FetchContent_MakeAvailable(fmt)
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
target_link_libraries(mlx PRIVATE fmt::fmt-header-only)
if(MLX_BUILD_PYTHON_BINDINGS)
if (MLX_BUILD_PYTHON_BINDINGS)
message(STATUS "Building Python bindings.")
find_package(
Python 3.8
COMPONENTS Interpreter Development.Module
REQUIRED)
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
endif()
if(MLX_BUILD_TESTS)
if (MLX_BUILD_TESTS)
include(CTest)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/tests)
endif()
if(MLX_BUILD_EXAMPLES)
if (MLX_BUILD_EXAMPLES)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/examples/cpp)
endif()
if(MLX_BUILD_BENCHMARKS)
if (MLX_BUILD_BENCHMARKS)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/benchmarks/cpp)
endif()
# ----------------------------- Installation -----------------------------
include(GNUInstallDirs)
# Install library
install(
TARGETS mlx
EXPORT MLXTargets
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
TARGETS mlx
EXPORT MLXTargets
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
# Install headers
install(
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
COMPONENT headers
FILES_MATCHING
PATTERN "*.h"
PATTERN "backend/metal/kernels.h" EXCLUDE)
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
COMPONENT headers
FILES_MATCHING PATTERN "*.h"
)
# Install metal dependencies
if(MLX_BUILD_METAL)
if (MLX_BUILD_METAL)
# Install metal cpp
install(
DIRECTORY ${metal_cpp_SOURCE_DIR}/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
COMPONENT metal_cpp_source)
DIRECTORY ${metal_cpp_SOURCE_DIR}/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
COMPONENT metal_cpp_source
)
endif()
@@ -266,24 +273,31 @@ set(MLX_CMAKE_INSTALL_MODULE_DIR share/cmake/MLX)
install(
EXPORT MLXTargets
FILE MLXTargets.cmake
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)
include(CMakePackageConfigHelpers)
write_basic_package_version_file(
${MLX_CMAKE_BUILD_VERSION_CONFIG}
COMPATIBILITY SameMajorVersion
VERSION ${MLX_VERSION})
VERSION ${MLX_VERSION}
)
configure_package_config_file(
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in ${MLX_CMAKE_BUILD_CONFIG}
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in
${MLX_CMAKE_BUILD_CONFIG}
INSTALL_DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
NO_CHECK_REQUIRED_COMPONENTS_MACRO
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR
MLX_CMAKE_INSTALL_MODULE_DIR)
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR MLX_CMAKE_INSTALL_MODULE_DIR
)
install(FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
install(
FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)
install(DIRECTORY ${CMAKE_MODULE_PATH}/
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
install(
DIRECTORY ${CMAKE_MODULE_PATH}/
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)

View File

@@ -6,7 +6,7 @@
[![CircleCI](https://circleci.com/gh/ml-explore/mlx.svg?style=svg)](https://circleci.com/gh/ml-explore/mlx)
MLX is an array framework for machine learning on Apple silicon,
MLX is an array framework for machine learning research on Apple silicon,
brought to you by Apple machine learning research.
Some key features of MLX include:

View File

@@ -144,13 +144,6 @@ def reduction(op, axis, x):
mx.eval(ys)
def sum_and_add(axis, x, y):
z = x.sum(axis=axis, keepdims=True)
for i in range(50):
z = (z + y).sum(axis=axis, keepdims=True)
mx.eval(z)
def softmax(axis, x):
ys = []
for i in range(100):
@@ -512,8 +505,5 @@ if __name__ == "__main__":
elif args.benchmark == "selu":
print(bench(selu, x))
elif args.benchmark == "sum_and_add":
print(bench(sum_and_add, axis, *xs))
else:
raise ValueError("Unknown benchmark")

View File

@@ -1,127 +0,0 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("cpu")
f_mx = make_mx_conv_2D(strides, padding, groups)
f_pt = make_pt_conv_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -1,143 +0,0 @@
import time
import mlx.core as mx
import mlx.nn
import mlx.optimizers as opt
import torch
def bench_mlx(steps: int = 20) -> float:
mx.set_default_device(mx.cpu)
class BenchNetMLX(mlx.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=32):
super().__init__()
self.net = mlx.nn.Sequential(
mlx.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
mlx.nn.ReLU(),
mlx.nn.Conv2d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose2d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose2d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def __call__(self, input):
return self.net(input)
benchNet = BenchNetMLX(3)
mx.eval(benchNet.parameters())
optim = opt.Adam(learning_rate=1e-3)
inputs = mx.random.normal([10, 256, 256, 3])
params = benchNet.parameters()
optim.init(params)
state = [benchNet.state, optim.state]
def loss_fn(params, image):
benchNet.update(params)
pred_image = benchNet(image)
return (pred_image - image).abs().mean()
def step(params, image):
loss, grads = mx.value_and_grad(loss_fn)(params, image)
optim.update(benchNet, grads)
return loss
total_time = 0.0
print("MLX:")
for i in range(steps):
start_time = time.perf_counter()
step(benchNet.parameters(), inputs)
mx.eval(state)
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def bench_torch(steps: int = 20) -> float:
device = torch.device("cpu")
class BenchNetTorch(torch.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=32):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def forward(self, input):
return self.net(input)
benchNet = BenchNetTorch(3).to(device)
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
inputs = torch.randn(10, 3, 256, 256, device=device)
def loss_fn(pred_image, image):
return (pred_image - image).abs().mean()
total_time = 0.0
print("PyTorch:")
for i in range(steps):
start_time = time.perf_counter()
optim.zero_grad()
pred_image = benchNet(inputs)
loss = loss_fn(pred_image, inputs)
loss.backward()
optim.step()
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def main():
steps = 20
time_mlx = bench_mlx(steps)
time_torch = bench_torch(steps)
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
print(f"total time of MLX: {time_mlx:9.2f} ms")
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
print(f"total time of PyTorch: {time_torch:9.2f} ms")
diff = time_torch / time_mlx - 1.0
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
if __name__ == "__main__":
main()

View File

@@ -1,129 +0,0 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups, stream=mx.cpu
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_transpose_2D
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
return ys
return pt_conv_transpose_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (int(O / groups), kH, kW, C)).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("cpu")
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose2d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups, stream=mx.cpu
)
out_pt = torch.conv_transpose2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -1,110 +0,0 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv3d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_3D
def make_pt_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv3d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
return ys
return pt_conv_3D
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kD * kH * kW * C)
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((0, 4, 1, 2, 3))).to("cpu")
f_mx = make_mx_conv_3D(strides, padding, groups)
f_pt = make_pt_conv_3D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv3d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv3d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
)
for dtype in dtypes:
print(
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -1,143 +0,0 @@
import time
import mlx.core as mx
import mlx.nn
import mlx.optimizers as opt
import torch
def bench_mlx(steps: int = 20, shape=(10, 32, 32, 32, 3)) -> float:
mx.set_default_device(mx.cpu)
class BenchNetMLX(mlx.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=16):
super().__init__()
self.net = mlx.nn.Sequential(
mlx.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
mlx.nn.ReLU(),
mlx.nn.Conv3d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose3d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose3d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def __call__(self, input):
return self.net(input)
benchNet = BenchNetMLX(3)
mx.eval(benchNet.parameters())
optim = opt.Adam(learning_rate=1e-3)
inputs = mx.random.normal(shape)
params = benchNet.parameters()
optim.init(params)
state = [benchNet.state, optim.state]
def loss_fn(params, image):
benchNet.update(params)
pred_image = benchNet(image)
return (pred_image - image).abs().mean()
def step(params, image):
loss, grads = mx.value_and_grad(loss_fn)(params, image)
optim.update(benchNet, grads)
return loss
total_time = 0.0
print("MLX:")
for i in range(steps):
start_time = time.perf_counter()
step(benchNet.parameters(), inputs)
mx.eval(state)
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def bench_torch(steps: int = 20, shape=(10, 3, 32, 32, 32)) -> float:
device = torch.device("cpu")
class BenchNetTorch(torch.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=16):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.Conv3d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose3d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose3d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def forward(self, input):
return self.net(input)
benchNet = BenchNetTorch(3).to(device)
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
inputs = torch.randn(*shape, device=device)
def loss_fn(pred_image, image):
return (pred_image - image).abs().mean()
total_time = 0.0
print("PyTorch:")
for i in range(steps):
start_time = time.perf_counter()
optim.zero_grad()
pred_image = benchNet(inputs)
loss = loss_fn(pred_image, inputs)
loss.backward()
optim.step()
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def main():
steps = 10
time_mlx = bench_mlx(steps)
time_torch = bench_torch(steps)
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
print(f"total time of MLX: {time_mlx:9.2f} ms")
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
print(f"total time of PyTorch: {time_torch:9.2f} ms")
diff = time_torch / time_mlx - 1.0
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
if __name__ == "__main__":
main()

View File

@@ -1,116 +0,0 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
def mx_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose3d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_3D
def make_pt_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
@torch.no_grad()
def pt_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose3d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
return ys
return pt_conv_3D
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kD * kH * kW * C)
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((4, 0, 1, 2, 3))).to("cpu")
f_mx = make_mx_conv_3D(strides, padding, groups)
f_pt = make_pt_conv_3D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose3d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups
)
out_pt = torch.conv_transpose3d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
)
for dtype in dtypes:
print(
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -1,135 +0,0 @@
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_transpose_2D
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_transpose_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose2d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups
)
out_pt = torch.conv_transpose2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -9,7 +9,7 @@ from time_utils import measure_runtime
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
def scatter(dst, x, idx):
dst[tuple(idx)] = x
dst[*idx] = x
mx.eval(dst)
idx = []
@@ -23,8 +23,8 @@ def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
def scatter(dst, x, idx, device):
dst[tuple(idx)] = x
def gather(dst, x, idx, device):
dst[*idx] = x
if device == torch.device("mps"):
torch.mps.synchronize()
@@ -34,7 +34,7 @@ def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
x = torch.randn(x_shape, dtype=torch.float32).to(device)
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
runtime = measure_runtime(scatter, dst=dst, x=x, idx=idx, device=device)
runtime = measure_runtime(gather, dst=dst, x=x, idx=idx, device=device)
print(f"PyTorch: {runtime:.3f}ms")
@@ -54,7 +54,7 @@ if __name__ == "__main__":
(100_000, 64),
(1_000_000, 64),
(100_000,),
(200_000,),
(2_000_00,),
(20_000_000,),
(10000, 64),
(100, 64),
@@ -91,6 +91,6 @@ if __name__ == "__main__":
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
print("=" * 20)
print(f"Dst: {dst_shape}, X {x_shape}, Indices {idx_shape}")
print(f"X {x_shape}, Indices {idx_shape}")
benchmark_scatter_mlx(dst_shape, x_shape, idx_shape)
benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device=device)

View File

@@ -1,49 +0,0 @@
import argparse
import math
import mlx.core as mx
from time_utils import time_fn
L = 1024
H = 32
H_k = 32 // 4
D = 128
def attention(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
def sdpa(q, k, v):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0)
def time_self_attention_primitives():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
mx.eval(q, k, v)
time_fn(attention, q, k, v)
def time_self_attention_sdpa():
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
mx.eval(q, k, v)
time_fn(sdpa, q, k, v)
if __name__ == "__main__":
time_self_attention_sdpa()
time_self_attention_primitives()

View File

@@ -1,41 +1,56 @@
include(CMakeParseArguments)
# ##############################################################################
###############################################################################
# Build metal library
#
# Adds a custom target ${TARGET} to build ${OUTPUT_DIRECTORY}/{TITLE}.metallib
# from list ${SOURCES}, including list ${INCLUDE_DIRS}, depends on list ${DEPS}
#
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
# files (like headers)
# Args:
# TARGET: Custom target to be added for the metal library
# TITLE: Name of the .metallib
# OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib
# SOURCES: List of source files
# INCLUDE_DIRS: List of include dirs
# DEPS: List of dependency files (like headers)
#
macro(mlx_build_metallib)
# Parse args
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cmake_parse_arguments(
MTLLIB
""
"${oneValueArgs}"
"${multiValueArgs}"
${ARGN}
)
# Set output
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
# Collect compile options
# Collect compile options
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
# Prepare metallib build command
add_custom_command(
OUTPUT ${MTLLIB_BUILD_TARGET}
COMMAND
xcrun -sdk macosx metal
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
${MTLLIB_COMPILE_OPTIONS} ${MTLLIB_SOURCES} -o ${MTLLIB_BUILD_TARGET}
COMMAND xcrun -sdk macosx metal
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
${MTLLIB_COMPILE_OPTIONS}
${MTLLIB_SOURCES}
-o ${MTLLIB_BUILD_TARGET}
DEPENDS ${MTLLIB_DEPS} ${MTLLIB_SOURCES}
COMMAND_EXPAND_LISTS
COMMENT "Building ${MTLLIB_TITLE}.metallib"
VERBATIM)
VERBATIM
)
# Add metallib custom target
add_custom_target(${MTLLIB_TARGET} DEPENDS ${MTLLIB_BUILD_TARGET})
add_custom_target(
${MTLLIB_TARGET}
DEPENDS
${MTLLIB_BUILD_TARGET}
)
endmacro(mlx_build_metallib)
endmacro(mlx_build_metallib)

View File

@@ -60,7 +60,6 @@ html_theme_options = {
},
}
html_favicon = html_theme_options["logo"]["image_light"]
# -- Options for HTMLHelp output ---------------------------------------------

View File

@@ -1,5 +1,3 @@
.. _custom_metal_kernels:
Custom Metal Kernels
====================
@@ -21,19 +19,17 @@ Let's write a custom kernel that computes ``exp`` elementwise:
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
inputs={"inp": a},
template={"T": mx.float32},
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes=[a.shape],
output_dtypes=[a.dtype],
output_shapes={"out": a.shape},
output_dtypes={"out": a.dtype},
)
return outputs[0]
return outputs["out"]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
b = exp_elementwise(a)
@@ -44,16 +40,16 @@ Let's write a custom kernel that computes ``exp`` elementwise:
The full function signature will be generated using:
* The shapes/dtypes of ``inputs``
* The keys and shapes/dtypes of ``inputs``
In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp``
so we will add ``const device float16_t* inp`` to the signature.
``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present
in ``source``.
* The list of ``output_dtypes``
* The keys and values of ``output_shapes`` and ``output_dtypes``
In the above, ``out`` is an ``mx.array`` of type ``mx.float16``
so we add ``device float16_t* out``.
* Template parameters passed using ``template``
In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function
In the above, ``template={"T": mx.float32}`` adds a template of ``template <typename T>`` to the function
and instantiates the template with ``custom_kernel_myexp_float<float>``.
Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``.
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]``
@@ -78,10 +74,6 @@ Putting this all together, the generated function signature for ``myexp`` is as
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads <https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_ function.
This means we will launch ``mx.prod(grid)`` threads, subdivided into ``threadgroup`` size threadgroups.
For optimal performance, each thread group dimension should be less than or equal to the corresponding grid dimension.
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
Using Shape/Strides
@@ -112,20 +104,18 @@ Let's convert ``myexp`` above to support arbitrarily strided arrays without rely
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
inputs={"inp": a},
template={"T": mx.float32},
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes=[a.shape],
output_dtypes=[a.dtype],
output_shapes={"out": a.shape},
output_dtypes={"out": a.dtype},
ensure_row_contiguous=False,
)
return outputs[0]
return outputs["out"]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
# make non-contiguous
@@ -253,19 +243,17 @@ First we'll implement the forward pass as a fused kernel:
"""
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
inputs={"x": x, "grid": grid},
template={"T": x.dtype},
output_shapes={"out": out_shape},
output_dtypes={"out": x.dtype},
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
return outputs["out"]
For a reasonably sized input such as:
@@ -401,8 +389,6 @@ We can then implement the backwards pass as follows:
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
@@ -412,15 +398,15 @@ We can then implement the backwards pass as follows:
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
inputs={"x": x, "grid": grid, "cotangent": cotangent},
template={"T": x.dtype},
output_shapes={"x_grad": x.shape, "grid_grad": grid.shape},
output_dtypes={"x_grad": x.dtype, "grid_grad": x.dtype},
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
return outputs["x_grad"], outputs["grid_grad"]
There's an even larger speed up for the vjp:

View File

@@ -14,7 +14,7 @@ silicon computer is
To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.9
- Using a native Python >= 3.8
- macOS >= 13.5
.. note::
@@ -74,20 +74,20 @@ Then simply build and install MLX using pip:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e ".[dev]"
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext -j --inplace
Run the tests with:
@@ -240,7 +240,7 @@ x86 Shell
.. _build shell:
If the output of ``uname -p`` is ``x86`` then your shell is running as x86 via
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
Rosetta instead of natively.
To fix this, find the application in Finder (``/Applications`` for iTerm,
@@ -264,4 +264,4 @@ Also check that cmake is using the correct architecture:
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
but the build errors out with "Building for x86_64 on macOS is not supported."
wipe your build cache with ``rm -rf build/`` and try again.
wipe your build cahce with ``rm -rf build/`` and try again.

View File

@@ -13,8 +13,5 @@ Linear Algebra
norm
cholesky
cholesky_inv
cross
qr
svd
eigvalsh
eigh

View File

@@ -14,7 +14,6 @@ Metal
get_cache_memory
set_memory_limit
set_cache_limit
set_wired_limit
clear_cache
start_capture
stop_capture

View File

@@ -13,7 +13,6 @@ simple functions.
:template: nn-module-template.rst
elu
celu
gelu
gelu_approx
gelu_fast_approx

View File

@@ -13,18 +13,13 @@ Layers
AvgPool1d
AvgPool2d
BatchNorm
CELU
Conv1d
Conv2d
Conv3d
ConvTranspose1d
ConvTranspose2d
ConvTranspose3d
Dropout
Dropout2d
Dropout3d
Embedding
ELU
GELU
GLU
GroupNorm
@@ -36,8 +31,6 @@ Layers
LayerNorm
LeakyReLU
Linear
LogSigmoid
LogSoftmax
LSTM
MaxPool1d
MaxPool2d
@@ -53,7 +46,6 @@ Layers
RoPE
SELU
Sequential
Sigmoid
SiLU
SinusoidalPositionalEncoding
Softmin

View File

@@ -45,9 +45,6 @@ Operations
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
conv_general
cos
cosh
@@ -80,7 +77,6 @@ Operations
greater_equal
hadamard_transform
identity
imag
inner
isfinite
isclose
@@ -122,17 +118,14 @@ Operations
pad
power
prod
put_along_axis
quantize
quantized_matmul
radians
real
reciprocal
remainder
repeat
reshape
right_shift
roll
round
rsqrt
save

View File

@@ -45,4 +45,3 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
truncated_normal
uniform
laplace
permutation

View File

@@ -33,12 +33,12 @@ Let's start with a simple example:
# Compile the function
compiled_fun = mx.compile(fun)
# Prints: array(2.36788, dtype=float32)
# Prints: array(2.36788, dtype=float32)
print(compiled_fun(x, y))
The output of both the regular function and the compiled function is the same
up to numerical precision.
The first time you call a compiled function, MLX will build the compute
graph, optimize it, and generate and compile code. This can be relatively
slow. However, MLX will cache compiled functions, so calling a compiled
@@ -96,7 +96,7 @@ element-wise operations:
.. code-block:: python
def gelu(x):
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
If you use this function with small arrays, it will be overhead bound. If you
@@ -136,6 +136,13 @@ Now make an array, and benchmark both functions:
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.
.. note::
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
functions can still be helpful, but won't typically result in as large a
speedup as compiling operations that run on the GPU.
Debugging
---------
@@ -280,7 +287,7 @@ to the function. In some cases this can be pretty inconvenient. Hence,
print(fun(mx.array(1.0)))
Compiling Training Graphs
Compiling Training Graphs
-------------------------
This section will step through how to use :func:`compile` with a simple example
@@ -290,7 +297,7 @@ full forward, backward, and update with :func:`compile`.
To start, here is the simple example without any compilation:
.. code-block:: python
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
@@ -323,7 +330,7 @@ To start, here is the simple example without any compilation:
To compile the update we can put it all in a function and compile it with the
appropriate input and output captures. Here's the same example but compiled:
.. code-block:: python
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
@@ -348,7 +355,7 @@ appropriate input and output captures. Here's the same example but compiled:
# The state that will be captured as input and output
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(x, y):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
@@ -403,7 +410,7 @@ Compiling transformed functions works just as expected:
In order to compile as much as possible, a transformation of a compiled
function will not by default be compiled. To compile the transformed
function simply pass it through :func:`compile`.
function simply pass it through :func:`compile`.
You can also compile functions which themselves call compiled functions. A
good practice is to compile the outer most function to give :func:`compile`

View File

@@ -25,7 +25,7 @@ Here is a simple example:
The output of :func:`grad` on :func:`sin` is simply another function. In this
case it is the gradient of the sine function which is exactly the cosine
function. To get the second derivative you can do:
function. To get the second derivative you can do:
.. code-block:: shell
@@ -50,7 +50,7 @@ Automatic Differentiation
.. _auto diff:
Automatic differentiation in MLX works on functions rather than on implicit
graphs.
graphs.
.. note::
@@ -114,7 +114,7 @@ way to do that is the following:
def loss_fn(params, x, y):
w, b = params["weight"], params["bias"]
h = w * x + b
h = w * x + b
return mx.mean(mx.square(h - y))
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
@@ -132,7 +132,7 @@ way to do that is the following:
Notice the tree structure of the parameters is preserved in the gradients.
In some cases you may want to stop gradients from propagating through a
In some cases you may want to stop gradients from propagating through a
part of the function. You can use the :func:`stop_gradient` for that.
@@ -161,19 +161,19 @@ A naive way to add the elements from two sets of vectors is with a loop:
ys = mx.random.uniform(shape=(100, 4096))
def naive_add(xs, ys):
return [xs[i] + ys[:, i] for i in range(xs.shape[0])]
return [xs[i] + ys[:, i] for i in range(xs.shape[1])]
Instead you can use :func:`vmap` to automatically vectorize the addition:
.. code-block:: python
# Vectorize over the second dimension of x and the
# first dimension of y
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(0, 1))
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
The ``in_axes`` parameter can be used to specify which dimensions of the
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
where the vectorized axes should be in the outputs.
where the vectorized axes should be in the outputs.
Let's time these two different versions:

View File

@@ -51,7 +51,7 @@ You can also use an :obj:`array` to index another :obj:`array`:
.. code-block:: shell
>>> arr = mx.arange(10)
>>> idx = mx.array([5, 7])
>>> idx = mx.array([5, 7])
>>> arr[idx]
array([5, 7], dtype=int32)
@@ -77,12 +77,12 @@ from the GPU. Performing bounds checking for array indices before launching the
kernel would be extremely inefficient.
Indexing with boolean masks is something that MLX may support in the future. In
general, MLX has limited support for operations for which output
general, MLX has limited support for operations for which outputs
*shapes* are dependent on input *data*. Other examples of these types of
operations which MLX does not yet support include :func:`numpy.nonzero` and the
single input version of :func:`numpy.where`.
In Place Updates
In Place Updates
----------------
In place updates to indexed arrays are possible in MLX. For example:

View File

@@ -13,7 +13,7 @@ compute graph is recorded. The actual computation only happens if an
:func:`eval` is performed.
MLX uses lazy evaluation because it has some nice features, some of which we
describe below.
describe below.
Transforming Compute Graphs
^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -109,14 +109,14 @@ Here is a concrete example:
An important behavior to be aware of is when the graph will be implicitly
evaluated. Anytime you ``print`` an array, convert it to an
:obj:`numpy.ndarray`, or otherwise access its memory via :obj:`memoryview`,
:obj:`numpy.ndarray`, or otherwise access it's memory via :obj:`memoryview`,
the graph will be evaluated. Saving arrays via :func:`save` (or any other MLX
saving functions) will also evaluate the array.
Calling :func:`array.item` on a scalar array will also evaluate it. In the
example above, printing the loss (``print(loss)``) or adding the loss scalar to
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
these lines are before ``mx.eval(loss, model.parameters())`` then this
will be a partial evaluation, computing only the forward pass.

View File

@@ -3,10 +3,10 @@
Conversion to NumPy and Other Frameworks
========================================
MLX array supports conversion between other frameworks with either:
MLX array supports conversion between other frameworks with either:
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
Let's convert an array to NumPy and back.
@@ -66,7 +66,7 @@ even though no in-place operations on MLX memory are executed.
PyTorch
-------
.. warning::
.. warning::
PyTorch Support for :obj:`memoryview` is experimental and can break for
multi-dimensional arrays. Casting to NumPy first is advised for now.

View File

@@ -64,4 +64,4 @@ Other gradient transformations include :func:`vjp` for vector-Jacobian products
and :func:`jvp` for Jacobian-vector products.
Use :func:`value_and_grad` to efficiently compute both a function's output and
gradient with respect to the function's input.
gradient with respect to the function's input.

View File

@@ -8,33 +8,33 @@ Saving and Loading Arrays
MLX supports multiple array serialization formats.
.. list-table:: Serialization Formats
:widths: 20 8 25 25
:widths: 20 8 25 25
:header-rows: 1
* - Format
- Extension
* - Format
- Extension
- Function
- Notes
* - NumPy
- ``.npy``
- Notes
* - NumPy
- ``.npy``
- :func:`save`
- Single arrays only
* - NumPy archive
- ``.npz``
* - NumPy archive
- ``.npz``
- :func:`savez` and :func:`savez_compressed`
- Multiple arrays
- Multiple arrays
* - Safetensors
- ``.safetensors``
- ``.safetensors``
- :func:`save_safetensors`
- Multiple arrays
* - GGUF
- ``.gguf``
- Multiple arrays
* - GGUF
- ``.gguf``
- :func:`save_gguf`
- Multiple arrays
The :func:`load` function will load any of the supported serialization
formats. It determines the format from the extensions. The output of
:func:`load` depends on the format.
:func:`load` depends on the format.
Here's an example of saving a single array to a file:

View File

@@ -20,7 +20,7 @@ Both ``a`` and ``b`` live in unified memory.
In MLX, rather than moving arrays to devices, you specify the device when you
run the operation. Any device can perform any operation on ``a`` and ``b``
without needing to move them from one memory location to another. For example:
without needing to move them from one memory location to another. For example:
.. code-block:: python

View File

@@ -11,14 +11,10 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
# ----------------------------- Dependencies -----------------------------
find_package(MLX CONFIG REQUIRED)
find_package(
Python 3.8
COMPONENTS Interpreter Development.Module
REQUIRED)
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
@@ -28,10 +24,16 @@ find_package(nanobind CONFIG REQUIRED)
add_library(mlx_ext)
# Add sources
target_sources(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp)
target_sources(
mlx_ext
PUBLIC
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
)
# Add include headers
target_include_directories(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR})
target_include_directories(
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
)
# Link to mlx
target_link_libraries(mlx_ext PUBLIC mlx)
@@ -41,32 +43,27 @@ target_link_libraries(mlx_ext PUBLIC mlx)
# Build metallib
if(MLX_BUILD_METAL)
mlx_build_metallib(
TARGET
mlx_ext_metallib
TITLE
mlx_ext
SOURCES
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
INCLUDE_DIRS
${PROJECT_SOURCE_DIR}
${MLX_INCLUDE_DIRS}
OUTPUT_DIRECTORY
${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
TARGET mlx_ext_metallib
TITLE mlx_ext
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
)
add_dependencies(mlx_ext mlx_ext_metallib)
add_dependencies(
mlx_ext
mlx_ext_metallib
)
endif()
# ----------------------------- Python Bindings -----------------------------
nanobind_add_module(
_ext
NB_STATIC
STABLE_ABI
LTO
NOMINSIZE
NB_DOMAIN
mlx
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp)
NB_STATIC STABLE_ABI LTO NOMINSIZE
NB_DOMAIN mlx
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
)
target_link_libraries(_ext PRIVATE mlx_ext)
if(BUILD_SHARED_LIBS)

View File

@@ -2,7 +2,7 @@
requires = [
"setuptools>=42",
"cmake>=3.24",
"mlx>=0.18.0",
"nanobind==2.2.0",
"mlx>=0.17.0",
"nanobind==2.1.0",
]
build-backend = "setuptools.build_meta"

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.24
mlx>=0.18.1
nanobind==2.2.0
mlx>=0.17.0
nanobind==2.1.0

View File

@@ -1,24 +1,26 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h
)
if(MLX_BUILD_CPU)
if (MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
@@ -26,15 +28,17 @@ endif()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_ACCELERATE)
if (MLX_BUILD_ACCELERATE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
elseif(MLX_BUILD_CPU)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp
)
endif()
if(MLX_BUILD_METAL)
if (MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)

View File

@@ -23,22 +23,11 @@ void free(Buffer buffer) {
}
Buffer CommonAllocator::malloc(size_t size, bool) {
void* ptr = std::malloc(size + sizeof(size_t));
if (ptr != nullptr) {
*static_cast<size_t*>(ptr) = size;
}
return Buffer{ptr};
return Buffer{std::malloc(size)};
}
void CommonAllocator::free(Buffer buffer) {
std::free(buffer.ptr());
}
size_t CommonAllocator::size(Buffer buffer) const {
if (buffer.ptr() == nullptr) {
return 0;
}
return *static_cast<size_t*>(buffer.ptr());
std::free(buffer.raw_ptr());
}
Buffer malloc_or_wait(size_t size) {

View File

@@ -41,7 +41,6 @@ class Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
virtual void free(Buffer buffer) = 0;
virtual size_t size(Buffer buffer) const = 0;
Allocator() = default;
Allocator(const Allocator& other) = delete;
@@ -58,7 +57,6 @@ class CommonAllocator : public Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
virtual size_t size(Buffer buffer) const override;
private:
CommonAllocator() = default;

View File

@@ -95,29 +95,13 @@ void array::detach() {
array_desc_->primitive = nullptr;
}
bool array::is_available() const {
if (status() == Status::available) {
return true;
} else if (status() == Status::evaluated && event().is_signaled()) {
set_status(Status::available);
return true;
}
return false;
}
void array::wait() {
if (!is_available()) {
event().wait();
set_status(Status::available);
}
}
void array::eval() {
// Ensure the array is ready to be read
if (status() == Status::unscheduled) {
if (status() == Status::scheduled) {
event().wait();
set_status(Status::available);
} else if (status() == Status::unscheduled) {
mlx::core::eval({*this});
} else {
wait();
}
}
@@ -178,10 +162,8 @@ void array::move_shared_buffer(
array_desc_->flags = flags;
array_desc_->data_size = data_size;
auto char_offset = sizeof(char) * itemsize() * offset;
auto data_ptr = other.array_desc_->data_ptr;
other.array_desc_->data_ptr = nullptr;
array_desc_->data_ptr =
static_cast<void*>(static_cast<char*>(data_ptr) + char_offset);
array_desc_->data_ptr = static_cast<void*>(
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
}
void array::move_shared_buffer(array other) {
@@ -260,38 +242,25 @@ array::ArrayDesc::~ArrayDesc() {
// This calls recursively the destructor and can result in stack overflow, we
// instead put them in a vector and destroy them one at a time resulting in a
// max stack depth of 2.
if (inputs.empty()) {
return;
}
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
auto append_deletable_inputs = [&for_deletion](ArrayDesc& ad) {
std::unordered_map<std::uintptr_t, array> input_map;
for (array& a : ad.inputs) {
if (a.array_desc_) {
input_map.insert({a.id(), a});
for (auto& s : a.siblings()) {
input_map.insert({s.id(), s});
}
}
for (array& a : inputs) {
if (a.array_desc_.use_count() == 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
ad.inputs.clear();
for (auto& [_, a] : input_map) {
if (a.array_desc_.use_count() <= a.siblings().size() + 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
};
append_deletable_inputs(*this);
}
while (!for_deletion.empty()) {
// top is going to be deleted at the end of the block *after* the arrays
// with inputs have been moved into the vector
auto top = std::move(for_deletion.back());
for_deletion.pop_back();
append_deletable_inputs(*top);
for (array& a : top->inputs) {
if (a.array_desc_.use_count() == 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
}
}

View File

@@ -324,10 +324,6 @@ class array {
return array_desc_->data->buffer;
}
size_t buffer_size() const {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
@@ -344,33 +340,11 @@ class array {
return static_cast<T*>(array_desc_->data_ptr);
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,
enum Status { unscheduled, scheduled, available };
// The ouptut of a computation which has been scheduled but `eval_*` has
// not yet been called on the array's primitive. A possible
// status of `x` in `auto x = a + b; eval(x);`
scheduled,
// The array's `eval_*` function has been run, but the computation is not
// necessarily complete. The array will have memory allocated and if it is
// not a tracer then it will be detached from the graph.
evaluated,
// If the array is the output of a computation then the computation
// is complete. Constant arrays are always available (e.g. `array({1, 2,
// 3})`)
available
};
// Check if the array is safe to read.
bool is_available() const;
// Wait on the array to be available. After this `is_available` returns
// `true`.
void wait();
bool is_available() const {
return status() == Status::available;
}
Status status() const {
return array_desc_->status;

View File

@@ -1,8 +1,10 @@
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
)

View File

@@ -81,7 +81,6 @@ DEFAULT_MULTI(SVD)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);

View File

@@ -18,61 +18,49 @@ void _qmm_t_4_64(
const float* biases,
int M,
int N,
int K,
int B,
bool batched_w) {
int K) {
constexpr int bits = 4;
constexpr int group_size = 64;
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
int w_els = N * K / pack_factor;
int g_els = w_els * pack_factor / group_size;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const float* scales_local = scales;
const float* biases_local = biases;
for (int i = 0; i < B; i++) {
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const float* scales_local = scales;
const float* biases_local = biases;
for (int n = 0; n < N; n++) {
const simd_float16* x_local = (simd_float16*)x;
simd_float16 sum = 0;
for (int k = 0; k < K; k += group_size) {
float scale = *scales_local++;
float bias = *biases_local++;
for (int n = 0; n < N; n++) {
const simd_float16* x_local = (simd_float16*)x;
simd_float16 sum = 0;
for (int k = 0; k < K; k += group_size) {
float scale = *scales_local++;
float bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw += 2) {
// TODO: vectorize this properly
simd_uint16 wi;
for (int e = 0; e < 2; e++) {
uint32_t wii = *w_local++;
for (int p = 0; p < 8; p++) {
wi[e * 8 + p] = wii & bitmask;
wii >>= bits;
}
for (int kw = 0; kw < packs_in_group; kw += 2) {
// TODO: vectorize this properly
simd_uint16 wi;
for (int e = 0; e < 2; e++) {
uint32_t wii = *w_local++;
for (int p = 0; p < 8; p++) {
wi[e * 8 + p] = wii & bitmask;
wii >>= bits;
}
simd_float16 wf = simd_float(wi);
wf *= scale;
wf += bias;
sum += (*x_local) * wf;
x_local++;
}
}
simd_float16 wf = simd_float(wi);
wf *= scale;
wf += bias;
*result = simd_reduce_add(sum);
result++;
sum += (*x_local) * wf;
x_local++;
}
}
x += K;
}
if (batched_w) {
w += w_els;
scales += g_els;
biases += g_els;
*result = simd_reduce_add(sum);
result++;
}
x += K;
}
}
@@ -94,10 +82,8 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (condition) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
int K = x.shape(-1);
int M = x.shape(-2);
int M = x.size() / K;
int N = out.shape(-1);
int B = x.size() / K / M;
bool batched_w = w.ndim() > 2;
_qmm_t_4_64(
out.data<float>(),
x.data<float>(),
@@ -106,9 +92,7 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
biases.data<float>(),
M,
N,
K,
B,
batched_w);
K);
} else {
eval(inputs, out);
}

View File

@@ -33,8 +33,8 @@ namespace {
* Note: The implementation below is a general fast exp. There could be faster
* implementations for numbers strictly < 0.
*/
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
auto x = x_init * 1.442695; // multiply with log_2(e)
inline simd_float16 simd_fast_exp(simd_float16 x) {
x *= 1.442695; // multiply with log_2(e)
simd_float16 ipart, fpart;
simd_int16 epart;
x = simd_clamp(x, -80, 80);
@@ -53,9 +53,7 @@ inline simd_float16 simd_fast_exp(simd_float16 x_init) {
// bitshifting
epart = (simd_int(ipart) + 127) << 23;
// Avoid supressing NaNs
simd_int16 eq = (x_init == x_init);
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
return (*(simd_float16*)&epart) * x;
}
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC

View File

@@ -1,4 +1,5 @@
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
@@ -6,57 +7,72 @@ else()
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG}
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h)
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${COMPILER}
${PROJECT_SOURCE_DIR}
${CLANG}
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h
)
add_custom_target(
cpu_compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
if (IOS)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp
)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
)
endif()

View File

@@ -43,15 +43,13 @@ void set_binary_op_output_data(
array& out,
BinaryOpType bopt,
bool donate_with_move = false) {
bool b_donatable = is_donatable(b, out);
bool a_donatable = is_donatable(a, out);
switch (bopt) {
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
break;
case BinaryOpType::ScalarVector:
if (b_donatable) {
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -66,7 +64,7 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::VectorScalar:
if (a_donatable) {
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
@@ -81,13 +79,13 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::VectorVector:
if (a_donatable) {
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (b_donatable) {
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -102,14 +100,16 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::General:
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
if (a.is_donatable() && a.flags().row_contiguous &&
a.itemsize() == out.itemsize() && a.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
b.is_donatable() && b.flags().row_contiguous &&
b.itemsize() == out.itemsize() && b.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -122,7 +122,19 @@ void set_binary_op_output_data(
}
}
struct UseDefaultBinaryOp {};
struct UseDefaultBinaryOp {
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
};
template <typename T, typename U, typename Op>
struct DefaultVectorScalar {
@@ -138,6 +150,18 @@ struct DefaultVectorScalar {
a++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *b;
while (size-- > 0) {
auto dst = op(*a, scalar);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
}
}
};
template <typename T, typename U, typename Op>
@@ -154,6 +178,18 @@ struct DefaultScalarVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *a;
while (size-- > 0) {
auto dst = op(scalar, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
b++;
}
}
};
template <typename T, typename U, typename Op>
@@ -170,110 +206,204 @@ struct DefaultVectorVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
while (size-- > 0) {
auto dst = op(*a, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
}
out += stride_out;
a += stride_a;
b += stride_b;
template <typename T, typename U, typename Op>
void binary_op_dims1(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
template <typename T, typename U, bool Strided, typename Op>
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst += stride;
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op) {
switch (out.ndim()) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out, op);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out, op);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
int stride) {
// Number of dimensions to loop over for vectorized ops
switch (dim) {
case 1:
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
binary_op_dims1<T, U, Op>(a, b, out, op, stride);
return;
case 2:
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
binary_op_dims2<T, U, Op>(a, b, out, op, stride);
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
size_t stride = out_strides[dim - 4];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
dst += stride;
}
}
@@ -320,33 +450,29 @@ void binary_op(
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
auto& strides = out.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto ndim = new_shape.size();
auto ndim = out.ndim();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
@@ -368,27 +494,27 @@ void binary_op(
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U, true>(
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
break;
default:
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
binary_op_dispatch_dims<T, U>(a, b, out, op);
break;
}
}
@@ -405,9 +531,9 @@ void binary_op(
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
@@ -428,8 +554,7 @@ void binary_op(
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
@@ -444,8 +569,7 @@ void binary_op(
binary_op<T, T>(
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
}
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
value) {
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
@@ -461,8 +585,7 @@ void binary_op(
binary_op<T, T>(
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
}
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));

View File

@@ -9,43 +9,168 @@ namespace mlx::core {
namespace {
template <typename T, typename U, typename Op, int D>
void binary_op_dims(
const T* a,
const T* b,
U* out_a,
U* out_b,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out_a.size(); ++i) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[i] = dst.first;
dst_b[i] = dst.second;
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1>(
a,
b,
out_a,
out_b,
op,
shape,
a_strides,
b_strides,
out_strides,
axis + 1);
} else {
std::tie(*out_a, *out_b) = op(*a, *b);
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst_a += stride;
dst_b += stride;
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[1];
b_idx += b.strides()[1];
}
a += stride_a;
b += stride_b;
out_a += stride_out;
out_b += stride_out;
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst_a += stride;
dst_b += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[2];
b_idx += b.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
@@ -56,160 +181,352 @@ void binary_op_dispatch_dims(
array& out_a,
array& out_b,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out_a.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& out_strides = strides[2];
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_a_ptr = out_a.data<U>();
U* out_b_ptr = out_b.data<U>();
int ndim = shape.size();
switch (ndim) {
switch (out_a.ndim()) {
case 1:
binary_op_dims<T, U, Op, 1>(
a_ptr,
b_ptr,
out_a_ptr,
out_b_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op);
return;
case 2:
binary_op_dims<T, U, Op, 2>(
a_ptr,
b_ptr,
out_a_ptr,
out_b_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out_a, out_b, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out_a, out_b, op);
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_a_ptr + elem,
out_b_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
std::tie(dst_a[i], dst_b[i]) = op(a_ptr[a_idx], b_ptr[b_idx]);
}
}
template <typename T, typename U = T, typename Op>
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int dim,
int stride) {
// Number of dimensions to loop over for vectorized ops
switch (dim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
dst_a += stride;
dst_b += stride;
}
}
template <
typename T,
typename U,
typename Op,
typename OpSV,
typename OpVS,
typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
opsv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
opvs(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
opvv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
out_a.size());
return;
}
// General computation so let's try to optimize
// Get the left-most dim such that the array is row contiguous after
auto& strides = out_a.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto ndim = out_a.ndim();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
break;
default:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, op);
break;
}
}
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv and opvs were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
opvv);
}
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opvs was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// All ops provided
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
}
template <typename T, typename Op>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op) {
auto bopt = get_binary_op_type(a, b);
auto& out_a = outputs[0];
auto& out_b = outputs[1];
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::General) {
binary_op_dispatch_dims<T, U, Op>(a, b, out_a, out_b, op);
return;
}
auto a_ptr = a.data<T>();
auto b_ptr = b.data<T>();
auto out_a_ptr = out_a.data<U>();
auto out_b_ptr = out_b.data<U>();
if (bopt == BinaryOpType::ScalarScalar) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
} else if (bopt == BinaryOpType::ScalarVector) {
for (size_t i = 0; i < b.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
b_ptr++;
}
} else if (bopt == BinaryOpType::VectorScalar) {
for (size_t i = 0; i < a.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
a_ptr++;
}
} else { // VectorVector
for (size_t i = 0; i < a.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
a_ptr++;
b_ptr++;
}
}
DefaultScalarVector<T, T, Op> opsv(op);
DefaultVectorScalar<T, T, Op> opvs(op);
DefaultVectorVector<T, T, Op> opvv(op);
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
template <typename Op>
template <typename... Ops>
void binary(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op) {
Ops... ops) {
switch (outputs[0].dtype()) {
case bool_:
binary_op<bool>(a, b, outputs, op);
binary_op<bool>(a, b, outputs, ops...);
break;
case uint8:
binary_op<uint8_t>(a, b, outputs, op);
binary_op<uint8_t>(a, b, outputs, ops...);
break;
case uint16:
binary_op<uint16_t>(a, b, outputs, op);
binary_op<uint16_t>(a, b, outputs, ops...);
break;
case uint32:
binary_op<uint32_t>(a, b, outputs, op);
binary_op<uint32_t>(a, b, outputs, ops...);
break;
case uint64:
binary_op<uint64_t>(a, b, outputs, op);
binary_op<uint64_t>(a, b, outputs, ops...);
break;
case int8:
binary_op<int8_t>(a, b, outputs, op);
binary_op<int8_t>(a, b, outputs, ops...);
break;
case int16:
binary_op<int16_t>(a, b, outputs, op);
binary_op<int16_t>(a, b, outputs, ops...);
break;
case int32:
binary_op<int32_t>(a, b, outputs, op);
binary_op<int32_t>(a, b, outputs, ops...);
break;
case int64:
binary_op<int64_t>(a, b, outputs, op);
binary_op<int64_t>(a, b, outputs, ops...);
break;
case float16:
binary_op<float16_t>(a, b, outputs, op);
binary_op<float16_t>(a, b, outputs, ops...);
break;
case float32:
binary_op<float>(a, b, outputs, op);
binary_op<float>(a, b, outputs, ops...);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, outputs, op);
binary_op<bfloat16_t>(a, b, outputs, ops...);
break;
case complex64:
binary_op<complex64_t>(a, b, outputs, op);
binary_op<complex64_t>(a, b, outputs, ops...);
break;
}
}

View File

@@ -2,12 +2,46 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
namespace mlx::core {
namespace {
// Delegate to the Cholesky factorization taking into account differences in
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
int spotrf_wrapper(char uplo, float* matrix, int N) {
int info;
#ifdef LAPACK_FORTRAN_STRLEN_END
spotrf_(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info,
/* uplo_len = */ static_cast<size_t>(1));
#else
spotrf_(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
#endif
return info;
}
} // namespace
void cholesky_impl(const array& a, array& factor, bool upper) {
// Lapack uses the column-major convention. We take advantage of the fact that
// the matrix should be symmetric:
@@ -32,14 +66,7 @@ void cholesky_impl(const array& a, array& factor, bool upper) {
for (int i = 0; i < num_matrices; i++) {
// Compute Cholesky factorization.
int info;
MLX_LAPACK_FUNC(spotrf)
(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
int info = spotrf_wrapper(uplo, matrix, N);
// TODO: We do nothing when the matrix is not positive semi-definite
// because throwing an error would result in a crash. If we figure out how

View File

@@ -156,7 +156,8 @@ std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
}
// Firstly let's collapse all the contiguous dimensions of the input
auto [shape, strides] = collapse_contiguous_dims(in);
auto [shape, _strides] = collapse_contiguous_dims(in);
auto& strides = _strides[0];
// If shapes fit exactly in the contiguous dims then no copy is necessary so
// let's check.

View File

@@ -4,8 +4,6 @@
#include <filesystem>
#include <fstream>
#include <list>
#include <mutex>
#include <shared_mutex>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
@@ -14,30 +12,6 @@
namespace mlx::core {
struct CompilerCache {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
if (!lib) {
std::ostringstream msg;
msg << "Could not load C++ shared library " << dlerror();
throw std::runtime_error(msg.str());
}
}
~DLib() {
dlclose(lib);
}
void* lib;
};
// Statics to cache compiled libraries and functions
std::list<DLib> libs;
std::unordered_map<std::string, void*> kernels;
std::shared_mutex mtx;
};
static CompilerCache cache{};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
namespace detail {
@@ -53,19 +27,32 @@ std::string get_temp_file(const std::string& name) {
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
return it->second;
const std::string& source_code = "") {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
if (!lib) {
std::ostringstream msg;
msg << "Could not load C++ shared library " << dlerror();
throw std::runtime_error(msg.str());
}
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
~DLib() {
dlclose(lib);
}
void* lib;
};
// Statics to cache compiled libraries and functions
static std::list<DLib> libs;
static std::unordered_map<std::string, void*> kernels;
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
if (source_code.empty()) {
return nullptr;
}
std::string kernel_file_name;
// Deal with long kernel names. Maximum length for files on macOS is 255
@@ -103,8 +90,8 @@ void* compile(
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O3 -Wall -fPIC -shared '"
<< source_file_path << "' -o '" << shared_lib_path << "'";
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
<< source_file_path << " -o " << shared_lib_path;
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
@@ -116,10 +103,10 @@ void* compile(
}
// load library
cache.libs.emplace_back(shared_lib_path);
libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -127,7 +114,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
cache.kernels.insert({kernel_name, fun});
kernels.insert({kernel_name, fun});
return fun;
}
@@ -329,7 +316,10 @@ void Compiled::eval_cpu(
}
// Get the function
auto fn_ptr = compile(kernel_name, [&]() {
auto fn_ptr = compile(kernel_name);
// If it doesn't exist, compile it
if (fn_ptr == nullptr) {
std::ostringstream kernel;
kernel << get_kernel_preamble() << std::endl;
kernel << "extern \"C\" {" << std::endl;
@@ -344,8 +334,10 @@ void Compiled::eval_cpu(
ndim);
// Close extern "C"
kernel << "}" << std::endl;
return kernel.str();
});
// Compile and get function pointer
fn_ptr = compile(kernel_name, kernel.str());
}
compiled_allocate_outputs(
inputs, outputs, inputs_, constant_ids_, contiguous, false);

View File

@@ -3,8 +3,13 @@
#include <cassert>
#include <numeric>
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -679,32 +684,6 @@ void dispatch_slow_conv_3D(
// Explicit gemm conv
///////////////////////////////////////////////////////////////////////////////
template <typename T>
void flip_spatial_dims_inplace(array& wt) {
T* x = wt.data<T>();
size_t out_channels = wt.shape(0);
size_t in_channels = wt.shape(-1);
// Calculate the total size of the spatial dimensions
int spatial_size = 1;
for (int d = 1; d < wt.ndim() - 1; ++d) {
spatial_size *= wt.shape(d);
}
for (size_t i = 0; i < out_channels; i++) {
T* top = x + i * spatial_size * in_channels;
T* bottom =
x + i * spatial_size * in_channels + (spatial_size - 1) * in_channels;
for (size_t j = 0; j < spatial_size / 2; j++) {
for (size_t k = 0; k < in_channels; k++) {
std::swap(top[k], bottom[k]);
}
top += in_channels;
bottom -= in_channels;
}
}
}
void explicit_gemm_conv_1D_cpu(
const array& in,
const array& wt,
@@ -931,8 +910,7 @@ void explicit_gemm_conv_ND_cpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const bool flip) {
const std::vector<int>& wt_dilation) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const auto iDim = std::vector<int>(
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
@@ -1022,14 +1000,6 @@ void explicit_gemm_conv_ND_cpu(
copy(wt, gemm_wt, ctype);
}
if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy(gemm_wt, gemm_wt_, CopyType::Vector);
flip_spatial_dims_inplace<float>(gemm_wt_);
gemm_wt = gemm_wt_;
}
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
@@ -1072,15 +1042,10 @@ void conv_1D_cpu(
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation);
}
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
@@ -1095,13 +1060,6 @@ void conv_2D_cpu(
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && in_dilation[0] == 1 &&
in_dilation[1] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
@@ -1115,14 +1073,6 @@ void conv_3D_cpu(
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && wt_dilation[2] == 1 &&
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1 &&
groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_3D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
@@ -1175,7 +1125,7 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
else {
std::ostringstream msg;
msg << "[Convolution::eval] Convolution currently only supports"
<< " 1D, 2D and 3D convolutions. Got inputs with " << in.ndim() - 2
<< " 1D and 2D convolutions. Got inputs with " << in.ndim() - 2
<< " spatial dimensions";
throw std::invalid_argument(msg.str());
}

View File

@@ -26,117 +26,292 @@ void copy_vector(const array& src, array& dst) {
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
}
template <typename SrcT, typename DstT, typename StrideT, int D>
inline void copy_dims(
const SrcT* src,
DstT* dst,
const std::vector<int>& shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
int axis) {
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
copy_dims<SrcT, DstT, StrideT, D - 1>(
src, dst, shape, i_strides, o_strides, axis + 1);
} else {
*dst = static_cast<DstT>(*src);
}
src += stride_src;
dst += stride_dst;
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim1(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[0];
}
}
template <typename SrcT, typename DstT, typename StrideT>
template <typename SrcT, typename DstT>
inline void copy_general_dim1(const array& src, array& dst) {
return copy_general_dim1<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim2(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[1];
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim2(const array& src, array& dst) {
return copy_general_dim2<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim3(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
for (int k = 0; k < data_shape[2]; ++k) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[2];
}
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim3(const array& src, array& dst) {
return copy_general_dim3<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim4(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
for (int k = 0; k < data_shape[2]; ++k) {
for (int ii = 0; ii < data_shape[3]; ++ii) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[3];
}
src_idx += i_strides[2] - i_strides[3] * data_shape[3];
}
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim4(const array& src, array& dst) {
return copy_general_dim4<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
auto [new_shape, new_strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<stride_t>>{i_strides});
switch (new_shape.size()) {
case 1:
copy_general_dim1<SrcT, DstT, stride_t>(
src, dst, new_shape, new_strides[0], i_offset);
return;
case 2:
copy_general_dim2<SrcT, DstT, stride_t>(
src, dst, new_shape, new_strides[0], i_offset);
return;
case 3:
copy_general_dim3<SrcT, DstT, stride_t>(
src, dst, new_shape, new_strides[0], i_offset);
return;
case 4:
copy_general_dim4<SrcT, DstT, stride_t>(
src, dst, new_shape, new_strides[0], i_offset);
return;
}
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>();
for (size_t i = 0; i < dst.size(); ++i) {
stride_t src_elem = elem_to_loc(i, new_shape, new_strides[0]);
dst_ptr[i] = static_cast<DstT>(src_ptr[src_elem]);
}
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
return copy_general<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
inline void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
int64_t i_offset,
int64_t o_offset) {
return copy_general<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
}
template <typename SrcT, typename DstT, typename stride_t, int D>
inline void copy_general_general_dims(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
int64_t i_offset,
int64_t o_offset) {
if constexpr (D > 1) {
int axis = data_shape.size() - D;
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = data_shape[axis];
for (int i = 0; i < N; i++) {
copy_general_general_dims<SrcT, DstT, stride_t, D - 1>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
i_offset += stride_src;
o_offset += stride_dst;
}
} else {
int axis = data_shape.size() - 1;
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = data_shape[axis];
const SrcT* src_ptr = src.data<SrcT>() + i_offset;
DstT* dst_ptr = dst.data<DstT>() + o_offset;
for (int i = 0; i < N; i++) {
*dst_ptr = static_cast<DstT>(*src_ptr);
src_ptr += stride_src;
dst_ptr += stride_dst;
}
}
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
int64_t i_offset,
int64_t o_offset) {
if (data_shape.empty()) {
auto val = static_cast<DstT>(*(src.data<SrcT>() + i_offset));
auto dst_ptr = dst.data<DstT>() + o_offset;
*dst_ptr = val;
return;
auto [new_shape, new_strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<stride_t>>{i_strides, o_strides});
switch (new_shape.size()) {
case 1:
copy_general_general_dims<SrcT, DstT, stride_t, 1>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
i_offset,
o_offset);
return;
case 2:
copy_general_general_dims<SrcT, DstT, stride_t, 2>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
i_offset,
o_offset);
return;
case 3:
copy_general_general_dims<SrcT, DstT, stride_t, 3>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
i_offset,
o_offset);
return;
case 4:
copy_general_general_dims<SrcT, DstT, stride_t, 4>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
i_offset,
o_offset);
return;
case 5:
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
i_offset,
o_offset);
return;
}
auto [shape, strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>() + o_offset;
int ndim = shape.size();
if (ndim == 1) {
copy_dims<SrcT, DstT, StrideT, 1>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 2) {
copy_dims<SrcT, DstT, StrideT, 2>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 3) {
copy_dims<SrcT, DstT, StrideT, 3>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
}
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
StrideT stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
for (StrideT elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, StrideT, 3>(
src_ptr + in.loc,
dst_ptr + out.loc,
shape,
strides[0],
strides[1],
ndim - 3);
in.step();
out.step();
int size = std::accumulate(
new_shape.end() - 5, new_shape.end(), 1, std::multiplies<int>());
for (int i = 0; i < src.size(); i += size) {
stride_t src_offset = i_offset + elem_to_loc(i, new_shape, new_strides[0]);
stride_t dst_offset = o_offset + elem_to_loc(i, new_shape, new_strides[1]);
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
src,
dst,
new_shape,
new_strides[0],
new_strides[1],
src_offset,
dst_offset);
}
}
template <typename SrcT, typename DstT>
inline void copy_general_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
return copy_general_general<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
}
template <typename SrcT, typename DstT, typename StrideT>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>&,
int64_t i_offset,
int64_t o_offset) {
copy_general_general<SrcT, DstT, StrideT>(
src,
dst,
data_shape,
i_strides,
make_contiguous_strides<StrideT>(data_shape),
i_offset,
o_offset);
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
src,
dst,
src.shape(),
src.strides(),
make_contiguous_strides<size_t>(src.shape()),
0,
0);
}
template <typename SrcT, typename DstT, typename... Args>
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
switch (ctype) {
@@ -151,7 +326,6 @@ void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
return;
case CopyType::GeneralGeneral:
copy_general_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
return;
}
}
@@ -252,7 +426,7 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_inplace(const array& src, array& dst, CopyType ctype) {
copy_inplace_dispatch(src, dst, ctype);
return copy_inplace_dispatch(src, dst, ctype);
}
void copy(const array& src, array& dst, CopyType ctype) {
@@ -282,20 +456,20 @@ void copy(const array& src, array& dst, CopyType ctype) {
copy_inplace(src, dst, ctype);
}
template <typename StrideT>
template <typename stride_t>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype) {
switch (ctype) {
case CopyType::General:
case CopyType::GeneralGeneral:
copy_inplace_dispatch(
return copy_inplace_dispatch(
src,
dst,
ctype,
@@ -304,10 +478,10 @@ void copy_inplace(
o_strides,
i_offset,
o_offset);
break;
case CopyType::Scalar:
case CopyType::Vector:
copy_inplace_dispatch(src, dst, ctype);
return copy_inplace_dispatch(src, dst, ctype);
}
}

View File

@@ -1,10 +1,14 @@
// Copyright © 2023-2024 Apple Inc.
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
@@ -110,7 +114,6 @@ DEFAULT(Tanh)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
namespace {

View File

@@ -1,117 +0,0 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
void ssyevd(
char jobz,
char uplo,
float* a,
int N,
float* w,
float* work,
int lwork,
int* iwork,
int liwork) {
int info;
MLX_LAPACK_FUNC(ssyevd)
(
/* jobz = */ &jobz,
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ a,
/* lda = */ &N,
/* w = */ w,
/* work = */ work,
/* lwork = */ &lwork,
/* iwork = */ iwork,
/* liwork = */ &liwork,
/* info = */ &info);
if (info != 0) {
std::stringstream msg;
msg << "[Eigh::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
}
} // namespace
void Eigh::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
const auto& a = inputs[0];
auto& values = outputs[0];
auto vectors = compute_eigenvectors_
? outputs[1]
: array(a.shape(), a.dtype(), nullptr, {});
values.set_data(allocator::malloc_or_wait(values.nbytes()));
copy(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
if (compute_eigenvectors_) {
// Set the strides and flags so the eigenvectors
// are in the columns of the output
auto flags = vectors.flags();
auto strides = vectors.strides();
auto ndim = a.ndim();
std::swap(strides[ndim - 1], strides[ndim - 2]);
if (a.size() > 1) {
flags.row_contiguous = false;
if (ndim > 2) {
flags.col_contiguous = false;
} else {
flags.col_contiguous = true;
}
}
vectors.move_shared_buffer(vectors, strides, flags, vectors.data_size());
}
auto vec_ptr = vectors.data<float>();
auto eig_ptr = values.data<float>();
char jobz = compute_eigenvectors_ ? 'V' : 'N';
auto N = a.shape(-1);
// Work query
int lwork;
int liwork;
{
float work;
int iwork;
ssyevd(jobz, uplo_[0], nullptr, N, nullptr, &work, -1, &iwork, -1);
lwork = static_cast<int>(work);
liwork = iwork;
}
auto work_buf = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
auto iwork_buf = array::Data{allocator::malloc_or_wait(sizeof(int) * liwork)};
for (size_t i = 0; i < a.size() / (N * N); ++i) {
ssyevd(
jobz,
uplo_[0],
vec_ptr,
N,
eig_ptr,
static_cast<float*>(work_buf.buffer.raw_ptr()),
lwork,
static_cast<int*>(iwork_buf.buffer.raw_ptr()),
liwork);
vec_ptr += N * N;
eig_ptr += N;
}
}
} // namespace mlx::core

View File

@@ -1,4 +1,5 @@
// Copyright © 2023 Apple Inc.
#include <algorithm>
#include <cassert>
#include <cmath>
@@ -80,18 +81,11 @@ void gather(
T* dst_ptr = out.data<T>();
size_t out_idx = 0;
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> src_it;
if (!can_copy && src.ndim() > 0) {
src_it = std::move(
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
}
for (int idx = 0; idx < ind_size; idx++) {
size_t src_idx = 0;
for (int ii = 0; ii < inds.size(); ++ii) {
auto ax = axes[ii];
auto idx_loc = its[ii].loc;
its[ii].step();
auto idx_loc = elem_to_loc(idx, inds[ii]);
auto idx_val =
offset_neg_idx(inds[ii].data<IdxT>()[idx_loc], src.shape(ax));
src_idx += (idx_val * src.strides()[ax]);
@@ -105,10 +99,9 @@ void gather(
out_idx += slice_size;
} else {
for (int jj = 0; jj < slice_size; jj++) {
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
src_it.step();
auto src_offset = elem_to_loc(jj, slice_sizes, src.strides());
dst_ptr[out_idx++] = src_ptr[src_idx + src_offset];
}
src_it.reset();
}
}
}
@@ -230,29 +223,21 @@ void scatter(
update_size *= us;
}
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> update_it(updates);
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
for (int i = 0; i < n_updates; ++i) {
size_t out_offset = 0;
for (int j = 0; j < nind; ++j) {
auto ax = axes[j];
auto idx_loc = its[j].loc;
its[j].step();
auto idx_loc = elem_to_loc(i, inds[j]);
auto idx_val =
offset_neg_idx(inds[j].data<IdxT>()[idx_loc], out.shape(ax));
out_offset += (idx_val * out.strides()[ax]);
}
update_it.seek(i * update_size);
for (int j = 0; j < update_size; ++j) {
op(updates.data<InT>()[update_it.loc],
out.data<InT>() + out_offset + out_it.loc);
update_it.step();
out_it.step();
auto update_loc = elem_to_loc(i * update_size + j, updates);
auto out_loc = elem_to_loc(j, update_shape, out.strides());
op(updates.data<InT>()[update_loc],
out.data<InT>() + out_offset + out_loc);
}
out_it.reset();
update_it.reset();
}
}

View File

@@ -2,19 +2,39 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
// Wrapper to account for differences in
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
int info;
MLX_LAPACK_FUNC(strtri)
(
#ifdef LAPACK_FORTRAN_STRLEN_END
strtri_(
/* uplo = */ &uplo,
/* diag = */ &diag,
/* N = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info,
/* uplo_len = */ static_cast<size_t>(1),
/* diag_len = */ static_cast<size_t>(1));
#else
strtri_(
/* uplo = */ &uplo,
/* diag = */ &diag,
/* N = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
#endif
return info;
}

View File

@@ -1,11 +1,10 @@
// Copyright © 2023-2024 Apple Inc.
// Copyright © 2024 Apple Inc.
#pragma once
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#include <lapack.h>
#endif

View File

@@ -18,12 +18,10 @@ if [ "$CLANG" = "TRUE" ]; then
#include <cstdint>
#include <vector>
EOM
CC_FLAGS=""
else
CC_FLAGS="-std=c++17"
fi
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null)
CONTENT=$($GCC -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null)
cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() {

View File

@@ -1,10 +1,15 @@
// Copyright © 2024 Apple Inc.
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"

View File

@@ -295,13 +295,6 @@ struct Floor {
}
};
struct Imag {
template <typename T>
T operator()(T x) {
return std::imag(x);
}
};
struct Log {
template <typename T>
T operator()(T x) {
@@ -344,13 +337,6 @@ struct Negative {
}
};
struct Real {
template <typename T>
T operator()(T x) {
return std::real(x);
}
};
struct Round {
template <typename T>
T operator()(T x) {

View File

@@ -273,10 +273,6 @@ void Full::eval(const std::vector<array>& inputs, array& out) {
copy(in, out, ctype);
}
void Imag::eval_cpu(const std::vector<array>& inputs, array& out) {
unary_op<complex64_t, float>(inputs[0], out, detail::Imag());
}
void Log::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
@@ -402,10 +398,6 @@ void RandomBits::eval(const std::vector<array>& inputs, array& out) {
}
}
void Real::eval_cpu(const std::vector<array>& inputs, array& out) {
unary_op<complex64_t, float>(inputs[0], out, detail::Real());
}
void Reshape::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
@@ -414,7 +406,16 @@ void Reshape::eval(const std::vector<array>& inputs, array& out) {
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
copy_inplace(in, out, CopyType::General);
auto out_strides = make_contiguous_strides<size_t>(in.shape());
copy_inplace<size_t>(
in,
out,
in.shape(),
in.strides(),
out_strides,
0,
0,
CopyType::General);
} else {
shared_buffer_reshape(in, out_strides, out);
}
@@ -611,18 +612,11 @@ void View::eval_cpu(const std::vector<array>& inputs, array& out) {
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
in, strides, in.flags(), in.data_size() * obytes / ibytes);
} else {
auto tmp = array(
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
auto tmp = array(in.shape(), in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General);
} else {
copy_inplace(in, tmp, CopyType::General);
}
copy_inplace(in, tmp, CopyType::General);
auto flags = out.flags();
flags.contiguous = true;

View File

@@ -2,9 +2,14 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
namespace mlx::core {
template <typename T>

View File

@@ -201,61 +201,55 @@ void _qmm_dispatch(
int group_size,
bool transposed_w) {
int K = x.shape(-1);
int M = x.shape(-2);
int M = x.size() / K;
int N = out.shape(-1);
int w_els = w.ndim() > 2 ? w.shape(-1) * w.shape(-2) : 0;
int g_els = w.ndim() > 2 ? scales.shape(-1) * scales.shape(-2) : 0;
int batch_size = x.size() / x.shape(-1) / x.shape(-2);
for (int i = 0; i < batch_size; i++) {
switch (x.dtype()) {
case float32:
_qmm_dispatch_typed<float>(
out.data<float>() + i * M * N,
x.data<float>() + elem_to_loc(i * M * K, x),
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
scales.data<float>() + elem_to_loc(i * g_els, scales),
biases.data<float>() + elem_to_loc(i * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case float16:
_qmm_dispatch_typed<float16_t>(
out.data<float16_t>() + i * M * N,
x.data<float16_t>() + elem_to_loc(i * M * K, x),
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
scales.data<float16_t>() + elem_to_loc(i * g_els, scales),
biases.data<float16_t>() + elem_to_loc(i * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case bfloat16:
_qmm_dispatch_typed<bfloat16_t>(
out.data<bfloat16_t>() + i * M * N,
x.data<bfloat16_t>() + elem_to_loc(i * M * K, x),
w.data<uint32_t>() + elem_to_loc(i * w_els, w),
scales.data<bfloat16_t>() + elem_to_loc(i * g_els, scales),
biases.data<bfloat16_t>() + elem_to_loc(i * g_els, biases),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
switch (x.dtype()) {
case float32:
_qmm_dispatch_typed<float>(
out.data<float>(),
x.data<float>(),
w.data<uint32_t>(),
scales.data<float>(),
biases.data<float>(),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case float16:
_qmm_dispatch_typed<float16_t>(
out.data<float16_t>(),
x.data<float16_t>(),
w.data<uint32_t>(),
scales.data<float16_t>(),
biases.data<float16_t>(),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
case bfloat16:
_qmm_dispatch_typed<bfloat16_t>(
out.data<bfloat16_t>(),
x.data<bfloat16_t>(),
w.data<uint32_t>(),
scales.data<bfloat16_t>(),
biases.data<bfloat16_t>(),
M,
N,
K,
bits,
group_size,
transposed_w);
break;
default:
throw std::invalid_argument(
"[quantized_matmul] only floating types are supported");
}
}

View File

@@ -111,8 +111,7 @@ void sort(const array& in, array& out, int axis) {
// Get axis, shape and stride info
axis = axis < 0 ? axis + in.ndim() : axis;
size_t in_size = in.flags().contiguous ? in.data_size() : in.size();
size_t n_rows = in_size / in.shape(axis);
size_t n_rows = in.size() / in.shape(axis);
auto remaining_shape = out.shape();
remaining_shape.erase(remaining_shape.begin() + axis);
@@ -124,16 +123,14 @@ void sort(const array& in, array& out, int axis) {
int axis_size = out.shape(axis);
// Perform sorting in place
ContiguousIterator<size_t> src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
T* data_ptr = out.data<T>() + loc;
StridedIterator st(data_ptr, axis_stride, 0);
StridedIterator ed(data_ptr, axis_stride, axis_size);
std::stable_sort(st, ed);
src_it.step();
}
}
@@ -163,15 +160,11 @@ void argsort(const array& in, array& out, int axis) {
int axis_size = in.shape(axis);
// Perform sorting
ContiguousIterator<size_t> in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;
IdxT* idx_ptr = out.data<IdxT>() + out_it.loc;
in_it.step();
out_it.step();
size_t in_loc = elem_to_loc(i, in_remaining_shape, in_remaining_strides);
size_t out_loc = elem_to_loc(i, out_remaining_shape, out_remaining_strides);
const T* data_ptr = in.data<T>() + in_loc;
IdxT* idx_ptr = out.data<IdxT>() + out_loc;
StridedIterator st_(idx_ptr, out_stride, 0);
StridedIterator ed_(idx_ptr, out_stride, axis_size);
@@ -199,8 +192,7 @@ void partition(const array& in, array& out, int axis, int kth) {
// Get axis, shape and stride info
axis = axis < 0 ? axis + in.ndim() : axis;
size_t in_size = in.flags().contiguous ? in.data_size() : in.size();
size_t n_rows = in_size / in.shape(axis);
size_t n_rows = in.size() / in.shape(axis);
auto remaining_shape = in.shape();
remaining_shape.erase(remaining_shape.begin() + axis);
@@ -214,11 +206,9 @@ void partition(const array& in, array& out, int axis, int kth) {
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition in place
ContiguousIterator<size_t> src_it(
remaining_shape, remaining_strides, remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
T* data_ptr = out.data<T>() + src_it.loc;
src_it.step();
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
T* data_ptr = out.data<T>() + loc;
StridedIterator st(data_ptr, axis_stride, 0);
StridedIterator md(data_ptr, axis_stride, kth);
@@ -237,49 +227,37 @@ void argpartition(const array& in, array& out, int axis, int kth) {
axis = axis < 0 ? axis + in.ndim() : axis;
size_t n_rows = in.size() / in.shape(axis);
auto in_remaining_shape = in.shape();
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
auto remaining_shape = in.shape();
remaining_shape.erase(remaining_shape.begin() + axis);
auto in_remaining_strides = in.strides();
in_remaining_strides.erase(in_remaining_strides.begin() + axis);
auto remaining_strides = in.strides();
remaining_strides.erase(remaining_strides.begin() + axis);
auto out_remaining_shape = out.shape();
out_remaining_shape.erase(out_remaining_shape.begin() + axis);
auto out_remaining_strides = out.strides();
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
size_t in_stride = in.strides()[axis];
size_t out_stride = out.strides()[axis];
size_t axis_stride = in.strides()[axis];
int axis_size = in.shape(axis);
kth = kth < 0 ? kth + axis_size : kth;
// Perform partition
ContiguousIterator<size_t> in_it(
in_remaining_shape, in_remaining_strides, in_remaining_shape.size());
ContiguousIterator<size_t> out_it(
out_remaining_shape, out_remaining_strides, out_remaining_shape.size());
for (int i = 0; i < n_rows; i++) {
const T* data_ptr = in.data<T>() + in_it.loc;
IdxT* idx_ptr = out.data<IdxT>() + out_it.loc;
in_it.step();
out_it.step();
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
const T* data_ptr = in.data<T>() + loc;
IdxT* idx_ptr = out.data<IdxT>() + loc;
StridedIterator st_(idx_ptr, out_stride, 0);
StridedIterator ed_(idx_ptr, out_stride, axis_size);
StridedIterator st_(idx_ptr, axis_stride, 0);
StridedIterator ed_(idx_ptr, axis_stride, axis_size);
// Initialize with iota
std::iota(st_, ed_, IdxT(0));
// Sort according to vals
StridedIterator st(idx_ptr, out_stride, 0);
StridedIterator md(idx_ptr, out_stride, kth);
StridedIterator ed(idx_ptr, out_stride, axis_size);
StridedIterator st(idx_ptr, axis_stride, 0);
StridedIterator md(idx_ptr, axis_stride, kth);
StridedIterator ed(idx_ptr, axis_stride, axis_size);
std::nth_element(st, md, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * in_stride];
auto v2 = data_ptr[b * in_stride];
std::nth_element(st, md, ed, [data_ptr, axis_stride](IdxT a, IdxT b) {
auto v1 = data_ptr[a * axis_stride];
auto v2 = data_ptr[b * axis_stride];
return v1 < v2 || (v1 == v2 && a < b);
});
}

View File

@@ -2,7 +2,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/lapack_helper.h"
#include "mlx/primitives.h"
namespace mlx::core {

View File

@@ -41,7 +41,7 @@ void set_ternary_op_output_data(
TernaryOpType topt,
bool donate_with_move = false) {
auto maybe_donate = [&out, donate_with_move](const array& x) {
if (is_donatable(x, out)) {
if (x.is_donatable() && x.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(x);
} else {
@@ -71,46 +71,128 @@ void set_ternary_op_output_data(
break;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op, int D>
void ternary_op_dims(
const T1* a,
const T2* b,
const T3* c,
U* out,
Op op,
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& c_strides,
const std::vector<size_t>& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_c = c_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
ternary_op_dims<T1, T2, T3, U, Op, D - 1>(
a,
b,
c,
out,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
axis + 1);
} else {
*out = op(*a, *b, *c);
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims1(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
c_idx += c.strides()[0];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims2(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
c_idx += c.strides()[1];
}
a += stride_a;
b += stride_b;
c += stride_c;
out += stride_out;
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims3(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
c_idx += c.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims4(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
c_idx += c.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
c_idx += c.strides()[2] - c.strides()[3] * c.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
@@ -121,69 +203,30 @@ void ternary_op_dispatch_dims(
const array& c,
array& out,
Op op) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), c.strides(), out.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& c_strides = strides[2];
const auto& out_strides = strides[3];
switch (out.ndim()) {
case 1:
ternary_op_dims1<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 2:
ternary_op_dims2<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 3:
ternary_op_dims3<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 4:
ternary_op_dims4<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
}
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<T3>();
int ndim = shape.size();
switch (ndim) {
case 1:
ternary_op_dims<T1, T2, T3, U, Op, 1>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
case 2:
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr,
b_ptr,
c_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
0);
return;
}
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
ContiguousIterator<size_t> c_it(shape, c_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
ternary_op_dims<T1, T2, T3, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
c_ptr + c_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
c_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
c_it.step();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
int c_idx = elem_to_loc(i, c.shape(), c.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
}
}
@@ -200,21 +243,10 @@ void ternary_op(
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
} else if (topt == TernaryOpType::VectorVectorVector) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* out_ptr = out.data<U>();
for (size_t i = 0; i < out.size(); ++i) {
*out_ptr = op(*a_ptr, *b_ptr, *c_ptr);
a_ptr++;
b_ptr++;
c_ptr++;
out_ptr++;
}
} else {
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
return;
}
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
} // namespace

View File

@@ -12,7 +12,7 @@ namespace mlx::core {
namespace {
void set_unary_output_data(const array& in, array& out) {
if (is_donatable(in, out)) {
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.copy_shared_buffer(in);
} else {
auto size = in.data_size();
@@ -24,36 +24,22 @@ void set_unary_output_data(const array& in, array& out) {
}
}
template <typename T, typename U = T, typename Op>
void unary_op(const T* a, U* out, Op op, size_t shape, size_t stride) {
for (size_t i = 0; i < shape; i += 1) {
out[i] = op(*a);
a += stride;
}
}
template <typename T, typename U = T, typename Op>
template <typename T, typename Op>
void unary_op(const array& a, array& out, Op op) {
const T* a_ptr = a.data<T>();
if (a.flags().contiguous) {
set_unary_output_data(a, out);
U* dst = out.data<U>();
T* dst = out.data<T>();
for (size_t i = 0; i < a.data_size(); ++i) {
dst[i] = op(a_ptr[i]);
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
U* dst = out.data<U>();
size_t shape = a.ndim() > 0 ? a.shape(-1) : 1;
size_t stride = a.ndim() > 0 ? a.strides(-1) : 1;
if (a.ndim() <= 1) {
unary_op(a_ptr, dst, op, shape, stride);
return;
}
ContiguousIterator it(a.shape(), a.strides(), a.ndim() - 1);
for (size_t elem = 0; elem < a.size(); elem += shape) {
unary_op(a_ptr + it.loc, dst + elem, op, shape, stride);
it.step();
T* dst = out.data<T>();
for (size_t i = 0; i < out.size(); ++i) {
// TODO this is super inefficient, need to fix.
int a_idx = elem_to_loc(i, a.shape(), a.strides());
dst[i] = op(a_ptr[a_idx]);
}
}
}

View File

@@ -1,138 +0,0 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/utils.h"
namespace mlx::core {
template <typename StrideT>
std::tuple<std::vector<int>, std::vector<std::vector<StrideT>>>
collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<std::vector<StrideT>>& strides,
StrideT size_cap) {
// Make a vector that has axes separated with -1. Collapse all axes between
// -1.
std::vector<int> to_collapse;
if (shape.size() > 0) {
if (shape[0] != 1) {
to_collapse.push_back(0);
}
size_t size = shape[0];
for (int i = 1; i < shape.size(); i++) {
bool contiguous = true;
size *= shape[i];
for (const std::vector<StrideT>& st : strides) {
if (st[i] * shape[i] != st[i - 1] || size > size_cap) {
contiguous = false;
size = shape[i];
break;
}
}
if (!contiguous) {
to_collapse.push_back(-1);
}
if (shape[i] != 1) {
to_collapse.push_back(i);
}
}
to_collapse.push_back(-1);
}
std::vector<int> out_shape;
std::vector<std::vector<StrideT>> out_strides(strides.size());
for (int i = 0;;) {
while (i < to_collapse.size() && to_collapse[i] == -1) {
++i;
};
if (i == to_collapse.size()) {
break;
}
int current_shape = shape[to_collapse[i]];
int k = i;
while (to_collapse[++k] != -1) {
current_shape *= shape[to_collapse[k]];
}
out_shape.push_back(current_shape);
for (int j = 0; j < strides.size(); j++) {
const std::vector<StrideT>& st = strides[j];
out_strides[j].push_back(st[to_collapse[k - 1]]);
}
i = k + 1;
}
if (!shape.empty() && out_shape.empty()) {
out_shape.push_back(1);
for (auto& out_stride : out_strides) {
out_stride.push_back(0);
}
}
return std::make_tuple(out_shape, out_strides);
}
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap /* = std::numeric_limits<int32>::max() */) {
return collapse_contiguous_dims_impl(shape, strides, size_cap);
}
template <typename StrideT>
std::pair<std::vector<int>, std::vector<StrideT>> collapse_contiguous_dims_impl(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
StrideT size_cap) {
std::vector<int> collapsed_shape;
std::vector<StrideT> collapsed_strides;
if (shape.size() > 0) {
collapsed_shape.push_back(shape[0]);
collapsed_strides.push_back(strides[0]);
for (int i = 1; i < shape.size(); i++) {
if (shape[i] == 1) {
continue;
} else if (
strides[i] * shape[i] != collapsed_strides.back() ||
collapsed_shape.back() * static_cast<StrideT>(shape[i]) > size_cap) {
collapsed_shape.push_back(shape[i]);
collapsed_strides.push_back(strides[i]);
} else {
collapsed_shape.back() *= shape[i];
collapsed_strides.back() = strides[i];
}
}
}
return std::make_pair(collapsed_shape, collapsed_strides);
}
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
int64_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<int64_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap /* = std::numeric_limits<int32_t>::max() */) {
return collapse_contiguous_dims_impl<size_t>(shape, strides, size_cap);
}
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const array& a,
size_t size_cap /* = std::numeric_limits<int32_t>::max()*/) {
return collapse_contiguous_dims_impl<size_t>(
a.shape(), a.strides(), size_cap);
}
} // namespace mlx::core

View File

@@ -8,12 +8,12 @@
namespace mlx::core {
template <typename StrideT>
inline StrideT elem_to_loc(
template <typename stride_t>
inline stride_t elem_to_loc(
int elem,
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
StrideT loc = 0;
const std::vector<stride_t>& strides) {
stride_t loc = 0;
for (int i = shape.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(elem, shape[i]);
loc += q_and_r.rem * strides[i];
@@ -29,9 +29,9 @@ inline size_t elem_to_loc(int elem, const array& a) {
return elem_to_loc(elem, a.shape(), a.strides());
}
template <typename StrideT>
std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
std::vector<StrideT> strides(shape.size(), 1);
template <typename stride_t>
std::vector<stride_t> make_contiguous_strides(const std::vector<int>& shape) {
std::vector<stride_t> strides(shape.size(), 1);
for (int i = shape.size() - 1; i > 0; i--) {
strides[i - 1] = strides[i] * shape[i];
}
@@ -44,26 +44,58 @@ std::vector<StrideT> make_contiguous_strides(const std::vector<int>& shape) {
//
// When multiple arrays are passed they should all have the same shape. The
// collapsed axes are also the same so one shape is returned.
std::tuple<std::vector<int>, std::vector<std::vector<int64_t>>>
template <typename stride_t>
inline std::tuple<std::vector<int>, std::vector<std::vector<stride_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<int64_t>>& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<std::vector<size_t>>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
const std::vector<std::vector<stride_t>> strides) {
// Make a vector that has axes separated with -1. Collapse all axes between
// -1.
std::vector<int> to_collapse;
if (shape.size() > 0) {
to_collapse.push_back(0);
for (int i = 1; i < shape.size(); i++) {
bool contiguous = true;
for (const std::vector<stride_t>& st : strides) {
if (st[i] * shape[i] != st[i - 1]) {
contiguous = false;
}
if (!contiguous) {
break;
}
}
if (!contiguous) {
to_collapse.push_back(-1);
}
to_collapse.push_back(i);
}
to_collapse.push_back(-1);
}
std::vector<int> out_shape;
std::vector<std::vector<stride_t>> out_strides(strides.size());
for (int i = 0; i < to_collapse.size(); i++) {
int current_shape = shape[to_collapse[i]];
while (to_collapse[++i] != -1) {
current_shape *= shape[to_collapse[i]];
}
out_shape.push_back(current_shape);
for (int j = 0; j < strides.size(); j++) {
const std::vector<stride_t>& st = strides[j];
out_strides[j].push_back(st[to_collapse[i - 1]]);
}
}
return std::make_tuple(out_shape, out_strides);
}
inline std::tuple<std::vector<int>, std::vector<std::vector<size_t>>>
collapse_contiguous_dims(
const std::vector<array>& xs,
size_t size_cap = std::numeric_limits<int32_t>::max()) {
collapse_contiguous_dims(const std::vector<array>& xs) {
std::vector<std::vector<size_t>> strides;
for (auto& x : xs) {
strides.emplace_back(x.strides());
}
return collapse_contiguous_dims(xs[0].shape(), strides, size_cap);
return collapse_contiguous_dims(xs[0].shape(), strides);
}
template <typename... Arrays, typename = enable_for_arrays_t<Arrays...>>
@@ -73,84 +105,36 @@ inline auto collapse_contiguous_dims(Arrays&&... xs) {
}
// The single array version of the above.
std::pair<std::vector<int>, std::vector<int64_t>> collapse_contiguous_dims(
inline std::tuple<std::vector<int>, std::vector<size_t>>
collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<int64_t>& strides,
int64_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const std::vector<int>& shape,
const std::vector<size_t>& strides,
size_t size_cap = std::numeric_limits<int32_t>::max());
std::pair<std::vector<int>, std::vector<size_t>> collapse_contiguous_dims(
const array& a,
size_t size_cap = std::numeric_limits<int32_t>::max());
const std::vector<size_t>& strides) {
std::vector<int> collapsed_shape;
std::vector<size_t> collapsed_strides;
template <typename StrideT>
struct ContiguousIterator {
inline void step() {
int dims = shape_.size();
if (dims == 0) {
return;
}
int i = dims - 1;
while (pos_[i] == (shape_[i] - 1) && i > 0) {
pos_[i] = 0;
loc -= (shape_[i] - 1) * strides_[i];
i--;
}
pos_[i]++;
loc += strides_[i];
}
void seek(StrideT n) {
loc = 0;
for (int i = shape_.size() - 1; i >= 0; --i) {
auto q_and_r = ldiv(n, shape_[i]);
loc += q_and_r.rem * strides_[i];
pos_[i] = q_and_r.rem;
n = q_and_r.quot;
if (shape.size() > 0) {
collapsed_shape.push_back(shape[0]);
collapsed_strides.push_back(strides[0]);
for (int i = 1; i < shape.size(); i++) {
if (strides[i] * shape[i] != collapsed_strides.back() ||
collapsed_shape.back() * static_cast<size_t>(shape[i]) >
std::numeric_limits<int>::max()) {
collapsed_shape.push_back(shape[i]);
collapsed_strides.push_back(strides[i]);
} else {
collapsed_shape.back() *= shape[i];
collapsed_strides.back() = strides[i];
}
}
}
void reset() {
loc = 0;
std::fill(pos_.begin(), pos_.end(), 0);
}
return std::make_tuple(collapsed_shape, collapsed_strides);
}
ContiguousIterator() {};
explicit ContiguousIterator(const array& a)
: shape_(a.shape()), strides_(a.strides()) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = std::vector<int>(shape_.size(), 0);
}
}
explicit ContiguousIterator(
const std::vector<int>& shape,
const std::vector<StrideT>& strides,
int dims)
: shape_(shape.begin(), shape.begin() + dims),
strides_(strides.begin(), strides.begin() + dims) {
if (!shape_.empty()) {
std::tie(shape_, strides_) = collapse_contiguous_dims(shape_, strides_);
pos_ = std::vector<int>(shape_.size(), 0);
}
}
StrideT loc{0};
private:
std::vector<int> shape_;
std::vector<StrideT> strides_;
std::vector<int> pos_;
};
template <typename StrideT>
template <typename stride_t>
inline auto check_contiguity(
const std::vector<int>& shape,
const std::vector<StrideT>& strides) {
const std::vector<stride_t>& strides) {
size_t no_broadcast_data_size = 1;
size_t f_stride = 1;
size_t b_stride = 1;
@@ -171,11 +155,4 @@ inline auto check_contiguity(
no_broadcast_data_size, is_row_contiguous, is_col_contiguous);
}
inline bool is_donatable(const array& in, const array& out) {
constexpr size_t donation_extra = 16384;
return in.is_donatable() && in.itemsize() == out.itemsize() &&
in.buffer_size() <= out.nbytes() + donation_extra;
}
} // namespace mlx::core

View File

@@ -1,56 +1,99 @@
function(make_jit_source SRC_FILE)
# This function takes a metal header file, runs the C preprocessesor on it,
# and makes the processed contents available as a string in a C++ function
# This function takes a metal header file,
# runs the C preprocessesor on it, and makes
# the processed contents available as a string in a C++ function
# mlx::core::metal::${SRC_NAME}()
#
# To use the function, declare it in jit/includes.h and include
# jit/includes.h.
# To use the function, declare it in jit/includes.h and
# include jit/includes.h.
#
# Additional arguments to this function are treated as dependencies in the
# Cmake build system.
# Additional arguments to this function are treated as dependencies
# in the Cmake build system.
get_filename_component(SRC_NAME ${SRC_FILE} NAME)
add_custom_command(
OUTPUT jit/${SRC_NAME}.cpp
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/jit ${CMAKE_C_COMPILER} ${PROJECT_SOURCE_DIR}
${SRC_FILE} "-DMLX_METAL_VERSION=${MLX_METAL_VERSION}"
DEPENDS make_compiled_preamble.sh kernels/${SRC_FILE}.h ${ARGN})
OUTPUT jit/${SRC_NAME}.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/jit
${CMAKE_C_COMPILER}
${PROJECT_SOURCE_DIR}
${SRC_FILE}
"-DMLX_METAL_VERSION=${MLX_METAL_VERSION}"
DEPENDS make_compiled_preamble.sh
kernels/${SRC_FILE}.h
${ARGN}
)
add_custom_target(${SRC_NAME} DEPENDS jit/${SRC_NAME}.cpp)
add_dependencies(mlx ${SRC_NAME})
target_sources(mlx PRIVATE ${CMAKE_CURRENT_BINARY_DIR}/jit/${SRC_NAME}.cpp)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_BINARY_DIR}/jit/${SRC_NAME}.cpp
)
endfunction(make_jit_source)
make_jit_source(utils kernels/bf16.h kernels/complex.h kernels/defines.h)
make_jit_source(unary_ops kernels/erf.h kernels/expm1f.h)
make_jit_source(
utils
kernels/bf16.h
kernels/complex.h
kernels/defines.h
)
make_jit_source(
unary_ops
kernels/erf.h
kernels/expm1f.h
)
make_jit_source(binary_ops)
make_jit_source(ternary_ops)
make_jit_source(reduce_utils kernels/atomic.h kernels/reduction/ops.h)
make_jit_source(scatter kernels/indexing.h)
make_jit_source(gather kernels/indexing.h)
make_jit_source(
reduce_utils
kernels/atomic.h
kernels/reduction/ops.h
)
make_jit_source(scatter)
make_jit_source(gather)
make_jit_source(hadamard)
if(MLX_METAL_JIT)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/jit_kernels.cpp)
if (MLX_METAL_JIT)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/jit_kernels.cpp
)
make_jit_source(arange)
make_jit_source(copy)
make_jit_source(unary)
make_jit_source(binary)
make_jit_source(binary_two)
make_jit_source(fft kernels/fft/radix.h kernels/fft/readwrite.h)
make_jit_source(
fft
kernels/fft/radix.h
kernels/fft/readwrite.h
)
make_jit_source(ternary)
make_jit_source(softmax)
make_jit_source(scan)
make_jit_source(sort)
make_jit_source(
reduce kernels/reduction/reduce_all.h kernels/reduction/reduce_col.h
kernels/reduction/reduce_row.h kernels/reduction/reduce_init.h)
reduce
kernels/reduction/reduce_all.h
kernels/reduction/reduce_col.h
kernels/reduction/reduce_row.h
kernels/reduction/reduce_init.h
)
make_jit_source(
steel/gemm/gemm kernels/steel/utils.h kernels/steel/gemm/loader.h
kernels/steel/gemm/mma.h kernels/steel/gemm/params.h
kernels/steel/gemm/transforms.h)
steel/gemm/gemm
kernels/steel/utils.h
kernels/steel/gemm/loader.h
kernels/steel/gemm/mma.h
kernels/steel/gemm/params.h
kernels/steel/gemm/transforms.h
)
make_jit_source(steel/gemm/kernels/steel_gemm_fused)
make_jit_source(steel/gemm/kernels/steel_gemm_masked kernels/steel/defines.h)
make_jit_source(
steel/gemm/kernels/steel_gemm_masked
kernels/steel/defines.h
)
make_jit_source(steel/gemm/kernels/steel_gemm_splitk)
make_jit_source(
steel/conv/conv
@@ -61,52 +104,63 @@ if(MLX_METAL_JIT)
kernels/steel/conv/params.h
kernels/steel/conv/loader.h
kernels/steel/conv/loaders/loader_channel_l.h
kernels/steel/conv/loaders/loader_channel_n.h)
make_jit_source(steel/conv/kernels/steel_conv)
make_jit_source(steel/conv/kernels/steel_conv_general kernels/steel/defines.h
kernels/steel/conv/loaders/loader_general.h)
kernels/steel/conv/loaders/loader_channel_n.h
)
make_jit_source(
steel/conv/kernels/steel_conv
)
make_jit_source(
steel/conv/kernels/steel_conv_general
kernels/steel/defines.h
kernels/steel/conv/loaders/loader_general.h
)
make_jit_source(quantized)
make_jit_source(gemv_masked)
else()
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/nojit_kernels.cpp)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/nojit_kernels.cpp
)
endif()
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/normalization.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/resident.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp)
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/custom_kernel.cpp
${CMAKE_CURRENT_SOURCE_DIR}/distributed.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/normalization.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
)
if(NOT MLX_METAL_PATH)
if (NOT MLX_METAL_PATH)
set(MLX_METAL_PATH ${CMAKE_CURRENT_BINARY_DIR}/kernels/)
endif()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/kernels)
target_compile_definitions(mlx
PRIVATE METAL_PATH="${MLX_METAL_PATH}/mlx.metallib")
target_compile_definitions(
mlx PRIVATE METAL_PATH="${MLX_METAL_PATH}/mlx.metallib")

View File

@@ -2,7 +2,6 @@
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
#include "mlx/backend/metal/metal_impl.h"
#include "mlx/backend/metal/resident.h"
#include <mach/vm_page_size.h>
#include <unistd.h>
@@ -141,7 +140,6 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
residency_set_(device_),
buffer_cache_(device_) {
auto memsize = std::get<size_t>(device_info()["memory_size"]);
block_limit_ =
@@ -150,8 +148,6 @@ MetalAllocator::MetalAllocator()
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()),
block_limit_);
max_pool_size_ = block_limit_;
device(mlx::core::Device::gpu)
.set_residency_set(residency_set_.mtl_residency_set());
}
size_t MetalAllocator::set_cache_limit(size_t limit) {
@@ -168,12 +164,6 @@ size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
return limit;
};
size_t MetalAllocator::set_wired_limit(size_t limit) {
std::swap(limit, wired_limit_);
residency_set_.resize(wired_limit_);
return limit;
};
Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Metal doesn't like empty buffers
if (size == 0) {
@@ -215,7 +205,7 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Allocate new buffer if needed
size_t res_opt = MTL::ResourceStorageModeShared;
res_opt |= MTL::ResourceHazardTrackingModeUntracked;
res_opt |= MTL::ResourceHazardTrackingModeTracked;
lk.unlock();
buf = device_->newBuffer(size, res_opt);
lk.lock();
@@ -230,8 +220,6 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
residency_set_.insert(buf);
return Buffer{static_cast<void*>(buf)};
}
@@ -243,7 +231,6 @@ void MetalAllocator::clear_cache() {
void MetalAllocator::free(Buffer buffer) {
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
std::unique_lock lk(mutex_);
residency_set_.erase(buf);
active_memory_ -= buf->length();
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
@@ -254,14 +241,16 @@ void MetalAllocator::free(Buffer buffer) {
}
}
size_t MetalAllocator::size(Buffer buffer) const {
return static_cast<MTL::Buffer*>(buffer.ptr())->length();
}
MetalAllocator& allocator() {
// By creating the |allocator_| on heap, the destructor of MetalAllocator
// will not be called on exit and buffers in the cache will be leaked. This
// can save some time at program exit.
// By creating the |allocator_| on heap, the destructor of MetalAllocator will
// not be called on exit and all the buffers will be leaked. This is necessary
// because releasing buffers can take more than 30sec when the program holds a
// lot of RAM (for example inferencing a LLM), and it would feel frozen to
// users when exiting.
// TODO(zcbenz): Consider using the `base::NoDestructor` class from Chromium
// when applying this pattern to more places, or when introducing sanitizers
// to MLX.
// https://source.chromium.org/chromium/chromium/src/+/main:base/no_destructor.h
static MetalAllocator* allocator_ = new MetalAllocator;
return *allocator_;
}
@@ -272,15 +261,6 @@ size_t set_cache_limit(size_t limit) {
size_t set_memory_limit(size_t limit, bool relaxed /* = true */) {
return allocator().set_memory_limit(limit, relaxed);
}
size_t set_wired_limit(size_t limit) {
if (limit >
std::get<size_t>(device_info()["max_recommended_working_set_size"])) {
throw std::invalid_argument(
"[metal::set_wired_limit] Setting a wired limit larger than "
"the maximum working set size is not allowed.");
}
return allocator().set_wired_limit(limit);
}
size_t get_active_memory() {
return allocator().get_active_memory();
}

View File

@@ -8,7 +8,6 @@
#include "mlx/allocator.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/resident.h"
namespace mlx::core::metal {
@@ -57,7 +56,6 @@ class MetalAllocator : public allocator::Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
virtual size_t size(Buffer buffer) const override;
size_t get_active_memory() {
return active_memory_;
};
@@ -73,7 +71,6 @@ class MetalAllocator : public allocator::Allocator {
};
size_t set_cache_limit(size_t limit);
size_t set_memory_limit(size_t limit, bool relaxed);
size_t set_wired_limit(size_t limit);
void clear_cache();
private:
@@ -84,15 +81,12 @@ class MetalAllocator : public allocator::Allocator {
// Caching allocator
BufferCache buffer_cache_;
ResidencySet residency_set_;
// Allocation stats
size_t block_limit_;
size_t gc_limit_;
size_t active_memory_{0};
size_t peak_memory_{0};
size_t max_pool_size_;
size_t wired_limit_{0};
bool relaxed_{true};
std::mutex mutex_;

View File

@@ -1,4 +1,5 @@
// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/binary.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
@@ -18,13 +19,14 @@
namespace mlx::core {
constexpr int MAX_BINARY_SPECIALIZED_DIMS = 5;
std::string get_kernel_name(
BinaryOpType bopt,
const std::string& op,
const array& a,
bool use_2d,
int ndim,
int work_per_thread) {
int ndim) {
std::ostringstream kname;
switch (bopt) {
case BinaryOpType::ScalarScalar:
@@ -41,17 +43,14 @@ std::string get_kernel_name(
break;
case BinaryOpType::General:
kname << "g";
if (ndim <= 3) {
if (ndim <= MAX_BINARY_SPECIALIZED_DIMS) {
kname << ndim;
} else {
kname << "n";
if (work_per_thread > 1) {
kname << work_per_thread;
}
}
break;
}
kname << "_" << op << type_to_name(a);
kname << op << type_to_name(a);
return kname.str();
}
@@ -70,68 +69,53 @@ void binary_op_gpu_inplace(
}
// Try to collapse contiguous dims
auto maybe_collapse = [bopt, &a, &b, &out]() {
if (bopt == BinaryOpType::General) {
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
return std::make_tuple(shape, strides[0], strides[1], strides[2]);
} else {
std::vector<size_t> e;
return std::make_tuple(std::vector<int>{}, e, e, e);
}
};
auto [shape, strides_a, strides_b, strides_out] = maybe_collapse();
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
auto& strides_a = strides[0];
auto& strides_b = strides[1];
auto& strides_out = strides[2];
bool use_2d = out.data_size() > UINT32_MAX;
auto ndim = shape.size();
int work_per_thread = (bopt == BinaryOpType::General) ? 4 : 1;
std::string kernel_name =
get_kernel_name(bopt, op, a, use_2d, shape.size(), work_per_thread);
std::string kernel_name = get_kernel_name(bopt, op, a, use_2d, shape.size());
auto& d = metal::device(s.device);
auto kernel = outputs.size() == 2
? get_binary_two_kernel(d, kernel_name, a.dtype(), out.dtype(), op)
: get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
auto kernel =
get_binary_two_kernel(d, kernel_name, a.dtype(), outputs[0].dtype(), op);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// - If a is donated it goes to the first output
// - If b is donated it goes to the first output if a was not donated
// otherwise it goes to the second output.
// - If there is only one output only one of a and b will be donated.
// otherwise it goes to the second output
bool donate_a = a.data_shared_ptr() == nullptr;
bool donate_b = b.data_shared_ptr() == nullptr;
int arg_idx = 0;
compute_encoder.set_input_array(donate_a ? outputs[0] : a, arg_idx++);
compute_encoder.set_input_array(donate_a ? outputs[0] : a, 0);
compute_encoder.set_input_array(
donate_b ? (donate_a ? outputs[1] : outputs[0]) : b, arg_idx++);
compute_encoder.set_output_array(outputs[0], arg_idx++);
if (outputs.size() == 2) {
compute_encoder.set_output_array(outputs[1], arg_idx++);
}
donate_b ? (donate_a ? outputs[1] : outputs[0]) : b, 1);
compute_encoder.set_output_array(outputs[0], 2);
compute_encoder.set_output_array(outputs[1], 3);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (bopt == BinaryOpType::General) {
auto ndim = shape.size();
if (ndim > 3) {
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), 4);
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 5);
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 6);
} else {
// The shape is implicit in the grid for <= 3D
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 4);
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 5);
}
if (ndim > MAX_BINARY_SPECIALIZED_DIMS) {
compute_encoder->setBytes(&ndim, sizeof(int), 7);
}
// Launch up to 3D grid of threads
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = out.size() / (dim0 * dim1);
if (ndim > 3) {
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), arg_idx++);
compute_encoder->setBytes(
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(&ndim, sizeof(int), arg_idx++);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
} else {
// The shape is implicit in the grid for <= 3D
compute_encoder->setBytes(
strides_a.data(), ndim * sizeof(size_t), arg_idx++);
compute_encoder->setBytes(
strides_b.data(), ndim * sizeof(size_t), arg_idx++);
}
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
}
@@ -141,12 +125,14 @@ void binary_op_gpu_inplace(
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = out.data_size();
MTL::Size grid_dims = use_2d
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
: MTL::Size(nthreads, 1, 1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
}
@@ -178,8 +164,72 @@ void binary_op_gpu_inplace(
array& out,
const std::string& op,
const Stream& s) {
std::vector<array> outputs = {out};
binary_op_gpu_inplace(inputs, outputs, op, s);
auto& a = inputs[0];
auto& b = inputs[1];
auto bopt = get_binary_op_type(a, b);
if (out.size() == 0) {
return;
}
// Try to collapse contiguous dims
auto [shape, strides] = collapse_contiguous_dims(a, b, out);
auto& strides_a = strides[0];
auto& strides_b = strides[1];
auto& strides_out = strides[2];
bool use_2d = out.data_size() > UINT32_MAX;
std::string kernel_name = get_kernel_name(bopt, op, a, use_2d, shape.size());
auto& d = metal::device(s.device);
auto kernel = get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
bool donate_a = a.data_shared_ptr() == nullptr;
bool donate_b = b.data_shared_ptr() == nullptr;
compute_encoder.set_input_array(donate_a ? out : a, 0);
compute_encoder.set_input_array(donate_b ? out : b, 1);
compute_encoder.set_output_array(out, 2);
if (bopt == BinaryOpType::General) {
auto ndim = shape.size();
if (ndim > 3) {
compute_encoder->setBytes(shape.data(), ndim * sizeof(int), 3);
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 4);
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 5);
} else {
// The shape is implicit in the grid for <= 3D
compute_encoder->setBytes(strides_a.data(), ndim * sizeof(size_t), 3);
compute_encoder->setBytes(strides_b.data(), ndim * sizeof(size_t), 4);
}
if (ndim > MAX_BINARY_SPECIALIZED_DIMS) {
compute_encoder->setBytes(&ndim, sizeof(int), 6);
}
// Launch up to 3D grid of threads
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = out.size() / (dim0 * dim1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
}
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatchThreads(grid_dims, group_dims);
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = out.data_size();
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
}
void binary_op_gpu(

View File

@@ -13,8 +13,6 @@
namespace mlx::core {
constexpr int WORK_PER_THREAD = 4;
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
@@ -24,9 +22,7 @@ inline void build_kernel(
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim,
bool dynamic_dims,
bool use_big_index = false,
int work_per_thread = 1) {
bool dynamic_dims) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
@@ -41,8 +37,8 @@ inline void build_kernel(
int cnt = 0;
// Start the kernel
os << "[[host_name(\"" << kernel_name << "\")]]\n"
<< "[[kernel]] void " << kernel_name << "(\n";
os << "[[host_name(\"" << kernel_name << "\")]]" << std::endl
<< "[[kernel]] void " << kernel_name << "(" << std::endl;
// Add the input arguments
for (auto& x : inputs) {
@@ -56,11 +52,11 @@ inline void build_kernel(
// Scalars and contiguous need no strides
if (is_scalar(x) || contiguous) {
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
<< " [[buffer(" << cnt++ << ")]]," << std::endl;
} else {
add_indices = true;
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]],\n";
<< " [[buffer(" << cnt++ << ")]]," << std::endl;
}
}
@@ -72,37 +68,52 @@ inline void build_kernel(
// Add the output arguments
for (auto& x : outputs) {
os << " device " << get_type_string(x.dtype()) << "* "
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]],\n";
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]]," << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " constant const size_t* output_strides [[buffer(" << cnt++
<< ")]],\n"
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],\n";
<< ")]]," << std::endl
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
if (dynamic_dims) {
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],\n";
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
// The thread index in the whole grid
os << " uint3 pos [[thread_position_in_grid]],\n"
<< " uint3 grid [[threads_per_grid]]) {\n";
os << " uint3 pos [[thread_position_in_grid]]," << std::endl
<< " uint3 grid [[threads_per_grid]]) {" << std::endl
<< " uint index = pos.x + grid.x * (pos.y + grid.y * pos.z);"
<< std::endl;
if (use_big_index) {
// This is only used for contiguous kernels which don't have
// a third grid dimension
os << " size_t index = pos.x + grid.x * size_t(pos.y);\n";
} else if (work_per_thread > 1) {
os << " constexpr int N_ = " << std::to_string(work_per_thread) << ";\n"
<< " int xshape = output_shape["
<< (dynamic_dims ? "ndim - 1" : std::to_string(ndim - 1)) << "];\n"
<< " size_t index = N_ * pos.x + xshape * (pos.y + size_t(grid.y) * pos.z);\n";
} else {
os << " size_t index = pos.x + grid.x * (pos.y + size_t(grid.y) * pos.z);\n";
// Extract the indices per axis to individual uints if we have arrays that
// are broadcasted or transposed
if (add_indices) {
if (!dynamic_dims) {
if (ndim == 1) {
os << " uint index_0 = pos.x;" << std::endl;
} else if (ndim == 2) {
os << " uint index_0 = pos.y;" << std::endl
<< " uint index_1 = pos.x;" << std::endl;
} else if (ndim == 3) {
os << " uint index_0 = pos.z;" << std::endl
<< " uint index_1 = pos.y;" << std::endl
<< " uint index_2 = pos.x;" << std::endl;
} else {
for (int i = 0; i < ndim - 2; i++) {
os << " uint index_" << i << " = (index / uint(output_strides[" << i
<< "])) % output_shape[" << i << "];" << std::endl;
}
os << " uint index_" << ndim - 2 << " = pos.y;" << std::endl
<< " uint index_" << ndim - 1 << " = pos.x;" << std::endl;
}
}
}
// Read constant / contiguous inputs in tmps
std::vector<array> nc_inputs;
// Read the inputs in tmps
int nc_in_count = 0;
for (int i = 0; i < inputs.size(); ++i) {
auto& x = inputs[i];
auto& xname = namer.get_name(x);
@@ -112,75 +123,29 @@ inline void build_kernel(
os << " auto tmp_" << xname << " = static_cast<"
<< get_type_string(x.dtype()) << ">(";
print_constant(os, x);
os << ");\n";
os << ");" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];\n";
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index];\n";
} else {
nc_inputs.push_back(x);
}
}
// Initialize the indices for non-contiguous inputs
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
if (ndim == 1) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_1(pos.x, "
<< "in_strides[" << offset << "]);\n";
} else if (ndim == 2) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_2({pos.x, pos.y}, "
<< "in_strides + " << offset << ");\n";
} else if (ndim == 3) {
int offset = i * ndim;
os << " size_t index_" << xname << " = elem_to_loc_3(pos, "
<< "in_strides + " << offset << ");\n";
<< xname << "[index];" << std::endl;
} else if (!dynamic_dims) {
int offset = i * ndim;
os << " size_t index_" << xname << " = N_ * pos.x * in_strides["
<< offset + ndim - 1 << "]"
<< " + pos.y * in_strides[" << offset + ndim - 2 << "];\n";
} else {
os << " size_t index_" << xname << " = N_ * pos.x * in_strides[ndim * "
<< i << " + ndim - 1]"
<< " + pos.y * in_strides[ndim * " << i << " + ndim - 2];\n";
}
}
if (!nc_inputs.empty() && (ndim > 3 || dynamic_dims)) {
os << " uint zpos = pos.z;\n";
if (dynamic_dims) {
os << " for (int d = ndim - 3; d >= 0; --d) {\n";
} else {
os << " for (int d = " << ndim - 3 << "; d >= 0; --d) {\n";
}
os << " uint l = zpos % output_shape[d];\n";
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& xname = namer.get_name(nc_inputs[i]);
os << " index_" << xname << " += ";
if (dynamic_dims) {
os << "l * in_strides[" << i << " * ndim + d];\n";
} else {
os << "l * in_strides[" << i * ndim << " + d];\n";
int offset = nc_in_count * ndim;
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[";
os << "index_0 * " << "in_strides[" << offset << "]";
for (int i = 1; i < ndim; i++) {
os << " + index_" << i << " * " << "in_strides[" << offset + i << "]";
}
os << "];" << std::endl;
nc_in_count++;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[elem_to_loc(index, output_shape, in_strides + "
<< nc_in_count * ndim << ", ndim)];" << std::endl;
nc_in_count++;
}
os << " zpos /= output_shape[d];\n }\n";
}
// Open per-thread loop
if (work_per_thread > 1) {
os << " for (int i = 0; i < N_ && (int(N_ * pos.x) + i) < xshape; ++i) {\n";
}
// Read non-contiguous inputs into tmps
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index_" << xname << "];\n";
}
// Actually write the computation
@@ -189,40 +154,25 @@ inline void build_kernel(
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");\n";
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");\n";
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
<< ";\n";
}
// Increment indices and close per thread loop
if (work_per_thread > 1) {
for (int i = 0; i < nc_inputs.size(); ++i) {
auto& x = nc_inputs[i];
auto& xname = namer.get_name(x);
if (!dynamic_dims) {
os << " index_" << xname << " += "
<< "in_strides[" << i * ndim + ndim - 1 << "];\n";
} else {
os << " index_" << xname << " += "
<< "in_strides[" << i << " * ndim + ndim - 1];\n";
}
}
os << " index++;\n }\n";
<< ";" << std::endl;
}
// Finish the kernel
os << "}\n";
os << "}" << std::endl;
if (cnt > 31) {
std::ostringstream msg;
@@ -245,7 +195,10 @@ void Compiled::eval_gpu(
// Get the kernel if someone else built it already
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_, [&]() {
auto lib = d.get_library(kernel_lib_);
// If not we have to build it ourselves
if (lib == nullptr) {
std::ostringstream kernel;
kernel << metal::utils() << metal::unary_ops() << metal::binary_ops()
<< metal::ternary_ops();
@@ -259,17 +212,6 @@ void Compiled::eval_gpu(
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
build_kernel(
kernel,
kernel_lib_ + "_contiguous_big",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false,
/* use_big_index = */ true);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
@@ -280,9 +222,7 @@ void Compiled::eval_gpu(
constant_ids_,
/* contiguous = */ false,
/* ndim = */ i,
/* dynamic_dims = */ false,
/* use_big_index = */ false,
/* work_per_thread = */ i > 3 ? WORK_PER_THREAD : 1);
/* dynamic_dims = */ false);
}
build_kernel(
kernel,
@@ -293,11 +233,10 @@ void Compiled::eval_gpu(
constant_ids_,
/* contiguous = */ false,
/* ndim = */ 0,
/* dynamic_dims = */ true,
/* use_big_index = */ false,
/* work_per_thread = */ WORK_PER_THREAD);
return kernel.str();
});
/* dynamic_dims = */ true);
lib = d.get_library(kernel_lib_, kernel.str());
}
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
@@ -346,16 +285,7 @@ void Compiled::eval_gpu(
initial_strides.push_back(std::move(xstrides));
}
std::tie(shape, strides) =
collapse_contiguous_dims(output_shape, initial_strides, INT32_MAX);
}
bool use_2d = false;
if (contiguous) {
size_t max_size = 0;
for (auto& in : inputs) {
max_size = std::max(max_size, in.data_size());
}
use_2d = (max_size > UINT32_MAX);
collapse_contiguous_dims(output_shape, initial_strides);
}
// Get the kernel from the lib
@@ -368,8 +298,6 @@ void Compiled::eval_gpu(
} else {
kernel_name += std::to_string(shape.size());
}
} else if (use_2d) {
kernel_name += "_big";
}
auto kernel = d.get_kernel(kernel_name, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
@@ -420,30 +348,20 @@ void Compiled::eval_gpu(
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].data_size();
size_t nthreads = outputs[0].size();
MTL::Size grid_dims(nthreads, 1, 1);
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
MTL::Size grid_dims = use_2d
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
} else {
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = outputs[0].size() / (dim0 * dim1);
int work_per_thread = ndim > 3 ? WORK_PER_THREAD : 1;
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
int pow2;
if (thread_group_size == 1024) {
pow2 = 10;
} else if (thread_group_size > 512) {
pow2 = 9;
} else {
throw std::runtime_error("[Metal::compiled] Must use > 512 sized block");
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
}
auto group_dims = get_block_dims(dim0, dim1, rest, pow2);
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}

View File

@@ -72,7 +72,7 @@ void explicit_gemm_conv_ND_gpu(
wt_reshaped.copy_shared_buffer(wt, wt_restride, wt_flags, wt.data_size());
// Perform gemm
std::vector<array> copies = {in_unfolded};
std::vector<array> copies = {in_unfolded, wt_reshaped};
return steel_matmul(
s,
d,
@@ -155,27 +155,22 @@ void explicit_gemm_conv_group_ND_gpu(
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
// Perform gemm
std::vector<array> copies = {in_unfolded, wt_transpose};
return steel_matmul_regular(
std::vector<array> copies = {in_unfolded, wt_view, wt_transpose};
return steel_matmul_conv_groups(
s,
d,
/* a = */ in_unfolded,
/* b = */ wt_transpose,
/* c = */ out,
/* M = */ implicit_M,
/* N = */ implicit_N,
/* K = */ implicit_K,
/* batch_size_out = */ groups,
/* a_cols = */ implicit_K * groups,
/* b_cols = */ implicit_K,
/* out_cols = */ implicit_N * groups,
/* a_transposed = */ false,
/* b_transposed = */ true,
/* batch_shape = */ {1},
/* batch_strides = */ {0},
/* A_batch_strides = */ size_t(implicit_K),
/* B_batch_strides = */ size_t(implicit_N) * implicit_K,
/* matrix_stride_out = */ size_t(implicit_N),
/*a = */ in_unfolded,
/*b = */ wt_transpose,
/*c = */ out,
/*M = */ implicit_M,
/*N = */ implicit_N,
/*K = */ implicit_K,
/*a_cols = */ implicit_K * groups,
/*b_cols = */ implicit_K,
/*out_cols = */ implicit_N * groups,
/*a_transposed = */ false,
/*b_transposed = */ true,
/* groups = */ groups,
/*copies = */ copies);
}
@@ -557,7 +552,7 @@ void winograd_conv_2D_gpu(
// Fill with zeros
array zero_arr = array(0, in.dtype());
fill_gpu(zero_arr, in_padded, s);
copy_gpu(zero_arr, in_padded, CopyType::Scalar, s);
copies_w.push_back(zero_arr);
// Pick input slice from padded
@@ -576,6 +571,7 @@ void winograd_conv_2D_gpu(
copies_w.push_back(in_padded_slice);
copies_w.push_back(in_padded);
copies_w.push_back(zero_arr);
MLXConvParams<2> conv_params_updated{
/* const int N = */ in_padded.shape(0),
@@ -752,6 +748,10 @@ void conv_2D_gpu(
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
bool inp_large = (conv_params.in_strides[0] >= 1ul << 18);
bool channels_large = (conv_params.C + conv_params.O) >= 512;
bool channels_med = (conv_params.C + conv_params.O) >= 256;
if (groups > 1) {
const int C_per_group = conv_params.C / groups;
const int O_per_group = conv_params.O / groups;
@@ -765,13 +765,10 @@ void conv_2D_gpu(
}
// Direct to winograd conv
bool inp_large =
(conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 1ul << 12;
bool channels_large = (conv_params.C + conv_params.O) >= 256;
if (!flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
channels_large) {
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 &&
(channels_large || (channels_med && inp_large))) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
@@ -914,11 +911,15 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
// Throw error
else {
throw std::invalid_argument(
"[Convolution::eval_gpu] Only supports 1D, 2D or 3D convolutions.");
"[Convolution::eval_gpu] Only supports 1D or 2D convolutions.");
}
// Record copies
d.add_temporaries(std::move(copies), s.index);
// Clear copies
if (copies.size() > 0) {
auto command_buffer = d.get_command_buffer(s.index);
command_buffer->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
}
}
} // namespace mlx::core

View File

@@ -10,7 +10,7 @@
namespace mlx::core {
constexpr int MAX_COPY_SPECIALIZED_DIMS = 3;
constexpr int MAX_COPY_SPECIALIZED_DIMS = 5;
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
if (ctype == CopyType::Vector) {
@@ -59,25 +59,13 @@ void copy_gpu_inplace(
}
// Try to collapse contiguous dims
auto maybe_collapse =
[ctype, &data_shape, &strides_in_pre, &strides_out_pre]() {
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
auto [shape, strides] = collapse_contiguous_dims(
data_shape,
std::vector{strides_in_pre, strides_out_pre},
/* size_cap = */ INT32_MAX);
return std::make_tuple(shape, strides[0], strides[1]);
} else {
std::vector<stride_t> e;
return std::make_tuple(std::vector<int>{}, e, e);
}
};
auto [shape, strides_in_, strides_out_] = maybe_collapse();
int ndim = shape.size();
auto [shape, strides] = collapse_contiguous_dims(
data_shape, std::vector{strides_in_pre, strides_out_pre});
auto& strides_in_ = strides[0];
auto& strides_out_ = strides[1];
bool use_2d = out.data_size() > UINT32_MAX;
auto& d = metal::device(s.device);
int work_per_thread = 1;
std::string kernel_name;
{
std::ostringstream kname;
@@ -95,13 +83,9 @@ void copy_gpu_inplace(
kname << "gg";
break;
}
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
if (shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
kname << shape.size();
} else {
work_per_thread = 4;
kname << "n4";
}
if ((ctype == CopyType::General || ctype == CopyType::GeneralGeneral) &&
shape.size() <= MAX_COPY_SPECIALIZED_DIMS) {
kname << shape.size();
}
kname << "_copy";
kname << type_to_name(in) << type_to_name(out);
@@ -120,10 +104,11 @@ void copy_gpu_inplace(
compute_encoder.set_input_array(donate_in ? out : in, 0, inp_offset);
compute_encoder.set_output_array(out, 1, out_offset);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {
int ndim = shape.size();
std::vector<int64_t> strides_in{strides_in_.begin(), strides_in_.end()};
std::vector<int64_t> strides_out{strides_out_.begin(), strides_out_.end()};
if (ndim > 3) {
set_vector_bytes(compute_encoder, shape, ndim, 2);
}
@@ -132,6 +117,10 @@ void copy_gpu_inplace(
set_vector_bytes(compute_encoder, strides_out, ndim, 4);
}
if (ndim > MAX_COPY_SPECIALIZED_DIMS) {
compute_encoder->setBytes(&ndim, sizeof(int), 5);
}
int dim0 = ndim > 0 ? shape[ndim - 1] : 1;
int dim1 = ndim > 1 ? shape[ndim - 2] : 1;
@@ -140,12 +129,8 @@ void copy_gpu_inplace(
data_size *= s;
int rest = data_size / (dim0 * dim1);
if (ndim > MAX_COPY_SPECIALIZED_DIMS) {
compute_encoder->setBytes(&ndim, sizeof(int), 5);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
}
// NB assuming thread_group_size is a power of 2 larger than 32 x 32
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::copy] Must use 1024 sized block");
}
@@ -155,12 +140,13 @@ void copy_gpu_inplace(
compute_encoder.dispatchThreads(grid_dims, group_dims);
} else {
size_t nthreads = out.data_size();
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
}
@@ -188,31 +174,4 @@ void copy_gpu_inplace(
in, out, in.shape(), istride, ostrides, ioffset, 0, ctype, s);
}
void fill_gpu(const array& val, array& out, const Stream& s) {
if (out.size() == 0) {
return;
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
bool use_2d = out.data_size() > UINT32_MAX;
auto& d = metal::device(s.device);
std::string kernel_name = std::string(use_2d ? "s2" : "s") + "_copy" +
type_to_name(val) + type_to_name(out);
auto kernel = get_copy_kernel(d, kernel_name, val, out);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_input_array(val, 0);
compute_encoder.set_output_array(out, 1);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
size_t nthreads = out.data_size();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
} // namespace mlx::core

View File

@@ -37,7 +37,4 @@ void copy_gpu_inplace(
CopyType ctype,
const Stream& s);
// Fill the output with the scalar val
void fill_gpu(const array& val, array& out, const Stream& s);
} // namespace mlx::core

View File

@@ -17,8 +17,9 @@ void CustomKernel::eval_gpu(
for (auto& out : outputs) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
if (init_value_) {
copies.emplace_back(init_value_.value(), out.dtype());
fill_gpu(copies.back(), out, s);
array init = array(init_value_.value(), out.dtype());
copy_gpu(init, out, CopyType::Scalar, s);
copies.push_back(init);
}
}
@@ -32,22 +33,24 @@ void CustomKernel::eval_gpu(
return copies.back();
}
};
std::vector<array> checked_inputs;
std::vector<const array> checked_inputs;
for (const array& in : inputs) {
checked_inputs.push_back(check_input(in));
}
auto& d = metal::device(s.device);
const auto& lib_name = name_;
auto lib =
d.get_library(lib_name, [this] { return metal::utils() + source_; });
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
lib = d.get_library(lib_name, metal::utils() + source_);
}
auto kernel = d.get_kernel(name_, lib);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
int index = 0;
for (int i = 0; i < checked_inputs.size(); i++) {
const array& in = checked_inputs[i];
auto& shape_info = shape_infos_[i];
auto shape_info = shape_infos_[i];
compute_encoder.set_input_array(in, index);
index++;
if (in.ndim() > 0) {
@@ -66,7 +69,7 @@ void CustomKernel::eval_gpu(
}
}
}
for (auto& out : outputs) {
for (array out : outputs) {
compute_encoder.set_output_array(out, index);
index++;
}
@@ -77,7 +80,10 @@ void CustomKernel::eval_gpu(
MTL::Size grid_dims = MTL::Size(gx, gy, gz);
compute_encoder->dispatchThreads(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
if (!copies.empty()) {
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
}
}
} // namespace mlx::core::fast

View File

@@ -20,6 +20,7 @@ namespace {
// TODO nicer way to set this or possibly expose as an environment variable
constexpr int MAX_BUFFERS_PER_QUEUE = 12;
constexpr int MAX_DISPATCHES_PER_ENCODER = 2;
constexpr const char* default_mtllib_path = METAL_PATH;
@@ -120,29 +121,33 @@ MTL::Library* load_library(
} // namespace
CommandEncoder::CommandEncoder(MTL::CommandBuffer* cbuf) {
enc_ = cbuf->computeCommandEncoder(MTL::DispatchTypeConcurrent);
enc_->retain();
CommandEncoder::CommandEncoder(MTL::CommandBuffer* cbuf) : cbuf(cbuf) {
enc = cbuf->computeCommandEncoder(MTL::DispatchTypeConcurrent);
enc->retain();
}
CommandEncoder::~CommandEncoder() {
enc_->endEncoding();
enc_->release();
enc->endEncoding();
enc->release();
}
void CommandEncoder::set_input_array(
const array& a,
int idx,
int64_t offset /* = 0 */) {
all_inputs_.insert(a.buffer().ptr());
auto r_buf = static_cast<MTL::Resource*>(const_cast<void*>(a.buffer().ptr()));
needs_barrier_ =
needs_barrier_ | (prev_outputs_.find(r_buf) != prev_outputs_.end());
if (auto it = outputs.find(r_buf); it != outputs.end()) {
// Insert a barrier
enc->memoryBarrier(&r_buf, 1);
// Remove the output
outputs.erase(it);
}
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
auto base_offset = a.data<char>() -
static_cast<char*>(const_cast<MTL::Buffer*>(a_buf)->contents());
base_offset += offset;
enc_->setBuffer(a_buf, base_offset, idx);
enc->setBuffer(a_buf, base_offset, idx);
}
void CommandEncoder::set_output_array(
@@ -151,49 +156,55 @@ void CommandEncoder::set_output_array(
int64_t offset /* = 0 */) {
// Add barriers before adding the output to the output set
set_input_array(a, idx, offset);
all_outputs_.insert(a.buffer().ptr());
auto buf = static_cast<MTL::Resource*>(a.buffer().ptr());
if (concurrent_) {
concurrent_outputs_.insert(buf);
if (concurrent) {
concurrent_outputs.insert(buf);
} else {
next_outputs_.insert(buf);
outputs.insert(buf);
}
}
void CommandEncoder::maybeInsertBarrier() {
if (needs_barrier_) {
enc_->memoryBarrier(MTL::BarrierScopeBuffers);
needs_barrier_ = false;
prev_outputs_ = std::move(next_outputs_);
} else {
prev_outputs_.insert(next_outputs_.begin(), next_outputs_.end());
}
next_outputs_.clear();
}
void CommandEncoder::dispatchThreadgroups(
MTL::Size grid_dims,
MTL::Size group_dims) {
maybeInsertBarrier();
enc_->dispatchThreadgroups(grid_dims, group_dims);
num_dispatches++;
enc->dispatchThreadgroups(grid_dims, group_dims);
maybe_split();
}
void CommandEncoder::dispatchThreads(
MTL::Size grid_dims,
MTL::Size group_dims) {
maybeInsertBarrier();
enc_->dispatchThreads(grid_dims, group_dims);
num_dispatches++;
enc->dispatchThreads(grid_dims, group_dims);
maybe_split();
}
void CommandEncoder::maybe_split() {
if (num_dispatches > MAX_DISPATCHES_PER_ENCODER && !concurrent) {
enc->endEncoding();
enc->release();
num_dispatches = 0;
outputs.clear();
enc = cbuf->computeCommandEncoder(MTL::DispatchTypeConcurrent);
enc->retain();
}
}
Device::Device() {
auto pool = new_scoped_memory_pool();
device_ = load_device();
library_map_ = {{"mlx", load_library(device_)}};
arch_ = std::string(device_->architecture()->name()->utf8String());
}
Device::~Device() {
auto pool = new_scoped_memory_pool();
for (auto& q : queue_map_) {
q.second->release();
}
for (auto& b : buffer_map_) {
b.second.second->release();
}
for (auto& k : kernel_map_) {
k.second->release();
}
@@ -208,134 +219,69 @@ void Device::new_queue(int index) {
// Multiple threads can ask the device for queues
// We lock this as a critical section for safety
const std::lock_guard<std::mutex> lock(mtx_);
auto q = device_->newCommandQueue(MAX_BUFFERS_PER_QUEUE);
debug_set_stream_queue_label(q, index);
if (!q) {
throw std::runtime_error(
"[metal::Device] Failed to make new command queue.");
}
stream_map_.emplace(index, q);
if (residency_set_ != nullptr) {
q->addResidencySet(residency_set_);
}
queue_map_.insert({index, q});
}
int Device::get_command_buffer_ops(int index) {
return get_stream_(index).buffer_ops;
auto bit = buffer_map_.find(index);
return bit->second.first;
}
void Device::increment_command_buffer_ops(int index) {
get_stream_(index).buffer_ops++;
auto bit = buffer_map_.find(index);
bit->second.first++;
}
MTL::CommandBuffer* Device::get_command_buffer(int index) {
auto& stream = get_stream_(index);
if (stream.buffer == nullptr) {
stream.buffer = stream.queue->commandBufferWithUnretainedReferences();
if (!stream.buffer) {
auto bit = buffer_map_.find(index);
if (bit == buffer_map_.end()) {
auto qit = queue_map_.find(index);
if (qit == queue_map_.end()) {
throw std::runtime_error(
"[metal::Device] Attempting to get command buffer for invalid queue.");
}
auto cb = qit->second->commandBufferWithUnretainedReferences();
if (!cb) {
throw std::runtime_error(
"[metal::Device] Unable to create new command buffer");
}
// Increment ref count so the buffer is not garbage collected
stream.buffer->retain();
cb->retain();
bit = buffer_map_.insert({index, {0, cb}}).first;
}
return stream.buffer;
return bit->second.second;
}
void Device::commit_command_buffer(int index) {
auto& stream = get_stream_(index);
stream.buffer->commit();
stream.buffer->release();
stream.buffer = nullptr;
stream.buffer_ops = 0;
}
void Device::add_temporary(array arr, int index) {
get_stream_(index).temporaries.push_back(std::move(arr));
}
void Device::add_temporaries(std::vector<array> arrays, int index) {
if (arrays.empty()) {
return;
}
auto& stream = get_stream_(index);
stream.temporaries.insert(
stream.temporaries.end(),
std::make_move_iterator(arrays.begin()),
std::make_move_iterator(arrays.end()));
auto bit = buffer_map_.find(index);
bit->second.second->commit();
bit->second.second->release();
buffer_map_.erase(bit);
}
void Device::end_encoding(int index) {
auto& stream = get_stream_(index);
if (stream.encoder != nullptr) {
// Each command encoder has a unique fence. We also store a map of
// all previous outputs of command encoders to their corresponding fence.
// - The command encoder records its inputs and outputs.
// - Wait on a fence if any inputs in the encoder are outputs of a previous
// encoder.
// - Update the map of outputs to include this command encoder's outputs.
// - Always signal this command encoders fence.
// - Add a completion handler for this command encoder that removes outputs
// from the map to limit the growth of the map and avoid unecessary waits
// - Temporaries are a special case as they do not cross command encoder
// boundaries. These can be removed early from the encoders inputs and
// outputs since they don't need synchronization.
auto& enc = *stream.encoder;
// Remove temporaries from inputs and outputs
for (auto& t : stream.temporaries) {
if (t.data<void>() != nullptr) {
enc.outputs().erase(t.buffer().ptr());
enc.inputs().erase(t.buffer().ptr());
}
}
// Keep references to the fences we waited on and put them
// in the completion handler so they are not prematurely released
std::unordered_set<std::shared_ptr<Fence>> waiting_on;
{
std::lock_guard<std::mutex> lk(stream.fence_mtx);
for (auto in : enc.inputs()) {
if (auto it = stream.outputs.find(in); it != stream.outputs.end()) {
// If we've already waited on a fence, don't wait on it again.
if (waiting_on.find(it->second) == waiting_on.end()) {
enc->waitForFence(it->second->fence);
waiting_on.insert(it->second);
}
}
}
for (auto out : enc.outputs()) {
stream.outputs[out] = stream.fence;
}
}
enc->updateFence(stream.fence->fence);
stream.buffer->addCompletedHandler(
[&stream,
waiting_on = std::move(waiting_on),
fence = std::move(stream.fence),
outputs = std::move(enc.outputs()),
temporaries =
std::move(stream.temporaries)](MTL::CommandBuffer*) mutable {
temporaries.clear();
std::lock_guard<std::mutex> lk(stream.fence_mtx);
for (auto o : outputs) {
if (auto it = stream.outputs.find(o); it != stream.outputs.end()) {
if (it->second == fence) {
stream.outputs.erase(it);
}
}
}
});
}
stream.encoder = nullptr;
encoder_map_.erase(index);
}
CommandEncoder& Device::get_command_encoder(int index) {
auto& stream = get_stream_(index);
if (stream.encoder == nullptr) {
stream.encoder = std::make_unique<CommandEncoder>(stream.buffer);
stream.fence = std::make_shared<Fence>(device_->newFence());
auto eit = encoder_map_.find(index);
if (eit == encoder_map_.end()) {
auto cb = get_command_buffer(index);
eit =
encoder_map_.emplace(index, std::make_unique<CommandEncoder>(cb)).first;
}
return *stream.encoder;
return *(eit->second);
}
void Device::register_library(
@@ -347,7 +293,20 @@ void Device::register_library(
}
}
MTL::Library* Device::build_library_(const std::string& source_string) {
MTL::Library* Device::get_library_cache_(const std::string& lib_name) {
// Search for cached metal lib
MTL::Library* mtl_lib;
if (auto it = library_map_.find(lib_name); it != library_map_.end()) {
mtl_lib = it->second;
} else { // Look for metallib alongside library
register_library(lib_name, get_colocated_mtllib_path(lib_name));
mtl_lib = library_map_[lib_name];
}
return mtl_lib;
}
MTL::Library* Device::get_library_(const std::string& source_string) {
auto pool = new_scoped_memory_pool();
auto ns_code =
@@ -363,7 +322,26 @@ MTL::Library* Device::build_library_(const std::string& source_string) {
// Throw error if unable to compile library
if (!mtl_lib) {
std::ostringstream msg;
msg << "[metal::Device] Unable to build metal library from source\n";
msg << "[metal::Device] Unable to build metal library from source" << "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
throw std::runtime_error(msg.str());
}
return mtl_lib;
}
MTL::Library* Device::get_library_(const MTL::StitchedLibraryDescriptor* desc) {
auto pool = new_scoped_memory_pool();
NS::Error* error = nullptr;
auto mtl_lib = device_->newLibrary(desc, &error);
// Throw error if unable to compile library
if (!mtl_lib) {
std::ostringstream msg;
msg << "[metal::Device] Unable to build stitched metal library" << "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
@@ -487,32 +465,68 @@ MTL::ComputePipelineState* Device::get_kernel_(
return kernel;
}
MTL::Library* Device::get_library_(const std::string& name) {
std::shared_lock lock(library_mtx_);
MTL::Library* Device::get_library(const std::string& name) {
auto it = library_map_.find(name);
return (it != library_map_.end()) ? it->second : nullptr;
}
MTL::Library* Device::get_library(
const std::string& name,
const std::function<std::string(void)>& builder) {
{
std::shared_lock rlock(library_mtx_);
const std::string& source,
bool cache /* = true */) {
if (cache) {
if (auto it = library_map_.find(name); it != library_map_.end()) {
return it->second;
}
}
std::unique_lock wlock(library_mtx_);
if (auto it = library_map_.find(name); it != library_map_.end()) {
return it->second;
auto mtl_lib = get_library_(source);
if (cache) {
library_map_.insert({name, mtl_lib});
}
auto mtl_lib = build_library_(builder());
library_map_.insert({name, mtl_lib});
return mtl_lib;
}
MTL::Library* Device::get_library(
const std::string& name,
const MTL::StitchedLibraryDescriptor* desc,
bool cache /* = true */) {
if (cache) {
if (auto it = library_map_.find(name); it != library_map_.end()) {
return it->second;
}
}
auto mtl_lib = get_library_(desc);
if (cache) {
library_map_.insert({name, mtl_lib});
}
return mtl_lib;
}
MTL::Function* Device::get_function(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& specialized_name /* = "" */,
const MTLFCList& func_consts /* = {} */) {
return get_function_(base_name, specialized_name, func_consts, mtl_lib);
}
MTL::Function* Device::get_function(
const std::string& base_name,
const std::string& lib_name /* = "mlx" */,
const std::string& specialized_name /* = "" */,
const MTLFCList& func_consts /* = {} */) {
// Search for cached metal lib
MTL::Library* mtl_lib = get_library_cache_(lib_name);
return get_function(base_name, mtl_lib, specialized_name, func_consts);
}
MTL::LinkedFunctions* Device::get_linked_functions_(
const std::vector<MTL::Function*>& funcs) {
if (funcs.empty()) {
@@ -533,55 +547,34 @@ MTL::LinkedFunctions* Device::get_linked_functions_(
return lfuncs;
}
MTL::ComputePipelineState* Device::get_kernel_(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& hash_name,
const MTLFCList& func_consts /* = {} */,
const std::vector<MTL::Function*>& linked_functions /* = {} */) {
// Single writer allowed
std::unique_lock wlock(kernel_mtx_);
// Try loading again to avoid loading twice
if (auto it = kernel_map_.find(hash_name); it != kernel_map_.end()) {
return it->second;
}
auto pool = new_scoped_memory_pool();
// Pull kernel from library
auto mtl_function = get_function_(base_name, hash_name, func_consts, mtl_lib);
// Compile kernel to compute pipeline
auto mtl_linked_funcs = get_linked_functions_(linked_functions);
auto kernel = get_kernel_(hash_name, mtl_function, mtl_linked_funcs);
mtl_function->release();
mtl_linked_funcs->release();
// Add kernel to cache
auto inserted = kernel_map_.insert({hash_name, kernel});
return kernel;
}
MTL::ComputePipelineState* Device::get_kernel(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& hash_name /* = "" */,
const MTLFCList& func_consts /* = {} */,
const std::vector<MTL::Function*>& linked_functions /* = {} */) {
const auto& kname = hash_name.empty() ? base_name : hash_name;
{
// Multiple readers allowed
std::shared_lock lock(kernel_mtx_);
auto pool = new_scoped_memory_pool();
// Look for cached kernel
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
// Look for cached kernel
const auto& kname = hash_name.empty() ? base_name : hash_name;
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
return get_kernel_(base_name, mtl_lib, kname, func_consts, linked_functions);
// Pull kernel from library
auto mtl_function = get_function_(base_name, kname, func_consts, mtl_lib);
// Compile kernel to compute pipeline
auto mtl_linked_funcs = get_linked_functions_(linked_functions);
auto kernel = get_kernel_(kname, mtl_function, mtl_linked_funcs);
mtl_function->release();
mtl_linked_funcs->release();
// Add kernel to cache
kernel_map_.insert({kname, kernel});
return kernel;
}
MTL::ComputePipelineState* Device::get_kernel(
@@ -590,34 +583,16 @@ MTL::ComputePipelineState* Device::get_kernel(
const std::string& hash_name /* = "" */,
const MTLFCList& func_consts /* = {} */,
const std::vector<MTL::Function*>& linked_functions /* = {} */) {
// Look for cached kernel
const auto& kname = hash_name.size() == 0 ? base_name : hash_name;
{
// Multiple readers allowed
std::shared_lock lock(kernel_mtx_);
// Look for cached kernel
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
// Search for cached metal lib
MTL::Library* mtl_lib = get_library_(lib_name);
return get_kernel_(base_name, mtl_lib, kname, func_consts, linked_functions);
}
MTL::Library* mtl_lib = get_library_cache_(lib_name);
void Device::set_residency_set(const MTL::ResidencySet* residency_set) {
if (residency_set_ != nullptr) {
throw std::runtime_error(
"[Device::set_residency_set] Can only be set once.");
}
if (residency_set == nullptr) {
return;
}
residency_set_ = residency_set;
// Attach residency set to existing command queues
for (auto& [_, stream] : stream_map_) {
stream.queue->addResidencySet(residency_set_);
}
return get_kernel(base_name, mtl_lib, kname, func_consts, linked_functions);
}
Device& device(mlx::core::Device) {

View File

@@ -7,7 +7,6 @@
#include <filesystem>
#include <functional>
#include <mutex>
#include <shared_mutex>
#include <string>
#include <unordered_map>
#include <unordered_set>
@@ -45,13 +44,13 @@ struct CommandEncoder {
struct ConcurrentContext {
ConcurrentContext(CommandEncoder& enc) : enc(enc) {
enc.concurrent_ = true;
enc.concurrent = true;
}
~ConcurrentContext() {
enc.concurrent_ = false;
enc.prev_outputs_.insert(
enc.concurrent_outputs_.begin(), enc.concurrent_outputs_.end());
enc.concurrent_outputs_.clear();
enc.concurrent = false;
enc.outputs.insert(
enc.concurrent_outputs.begin(), enc.concurrent_outputs.end());
enc.concurrent_outputs.clear();
}
private:
@@ -59,73 +58,29 @@ struct CommandEncoder {
};
MTL::ComputeCommandEncoder* operator->() {
return enc_;
return enc;
}
void set_input_array(const array& a, int idx, int64_t offset = 0);
void set_output_array(array& a, int idx, int64_t offset = 0);
void dispatchThreadgroups(MTL::Size grid_dims, MTL::Size group_dims);
void dispatchThreads(MTL::Size grid_dims, MTL::Size group_dims);
void maybeInsertBarrier();
ConcurrentContext start_concurrent() {
return ConcurrentContext(*this);
}
~CommandEncoder();
// Inputs to all kernels in the encoder including temporaries
std::unordered_set<const void*>& inputs() {
return all_inputs_;
};
// Outputs of all kernels in the encoder including temporaries
std::unordered_set<const void*> outputs() {
return all_outputs_;
};
private:
MTL::ComputeCommandEncoder* enc_;
bool needs_barrier_{false};
bool concurrent_{false};
std::unordered_set<MTL::Resource*> prev_outputs_;
std::unordered_set<MTL::Resource*> next_outputs_;
std::unordered_set<MTL::Resource*> concurrent_outputs_;
std::unordered_set<const void*> all_inputs_;
std::unordered_set<const void*> all_outputs_;
};
void maybe_split();
struct Fence {
Fence(MTL::Fence* fence) : fence(fence) {}
~Fence() {
fence->release();
}
MTL::Fence* fence;
};
struct DeviceStream {
DeviceStream(MTL::CommandQueue* queue) : queue(queue) {};
~DeviceStream() {
queue->release();
if (buffer != nullptr) {
buffer->release();
}
};
MTL::CommandQueue* queue;
// A map of prior command encoder outputs to their corresponding fence
std::unordered_map<const void*, std::shared_ptr<Fence>> outputs;
// Used to allow thread-safe access to the outputs map
std::mutex fence_mtx;
// The buffer and buffer op count are updated
// between command buffers
MTL::CommandBuffer* buffer{nullptr};
int buffer_ops{0};
// The command encoder, fence, and temporaries are updated between command
// encoders
std::unique_ptr<CommandEncoder> encoder{nullptr};
std::shared_ptr<Fence> fence;
std::vector<array> temporaries;
int num_dispatches{0};
MTL::CommandBuffer* cbuf;
MTL::ComputeCommandEncoder* enc;
bool concurrent{false};
std::unordered_set<MTL::Resource*> outputs;
std::unordered_set<MTL::Resource*> concurrent_outputs;
};
class Device {
@@ -139,10 +94,6 @@ class Device {
return device_;
};
const std::string& get_architecture() {
return arch_;
}
void new_queue(int index);
MTL::CommandBuffer* get_command_buffer(int index);
int get_command_buffer_ops(int index);
@@ -163,9 +114,29 @@ class Device {
}
}
MTL::Library* get_library(const std::string& name);
MTL::Library* get_library(
const std::string& name,
const std::function<std::string(void)>& builder);
const std::string& source_string,
bool cache = true);
MTL::Library* get_library(
const std::string& name,
const MTL::StitchedLibraryDescriptor* desc,
bool cache = true);
MTL::Function* get_function(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& specialized_name = "",
const MTLFCList& func_consts = {});
MTL::Function* get_function(
const std::string& base_name,
const std::string& lib_name = "mlx",
const std::string& specialized_name = "",
const MTLFCList& func_consts = {});
MTL::ComputePipelineState* get_kernel(
const std::string& base_name,
@@ -184,20 +155,11 @@ class Device {
MTL::ArgumentEncoder* argument_encoder(
const std::vector<MTL::ArgumentDescriptor*>& arg_descs) const;
// Record temporary arrays for the given stream index
void add_temporary(array arr, int index);
void add_temporaries(std::vector<array> arrays, int index);
void set_residency_set(const MTL::ResidencySet* residency_set);
private:
DeviceStream& get_stream_(int index) {
return stream_map_.find(index)->second;
}
MTL::Library* get_library_cache_(const std::string& name);
MTL::Library* get_library_(const std::string& name);
MTL::Library* build_library_(const std::string& source_string);
MTL::Library* get_library_(const std::string& source_string);
MTL::Library* get_library_(const MTL::StitchedLibraryDescriptor* desc);
MTL::Function* get_function_(const std::string& name, MTL::Library* mtl_lib);
@@ -219,23 +181,13 @@ class Device {
const MTL::Function* mtl_function,
const MTL::LinkedFunctions* linked_functions);
MTL::ComputePipelineState* get_kernel_(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& hash_name,
const MTLFCList& func_consts = {},
const std::vector<MTL::Function*>& linked_functions = {});
MTL::Device* device_;
std::unordered_map<int32_t, DeviceStream> stream_map_;
std::shared_mutex kernel_mtx_;
std::unordered_map<int32_t, MTL::CommandQueue*> queue_map_;
std::unordered_map<int32_t, std::pair<int, MTL::CommandBuffer*>> buffer_map_;
std::unordered_map<int32_t, std::unique_ptr<CommandEncoder>> encoder_map_;
std::unordered_map<std::string, MTL::ComputePipelineState*> kernel_map_;
std::shared_mutex library_mtx_;
std::unordered_map<std::string, MTL::Library*> library_map_;
const MTL::ResidencySet* residency_set_{nullptr};
std::string arch_;
std::mutex mtx_;
};
Device& device(mlx::core::Device);

View File

@@ -27,9 +27,4 @@ void Event::signal() {
static_cast<MTL::SharedEvent*>(raw_event().get())->setSignaledValue(value());
}
bool Event::is_signaled() const {
return static_cast<MTL::SharedEvent*>(raw_event().get())->signaledValue() >=
value();
}
} // namespace mlx::core

View File

@@ -575,7 +575,8 @@ void fft_op(
auto plan = plan_fft(n);
if (plan.four_step) {
four_step_fft(in, out, axis, inverse, real, plan, copies, s);
d.add_temporaries(std::move(copies), s.index);
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
return;
}
@@ -740,8 +741,8 @@ void fft_op(
MTL::Size(batch_size, threadgroup_batch_size, threads_per_fft);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
d.add_temporaries(std::move(copies), s.index);
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
}
void fft_op(
@@ -784,7 +785,8 @@ void nd_fft_op(
}
auto& d = metal::device(s.device);
d.add_temporaries(std::move(temp_arrs), s.index);
d.get_command_buffer(s.index)->addCompletedHandler(
[temp_arrs](MTL::CommandBuffer*) mutable { temp_arrs.clear(); });
}
void FFT::eval_gpu(const std::vector<array>& inputs, array& out) {

View File

@@ -60,6 +60,32 @@ std::string gen_hadamard_codelet(int m) {
return source.str();
}
void launch_hadamard(
const array& in,
array& out,
int batch_size,
int threads_per,
const std::string kernel_name,
float scale,
const Stream& s) {
auto& d = metal::device(s.device);
const auto& lib_name = kernel_name.substr(1);
auto lib = d.get_library(lib_name);
auto kernel = d.get_kernel(kernel_name, lib);
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder->setBytes(&scale, sizeof(float), 2);
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
@@ -87,8 +113,7 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
int n, m;
std::tie(n, m) = decompose_hadamard(in.shape(axis));
auto [n, m] = decompose_hadamard(in.shape(axis));
if (n * (int)size_of(in.dtype()) > MAX_HADAMARD_BYTES) {
throw std::invalid_argument(
@@ -104,7 +129,8 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
auto kernel_name = kname.str();
auto& d = metal::device(s.device);
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
auto codelet = gen_hadamard_codelet(m);
kernel_source << metal::utils() << codelet << metal::hadamard();
@@ -122,31 +148,12 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
n,
m,
read_width);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
int batch_size = in.size() / n;
int threads_per = n / max_radix;
auto& compute_encoder = d.get_command_encoder(s.index);
auto launch_hadamard = [&](const array& in,
array& out,
const std::string& kernel_name,
float scale) {
auto kernel = d.get_kernel(kernel_name, lib);
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
compute_encoder->setComputePipelineState(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder->setBytes(&scale, sizeof(float), 2);
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
};
if (m > 1) {
// When m is greater than 1, we decompose the
// computation into two uploads to the GPU:
@@ -164,17 +171,33 @@ void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
temp.set_data(allocator::malloc_or_wait(temp.nbytes()));
copies.push_back(temp);
launch_hadamard(in_contiguous, temp, "n" + kernel_name, 1.0);
launch_hadamard(
in_contiguous,
temp,
batch_size,
threads_per,
"n" + kernel_name,
1.0,
s);
// Metal sometimes reports 256 max threads per group for hadamard_m kernel
threads_per = std::min(n / read_width, MAX_HADAMARD_THREADS_PER_GROUP);
batch_size = in.size() / m / read_width / threads_per;
launch_hadamard(temp, out, "m" + kernel_name, scale_);
launch_hadamard(
temp, out, batch_size, threads_per, "m" + kernel_name, scale_, s);
} else {
launch_hadamard(in_contiguous, out, "n" + kernel_name, scale_);
launch_hadamard(
in_contiguous,
out,
batch_size,
threads_per,
"n" + kernel_name,
scale_,
s);
}
d.add_temporaries(std::move(copies), s.index);
d.get_command_buffer(s.index)->addCompletedHandler(
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
}
} // namespace mlx::core

View File

@@ -64,7 +64,8 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
kernel_name = lib_name;
}
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gather();
std::string out_type_str = get_type_string(out.dtype());
@@ -82,8 +83,8 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
idx_args,
idx_arr,
idx_ndim);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
@@ -113,17 +114,17 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
std::vector<char> idx_contigs;
for (int i = 0; i < nidx; ++i) {
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end());
idx_contigs.push_back(inputs[i + 1].flags().row_contiguous);
}
// Set all the buffers
@@ -131,20 +132,21 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.set_output_array(out, 1);
// Set source info
set_vector_bytes(compute_encoder, src.shape(), 2);
set_vector_bytes(compute_encoder, src.strides(), 3);
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 2);
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 3);
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
set_vector_bytes(compute_encoder, slice_sizes_, 5);
set_vector_bytes(compute_encoder, axes_, 6);
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 6);
// Set index info
//
// We don't need to check for empty idx_shapes because gather has a
// idx_ndim == 0 specialization
set_vector_bytes(compute_encoder, idx_shapes, 7);
set_vector_bytes(compute_encoder, idx_strides, 8);
set_vector_bytes(compute_encoder, idx_contigs, 9);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 10);
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 7);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 8);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 9);
// Set index buffers
for (int i = 0; i < nidx; ++i) {
@@ -171,20 +173,12 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
}
// Copy src into out
CopyType copy_type;
if (inputs[0].data_size() == 1) {
copy_type = CopyType::Scalar;
} else if (inputs[0].flags().row_contiguous) {
copy_type = CopyType::Vector;
} else {
copy_type = CopyType::General;
}
auto copy_type =
inputs[0].data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy_gpu(inputs[0], out, copy_type);
auto& upd = inputs.back();
// Empty update
if (upd.size() == 0) {
if (inputs.back().size() == 0) {
return;
}
@@ -193,20 +187,19 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& d = metal::device(s.device);
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t idx_size = nidx ? inputs[1].size() : 1;
bool index_nd1_specialization = (idx_ndim == 1);
auto idx_to_out = idx_size / out.size();
int nwork;
if (idx_ndim <= 1 || idx_to_out < 1) {
nwork = 1;
} else if (idx_to_out <= 4) {
nwork = 4;
} else if (idx_to_out < 16) {
nwork = 8;
} else if (idx_to_out < 32) {
nwork = 16;
} else {
nwork = 32;
// Bail from fast path (1d index specialization) if scatter dims aren't
// the outermost dims and contiguous since update access won't be raster
// order.
for (auto i = 0; i < axes_.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= (axes_[i] == i);
}
// Bail from fast path (1d index specialization) if any of the dims are
// broadcasted, since we can't rely on linear indexing in that case.
for (int i = 1; i < inputs.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= inputs[i].flags().row_contiguous;
}
std::string lib_name;
@@ -230,16 +223,21 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
op_name = "min";
break;
}
auto upd_contig = upd.flags().row_contiguous;
{
std::ostringstream kname;
kname << "scatter" << type_to_name(out) << idx_type_name;
kname << "_" << op_name << "_" << nidx << "_"
<< (upd_contig ? "updc_true" : "updc_false") << "_nwork" << nwork;
if (index_nd1_specialization) {
kname << "scatter_1d_index" << type_to_name(out) << idx_type_name;
} else {
kname << "scatter" << type_to_name(out) << idx_type_name;
}
kname << "_" << op_name << "_" << nidx;
lib_name = kname.str();
kernel_name = kname.str();
}
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::reduce_utils()
<< metal::scatter();
@@ -266,7 +264,7 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
break;
}
if (reduce_type_ != Scatter::None) {
op_type = fmt::format(fmt::runtime(op_type), out_type_str);
op_type = fmt::format(op_type, out_type_str);
}
auto [idx_args, idx_arr] = make_index_args(idx_type_str, nidx);
@@ -278,15 +276,14 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
op_type,
nidx,
idx_args,
idx_arr,
upd_contig,
nwork);
return kernel_source.str();
});
idx_arr);
lib = d.get_library(lib_name, kernel_source.str());
}
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kernel_name, lib);
auto& upd = inputs.back();
size_t nthreads = upd.size();
compute_encoder->setComputePipelineState(kernel);
@@ -296,86 +293,109 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
compute_encoder.set_output_array(out, 2);
// Set update info
size_t upd_ndim = upd.ndim();
uint upd_ndim = upd.ndim();
size_t upd_size = 1;
for (int i = idx_ndim; i < upd.ndim(); ++i) {
upd_size *= upd.shape(i);
}
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
// To access .data() use char instead of bool
// bool is 1 byte in Metal so this is safe
std::vector<char> idx_contigs;
for (int i = 0; i < nidx; ++i) {
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end());
idx_contigs.push_back(inputs[i + 1].flags().row_contiguous);
}
if (index_nd1_specialization) {
compute_encoder->setBytes(
out.shape().data(), out.shape().size() * sizeof(int), 3);
compute_encoder->setBytes(
out.strides().data(), out.strides().size() * sizeof(size_t), 4);
size_t out_ndim = out.ndim();
compute_encoder->setBytes(&out_ndim, sizeof(out_ndim), 5);
if (upd_ndim <= 1) {
// Placeholder so Metal doesn't compalain
int shape_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 6);
} else {
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 6);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 7);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 8);
// Set index buffers
for (int i = 0; i < nidx; ++i) {
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
}
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
} else {
set_vector_bytes(compute_encoder, upd.shape(), 3);
set_vector_bytes(compute_encoder, upd.strides(), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
// Set output info
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
} else {
set_vector_bytes(compute_encoder, out.shape(), 7);
set_vector_bytes(compute_encoder, out.strides(), 8);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
for (int i = 0; i < nidx; ++i) {
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end());
// Set index info
if (idx_ndim == 0) {
// Add a 0 in idx_shapes and strides to avoid the missing buffer binding
// error in the metal API.
idx_shapes.push_back(0);
idx_strides.push_back(0);
idx_contigs.push_back(false);
}
set_vector_bytes(compute_encoder, idx_shapes, 11);
set_vector_bytes(compute_encoder, idx_strides, 12);
set_vector_bytes(compute_encoder, idx_contigs, 13);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 14);
compute_encoder->setBytes(&idx_size, sizeof(size_t), 15);
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end());
}
// Set index buffers
for (int i = 0; i < nidx; ++i) {
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
}
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
} else {
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
compute_encoder->setBytes(
upd.strides().data(), upd_ndim * sizeof(size_t), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
// Launch grid
auto grid_y = (nthreads / upd_size);
grid_y = (grid_y + nwork - 1) / nwork;
MTL::Size grid_dims = MTL::Size(upd_size, grid_y, 1);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Scatter::eval_gpu] Invalid number of threads");
// Set output info
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
} else {
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
compute_encoder->setBytes(
out.strides().data(), out_ndim * sizeof(size_t), 8);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
// Set index info
if (idx_ndim == 0) {
// Add a 0 in idx_shapes and strides to avoid the missing buffer binding
// error in the metal API.
idx_shapes.push_back(0);
idx_strides.push_back(0);
}
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 11);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 12);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 13);
// Set index buffers
for (int i = 0; i < nidx; ++i) {
compute_encoder.set_input_array(inputs[i + 1], 20 + i);
}
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
MTL::Size group_dims = get_block_dims(upd_size, grid_y, 1);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
} // namespace mlx::core

View File

@@ -0,0 +1,100 @@
// Copyright © 2024 Apple Inc.
constexpr std::string_view copy_kernels = R"(
template [[host_name("s_{0}")]] [[kernel]] void copy_s<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
uint index [[thread_position_in_grid]]);
template [[host_name("v_{0}")]] [[kernel]] void copy_v<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
uint index [[thread_position_in_grid]]);
template [[host_name("g4_{0}")]] [[kernel]] void
copy_g_nd<{1}, {2}, 4>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]);
template [[host_name("gg4_{0}")]] [[kernel]] void
copy_gg_nd<{1}, {2}, 4>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]);
template [[host_name("g5_{0}")]] [[kernel]] void
copy_g_nd<{1}, {2}, 5>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]);
template [[host_name("gg5_{0}")]] [[kernel]] void
copy_gg_nd<{1}, {2}, 5>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]);
template [[host_name("g1_{0}")]] [[kernel]] void copy_g_nd1<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
uint index [[thread_position_in_grid]]);
template [[host_name("g2_{0}")]] [[kernel]] void copy_g_nd2<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]);
template [[host_name("g3_{0}")]] [[kernel]] void copy_g_nd3<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]);
template [[host_name("gg1_{0}")]] [[kernel]] void
copy_gg_nd1<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t& src_stride [[buffer(3)]],
constant const int64_t& dst_stride [[buffer(4)]],
uint index [[thread_position_in_grid]]);
template [[host_name("gg2_{0}")]] [[kernel]] void
copy_gg_nd2<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint2 index [[thread_position_in_grid]]);
template [[host_name("gg3_{0}")]] [[kernel]] void
copy_gg_nd3<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]);
template [[host_name("g_{0}")]] [[kernel]] void copy_g<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]);
template [[host_name("gg_{0}")]] [[kernel]] void copy_gg<{1}, {2}>(
device const {1}* src [[buffer(0)]],
device {2}* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]]);
)";

View File

@@ -11,13 +11,12 @@ constexpr std::string_view gather_kernels = R"(
const constant int* axes [[buffer(6)]],
const constant int* idx_shapes [[buffer(7)]],
const constant size_t* idx_strides [[buffer(8)]],
const constant bool* idx_contigs [[buffer(9)]],
const constant int& idx_ndim [[buffer(10)]],
const constant int& idx_ndim [[buffer(9)]],
{4}
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {{
Indices<{2}, {3}> idxs{{
{{ {5} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
{{ {5} }}, idx_shapes, idx_strides, idx_ndim}};
return gather_impl<{1}, {2}, {3}, {6}>(
src,
@@ -34,7 +33,32 @@ constexpr std::string_view gather_kernels = R"(
)";
constexpr std::string_view scatter_kernels = R"(
[[kernel]] void scatter{0}_{4}_updc_{7}_nwork{8}(
[[kernel]] void scatter_1d_index{0}_{4}(
const device {1}* updates [[buffer(1)]],
device mlx_atomic<{1}>* out [[buffer(2)]],
const constant int* out_shape [[buffer(3)]],
const constant size_t* out_strides [[buffer(4)]],
const constant size_t& out_ndim [[buffer(5)]],
const constant int* upd_shape [[buffer(6)]],
const constant size_t& upd_ndim [[buffer(7)]],
const constant size_t& upd_size [[buffer(8)]],
{5}
uint2 gid [[thread_position_in_grid]]) {{
const array<const device {2}*, {4}> idx_buffers = {{ {6} }};
return scatter_1d_index_impl<{1}, {2}, {3}, {4}>(
updates,
out,
out_shape,
out_strides,
out_ndim,
upd_shape,
upd_ndim,
upd_size,
idx_buffers,
gid);
}}
[[kernel]] void scatter{0}_{4}(
const device {1}* updates [[buffer(1)]],
device mlx_atomic<{1}>* out [[buffer(2)]],
const constant int* upd_shape [[buffer(3)]],
@@ -47,14 +71,12 @@ constexpr std::string_view scatter_kernels = R"(
const constant int* axes [[buffer(10)]],
const constant int* idx_shapes [[buffer(11)]],
const constant size_t* idx_strides [[buffer(12)]],
const constant bool* idx_contigs [[buffer(13)]],
const constant int& idx_ndim [[buffer(14)]],
const constant size_t& idx_size [[buffer(15)]],
const constant int& idx_ndim [[buffer(13)]],
{5}
uint2 gid [[thread_position_in_grid]]) {{
Indices<{2}, {4}> idxs{{ {{ {6} }}, idx_shapes, idx_strides, idx_contigs, idx_ndim}};
Indices<{2}, {4}> idxs{{ {{ {6} }}, idx_shapes, idx_strides, idx_ndim}};
return scatter_impl<{1}, {2}, {3}, {4}, {7}, {8}>(
return scatter_impl<{1}, {2}, {3}, {4}>(
updates,
out,
upd_shape,
@@ -65,7 +87,6 @@ constexpr std::string_view scatter_kernels = R"(
out_strides,
out_ndim,
axes,
idx_size,
idxs,
gid);
}}

View File

@@ -0,0 +1,26 @@
// Copyright © 2024 Apple Inc.
constexpr std::string_view scan_kernels = R"(
template [[host_name("contig_{0}")]] [[kernel]] void
contiguous_scan<{1}, {2}, {3}<{2}>, 4, {4}, {5}>(
const device {1}* in [[buffer(0)]],
device {2}* out [[buffer(1)]],
const constant size_t& axis_size [[buffer(2)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
uint simd_size [[threads_per_simdgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
template [[host_name("strided_{0}")]] [[kernel]] void
strided_scan<{1}, {2}, {3}<{2}>, 4, {4}, {5}>(
const device {1}* in [[buffer(0)]],
device {2}* out [[buffer(1)]],
const constant size_t& axis_size [[buffer(2)]],
const constant size_t& stride [[buffer(3)]],
uint2 gid [[thread_position_in_grid]],
uint2 lid [[thread_position_in_threadgroup]],
uint2 lsize [[threads_per_threadgroup]],
uint simd_size [[threads_per_simdgroup]]);
)";

View File

@@ -1,9 +1,12 @@
// Copyright © 2024 Apple Inc.
#include <map>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/jit/arange.h"
#include "mlx/backend/metal/jit/copy.h"
#include "mlx/backend/metal/jit/gemv_masked.h"
#include "mlx/backend/metal/jit/includes.h"
#include "mlx/backend/metal/jit/scan.h"
#include "mlx/backend/metal/jit/softmax.h"
#include "mlx/backend/metal/jit/steel_conv.h"
#include "mlx/backend/metal/jit/steel_gemm.h"
@@ -24,38 +27,37 @@ MTL::ComputePipelineState* get_arange_kernel(
metal::Device& d,
const std::string& kernel_name,
const array& out) {
auto lib = d.get_library(kernel_name, [&]() {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::arange()
<< fmt::format(
arange_kernels,
kernel_name,
get_type_string(out.dtype()));
return kernel_source.str();
});
kernel_source
<< metal::utils() << metal::arange()
<< fmt::format(arange_kernels, lib_name, get_type_string(out.dtype()));
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_unary_kernel(
metal::Device& d,
const std::string& kernel_name,
Dtype in_type,
Dtype out_type,
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto in_t = get_type_string(in_type);
auto out_t = get_type_string(out_type);
std::string lib_name = kernel_name.substr(1);
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::unary_ops() << metal::unary();
kernel_source << get_template_definition(
"v_" + lib_name, "unary_v", in_t, out_t, op);
kernel_source << get_template_definition(
"v2_" + lib_name, "unary_v2", in_t, out_t, op);
kernel_source << get_template_definition(
"gn4_" + lib_name, "unary_g", in_t, out_t, op, 4);
return kernel_source.str();
});
auto u_def = get_template_definition(
"v" + lib_name, "unary_v", get_type_string(out_type), op);
auto u2_def = get_template_definition(
"v2" + lib_name, "unary_v2", get_type_string(out_type), op);
auto g_def = get_template_definition(
"g" + lib_name, "unary_g", get_type_string(out_type), op);
kernel_source << metal::utils() << metal::unary_ops() << metal::unary()
<< u_def << u2_def << g_def;
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -65,7 +67,7 @@ void add_binary_kernels(
Dtype out_type,
const std::string op,
std::ostringstream& kernel_source) {
const std::array<std::pair<std::string, std::string>, 10> kernel_types = {{
const std::map<std::string, std::string> kernel_types = {
{"ss", "binary_ss"},
{"vs", "binary_vs"},
{"sv", "binary_sv"},
@@ -76,24 +78,31 @@ void add_binary_kernels(
{"g1", "binary_g_nd1"},
{"g2", "binary_g_nd2"},
{"g3", "binary_g_nd3"},
}};
for (auto& [name, func] : kernel_types) {
{"g4", "binary_g_nd"},
{"g5", "binary_g_nd"},
{"gn", "binary_g"},
};
for (auto [name, func] : kernel_types) {
std::string template_def;
template_def = get_template_definition(
name + "_" + lib_name,
func,
get_type_string(in_type),
get_type_string(out_type),
op);
if (name == "g4" || name == "g5") {
int dim = std::stoi(name.substr(1));
template_def = get_template_definition(
name + lib_name,
func,
get_type_string(in_type),
get_type_string(out_type),
op,
dim);
} else {
template_def = get_template_definition(
name + lib_name,
func,
get_type_string(in_type),
get_type_string(out_type),
op);
}
kernel_source << template_def;
}
kernel_source << get_template_definition(
"gn4_" + lib_name,
"binary_g",
get_type_string(in_type),
get_type_string(out_type),
op,
4);
}
MTL::ComputePipelineState* get_binary_kernel(
@@ -102,13 +111,14 @@ MTL::ComputePipelineState* get_binary_kernel(
Dtype in_type,
Dtype out_type,
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::string lib_name = kernel_name.substr(2);
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::binary_ops() << metal::binary();
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -118,14 +128,15 @@ MTL::ComputePipelineState* get_binary_two_kernel(
Dtype in_type,
Dtype out_type,
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
std::string lib_name = kernel_name.substr(2);
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::binary_ops()
<< metal::binary_two();
add_binary_kernels(lib_name, in_type, out_type, op, kernel_source);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -135,26 +146,34 @@ MTL::ComputePipelineState* get_ternary_kernel(
Dtype type,
const std::string op) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
const std::array<std::pair<std::string, std::string>, 5> kernel_types = {{
const std::map<std::string, std::string> kernel_types = {
{"v", "ternary_v"},
{"v2", "ternary_v2"},
{"g", "ternary_g"},
{"g1", "ternary_g_nd1"},
{"g2", "ternary_g_nd2"},
{"g3", "ternary_g_nd3"},
}};
{"g4", "ternary_g_nd"},
{"g5", "ternary_g_nd"},
};
kernel_source << metal::utils() << metal::ternary_ops() << metal::ternary();
for (auto& [name, func] : kernel_types) {
for (auto [name, func] : kernel_types) {
std::string template_def;
template_def = get_template_definition(
name + "_" + lib_name, func, get_type_string(type), op);
if (name == "g4" || name == "g5") {
int dim = std::stoi(name.substr(1));
template_def = get_template_definition(
name + "_" + lib_name, func, get_type_string(type), op, dim);
} else {
template_def = get_template_definition(
name + "_" + lib_name, func, get_type_string(type), op);
}
kernel_source << template_def;
}
kernel_source << get_template_definition(
"gn4_" + lib_name, "ternary_g", get_type_string(type), op, 4);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -164,33 +183,17 @@ MTL::ComputePipelineState* get_copy_kernel(
const array& in,
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
auto in_type = get_type_string(in.dtype());
auto out_type = get_type_string(out.dtype());
kernel_source << metal::utils() << metal::copy()
<< get_template_definition(
"s_" + lib_name, "copy_s", in_type, out_type)
<< get_template_definition(
"v_" + lib_name, "copy_v", in_type, out_type)
<< get_template_definition(
"g1_" + lib_name, "copy_g_nd1", in_type, out_type)
<< get_template_definition(
"g2_" + lib_name, "copy_g_nd2", in_type, out_type)
<< get_template_definition(
"g3_" + lib_name, "copy_g_nd3", in_type, out_type)
<< get_template_definition(
"gn4_" + lib_name, "copy_g", in_type, out_type, 4)
<< get_template_definition(
"gg1_" + lib_name, "copy_gg_nd1", in_type, out_type)
<< get_template_definition(
"gg2_" + lib_name, "copy_gg_nd2", in_type, out_type)
<< get_template_definition(
"gg3_" + lib_name, "copy_gg_nd3", in_type, out_type)
<< get_template_definition(
"ggn4_" + lib_name, "copy_gg", in_type, out_type, 4);
return kernel_source.str();
});
<< fmt::format(
copy_kernels,
lib_name,
get_type_string(in.dtype()),
get_type_string(out.dtype()));
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -200,7 +203,8 @@ MTL::ComputePipelineState* get_softmax_kernel(
bool precise,
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&] {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::softmax()
<< fmt::format(
@@ -208,8 +212,8 @@ MTL::ComputePipelineState* get_softmax_kernel(
lib_name,
get_type_string(out.dtype()),
get_type_string(precise ? float32 : out.dtype()));
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -222,29 +226,22 @@ MTL::ComputePipelineState* get_scan_kernel(
const array& in,
const array& out) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto out_type = get_type_string(out.dtype());
std::string op = "Cum" + reduce_type + "<" + out_type + ">";
op[3] = toupper(op[3]);
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::string op_name = "Cum" + reduce_type;
op_name[3] = toupper(op_name[3]);
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::scan();
const std::array<std::pair<std::string, std::string>, 2> scan_kernels = {{
{"contig_", "contiguous_scan"},
{"strided_", "strided_scan"},
}};
for (auto& [prefix, kernel] : scan_kernels) {
kernel_source << get_template_definition(
prefix + lib_name,
kernel,
get_type_string(in.dtype()),
get_type_string(out.dtype()),
op,
in.itemsize() <= 4 ? 4 : 2,
inclusive,
reverse);
}
return kernel_source.str();
});
kernel_source << metal::utils() << metal::scan()
<< fmt::format(
scan_kernels,
lib_name,
get_type_string(in.dtype()),
get_type_string(out.dtype()),
op_name,
inclusive,
reverse);
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -256,7 +253,8 @@ MTL::ComputePipelineState* get_sort_kernel(
int bn,
int tn) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
auto in_type = get_type_string(in.dtype());
auto out_type = get_type_string(out.dtype());
@@ -281,8 +279,8 @@ MTL::ComputePipelineState* get_sort_kernel(
bn,
tn);
}
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -294,14 +292,15 @@ MTL::ComputePipelineState* get_mb_sort_kernel(
int bn,
int tn) {
std::string lib_name = kernel_name.substr(kernel_name.find("_") + 1);
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::sort();
std::array<std::pair<std::string, std::string>, 3> kernel_types = {
{{"sort_", "mb_block_sort"},
{"partition_", "mb_block_partition"},
{"merge_", "mb_block_merge"}}};
for (auto& [name, func] : kernel_types) {
std::vector<std::pair<std::string, std::string>> kernel_types = {
{"sort_", "mb_block_sort"},
{"partition_", "mb_block_partition"},
{"merge_", "mb_block_merge"}};
for (auto [name, func] : kernel_types) {
kernel_source << get_template_definition(
name + lib_name,
func,
@@ -311,28 +310,27 @@ MTL::ComputePipelineState* get_mb_sort_kernel(
bn,
tn);
}
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
MTL::ComputePipelineState* get_reduce_init_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& out) {
auto lib = d.get_library(kernel_name, [&]() {
auto lib = d.get_library(kernel_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
std::string op_type = op_name;
op_type[0] = std::toupper(op_name[0]);
std::string op_type = op_name(out);
op_type[0] = std::toupper(op_name(out)[0]);
auto out_type = get_type_string(out.dtype());
std::string op = op_type + "<" + out_type + ">";
kernel_source << metal::utils() << metal::reduce_utils() << metal::reduce();
kernel_source << get_template_definition(
kernel_name, func_name, out_type, op);
return kernel_source.str();
});
kernel_name, "init_reduce", out_type, op);
lib = d.get_library(kernel_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -346,7 +344,8 @@ MTL::ComputePipelineState* get_reduce_kernel(
int ndim /* = -1 */,
int bm /* = -1 */,
int bn /* = -1 */) {
auto lib = d.get_library(kernel_name, [&]() {
auto lib = d.get_library(kernel_name);
if (lib == nullptr) {
std::string op_type = op_name;
op_type[0] = std::toupper(op_name[0]);
std::ostringstream kernel_source;
@@ -364,8 +363,8 @@ MTL::ComputePipelineState* get_reduce_kernel(
kernel_source << get_template_definition(
kernel_name, func_name, in_type, out_type, op);
}
return kernel_source.str();
});
lib = d.get_library(kernel_name, kernel_source.str());
}
auto st = d.get_kernel(kernel_name, lib);
return st;
}
@@ -384,7 +383,8 @@ MTL::ComputePipelineState* get_steel_gemm_fused_kernel(
int wm,
int wn) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gemm()
<< metal::steel_gemm_fused()
@@ -399,8 +399,8 @@ MTL::ComputePipelineState* get_steel_gemm_fused_kernel(
"wn"_a = wn,
"trans_a"_a = transpose_a,
"trans_b"_a = transpose_b);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
}
@@ -419,7 +419,8 @@ MTL::ComputePipelineState* get_steel_gemm_splitk_kernel(
bool mn_aligned,
bool k_aligned) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gemm()
<< metal::steel_gemm_splitk()
@@ -437,8 +438,8 @@ MTL::ComputePipelineState* get_steel_gemm_splitk_kernel(
"trans_b"_a = transpose_b,
"mn_aligned"_a = mn_aligned,
"k_aligned"_a = k_aligned);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -449,19 +450,19 @@ MTL::ComputePipelineState* get_steel_gemm_splitk_accum_kernel(
const array& out,
bool axbpy) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gemm()
<< metal::steel_gemm_splitk()
<< fmt::format(
fmt::runtime(
axbpy ? steel_gemm_splitk_accum_axbpy_kernels
: steel_gemm_splitk_accum_kernels),
axbpy ? steel_gemm_splitk_accum_axbpy_kernels
: steel_gemm_splitk_accum_kernels,
"name"_a = lib_name,
"atype"_a = get_type_string(in.dtype()),
"otype"_a = get_type_string(out.dtype()));
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -481,7 +482,8 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
bool mn_aligned,
bool k_aligned) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
auto out_mask_type = mask_out.has_value()
? get_type_string((*mask_out).dtype())
@@ -505,8 +507,8 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
"trans_b"_a = transpose_b,
"mn_aligned"_a = mn_aligned,
"k_aligned"_a = k_aligned);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -525,7 +527,8 @@ MTL::ComputePipelineState* get_gemv_masked_kernel(
int tn,
bool contiguous) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
auto out_mask_type = mask_out.has_value()
? get_type_string((*mask_out).dtype())
@@ -547,8 +550,8 @@ MTL::ComputePipelineState* get_gemv_masked_kernel(
"tn"_a = tn,
"trans"_a = transpose_mat ? "t_" : "",
"nc"_a = contiguous ? "0" : "1");
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -564,7 +567,8 @@ MTL::ComputePipelineState* get_steel_conv_kernel(
int n_channel_specialization,
bool small_filter) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::conv() << metal::steel_conv()
<< fmt::format(
@@ -578,8 +582,8 @@ MTL::ComputePipelineState* get_steel_conv_kernel(
"wn"_a = wn,
"n_channels"_a = n_channel_specialization,
"small_filter"_a = small_filter);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -593,7 +597,8 @@ MTL::ComputePipelineState* get_steel_conv_general_kernel(
int wm,
int wn) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::conv()
<< metal::steel_conv_general()
@@ -606,8 +611,8 @@ MTL::ComputePipelineState* get_steel_conv_general_kernel(
"bk"_a = bk,
"wm"_a = wm,
"wn"_a = wn);
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}
@@ -618,12 +623,13 @@ MTL::ComputePipelineState* get_fft_kernel(
const metal::MTLFCList& func_consts,
const std::string& template_def) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
std::string kernel_string;
kernel_source << metal::fft() << template_def;
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib, hash_name, func_consts);
}
@@ -632,12 +638,13 @@ MTL::ComputePipelineState* get_quantized_kernel(
const std::string& kernel_name,
const std::string& template_def) {
const auto& lib_name = kernel_name;
auto lib = d.get_library(lib_name, [&]() {
auto lib = d.get_library(lib_name);
if (lib == nullptr) {
std::ostringstream kernel_source;
kernel_source << metal::utils() << metal::gemm() << metal::quantized()
<< template_def;
return kernel_source.str();
});
lib = d.get_library(lib_name, kernel_source.str());
}
return d.get_kernel(kernel_name, lib);
}

View File

@@ -15,7 +15,6 @@ MTL::ComputePipelineState* get_arange_kernel(
MTL::ComputePipelineState* get_unary_kernel(
metal::Device& d,
const std::string& kernel_name,
Dtype in_type,
Dtype out_type,
const std::string op);
@@ -79,8 +78,6 @@ MTL::ComputePipelineState* get_mb_sort_kernel(
MTL::ComputePipelineState* get_reduce_init_kernel(
metal::Device& d,
const std::string& kernel_name,
const std::string& func_name,
const std::string& op_name,
const array& out);
MTL::ComputePipelineState* get_reduce_kernel(
@@ -211,10 +208,10 @@ get_template_definition(std::string name, std::string func, Args... args) {
};
(add_arg(args), ...);
s << ">";
return fmt::format(
"\ntemplate [[host_name(\"{0}\")]] [[kernel]] decltype({1}) {1};\n",
name,
s.str());
std::string base_string = R"(
template [[host_name("{0}")]] [[kernel]] decltype({1}) {1};
)";
return fmt::format(base_string, name, s.str());
}
} // namespace mlx::core

View File

@@ -1,26 +1,38 @@
set(BASE_HEADERS bf16.h bf16_math.h complex.h defines.h expm1f.h utils.h)
set(
BASE_HEADERS
bf16.h
bf16_math.h
complex.h
defines.h
expm1f.h
utils.h
)
function(build_kernel_base TARGET SRCFILE DEPS)
set(METAL_FLAGS -Wall -Wextra -fno-fast-math)
if(MLX_METAL_DEBUG)
set(METAL_FLAGS ${METAL_FLAGS} -gline-tables-only -frecord-sources)
set(METAL_FLAGS ${METAL_FLAGS}
-gline-tables-only
-frecord-sources)
endif()
add_custom_command(
COMMAND xcrun -sdk macosx metal ${METAL_FLAGS} -c ${SRCFILE}
-I${PROJECT_SOURCE_DIR} -o ${TARGET}.air
COMMAND xcrun -sdk macosx metal
${METAL_FLAGS}
-c ${SRCFILE}
-I${PROJECT_SOURCE_DIR}
-o ${TARGET}.air
DEPENDS ${SRCFILE} ${DEPS} ${BASE_HEADERS}
OUTPUT ${TARGET}.air
COMMENT "Building ${TARGET}.air"
VERBATIM)
VERBATIM
)
endfunction(build_kernel_base)
function(build_kernel KERNEL)
set(SRCFILE ${CMAKE_CURRENT_SOURCE_DIR}/${KERNEL}.metal)
cmake_path(GET KERNEL STEM TARGET)
build_kernel_base(${TARGET} ${SRCFILE} "${ARGN}")
set(KERNEL_AIR
${TARGET}.air ${KERNEL_AIR}
PARENT_SCOPE)
set(KERNEL_AIR ${TARGET}.air ${KERNEL_AIR} PARENT_SCOPE)
endfunction(build_kernel)
build_kernel(arg_reduce)
@@ -31,68 +43,105 @@ build_kernel(random)
build_kernel(rms_norm)
build_kernel(rope)
build_kernel(
scaled_dot_product_attention scaled_dot_product_attention_params.h
sdpa_vector.h steel/defines.h steel/gemm/transforms.h steel/utils.h)
scaled_dot_product_attention
scaled_dot_product_attention_params.h
steel/defines.h
steel/gemm/transforms.h
steel/utils.h
)
set(STEEL_HEADERS
steel/defines.h
steel/utils.h
steel/conv/conv.h
steel/conv/loader.h
steel/conv/loaders/loader_channel_l.h
steel/conv/loaders/loader_channel_n.h
steel/conv/loaders/loader_general.h
steel/conv/kernels/steel_conv.h
steel/conv/kernels/steel_conv_general.h
steel/gemm/gemm.h
steel/gemm/mma.h
steel/gemm/loader.h
steel/gemm/transforms.h
steel/gemm/kernels/steel_gemm_fused.h
steel/gemm/kernels/steel_gemm_masked.h
steel/gemm/kernels/steel_gemm_splitk.h
steel/utils/type_traits.h
steel/utils/integral_constant.h)
set(
STEEL_HEADERS
steel/defines.h
steel/utils.h
steel/conv/conv.h
steel/conv/loader.h
steel/conv/loaders/loader_channel_l.h
steel/conv/loaders/loader_channel_n.h
steel/conv/loaders/loader_general.h
steel/conv/kernels/steel_conv.h
steel/conv/kernels/steel_conv_general.h
steel/gemm/gemm.h
steel/gemm/mma.h
steel/gemm/loader.h
steel/gemm/transforms.h
steel/gemm/kernels/steel_gemm_fused.h
steel/gemm/kernels/steel_gemm_masked.h
steel/gemm/kernels/steel_gemm_splitk.h
)
if(NOT MLX_METAL_JIT)
build_kernel(arange arange.h)
build_kernel(binary binary.h binary_ops.h)
build_kernel(binary_two binary_two.h)
build_kernel(copy copy.h)
build_kernel(fft fft.h fft/radix.h fft/readwrite.h)
build_kernel(
reduce
atomic.h
reduction/ops.h
reduction/reduce_init.h
reduction/reduce_all.h
reduction/reduce_col.h
reduction/reduce_row.h)
build_kernel(quantized quantized.h ${STEEL_HEADERS})
build_kernel(scan scan.h)
build_kernel(softmax softmax.h)
build_kernel(sort sort.h)
build_kernel(ternary ternary.h ternary_ops.h)
build_kernel(unary unary.h unary_ops.h)
build_kernel(steel/conv/kernels/steel_conv ${STEEL_HEADERS})
build_kernel(steel/conv/kernels/steel_conv_general ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_fused ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_masked ${STEEL_HEADERS})
build_kernel(steel/gemm/kernels/steel_gemm_splitk ${STEEL_HEADERS})
build_kernel(gemv_masked steel/utils.h)
if (NOT MLX_METAL_JIT)
build_kernel(arange arange.h)
build_kernel(binary binary.h binary_ops.h)
build_kernel(binary_two binary_two.h)
build_kernel(copy copy.h)
build_kernel(
fft
fft.h
fft/radix.h
fft/readwrite.h
)
build_kernel(
reduce
atomic.h
reduction/ops.h
reduction/reduce_init.h
reduction/reduce_all.h
reduction/reduce_col.h
reduction/reduce_row.h
)
build_kernel(
quantized
quantized.h
${STEEL_HEADERS}
)
build_kernel(scan scan.h)
build_kernel(softmax softmax.h)
build_kernel(sort sort.h)
build_kernel(ternary ternary.h ternary_ops.h)
build_kernel(unary unary.h unary_ops.h)
build_kernel(
steel/conv/kernels/steel_conv
${STEEL_HEADERS}
)
build_kernel(
steel/conv/kernels/steel_conv_general
${STEEL_HEADERS}
)
build_kernel(
steel/gemm/kernels/steel_gemm_fused
${STEEL_HEADERS}
)
build_kernel(
steel/gemm/kernels/steel_gemm_masked
${STEEL_HEADERS}
)
build_kernel(
steel/gemm/kernels/steel_gemm_splitk
${STEEL_HEADERS}
)
build_kernel(gemv_masked steel/utils.h)
endif()
add_custom_command(
OUTPUT ${MLX_METAL_PATH}/mlx.metallib
COMMAND xcrun -sdk macosx metallib ${KERNEL_AIR} -o
${MLX_METAL_PATH}/mlx.metallib
COMMAND xcrun -sdk macosx metallib ${KERNEL_AIR} -o ${MLX_METAL_PATH}/mlx.metallib
DEPENDS ${KERNEL_AIR}
COMMENT "Building mlx.metallib"
VERBATIM)
VERBATIM
)
add_custom_target(mlx-metallib DEPENDS ${MLX_METAL_PATH}/mlx.metallib)
add_custom_target(
mlx-metallib
DEPENDS
${MLX_METAL_PATH}/mlx.metallib
)
add_dependencies(mlx mlx-metallib)
add_dependencies(
mlx
mlx-metallib
)
# Install metallib
include(GNUInstallDirs)
@@ -100,4 +149,5 @@ include(GNUInstallDirs)
install(
FILES ${MLX_METAL_PATH}/mlx.metallib
DESTINATION ${CMAKE_INSTALL_LIBDIR}
COMPONENT metallib)
COMPONENT metallib
)

View File

@@ -70,16 +70,16 @@ IndexValPair<U> simd_shuffle_down(IndexValPair<U> data, uint16_t delta) {
simd_shuffle_down(data.index, delta), simd_shuffle_down(data.val, delta)};
}
template <typename T, typename Op, int N_READS = 4>
template <typename T, typename Op, int N_READS>
[[kernel]] void arg_reduce_general(
const device T* in [[buffer(0)]],
device uint32_t* out [[buffer(1)]],
const constant int* shape [[buffer(2)]],
const constant size_t* in_strides [[buffer(3)]],
const constant size_t* out_strides [[buffer(4)]],
const constant size_t& ndim [[buffer(5)]],
const constant size_t& axis_stride [[buffer(6)]],
const constant size_t& axis_size [[buffer(7)]],
const device int* shape [[buffer(2)]],
const device size_t* in_strides [[buffer(3)]],
const device size_t* out_strides [[buffer(4)]],
const device size_t& ndim [[buffer(5)]],
const device size_t& axis_stride [[buffer(6)]],
const device size_t& axis_size [[buffer(7)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
@@ -159,12 +159,28 @@ template <typename T, typename Op, int N_READS = 4>
}
}
#define instantiate_arg_reduce_helper(name, itype, op) \
template [[host_name(name)]] [[kernel]] void \
arg_reduce_general<itype, op<itype>, 4>( \
const device itype* in [[buffer(0)]], \
device uint32_t* out [[buffer(1)]], \
const device int* shape [[buffer(2)]], \
const device size_t* in_strides [[buffer(3)]], \
const device size_t* out_strides [[buffer(4)]], \
const device size_t& ndim [[buffer(5)]], \
const device size_t& axis_stride [[buffer(6)]], \
const device size_t& axis_size [[buffer(7)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \
uint simd_size [[threads_per_simdgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
// clang-format off
#define instantiate_arg_reduce(name, itype) \
instantiate_kernel( \
"argmin_" #name, arg_reduce_general, itype, ArgMin<itype>) \
instantiate_kernel( \
"argmax_" #name, arg_reduce_general, itype, ArgMax<itype>)
instantiate_arg_reduce_helper("argmin_" #name , itype, ArgMin) \
instantiate_arg_reduce_helper("argmax_" #name , itype, ArgMax)
instantiate_arg_reduce(bool_, bool)
instantiate_arg_reduce(uint8, uint8_t)

View File

@@ -93,7 +93,7 @@ template <typename T, typename U, typename Op>
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2(index, a_strides);
auto b_idx = elem_to_loc_2(index, b_strides);
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
size_t out_idx = index.x + (size_t)grid_dim.x * index.y;
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
@@ -109,11 +109,27 @@ template <typename T, typename U, typename Op>
auto a_idx = elem_to_loc_3(index, a_strides);
auto b_idx = elem_to_loc_3(index, b_strides);
size_t out_idx =
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
index.x + (size_t)grid_dim.x * (index.y + (size_t)grid_dim.y * index.z);
c[out_idx] = Op()(a[a_idx], b[b_idx]);
}
template <typename T, typename U, typename Op, int N = 1>
template <typename T, typename U, typename Op, int DIM>
[[kernel]] void binary_g_nd(
device const T* a,
device const T* b,
device U* c,
constant const int shape[DIM],
constant const size_t a_strides[DIM],
constant const size_t b_strides[DIM],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd<DIM>(index, shape, a_strides, b_strides);
size_t out_idx =
index.x + (size_t)grid_dim.x * (index.y + (size_t)grid_dim.y * index.z);
c[out_idx] = Op()(a[idx.x], b[idx.y]);
}
template <typename T, typename U, typename Op>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
@@ -124,16 +140,7 @@ template <typename T, typename U, typename Op, int N = 1>
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
size_t out_idx =
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
auto a_xstride = a_strides[ndim - 1];
auto b_xstride = b_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
c[out_idx++] = Op()(a[idx.x], b[idx.y]);
idx.x += a_xstride;
idx.y += b_xstride;
}
auto idx = elem_to_loc_2_nd(index, shape, a_strides, b_strides, ndim);
size_t out_idx = index.x + grid_dim.x * (index.y + grid_dim.y * index.z);
c[out_idx] = Op()(a[idx.x], b[idx.y]);
}

View File

@@ -9,18 +9,20 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn" #op #tname, binary_g, itype, otype, op) \
instantiate_kernel("g1" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3" #op #tname, binary_g_nd3, itype, otype, op) \
instantiate_kernel("g4" #op #tname, binary_g_nd, itype, otype, op, 4) \
instantiate_kernel("g5" #op #tname, binary_g_nd, itype, otype, op, 5)
#define instantiate_binary_integer(op) \
instantiate_binary_all(op, uint8, uint8_t, uint8_t) \

View File

@@ -217,7 +217,7 @@ struct Power {
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
auto x_theta = metal::atan2(x.imag, x.real);
auto x_theta = metal::atan(x.imag / x.real);
auto x_ln_r = 0.5 * metal::log(x.real * x.real + x.imag * x.imag);
auto mag = metal::exp(y.real * x_ln_r - y.imag * x_theta);
auto phase = y.imag * x_ln_r + y.real * x_theta;

View File

@@ -118,7 +118,7 @@ template <typename T, typename U, typename Op>
uint2 grid_dim [[threads_per_grid]]) {
auto a_idx = elem_to_loc_2(index, a_strides);
auto b_idx = elem_to_loc_2(index, b_strides);
size_t out_idx = index.x + size_t(grid_dim.x) * index.y;
size_t out_idx = index.x + (size_t)grid_dim.x * index.y;
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
d[out_idx] = out[1];
@@ -137,13 +137,32 @@ template <typename T, typename U, typename Op>
auto a_idx = elem_to_loc_3(index, a_strides);
auto b_idx = elem_to_loc_3(index, b_strides);
size_t out_idx =
index.x + grid_dim.x * (index.y + size_t(grid_dim.y) * index.z);
index.x + (size_t)grid_dim.x * (index.y + (size_t)grid_dim.y * index.z);
auto out = Op()(a[a_idx], b[b_idx]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}
template <typename T, typename U, typename Op, int N = 1>
template <typename T, typename U, typename Op, int DIM>
[[kernel]] void binary_g_nd(
device const T* a,
device const T* b,
device U* c,
device U* d,
constant const int shape[DIM],
constant const size_t a_strides[DIM],
constant const size_t b_strides[DIM],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd<DIM>(index, shape, a_strides, b_strides);
size_t out_idx =
index.x + (size_t)grid_dim.x * (index.y + (size_t)grid_dim.y * index.z);
auto out = Op()(a[idx.x], b[idx.y]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}
template <typename T, typename U, typename Op>
[[kernel]] void binary_g(
device const T* a,
device const T* b,
@@ -155,18 +174,9 @@ template <typename T, typename U, typename Op, int N = 1>
constant const int& ndim,
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto idx = elem_to_loc_2_nd(
{N * index.x, index.y, index.z}, shape, a_strides, b_strides, ndim);
auto xshape = shape[ndim - 1];
size_t out_idx =
N * index.x + xshape * (index.y + size_t(grid_dim.y) * index.z);
auto a_xstride = a_strides[ndim - 1];
auto b_xstride = b_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
auto out = Op()(a[idx.x], b[idx.y]);
c[out_idx] = out[0];
d[out_idx++] = out[1];
idx.x += a_xstride;
idx.y += b_xstride;
}
auto idx = elem_to_loc_2_nd(index, shape, a_strides, b_strides, ndim);
size_t out_idx = index.x + grid_dim.x * (index.y + grid_dim.y * index.z);
auto out = Op()(a[idx.x], b[idx.y]);
c[out_idx] = out[0];
d[out_idx] = out[1];
}

View File

@@ -7,18 +7,20 @@
#include "mlx/backend/metal/kernels/binary_ops.h"
#include "mlx/backend/metal/kernels/binary_two.h"
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss_" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv_" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs_" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv_" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2_" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2_" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2_" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn4_" #op #tname, binary_g, itype, otype, op, 4) \
instantiate_kernel("g1_" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2_" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3_" #op #tname, binary_g_nd3, itype, otype, op) \
#define instantiate_binary_all(op, tname, itype, otype) \
instantiate_kernel("ss" #op #tname, binary_ss, itype, otype, op) \
instantiate_kernel("sv" #op #tname, binary_sv, itype, otype, op) \
instantiate_kernel("vs" #op #tname, binary_vs, itype, otype, op) \
instantiate_kernel("vv" #op #tname, binary_vv, itype, otype, op) \
instantiate_kernel("sv2" #op #tname, binary_sv2, itype, otype, op) \
instantiate_kernel("vs2" #op #tname, binary_vs2, itype, otype, op) \
instantiate_kernel("vv2" #op #tname, binary_vv2, itype, otype, op) \
instantiate_kernel("gn" #op #tname, binary_g, itype, otype, op) \
instantiate_kernel("g1" #op #tname, binary_g_nd1, itype, otype, op) \
instantiate_kernel("g2" #op #tname, binary_g_nd2, itype, otype, op) \
instantiate_kernel("g3" #op #tname, binary_g_nd3, itype, otype, op) \
instantiate_kernel("g4" #op #tname, binary_g_nd, itype, otype, op, 4) \
instantiate_kernel("g5" #op #tname, binary_g_nd, itype, otype, op, 5)
#define instantiate_binary_float(op) \
instantiate_binary_all(op, float16, half, half) \

View File

@@ -113,7 +113,6 @@ template <typename T, int N>
for (int i = N - 1; i >= 0; --i) {
int os_ = (oS % params->oS[i]);
int ws_ = (wS % params->wS[i]);
out += ws_ * kernel_stride;
ws_ = params->flip ? params->wS[i] - ws_ - 1 : ws_;
@@ -127,6 +126,7 @@ template <typename T, int N>
oS /= params->oS[i];
wS /= params->wS[i];
out += ws_ * kernel_stride;
kernel_stride *= params->wS[i];
}

View File

@@ -71,7 +71,21 @@ template <typename T, typename U>
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U, int N = 1>
template <typename T, typename U, int DIM>
[[kernel]] void copy_g_nd(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc_nd<DIM>(index, src_shape, src_strides);
int64_t dst_idx =
index.x + (int64_t)grid_dim.x * (index.y + (int64_t)grid_dim.y * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
[[kernel]] void copy_g(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
@@ -80,22 +94,10 @@ template <typename T, typename U, int N = 1>
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]],
uint3 grid_dim [[threads_per_grid]]) {
auto src_idx = elem_to_loc(
{N * index.x, index.y, index.z}, src_shape, src_strides, ndim);
if (N == 1) {
int64_t dst_idx =
index.x + grid_dim.x * (index.y + int64_t(grid_dim.y) * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
return;
}
auto xshape = src_shape[ndim - 1];
auto src_idx = elem_to_loc(index, src_shape, src_strides, ndim);
int64_t dst_idx =
N * index.x + xshape * (index.y + int64_t(grid_dim.y) * index.z);
auto src_xstride = src_strides[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
dst[dst_idx + i] = static_cast<U>(src[src_idx]);
src_idx += src_xstride;
}
index.x + (int64_t)grid_dim.x * (index.y + (int64_t)grid_dim.y * index.z);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
@@ -134,7 +136,20 @@ template <typename T, typename U>
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U, int N = 1>
template <typename T, typename U, int DIM>
[[kernel]] void copy_gg_nd(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
constant const int* src_shape [[buffer(2)]],
constant const int64_t* src_strides [[buffer(3)]],
constant const int64_t* dst_strides [[buffer(4)]],
uint3 index [[thread_position_in_grid]]) {
auto src_idx = elem_to_loc_nd<DIM>(index, src_shape, src_strides);
auto dst_idx = elem_to_loc_nd<DIM>(index, src_shape, dst_strides);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}
template <typename T, typename U>
[[kernel]] void copy_gg(
device const T* src [[buffer(0)]],
device U* dst [[buffer(1)]],
@@ -143,22 +158,7 @@ template <typename T, typename U, int N = 1>
constant const int64_t* dst_strides [[buffer(4)]],
constant const int& ndim [[buffer(5)]],
uint3 index [[thread_position_in_grid]]) {
auto idx = elem_to_loc_2_nd(
{N * index.x, index.y, index.z},
src_shape,
src_strides,
dst_strides,
ndim);
if (N == 1) {
dst[idx.y] = static_cast<U>(src[idx.x]);
return;
}
auto src_xstride = src_strides[ndim - 1];
auto dst_xstride = dst_strides[ndim - 1];
auto xshape = src_shape[ndim - 1];
for (int i = 0; i < N && (int(N * index.x) + i) < xshape; ++i) {
dst[idx.y] = static_cast<U>(src[idx.x]);
idx.x += src_xstride;
idx.y += dst_xstride;
}
auto src_idx = elem_to_loc(index, src_shape, src_strides, ndim);
auto dst_idx = elem_to_loc(index, src_shape, dst_strides, ndim);
dst[dst_idx] = static_cast<U>(src[src_idx]);
}

Some files were not shown because too many files have changed in this diff Show More