mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-04 15:04:40 +08:00
Compare commits
451 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
079882495d | ||
![]() |
ab977109db | ||
![]() |
fd1c08137b | ||
![]() |
76b6cece46 | ||
![]() |
9f0df51f8d | ||
![]() |
e7a2a3dcd1 | ||
![]() |
a87ef5bfc1 | ||
![]() |
9f9cb7a2ef | ||
![]() |
7e26fd8032 | ||
![]() |
eab2685c67 | ||
![]() |
50dfb664db | ||
![]() |
0189ab6ab6 | ||
![]() |
9401507336 | ||
![]() |
eb8321d863 | ||
![]() |
79ef49b2c2 | ||
![]() |
e110ca11e2 | ||
![]() |
226748b3e7 | ||
![]() |
d568c7ee36 | ||
![]() |
e6fecbb3e1 | ||
![]() |
da83f899bb | ||
![]() |
7e5674d8be | ||
![]() |
0a558577bf | ||
![]() |
fb71a82ada | ||
![]() |
23406c9e9e | ||
![]() |
b3ec792380 | ||
![]() |
6a9b584f3d | ||
![]() |
81dd33af66 | ||
![]() |
8b76571896 | ||
![]() |
e78a6518fa | ||
![]() |
1873ffda01 | ||
![]() |
c417e42116 | ||
![]() |
358e1fd6ab | ||
![]() |
631dfbe673 | ||
![]() |
56a4eaed72 | ||
![]() |
bf925d9dc7 | ||
![]() |
1a7ed5dcb6 | ||
![]() |
5be5daa6ef | ||
![]() |
60cb11764e | ||
![]() |
cbd5445ea7 | ||
![]() |
2c7e9b5158 | ||
![]() |
2263e4b279 | ||
![]() |
863039da4c | ||
![]() |
7178ac0111 | ||
![]() |
e7f9710499 | ||
![]() |
ff4223904d | ||
![]() |
a9f80d60f6 | ||
![]() |
2e158cf6d0 | ||
![]() |
8bd6bfa4b5 | ||
![]() |
8b1906abd0 | ||
![]() |
06375e6605 | ||
![]() |
b21242faf1 | ||
![]() |
cc05a281c4 | ||
![]() |
fe96ceee66 | ||
![]() |
9814a2ae12 | ||
![]() |
6992498e7a | ||
![]() |
21623156a3 | ||
![]() |
79c859e2e0 | ||
![]() |
b00ac960b4 | ||
![]() |
02a9fc7bfa | ||
![]() |
f390957685 | ||
![]() |
17f57df797 | ||
![]() |
7f7b9662ea | ||
![]() |
19bef39f5c | ||
![]() |
a30e7ed2da | ||
![]() |
8db7161c94 | ||
![]() |
09f1777896 | ||
![]() |
490c0c4fdc | ||
![]() |
c4a471c99d | ||
![]() |
86f495985b | ||
![]() |
67d1894759 | ||
![]() |
5bfe89bdb1 | ||
![]() |
82463e9938 | ||
![]() |
771575d27b | ||
![]() |
20a01bbd9f | ||
![]() |
ec8578d41a | ||
![]() |
d0dbfe0b97 | ||
![]() |
3d405fb3b1 | ||
![]() |
b0012cdd0f | ||
![]() |
84d61d27aa | ||
![]() |
ed83908931 | ||
![]() |
ef5f7d1aea | ||
![]() |
090ff659dc | ||
![]() |
85c8a91a27 | ||
![]() |
581b699ac9 | ||
![]() |
8a0677d56d | ||
![]() |
b18468bf81 | ||
![]() |
107ba2891a | ||
![]() |
cd9e184529 | ||
![]() |
2e7c02d5cd | ||
![]() |
ae18326533 | ||
![]() |
91eba8e485 | ||
![]() |
d07e295c62 | ||
![]() |
dce4bd74a4 | ||
![]() |
ffff671273 | ||
![]() |
12d4507ee3 | ||
![]() |
8580d997ff | ||
![]() |
061cf9a4ce | ||
![]() |
99abb9eff4 | ||
![]() |
fffe072028 | ||
![]() |
a1a31eed27 | ||
![]() |
ae812350f9 | ||
![]() |
b63ef10a7f | ||
![]() |
42afe27e12 | ||
![]() |
76e63212ff | ||
![]() |
aac2f9fb61 | ||
![]() |
bddf23f175 | ||
![]() |
039da779d1 | ||
![]() |
d88d2124b5 | ||
![]() |
e142aaf8a1 | ||
![]() |
0caf35f4b8 | ||
![]() |
3fc993f82d | ||
![]() |
741eb28443 | ||
![]() |
1a87dc5ea8 | ||
![]() |
2427fa171e | ||
![]() |
639e06e1f3 | ||
![]() |
02fedbf1da | ||
![]() |
110d9b149d | ||
![]() |
9cbff5ec1d | ||
![]() |
433c0206b0 | ||
![]() |
8915901966 | ||
![]() |
f48bc496c7 | ||
![]() |
913b19329c | ||
![]() |
d8cb3128f6 | ||
![]() |
5f9ba3019f | ||
![]() |
46caf0bef0 | ||
![]() |
45f636e759 | ||
![]() |
a7b404ff53 | ||
![]() |
c4fd0e5ede | ||
![]() |
bab5386306 | ||
![]() |
aca7584635 | ||
![]() |
d611251502 | ||
![]() |
f30b659291 | ||
![]() |
90dfa43ff1 | ||
![]() |
dc175f08d3 | ||
![]() |
29221fa238 | ||
![]() |
a789685c63 | ||
![]() |
240d10699c | ||
![]() |
925014b661 | ||
![]() |
5611e1a95e | ||
![]() |
570f2bf29e | ||
![]() |
9948eddf11 | ||
![]() |
a3ee03da01 | ||
![]() |
28fcd2b519 | ||
![]() |
8e686764ac | ||
![]() |
479051ce1c | ||
![]() |
bfb5bad4f0 | ||
![]() |
1e16331d9c | ||
![]() |
be98f4ab6b | ||
![]() |
6ee1112f30 | ||
![]() |
8e5a5a1ccd | ||
![]() |
fcda3a0e66 | ||
![]() |
9663c22fe9 | ||
![]() |
f0ae00da12 | ||
![]() |
44390bd3d0 | ||
![]() |
2225374060 | ||
![]() |
105d236889 | ||
![]() |
53e6a9367c | ||
![]() |
f5a1582fe8 | ||
![]() |
a54f06b16f | ||
![]() |
4650d94d98 | ||
![]() |
a5681ebc52 | ||
![]() |
e849b3424a | ||
![]() |
b219d12a6b | ||
![]() |
cec8661113 | ||
![]() |
73a8c090e0 | ||
![]() |
db6796ac61 | ||
![]() |
9a8ee00246 | ||
![]() |
d39ed54f8e | ||
![]() |
16546c70d8 | ||
![]() |
eaba55c9bf | ||
![]() |
19ec023256 | ||
![]() |
63ab0ab580 | ||
![]() |
8dfc376c00 | ||
![]() |
1efee9db09 | ||
![]() |
43abc402d8 | ||
![]() |
3f8b1668c4 | ||
![]() |
76c919b4ec | ||
![]() |
29d0c10ee5 | ||
![]() |
5ad133f8bb | ||
![]() |
d0c544a868 | ||
![]() |
ffb19df3c0 | ||
![]() |
8b7532b9ab | ||
![]() |
366478c560 | ||
![]() |
8e5600022a | ||
![]() |
0e95b64942 | ||
![]() |
0ae22b915b | ||
![]() |
7c441600fe | ||
![]() |
a4d290adb9 | ||
![]() |
28301807c2 | ||
![]() |
74ed0974b3 | ||
![]() |
ec8a4864fa | ||
![]() |
b7588fd5d7 | ||
![]() |
f512b905c7 | ||
![]() |
afd5274049 | ||
![]() |
1074674e32 | ||
![]() |
7762e07fde | ||
![]() |
cbefd9129e | ||
![]() |
e39bebe13e | ||
![]() |
14b4e51a7c | ||
![]() |
cbcf44a4ca | ||
![]() |
859ae15a54 | ||
![]() |
0787724c44 | ||
![]() |
7b463ffb07 | ||
![]() |
6686e61ca4 | ||
![]() |
c096a77b9b | ||
![]() |
5121f028d9 | ||
![]() |
6a665ea6ed | ||
![]() |
bc06cb9ff6 | ||
![]() |
8e281c76c3 | ||
![]() |
d5964a2710 | ||
![]() |
cf3eb87e52 | ||
![]() |
ab3a466711 | ||
![]() |
4494970f47 | ||
![]() |
776c3d226d | ||
![]() |
f5f18b704f | ||
![]() |
420ff2f331 | ||
![]() |
56ba3ec40e | ||
![]() |
de3d2467a3 | ||
![]() |
fe1dabf272 | ||
![]() |
08226ab491 | ||
![]() |
3b661b7394 | ||
![]() |
e6418781ab | ||
![]() |
ac02cf33bd | ||
![]() |
22364c40b7 | ||
![]() |
d729a1991b | ||
![]() |
126c9869c8 | ||
![]() |
ad4a45e615 | ||
![]() |
04fc896016 | ||
![]() |
884b4ed43b | ||
![]() |
972d9a3aea | ||
![]() |
7dcdd88e27 | ||
![]() |
8120a3b65c | ||
![]() |
5798256fcf | ||
![]() |
d0fda82595 | ||
![]() |
f883fcede0 | ||
![]() |
e1bdf6a8d9 | ||
![]() |
1a4f4c5ea6 | ||
![]() |
0925af43b0 | ||
![]() |
dc937b8ed3 | ||
![]() |
c3965fc5ee | ||
![]() |
bf7cd29970 | ||
![]() |
a000d2288c | ||
![]() |
165abf0e4c | ||
![]() |
818cda16bc | ||
![]() |
85143fecdd | ||
![]() |
35431a4ac8 | ||
![]() |
ccf1645995 | ||
![]() |
1a48713d32 | ||
![]() |
1eb04aa23f | ||
![]() |
0c65517e91 | ||
![]() |
2fdc2462c3 | ||
![]() |
be6e9d6a9f | ||
![]() |
e54cbb7ba6 | ||
![]() |
40c108766b | ||
![]() |
4cc70290f7 | ||
![]() |
74caa68d02 | ||
![]() |
3756381358 | ||
![]() |
d12573daa6 | ||
![]() |
0dbc4c7547 | ||
![]() |
06072601ce | ||
![]() |
11d2c8f7a1 | ||
![]() |
7f3f8d8f8d | ||
![]() |
b96be943dc | ||
![]() |
b670485185 | ||
![]() |
b57bd0488d | ||
![]() |
221f8d3fc2 | ||
![]() |
5c03efaf29 | ||
![]() |
7dccd42133 | ||
![]() |
1b97b2958b | ||
![]() |
e5e816a5ef | ||
![]() |
28eac18571 | ||
![]() |
5fd11c347d | ||
![]() |
ef73393a19 | ||
![]() |
ea406d5e33 | ||
![]() |
146bd69470 | ||
![]() |
316ff490b3 | ||
![]() |
d40a04f8dc | ||
![]() |
d75ae52ecd | ||
![]() |
31fea3758e | ||
![]() |
e319383ef9 | ||
![]() |
5c3ac52dd7 | ||
![]() |
ebfd3618b0 | ||
![]() |
11a9fd40f0 | ||
![]() |
4fd2fb84a6 | ||
![]() |
9852af1a19 | ||
![]() |
16750f3c51 | ||
![]() |
95b5fb8245 | ||
![]() |
83f63f2184 | ||
![]() |
cb6156d35d | ||
![]() |
506d43035c | ||
![]() |
36cff34701 | ||
![]() |
e88e474fd1 | ||
![]() |
601c6d6aa8 | ||
![]() |
ba8d6bf365 | ||
![]() |
4a5f3b21bb | ||
![]() |
fcc5ac1c64 | ||
![]() |
bad67fec37 | ||
![]() |
199aebcf77 | ||
![]() |
0de5988f92 | ||
![]() |
143e2690d5 | ||
![]() |
375446453e | ||
![]() |
1895d34c20 | ||
![]() |
09b9275027 | ||
![]() |
d3a9005454 | ||
![]() |
3f7aba8498 | ||
![]() |
65d0b8df9f | ||
![]() |
3c2f192345 | ||
![]() |
37d98ba6ff | ||
![]() |
8993382aaa | ||
![]() |
07f35c9d8a | ||
![]() |
bf17ab5002 | ||
![]() |
8fa6b322b9 | ||
![]() |
874b739f3c | ||
![]() |
077c1ee64a | ||
![]() |
2463496471 | ||
![]() |
87b7fa9ba2 | ||
![]() |
624065c074 | ||
![]() |
f27ec5e097 | ||
![]() |
f30e63353a | ||
![]() |
4fe2fa2a64 | ||
![]() |
37fc9db82c | ||
![]() |
755dcf6137 | ||
![]() |
6b4b30e3fc | ||
![]() |
86e0c79467 | ||
![]() |
98c37d3a22 | ||
![]() |
f326dd8334 | ||
![]() |
6d3bee3364 | ||
![]() |
ecb174ca9d | ||
![]() |
7a34e46677 | ||
![]() |
92c22c1ea3 | ||
![]() |
d52383367a | ||
![]() |
363d3add6d | ||
![]() |
b207c2c86b | ||
![]() |
6bf779e72b | ||
![]() |
ddf50113c5 | ||
![]() |
6589c869d6 | ||
![]() |
f6feb61f92 | ||
![]() |
c4ec836523 | ||
![]() |
550d4bf7c0 | ||
![]() |
f6e911ced0 | ||
![]() |
3d99a8d31d | ||
![]() |
a749a91c75 | ||
![]() |
49a52610b7 | ||
![]() |
d1fef34138 | ||
![]() |
9c111f176d | ||
![]() |
78e5f2d17d | ||
![]() |
90c234b7ac | ||
![]() |
135fd796d2 | ||
![]() |
78102a47ad | ||
![]() |
556cdf0e06 | ||
![]() |
275db7221a | ||
![]() |
4a9012cba0 | ||
![]() |
a2bf7693dd | ||
![]() |
d8fabaa12b | ||
![]() |
4e290d282f | ||
![]() |
e72458a3fa | ||
![]() |
a2ffea683a | ||
![]() |
c15fe3e61b | ||
![]() |
f44c132f4a | ||
![]() |
92a2fdd577 | ||
![]() |
6022d4129e | ||
![]() |
4bc446be08 | ||
![]() |
41cc7bdfdb | ||
![]() |
6e81c3e164 | ||
![]() |
2e29d0815b | ||
![]() |
1b71487e1f | ||
![]() |
1416e7b664 | ||
![]() |
29081204d1 | ||
![]() |
006d01ba42 | ||
![]() |
46dc24d835 | ||
![]() |
c9934fe8a4 | ||
![]() |
975e265f74 | ||
![]() |
c92a134b0d | ||
![]() |
3b4f066dac | ||
![]() |
b7f905787e | ||
![]() |
e3e933c6bc | ||
![]() |
1d90a76d63 | ||
![]() |
961435a243 | ||
![]() |
e9ca65c939 | ||
![]() |
753867123d | ||
![]() |
f099ebe535 | ||
![]() |
f45f70f133 | ||
![]() |
0b8aeddac6 | ||
![]() |
432ee5650b | ||
![]() |
73321b8097 | ||
![]() |
022a944367 | ||
![]() |
026ef9aae4 | ||
![]() |
a611b0bc82 | ||
![]() |
449b43762e | ||
![]() |
6ea6b4258d | ||
![]() |
48f6ca8c3a | ||
![]() |
c6d2878c1a | ||
![]() |
b34bf5d52b | ||
![]() |
608bd43604 | ||
![]() |
4c48f6460d | ||
![]() |
1331fa19f6 | ||
![]() |
dfdb284e16 | ||
![]() |
d8f41a5c0f | ||
![]() |
b9e415d19c | ||
![]() |
c82a8cc526 | ||
![]() |
75dc537e44 | ||
![]() |
cf88db44b5 | ||
![]() |
16856a0160 | ||
![]() |
d752f8e142 | ||
![]() |
d2467c320d | ||
![]() |
0d31128a44 | ||
![]() |
1ac18eac20 | ||
![]() |
526466dd09 | ||
![]() |
e7f5059fe4 | ||
![]() |
d7ac050f4b | ||
![]() |
c7edafb729 | ||
![]() |
dff4a3833f | ||
![]() |
0782a4573a | ||
![]() |
af66a09bde | ||
![]() |
436bec9fd9 | ||
![]() |
99c80a2c8b | ||
![]() |
295ce9db09 | ||
![]() |
44c1ce5e6a | ||
![]() |
144ecff849 | ||
![]() |
350095ce6e | ||
![]() |
e09bf35b28 | ||
![]() |
99c20f523e | ||
![]() |
e3b8da2a49 | ||
![]() |
a020a2d49d | ||
![]() |
930b159885 | ||
![]() |
5ad8fb7268 | ||
![]() |
2aedf3e791 | ||
![]() |
473b6b43b4 | ||
![]() |
d29770eeaa | ||
![]() |
040c3bafab | ||
![]() |
05767b026f | ||
![]() |
a83d5d60bd | ||
![]() |
ff2b58e299 | ||
![]() |
4417e37ede | ||
![]() |
79c95b6919 | ||
![]() |
1f6ab6a556 | ||
![]() |
6b0d30bb85 | ||
![]() |
447bc089b9 | ||
![]() |
fc4e5b476b | ||
![]() |
d58ac083f3 | ||
![]() |
a123c3c7d2 | ||
![]() |
9e6b8c9f48 | ||
![]() |
22fee5a383 | ||
![]() |
7365d142a3 | ||
![]() |
8b227fa9af | ||
![]() |
8c3da54c7d | ||
![]() |
acf1721b98 | ||
![]() |
f91f450141 | ||
![]() |
cd3616a463 | ||
![]() |
d35fa1db41 | ||
![]() |
e8deca84e0 |
@@ -1,5 +1,8 @@
|
||||
version: 2.1
|
||||
|
||||
orbs:
|
||||
apple: ml-explore/pr-approval@0.1.0
|
||||
|
||||
parameters:
|
||||
nightly_build:
|
||||
type: boolean
|
||||
@@ -7,6 +10,9 @@ parameters:
|
||||
weekly_build:
|
||||
type: boolean
|
||||
default: false
|
||||
test_release:
|
||||
type: boolean
|
||||
default: false
|
||||
|
||||
jobs:
|
||||
linux_build_and_test:
|
||||
@@ -25,19 +31,24 @@ jobs:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
sudo apt-get update
|
||||
sudo apt-get install libblas-dev
|
||||
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
|
||||
- run:
|
||||
name: Build python package
|
||||
name: Install Python package
|
||||
command: |
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py build_ext --inplace
|
||||
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py develop
|
||||
- run:
|
||||
name: Run the python tests
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
python3 -m unittest discover python/tests
|
||||
echo "stubs"
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
python3 -m unittest discover python/tests -v
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
@@ -47,154 +58,202 @@ jobs:
|
||||
command: ./build/tests/tests
|
||||
|
||||
mac_build_and_test:
|
||||
machine: true
|
||||
resource_class: ml-explore/m-builder
|
||||
parameters:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "15.2.0"
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
rm -r $CONDA_PREFIX/envs/runner-env
|
||||
conda create -y -n runner-env python=3.9
|
||||
conda activate runner-env
|
||||
brew install python@3.8
|
||||
brew install openmpi
|
||||
python3.8 -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install numpy
|
||||
pip install torch
|
||||
pip install tensorflow
|
||||
pip install unittest-xml-reporting
|
||||
- run:
|
||||
name: Build python package
|
||||
name: Install Python package
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda activate runner-env
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext --inplace
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py develop
|
||||
source env/bin/activate
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
|
||||
- run:
|
||||
name: Run the python tests
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda activate runner-env
|
||||
DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
DEVICE=gpu python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
source env/bin/activate
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Run Python tests
|
||||
command: |
|
||||
source env/bin/activate
|
||||
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
|
||||
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
|
||||
mpirun -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
|
||||
- run:
|
||||
name: Build example extension
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd examples/extensions
|
||||
pip install -r requirements.txt
|
||||
python setup.py build_ext -j8
|
||||
- store_test_results:
|
||||
path: test-results
|
||||
- run:
|
||||
name: Build CPP only
|
||||
command: |
|
||||
source env/bin/activate
|
||||
mkdir -p build && cd build && cmake .. && make -j
|
||||
- run:
|
||||
name: Run CPP tests
|
||||
command: |
|
||||
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
|
||||
- run:
|
||||
name: Build small binary
|
||||
command: |
|
||||
source env/bin/activate
|
||||
cd build/
|
||||
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel -DBUILD_SHARED_LIBS=ON -DMLX_BUILD_CPU=OFF -DMLX_BUILD_SAFETENSORS=OFF -DMLX_BUILD_GGUF=OFF -DMLX_METAL_JIT=ON
|
||||
make -j
|
||||
|
||||
build_release:
|
||||
machine: true
|
||||
resource_class: ml-explore/m-builder
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
macos_version:
|
||||
xcode_version:
|
||||
type: string
|
||||
default: "14"
|
||||
default: "15.2.0"
|
||||
build_env:
|
||||
type: string
|
||||
default: ""
|
||||
macos:
|
||||
xcode: << parameters.xcode_version >>
|
||||
resource_class: macos.m1.medium.gen1
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
rm -r $CONDA_PREFIX/envs/runner-env
|
||||
conda create -y -n runner-env python=<< parameters.python_version >>
|
||||
conda activate runner-env
|
||||
brew install python@<< parameters.python_version >>
|
||||
python<< parameters.python_version >> -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install twine
|
||||
pip install build
|
||||
- run:
|
||||
name: Build pacakge
|
||||
name: Install Python package
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda activate runner-env
|
||||
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
|
||||
PYPI_RELEASE=1 \
|
||||
source env/bin/activate
|
||||
DEV_RELEASE=1 \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python setup.py bdist_wheel
|
||||
twine upload dist/* --repository mlx
|
||||
pip install . -v
|
||||
- run:
|
||||
name: Generate package stubs
|
||||
command: |
|
||||
source env/bin/activate
|
||||
python setup.py generate_stubs
|
||||
- run:
|
||||
name: Build Python package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
<< parameters.build_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python -m build -w
|
||||
- when:
|
||||
condition: << parameters.build_env >>
|
||||
steps:
|
||||
- run:
|
||||
name: Upload package
|
||||
command: |
|
||||
source env/bin/activate
|
||||
twine upload dist/*
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
|
||||
build_dev_release:
|
||||
machine: true
|
||||
resource_class: ml-explore/m-builder
|
||||
build_linux_test_release:
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
macos_version:
|
||||
extra_env:
|
||||
type: string
|
||||
default: "14"
|
||||
default: "DEV_RELEASE=1"
|
||||
docker:
|
||||
- image: ubuntu:20.04
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
name: Build wheel
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
rm -r $CONDA_PREFIX/envs/runner-env
|
||||
conda create -y -n runner-env python=<< parameters.python_version >>
|
||||
conda activate runner-env
|
||||
PYTHON=python<< parameters.python_version >>
|
||||
apt-get update
|
||||
apt-get upgrade -y
|
||||
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
|
||||
apt-get install -y apt-utils
|
||||
apt-get install -y software-properties-common
|
||||
add-apt-repository -y ppa:deadsnakes/ppa
|
||||
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
|
||||
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
|
||||
apt-get install -y build-essential git
|
||||
$PYTHON -m venv env
|
||||
source env/bin/activate
|
||||
pip install --upgrade pip
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
pip install --upgrade setuptools
|
||||
pip install numpy
|
||||
pip install twine
|
||||
- run:
|
||||
name: Build pacakge
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda activate runner-env
|
||||
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
|
||||
DEV_RELEASE=1 \
|
||||
pip install auditwheel
|
||||
pip install patchelf
|
||||
pip install build
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python setup.py bdist_wheel
|
||||
twine upload dist/* --repository mlx
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
|
||||
build_package:
|
||||
machine: true
|
||||
resource_class: ml-explore/m-builder
|
||||
parameters:
|
||||
python_version:
|
||||
type: string
|
||||
default: "3.9"
|
||||
macos_version:
|
||||
type: string
|
||||
default: "14"
|
||||
steps:
|
||||
- checkout
|
||||
- run:
|
||||
name: Install dependencies
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
rm -r $CONDA_PREFIX/envs/runner-env
|
||||
conda create -y -n runner-env python=<< parameters.python_version >>
|
||||
conda activate runner-env
|
||||
pip install --upgrade cmake
|
||||
pip install --upgrade pybind11[global]
|
||||
pip install numpy
|
||||
pip install twine
|
||||
- run:
|
||||
name: Build pacakge
|
||||
command: |
|
||||
eval "$(conda shell.bash hook)"
|
||||
conda activate runner-env
|
||||
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
|
||||
pip install . -v
|
||||
python setup.py generate_stubs
|
||||
<< parameters.extra_env >> \
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" \
|
||||
python setup.py bdist_wheel
|
||||
python -m build --wheel
|
||||
auditwheel show dist/*
|
||||
auditwheel repair dist/* --plat manylinux_2_31_x86_64
|
||||
- store_artifacts:
|
||||
path: dist/
|
||||
path: wheelhouse/
|
||||
|
||||
workflows:
|
||||
build_and_test:
|
||||
when:
|
||||
and:
|
||||
- matches:
|
||||
pattern: "^(?!pull/)[-\\w]+$"
|
||||
value: << pipeline.git.branch >>
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- mac_build_and_test:
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test
|
||||
- mac_build_and_test
|
||||
|
||||
build_pypi_release:
|
||||
when:
|
||||
and:
|
||||
- not: << pipeline.parameters.nightly_build >>
|
||||
- not: << pipeline.parameters.weekly_build >>
|
||||
- not: << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_release:
|
||||
filters:
|
||||
tags:
|
||||
@@ -204,20 +263,56 @@ workflows:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
macos_version: ["13", "14"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["PYPI_RELEASE=1"]
|
||||
prb:
|
||||
when:
|
||||
matches:
|
||||
pattern: "^pull/\\d+(/head)?$"
|
||||
value: << pipeline.git.branch >>
|
||||
jobs:
|
||||
- hold:
|
||||
type: approval
|
||||
- apple/authenticate:
|
||||
context: pr-approval
|
||||
- mac_build_and_test:
|
||||
requires: [ hold ]
|
||||
matrix:
|
||||
parameters:
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
- linux_build_and_test:
|
||||
requires: [ hold ]
|
||||
nightly_build:
|
||||
when: << pipeline.parameters.nightly_build >>
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.nightly_build >>
|
||||
jobs:
|
||||
- build_package:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
macos_version: ["13", "14"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
weekly_build:
|
||||
when: << pipeline.parameters.weekly_build >>
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.weekly_build >>
|
||||
jobs:
|
||||
- build_dev_release:
|
||||
- build_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
macos_version: ["13", "14"]
|
||||
xcode_version: ["15.0.0", "15.2.0"]
|
||||
build_env: ["DEV_RELEASE=1"]
|
||||
linux_test_release:
|
||||
when:
|
||||
and:
|
||||
- equal: [ main, << pipeline.git.branch >> ]
|
||||
- << pipeline.parameters.test_release >>
|
||||
jobs:
|
||||
- build_linux_test_release:
|
||||
matrix:
|
||||
parameters:
|
||||
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
|
||||
extra_env: ["PYPI_RELEASE=1"]
|
||||
|
28
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
28
.github/ISSUE_TEMPLATE/bug_report.md
vendored
Normal file
@@ -0,0 +1,28 @@
|
||||
---
|
||||
name: Bug report
|
||||
about: Create a report about an issue you've encountered
|
||||
title: "[BUG] "
|
||||
labels: ''
|
||||
assignees: ''
|
||||
|
||||
---
|
||||
|
||||
**Describe the bug**
|
||||
A clear and concise description of what the bug is.
|
||||
|
||||
**To Reproduce**
|
||||
|
||||
Include code snippet
|
||||
```python
|
||||
|
||||
```
|
||||
|
||||
**Expected behavior**
|
||||
A clear and concise description of what you expected to happen.
|
||||
|
||||
**Desktop (please complete the following information):**
|
||||
- OS Version: [e.g. MacOS 14.1.2]
|
||||
- Version [e.g. 0.7.0]
|
||||
|
||||
**Additional context**
|
||||
Add any other context about the problem here.
|
4
.gitignore
vendored
4
.gitignore
vendored
@@ -6,6 +6,10 @@ __pycache__/
|
||||
# C extensions
|
||||
*.so
|
||||
|
||||
# tensor files
|
||||
*.safe
|
||||
*.safetensors
|
||||
|
||||
# Metal libraries
|
||||
*.metallib
|
||||
venv/
|
||||
|
@@ -1,15 +1,15 @@
|
||||
repos:
|
||||
- repo: https://github.com/pre-commit/mirrors-clang-format
|
||||
rev: v17.0.6
|
||||
rev: v18.1.4
|
||||
hooks:
|
||||
- id: clang-format
|
||||
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
|
||||
- repo: https://github.com/psf/black-pre-commit-mirror
|
||||
rev: 22.10.0
|
||||
rev: 24.4.2
|
||||
hooks:
|
||||
- id: black
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.12.0
|
||||
rev: 5.13.2
|
||||
hooks:
|
||||
- id: isort
|
||||
args:
|
||||
|
@@ -6,9 +6,21 @@ with a short description of your contribution(s) below. For example:
|
||||
- Jane Smith: Added the `foo` and `bar` ops.
|
||||
|
||||
MLX was developed with contributions from the following individuals:
|
||||
|
||||
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, linear and logistic regression python example.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
|
||||
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
|
||||
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
|
||||
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
|
||||
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
</a>
|
||||
|
||||
# Third-Party Software
|
||||
|
||||
@@ -245,4 +257,4 @@ Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
||||
limitations under the License.
|
||||
|
145
CMakeLists.txt
145
CMakeLists.txt
@@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.24)
|
||||
|
||||
project(mlx LANGUAGES CXX)
|
||||
project(mlx LANGUAGES C CXX)
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
|
||||
@@ -15,26 +15,37 @@ option(MLX_BUILD_EXAMPLES "Build examples for mlx" ON)
|
||||
option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
|
||||
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
|
||||
option(MLX_BUILD_METAL "Build metal backend" ON)
|
||||
option(MLX_BUILD_CPU "Build cpu backend" ON)
|
||||
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
|
||||
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
|
||||
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
|
||||
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
|
||||
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.0.6)
|
||||
set(MLX_VERSION 0.14.1)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
|
||||
message(STATUS "Building MLX for ${CMAKE_HOST_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
|
||||
|
||||
set(MLX_BUILD_ARM OFF)
|
||||
|
||||
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
|
||||
|
||||
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
message(WARNING
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, "
|
||||
" make sure you are building for arm64.")
|
||||
elseif(${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
|
||||
if(NOT MLX_ENABLE_X64_MAC)
|
||||
message(FATAL_ERROR
|
||||
"Building for x86_64 on macOS is not supported."
|
||||
" If you are on an Apple silicon system, check the build"
|
||||
" documentation for possible fixes: "
|
||||
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
|
||||
else()
|
||||
message(WARNING "Building for x86_64 arch is not officially supported.")
|
||||
endif()
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
|
||||
set(MLX_BUILD_ARM ON)
|
||||
endif()
|
||||
|
||||
@@ -59,9 +70,13 @@ endif()
|
||||
if (MLX_BUILD_METAL AND NOT METAL_LIB)
|
||||
message(STATUS "Metal not found. Unable to build GPU")
|
||||
set(MLX_BUILD_METAL OFF)
|
||||
set(MLX_METAL_DEBUG OFF)
|
||||
elseif (MLX_BUILD_METAL)
|
||||
message(STATUS "Building METAL sources")
|
||||
add_compile_definitions(_METAL_)
|
||||
|
||||
if (MLX_METAL_DEBUG)
|
||||
add_compile_definitions(MLX_METAL_DEBUG)
|
||||
endif()
|
||||
|
||||
# Throw an error if xcrun not found
|
||||
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
|
||||
@@ -69,20 +84,23 @@ elseif (MLX_BUILD_METAL)
|
||||
COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
|
||||
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.2.diff)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
|
||||
set(MLX_METAL_VERSION METAL_3_1)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
|
||||
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.0.diff)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14_iOS17-beta.zip)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 13.3)
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS13.3_iOS16.4.zip)
|
||||
set(MLX_METAL_VERSION METAL_3_0)
|
||||
else()
|
||||
message(FATAL_ERROR "MLX requires macOS >= 13.4 to be built with MLX_BUILD_METAL=ON" )
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
|
||||
FetchContent_Declare(
|
||||
metal_cpp
|
||||
URL ${METAL_CPP_URL}
|
||||
PATCH_COMMAND /usr/bin/patch -N -i ${METAL_CPP_PATCH} || true
|
||||
)
|
||||
|
||||
FetchContent_MakeAvailable(metal_cpp)
|
||||
@@ -92,50 +110,93 @@ elseif (MLX_BUILD_METAL)
|
||||
$<INSTALL_INTERFACE:include/metal_cpp>
|
||||
)
|
||||
target_link_libraries(
|
||||
mlx
|
||||
mlx PUBLIC
|
||||
${METAL_LIB}
|
||||
${FOUNDATION_LIB}
|
||||
${QUARTZ_LIB})
|
||||
|
||||
add_compile_definitions(${MLX_METAL_VERSION})
|
||||
endif()
|
||||
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx ${ACCELERATE_LIBRARY})
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
#set(BLA_VENDOR Generic)
|
||||
find_package(BLAS REQUIRED)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
if (MLX_BUILD_CPU)
|
||||
find_library(ACCELERATE_LIBRARY Accelerate)
|
||||
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
|
||||
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
|
||||
set(MLX_BUILD_ACCELERATE ON)
|
||||
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
|
||||
add_compile_definitions(ACCELERATE_NEW_LAPACK)
|
||||
else()
|
||||
message(STATUS "Accelerate or arm neon not found, using default backend.")
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
if(${CMAKE_HOST_APPLE})
|
||||
# The blas shipped in macOS SDK is not supported, search homebrew for
|
||||
# openblas instead.
|
||||
set(BLA_VENDOR OpenBLAS)
|
||||
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
|
||||
endif()
|
||||
# Search and link with lapack.
|
||||
find_package(LAPACK REQUIRED)
|
||||
if (NOT LAPACK_FOUND)
|
||||
message(FATAL_ERROR "Must have LAPACK installed")
|
||||
endif()
|
||||
find_path(LAPACK_INCLUDE_DIRS lapacke.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
/usr/local/opt/openblas/include)
|
||||
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
|
||||
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
|
||||
# List blas after lapack otherwise we may accidentally incldue an old version
|
||||
# of lapack.h from the include dirs of blas.
|
||||
find_package(BLAS REQUIRED)
|
||||
if (NOT BLAS_FOUND)
|
||||
message(FATAL_ERROR "Must have BLAS installed")
|
||||
endif()
|
||||
# TODO find a cleaner way to do this
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
|
||||
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
|
||||
endif()
|
||||
# TODO find a cleaner way to do this
|
||||
find_path(BLAS_INCLUDE_DIRS cblas.h
|
||||
/usr/include
|
||||
/usr/local/include
|
||||
$ENV{BLAS_HOME}/include)
|
||||
message(STATUS ${BLAS_LIBRARIES})
|
||||
message(STATUS ${BLAS_INCLUDE_DIRS})
|
||||
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
|
||||
target_link_libraries(mlx ${BLAS_LIBRARIES})
|
||||
else()
|
||||
set(MLX_BUILD_ACCELERATE OFF)
|
||||
endif()
|
||||
|
||||
find_package(MPI)
|
||||
if (MPI_FOUND)
|
||||
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
|
||||
|
||||
target_include_directories(
|
||||
mlx
|
||||
mlx
|
||||
PUBLIC
|
||||
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
|
||||
$<INSTALL_INTERFACE:include>
|
||||
)
|
||||
|
||||
FetchContent_Declare(fmt
|
||||
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
|
||||
GIT_TAG 10.2.1
|
||||
EXCLUDE_FROM_ALL
|
||||
)
|
||||
FetchContent_MakeAvailable(fmt)
|
||||
target_link_libraries(mlx PRIVATE fmt::fmt-header-only)
|
||||
|
||||
if (MLX_BUILD_PYTHON_BINDINGS)
|
||||
message(STATUS "Building Python bindings.")
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
|
||||
endif()
|
||||
|
||||
@@ -152,6 +213,8 @@ if (MLX_BUILD_BENCHMARKS)
|
||||
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/benchmarks/cpp)
|
||||
endif()
|
||||
|
||||
|
||||
|
||||
# ----------------------------- Installation -----------------------------
|
||||
include(GNUInstallDirs)
|
||||
|
||||
|
@@ -1,3 +1,4 @@
|
||||
include CMakeLists.txt
|
||||
recursive-include mlx/ *
|
||||
include python/src/*
|
||||
include python/mlx/py.typed # support type hinting as in PEP-561
|
||||
|
32
README.md
32
README.md
@@ -6,15 +6,17 @@
|
||||
|
||||
[](https://circleci.com/gh/ml-explore/mlx)
|
||||
|
||||
MLX is an array framework for machine learning on Apple silicon, brought to you
|
||||
by Apple machine learning research.
|
||||
MLX is an array framework for machine learning research on Apple silicon,
|
||||
brought to you by Apple machine learning research.
|
||||
|
||||
Some key features of MLX include:
|
||||
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy.
|
||||
MLX also has a fully featured C++ API, which closely mirrors the Python API.
|
||||
MLX has higher-level packages like `mlx.nn` and `mlx.optimizers` with APIs
|
||||
that closely follow PyTorch to simplify building more complex models.
|
||||
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
|
||||
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
|
||||
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
|
||||
the Python API. MLX has higher-level packages like `mlx.nn` and
|
||||
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
|
||||
more complex models.
|
||||
|
||||
- **Composable function transformations**: MLX supports composable function
|
||||
transformations for automatic differentiation, automatic vectorization,
|
||||
@@ -53,7 +55,7 @@ variety of examples, including:
|
||||
|
||||
- [Transformer language model](https://github.com/ml-explore/mlx-examples/tree/main/transformer_lm) training.
|
||||
- Large-scale text generation with
|
||||
[LLaMA](https://github.com/ml-explore/mlx-examples/tree/main/llama) and
|
||||
[LLaMA](https://github.com/ml-explore/mlx-examples/tree/main/llms/llama) and
|
||||
finetuning with [LoRA](https://github.com/ml-explore/mlx-examples/tree/main/lora).
|
||||
- Generating images with [Stable Diffusion](https://github.com/ml-explore/mlx-examples/tree/main/stable_diffusion).
|
||||
- Speech recognition with [OpenAI's Whisper](https://github.com/ml-explore/mlx-examples/tree/main/whisper).
|
||||
@@ -61,31 +63,39 @@ variety of examples, including:
|
||||
## Quickstart
|
||||
|
||||
See the [quick start
|
||||
guide](https://ml-explore.github.io/mlx/build/html/quick_start.html)
|
||||
guide](https://ml-explore.github.io/mlx/build/html/usage/quick_start.html)
|
||||
in the documentation.
|
||||
|
||||
## Installation
|
||||
|
||||
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
|
||||
|
||||
**With `pip`**:
|
||||
|
||||
```
|
||||
pip install mlx
|
||||
```
|
||||
|
||||
**With `conda`**:
|
||||
|
||||
```
|
||||
conda install -c conda-forge mlx
|
||||
```
|
||||
|
||||
Checkout the
|
||||
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
|
||||
for more information on building the C++ and Python APIs from source.
|
||||
|
||||
## Contributing
|
||||
|
||||
Check out the [contribution guidelines](CONTRIBUTING.md) for more information
|
||||
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
|
||||
on contributing to MLX. See the
|
||||
[docs](https://ml-explore.github.io/mlx/build/html/install.html) for more
|
||||
information on building from source, and running tests.
|
||||
|
||||
We are grateful for all of [our
|
||||
contributors](ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
|
||||
to MLX and wish to be acknowledged, please add your name to to the list in your
|
||||
contributors](https://github.com/ml-explore/mlx/tree/main/ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
|
||||
to MLX and wish to be acknowledged, please add your name to the list in your
|
||||
pull request.
|
||||
|
||||
## Citing MLX
|
||||
|
@@ -73,6 +73,7 @@ void time_unary_ops() {
|
||||
|
||||
void time_binary_ops() {
|
||||
int M = 1000, N = 100, K = 10;
|
||||
auto condition = random::randint(0, 2, {M, N, K});
|
||||
auto a = random::uniform({M, N, K});
|
||||
auto b = random::uniform({M, N, K});
|
||||
auto device = default_device();
|
||||
@@ -84,7 +85,9 @@ void time_binary_ops() {
|
||||
TIME(divide, a, b, device);
|
||||
TIME(maximum, a, b, device);
|
||||
TIME(minimum, a, b, device);
|
||||
TIME(where, condition, a, b, device);
|
||||
|
||||
condition = array({true});
|
||||
b = random::uniform({1});
|
||||
eval(b);
|
||||
TIMEM("scalar", add, a, b, device);
|
||||
@@ -93,7 +96,9 @@ void time_binary_ops() {
|
||||
TIMEM("scalar", multiply, a, b, device);
|
||||
TIMEM("vector-scalar", divide, a, b, device);
|
||||
TIMEM("scalar-vector", divide, b, a, device);
|
||||
TIMEM("scalar-vector", where, condition, a, b, device);
|
||||
|
||||
condition = broadcast_to(array({true}), {1000, 100});
|
||||
a = broadcast_to(random::uniform({1}), {1000, 100});
|
||||
b = broadcast_to(random::uniform({1}), {1000, 100});
|
||||
eval(a, b);
|
||||
@@ -101,6 +106,7 @@ void time_binary_ops() {
|
||||
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", divide, a, b, device);
|
||||
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
|
||||
}
|
||||
|
||||
void time_strided_ops() {
|
||||
@@ -233,6 +239,20 @@ void time_gather_scatter() {
|
||||
TIME(single_element_add);
|
||||
}
|
||||
|
||||
void time_divmod() {
|
||||
auto a = random::normal({1000});
|
||||
auto b = random::normal({1000});
|
||||
eval({a, b});
|
||||
|
||||
auto divmod_fused = [&a, &b]() { return divmod(a, b); };
|
||||
TIME(divmod_fused);
|
||||
|
||||
auto divmod_separate = [&a, &b]() {
|
||||
return std::vector<array>{floor_divide(a, b), remainder(a, b)};
|
||||
};
|
||||
TIME(divmod_separate);
|
||||
}
|
||||
|
||||
int main() {
|
||||
std::cout << "Benchmarks for " << default_device() << std::endl;
|
||||
time_creation_ops();
|
||||
@@ -246,4 +266,5 @@ int main() {
|
||||
time_matmul();
|
||||
time_reductions();
|
||||
time_gather_scatter();
|
||||
time_divmod();
|
||||
}
|
||||
|
@@ -17,14 +17,13 @@
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " \
|
||||
<< "(" << MSG << ") " << #FUNC << " ... " << std::flush \
|
||||
<< std::setprecision(5) << time_fn(FUNC, ##__VA_ARGS__) << " msec" \
|
||||
<< std::endl;
|
||||
#define TIMEM(MSG, FUNC, ...) \
|
||||
std::cout << "Timing " << "(" << MSG << ") " << #FUNC << " ... " \
|
||||
<< std::flush << std::setprecision(5) \
|
||||
<< time_fn(FUNC, ##__VA_ARGS__) << " msec" << std::endl;
|
||||
|
||||
template <typename F, typename... Args>
|
||||
double time_fn(F fn, Args... args) {
|
||||
double time_fn(F fn, Args&&... args) {
|
||||
// warmup
|
||||
for (int i = 0; i < 5; ++i) {
|
||||
eval(fn(std::forward<Args>(args)...));
|
||||
|
@@ -166,13 +166,13 @@ if __name__ == "__main__":
|
||||
dtypes = ("float32", "float16")
|
||||
transposes = ("nn", "nt", "tn")
|
||||
shapes = (
|
||||
(16, 234, 768, 3072),
|
||||
(1, 64, 64, 25344),
|
||||
(16, 1024, 1024, 1024),
|
||||
(1, 1024, 1024, 2048),
|
||||
(4, 1024, 1024, 4096),
|
||||
(4, 1024, 4096, 1024),
|
||||
(1, 4096, 4096, 4096),
|
||||
(15, 1023, 1023, 1023),
|
||||
(17, 1025, 1025, 1025),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
|
@@ -133,7 +133,7 @@ def get_gbyte_size(in_vec_len, out_vec_len, np_dtype):
|
||||
return float(N_iter_bench * N_iter_func * n_elem * item_size) / float(1024**3)
|
||||
|
||||
|
||||
def bench_with_in_len(ax, in_vec_len, out_vector_lens, dtype, tranpose):
|
||||
def bench_with_in_len(ax, in_vec_len, out_vector_lens, dtype, transpose):
|
||||
np_dtype = getattr(np, dtype)
|
||||
mlx_gb_s = []
|
||||
mlx_gflops = []
|
||||
@@ -164,7 +164,7 @@ def bench_with_in_len(ax, in_vec_len, out_vector_lens, dtype, tranpose):
|
||||
ax.legend()
|
||||
|
||||
|
||||
def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, tranpose):
|
||||
def bench_with_out_len(ax, out_vec_len, in_vector_lens, dtype, transpose):
|
||||
np_dtype = getattr(np, dtype)
|
||||
mlx_gb_s = []
|
||||
mlx_gflops = []
|
||||
|
@@ -4,6 +4,7 @@ import argparse
|
||||
import math
|
||||
import os
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
@@ -59,15 +60,63 @@ def matmul(x, y):
|
||||
mx.eval(ys)
|
||||
|
||||
|
||||
def quant_matmul(x, w, s, b):
|
||||
groups = x.shape[-1] // s.shape[-1]
|
||||
width = 32 // (x.shape[-1] // w.shape[0])
|
||||
def _quant_matmul(x, w, s, b, transpose, group_size, bits):
|
||||
ys = []
|
||||
for i in range(10):
|
||||
ys.append(mx.quantized_matmul(x, w, s, b, groups=groups, width=width))
|
||||
ys.append(
|
||||
mx.quantized_matmul(
|
||||
x, w, s, b, transpose=transpose, group_size=group_size, bits=bits
|
||||
)
|
||||
)
|
||||
mx.eval(ys)
|
||||
|
||||
|
||||
quant_matmul = {
|
||||
"quant_matmul_32_2": partial(_quant_matmul, transpose=False, group_size=32, bits=2),
|
||||
"quant_matmul_32_4": partial(_quant_matmul, transpose=False, group_size=32, bits=4),
|
||||
"quant_matmul_32_8": partial(_quant_matmul, transpose=False, group_size=32, bits=8),
|
||||
"quant_matmul_64_2": partial(_quant_matmul, transpose=False, group_size=64, bits=2),
|
||||
"quant_matmul_64_4": partial(_quant_matmul, transpose=False, group_size=64, bits=4),
|
||||
"quant_matmul_64_8": partial(_quant_matmul, transpose=False, group_size=64, bits=8),
|
||||
"quant_matmul_128_2": partial(
|
||||
_quant_matmul, transpose=False, group_size=128, bits=2
|
||||
),
|
||||
"quant_matmul_128_4": partial(
|
||||
_quant_matmul, transpose=False, group_size=128, bits=4
|
||||
),
|
||||
"quant_matmul_128_8": partial(
|
||||
_quant_matmul, transpose=False, group_size=128, bits=8
|
||||
),
|
||||
"quant_matmul_t_32_2": partial(
|
||||
_quant_matmul, transpose=True, group_size=32, bits=2
|
||||
),
|
||||
"quant_matmul_t_32_4": partial(
|
||||
_quant_matmul, transpose=True, group_size=32, bits=4
|
||||
),
|
||||
"quant_matmul_t_32_8": partial(
|
||||
_quant_matmul, transpose=True, group_size=32, bits=8
|
||||
),
|
||||
"quant_matmul_t_64_2": partial(
|
||||
_quant_matmul, transpose=True, group_size=64, bits=2
|
||||
),
|
||||
"quant_matmul_t_64_4": partial(
|
||||
_quant_matmul, transpose=True, group_size=64, bits=4
|
||||
),
|
||||
"quant_matmul_t_64_8": partial(
|
||||
_quant_matmul, transpose=True, group_size=64, bits=8
|
||||
),
|
||||
"quant_matmul_t_128_2": partial(
|
||||
_quant_matmul, transpose=True, group_size=128, bits=2
|
||||
),
|
||||
"quant_matmul_t_128_4": partial(
|
||||
_quant_matmul, transpose=True, group_size=128, bits=4
|
||||
),
|
||||
"quant_matmul_t_128_8": partial(
|
||||
_quant_matmul, transpose=True, group_size=128, bits=8
|
||||
),
|
||||
}
|
||||
|
||||
|
||||
def conv1d(x, y):
|
||||
ys = []
|
||||
for i in range(10):
|
||||
@@ -220,6 +269,13 @@ def linear(w, b, x):
|
||||
mx.eval(ys)
|
||||
|
||||
|
||||
def linear_fused(w, b, x):
|
||||
ys = []
|
||||
for i in range(10):
|
||||
ys.append(mx.addmm(b, x, mx.transpose(w, (1, 0))))
|
||||
mx.eval(ys)
|
||||
|
||||
|
||||
def rope(x):
|
||||
*_, N, D = x.shape
|
||||
ys = []
|
||||
@@ -324,10 +380,6 @@ if __name__ == "__main__":
|
||||
if len(args.axis) > 1:
|
||||
args.axis.pop(0)
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.cpu:
|
||||
mx.set_default_device(mx.cpu)
|
||||
else:
|
||||
@@ -350,17 +402,24 @@ if __name__ == "__main__":
|
||||
x = xs[0]
|
||||
axis = args.axis[0]
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.benchmark == "matmul_square":
|
||||
print(bench(matmul_square, x))
|
||||
|
||||
elif args.benchmark == "matmul":
|
||||
print(bench(matmul, *xs))
|
||||
|
||||
elif args.benchmark == "quant_matmul":
|
||||
print(bench(quant_matmul, *xs))
|
||||
elif args.benchmark.startswith("quant_matmul"):
|
||||
print(bench(quant_matmul[args.benchmark], *xs))
|
||||
|
||||
elif args.benchmark == "linear":
|
||||
print(bench(linear, *xs))
|
||||
if args.fused:
|
||||
print(bench(linear_fused, *xs))
|
||||
else:
|
||||
print(bench(linear, *xs))
|
||||
|
||||
elif args.benchmark == "sum_axis":
|
||||
print(bench(reduction, "sum", axis, x))
|
||||
|
@@ -331,10 +331,6 @@ if __name__ == "__main__":
|
||||
if len(args.axis) > 1:
|
||||
args.axis.pop(0)
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
torch.set_num_threads(1)
|
||||
device = "cpu" if args.cpu else "mps"
|
||||
|
||||
@@ -354,6 +350,10 @@ if __name__ == "__main__":
|
||||
x = xs[0]
|
||||
axis = args.axis[0]
|
||||
|
||||
if args.print_pid:
|
||||
print(os.getpid())
|
||||
input("Press enter to run")
|
||||
|
||||
if args.benchmark == "matmul_square":
|
||||
print(bench(matmul_square, x))
|
||||
|
||||
|
@@ -62,7 +62,7 @@ def make_predicate(positive_filter, negative_filter):
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run comparisons agains PyTorch")
|
||||
parser = argparse.ArgumentParser(description="Run comparisons against PyTorch")
|
||||
parser.add_argument(
|
||||
"--filter", "-f", help="Regex filter to select benchmarks", nargs="+"
|
||||
)
|
||||
@@ -80,10 +80,8 @@ if __name__ == "__main__":
|
||||
_filter = make_predicate(args.filter, args.negative_filter)
|
||||
|
||||
if args.mlx_dtypes:
|
||||
compare_filtered = (
|
||||
lambda x: compare_mlx_dtypes(
|
||||
x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1]
|
||||
)
|
||||
compare_filtered = lambda x: (
|
||||
compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
|
||||
if _filter(x)
|
||||
else None
|
||||
)
|
||||
@@ -125,6 +123,14 @@ if __name__ == "__main__":
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 1")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0 --cpu")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --cpu")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --cpu")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1 --cpu")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1 --cpu")
|
||||
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1")
|
||||
compare_filtered("argmax --size 10x1024x128 --axis 1 --cpu")
|
||||
compare_filtered("argmax --size 10x1024x128 --axis 1")
|
||||
compare_filtered("argmax --size 10x1024x128 --axis 2 --cpu")
|
||||
|
109
benchmarks/python/compile_bench.py
Normal file
109
benchmarks/python/compile_bench.py
Normal file
@@ -0,0 +1,109 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
import math
|
||||
import random
|
||||
|
||||
import mlx.core as mx
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def bench_gelu():
|
||||
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
x = mx.random.uniform(shape=(1000, 1024))
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
time_fn(gen_fun(gelu), x, msg="fixed gelu")
|
||||
time_fn(gen_fun(mx.compile(gelu)), x, msg="compiled fixed gelu")
|
||||
|
||||
def randint():
|
||||
return random.randint(1, x.shape[0])
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x, y):
|
||||
x = x[: randint()]
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
y = fun(y)
|
||||
return x, y
|
||||
|
||||
return bench_fun
|
||||
|
||||
y = mx.random.uniform(shape=(1000, 1024))
|
||||
time_fn(gen_fun(gelu), x, y, msg="variable gelu")
|
||||
time_fn(gen_fun(mx.compile(gelu)), x, y, msg="compiled variable gelu")
|
||||
time_fn(
|
||||
gen_fun(mx.compile(gelu, shapeless=True)),
|
||||
x,
|
||||
y,
|
||||
msg="shapeless variable gelu",
|
||||
)
|
||||
|
||||
|
||||
def bench_layernorm():
|
||||
|
||||
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
mx.eval(weight, bias)
|
||||
|
||||
def layernorm(x):
|
||||
x = x.astype(mx.float32)
|
||||
means = mx.mean(x, axis=-1, keepdims=True)
|
||||
var = mx.var(x, axis=-1, keepdims=True)
|
||||
x = (x - means) * mx.rsqrt(var + 1e-4)
|
||||
x = x.astype(mx.float16)
|
||||
return weight * x + bias
|
||||
|
||||
x = mx.random.uniform(shape=(1000, 4096)).astype(mx.float16)
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
time_fn(gen_fun(layernorm), x, msg="fixed layernorm")
|
||||
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled fixed layernorm")
|
||||
|
||||
def randint():
|
||||
return random.randint(1, x.shape[0])
|
||||
|
||||
def gen_fun(fun):
|
||||
def bench_fun(x):
|
||||
x = x[: randint()]
|
||||
for _ in range(10):
|
||||
x = fun(x)
|
||||
return x
|
||||
|
||||
return bench_fun
|
||||
|
||||
random.seed(0)
|
||||
time_fn(gen_fun(layernorm), x, msg="variable layernorm")
|
||||
random.seed(0)
|
||||
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled variable layernorm")
|
||||
random.seed(0)
|
||||
time_fn(
|
||||
gen_fun(mx.compile(layernorm, shapeless=True)),
|
||||
x,
|
||||
msg="shapeless variable layernorm",
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Compile benchmarks.")
|
||||
args = parser.parse_args()
|
||||
|
||||
bench_gelu()
|
||||
bench_layernorm()
|
123
benchmarks/python/conv1d_bench.py
Normal file
123
benchmarks/python/conv1d_bench.py
Normal file
@@ -0,0 +1,123 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_1D(strides=1, padding=0, groups=1):
|
||||
def mx_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = mx.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_1D
|
||||
|
||||
|
||||
def make_pt_conv_1D(strides=1, padding=0, groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_1D(a, b):
|
||||
ys = []
|
||||
for _ in range(N_iter_func):
|
||||
y = torch.conv1d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_1D
|
||||
|
||||
|
||||
def bench_shape(N, iH, C, wH, O, strides, padding, np_dtype, groups):
|
||||
scale = 1.0 / math.sqrt(wH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, iH, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, wH, int(C / groups))).astype(np_dtype)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 2, 1))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 2, 1))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_1D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_1D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv1d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv1d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, iH, C)}, {(O, wH, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 5, 32, 1, 2, 1),
|
||||
(4, 32, 32, 5, 32, 1, 2, 2),
|
||||
(4, 32, 32, 5, 32, 1, 2, 4),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 8),
|
||||
(4, 32, 32, 5, 32, 1, 2, 16),
|
||||
(4, 32, 32, 5, 32, 1, 2, 32),
|
||||
(4, 32, 256, 5, 512, 1, 2, 2),
|
||||
(4, 32, 256, 5, 512, 1, 2, 128),
|
||||
(4, 32, 256, 5, 512, 1, 2, 256),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print("(N, iH, C), (O, wH, C), dtype, stride, pads, groups, diff%")
|
||||
for N, iH, C, wH, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, iH, C, wH, O, strides, padding, np_dtype, groups
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {iH:3d}, {C:3d}), ({O:3d}, {wH:2d}, {C:3d}), {dtype}, {strides:5d}, {padding:4d}, {groups:6d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
136
benchmarks/python/conv_bench.py
Normal file
136
benchmarks/python/conv_bench.py
Normal file
@@ -0,0 +1,136 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
||||
device_name = device_name.decode("utf-8").strip("\n")
|
||||
|
||||
N_warmup = 10
|
||||
N_iter_bench = 100
|
||||
N_iter_func = 5
|
||||
|
||||
|
||||
def bench(f, a, b):
|
||||
for i in range(N_warmup):
|
||||
f(a, b)
|
||||
torch.mps.synchronize()
|
||||
|
||||
s = time.perf_counter_ns()
|
||||
for i in range(N_iter_bench):
|
||||
f(a, b)
|
||||
e = time.perf_counter_ns()
|
||||
return (e - s) * 1e-9
|
||||
|
||||
|
||||
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
def mx_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
mx.eval(ys)
|
||||
return ys
|
||||
|
||||
return mx_conv_2D
|
||||
|
||||
|
||||
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
|
||||
@torch.no_grad()
|
||||
def pt_conv_2D(a, b):
|
||||
ys = []
|
||||
for i in range(N_iter_func):
|
||||
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
|
||||
ys.append(y)
|
||||
torch.mps.synchronize()
|
||||
return ys
|
||||
|
||||
return pt_conv_2D
|
||||
|
||||
|
||||
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
|
||||
|
||||
scale = 1.0 / math.sqrt(kH * kH * C)
|
||||
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
|
||||
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
|
||||
np_dtype
|
||||
)
|
||||
|
||||
a_mx = mx.array(a_np)
|
||||
b_mx = mx.array(b_np)
|
||||
|
||||
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
|
||||
|
||||
torch.mps.synchronize()
|
||||
|
||||
f_mx = make_mx_conv_2D(strides, padding, groups)
|
||||
f_pt = make_pt_conv_2D(strides, padding, groups)
|
||||
|
||||
time_torch = bench(f_pt, a_pt, b_pt)
|
||||
time_mlx = bench(f_mx, a_mx, b_mx)
|
||||
|
||||
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
|
||||
out_pt = torch.conv2d(
|
||||
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
|
||||
)
|
||||
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
|
||||
out_pt = out_pt.numpy(force=True)
|
||||
|
||||
atol = 2e-5 if np_dtype == np.float32 else 1e-4
|
||||
|
||||
if not np.allclose(out_pt, out_mx, atol=atol):
|
||||
print(
|
||||
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
|
||||
)
|
||||
|
||||
return time_mlx, time_torch
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Run conv benchmarks")
|
||||
|
||||
dtypes = ("float32",)
|
||||
shapes = (
|
||||
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
|
||||
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
|
||||
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
|
||||
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
|
||||
)
|
||||
|
||||
for dtype in dtypes:
|
||||
print(
|
||||
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
|
||||
)
|
||||
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
|
||||
np_dtype = getattr(np, dtype)
|
||||
time_mlx, time_torch = bench_shape(
|
||||
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
|
||||
)
|
||||
diff = time_torch / time_mlx - 1.0
|
||||
|
||||
print(
|
||||
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
|
||||
)
|
||||
if time_mlx >= 2.0 * time_torch:
|
||||
print("ATTENTION ^^^^^^^")
|
57
benchmarks/python/fft_bench.py
Normal file
57
benchmarks/python/fft_bench.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import matplotlib
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import measure_runtime
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def bandwidth_gb(runtime_ms, system_size):
|
||||
bytes_per_fft = np.dtype(np.complex64).itemsize * 2
|
||||
bytes_per_gb = 1e9
|
||||
ms_per_s = 1e3
|
||||
return system_size * bytes_per_fft / runtime_ms * ms_per_s / bytes_per_gb
|
||||
|
||||
|
||||
def run_bench(system_size):
|
||||
def fft(x):
|
||||
out = mx.fft.fft(x)
|
||||
mx.eval(out)
|
||||
return out
|
||||
|
||||
bandwidths = []
|
||||
for k in range(4, 12):
|
||||
n = 2**k
|
||||
x = mx.random.uniform(shape=(system_size // n, n)).astype(mx.float32)
|
||||
x = x.astype(mx.complex64)
|
||||
mx.eval(x)
|
||||
runtime_ms = measure_runtime(fft, x=x)
|
||||
bandwidths.append(bandwidth_gb(runtime_ms, system_size))
|
||||
|
||||
return bandwidths
|
||||
|
||||
|
||||
def time_fft():
|
||||
|
||||
with mx.stream(mx.cpu):
|
||||
cpu_bandwidths = run_bench(system_size=int(2**22))
|
||||
|
||||
with mx.stream(mx.gpu):
|
||||
gpu_bandwidths = run_bench(system_size=int(2**29))
|
||||
|
||||
# plot bandwidths
|
||||
x = [2**k for k in range(4, 12)]
|
||||
plt.scatter(x, gpu_bandwidths, color="green", label="GPU")
|
||||
plt.scatter(x, cpu_bandwidths, color="red", label="CPU")
|
||||
plt.title("MLX FFT Benchmark")
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("Bandwidth (GB/s)")
|
||||
plt.legend()
|
||||
plt.savefig("fft_plot.png")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_fft()
|
53
benchmarks/python/gather_bench.py
Normal file
53
benchmarks/python/gather_bench.py
Normal file
@@ -0,0 +1,53 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
from time import time
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
from time_utils import measure_runtime
|
||||
|
||||
|
||||
def benchmark_gather_mlx(x_shape, idx_shape):
|
||||
def gather(x, idx):
|
||||
mx.eval(x[idx])
|
||||
|
||||
idx = mx.random.randint(0, x_shape[0] - 1, idx_shape)
|
||||
x = mx.random.normal(x_shape).astype(mx.float32)
|
||||
|
||||
runtime = measure_runtime(gather, x=x, idx=idx)
|
||||
print(f"MLX: {runtime:.3f}ms")
|
||||
|
||||
|
||||
def benchmark_gather_torch(x_shape, idx_shape, device):
|
||||
def gather(x, idx, device):
|
||||
_ = x[idx]
|
||||
if device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
|
||||
idx = torch.randint(0, x_shape[0] - 1, idx_shape).to(device)
|
||||
x = torch.randn(x_shape, dtype=torch.float32).to(device)
|
||||
|
||||
runtime = measure_runtime(gather, x=x, idx=idx, device=device)
|
||||
print(f"PyTorch: {runtime:.3f}ms")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Gather benchmarks.")
|
||||
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.cpu:
|
||||
mx.set_default_device(mx.cpu)
|
||||
device = torch.device("cpu")
|
||||
else:
|
||||
device = torch.device("mps")
|
||||
|
||||
idx_shapes = [(1_000_000,), (100_000,), ()]
|
||||
x_shapes = [(100, 64), (100, 1024), (4, 1_000_000)]
|
||||
|
||||
for x_shape, idx_shape in zip(x_shapes, idx_shapes):
|
||||
print("=" * 20)
|
||||
print(f"X {x_shape}, Indices {idx_shape}")
|
||||
benchmark_gather_mlx(x_shape, idx_shape)
|
||||
benchmark_gather_torch(x_shape, idx_shape, device=device)
|
41
benchmarks/python/layer_norm_bench.py
Normal file
41
benchmarks/python/layer_norm_bench.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def layer_norm(x, w, b, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
mu = mx.mean(x, -1, keepdims=True)
|
||||
v = mx.var(x, -1, keepdims=True)
|
||||
return (x - mu) * mx.rsqrt(v + eps) * w + b
|
||||
|
||||
|
||||
def time_layer_norm():
|
||||
f1 = lambda x, w, b, y: (layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, b, y: (mx.fast.layer_norm(x, w, b, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1, 2))
|
||||
g2 = mx.grad(f2, argnums=(0, 1, 2))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
b = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, b, y)
|
||||
|
||||
def layer_norm_loop(g, x, w, b):
|
||||
gx, gw, gb = x, w, b
|
||||
for _ in range(32):
|
||||
gx, gw, gb = g(gx, gw, gb, y)
|
||||
return gx, gw, gb
|
||||
|
||||
time_fn(layer_norm_loop, g1, x, w, b)
|
||||
time_fn(layer_norm_loop, g2, x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g1), x, w, b)
|
||||
time_fn(layer_norm_loop, mx.compile(g2), x, w, b)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_layer_norm()
|
@@ -1,198 +0,0 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
import time
|
||||
|
||||
import jax
|
||||
import jax.numpy as jnp
|
||||
from flax import linen as nn
|
||||
|
||||
|
||||
class RoPE(nn.Module):
|
||||
dims: int
|
||||
traditional: bool = False
|
||||
|
||||
def _compute_rope(self, costheta, sintheta, x):
|
||||
x1 = x[..., : self.dims // 2]
|
||||
x2 = x[..., self.dims // 2 : self.dims]
|
||||
rx1 = x1 * costheta - x2 * sintheta
|
||||
rx2 = x1 * sintheta + x2 * costheta
|
||||
|
||||
if self.dims < x.shape[-1]:
|
||||
rx = jnp.concatenate([rx1, rx2, x[..., self.dims :]], axis=-1)
|
||||
else:
|
||||
rx = jnp.concatenate([rx1, rx2], axis=-1)
|
||||
|
||||
return rx
|
||||
|
||||
def _compute_traditional_rope(self, costheta, sintheta, x):
|
||||
x1 = x[..., ::2]
|
||||
x2 = x[..., 1::2]
|
||||
rx1 = x1 * costheta - x2 * sintheta
|
||||
rx2 = x1 * sintheta + x2 * costheta
|
||||
|
||||
if self.dims < x.shape[-1]:
|
||||
raise NotImplementedError(
|
||||
"RoPE doesn't implement partial traditional application"
|
||||
)
|
||||
|
||||
rx = jnp.concatenate([rx1[..., None], rx2[..., None]], axis=-1)
|
||||
|
||||
return rx
|
||||
|
||||
@staticmethod
|
||||
def create_cos_sin_theta(
|
||||
N: int,
|
||||
D: int,
|
||||
offset: int = 0,
|
||||
base: float = 10000,
|
||||
dtype=jnp.float32,
|
||||
):
|
||||
D = D // 2
|
||||
positions = jnp.arange(offset, N, dtype=dtype)
|
||||
freqs = jnp.exp(-jnp.arange(0, D, dtype=dtype) * (math.log(base) / D))
|
||||
theta = positions.reshape((-1, 1)) * freqs.reshape((1, -1))
|
||||
costheta = jnp.cos(theta)
|
||||
sintheta = jnp.sin(theta)
|
||||
|
||||
return costheta, sintheta
|
||||
|
||||
@nn.compact
|
||||
def __call__(self, x, offset: int = 0):
|
||||
shape = x.shape
|
||||
x = x.reshape((-1, shape[-2], shape[-1]))
|
||||
N = x.shape[1] + offset
|
||||
costheta, sintheta = RoPE.create_cos_sin_theta(
|
||||
N, self.dims, offset=offset, dtype=x.dtype
|
||||
)
|
||||
|
||||
rope = (
|
||||
self._compute_traditional_rope if self.traditional else self._compute_rope
|
||||
)
|
||||
rx = rope(costheta, sintheta, x)
|
||||
|
||||
return rx.reshape(shape)
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
dims: int
|
||||
num_heads: int
|
||||
dtype: jnp.dtype
|
||||
|
||||
def setup(self):
|
||||
num_heads = self.num_heads
|
||||
dims = self.dims
|
||||
|
||||
self.rope = RoPE(dims // num_heads, True)
|
||||
self.query_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
|
||||
self.key_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
|
||||
self.value_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
|
||||
self.out_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
queries = queries.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
|
||||
keys = keys.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
|
||||
values = values.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = jnp.concatenate([key_cache, keys], axis=2)
|
||||
values = jnp.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.transpose((0, 1, 3, 2))
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = jax.nn.softmax(scores, axis=-1)
|
||||
values_hat = (scores @ values).transpose((0, 2, 1, 3)).reshape((B, L, -1))
|
||||
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
dims: int
|
||||
mlp_dims: int
|
||||
num_heads: int
|
||||
dtype: jnp.dtype
|
||||
|
||||
def setup(self):
|
||||
dims = self.dims
|
||||
mlp_dims = self.mlp_dims
|
||||
num_heads = self.num_heads
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads, dtype)
|
||||
|
||||
self.norm1 = nn.RMSNorm(param_dtype=self.dtype)
|
||||
self.norm2 = nn.RMSNorm(param_dtype=self.dtype)
|
||||
|
||||
self.linear1 = nn.Dense(mlp_dims, use_bias=False, param_dtype=self.dtype)
|
||||
self.linear2 = nn.Dense(mlp_dims, use_bias=False, param_dtype=self.dtype)
|
||||
self.linear3 = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = jax.nn.silu(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
def measure(model, x, cache):
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
jax.block_until_ready((y, c))
|
||||
|
||||
start = time.time()
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
jax.block_until_ready((y, c))
|
||||
|
||||
end = time.time()
|
||||
return (end - start) * 1000 / 5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
H = 32
|
||||
D = 4096
|
||||
F = 43 * 256
|
||||
C = 1000
|
||||
dtype = jnp.float16
|
||||
|
||||
k1, k2, k3, k4 = jax.random.split(jax.random.PRNGKey(0), 4)
|
||||
|
||||
x = jax.random.normal(k1, (1, 1, D), dtype)
|
||||
cache = [
|
||||
jax.random.normal(k2, [1, H, C, D // H], dtype),
|
||||
jax.random.normal(k3, [1, H, C, D // H], dtype),
|
||||
]
|
||||
|
||||
layer = LlamaEncoderLayer(D, F, H, dtype=dtype)
|
||||
params = layer.init(k4, x, mask=None, cache=cache)["params"]
|
||||
|
||||
@jax.jit
|
||||
def model_fn(x, mask, cache):
|
||||
return layer.apply({"params": params}, x, mask=mask, cache=cache)
|
||||
|
||||
T = measure(model_fn, x, cache)
|
||||
|
||||
print("Time per layer per token:", T, "ms")
|
||||
print("Lower bound total time per token:", T * 32, "ms")
|
@@ -1,118 +0,0 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.utils
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.rope = nn.RoPE(dims // num_heads, True)
|
||||
self.query_proj = nn.Linear(dims, dims, False)
|
||||
self.key_proj = nn.Linear(dims, dims, False)
|
||||
self.value_proj = nn.Linear(dims, dims, False)
|
||||
self.out_proj = nn.Linear(dims, dims, False)
|
||||
|
||||
def __call__(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
queries = mx.transpose(mx.reshape(queries, (B, L, num_heads, -1)), (0, 2, 1, 3))
|
||||
keys = mx.transpose(mx.reshape(keys, (B, L, num_heads, -1)), (0, 2, 1, 3))
|
||||
values = mx.transpose(mx.reshape(values, (B, L, num_heads, -1)), (0, 2, 1, 3))
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = mx.concatenate([key_cache, keys], axis=2)
|
||||
values = mx.concatenate([value_cache, values], axis=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||
scale = mx.array(math.sqrt(1 / queries.shape[-1]), dtype=queries.dtype)
|
||||
scores = (queries * scale) @ mx.transpose(keys, (0, 1, 3, 2))
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
values_hat = mx.reshape(mx.transpose(scores @ values, (0, 2, 1, 3)), (B, L, -1))
|
||||
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads)
|
||||
|
||||
self.norm1 = nn.RMSNorm(dims)
|
||||
self.norm2 = nn.RMSNorm(dims)
|
||||
|
||||
self.linear1 = nn.Linear(dims, mlp_dims, False)
|
||||
self.linear2 = nn.Linear(dims, mlp_dims, False)
|
||||
self.linear3 = nn.Linear(mlp_dims, dims, False)
|
||||
|
||||
def __call__(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = a * mx.sigmoid(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
def measure(model, x, cache):
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
mx.eval(y, c)
|
||||
|
||||
start = time.time()
|
||||
rs = []
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
rs.append((y, c))
|
||||
mx.eval(rs)
|
||||
end = time.time()
|
||||
|
||||
return (end - start) * 1000 / 5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
H = 32
|
||||
D = 4096
|
||||
F = 43 * 256
|
||||
C = 1000
|
||||
mx.set_default_device(mx.gpu)
|
||||
dtype = mx.float16
|
||||
|
||||
layer = LlamaEncoderLayer(D, F, H)
|
||||
layer.update(mlx.utils.tree_map(lambda x: x.astype(dtype), layer.parameters()))
|
||||
k1, k2, k3 = mx.random.split(mx.random.key(0), 3)
|
||||
x = mx.random.normal([1, 1, D], dtype=dtype)
|
||||
cache = [
|
||||
mx.random.normal([1, H, C, D // H], dtype=dtype),
|
||||
mx.random.normal([1, H, C, D // H], dtype=dtype),
|
||||
]
|
||||
mx.eval(x, cache)
|
||||
|
||||
T = measure(layer, x, cache)
|
||||
|
||||
print("Time per layer per token:", T, "ms")
|
||||
print("Lower bound total time per token:", T * 32, "ms")
|
@@ -1,199 +0,0 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
|
||||
import math
|
||||
import time
|
||||
|
||||
import torch
|
||||
import torch.mps
|
||||
import torch.nn as nn
|
||||
|
||||
|
||||
def sync_if_needed(x):
|
||||
if x.device != torch.device("cpu"):
|
||||
torch.mps.synchronize()
|
||||
|
||||
|
||||
class RoPE(nn.Module):
|
||||
def __init__(self, dims: int, traditional: bool = False):
|
||||
super().__init__()
|
||||
self.dims = dims
|
||||
self.traditional = traditional
|
||||
|
||||
def _compute_rope(self, costheta, sintheta, x):
|
||||
x1 = x[..., : self.dims // 2]
|
||||
x2 = x[..., self.dims // 2 : self.dims]
|
||||
rx1 = x1 * costheta - x2 * sintheta
|
||||
rx2 = x1 * sintheta + x2 * costheta
|
||||
|
||||
if self.dims < x.shape[-1]:
|
||||
rx = torch.cat([rx1, rx2, x[..., self.dims :]], dim=-1)
|
||||
else:
|
||||
rx = torch.cat([rx1, rx2], dim=-1)
|
||||
|
||||
return rx
|
||||
|
||||
def _compute_traditional_rope(self, costheta, sintheta, x):
|
||||
x1 = x[..., ::2]
|
||||
x2 = x[..., 1::2]
|
||||
rx1 = x1 * costheta - x2 * sintheta
|
||||
rx2 = x1 * sintheta + x2 * costheta
|
||||
|
||||
if self.dims < x.shape[-1]:
|
||||
raise NotImplementedError(
|
||||
"RoPE doesn't implement partial traditional application"
|
||||
)
|
||||
|
||||
rx = torch.cat([rx1[..., None], rx2[..., None]], dim=-1)
|
||||
|
||||
return rx
|
||||
|
||||
def forward(self, x, offset: int = 0):
|
||||
shape = x.shape
|
||||
x = x.view(-1, shape[-2], shape[-1])
|
||||
N = x.shape[1] + offset
|
||||
costheta, sintheta = RoPE.create_cos_sin_theta(
|
||||
N, self.dims, offset=offset, device=x.device, dtype=x.dtype
|
||||
)
|
||||
|
||||
rope = (
|
||||
self._compute_traditional_rope if self.traditional else self._compute_rope
|
||||
)
|
||||
rx = rope(costheta, sintheta, x)
|
||||
|
||||
return rx.view(*shape)
|
||||
|
||||
@staticmethod
|
||||
def create_cos_sin_theta(
|
||||
N: int,
|
||||
D: int,
|
||||
offset: int = 0,
|
||||
base: float = 10000,
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
):
|
||||
D = D // 2
|
||||
positions = torch.arange(offset, N, dtype=dtype, device=device)
|
||||
freqs = torch.exp(
|
||||
-torch.arange(0, D, dtype=dtype, device=device) * (math.log(base) / D)
|
||||
)
|
||||
theta = positions.view(-1, 1) * freqs.view(1, -1)
|
||||
costheta = torch.cos(theta)
|
||||
sintheta = torch.sin(theta)
|
||||
|
||||
return costheta, sintheta
|
||||
|
||||
|
||||
class RMSNorm(nn.Module):
|
||||
def __init__(self, dims: int, epsilon: float = 1e-6):
|
||||
super().__init__()
|
||||
self.gamma = nn.Parameter(torch.ones((dims,)))
|
||||
self.epsilon = epsilon
|
||||
|
||||
def forward(self, x):
|
||||
n = torch.rsqrt(x.square().mean(dim=-1, keepdims=True) + self.epsilon)
|
||||
return self.gamma * x * n
|
||||
|
||||
|
||||
class LlamaAttention(nn.Module):
|
||||
def __init__(self, dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.rope = RoPE(dims // num_heads, True)
|
||||
self.query_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.key_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.value_proj = nn.Linear(dims, dims, bias=False)
|
||||
self.out_proj = nn.Linear(dims, dims, bias=False)
|
||||
|
||||
def forward(self, queries, keys, values, mask=None, cache=None):
|
||||
queries = self.query_proj(queries)
|
||||
keys = self.key_proj(keys)
|
||||
values = self.value_proj(values)
|
||||
|
||||
num_heads = self.num_heads
|
||||
B, L, D = queries.shape
|
||||
queries = queries.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
||||
keys = keys.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
||||
values = values.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
|
||||
|
||||
if cache is not None:
|
||||
key_cache, value_cache = cache
|
||||
queries = self.rope(queries, offset=key_cache.shape[2])
|
||||
keys = self.rope(keys, offset=key_cache.shape[2])
|
||||
keys = torch.cat([key_cache, keys], dim=2)
|
||||
values = torch.cat([value_cache, values], dim=2)
|
||||
else:
|
||||
queries = self.rope(queries)
|
||||
keys = self.rope(keys)
|
||||
|
||||
# Dimensions are [batch x num heads x sequence x hidden dim]
|
||||
scale = math.sqrt(1 / queries.shape[-1])
|
||||
scores = (queries * scale) @ keys.permute(0, 1, 3, 2)
|
||||
if mask is not None:
|
||||
scores = scores + mask
|
||||
scores = torch.softmax(scores, dim=-1)
|
||||
values_hat = (scores @ values).permute(0, 2, 1, 3).reshape(B, L, -1)
|
||||
|
||||
return self.out_proj(values_hat), (keys, values)
|
||||
|
||||
|
||||
class LlamaEncoderLayer(nn.Module):
|
||||
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
|
||||
super().__init__()
|
||||
|
||||
self.attention = LlamaAttention(dims, num_heads)
|
||||
|
||||
self.norm1 = RMSNorm(dims)
|
||||
self.norm2 = RMSNorm(dims)
|
||||
|
||||
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
|
||||
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
|
||||
|
||||
def forward(self, x, mask=None, cache=None):
|
||||
y = self.norm1(x)
|
||||
y, cache = self.attention(y, y, y, mask, cache)
|
||||
x = x + y
|
||||
|
||||
y = self.norm2(x)
|
||||
a = self.linear1(y)
|
||||
b = self.linear2(y)
|
||||
y = torch.nn.functional.silu(a) * b
|
||||
y = self.linear3(y)
|
||||
x = x + y
|
||||
|
||||
return x, cache
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def measure(model, x, cache):
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
sync_if_needed(x)
|
||||
|
||||
start = time.time()
|
||||
for i in range(5):
|
||||
y, c = model(x, mask=None, cache=cache)
|
||||
sync_if_needed(x)
|
||||
end = time.time()
|
||||
return (end - start) * 1000 / 5
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
H = 32
|
||||
D = 4096
|
||||
F = 43 * 256
|
||||
C = 1000
|
||||
device = torch.device("mps")
|
||||
dtype = torch.float16
|
||||
|
||||
layer = LlamaEncoderLayer(D, F, H).to(device).to(dtype)
|
||||
x = torch.randn(1, 1, D).to(device).to(dtype)
|
||||
cache = [
|
||||
torch.randn(1, H, C, D // H).to(device).to(dtype),
|
||||
torch.randn(1, H, C, D // H).to(device).to(dtype),
|
||||
]
|
||||
|
||||
T = measure(layer, x, cache)
|
||||
|
||||
print("Time per layer per token:", T, "ms")
|
||||
print("Lower bound total time per token:", T * 32, "ms")
|
39
benchmarks/python/rms_norm_bench.py
Normal file
39
benchmarks/python/rms_norm_bench.py
Normal file
@@ -0,0 +1,39 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def rms_norm(x, w, eps):
|
||||
ot = x.dtype
|
||||
x = x.astype(mx.float32)
|
||||
n = mx.rsqrt(x.square().mean(-1, keepdims=True) + eps)
|
||||
return (x * n).astype(ot) * w
|
||||
|
||||
|
||||
def time_rms_norm():
|
||||
f1 = lambda x, w, y: (rms_norm(x, w, 1e-5) * y).sum()
|
||||
f2 = lambda x, w, y: (mx.fast.rms_norm(x, w, 1e-5) * y).sum()
|
||||
g1 = mx.grad(f1, argnums=(0, 1))
|
||||
g2 = mx.grad(f2, argnums=(0, 1))
|
||||
|
||||
x = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
w = mx.random.uniform(shape=(4096,)).astype(mx.float16)
|
||||
y = mx.random.uniform(shape=(8, 1024, 4096)).astype(mx.float16)
|
||||
mx.eval(x, w, y)
|
||||
|
||||
def rms_norm_loop(g, x, w):
|
||||
gx, gw = x, w
|
||||
for _ in range(32):
|
||||
gx, gw = g(gx, gw, y)
|
||||
return gx, gw
|
||||
|
||||
time_fn(rms_norm_loop, g1, x, w)
|
||||
time_fn(rms_norm_loop, g2, x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g1), x, w)
|
||||
time_fn(rms_norm_loop, mx.compile(g2), x, w)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_rms_norm()
|
35
benchmarks/python/rope_bench.py
Normal file
35
benchmarks/python/rope_bench.py
Normal file
@@ -0,0 +1,35 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
from time_utils import time_fn
|
||||
|
||||
|
||||
def time_rope():
|
||||
rope = nn.RoPE(64)
|
||||
|
||||
# vec
|
||||
x = mx.random.uniform(shape=(1, 32, 1, 128)).astype(mx.float16)
|
||||
mx.eval(x)
|
||||
|
||||
def rope_vec(x):
|
||||
for _ in range(32):
|
||||
x = rope(x, offset=100)
|
||||
return x
|
||||
|
||||
time_fn(rope_vec, x)
|
||||
|
||||
# matrix
|
||||
x = mx.random.uniform(shape=(1, 32, 1024, 128)).astype(mx.float16)
|
||||
mx.eval(x)
|
||||
|
||||
def rope_mat(x):
|
||||
for _ in range(32):
|
||||
x = rope(x)
|
||||
return x
|
||||
|
||||
time_fn(rope_mat, x)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_rope()
|
96
benchmarks/python/scatter_bench.py
Normal file
96
benchmarks/python/scatter_bench.py
Normal file
@@ -0,0 +1,96 @@
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import argparse
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
from time_utils import measure_runtime
|
||||
|
||||
|
||||
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
|
||||
def scatter(dst, x, idx):
|
||||
dst[*idx] = x
|
||||
mx.eval(dst)
|
||||
|
||||
idx = []
|
||||
for idx_shape in idx_shapes:
|
||||
idx.append(mx.random.randint(0, dst_shape[0] - 1, idx_shape))
|
||||
x = mx.random.normal(x_shape).astype(mx.float32)
|
||||
dst = mx.random.normal(dst_shape).astype(mx.float32)
|
||||
|
||||
runtime = measure_runtime(scatter, dst=dst, x=x, idx=idx)
|
||||
print(f"MLX: {runtime:.3f}ms")
|
||||
|
||||
|
||||
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
|
||||
def gather(dst, x, idx, device):
|
||||
dst[*idx] = x
|
||||
if device == torch.device("mps"):
|
||||
torch.mps.synchronize()
|
||||
|
||||
idx = []
|
||||
for idx_shape in idx_shapes:
|
||||
idx.append(torch.randint(0, dst_shape[0] - 1, idx_shape).to(device))
|
||||
x = torch.randn(x_shape, dtype=torch.float32).to(device)
|
||||
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
|
||||
|
||||
runtime = measure_runtime(gather, dst=dst, x=x, idx=idx, device=device)
|
||||
print(f"PyTorch: {runtime:.3f}ms")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser("Gather benchmarks.")
|
||||
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
|
||||
args = parser.parse_args()
|
||||
|
||||
if args.cpu:
|
||||
mx.set_default_device(mx.cpu)
|
||||
device = torch.device("cpu")
|
||||
else:
|
||||
device = torch.device("mps")
|
||||
|
||||
dst_shapes = [
|
||||
(10, 64),
|
||||
(100_000, 64),
|
||||
(1_000_000, 64),
|
||||
(100_000,),
|
||||
(2_000_00,),
|
||||
(20_000_000,),
|
||||
(10000, 64),
|
||||
(100, 64),
|
||||
(100, 10_000, 64),
|
||||
(10, 100, 100, 21),
|
||||
(1_000, 1_000, 10),
|
||||
]
|
||||
idx_shapes = [
|
||||
[(1_000_000,)],
|
||||
[(1_000_000,)],
|
||||
[(100_000,)],
|
||||
[(1_000_000,)],
|
||||
[(20_000_000,)],
|
||||
[(20_000_000,)],
|
||||
[(1000000,)],
|
||||
[(10000000,)],
|
||||
[(1_000,)],
|
||||
[(10_000,)],
|
||||
[(1_000,), (1_000,)],
|
||||
]
|
||||
x_shapes = [
|
||||
(1_000_000, 64),
|
||||
(1_000_000, 64),
|
||||
(100_000, 64),
|
||||
(1_000_000,),
|
||||
(20_000_000,),
|
||||
(20_000_000,),
|
||||
(1000000, 64),
|
||||
(10000000, 64),
|
||||
(1_000, 10_000, 64),
|
||||
(10_000, 100, 100, 21),
|
||||
(1_000, 10),
|
||||
]
|
||||
|
||||
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
|
||||
print("=" * 20)
|
||||
print(f"X {x_shape}, Indices {idx_shape}")
|
||||
benchmark_scatter_mlx(dst_shape, x_shape, idx_shape)
|
||||
benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device=device)
|
@@ -44,6 +44,13 @@ def time_matmul():
|
||||
time_fn(mx.matmul, a, b)
|
||||
|
||||
|
||||
def time_maximum():
|
||||
a = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
b = mx.random.uniform(shape=(32, 1024, 1024))
|
||||
mx.eval(a, b)
|
||||
time_fn(mx.maximum, a, b)
|
||||
|
||||
|
||||
def time_negative():
|
||||
a = mx.random.uniform(shape=(10000, 1000))
|
||||
mx.eval(a)
|
||||
@@ -101,6 +108,7 @@ if __name__ == "__main__":
|
||||
|
||||
time_add()
|
||||
time_matmul()
|
||||
time_maximum()
|
||||
time_exp()
|
||||
time_negative()
|
||||
time_logsumexp()
|
||||
|
@@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
import time
|
||||
|
||||
@@ -6,7 +6,11 @@ import mlx.core as mx
|
||||
|
||||
|
||||
def time_fn(fn, *args, **kwargs):
|
||||
print(f"Timing {fn.__name__} ...", end=" ")
|
||||
msg = kwargs.pop("msg", None)
|
||||
if msg:
|
||||
print(f"Timing {msg} ...", end=" ")
|
||||
else:
|
||||
print(f"Timing {fn.__name__} ...", end=" ")
|
||||
|
||||
# warmup
|
||||
for _ in range(5):
|
||||
@@ -20,3 +24,15 @@ def time_fn(fn, *args, **kwargs):
|
||||
|
||||
msec = 1e3 * (toc - tic) / num_iters
|
||||
print(f"{msec:.5f} msec")
|
||||
|
||||
|
||||
def measure_runtime(fn, **kwargs):
|
||||
# Warmup
|
||||
for _ in range(5):
|
||||
fn(**kwargs)
|
||||
|
||||
tic = time.time()
|
||||
iters = 100
|
||||
for _ in range(iters):
|
||||
fn(**kwargs)
|
||||
return (time.time() - tic) * 1000 / iters
|
||||
|
@@ -12,7 +12,7 @@ include(CMakeParseArguments)
|
||||
# OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib
|
||||
# SOURCES: List of source files
|
||||
# INCLUDE_DIRS: List of include dirs
|
||||
# DEPS: List of depedency files (like headers)
|
||||
# DEPS: List of dependency files (like headers)
|
||||
#
|
||||
macro(mlx_build_metallib)
|
||||
# Parse args
|
||||
@@ -32,7 +32,7 @@ macro(mlx_build_metallib)
|
||||
# Collect compile options
|
||||
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
|
||||
|
||||
# Prepare metllib build command
|
||||
# Prepare metallib build command
|
||||
add_custom_command(
|
||||
OUTPUT ${MTLLIB_BUILD_TARGET}
|
||||
COMMAND xcrun -sdk macosx metal
|
||||
|
36
cmake/metal.14.0.diff
Normal file
36
cmake/metal.14.0.diff
Normal file
@@ -0,0 +1,36 @@
|
||||
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
|
||||
--- Metal/MTLEvent.hpp 2023-06-01 12:18:26
|
||||
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:36:59
|
||||
@@ -62,6 +62,7 @@
|
||||
|
||||
uint64_t signaledValue() const;
|
||||
void setSignaledValue(uint64_t signaledValue);
|
||||
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
|
||||
};
|
||||
|
||||
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
|
||||
@@ -138,6 +139,11 @@
|
||||
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
|
||||
{
|
||||
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
|
||||
+}
|
||||
+
|
||||
+// method: waitUntilSignaledValue
|
||||
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
|
||||
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
|
||||
}
|
||||
|
||||
// static method: alloc
|
||||
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
|
||||
--- Metal/MTLHeaderBridge.hpp 2023-06-01 12:18:26
|
||||
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:37:29
|
||||
@@ -1906,6 +1906,9 @@
|
||||
"setShouldMaximizeConcurrentCompilation:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
|
||||
"setSignaledValue:");
|
||||
+_MTL_PRIVATE_DEF_SEL(
|
||||
+ waitUntilSignaledValue_timeoutMS_,
|
||||
+ "waitUntilSignaledValue:timeoutMS:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSize_,
|
||||
"setSize:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSlice_,
|
36
cmake/metal.14.2.diff
Normal file
36
cmake/metal.14.2.diff
Normal file
@@ -0,0 +1,36 @@
|
||||
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
|
||||
--- Metal/MTLEvent.hpp 2024-04-15 07:12:10
|
||||
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:15:50
|
||||
@@ -62,6 +62,7 @@
|
||||
|
||||
uint64_t signaledValue() const;
|
||||
void setSignaledValue(uint64_t signaledValue);
|
||||
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
|
||||
};
|
||||
|
||||
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
|
||||
@@ -138,6 +139,11 @@
|
||||
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
|
||||
{
|
||||
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
|
||||
+}
|
||||
+
|
||||
+// method: waitUntilSignaledValue
|
||||
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
|
||||
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
|
||||
}
|
||||
|
||||
// static method: alloc
|
||||
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
|
||||
--- Metal/MTLHeaderBridge.hpp 2024-04-15 07:12:10
|
||||
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:16:15
|
||||
@@ -1918,6 +1918,9 @@
|
||||
"setShouldMaximizeConcurrentCompilation:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
|
||||
"setSignaledValue:");
|
||||
+_MTL_PRIVATE_DEF_SEL(
|
||||
+ waitUntilSignaledValue_timeoutMS_,
|
||||
+ "waitUntilSignaledValue:timeoutMS:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSize_,
|
||||
"setSize:");
|
||||
_MTL_PRIVATE_DEF_SEL(setSlice_,
|
1
docs/.gitignore
vendored
1
docs/.gitignore
vendored
@@ -1,2 +1,3 @@
|
||||
src/python/_autosummary*/
|
||||
src/python/nn/_autosummary*/
|
||||
src/python/optimizers/_autosummary*/
|
||||
|
50
docs/Doxyfile
Normal file
50
docs/Doxyfile
Normal file
@@ -0,0 +1,50 @@
|
||||
################################################################################
|
||||
# Primary project setup. #
|
||||
################################################################################
|
||||
|
||||
PROJECT_NAME = "MLX"
|
||||
OUTPUT_DIRECTORY = build
|
||||
XML_OUTPUT = xml
|
||||
HTML_OUTPUT = html
|
||||
STRIP_FROM_PATH = ../
|
||||
INPUT = ../mlx
|
||||
FILE_PATTERNS = *.h
|
||||
EXCLUDE_PATTERNS = */private/*
|
||||
CREATE_SUBDIRS = NO
|
||||
FULL_PATH_NAMES = YES
|
||||
RECURSIVE = YES
|
||||
GENERATE_HTML = YES
|
||||
GENERATE_LATEX = NO
|
||||
GENERATE_XML = YES
|
||||
XML_PROGRAMLISTING = YES
|
||||
|
||||
################################################################################
|
||||
# Doxygen preprocessor / parser control. #
|
||||
################################################################################
|
||||
|
||||
ENABLE_PREPROCESSING = YES
|
||||
MACRO_EXPANSION = YES
|
||||
EXPAND_ONLY_PREDEF = NO
|
||||
SKIP_FUNCTION_MACROS = NO
|
||||
|
||||
################################################################################
|
||||
# Compound extraction control. #
|
||||
################################################################################
|
||||
|
||||
EXTRACT_ALL = YES
|
||||
EXTRACT_PACKAGE = YES
|
||||
EXTRACT_STATIC = YES
|
||||
CASE_SENSE_NAMES = NO
|
||||
|
||||
################################################################################
|
||||
# Docstring control / customization. #
|
||||
################################################################################
|
||||
|
||||
JAVADOC_AUTOBRIEF = YES
|
||||
|
||||
################################################################################
|
||||
# Warning suppression. #
|
||||
################################################################################
|
||||
|
||||
QUIET = YES
|
||||
WARN_IF_UNDOCUMENTED = NO
|
@@ -2,12 +2,16 @@
|
||||
|
||||
### Setup (do once)
|
||||
|
||||
Install [sphinx](https://www.sphinx-doc.org/en/master/usage/installation.html)
|
||||
for example with `conda`:
|
||||
Install Doxygen:
|
||||
|
||||
```
|
||||
conda install sphinx
|
||||
pip install sphinx-book-theme
|
||||
brew install doxygen
|
||||
```
|
||||
|
||||
Install Python packages:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### Build
|
||||
@@ -15,7 +19,7 @@ pip install sphinx-book-theme
|
||||
Build the docs from `mlx/docs/`
|
||||
|
||||
```
|
||||
make html
|
||||
doxygen && make html
|
||||
```
|
||||
|
||||
View the docs by running a server in `mlx/docs/build/html/`:
|
||||
@@ -26,7 +30,7 @@ python -m http.server <port>
|
||||
|
||||
and point your browser to `http://localhost:<port>`.
|
||||
|
||||
### Push to Github Pages
|
||||
### Push to GitHub Pages
|
||||
|
||||
Check-out the `gh-pages` branch (`git switch gh-pages`) and build
|
||||
the docs. Then force add the `build/html` directory:
|
||||
|
3
docs/requirements.txt
Normal file
3
docs/requirements.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
BIN
docs/src/_static/metal_debugger/capture.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 1.2 MiB |
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
BIN
docs/src/_static/metal_debugger/schema.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 746 KiB |
Binary file not shown.
Before Width: | Height: | Size: 7.2 KiB After Width: | Height: | Size: 76 KiB |
BIN
docs/src/_static/mlx_logo_dark.png
Normal file
BIN
docs/src/_static/mlx_logo_dark.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 48 KiB |
33
docs/src/_templates/module-base-class.rst
Normal file
33
docs/src/_templates/module-base-class.rst
Normal file
@@ -0,0 +1,33 @@
|
||||
{{ fullname | escape | underline}}
|
||||
|
||||
.. currentmodule:: {{ module }}
|
||||
|
||||
.. add toctree option to make autodoc generate the pages
|
||||
|
||||
.. autoclass:: {{ objname }}
|
||||
|
||||
{% block attributes %}
|
||||
{% if attributes %}
|
||||
.. rubric:: Attributes
|
||||
|
||||
.. autosummary::
|
||||
:toctree: .
|
||||
{% for item in attributes %}
|
||||
~{{ fullname }}.{{ item }}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
||||
|
||||
{% block methods %}
|
||||
{% if methods %}
|
||||
.. rubric:: Methods
|
||||
|
||||
.. autosummary::
|
||||
:toctree: .
|
||||
{% for item in methods %}
|
||||
{%- if item not in inherited_members and item != '__init__' %}
|
||||
~{{ fullname }}.{{ item }}
|
||||
{%- endif -%}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}
|
@@ -4,16 +4,17 @@
|
||||
|
||||
.. autoclass:: {{ objname }}
|
||||
|
||||
{#{% block methods %}
|
||||
{% block methods %}
|
||||
|
||||
{% if methods %}
|
||||
.. rubric:: {{ _('Methods') }}
|
||||
|
||||
.. autosummary::
|
||||
{% for item in methods %}
|
||||
{%- if item not in inherited_members and item != '__init__' %}
|
||||
{%- if item not in inherited_members and item != "__init__" %}
|
||||
~{{ name }}.{{ item }}
|
||||
{%- endif %}
|
||||
{%- endfor %}
|
||||
{% endif %}
|
||||
{% endblock %}#}
|
||||
{% endblock %}
|
||||
|
||||
|
@@ -5,13 +5,15 @@
|
||||
import os
|
||||
import subprocess
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = "MLX"
|
||||
copyright = "2023, MLX Contributors"
|
||||
author = "MLX Contributors"
|
||||
version = "0.0.6"
|
||||
release = "0.0.6"
|
||||
version = ".".join(mx.__version__.split(".")[:3])
|
||||
release = version
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
@@ -20,22 +22,28 @@ extensions = [
|
||||
"sphinx.ext.autosummary",
|
||||
"sphinx.ext.intersphinx",
|
||||
"sphinx.ext.napoleon",
|
||||
"breathe",
|
||||
]
|
||||
|
||||
python_use_unqualified_type_names = True
|
||||
autosummary_generate = True
|
||||
autosummary_filename_map = {"mlx.core.Stream": "stream_class"}
|
||||
|
||||
intersphinx_mapping = {
|
||||
"https://docs.python.org/3": None,
|
||||
"https://numpy.org/doc/stable/": None,
|
||||
"python": ("https://docs.python.org/3", None),
|
||||
"numpy": ("https://numpy.org/doc/stable/", None),
|
||||
}
|
||||
|
||||
breathe_projects = {"mlx": "../build/xml"}
|
||||
breathe_default_project = "mlx"
|
||||
|
||||
templates_path = ["_templates"]
|
||||
html_static_path = ["_static"]
|
||||
source_suffix = ".rst"
|
||||
master_doc = "index"
|
||||
main_doc = "index"
|
||||
highlight_language = "python"
|
||||
pygments_style = "sphinx"
|
||||
add_module_names = False
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
@@ -46,11 +54,32 @@ html_theme_options = {
|
||||
"repository_url": "https://github.com/ml-explore/mlx",
|
||||
"use_repository_button": True,
|
||||
"navigation_with_keys": False,
|
||||
"logo": {
|
||||
"image_light": "_static/mlx_logo.png",
|
||||
"image_dark": "_static/mlx_logo_dark.png",
|
||||
},
|
||||
}
|
||||
|
||||
html_logo = "_static/mlx_logo.png"
|
||||
|
||||
|
||||
# -- Options for HTMLHelp output ---------------------------------------------
|
||||
|
||||
htmlhelp_basename = "mlx_doc"
|
||||
|
||||
|
||||
def setup(app):
|
||||
from sphinx.util import inspect
|
||||
|
||||
wrapped_isfunc = inspect.isfunction
|
||||
|
||||
def isfunc(obj):
|
||||
type_name = str(type(obj))
|
||||
if "nanobind.nb_method" in type_name or "nanobind.nb_func" in type_name:
|
||||
return True
|
||||
return wrapped_isfunc(obj)
|
||||
|
||||
inspect.isfunction = isfunc
|
||||
|
||||
|
||||
# -- Options for LaTeX output ------------------------------------------------
|
||||
|
||||
latex_documents = [(main_doc, "MLX.tex", "MLX Documentation", author, "manual")]
|
||||
|
@@ -3,4 +3,5 @@
|
||||
Operations
|
||||
==========
|
||||
|
||||
|
||||
.. doxygengroup:: ops
|
||||
:content-only:
|
||||
|
@@ -1,24 +1,16 @@
|
||||
Developer Documentation
|
||||
=======================
|
||||
Custom Extensions in MLX
|
||||
========================
|
||||
|
||||
MLX provides a open and flexible backend to which users may add operations
|
||||
and specialized implementations without much hassle. While the library supplies
|
||||
efficient operations that can be used and composed for any number of
|
||||
applications, there may arise cases where new functionalities or highly
|
||||
optimized implementations are needed. For such cases, you may design and
|
||||
implement your own operations that link to and build on top of :mod:`mlx.core`.
|
||||
We will introduce the inner-workings of MLX and go over a simple example to
|
||||
learn the steps involved in adding new operations to MLX with your own CPU
|
||||
and GPU implementations.
|
||||
You can extend MLX with custom operations on the CPU or GPU. This guide
|
||||
explains how to do that with a simple example.
|
||||
|
||||
Introducing the Example
|
||||
-----------------------
|
||||
|
||||
Let's say that you would like an operation that takes in two arrays,
|
||||
``x`` and ``y``, scales them both by some coefficents ``alpha`` and ``beta``
|
||||
respectively, and then adds them together to get the result
|
||||
``z = alpha * x + beta * y``. Well, you can very easily do that by just
|
||||
writing out a function as follows:
|
||||
Let's say you would like an operation that takes in two arrays, ``x`` and
|
||||
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
|
||||
and then adds them together to get the result ``z = alpha * x + beta * y``.
|
||||
You can do that in MLX directly:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -27,49 +19,40 @@ writing out a function as follows:
|
||||
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
|
||||
return alpha * x + beta * y
|
||||
|
||||
This function performs that operation while leaving the implementations and
|
||||
differentiation to MLX.
|
||||
This function performs that operation while leaving the implementation and
|
||||
function transformations to MLX.
|
||||
|
||||
However, you work with vector math libraries often and realize that the
|
||||
``axpby`` routine defines the same operation ``Y = (alpha * X) + (beta * Y)``.
|
||||
You would really like the part of your applications that does this operation
|
||||
on the CPU to be very fast - so you decide that you want it to rely on the
|
||||
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
|
||||
our assumptions on to you, let's also assume that you want to learn how add
|
||||
your own implementation for the gradients of your new operation while going
|
||||
over the ins-and-outs of the MLX framework.
|
||||
However you may need to customize the underlying implementation, perhaps to
|
||||
make it faster or for custom differentiation. In this tutorial we will go
|
||||
through adding custom extensions. It will cover:
|
||||
|
||||
Well, what a coincidence! You are in the right place. Over the course of this
|
||||
example, we will learn:
|
||||
|
||||
* The structure of the MLX library from the frontend API to the backend implementations.
|
||||
* How to implement your own CPU backend that redirects to Accelerate_ when appropriate (and a fallback if needed).
|
||||
* How to implement your own GPU implementation using metal.
|
||||
* How to add your own ``vjp`` and ``jvp``.
|
||||
* How to build your implementations, link them to MLX, and bind them to python.
|
||||
* The structure of the MLX library.
|
||||
* Implementing a CPU operation that redirects to Accelerate_ when appropriate.
|
||||
* Implementing a GPU operation using metal.
|
||||
* Adding the ``vjp`` and ``jvp`` function transformation.
|
||||
* Building a custom extension and binding it to python.
|
||||
|
||||
Operations and Primitives
|
||||
-------------------------
|
||||
|
||||
In one sentence, operations in MLX build the computation graph, and primitives
|
||||
provide the rules for evaluation and transformations of said graph. Let's start
|
||||
by discussing operations in more detail.
|
||||
Operations in MLX build the computation graph. Primitives provide the rules for
|
||||
evaluating and transforming the graph. Let's start by discussing operations in
|
||||
more detail.
|
||||
|
||||
Operations
|
||||
^^^^^^^^^^^
|
||||
|
||||
Operations are the frontend functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`) and then we provide bindings to these
|
||||
operations in the Python API (:ref:`ops`).
|
||||
Operations are the front-end functions that operate on arrays. They are defined
|
||||
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
|
||||
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and ``y``,
|
||||
and two scalars, ``alpha`` and ``beta``. This is how we would define it in the
|
||||
C++ API:
|
||||
We would like an operation, :meth:`axpby` that takes in two arrays ``x`` and
|
||||
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
|
||||
C++:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/**
|
||||
* Scale and sum two vectors elementwise
|
||||
* Scale and sum two vectors element-wise
|
||||
* z = alpha * x + beta * y
|
||||
*
|
||||
* Follow numpy style broadcasting between x and y
|
||||
@@ -83,10 +66,7 @@ C++ API:
|
||||
StreamOrDevice s = {} // Stream on which to schedule the operation
|
||||
);
|
||||
|
||||
|
||||
This operation itself can call other operations within it if needed. So, the
|
||||
simplest way to go about implementing this operation would be do so in terms
|
||||
of existing operations.
|
||||
The simplest way to this operation is in terms of existing operations:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -100,25 +80,23 @@ of existing operations.
|
||||
// Scale x and y on the provided stream
|
||||
auto ax = multiply(array(alpha), x, s);
|
||||
auto by = multiply(array(beta), y, s);
|
||||
|
||||
|
||||
// Add and return
|
||||
return add(ax, by, s);
|
||||
}
|
||||
|
||||
However, as we discussed earlier, this is not our goal. The operations themselves
|
||||
do not contain the implementations that act on the data, nor do they contain the
|
||||
rules of transformations. Rather, they are an easy to use interface that build
|
||||
on top of the building blocks we call :class:`Primitive`.
|
||||
The operations themselves do not contain the implementations that act on the
|
||||
data, nor do they contain the rules of transformations. Rather, they are an
|
||||
easy to use interface that use :class:`Primitive` building blocks.
|
||||
|
||||
Primitives
|
||||
^^^^^^^^^^^
|
||||
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create an output given a set of input :class:`array` . Further,
|
||||
a :class:`Primitive` is a class that contains rules on how it is evaluated
|
||||
on the CPU or GPU, and how it acts under transformations such as ``vjp`` and
|
||||
``jvp``. These words on their own can be a bit abstract, so lets take a step
|
||||
back and go to our example to give ourselves a more concrete image.
|
||||
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
|
||||
defines how to create outputs arrays given a input arrays. Further, a
|
||||
:class:`Primitive` has methods to run on the CPU or GPU and for function
|
||||
transformations such as ``vjp`` and ``jvp``. Lets go back to our example to be
|
||||
more concrete:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -134,11 +112,15 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_gpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
void eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array jvp(
|
||||
std::vector<array> jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) override;
|
||||
@@ -147,7 +129,8 @@ back and go to our example to give ourselves a more concrete image.
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) override;
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
/**
|
||||
* The primitive must know how to vectorize itself across
|
||||
@@ -155,7 +138,7 @@ back and go to our example to give ourselves a more concrete image.
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<array, int> vmap(
|
||||
virtual std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
@@ -175,22 +158,22 @@ back and go to our example to give ourselves a more concrete image.
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
};
|
||||
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class and
|
||||
follows the above demonstrated interface. :class:`Axpby` treats ``alpha`` and
|
||||
``beta`` as parameters. It then provides implementations of how the array ``out``
|
||||
is produced given ``inputs`` through :meth:`Axpby::eval_cpu` and
|
||||
:meth:`Axpby::eval_gpu`. Further, it provides rules of transformations in
|
||||
:meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and :meth:`Axpby::vmap`.
|
||||
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
|
||||
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
|
||||
implementations of how the output array is produced given the inputs through
|
||||
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
|
||||
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
|
||||
:meth:`Axpby::vmap`.
|
||||
|
||||
Using the Primitives
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
Using the Primitive
|
||||
^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to
|
||||
the computation graph. An :class:`array` can be constructed by providing its
|
||||
data type, shape, the :class:`Primitive` that computes it, and the
|
||||
:class:`array` inputs that are passed to the primitive.
|
||||
Operations can use this :class:`Primitive` to add a new :class:`array` to the
|
||||
computation graph. An :class:`array` can be constructed by providing its data
|
||||
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
|
||||
inputs that are passed to the primitive.
|
||||
|
||||
Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -223,14 +206,14 @@ Let's re-implement our operation now in terms of our :class:`Axpby` primitive.
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
|
||||
This operation now handles the following:
|
||||
|
||||
#. Upcast inputs and resolve the the output data type.
|
||||
#. Upcast inputs and resolve the output data type.
|
||||
#. Broadcast the inputs and resolve the output shape.
|
||||
#. Construct the primitive :class:`Axpby` using the given stream, ``alpha``, and ``beta``.
|
||||
#. Construct the output :class:`array` using the primitive and the inputs.
|
||||
@@ -238,27 +221,26 @@ This operation now handles the following:
|
||||
Implementing the Primitive
|
||||
--------------------------
|
||||
|
||||
No computation happens when we call the operation alone. In effect, the
|
||||
operation only builds the computation graph. When we evaluate the output
|
||||
array, MLX schedules the execution of the computation graph, and calls
|
||||
:meth:`Axpby::eval_cpu` or :meth:`Axpby::eval_gpu` depending on the
|
||||
stream/device specified by the user.
|
||||
No computation happens when we call the operation alone. The operation only
|
||||
builds the computation graph. When we evaluate the output array, MLX schedules
|
||||
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
|
||||
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
|
||||
|
||||
.. warning::
|
||||
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
|
||||
no memory has been allocated for the output array. It falls on the implementation
|
||||
of these functions to allocate memory as needed
|
||||
of these functions to allocate memory as needed.
|
||||
|
||||
Implementing the CPU Backend
|
||||
Implementing the CPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Let's start by trying to implement a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
Let's start by implementing a naive and generic version of
|
||||
:meth:`Axpby::eval_cpu`. We declared this as a private member function of
|
||||
:class:`Axpby` earlier called :meth:`Axpby::eval`.
|
||||
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
Our naive method will go over each element of the output array, find the
|
||||
corresponding input elements of ``x`` and ``y`` and perform the operation
|
||||
point-wise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -284,31 +266,31 @@ pointwise. This is captured in the templated function :meth:`axpby_impl`.
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// Do the elementwise operation for each output
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
|
||||
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
|
||||
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additonal mapping
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
}
|
||||
|
||||
Now, we would like our implementation to be able to do this pointwise operation
|
||||
for all incoming floating point arrays. Accordingly, we add dispatches for
|
||||
``float32``, ``float16``, ``bfloat16`` and ``complex64``. We throw an error
|
||||
if we encounter an unexpected type.
|
||||
Our implementation should work for all incoming floating point arrays.
|
||||
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
|
||||
``complex64``. We throw an error if we encounter an unexpected type.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(const std::vector<array>& inputs, array& out) {
|
||||
// Check the inputs (registered in the op while contructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -321,28 +303,26 @@ if we encounter an unexpected type.
|
||||
return axpby_impl<complex64_t>(x, y, out, alpha_, beta_);
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Axpby is only supported for floating point types.");
|
||||
"[Axpby] Only supports floating point types.");
|
||||
}
|
||||
}
|
||||
|
||||
We have a fallback implementation! Now, to do what we are really here to do.
|
||||
Remember we wanted to use the ``axpby`` routine provided by the Accelerate_
|
||||
framework? Well, there are 3 complications to keep in mind:
|
||||
This is good as a fallback implementation. We can use the ``axpby`` routine
|
||||
provided by the Accelerate_ framework for a faster implementation in certain
|
||||
cases:
|
||||
|
||||
#. Accelerate does not provide implementations of ``axpby`` for half precision
|
||||
floats. We can only direct to it for ``float32`` types
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all elements
|
||||
have fixed strides between them. Possibly due to broadcasts and transposes,
|
||||
we aren't guaranteed that the inputs fit this requirement. We can
|
||||
only direct to Accelerate if both ``x`` and ``y`` are row contiguous or
|
||||
column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` inplace.
|
||||
MLX expects to write out the answer to a new array. We must copy the elements
|
||||
of ``y`` into the output array and use that as an input to ``axpby``
|
||||
floats. We can only use it for ``float32`` types.
|
||||
#. Accelerate assumes the inputs ``x`` and ``y`` are contiguous and all
|
||||
elements have fixed strides between them. We only direct to Accelerate
|
||||
if both ``x`` and ``y`` are row contiguous or column contiguous.
|
||||
#. Accelerate performs the routine ``Y = (alpha * X) + (beta * Y)`` in-place.
|
||||
MLX expects to write the output to a new array. We must copy the elements
|
||||
of ``y`` into the output and use that as an input to ``axpby``.
|
||||
|
||||
Let's write out an implementation that uses Accelerate in the right conditions.
|
||||
It must simply allocate data for the output, copy elements of ``y`` into it,
|
||||
and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
Let's write an implementation that uses Accelerate in the right conditions.
|
||||
It allocates data for the output, copies ``y`` into it, and then calls the
|
||||
:func:`catlas_saxpby` from accelerate.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -356,17 +336,7 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
// Accelerate library provides catlas_saxpby which does
|
||||
// Y = (alpha * X) + (beta * Y) in place
|
||||
// To use it, we first copy the data in y over to the output array
|
||||
|
||||
// This specialization requires both x and y be contiguous in the same mode
|
||||
// i.e: corresponding linear indices in both point to corresponding elements
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -389,18 +359,20 @@ and then call the :meth:`catlas_saxpby` from accelerate.
|
||||
/* INCY = */ 1);
|
||||
}
|
||||
|
||||
Great! But what about the inputs that do not fit the criteria for accelerate?
|
||||
Luckily, we can always just direct back to :meth:`Axpby::eval`.
|
||||
|
||||
With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
For inputs that do not fit the criteria for accelerate, we fall back to
|
||||
:meth:`Axpby::eval`. With this in mind, let's finish our
|
||||
:meth:`Axpby::eval_cpu`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -410,35 +382,33 @@ With this in mind, lets finally implement our :meth:`Axpby::eval_cpu`.
|
||||
return;
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, out);
|
||||
// Fall back to common back-end if specializations are not available
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
We have now hit a milestone! Just this much is enough to run the operation
|
||||
:meth:`axpby` on a CPU stream!
|
||||
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
|
||||
you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
If you do not plan on running the operation on the GPU or using transforms on
|
||||
computation graphs that contain :class:`Axpby`, you can stop implementing the
|
||||
primitive here and enjoy the speed-ups you get from the Accelerate library.
|
||||
|
||||
Implementing the GPU Backend
|
||||
Implementing the GPU Back-end
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
all GPU kernels in MLX are written using metal.
|
||||
Apple silicon devices address their GPUs using the Metal_ shading language, and
|
||||
GPU kernels in MLX are written using Metal.
|
||||
|
||||
.. note::
|
||||
|
||||
Here are some helpful resources if you are new to metal!
|
||||
Here are some helpful resources if you are new to Metal:
|
||||
|
||||
* A walkthrough of the metal compute pipeline: `Metal Example`_
|
||||
* Documentation for metal shading language: `Metal Specification`_
|
||||
* Using metal from C++: `Metal-cpp`_
|
||||
|
||||
Let's keep the GPU algorithm simple. We will launch exactly as many threads
|
||||
as there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the pointwise operation, and then update its assigned
|
||||
element in the output.
|
||||
Let's keep the GPU kernel simple. We will launch exactly as many threads as
|
||||
there are elements in the output. Each thread will pick the element it needs
|
||||
from ``x`` and ``y``, do the point-wise operation, and update its assigned
|
||||
element in the output.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -457,15 +427,14 @@ element in the output.
|
||||
// Convert linear indices to offsets in array
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
||||
|
||||
|
||||
// Do the operation and update the output
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
||||
}
|
||||
|
||||
We then need to instantiate this template for all floating point types and give
|
||||
each instantiation a unique host name so we can identify the right kernel for
|
||||
each data type.
|
||||
each instantiation a unique host name so we can identify it.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
@@ -485,32 +454,24 @@ each data type.
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bflot16, bfloat16_t);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
||||
|
||||
This kernel will be compiled into a metal library ``mlx_ext.metallib`` as we
|
||||
will see later in :ref:`Building with CMake`. In the following example, we
|
||||
assume that the library ``mlx_ext.metallib`` will always be co-located with
|
||||
the executable/ shared-library calling the :meth:`register_library` function.
|
||||
The :meth:`register_library` function takes the library's name and potential
|
||||
path (or in this case, a function that can produce the path of the metal
|
||||
library) and tries to load that library if it hasn't already been registered
|
||||
by the relevant static :class:`mlx::core::metal::Device` object. This is why,
|
||||
it is important to package your C++ library with the metal library. We will
|
||||
go over this process in more detail later.
|
||||
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions
|
||||
and dispatch it to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
|
||||
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
|
||||
below.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -518,10 +479,10 @@ below.
|
||||
// We get the needed metal device using the stream
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
// Allocate output memory
|
||||
// Allocate output memory
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// Resolve name of kernel (corresponds to axpby.metal)
|
||||
// Resolve name of kernel
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
@@ -533,26 +494,26 @@ below.
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel decelaration at axpby.metal
|
||||
// those in the kernel declaration at axpby.metal
|
||||
int ndim = out.ndim();
|
||||
size_t nelem = out.size();
|
||||
|
||||
// Encode input arrays to kernel
|
||||
set_array_buffer(compute_encoder, x, 0);
|
||||
set_array_buffer(compute_encoder, y, 1);
|
||||
compute_encoder.set_input_array(x, 0);
|
||||
compute_encoder.set_input_array(y, 1);
|
||||
|
||||
// Encode output arrays to kernel
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&beta_, sizeof(float), 4);
|
||||
|
||||
// Encode shape, strides and ndim
|
||||
// Encode shape, strides and ndim
|
||||
compute_encoder->setBytes(x.shape().data(), ndim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(x.strides().data(), ndim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(y.strides().data(), ndim * sizeof(size_t), 7);
|
||||
@@ -568,41 +529,38 @@ below.
|
||||
// Fix the 3D size of the launch grid (in terms of threads)
|
||||
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
|
||||
|
||||
// Launch the grid with the given number of threads divded among
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
|
||||
|
||||
A few things to note about MLX and metal before moving on. MLX keeps track
|
||||
of the active ``compute_encoder``. We rely on :meth:`d.get_command_encoder`
|
||||
to give us the active metal compute command encoder instead of building a
|
||||
new one and calling :meth:`compute_encoder->end_encoding` at the end.
|
||||
MLX keeps adding kernels (compute pipelines) to the active command encoder
|
||||
until some specified limit is hit or the compute encoder needs to be flushed
|
||||
for synchronization. MLX also handles enqueuing and commiting the associated
|
||||
command buffers as needed. We suggest taking a deeper dive into
|
||||
:class:`metal::Device` if you would like to study this routine further.
|
||||
A few things to note about MLX and Metal before moving on. MLX keeps track of
|
||||
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
|
||||
associated. We rely on :meth:`d.get_command_encoder` to give us the active
|
||||
metal compute command encoder instead of building a new one and calling
|
||||
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
|
||||
pipelines) to the active command buffer until some specified limit is hit or
|
||||
the command buffer needs to be flushed for synchronization.
|
||||
|
||||
Primitive Transforms
|
||||
^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Now that we have come this far, let's also learn how to add implementations to
|
||||
transformations in a :class:`Primitive`. These transformations can be built on
|
||||
top of our operations, including the one we just defined now. Which then gives
|
||||
us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
Next, let's add implementations for transformations in a :class:`Primitive`.
|
||||
These transformations can be built on top of other operations, including the
|
||||
one we just defined:
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array Axpby::jvp(
|
||||
std::vector<array> Axpby::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
// Forward mode diff that pushes along the tangents
|
||||
// The jvp transform on the the primitive can built with ops
|
||||
// that are scheduled on the same stream as the primtive
|
||||
// The jvp transform on the primitive can built with ops
|
||||
// that are scheduled on the same stream as the primitive
|
||||
|
||||
// If argnums = {0}, we only push along x in which case the
|
||||
// jvp is just the tangent scaled by alpha
|
||||
@@ -611,12 +569,12 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
if (argnums.size() > 1) {
|
||||
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return multiply(scale_arr, tangents[0], stream());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
}
|
||||
}
|
||||
|
||||
@@ -625,34 +583,35 @@ us the following :meth:`Axpby::jvp` and :meth:`Axpby::vjp` implementations.
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> Axpby::vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) {
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<int>& /* unused */) {
|
||||
// Reverse mode diff
|
||||
std::vector<array> vjps;
|
||||
for (auto arg : argnums) {
|
||||
auto scale = arg == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, cotan.dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotan, stream()));
|
||||
auto scale_arr = array(scale, cotangents[0].dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
||||
}
|
||||
return vjps;
|
||||
}
|
||||
|
||||
Finally, you need not have a transformation fully defined to start using your
|
||||
own :class:`Primitive`.
|
||||
Note, a transformation does not need to be fully defined to start using
|
||||
the :class:`Primitive`.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
/** Vectorize primitve along given axis */
|
||||
std::pair<array, int> Axpby::vmap(
|
||||
/** Vectorize primitive along given axis */
|
||||
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
throw std::runtime_error("Axpby has no vmap implementation.");
|
||||
throw std::runtime_error("[Axpby] vmap not implemented.");
|
||||
}
|
||||
|
||||
Building and Binding
|
||||
--------------------
|
||||
|
||||
Let's look at the overall directory structure first.
|
||||
Let's look at the overall directory structure first.
|
||||
|
||||
| extensions
|
||||
| ├── axpby
|
||||
@@ -666,40 +625,39 @@ Let's look at the overall directory structure first.
|
||||
| └── setup.py
|
||||
|
||||
* ``extensions/axpby/`` defines the C++ extension library
|
||||
* ``extensions/mlx_sample_extensions`` sets out the strucutre for the
|
||||
associated python package
|
||||
* ``extensions/bindings.cpp`` provides python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
python bindings
|
||||
* ``extensions/mlx_sample_extensions`` sets out the structure for the
|
||||
associated Python package
|
||||
* ``extensions/bindings.cpp`` provides Python bindings for our operation
|
||||
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
|
||||
Python bindings
|
||||
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
|
||||
the python package
|
||||
the Python package
|
||||
|
||||
Binding to Python
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
We use PyBind11_ to build a Python API for the C++ library. Since bindings
|
||||
for all needed components such as `mlx.core.array`, `mlx.core.stream`, etc.
|
||||
are already provided, adding our :meth:`axpby` becomes very simple!
|
||||
We use nanobind_ to build a Python API for the C++ library. Since bindings for
|
||||
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
|
||||
already provided, adding our :meth:`axpby` is simple.
|
||||
|
||||
.. code-block:: C++
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
Scale and sum two vectors elementwise
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -711,17 +669,17 @@ are already provided, adding our :meth:`axpby` becomes very simple!
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
)");
|
||||
}
|
||||
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
Most of the complexity in the above example comes from additional bells and
|
||||
whistles such as the literal names and doc-strings.
|
||||
|
||||
.. warning::
|
||||
|
||||
:mod:`mlx.core` needs to be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the pybind11 module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:mod:`mlx.core` must be imported before importing
|
||||
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
|
||||
ensure that the casters for :mod:`mlx.core` components like
|
||||
:class:`mlx.core.array` are available.
|
||||
|
||||
.. _Building with CMake:
|
||||
@@ -729,8 +687,8 @@ whistles such as the literal names and doc-strings.
|
||||
Building with CMake
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Building the C++ extension library itself is simple, it only requires that you
|
||||
``find_package(MLX CONFIG)`` and then link it to your library.
|
||||
Building the C++ extension library only requires that you ``find_package(MLX
|
||||
CONFIG)`` and then link it to your library.
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -752,12 +710,12 @@ Building the C++ extension library itself is simple, it only requires that you
|
||||
# Link to mlx
|
||||
target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
We also need to build the attached metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
We also need to build the attached Metal library. For convenience, we provide a
|
||||
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
|
||||
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
|
||||
automatically imported with MLX package).
|
||||
|
||||
Here is what that looks like in practice!
|
||||
Here is what that looks like in practice:
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
@@ -779,27 +737,29 @@ Here is what that looks like in practice!
|
||||
|
||||
endif()
|
||||
|
||||
Finally, we build the Pybind11_ bindings
|
||||
Finally, we build the nanobind_ bindings
|
||||
|
||||
.. code-block:: cmake
|
||||
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
||||
Building with ``setuptools``
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Once we have set out the CMake build rules as described above, we can use the
|
||||
build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
build utilities defined in :mod:`mlx.extension`:
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
from mlx import extension
|
||||
from setuptools import setup
|
||||
@@ -809,48 +769,50 @@ build utilities defined in :mod:`mlx.extension` for a simple build process.
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages = ["mlx_sample_extensions"],
|
||||
package_dir = {"": "mlx_sample_extensions"},
|
||||
package_data = {"mlx_sample_extensions" : ["*.so", "*.dylib", "*.metallib"]},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev":[]},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.7",
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
||||
.. note::
|
||||
We treat ``extensions/mlx_sample_extensions`` as the package directory
|
||||
even though it only contains a ``__init__.py`` to ensure the following:
|
||||
|
||||
* :mod:`mlx.core` is always imported before importing :mod:`mlx_sample_extensions`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
You can build inplace for development using
|
||||
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
|
||||
* The C++ extension library and the metal library are co-located with the python
|
||||
bindings and copied together if the package is installed
|
||||
|
||||
To build the package, first install the build dependencies with ``pip install
|
||||
-r requirements.txt``. You can then build inplace for development using
|
||||
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
|
||||
|
||||
This will result in a directory structure as follows:
|
||||
This results in the directory structure:
|
||||
|
||||
| extensions
|
||||
| ├── mlx_sample_extensions
|
||||
| │ ├── __init__.py
|
||||
| │ ├── libmlx_ext.dylib # C++ extension library
|
||||
| │ ├── mlx_ext.metallib # Metal library
|
||||
| │ └── mlx_sample_extensions.cpython-3x-darwin.so # Python Binding
|
||||
| │ └── _ext.cpython-3x-darwin.so # Python Binding
|
||||
| ...
|
||||
|
||||
When you try to install using the command ``python -m pip install .``
|
||||
(in ``extensions/``), the package will be installed with the same strucutre as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and metal library will be
|
||||
copied along with the python binding since they are specified as ``package_data``.
|
||||
When you try to install using the command ``python -m pip install .`` (in
|
||||
``extensions/``), the package will be installed with the same structure as
|
||||
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
|
||||
copied along with the Python binding since they are specified as
|
||||
``package_data``.
|
||||
|
||||
Usage
|
||||
-----
|
||||
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the python package and play with it as you would any other MLX operation!
|
||||
After installing the extension as described above, you should be able to simply
|
||||
import the Python package and play with it as you would any other MLX operation.
|
||||
|
||||
Let's looks at a simple script and it's results!
|
||||
Let's look at a simple script and its results:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@@ -863,7 +825,7 @@ Let's looks at a simple script and it's results!
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correctness: {mx.all(c == 6.0).item()}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
||||
|
||||
Output:
|
||||
|
||||
@@ -874,12 +836,12 @@ Output:
|
||||
c correctness: True
|
||||
|
||||
Results
|
||||
^^^^^^^^^^^^^^^^
|
||||
^^^^^^^
|
||||
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
Let's run a quick benchmark and see how our new ``axpby`` operation compares
|
||||
with the naive :meth:`simple_axpby` we first defined on the CPU.
|
||||
|
||||
.. code-block:: python
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx_sample_extensions import axpby
|
||||
@@ -898,7 +860,7 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
alpha = 4.0
|
||||
beta = 2.0
|
||||
|
||||
mx.eval((x, y))
|
||||
mx.eval(x, y)
|
||||
|
||||
def bench(f):
|
||||
# Warm up
|
||||
@@ -919,30 +881,23 @@ with the naive :meth:`simple_axpby` we defined at first on the CPU.
|
||||
|
||||
print(f"Simple axpby: {simple_time:.3f} s | Custom axpby: {custom_time:.3f} s")
|
||||
|
||||
Results:
|
||||
The results are ``Simple axpby: 0.114 s | Custom axpby: 0.109 s``. We see
|
||||
modest improvements right away!
|
||||
|
||||
.. code-block::
|
||||
|
||||
Simple axpby: 0.114 s | Custom axpby: 0.109 s
|
||||
|
||||
We see some modest improvements right away!
|
||||
|
||||
This operation is now good to be used to build other operations,
|
||||
in :class:`mlx.nn.Module` calls, and also as a part of graph
|
||||
transformations such as :meth:`grad` and :meth:`simplify`!
|
||||
This operation is now good to be used to build other operations, in
|
||||
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
|
||||
:meth:`grad`.
|
||||
|
||||
Scripts
|
||||
-------
|
||||
|
||||
.. admonition:: Download the code
|
||||
|
||||
The full example code is available in `mlx-examples <code>`_.
|
||||
|
||||
.. code: `TODO_LINK/extensions`_
|
||||
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
|
||||
|
||||
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
|
||||
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
|
||||
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
|
||||
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
|
||||
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
|
||||
.. _PyBind11: https://pybind11.readthedocs.io/en/stable/
|
||||
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|
||||
|
68
docs/src/dev/metal_debugger.rst
Normal file
68
docs/src/dev/metal_debugger.rst
Normal file
@@ -0,0 +1,68 @@
|
||||
Metal Debugger
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Profiling is a key step for performance optimization. You can build MLX with
|
||||
the ``MLX_METAL_DEBUG`` option to improve the Metal debugging and
|
||||
optimization workflow. The ``MLX_METAL_DEBUG`` debug option:
|
||||
|
||||
* Records source during Metal compilation, for later inspection while
|
||||
debugging.
|
||||
* Labels Metal objects such as command queues, improving capture readability.
|
||||
|
||||
To build with debugging enabled in Python prepend
|
||||
``CMAKE_ARGS="-DMLX_METAL_DEBUG=ON"`` to the build call.
|
||||
|
||||
The :func:`metal.start_capture` function initiates a capture of all MLX GPU
|
||||
work.
|
||||
|
||||
.. note::
|
||||
|
||||
To capture a GPU trace you must run the application with
|
||||
``MTL_CAPTURE_ENABLED=1``.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
a = mx.random.uniform(shape=(512, 512))
|
||||
b = mx.random.uniform(shape=(512, 512))
|
||||
mx.eval(a, b)
|
||||
|
||||
trace_file = "mlx_trace.gputrace"
|
||||
|
||||
# Make sure to run with MTL_CAPTURE_ENABLED=1 and
|
||||
# that the path trace_file does not already exist.
|
||||
mx.metal.start_capture(trace_file)
|
||||
|
||||
for _ in range(10):
|
||||
mx.eval(mx.add(a, b))
|
||||
|
||||
mx.metal.stop_capture()
|
||||
|
||||
You can open and replay the GPU trace in Xcode. The ``Dependencies`` view
|
||||
has a great overview of all operations. Checkout the `Metal debugger
|
||||
documentation`_ for more information.
|
||||
|
||||
.. image:: ../_static/metal_debugger/capture.png
|
||||
:class: dark-light
|
||||
|
||||
Xcode Workflow
|
||||
--------------
|
||||
|
||||
You can skip saving to a path by running within Xcode. First, generate an
|
||||
Xcode project using CMake.
|
||||
|
||||
.. code-block::
|
||||
|
||||
mkdir build && cd build
|
||||
cmake .. -DMLX_METAL_DEBUG=ON -G Xcode
|
||||
open mlx.xcodeproj
|
||||
|
||||
Select the ``metal_capture`` example schema and run.
|
||||
|
||||
.. image:: ../_static/metal_debugger/schema.png
|
||||
:class: dark-light
|
||||
|
||||
.. _`Metal debugger documentation`: https://developer.apple.com/documentation/xcode/metal-debugger
|
@@ -371,7 +371,7 @@ Scripts
|
||||
|
||||
The full example code is available in `mlx-examples`_.
|
||||
|
||||
.. _mlx-examples: https://github.com/ml-explore/mlx-examples/tree/main/llama
|
||||
.. _mlx-examples: https://github.com/ml-explore/mlx-examples/tree/main/llms/llama
|
||||
|
||||
.. [1] Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B. and Liu, Y., 2021.
|
||||
Roformer: Enhanced transformer with rotary position embedding. arXiv
|
||||
|
@@ -19,7 +19,7 @@ The main differences between MLX and NumPy are:
|
||||
|
||||
The design of MLX is inspired by frameworks like `PyTorch
|
||||
<https://pytorch.org/>`_, `Jax <https://github.com/google/jax>`_, and
|
||||
`ArrayFire <https://arrayfire.org/>`_. A noteable difference from these
|
||||
`ArrayFire <https://arrayfire.org/>`_. A notable difference from these
|
||||
frameworks and MLX is the *unified memory model*. Arrays in MLX live in shared
|
||||
memory. Operations on MLX arrays can be performed on any of the supported
|
||||
device types without performing data copies. Currently supported device types
|
||||
@@ -35,9 +35,15 @@ are the CPU and GPU.
|
||||
:caption: Usage
|
||||
:maxdepth: 1
|
||||
|
||||
quick_start
|
||||
unified_memory
|
||||
using_streams
|
||||
usage/quick_start
|
||||
usage/lazy_evaluation
|
||||
usage/unified_memory
|
||||
usage/indexing
|
||||
usage/saving_and_loading
|
||||
usage/function_transforms
|
||||
usage/compile
|
||||
usage/numpy
|
||||
usage/using_streams
|
||||
|
||||
.. toctree::
|
||||
:caption: Examples
|
||||
@@ -52,11 +58,15 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
python/array
|
||||
python/data_types
|
||||
python/devices_and_streams
|
||||
python/ops
|
||||
python/random
|
||||
python/transforms
|
||||
python/fast
|
||||
python/fft
|
||||
python/linalg
|
||||
python/metal
|
||||
python/nn
|
||||
python/optimizers
|
||||
python/tree_utils
|
||||
@@ -72,3 +82,4 @@ are the CPU and GPU.
|
||||
:maxdepth: 1
|
||||
|
||||
dev/extensions
|
||||
dev/metal_debugger
|
||||
|
@@ -1,8 +1,8 @@
|
||||
Build and Install
|
||||
=================
|
||||
|
||||
Install from PyPI
|
||||
-----------------
|
||||
Python Installation
|
||||
-------------------
|
||||
|
||||
MLX is available on PyPI. All you have to do to use MLX with your own Apple
|
||||
silicon computer is
|
||||
@@ -15,12 +15,20 @@ To install from PyPI you must meet the following requirements:
|
||||
|
||||
- Using an M series chip (Apple silicon)
|
||||
- Using a native Python >= 3.8
|
||||
- macOS >= 13.3
|
||||
- macOS >= 13.5
|
||||
|
||||
.. note::
|
||||
MLX is only available on devices running macOS >= 13.3
|
||||
MLX is only available on devices running macOS >= 13.5
|
||||
It is highly recommended to use macOS 14 (Sonoma)
|
||||
|
||||
|
||||
MLX is also available on conda-forge. To install MLX with conda do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
conda install conda-forge::mlx
|
||||
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
@@ -46,8 +54,11 @@ Build Requirements
|
||||
|
||||
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
|
||||
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
|
||||
- Xcode >= 14.3 (Xcode >= 15.0 for macOS 14 and above)
|
||||
- Xcode >= 15.0 and macOS SDK >= 14.0
|
||||
|
||||
.. note::
|
||||
Ensure your shell environment is native ``arm``, not ``x86`` via Rosetta. If
|
||||
the output of ``uname -p`` is ``x86``, see the :ref:`troubleshooting section <build shell>` below.
|
||||
|
||||
Python API
|
||||
^^^^^^^^^^
|
||||
@@ -59,16 +70,13 @@ To build and install the MLX python library from source, first, clone MLX from
|
||||
|
||||
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
|
||||
|
||||
Make sure that you have `pybind11 <https://pybind11.readthedocs.io/en/stable/index.html>`_
|
||||
installed. You can install ``pybind11`` with ``pip``, ``brew`` or ``conda`` as follows:
|
||||
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install "pybind11[global]"
|
||||
conda install pybind11
|
||||
brew install pybind11
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
||||
Then simply build and install it using pip:
|
||||
Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
@@ -112,7 +120,7 @@ Create a build directory and run CMake and make:
|
||||
.. code-block:: shell
|
||||
|
||||
mkdir -p build && cd build
|
||||
cmake .. && make -j
|
||||
cmake .. && make -j
|
||||
|
||||
Run tests with:
|
||||
|
||||
@@ -131,7 +139,7 @@ directory as the executable statically linked to ``libmlx.a`` or the
|
||||
preprocessor constant ``METAL_PATH`` should be defined at build time and it
|
||||
should point to the path to the built metal library.
|
||||
|
||||
.. list-table:: Build Options
|
||||
.. list-table:: Build Options
|
||||
:widths: 25 8
|
||||
:header-rows: 1
|
||||
|
||||
@@ -145,27 +153,64 @@ should point to the path to the built metal library.
|
||||
- OFF
|
||||
* - MLX_BUILD_METAL
|
||||
- ON
|
||||
* - MLX_BUILD_CPU
|
||||
- ON
|
||||
* - MLX_BUILD_PYTHON_BINDINGS
|
||||
- OFF
|
||||
|
||||
* - MLX_METAL_DEBUG
|
||||
- OFF
|
||||
* - MLX_BUILD_SAFETENSORS
|
||||
- ON
|
||||
* - MLX_BUILD_GGUF
|
||||
- ON
|
||||
* - MLX_METAL_JIT
|
||||
- OFF
|
||||
|
||||
.. note::
|
||||
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
If you have multiple Xcode installations and wish to use
|
||||
a specific one while building, you can do so by adding the
|
||||
following environment variable before building
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
export DEVELOPER_DIR="/path/to/Xcode.app/Contents/Developer/"
|
||||
|
||||
Further, you can use the following command to find out which
|
||||
Further, you can use the following command to find out which
|
||||
macOS SDK will be used
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
xcrun -sdk macosx --show-sdk-version
|
||||
|
||||
Binary Size Minimization
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
To produce a smaller binary use the CMake flags ``CMAKE_BUILD_TYPE=MinSizeRel``
|
||||
and ``BUILD_SHARED_LIBS=ON``.
|
||||
|
||||
The MLX CMake build has several additional options to make smaller binaries.
|
||||
For example, if you don't need the CPU backend or support for safetensors and
|
||||
GGUF, you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cmake ..
|
||||
-DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
-DMLX_BUILD_SAFETENSORS=OFF \
|
||||
-DMLX_BUILD_GGUF=OFF \
|
||||
-DMLX_METAL_JIT=ON
|
||||
|
||||
THE ``MLX_METAL_JIT`` flag minimizes the size of the MLX Metal library which
|
||||
contains pre-built GPU kernels. This substantially reduces the size of the
|
||||
Metal library by run-time compiling kernels the first time they are used in MLX
|
||||
on a given machine. Note run-time compilation incurs a cold-start cost which can
|
||||
be anwywhere from a few hundred millisecond to a few seconds depending on the
|
||||
application. Once a kernel is compiled, it will be cached by the system. The
|
||||
Metal kernel cache persists accross reboots.
|
||||
|
||||
Troubleshooting
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
@@ -189,3 +234,34 @@ Then set the active developer directory:
|
||||
.. code-block:: shell
|
||||
|
||||
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
|
||||
|
||||
x86 Shell
|
||||
~~~~~~~~~
|
||||
|
||||
.. _build shell:
|
||||
|
||||
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
|
||||
Rosetta instead of natively.
|
||||
|
||||
To fix this, find the application in Finder (``/Applications`` for iTerm,
|
||||
``/Applications/Utilities`` for Terminal), right-click, and click “Get Info”.
|
||||
Uncheck “Open using Rosetta”, close the “Get Info” window, and restart your
|
||||
terminal.
|
||||
|
||||
Verify the terminal is now running natively the following command:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
$ uname -p
|
||||
arm
|
||||
|
||||
Also check that cmake is using the correct architecture:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
$ cmake --system-information | grep CMAKE_HOST_SYSTEM_PROCESSOR
|
||||
CMAKE_HOST_SYSTEM_PROCESSOR "arm64"
|
||||
|
||||
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
|
||||
but the build errors out with "Building for x86_64 on macOS is not supported."
|
||||
wipe your build cahce with ``rm -rf build/`` and try again.
|
||||
|
@@ -10,27 +10,38 @@ Array
|
||||
|
||||
array
|
||||
array.astype
|
||||
array.at
|
||||
array.item
|
||||
array.tolist
|
||||
array.dtype
|
||||
array.itemsize
|
||||
array.nbytes
|
||||
array.ndim
|
||||
array.shape
|
||||
array.size
|
||||
Dtype
|
||||
array.abs
|
||||
array.all
|
||||
array.any
|
||||
array.argmax
|
||||
array.argmin
|
||||
array.cos
|
||||
array.dtype
|
||||
array.cummax
|
||||
array.cummin
|
||||
array.cumprod
|
||||
array.cumsum
|
||||
array.diag
|
||||
array.diagonal
|
||||
array.exp
|
||||
array.flatten
|
||||
array.log
|
||||
array.log10
|
||||
array.log1p
|
||||
array.log2
|
||||
array.logsumexp
|
||||
array.max
|
||||
array.mean
|
||||
array.min
|
||||
array.moveaxis
|
||||
array.prod
|
||||
array.reciprocal
|
||||
array.reshape
|
||||
@@ -40,6 +51,8 @@ Array
|
||||
array.split
|
||||
array.sqrt
|
||||
array.square
|
||||
array.squeeze
|
||||
array.swapaxes
|
||||
array.sum
|
||||
array.transpose
|
||||
array.T
|
||||
|
@@ -1,7 +1,5 @@
|
||||
.. _data_types:
|
||||
|
||||
:orphan:
|
||||
|
||||
Data Types
|
||||
==========
|
||||
|
||||
@@ -29,9 +27,9 @@ The default floating point type is ``float32`` and the default integer type is
|
||||
* - ``uint32``
|
||||
- 4
|
||||
- 32-bit unsigned integer
|
||||
* - ``uint32``
|
||||
* - ``uint64``
|
||||
- 8
|
||||
- 32-bit unsigned integer
|
||||
- 64-bit unsigned integer
|
||||
* - ``int8``
|
||||
- 1
|
||||
- 8-bit signed integer
|
||||
@@ -44,9 +42,27 @@ The default floating point type is ``float32`` and the default integer type is
|
||||
* - ``int64``
|
||||
- 8
|
||||
- 64-bit signed integer
|
||||
* - ``bfloat16``
|
||||
- 2
|
||||
- 16-bit brain float (e8, m7)
|
||||
* - ``float16``
|
||||
- 2
|
||||
- 16-bit float, only available with `ARM C language extensions <https://developer.arm.com/documentation/101028/0012/3--C-language-extensions?lang=en>`_
|
||||
- 16-bit IEEE float (e5, m10)
|
||||
* - ``float32``
|
||||
- 4
|
||||
- 32-bit float
|
||||
* - ``complex64``
|
||||
- 8
|
||||
- 64-bit complex float
|
||||
|
||||
|
||||
Data type are aranged in a hierarchy. See the :obj:`DtypeCategory` object
|
||||
documentation for more information. Use :func:`issubdtype` to determine if one
|
||||
``dtype`` (or category) is a subtype of another category.
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Dtype
|
||||
DtypeCategory
|
||||
issubdtype
|
||||
|
@@ -9,9 +9,11 @@ Devices and Streams
|
||||
:toctree: _autosummary
|
||||
|
||||
Device
|
||||
Stream
|
||||
default_device
|
||||
set_default_device
|
||||
Stream
|
||||
default_stream
|
||||
new_stream
|
||||
set_default_stream
|
||||
stream
|
||||
synchronize
|
||||
|
14
docs/src/python/fast.rst
Normal file
14
docs/src/python/fast.rst
Normal file
@@ -0,0 +1,14 @@
|
||||
.. _fast:
|
||||
|
||||
Fast
|
||||
====
|
||||
|
||||
.. currentmodule:: mlx.core.fast
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
rms_norm
|
||||
layer_norm
|
||||
rope
|
||||
scaled_dot_product_attention
|
15
docs/src/python/linalg.rst
Normal file
15
docs/src/python/linalg.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
.. _linalg:
|
||||
|
||||
Linear Algebra
|
||||
==============
|
||||
|
||||
.. currentmodule:: mlx.core.linalg
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
inv
|
||||
norm
|
||||
cholesky
|
||||
qr
|
||||
svd
|
19
docs/src/python/metal.rst
Normal file
19
docs/src/python/metal.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
Metal
|
||||
=====
|
||||
|
||||
.. currentmodule:: mlx.core.metal
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
is_available
|
||||
device_info
|
||||
get_active_memory
|
||||
get_peak_memory
|
||||
reset_peak_memory
|
||||
get_cache_memory
|
||||
set_memory_limit
|
||||
set_cache_limit
|
||||
clear_cache
|
||||
start_capture
|
||||
stop_capture
|
@@ -123,7 +123,7 @@ To get more detailed information on the arrays in a :class:`Module` you can use
|
||||
all the parameters in a :class:`Module` do:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
from mlx.utils import tree_map
|
||||
shapes = tree_map(lambda p: p.shape, mlp.parameters())
|
||||
|
||||
@@ -131,7 +131,7 @@ As another example, you can count the number of parameters in a :class:`Module`
|
||||
with:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
||||
from mlx.utils import tree_flatten
|
||||
num_params = sum(v.size for _, v in tree_flatten(mlp.parameters()))
|
||||
|
||||
@@ -170,14 +170,15 @@ In detail:
|
||||
:meth:`mlx.core.value_and_grad`
|
||||
|
||||
.. autosummary::
|
||||
:recursive:
|
||||
:toctree: _autosummary
|
||||
|
||||
value_and_grad
|
||||
Module
|
||||
quantize
|
||||
|
||||
.. toctree::
|
||||
|
||||
nn/module
|
||||
nn/layers
|
||||
nn/functions
|
||||
nn/losses
|
||||
nn/init
|
||||
|
@@ -12,12 +12,24 @@ simple functions.
|
||||
:toctree: _autosummary_functions
|
||||
:template: nn-module-template.rst
|
||||
|
||||
elu
|
||||
gelu
|
||||
gelu_approx
|
||||
gelu_fast_approx
|
||||
relu
|
||||
prelu
|
||||
silu
|
||||
step
|
||||
selu
|
||||
glu
|
||||
hardswish
|
||||
leaky_relu
|
||||
log_sigmoid
|
||||
log_softmax
|
||||
mish
|
||||
prelu
|
||||
relu
|
||||
relu6
|
||||
selu
|
||||
sigmoid
|
||||
silu
|
||||
softmax
|
||||
softplus
|
||||
softshrink
|
||||
step
|
||||
tanh
|
||||
|
45
docs/src/python/nn/init.rst
Normal file
45
docs/src/python/nn/init.rst
Normal file
@@ -0,0 +1,45 @@
|
||||
.. _init:
|
||||
|
||||
.. currentmodule:: mlx.nn.init
|
||||
|
||||
Initializers
|
||||
------------
|
||||
|
||||
The ``mlx.nn.init`` package contains commonly used initializers for neural
|
||||
network parameters. Initializers return a function which can be applied to any
|
||||
input :obj:`mlx.core.array` to produce an initialized output.
|
||||
|
||||
For example:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
|
||||
init_fn = nn.init.uniform()
|
||||
|
||||
# Produces a [2, 2] uniform matrix
|
||||
param = init_fn(mx.zeros((2, 2)))
|
||||
|
||||
To re-initialize all the parameter in an :obj:`mlx.nn.Module` from say a uniform
|
||||
distribution, you can do:
|
||||
|
||||
.. code:: python
|
||||
|
||||
import mlx.nn as nn
|
||||
model = nn.Sequential(nn.Linear(5, 10), nn.ReLU(), nn.Linear(10, 5))
|
||||
init_fn = nn.init.uniform(low=-0.1, high=0.1)
|
||||
model.apply(init_fn)
|
||||
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
constant
|
||||
normal
|
||||
uniform
|
||||
identity
|
||||
glorot_normal
|
||||
glorot_uniform
|
||||
he_normal
|
||||
he_uniform
|
@@ -9,21 +9,40 @@ Layers
|
||||
:toctree: _autosummary
|
||||
:template: nn-module-template.rst
|
||||
|
||||
Embedding
|
||||
ReLU
|
||||
PReLU
|
||||
GELU
|
||||
SiLU
|
||||
Step
|
||||
SELU
|
||||
Mish
|
||||
Linear
|
||||
ALiBi
|
||||
AvgPool1d
|
||||
AvgPool2d
|
||||
BatchNorm
|
||||
Conv1d
|
||||
Conv2d
|
||||
LayerNorm
|
||||
RMSNorm
|
||||
Conv3d
|
||||
Dropout
|
||||
Dropout2d
|
||||
Dropout3d
|
||||
Embedding
|
||||
GELU
|
||||
GroupNorm
|
||||
RoPE
|
||||
GRU
|
||||
InstanceNorm
|
||||
LayerNorm
|
||||
Linear
|
||||
LSTM
|
||||
MaxPool1d
|
||||
MaxPool2d
|
||||
Mish
|
||||
MultiHeadAttention
|
||||
Sequential
|
||||
PReLU
|
||||
QuantizedEmbedding
|
||||
QuantizedLinear
|
||||
RMSNorm
|
||||
ReLU
|
||||
RNN
|
||||
RoPE
|
||||
SELU
|
||||
Sequential
|
||||
SiLU
|
||||
SinusoidalPositionalEncoding
|
||||
Softshrink
|
||||
Step
|
||||
Transformer
|
||||
Upsample
|
||||
|
@@ -10,9 +10,15 @@ Loss Functions
|
||||
:template: nn-module-template.rst
|
||||
|
||||
binary_cross_entropy
|
||||
cosine_similarity_loss
|
||||
cross_entropy
|
||||
gaussian_nll_loss
|
||||
hinge_loss
|
||||
huber_loss
|
||||
kl_div_loss
|
||||
l1_loss
|
||||
log_cosh_loss
|
||||
margin_ranking_loss
|
||||
mse_loss
|
||||
nll_loss
|
||||
smooth_l1_loss
|
||||
|
38
docs/src/python/nn/module.rst
Normal file
38
docs/src/python/nn/module.rst
Normal file
@@ -0,0 +1,38 @@
|
||||
Module
|
||||
======
|
||||
|
||||
.. currentmodule:: mlx.nn
|
||||
|
||||
.. autoclass:: Module
|
||||
|
||||
.. rubric:: Attributes
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Module.training
|
||||
Module.state
|
||||
|
||||
.. rubric:: Methods
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Module.apply
|
||||
Module.apply_to_modules
|
||||
Module.children
|
||||
Module.eval
|
||||
Module.filter_and_map
|
||||
Module.freeze
|
||||
Module.leaf_modules
|
||||
Module.load_weights
|
||||
Module.modules
|
||||
Module.named_modules
|
||||
Module.parameters
|
||||
Module.save_weights
|
||||
Module.set_dtype
|
||||
Module.train
|
||||
Module.trainable_parameters
|
||||
Module.unfreeze
|
||||
Module.update
|
||||
Module.update_modules
|
@@ -5,13 +5,14 @@ Operations
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
.. autosummary::
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
abs
|
||||
add
|
||||
addmm
|
||||
all
|
||||
allclose
|
||||
allclose
|
||||
any
|
||||
arange
|
||||
arccos
|
||||
@@ -19,36 +20,67 @@ Operations
|
||||
arcsin
|
||||
arcsinh
|
||||
arctan
|
||||
arctan2
|
||||
arctanh
|
||||
argmax
|
||||
argmin
|
||||
argpartition
|
||||
argsort
|
||||
array_equal
|
||||
as_strided
|
||||
atleast_1d
|
||||
atleast_2d
|
||||
atleast_3d
|
||||
bitwise_and
|
||||
bitwise_or
|
||||
bitwise_xor
|
||||
block_masked_mm
|
||||
broadcast_to
|
||||
ceil
|
||||
clip
|
||||
concatenate
|
||||
conj
|
||||
conjugate
|
||||
convolve
|
||||
conv1d
|
||||
conv2d
|
||||
conv_general
|
||||
cos
|
||||
cosh
|
||||
cummax
|
||||
cummin
|
||||
cumprod
|
||||
cumsum
|
||||
degrees
|
||||
dequantize
|
||||
diag
|
||||
diagonal
|
||||
divide
|
||||
divmod
|
||||
equal
|
||||
erf
|
||||
erfinv
|
||||
exp
|
||||
expm1
|
||||
expand_dims
|
||||
eye
|
||||
flatten
|
||||
floor
|
||||
floor_divide
|
||||
full
|
||||
gather_mm
|
||||
gather_qmm
|
||||
greater
|
||||
greater_equal
|
||||
identity
|
||||
inner
|
||||
isclose
|
||||
isinf
|
||||
isnan
|
||||
isneginf
|
||||
isposinf
|
||||
issubdtype
|
||||
left_shift
|
||||
less
|
||||
less_equal
|
||||
linspace
|
||||
@@ -59,30 +91,42 @@ Operations
|
||||
log1p
|
||||
logaddexp
|
||||
logical_not
|
||||
logical_and
|
||||
logical_or
|
||||
logsumexp
|
||||
matmul
|
||||
max
|
||||
maximum
|
||||
mean
|
||||
meshgrid
|
||||
min
|
||||
minimum
|
||||
moveaxis
|
||||
multiply
|
||||
negative
|
||||
not_equal
|
||||
ones
|
||||
ones_like
|
||||
outer
|
||||
partition
|
||||
pad
|
||||
power
|
||||
prod
|
||||
quantize
|
||||
quantized_matmul
|
||||
radians
|
||||
reciprocal
|
||||
remainder
|
||||
repeat
|
||||
reshape
|
||||
right_shift
|
||||
round
|
||||
rsqrt
|
||||
save
|
||||
savez
|
||||
savez_compressed
|
||||
save_gguf
|
||||
save_safetensors
|
||||
sigmoid
|
||||
sign
|
||||
sin
|
||||
@@ -94,6 +138,7 @@ Operations
|
||||
square
|
||||
squeeze
|
||||
stack
|
||||
std
|
||||
stop_gradient
|
||||
subtract
|
||||
sum
|
||||
@@ -102,6 +147,10 @@ Operations
|
||||
take_along_axis
|
||||
tan
|
||||
tanh
|
||||
tensordot
|
||||
tile
|
||||
topk
|
||||
trace
|
||||
transpose
|
||||
tri
|
||||
tril
|
||||
|
@@ -1,5 +1,7 @@
|
||||
.. _optimizers:
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
|
||||
Optimizers
|
||||
==========
|
||||
|
||||
@@ -29,19 +31,13 @@ model's parameters and the **optimizer state**.
|
||||
# Compute the new parameters but also the optimizer state.
|
||||
mx.eval(model.parameters(), optimizer.state)
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
.. toctree::
|
||||
|
||||
optimizers/optimizer
|
||||
optimizers/common_optimizers
|
||||
optimizers/schedulers
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
:template: optimizers-template.rst
|
||||
|
||||
OptimizerState
|
||||
Optimizer
|
||||
SGD
|
||||
RMSprop
|
||||
Adagrad
|
||||
AdaDelta
|
||||
Adam
|
||||
AdamW
|
||||
Adamax
|
||||
Lion
|
||||
clip_grad_norm
|
||||
|
20
docs/src/python/optimizers/common_optimizers.rst
Normal file
20
docs/src/python/optimizers/common_optimizers.rst
Normal file
@@ -0,0 +1,20 @@
|
||||
.. _common_optimizers:
|
||||
|
||||
Common Optimizers
|
||||
=================
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
:template: optimizers-template.rst
|
||||
|
||||
SGD
|
||||
RMSprop
|
||||
Adagrad
|
||||
Adafactor
|
||||
AdaDelta
|
||||
Adam
|
||||
AdamW
|
||||
Adamax
|
||||
Lion
|
23
docs/src/python/optimizers/optimizer.rst
Normal file
23
docs/src/python/optimizers/optimizer.rst
Normal file
@@ -0,0 +1,23 @@
|
||||
Optimizer
|
||||
=========
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
|
||||
.. autoclass:: Optimizer
|
||||
|
||||
|
||||
.. rubric:: Attributes
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Optimizer.state
|
||||
|
||||
.. rubric:: Methods
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
Optimizer.apply_gradients
|
||||
Optimizer.init
|
||||
Optimizer.update
|
15
docs/src/python/optimizers/schedulers.rst
Normal file
15
docs/src/python/optimizers/schedulers.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
.. _schedulers:
|
||||
|
||||
Schedulers
|
||||
==========
|
||||
|
||||
.. currentmodule:: mlx.optimizers
|
||||
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
cosine_decay
|
||||
exponential_decay
|
||||
join_schedules
|
||||
linear_schedule
|
||||
step_decay
|
@@ -33,13 +33,14 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
.. autosummary::
|
||||
:toctree: _autosummary
|
||||
|
||||
seed
|
||||
key
|
||||
split
|
||||
bernoulli
|
||||
categorical
|
||||
gumbel
|
||||
key
|
||||
normal
|
||||
multivariate_normal
|
||||
randint
|
||||
uniform
|
||||
seed
|
||||
split
|
||||
truncated_normal
|
||||
uniform
|
||||
|
@@ -9,9 +9,11 @@ Transforms
|
||||
:toctree: _autosummary
|
||||
|
||||
eval
|
||||
compile
|
||||
disable_compile
|
||||
enable_compile
|
||||
grad
|
||||
value_and_grad
|
||||
jvp
|
||||
vjp
|
||||
vmap
|
||||
simplify
|
||||
|
@@ -19,3 +19,5 @@ return python trees will be using the default python ``dict``, ``list`` and
|
||||
tree_flatten
|
||||
tree_unflatten
|
||||
tree_map
|
||||
tree_map_with_path
|
||||
tree_reduce
|
||||
|
430
docs/src/usage/compile.rst
Normal file
430
docs/src/usage/compile.rst
Normal file
@@ -0,0 +1,430 @@
|
||||
.. _compile:
|
||||
|
||||
Compilation
|
||||
===========
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX has a :func:`compile` function transformation which compiles computation
|
||||
graphs. Function compilation results in smaller graphs by merging common work
|
||||
and fusing certain operations. In many cases this can lead to big improvements
|
||||
in run-time and memory use.
|
||||
|
||||
Getting started with :func:`compile` is simple, but there are some edge cases
|
||||
that are good to be aware of for more complex graphs and advanced usage.
|
||||
|
||||
Basics of Compile
|
||||
-----------------
|
||||
|
||||
Let's start with a simple example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return mx.exp(-x) + y
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(2.0)
|
||||
|
||||
# Regular call, no compilation
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
print(fun(x, y))
|
||||
|
||||
# Compile the function
|
||||
compiled_fun = mx.compile(fun)
|
||||
|
||||
# Prints: array(2.36788, dtype=float32)
|
||||
print(compiled_fun(x, y))
|
||||
|
||||
The output of both the regular function and the compiled function is the same
|
||||
up to numerical precision.
|
||||
|
||||
The first time you call a compiled function, MLX will build the compute
|
||||
graph, optimize it, and generate and compile code. This can be relatively
|
||||
slow. However, MLX will cache compiled functions, so calling a compiled
|
||||
function multiple times will not initiate a new compilation. This means you
|
||||
should typically compile functions that you plan to use more than once.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, y):
|
||||
return mx.exp(-x) + y
|
||||
|
||||
x = mx.array(1.0)
|
||||
y = mx.array(2.0)
|
||||
|
||||
compiled_fun = mx.compile(fun)
|
||||
|
||||
# Compiled here
|
||||
compiled_fun(x, y)
|
||||
|
||||
# Not compiled again
|
||||
compiled_fun(x, y)
|
||||
|
||||
# Not compiled again
|
||||
mx.compile(fun)(x, y)
|
||||
|
||||
There are some important cases to be aware of that can cause a function to
|
||||
be recompiled:
|
||||
|
||||
* Changing the shape or number of dimensions
|
||||
* Changing the type of any of the inputs
|
||||
* Changing the number of inputs to the function
|
||||
|
||||
In certain cases only some of the compilation stack will be rerun (for
|
||||
example when changing the shapes) and in other cases the full compilation
|
||||
stack will be rerun (for example when changing the types). In general you
|
||||
should avoid compiling functions too frequently.
|
||||
|
||||
Another idiom to watch out for is compiling functions which get created and
|
||||
destroyed frequently. This can happen, for example, when compiling an anonymous
|
||||
function in a loop:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = mx.array(1.0)
|
||||
# Don't do this, compiles lambda at each iteration
|
||||
for _ in range(5):
|
||||
mx.compile(lambda x: mx.exp(mx.abs(x)))(a)
|
||||
|
||||
Example Speedup
|
||||
---------------
|
||||
|
||||
The :func:`mlx.nn.gelu` is a nonlinear activation function commonly used with
|
||||
Transformer-based models. The implementation involves several unary and binary
|
||||
element-wise operations:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def gelu(x):
|
||||
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
|
||||
|
||||
If you use this function with small arrays, it will be overhead bound. If you
|
||||
use it with large arrays it will be memory bandwidth bound. However, all of
|
||||
the operations in the ``gelu`` are fusible into a single kernel with
|
||||
:func:`compile`. This can speedup both cases considerably.
|
||||
|
||||
Let's compare the runtime of the regular function versus the compiled
|
||||
function. We'll use the following timing helper which does a warm up and
|
||||
handles synchronization:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import time
|
||||
|
||||
def timeit(fun, x):
|
||||
# warm up
|
||||
for _ in range(10):
|
||||
mx.eval(fun(x))
|
||||
|
||||
tic = time.perf_counter()
|
||||
for _ in range(100):
|
||||
mx.eval(fun(x))
|
||||
toc = time.perf_counter()
|
||||
tpi = 1e3 * (toc - tic) / 100
|
||||
print(f"Time per iteration {tpi:.3f} (ms)")
|
||||
|
||||
|
||||
Now make an array, and benchmark both functions:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
x = mx.random.uniform(shape=(32, 1000, 4096))
|
||||
timeit(nn.gelu, x)
|
||||
timeit(mx.compile(nn.gelu), x)
|
||||
|
||||
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
|
||||
five times faster.
|
||||
|
||||
.. note::
|
||||
|
||||
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
|
||||
functions can still be helpful, but won't typically result in as large a
|
||||
speedup as compiling operations that run on the GPU.
|
||||
|
||||
|
||||
Debugging
|
||||
---------
|
||||
|
||||
When a compiled function is first called, it is traced with placeholder
|
||||
inputs. This means you can't evaluate arrays (for example to print their
|
||||
contents) inside compiled functions.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@mx.compile
|
||||
def fun(x):
|
||||
z = -x
|
||||
print(z) # Crash
|
||||
return mx.exp(z)
|
||||
|
||||
fun(mx.array(5.0))
|
||||
|
||||
For debugging, inspecting arrays can be helpful. One way to do that is to
|
||||
globally disable compilation using the :func:`disable_compile` function or
|
||||
``MLX_DISABLE_COMPILE`` flag. For example the following is okay even though
|
||||
``fun`` is compiled:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@mx.compile
|
||||
def fun(x):
|
||||
z = -x
|
||||
print(z) # Okay
|
||||
return mx.exp(z)
|
||||
|
||||
mx.disable_compile()
|
||||
fun(mx.array(5.0))
|
||||
|
||||
|
||||
Pure Functions
|
||||
--------------
|
||||
|
||||
Compiled functions are intended to be *pure*; that is they should not have side
|
||||
effects. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
state = []
|
||||
|
||||
@mx.compile
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z)
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Crash!
|
||||
print(state)
|
||||
|
||||
After the first call of ``fun``, the ``state`` list will hold a placeholder
|
||||
array. The placeholder does not have any data; it is only used to build the
|
||||
computation graph. Printing such an array results in a crash.
|
||||
|
||||
You have two options to deal with this. The first option is to simply return
|
||||
``state`` as an output:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
state = []
|
||||
|
||||
@mx.compile
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z), state
|
||||
|
||||
_, state = fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
print(state)
|
||||
|
||||
In some cases returning updated state can be pretty inconvenient. Hence,
|
||||
:func:`compile` has a parameter to capture implicit outputs:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from functools import partial
|
||||
|
||||
state = []
|
||||
|
||||
# Tell compile to capture state as an output
|
||||
@partial(mx.compile, outputs=state)
|
||||
def fun(x, y):
|
||||
z = x + y
|
||||
state.append(z)
|
||||
return mx.exp(z), state
|
||||
|
||||
fun(mx.array(1.0), mx.array(2.0))
|
||||
# Prints [array(3, dtype=float32)]
|
||||
print(state)
|
||||
|
||||
This is particularly useful for compiling a function which includes an update
|
||||
to a container of arrays, as is commonly done when training the parameters of a
|
||||
:class:`mlx.nn.Module`.
|
||||
|
||||
Compiled functions will also treat any inputs not in the parameter list as
|
||||
constants. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
state = [mx.array(1.0)]
|
||||
|
||||
@mx.compile
|
||||
def fun(x):
|
||||
return x + state[0]
|
||||
|
||||
# Prints array(2, dtype=float32)
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
# Update state
|
||||
state[0] = mx.array(5.0)
|
||||
|
||||
# Still prints array(2, dtype=float32)
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
In order to have the change of state reflected in the outputs of ``fun`` you
|
||||
again have two options. The first option is to simply pass ``state`` as input
|
||||
to the function. In some cases this can be pretty inconvenient. Hence,
|
||||
:func:`compile` also has a parameter to capture implicit inputs:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from functools import partial
|
||||
state = [mx.array(1.0)]
|
||||
|
||||
# Tell compile to capture state as an input
|
||||
@partial(mx.compile, inputs=state)
|
||||
def fun(x):
|
||||
return x + state[0]
|
||||
|
||||
# Prints array(2, dtype=float32)
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
# Update state
|
||||
state[0] = mx.array(5.0)
|
||||
|
||||
# Prints array(6, dtype=float32)
|
||||
print(fun(mx.array(1.0)))
|
||||
|
||||
|
||||
Compiling Training Graphs
|
||||
-------------------------
|
||||
|
||||
This section will step through how to use :func:`compile` with a simple example
|
||||
of a common setup: training a model with :obj:`mlx.nn.Module` using an
|
||||
:obj:`mlx.optimizers.Optimizer` with state. We will show how to compile the
|
||||
full forward, backward, and update with :func:`compile`.
|
||||
|
||||
To start, here is the simple example without any compilation:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.optimizers as optim
|
||||
|
||||
# 4 examples with 10 features each
|
||||
x = mx.random.uniform(shape=(4, 10))
|
||||
|
||||
# 0, 1 targets
|
||||
y = mx.array([0, 1, 0, 1])
|
||||
|
||||
# Simple linear model
|
||||
model = nn.Linear(10, 1)
|
||||
|
||||
# SGD with momentum
|
||||
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
|
||||
|
||||
def loss_fn(model, x, y):
|
||||
logits = model(x).squeeze()
|
||||
return nn.losses.binary_cross_entropy(logits, y)
|
||||
|
||||
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
||||
|
||||
# Perform 10 steps of gradient descent
|
||||
for it in range(10):
|
||||
loss, grads = loss_and_grad_fn(model, x, y)
|
||||
optimizer.update(model, grads)
|
||||
mx.eval(model.parameters(), optimizer.state)
|
||||
|
||||
To compile the update we can put it all in a function and compile it with the
|
||||
appropriate input and output captures. Here's the same example but compiled:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import mlx.nn as nn
|
||||
import mlx.optimizers as optim
|
||||
from functools import partial
|
||||
|
||||
# 4 examples with 10 features each
|
||||
x = mx.random.uniform(shape=(4, 10))
|
||||
|
||||
# 0, 1 targets
|
||||
y = mx.array([0, 1, 0, 1])
|
||||
|
||||
# Simple linear model
|
||||
model = nn.Linear(10, 1)
|
||||
|
||||
# SGD with momentum
|
||||
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
|
||||
|
||||
def loss_fn(model, x, y):
|
||||
logits = model(x).squeeze()
|
||||
return nn.losses.binary_cross_entropy(logits, y)
|
||||
|
||||
# The state that will be captured as input and output
|
||||
state = [model.state, optimizer.state]
|
||||
|
||||
@partial(mx.compile, inputs=state, outputs=state)
|
||||
def step(x, y):
|
||||
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
||||
loss, grads = loss_and_grad_fn(model, x, y)
|
||||
optimizer.update(model, grads)
|
||||
return loss
|
||||
|
||||
# Perform 10 steps of gradient descent
|
||||
for it in range(10):
|
||||
loss = step(x, y)
|
||||
# Evaluate the model and optimizer state
|
||||
mx.eval(state)
|
||||
print(loss)
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
If you are using a module which performs random sampling such as
|
||||
:func:`mlx.nn.Dropout`, make sure you also include ``mx.random.state`` in the
|
||||
``state`` captured by :func:`compile`, i.e. ``state = [model.state,
|
||||
optimizer.state, mx.random.state]``.
|
||||
|
||||
|
||||
.. note::
|
||||
|
||||
For more examples of compiling full training graphs checkout the `MLX
|
||||
Examples <https://github.com/ml-explore/mlx-examples>`_ GitHub repo.
|
||||
|
||||
Transformations with Compile
|
||||
----------------------------
|
||||
|
||||
In MLX function transformations are composable. You can apply any function
|
||||
transformation to the output of any other function transformation. For more on
|
||||
this, see the documentation on :ref:`function transforms
|
||||
<function_transforms>`.
|
||||
|
||||
Compiling transformed functions works just as expected:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
grad_fn = mx.grad(mx.exp)
|
||||
|
||||
compiled_grad_fn = mx.compile(grad_fn)
|
||||
|
||||
# Prints: array(2.71828, dtype=float32)
|
||||
print(grad_fn(mx.array(1.0)))
|
||||
|
||||
# Also prints: array(2.71828, dtype=float32)
|
||||
print(compiled_grad_fn(mx.array(1.0)))
|
||||
|
||||
.. note::
|
||||
|
||||
In order to compile as much as possible, a transformation of a compiled
|
||||
function will not by default be compiled. To compile the transformed
|
||||
function simply pass it through :func:`compile`.
|
||||
|
||||
You can also compile functions which themselves call compiled functions. A
|
||||
good practice is to compile the outer most function to give :func:`compile`
|
||||
the most opportunity to optimize the computation graph:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@mx.compile
|
||||
def inner(x):
|
||||
return mx.exp(-mx.abs(x))
|
||||
|
||||
def outer(x):
|
||||
inner(inner(x))
|
||||
|
||||
# Compiling the outer function is good to do as it will likely
|
||||
# be faster even though the inner functions are compiled
|
||||
fun = mx.compile(outer)
|
191
docs/src/usage/function_transforms.rst
Normal file
191
docs/src/usage/function_transforms.rst
Normal file
@@ -0,0 +1,191 @@
|
||||
.. _function_transforms:
|
||||
|
||||
Function Transforms
|
||||
===================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX uses composable function transformations for automatic differentiation,
|
||||
vectorization, and compute graph optimizations. To see the complete list of
|
||||
function transformations check-out the :ref:`API documentation <transforms>`.
|
||||
|
||||
The key idea behind composable function transformations is that every
|
||||
transformation returns a function which can be further transformed.
|
||||
|
||||
Here is a simple example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> dfdx = mx.grad(mx.sin)
|
||||
>>> dfdx(mx.array(mx.pi))
|
||||
array(-1, dtype=float32)
|
||||
>>> mx.cos(mx.array(mx.pi))
|
||||
array(-1, dtype=float32)
|
||||
|
||||
|
||||
The output of :func:`grad` on :func:`sin` is simply another function. In this
|
||||
case it is the gradient of the sine function which is exactly the cosine
|
||||
function. To get the second derivative you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> d2fdx2 = mx.grad(mx.grad(mx.sin))
|
||||
>>> d2fdx2(mx.array(mx.pi / 2))
|
||||
array(-1, dtype=float32)
|
||||
>>> mx.sin(mx.array(mx.pi / 2))
|
||||
array(1, dtype=float32)
|
||||
|
||||
Using :func:`grad` on the output of :func:`grad` is always ok. You keep
|
||||
getting higher order derivatives.
|
||||
|
||||
Any of the MLX function transformations can be composed in any order to any
|
||||
depth. See the following sections for more information on :ref:`automatic
|
||||
differentiation <auto diff>` and :ref:`automatic vectorization <vmap>`.
|
||||
For more information on :func:`compile` see the :ref:`compile documentation <compile>`.
|
||||
|
||||
|
||||
Automatic Differentiation
|
||||
-------------------------
|
||||
|
||||
.. _auto diff:
|
||||
|
||||
Automatic differentiation in MLX works on functions rather than on implicit
|
||||
graphs.
|
||||
|
||||
.. note::
|
||||
|
||||
If you are coming to MLX from PyTorch, you no longer need functions like
|
||||
``backward``, ``zero_grad``, and ``detach``, or properties like
|
||||
``requires_grad``.
|
||||
|
||||
The most basic example is taking the gradient of a scalar-valued function as we
|
||||
saw above. You can use the :func:`grad` and :func:`value_and_grad` function to
|
||||
compute gradients of more complex functions. By default these functions compute
|
||||
the gradient with respect to the first argument:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def loss_fn(w, x, y):
|
||||
return mx.mean(mx.square(w * x - y))
|
||||
|
||||
w = mx.array(1.0)
|
||||
x = mx.array([0.5, -0.5])
|
||||
y = mx.array([1.5, -1.5])
|
||||
|
||||
# Computes the gradient of loss_fn with respect to w:
|
||||
grad_fn = mx.grad(loss_fn)
|
||||
dloss_dw = grad_fn(w, x, y)
|
||||
# Prints array(-1, dtype=float32)
|
||||
print(dloss_dw)
|
||||
|
||||
# To get the gradient with respect to x we can do:
|
||||
grad_fn = mx.grad(loss_fn, argnums=1)
|
||||
dloss_dx = grad_fn(w, x, y)
|
||||
# Prints array([-1, 1], dtype=float32)
|
||||
print(dloss_dx)
|
||||
|
||||
|
||||
One way to get the loss and gradient is to call ``loss_fn`` followed by
|
||||
``grad_fn``, but this can result in a lot of redundant work. Instead, you
|
||||
should use :func:`value_and_grad`. Continuing the above example:
|
||||
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Computes the gradient of loss_fn with respect to w:
|
||||
loss_and_grad_fn = mx.value_and_grad(loss_fn)
|
||||
loss, dloss_dw = loss_and_grad_fn(w, x, y)
|
||||
|
||||
# Prints array(1, dtype=float32)
|
||||
print(loss)
|
||||
|
||||
# Prints array(-1, dtype=float32)
|
||||
print(dloss_dw)
|
||||
|
||||
|
||||
You can also take the gradient with respect to arbitrarily nested Python
|
||||
containers of arrays (specifically any of :obj:`list`, :obj:`tuple`, or
|
||||
:obj:`dict`).
|
||||
|
||||
Suppose we wanted a weight and a bias parameter in the above example. A nice
|
||||
way to do that is the following:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def loss_fn(params, x, y):
|
||||
w, b = params["weight"], params["bias"]
|
||||
h = w * x + b
|
||||
return mx.mean(mx.square(h - y))
|
||||
|
||||
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
|
||||
x = mx.array([0.5, -0.5])
|
||||
y = mx.array([1.5, -1.5])
|
||||
|
||||
# Computes the gradient of loss_fn with respect to both the
|
||||
# weight and bias:
|
||||
grad_fn = mx.grad(loss_fn)
|
||||
grads = grad_fn(params, x, y)
|
||||
|
||||
# Prints
|
||||
# {'weight': array(-1, dtype=float32), 'bias': array(0, dtype=float32)}
|
||||
print(grads)
|
||||
|
||||
Notice the tree structure of the parameters is preserved in the gradients.
|
||||
|
||||
In some cases you may want to stop gradients from propagating through a
|
||||
part of the function. You can use the :func:`stop_gradient` for that.
|
||||
|
||||
|
||||
Automatic Vectorization
|
||||
-----------------------
|
||||
|
||||
.. _vmap:
|
||||
|
||||
Use :func:`vmap` to automate vectorizing complex functions. Here we'll go
|
||||
through a basic and contrived example for the sake of clarity, but :func:`vmap`
|
||||
can be quite powerful for more complex functions which are difficult to optimize
|
||||
by hand.
|
||||
|
||||
.. warning::
|
||||
|
||||
Some operations are not yet supported with :func:`vmap`. If you encounter an error
|
||||
like: ``ValueError: Primitive's vmap not implemented.`` file an `issue
|
||||
<https://github.com/ml-explore/mlx/issues>`_ and include your function.
|
||||
We will prioritize including it.
|
||||
|
||||
A naive way to add the elements from two sets of vectors is with a loop:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
xs = mx.random.uniform(shape=(4096, 100))
|
||||
ys = mx.random.uniform(shape=(100, 4096))
|
||||
|
||||
def naive_add(xs, ys):
|
||||
return [xs[i] + ys[:, i] for i in range(xs.shape[1])]
|
||||
|
||||
Instead you can use :func:`vmap` to automatically vectorize the addition:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# Vectorize over the second dimension of x and the
|
||||
# first dimension of y
|
||||
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
|
||||
|
||||
The ``in_axes`` parameter can be used to specify which dimensions of the
|
||||
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
|
||||
where the vectorized axes should be in the outputs.
|
||||
|
||||
Let's time these two different versions:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import timeit
|
||||
|
||||
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
|
||||
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
|
||||
|
||||
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
|
||||
vectorized version takes only ``0.025`` seconds, more than ten times faster.
|
||||
|
||||
Of course, this operation is quite contrived. A better approach is to simply do
|
||||
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.
|
123
docs/src/usage/indexing.rst
Normal file
123
docs/src/usage/indexing.rst
Normal file
@@ -0,0 +1,123 @@
|
||||
.. _indexing:
|
||||
|
||||
Indexing Arrays
|
||||
===============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
For the most part, indexing an MLX :obj:`array` works the same as indexing a
|
||||
NumPy :obj:`numpy.ndarray`. See the `NumPy documentation
|
||||
<https://numpy.org/doc/stable/user/basics.indexing.html>`_ for more details on
|
||||
how that works.
|
||||
|
||||
For example, you can use regular integers and slices (:obj:`slice`) to index arrays:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> arr[3]
|
||||
array(3, dtype=int32)
|
||||
>>> arr[-2] # negative indexing works
|
||||
array(8, dtype=int32)
|
||||
>>> arr[2:8:2] # start, stop, stride
|
||||
array([2, 4, 6], dtype=int32)
|
||||
|
||||
For multi-dimensional arrays, the ``...`` or :obj:`Ellipsis` syntax works as in NumPy:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(8).reshape(2, 2, 2)
|
||||
>>> arr[:, :, 0]
|
||||
array(3, dtype=int32)
|
||||
array([[0, 2],
|
||||
[4, 6]], dtype=int32
|
||||
>>> arr[..., 0]
|
||||
array([[0, 2],
|
||||
[4, 6]], dtype=int32
|
||||
|
||||
You can index with ``None`` to create a new axis:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(8)
|
||||
>>> arr.shape
|
||||
[8]
|
||||
>>> arr[None].shape
|
||||
[1, 8]
|
||||
|
||||
|
||||
You can also use an :obj:`array` to index another :obj:`array`:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> arr = mx.arange(10)
|
||||
>>> idx = mx.array([5, 7])
|
||||
>>> arr[idx]
|
||||
array([5, 7], dtype=int32)
|
||||
|
||||
Mixing and matching integers, :obj:`slice`, ``...``, and :obj:`array` indices
|
||||
works just as in NumPy.
|
||||
|
||||
Other functions which may be useful for indexing arrays are :func:`take` and
|
||||
:func:`take_along_axis`.
|
||||
|
||||
Differences from NumPy
|
||||
----------------------
|
||||
|
||||
.. Note::
|
||||
|
||||
MLX indexing is different from NumPy indexing in two important ways:
|
||||
|
||||
* Indexing does not perform bounds checking. Indexing out of bounds is
|
||||
undefined behavior.
|
||||
* Boolean mask based indexing is not yet supported.
|
||||
|
||||
The reason for the lack of bounds checking is that exceptions cannot propagate
|
||||
from the GPU. Performing bounds checking for array indices before launching the
|
||||
kernel would be extremely inefficient.
|
||||
|
||||
Indexing with boolean masks is something that MLX may support in the future. In
|
||||
general, MLX has limited support for operations for which outputs
|
||||
*shapes* are dependent on input *data*. Other examples of these types of
|
||||
operations which MLX does not yet support include :func:`numpy.nonzero` and the
|
||||
single input version of :func:`numpy.where`.
|
||||
|
||||
In Place Updates
|
||||
----------------
|
||||
|
||||
In place updates to indexed arrays are possible in MLX. For example:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> a[2] = 0
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Just as in NumPy, in place updates will be reflected in all references to the
|
||||
same array:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1, 2, 3])
|
||||
>>> b = a
|
||||
>>> b[2] = 0
|
||||
>>> b
|
||||
array([1, 2, 0], dtype=int32)
|
||||
>>> a
|
||||
array([1, 2, 0], dtype=int32)
|
||||
|
||||
Transformations of functions which use in-place updates are allowed and work as
|
||||
expected. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x, idx):
|
||||
x[idx] = 2.0
|
||||
return x.sum()
|
||||
|
||||
dfdx = mx.grad(fun)(mx.array([1.0, 2.0, 3.0]), mx.array([1]))
|
||||
print(dfdx) # Prints: array([1, 0, 1], dtype=float32)
|
||||
|
||||
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
|
||||
and ones elsewhere.
|
144
docs/src/usage/lazy_evaluation.rst
Normal file
144
docs/src/usage/lazy_evaluation.rst
Normal file
@@ -0,0 +1,144 @@
|
||||
.. _lazy eval:
|
||||
|
||||
Lazy Evaluation
|
||||
===============
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
Why Lazy Evaluation
|
||||
-------------------
|
||||
|
||||
When you perform operations in MLX, no computation actually happens. Instead a
|
||||
compute graph is recorded. The actual computation only happens if an
|
||||
:func:`eval` is performed.
|
||||
|
||||
MLX uses lazy evaluation because it has some nice features, some of which we
|
||||
describe below.
|
||||
|
||||
Transforming Compute Graphs
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Lazy evaluation lets us record a compute graph without actually doing any
|
||||
computations. This is useful for function transformations like :func:`grad` and
|
||||
:func:`vmap` and graph optimizations.
|
||||
|
||||
Currently, MLX does not compile and rerun compute graphs. They are all
|
||||
generated dynamically. However, lazy evaluation makes it much easier to
|
||||
integrate compilation for future performance enhancements.
|
||||
|
||||
Only Compute What You Use
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
In MLX you do not need to worry as much about computing outputs that are never
|
||||
used. For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
a = fun1(x)
|
||||
b = expensive_fun(a)
|
||||
return a, b
|
||||
|
||||
y, _ = fun(x)
|
||||
|
||||
Here, we never actually compute the output of ``expensive_fun``. Use this
|
||||
pattern with care though, as the graph of ``expensive_fun`` is still built, and
|
||||
that has some cost associated to it.
|
||||
|
||||
Similarly, lazy evaluation can be beneficial for saving memory while keeping
|
||||
code simple. Say you have a very large model ``Model`` derived from
|
||||
:obj:`mlx.nn.Module`. You can instantiate this model with ``model = Model()``.
|
||||
Typically, this will initialize all of the weights as ``float32``, but the
|
||||
initialization does not actually compute anything until you perform an
|
||||
:func:`eval`. If you update the model with ``float16`` weights, your maximum
|
||||
consumed memory will be half that required if eager computation was used
|
||||
instead.
|
||||
|
||||
This pattern is simple to do in MLX thanks to lazy computation:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
model = Model() # no memory used yet
|
||||
model.load_weights("weights_fp16.safetensors")
|
||||
|
||||
When to Evaluate
|
||||
----------------
|
||||
|
||||
A common question is when to use :func:`eval`. The trade-off is between
|
||||
letting graphs get too large and not batching enough useful work.
|
||||
|
||||
For example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
for _ in range(100):
|
||||
a = a + b
|
||||
mx.eval(a)
|
||||
b = b * 2
|
||||
mx.eval(b)
|
||||
|
||||
This is a bad idea because there is some fixed overhead with each graph
|
||||
evaluation. On the other hand, there is some slight overhead which grows with
|
||||
the compute graph size, so extremely large graphs (while computationally
|
||||
correct) can be costly.
|
||||
|
||||
Luckily, a wide range of compute graph sizes work pretty well with MLX:
|
||||
anything from a few tens of operations to many thousands of operations per
|
||||
evaluation should be okay.
|
||||
|
||||
Most numerical computations have an iterative outer loop (e.g. the iteration in
|
||||
stochastic gradient descent). A natural and usually efficient place to use
|
||||
:func:`eval` is at each iteration of this outer loop.
|
||||
|
||||
Here is a concrete example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
for batch in dataset:
|
||||
|
||||
# Nothing has been evaluated yet
|
||||
loss, grad = value_and_grad_fn(model, batch)
|
||||
|
||||
# Still nothing has been evaluated
|
||||
optimizer.update(model, grad)
|
||||
|
||||
# Evaluate the loss and the new parameters which will
|
||||
# run the full gradient computation and optimizer update
|
||||
mx.eval(loss, model.parameters())
|
||||
|
||||
|
||||
An important behavior to be aware of is when the graph will be implicitly
|
||||
evaluated. Anytime you ``print`` an array, convert it to an
|
||||
:obj:`numpy.ndarray`, or otherwise access it's memory via :obj:`memoryview`,
|
||||
the graph will be evaluated. Saving arrays via :func:`save` (or any other MLX
|
||||
saving functions) will also evaluate the array.
|
||||
|
||||
|
||||
Calling :func:`array.item` on a scalar array will also evaluate it. In the
|
||||
example above, printing the loss (``print(loss)``) or adding the loss scalar to
|
||||
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
|
||||
these lines are before ``mx.eval(loss, model.parameters())`` then this
|
||||
will be a partial evaluation, computing only the forward pass.
|
||||
|
||||
Also, calling :func:`eval` on an array or set of arrays multiple times is
|
||||
perfectly fine. This is effectively a no-op.
|
||||
|
||||
.. warning::
|
||||
|
||||
Using scalar arrays for control-flow will cause an evaluation.
|
||||
|
||||
Here is an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def fun(x):
|
||||
h, y = first_layer(x)
|
||||
if y > 0: # An evaluation is done here!
|
||||
z = second_layer_a(h)
|
||||
else:
|
||||
z = second_layer_b(h)
|
||||
return z
|
||||
|
||||
Using arrays for control flow should be done with care. The above example works
|
||||
and can even be used with gradient transformations. However, this can be very
|
||||
inefficient if evaluations are done too frequently.
|
112
docs/src/usage/numpy.rst
Normal file
112
docs/src/usage/numpy.rst
Normal file
@@ -0,0 +1,112 @@
|
||||
.. _numpy:
|
||||
|
||||
Conversion to NumPy and Other Frameworks
|
||||
========================================
|
||||
|
||||
MLX array supports conversion between other frameworks with either:
|
||||
|
||||
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
|
||||
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
|
||||
|
||||
Let's convert an array to NumPy and back.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
|
||||
a = mx.arange(3)
|
||||
b = np.array(a) # copy of a
|
||||
c = mx.array(b) # copy of b
|
||||
|
||||
.. note::
|
||||
|
||||
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
|
||||
``np.array(a.astype(mx.float32))``.
|
||||
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
|
||||
|
||||
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = mx.arange(3)
|
||||
a_view = np.array(a, copy=False)
|
||||
print(a_view.flags.owndata) # False
|
||||
a_view[0] = 1
|
||||
print(a[0].item()) # 1
|
||||
|
||||
A NumPy array view is a normal NumPy array, except that it does not own its memory.
|
||||
This means writing to the view is reflected in the original array.
|
||||
|
||||
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
|
||||
|
||||
Let's demonstrate this in an example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
def f(x):
|
||||
x_view = np.array(x, copy=False)
|
||||
x_view[:] *= x_view # modify memory without telling mx
|
||||
return x.sum()
|
||||
|
||||
x = mx.array([3.0])
|
||||
y, df = mx.value_and_grad(f)(x)
|
||||
print("f(x) = x² =", y.item()) # 9.0
|
||||
print("f'(x) = 2x !=", df.item()) # 1.0
|
||||
|
||||
|
||||
The function ``f`` indirectly modifies the array ``x`` through a memory view.
|
||||
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
|
||||
representing the gradient of the sum operation alone.
|
||||
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
|
||||
It's important to note that a similar issue arises during array conversion and copying.
|
||||
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
|
||||
even though no in-place operations on MLX memory are executed.
|
||||
|
||||
PyTorch
|
||||
-------
|
||||
|
||||
.. warning::
|
||||
|
||||
PyTorch Support for :obj:`memoryview` is experimental and can break for
|
||||
multi-dimensional arrays. Casting to NumPy first is advised for now.
|
||||
|
||||
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import torch
|
||||
|
||||
a = mx.arange(3)
|
||||
b = torch.tensor(memoryview(a))
|
||||
c = mx.array(b.numpy())
|
||||
|
||||
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
|
||||
|
||||
JAX
|
||||
---
|
||||
JAX fully supports the buffer protocol.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import jax.numpy as jnp
|
||||
|
||||
a = mx.arange(3)
|
||||
b = jnp.array(a)
|
||||
c = mx.array(b)
|
||||
|
||||
TensorFlow
|
||||
----------
|
||||
|
||||
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
import tensorflow as tf
|
||||
|
||||
a = mx.arange(3)
|
||||
b = tf.constant(memoryview(a))
|
||||
c = mx.array(b)
|
@@ -40,6 +40,9 @@ automatically evaluate the array.
|
||||
>> np.array(c) # Also evaluates c
|
||||
array([2., 4., 6., 8.], dtype=float32)
|
||||
|
||||
|
||||
See the page on :ref:`Lazy Evaluation <lazy eval>` for more details.
|
||||
|
||||
Function and Graph Transformations
|
||||
----------------------------------
|
||||
|
81
docs/src/usage/saving_and_loading.rst
Normal file
81
docs/src/usage/saving_and_loading.rst
Normal file
@@ -0,0 +1,81 @@
|
||||
.. _saving_and_loading:
|
||||
|
||||
Saving and Loading Arrays
|
||||
=========================
|
||||
|
||||
.. currentmodule:: mlx.core
|
||||
|
||||
MLX supports multiple array serialization formats.
|
||||
|
||||
.. list-table:: Serialization Formats
|
||||
:widths: 20 8 25 25
|
||||
:header-rows: 1
|
||||
|
||||
* - Format
|
||||
- Extension
|
||||
- Function
|
||||
- Notes
|
||||
* - NumPy
|
||||
- ``.npy``
|
||||
- :func:`save`
|
||||
- Single arrays only
|
||||
* - NumPy archive
|
||||
- ``.npz``
|
||||
- :func:`savez` and :func:`savez_compressed`
|
||||
- Multiple arrays
|
||||
* - Safetensors
|
||||
- ``.safetensors``
|
||||
- :func:`save_safetensors`
|
||||
- Multiple arrays
|
||||
* - GGUF
|
||||
- ``.gguf``
|
||||
- :func:`save_gguf`
|
||||
- Multiple arrays
|
||||
|
||||
The :func:`load` function will load any of the supported serialization
|
||||
formats. It determines the format from the extensions. The output of
|
||||
:func:`load` depends on the format.
|
||||
|
||||
Here's an example of saving a single array to a file:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> mx.save("array", a)
|
||||
|
||||
The array ``a`` will be saved in the file ``array.npy`` (notice the extension
|
||||
is automatically added). Including the extension is optional; if it is missing
|
||||
it will be added. You can load the array with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("array.npy")
|
||||
array([1], dtype=float32)
|
||||
|
||||
Here's an example of saving several arrays to a single file:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> b = mx.array([2.0])
|
||||
>>> mx.savez("arrays", a, b=b)
|
||||
|
||||
For compatibility with :func:`numpy.savez` the MLX :func:`savez` takes arrays
|
||||
as arguments. If the keywords are missing, then default names will be
|
||||
provided. This can be loaded with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> mx.load("arrays.npz")
|
||||
{'b': array([2], dtype=float32), 'arr_0': array([1], dtype=float32)}
|
||||
|
||||
In this case :func:`load` returns a dictionary of names to arrays.
|
||||
|
||||
The functions :func:`save_safetensors` and :func:`save_gguf` are similar to
|
||||
:func:`savez`, but they take as input a :obj:`dict` of string names to arrays:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
>>> a = mx.array([1.0])
|
||||
>>> b = mx.array([2.0])
|
||||
>>> mx.save_safetensors("arrays", {"a": a, "b": b})
|
@@ -8,3 +8,5 @@ endfunction(build_example)
|
||||
build_example(tutorial.cpp)
|
||||
build_example(linear_regression.cpp)
|
||||
build_example(logistic_regression.cpp)
|
||||
build_example(metal_capture.cpp)
|
||||
build_example(distributed.cpp)
|
||||
|
22
examples/cpp/distributed.cpp
Normal file
22
examples/cpp/distributed.cpp
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
int main() {
|
||||
if (!distributed::is_available()) {
|
||||
std::cout << "No communication backend found" << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
auto global_group = distributed::init();
|
||||
std::cout << global_group.rank() << " / " << global_group.size() << std::endl;
|
||||
|
||||
array x = ones({10});
|
||||
array out = distributed::all_reduce_sum(x, global_group);
|
||||
|
||||
std::cout << out << std::endl;
|
||||
}
|
31
examples/cpp/metal_capture.cpp
Normal file
31
examples/cpp/metal_capture.cpp
Normal file
@@ -0,0 +1,31 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "mlx/mlx.h"
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
int main() {
|
||||
// To use Metal debugging and profiling:
|
||||
// 1. Build with the MLX_METAL_DEBUG CMake option (i.e. -DMLX_METAL_DEBUG=ON).
|
||||
// 2. Run with MTL_CAPTURE_ENABLED=1.
|
||||
metal::start_capture("mlx_trace.gputrace");
|
||||
|
||||
// Start at index two because the default GPU and CPU streams have indices
|
||||
// zero and one, respectively. This naming matches the label assigned to each
|
||||
// stream's command queue.
|
||||
auto s2 = new_stream(Device::gpu);
|
||||
auto s3 = new_stream(Device::gpu);
|
||||
|
||||
auto a = arange(1.f, 10.f, 1.f, float32, s2);
|
||||
auto b = arange(1.f, 10.f, 1.f, float32, s3);
|
||||
auto x = add(a, a, s2);
|
||||
auto y = add(b, b, s3);
|
||||
|
||||
// The multiply will happen on the default stream.
|
||||
std::cout << multiply(x, y) << std::endl;
|
||||
|
||||
metal::stop_capture();
|
||||
}
|
@@ -57,7 +57,7 @@ void array_basics() {
|
||||
assert(z.shape(0) == 2);
|
||||
assert(z.shape(1) == 2);
|
||||
|
||||
// To actually run the compuation you must evaluate `z`.
|
||||
// To actually run the computation you must evaluate `z`.
|
||||
// Under the hood, mlx records operations in a graph.
|
||||
// The variable `z` is a node in the graph which points to its operation
|
||||
// and inputs. When `eval` is called on an array (or arrays), the array and
|
||||
@@ -89,8 +89,8 @@ void automatic_differentiation() {
|
||||
// dfdx is 2 * x
|
||||
|
||||
// Get the second derivative by composing grad with grad
|
||||
auto df2dx2 = grad(grad(fn))(x);
|
||||
// df2dx2 is 2
|
||||
auto d2fdx2 = grad(grad(fn))(x);
|
||||
// d2fdx2 is 2
|
||||
}
|
||||
|
||||
int main() {
|
||||
|
@@ -1,6 +1,6 @@
|
||||
cmake_minimum_required(VERSION 3.24)
|
||||
cmake_minimum_required(VERSION 3.27)
|
||||
|
||||
project(mlx_sample_extensions LANGUAGES CXX)
|
||||
project(_ext LANGUAGES CXX)
|
||||
|
||||
# ----------------------------- Setup -----------------------------
|
||||
set(CMAKE_CXX_STANDARD 17)
|
||||
@@ -11,8 +11,12 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
|
||||
|
||||
# ----------------------------- Dependencies -----------------------------
|
||||
find_package(MLX CONFIG REQUIRED)
|
||||
find_package(Python COMPONENTS Interpreter Development)
|
||||
find_package(pybind11 CONFIG REQUIRED)
|
||||
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
|
||||
execute_process(
|
||||
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
|
||||
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
|
||||
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
|
||||
find_package(nanobind CONFIG REQUIRED)
|
||||
|
||||
# ----------------------------- Extensions -----------------------------
|
||||
|
||||
@@ -38,7 +42,6 @@ target_link_libraries(mlx_ext PUBLIC mlx)
|
||||
|
||||
# Build metallib
|
||||
if(MLX_BUILD_METAL)
|
||||
|
||||
mlx_build_metallib(
|
||||
TARGET mlx_ext_metallib
|
||||
TITLE mlx_ext
|
||||
@@ -54,13 +57,15 @@ if(MLX_BUILD_METAL)
|
||||
|
||||
endif()
|
||||
|
||||
# ----------------------------- Pybind -----------------------------
|
||||
pybind11_add_module(
|
||||
mlx_sample_extensions
|
||||
# ----------------------------- Python Bindings -----------------------------
|
||||
nanobind_add_module(
|
||||
_ext
|
||||
NB_STATIC STABLE_ABI LTO NOMINSIZE
|
||||
NB_DOMAIN mlx
|
||||
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
|
||||
)
|
||||
target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
|
||||
target_link_libraries(_ext PRIVATE mlx_ext)
|
||||
|
||||
if(BUILD_SHARED_LIBS)
|
||||
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
|
||||
endif()
|
||||
|
24
examples/extensions/README.md
Normal file
24
examples/extensions/README.md
Normal file
@@ -0,0 +1,24 @@
|
||||
|
||||
## Build
|
||||
|
||||
```
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
For faster builds during development, you can also pre-install the requirements:
|
||||
|
||||
```
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
And then run:
|
||||
|
||||
```
|
||||
python setup.py build_ext -j8 --inplace
|
||||
```
|
||||
|
||||
## Test
|
||||
|
||||
```
|
||||
python test.py
|
||||
```
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
@@ -26,7 +26,7 @@ namespace mlx::core {
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Scale and sum two vectors elementwise
|
||||
* Scale and sum two vectors element-wise
|
||||
* z = alpha * x + beta * y
|
||||
*
|
||||
* Follow numpy style broadcasting between x and y
|
||||
@@ -43,7 +43,7 @@ array axpby(
|
||||
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
|
||||
|
||||
// Upcast to float32 for non-floating point inputs x and y
|
||||
auto out_dtype = is_floating_point(promoted_dtype)
|
||||
auto out_dtype = issubdtype(promoted_dtype, float32)
|
||||
? promoted_dtype
|
||||
: promote_types(promoted_dtype, float32);
|
||||
|
||||
@@ -61,7 +61,7 @@ array axpby(
|
||||
/* const std::vector<int>& shape = */ out_shape,
|
||||
/* Dtype dtype = */ out_dtype,
|
||||
/* std::unique_ptr<Primitive> primitive = */
|
||||
std::make_unique<Axpby>(to_stream(s), alpha, beta),
|
||||
std::make_shared<Axpby>(to_stream(s), alpha, beta),
|
||||
/* const std::vector<array>& inputs = */ broadcasted_inputs);
|
||||
}
|
||||
|
||||
@@ -91,24 +91,27 @@ void axpby_impl(
|
||||
T alpha = static_cast<T>(alpha_);
|
||||
T beta = static_cast<T>(beta_);
|
||||
|
||||
// Do the elementwise operation for each output
|
||||
// Do the element-wise operation for each output
|
||||
for (size_t out_idx = 0; out_idx < out.size(); out_idx++) {
|
||||
// Map linear indices to offsets in x and y
|
||||
auto x_offset = elem_to_loc(out_idx, x.shape(), x.strides());
|
||||
auto y_offset = elem_to_loc(out_idx, y.shape(), y.strides());
|
||||
|
||||
// We allocate the output to be contiguous and regularly strided
|
||||
// (defaults to row major) and hence it doesn't need additonal mapping
|
||||
// (defaults to row major) and hence it doesn't need additional mapping
|
||||
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
|
||||
}
|
||||
}
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void Axpby::eval(const std::vector<array>& inputs, array& out) {
|
||||
// Check the inputs (registered in the op while contructing the out array)
|
||||
void Axpby::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Check the inputs (registered in the op while constructing the out array)
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Dispatch to the correct dtype
|
||||
if (out.dtype() == float32) {
|
||||
@@ -147,11 +150,7 @@ void axpby_impl_accelerate(
|
||||
// The data in the output array is allocated to match the strides in y
|
||||
// such that x, y, and out are contiguous in the same mode and
|
||||
// no transposition is needed
|
||||
out.set_data(
|
||||
allocator::malloc_or_wait(y.data_size() * out.itemsize()),
|
||||
y.data_size(),
|
||||
y.strides(),
|
||||
y.flags());
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
// We then copy over the elements using the contiguous vector specialization
|
||||
copy_inplace(y, out, CopyType::Vector);
|
||||
@@ -175,10 +174,13 @@ void axpby_impl_accelerate(
|
||||
}
|
||||
|
||||
/** Evaluate primitive on CPU using accelerate specializations */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Accelerate specialization for contiguous single precision float arrays
|
||||
if (out.dtype() == float32 &&
|
||||
@@ -189,14 +191,16 @@ void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
|
||||
// Fall back to common backend if specializations are not available
|
||||
eval(inputs, out);
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#else // Accelerate not avaliable
|
||||
#else // Accelerate not available
|
||||
|
||||
/** Evaluate primitive on CPU falling back to common backend */
|
||||
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
eval(inputs, out);
|
||||
void Axpby::eval_cpu(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -208,11 +212,14 @@ void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
#ifdef _METAL_
|
||||
|
||||
/** Evaluate primitive on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
// Prepare inputs
|
||||
assert(inputs.size() == 2);
|
||||
auto& x = inputs[0];
|
||||
auto& y = inputs[1];
|
||||
auto& out = outputs[0];
|
||||
|
||||
// Each primitive carries the stream it should execute on
|
||||
// and each stream carries its device identifiers
|
||||
@@ -250,20 +257,20 @@ void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
||||
// Prepare to encode kernel
|
||||
auto compute_encoder = d.get_command_encoder(s.index);
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Kernel parameters are registered with buffer indices corresponding to
|
||||
// those in the kernel decelaration at axpby.metal
|
||||
// those in the kernel declaration at axpby.metal
|
||||
int ndim = out.ndim();
|
||||
size_t nelem = out.size();
|
||||
|
||||
// Encode input arrays to kernel
|
||||
set_array_buffer(compute_encoder, x, 0);
|
||||
set_array_buffer(compute_encoder, y, 1);
|
||||
compute_encoder.set_input_array(x, 0);
|
||||
compute_encoder.set_input_array(y, 1);
|
||||
|
||||
// Encode output arrays to kernel
|
||||
set_array_buffer(compute_encoder, out, 2);
|
||||
compute_encoder.set_output_array(out, 2);
|
||||
|
||||
// Encode alpha and beta
|
||||
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
|
||||
@@ -287,15 +294,17 @@ void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
// Fix the 3D size of the launch grid (in terms of threads)
|
||||
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
|
||||
|
||||
// Launch the grid with the given number of threads divded among
|
||||
// Launch the grid with the given number of threads divided among
|
||||
// the given threadgroups
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
#else // Metal is not available
|
||||
|
||||
/** Fail evaluation on GPU */
|
||||
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
void Axpby::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& out) {
|
||||
throw std::runtime_error("Axpby has no GPU implementation.");
|
||||
}
|
||||
|
||||
@@ -306,13 +315,13 @@ void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array Axpby::jvp(
|
||||
std::vector<array> Axpby::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
// Forward mode diff that pushes along the tangents
|
||||
// The jvp transform on the the primitive can built with ops
|
||||
// that are scheduled on the same stream as the primtive
|
||||
// The jvp transform on the primitive can built with ops
|
||||
// that are scheduled on the same stream as the primitive
|
||||
|
||||
// If argnums = {0}, we only push along x in which case the
|
||||
// jvp is just the tangent scaled by alpha
|
||||
@@ -321,32 +330,33 @@ array Axpby::jvp(
|
||||
if (argnums.size() > 1) {
|
||||
auto scale = argnums[0] == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, tangents[0].dtype());
|
||||
return multiply(scale_arr, tangents[0], stream());
|
||||
return {multiply(scale_arr, tangents[0], stream())};
|
||||
}
|
||||
// If, argnums = {0, 1}, we take contributions from both
|
||||
// which gives us jvp = tangent_x * alpha + tangent_y * beta
|
||||
else {
|
||||
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
|
||||
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
|
||||
}
|
||||
}
|
||||
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> Axpby::vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) {
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>&) {
|
||||
// Reverse mode diff
|
||||
std::vector<array> vjps;
|
||||
for (auto arg : argnums) {
|
||||
auto scale = arg == 0 ? alpha_ : beta_;
|
||||
auto scale_arr = array(scale, cotan.dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotan, stream()));
|
||||
auto scale_arr = array(scale, cotangents[0].dtype());
|
||||
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
|
||||
}
|
||||
return vjps;
|
||||
}
|
||||
|
||||
/** Vectorize primitve along given axis */
|
||||
std::pair<array, int> Axpby::vmap(
|
||||
/** Vectorize primitive along given axis */
|
||||
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) {
|
||||
throw std::runtime_error("Axpby has no vmap implementation.");
|
||||
@@ -358,4 +368,4 @@ bool Axpby::is_equivalent(const Primitive& other) const {
|
||||
return alpha_ == r_other.alpha_ && beta_ == r_other.beta_;
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -12,7 +12,7 @@ namespace mlx::core {
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/**
|
||||
* Scale and sum two vectors elementwise
|
||||
* Scale and sum two vectors element-wise
|
||||
* z = alpha * x + beta * y
|
||||
*
|
||||
* Follow numpy style broadcasting between x and y
|
||||
@@ -33,20 +33,22 @@ array axpby(
|
||||
class Axpby : public Primitive {
|
||||
public:
|
||||
explicit Axpby(Stream stream, float alpha, float beta)
|
||||
: Primitive(stream), alpha_(alpha), beta_(beta){};
|
||||
: Primitive(stream), alpha_(alpha), beta_(beta) {};
|
||||
|
||||
/**
|
||||
* A primitive must know how to evaluate itself on the CPU/GPU
|
||||
* for the given inputs and populate the output array.
|
||||
*
|
||||
* To avoid unecessary allocations, the evaluation function
|
||||
* To avoid unnecessary allocations, the evaluation function
|
||||
* is responsible for allocating space for the array.
|
||||
*/
|
||||
void eval_cpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_gpu(const std::vector<array>& inputs, array& out) override;
|
||||
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& outputs)
|
||||
override;
|
||||
|
||||
/** The Jacobian-vector product. */
|
||||
array jvp(
|
||||
std::vector<array> jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) override;
|
||||
@@ -54,8 +56,9 @@ class Axpby : public Primitive {
|
||||
/** The vector-Jacobian product. */
|
||||
std::vector<array> vjp(
|
||||
const std::vector<array>& primals,
|
||||
const array& cotan,
|
||||
const std::vector<int>& argnums) override;
|
||||
const std::vector<array>& cotangents,
|
||||
const std::vector<int>& argnums,
|
||||
const std::vector<array>& outputs) override;
|
||||
|
||||
/**
|
||||
* The primitive must know how to vectorize itself across
|
||||
@@ -63,7 +66,7 @@ class Axpby : public Primitive {
|
||||
* representing the vectorized computation and the axis which
|
||||
* corresponds to the output vectorized dimension.
|
||||
*/
|
||||
std::pair<array, int> vmap(
|
||||
std::pair<std::vector<array>, std::vector<int>> vmap(
|
||||
const std::vector<array>& inputs,
|
||||
const std::vector<int>& axes) override;
|
||||
|
||||
@@ -80,7 +83,7 @@ class Axpby : public Primitive {
|
||||
float beta_;
|
||||
|
||||
/** Fall back implementation for evaluation on CPU */
|
||||
void eval(const std::vector<array>& inputs, array& out);
|
||||
void eval(const std::vector<array>& inputs, std::vector<array>& outputs);
|
||||
};
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -19,7 +19,7 @@ template <typename T>
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
|
||||
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
|
||||
}
|
||||
|
||||
@@ -31,33 +31,33 @@ template <typename T>
|
||||
constant const float& alpha [[buffer(3)]],
|
||||
constant const float& beta [[buffer(4)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
out[index] =
|
||||
out[index] =
|
||||
static_cast<T>(alpha) * x[index] + static_cast<T>(beta) * y[index];
|
||||
}
|
||||
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] \
|
||||
[[kernel]] void axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("axpby_contiguous_" #type_name)]] \
|
||||
[[kernel]] void axpby_contiguous<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
#define instantiate_axpby(type_name, type) \
|
||||
template [[host_name("axpby_general_" #type_name)]] [[kernel]] void \
|
||||
axpby_general<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
constant const int* shape [[buffer(5)]], \
|
||||
constant const size_t* x_strides [[buffer(6)]], \
|
||||
constant const size_t* y_strides [[buffer(7)]], \
|
||||
constant const int& ndim [[buffer(8)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("axpby_contiguous_" #type_name)]] [[kernel]] void \
|
||||
axpby_contiguous<type>( \
|
||||
device const type* x [[buffer(0)]], \
|
||||
device const type* y [[buffer(1)]], \
|
||||
device type* out [[buffer(2)]], \
|
||||
constant const float& alpha [[buffer(3)]], \
|
||||
constant const float& beta [[buffer(4)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
|
||||
instantiate_axpby(float32, float);
|
||||
instantiate_axpby(float16, half);
|
||||
instantiate_axpby(bflot16, bfloat16_t);
|
||||
instantiate_axpby(bfloat16, bfloat16_t);
|
||||
instantiate_axpby(complex64, complex64_t);
|
@@ -1,31 +1,31 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <pybind11/pybind11.h>
|
||||
#include <pybind11/stl.h>
|
||||
#include <nanobind/nanobind.h>
|
||||
#include <nanobind/stl/variant.h>
|
||||
|
||||
#include "axpby/axpby.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace py::literals;
|
||||
namespace nb = nanobind;
|
||||
using namespace nb::literals;
|
||||
|
||||
using namespace mlx::core;
|
||||
|
||||
PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
m.doc() = "Sample C++ and metal extensions for MLX";
|
||||
NB_MODULE(_ext, m) {
|
||||
m.doc() = "Sample extension for MLX";
|
||||
|
||||
m.def(
|
||||
"axpby",
|
||||
&axpby,
|
||||
"x"_a,
|
||||
"y"_a,
|
||||
py::pos_only(),
|
||||
"alpha"_a,
|
||||
"beta"_a,
|
||||
py::kw_only(),
|
||||
"stream"_a = py::none(),
|
||||
R"pbdoc(
|
||||
Scale and sum two vectors elementwise
|
||||
nb::kw_only(),
|
||||
"stream"_a = nb::none(),
|
||||
R"(
|
||||
Scale and sum two vectors element-wise
|
||||
``z = alpha * x + beta * y``
|
||||
|
||||
|
||||
Follows numpy style broadcasting between ``x`` and ``y``
|
||||
Inputs are upcasted to floats if needed
|
||||
|
||||
@@ -37,5 +37,5 @@ PYBIND11_MODULE(mlx_sample_extensions, m) {
|
||||
|
||||
Returns:
|
||||
array: ``alpha * x + beta * y``
|
||||
)pbdoc");
|
||||
}
|
||||
)");
|
||||
}
|
||||
|
@@ -2,4 +2,4 @@
|
||||
|
||||
import mlx.core as mx
|
||||
|
||||
from .mlx_sample_extensions import *
|
||||
from ._ext import axpby
|
||||
|
8
examples/extensions/pyproject.toml
Normal file
8
examples/extensions/pyproject.toml
Normal file
@@ -0,0 +1,8 @@
|
||||
[build-system]
|
||||
requires = [
|
||||
"setuptools>=42",
|
||||
"cmake>=3.24",
|
||||
"mlx>=0.9.0",
|
||||
"nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4",
|
||||
]
|
||||
build-backend = "setuptools.build_meta"
|
4
examples/extensions/requirements.txt
Normal file
4
examples/extensions/requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
@@ -1,4 +1,4 @@
|
||||
# Copyright © 2023 Apple Inc.
|
||||
# Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
from setuptools import setup
|
||||
|
||||
@@ -9,11 +9,11 @@ if __name__ == "__main__":
|
||||
name="mlx_sample_extensions",
|
||||
version="0.0.0",
|
||||
description="Sample C++ and Metal extensions for MLX primitives.",
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions")],
|
||||
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
|
||||
cmdclass={"build_ext": extension.CMakeBuild},
|
||||
packages=["mlx_sample_extensions"],
|
||||
package_dir={"": "."},
|
||||
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
|
||||
extras_require={"dev": []},
|
||||
zip_safe=False,
|
||||
python_requires=">=3.8",
|
||||
)
|
||||
|
10
examples/extensions/test.py
Normal file
10
examples/extensions/test.py
Normal file
@@ -0,0 +1,10 @@
|
||||
import mlx.core as mx
|
||||
from mlx_sample_extensions import axpby
|
||||
|
||||
a = mx.ones((3, 4))
|
||||
b = mx.ones((3, 4))
|
||||
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
|
||||
|
||||
print(f"c shape: {c.shape}")
|
||||
print(f"c dtype: {c.dtype}")
|
||||
print(f"c correct: {mx.all(c == 6.0).item()}")
|
@@ -41,6 +41,6 @@ error_norm = mx.sum(mx.square(w - w_star)).item() ** 0.5
|
||||
throughput = num_iters / (toc - tic)
|
||||
|
||||
print(
|
||||
f"Loss {loss.item():.5f}, |w-w*| = {error_norm:.5f}, "
|
||||
f"Loss {loss.item():.5f}, L2 distance: |w-w*| = {error_norm:.5f}, "
|
||||
f"Throughput {throughput:.5f} (it/s)"
|
||||
)
|
||||
|
@@ -3,25 +3,33 @@ target_sources(
|
||||
PRIVATE
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h
|
||||
)
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
|
||||
if (MLX_BUILD_ACCELERATE)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||
if (MLX_BUILD_CPU)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
|
||||
else()
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
|
||||
endif()
|
||||
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
|
||||
if (MLX_BUILD_ACCELERATE)
|
||||
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
|
||||
elseif(MLX_BUILD_CPU)
|
||||
target_sources(
|
||||
mlx
|
||||
PRIVATE
|
||||
|
@@ -9,7 +9,7 @@
|
||||
namespace mlx::core::allocator {
|
||||
|
||||
Buffer malloc(size_t size) {
|
||||
auto buffer = allocator().malloc(size);
|
||||
auto buffer = allocator().malloc(size, /* allow_swap */ true);
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc] Unable to allocate " << size << " bytes.";
|
||||
@@ -22,7 +22,7 @@ void free(Buffer buffer) {
|
||||
return allocator().free(buffer);
|
||||
}
|
||||
|
||||
Buffer CommonAllocator::malloc(size_t size) {
|
||||
Buffer CommonAllocator::malloc(size_t size, bool) {
|
||||
return Buffer{std::malloc(size)};
|
||||
}
|
||||
|
||||
@@ -38,6 +38,11 @@ Buffer malloc_or_wait(size_t size) {
|
||||
buffer = allocator().malloc(size);
|
||||
}
|
||||
|
||||
// Try swapping if needed
|
||||
if (size && !buffer.ptr()) {
|
||||
buffer = allocator().malloc(size, /* allow_swap = */ true);
|
||||
}
|
||||
|
||||
if (size && !buffer.ptr()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[malloc_or_wait] Unable to allocate " << size << " bytes.";
|
||||
|
@@ -14,7 +14,7 @@ class Buffer {
|
||||
void* ptr_;
|
||||
|
||||
public:
|
||||
Buffer(void* ptr) : ptr_(ptr){};
|
||||
Buffer(void* ptr) : ptr_(ptr) {};
|
||||
|
||||
// Get the raw data pointer from the buffer
|
||||
void* raw_ptr();
|
||||
@@ -37,9 +37,9 @@ void free(Buffer buffer);
|
||||
Buffer malloc_or_wait(size_t size);
|
||||
|
||||
class Allocator {
|
||||
/** Abstract base clase for a memory allocator. */
|
||||
/** Abstract base class for a memory allocator. */
|
||||
public:
|
||||
virtual Buffer malloc(size_t size) = 0;
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
|
||||
virtual void free(Buffer buffer) = 0;
|
||||
|
||||
Allocator() = default;
|
||||
@@ -55,7 +55,7 @@ Allocator& allocator();
|
||||
class CommonAllocator : public Allocator {
|
||||
/** A general CPU allocator. */
|
||||
public:
|
||||
virtual Buffer malloc(size_t size) override;
|
||||
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
|
||||
virtual void free(Buffer buffer) override;
|
||||
|
||||
private:
|
||||
|
204
mlx/array.cpp
204
mlx/array.cpp
@@ -1,24 +1,20 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
#include <functional>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/ops.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/transforms.h"
|
||||
#include "mlx/transforms_impl.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
std::pair<size_t, std::vector<size_t>> cum_prod(const std::vector<int>& shape) {
|
||||
std::vector<size_t> strides(shape.size());
|
||||
size_t cum_prod = 1;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
strides[i] = cum_prod;
|
||||
cum_prod *= shape[i];
|
||||
}
|
||||
return {cum_prod, strides};
|
||||
/** Return true if we are currently performing a function transformation in
|
||||
* order to keep the graph when evaluating tracer arrays. */
|
||||
bool in_tracing() {
|
||||
return detail::InTracing::in_tracing();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -30,15 +26,33 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
}
|
||||
|
||||
array::array(
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::unique_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs)
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
shape,
|
||||
std::move(shape),
|
||||
dtype,
|
||||
std::move(primitive),
|
||||
inputs)) {}
|
||||
std::move(inputs))) {}
|
||||
|
||||
std::vector<array> array::make_arrays(
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs) {
|
||||
std::vector<array> outputs;
|
||||
for (size_t i = 0; i < shapes.size(); ++i) {
|
||||
outputs.emplace_back(std::move(shapes[i]), dtypes[i], primitive, inputs);
|
||||
}
|
||||
// For each node in |outputs|, its siblings are the other nodes.
|
||||
for (size_t i = 0; i < outputs.size(); ++i) {
|
||||
auto siblings = outputs;
|
||||
siblings.erase(siblings.begin() + i);
|
||||
outputs[i].set_siblings(std::move(siblings), i);
|
||||
}
|
||||
return outputs;
|
||||
}
|
||||
|
||||
array::array(std::initializer_list<float> data)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
@@ -47,23 +61,48 @@ array::array(std::initializer_list<float> data)
|
||||
init(data.begin());
|
||||
}
|
||||
|
||||
array::array(std::initializer_list<int> data, Dtype dtype)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(
|
||||
std::vector<int>{static_cast<int>(data.size())},
|
||||
dtype)) {
|
||||
init(data.begin());
|
||||
}
|
||||
|
||||
/* Build an array from a shared buffer */
|
||||
array::array(
|
||||
allocator::Buffer data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
set_data(data, deleter);
|
||||
}
|
||||
|
||||
void array::detach() {
|
||||
for (auto& s : array_desc_->siblings) {
|
||||
s.array_desc_->inputs.clear();
|
||||
s.array_desc_->siblings.clear();
|
||||
s.array_desc_->position = 0;
|
||||
s.array_desc_->primitive = nullptr;
|
||||
}
|
||||
array_desc_->inputs.clear();
|
||||
array_desc_->siblings.clear();
|
||||
array_desc_->position = 0;
|
||||
array_desc_->primitive = nullptr;
|
||||
}
|
||||
|
||||
void array::eval(bool retain_graph /* = false */) {
|
||||
mlx::core::eval({*this}, retain_graph);
|
||||
void array::eval() {
|
||||
// Ensure the array is ready to be read
|
||||
if (status() == Status::scheduled) {
|
||||
event().wait();
|
||||
set_status(Status::available);
|
||||
} else if (status() == Status::unscheduled) {
|
||||
mlx::core::eval({*this});
|
||||
}
|
||||
}
|
||||
|
||||
bool array::is_tracer() const {
|
||||
return array_desc_->is_tracer && in_tracing();
|
||||
}
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, deleter_t d) {
|
||||
@@ -108,29 +147,124 @@ void array::copy_shared_buffer(const array& other) {
|
||||
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(const std::vector<int>& shape, Dtype dtype)
|
||||
: shape(shape), dtype(dtype) {
|
||||
std::tie(size, strides) = cum_prod(shape);
|
||||
void array::move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset /* = 0 */) {
|
||||
array_desc_->data = std::move(other.array_desc_->data);
|
||||
array_desc_->strides = strides;
|
||||
array_desc_->flags = flags;
|
||||
array_desc_->data_size = data_size;
|
||||
auto char_offset = sizeof(char) * itemsize() * offset;
|
||||
array_desc_->data_ptr = static_cast<void*>(
|
||||
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
const std::vector<int>& shape,
|
||||
Dtype dtype,
|
||||
std::unique_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs)
|
||||
: shape(shape),
|
||||
dtype(dtype),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(inputs) {
|
||||
std::tie(size, strides) = cum_prod(shape);
|
||||
void array::move_shared_buffer(array other) {
|
||||
move_shared_buffer(other, other.strides(), other.flags(), other.data_size());
|
||||
}
|
||||
|
||||
array::~array() {
|
||||
if (array_desc_ == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Ignore arrays that will be detached
|
||||
if (status() != array::Status::unscheduled) {
|
||||
return;
|
||||
}
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
bool do_detach = true;
|
||||
// If all siblings have siblings.size() references except
|
||||
// the one we are currently destroying (which has siblings.size() + 1)
|
||||
// then there are no more external references
|
||||
do_detach &= (array_desc_.use_count() == (n + 1));
|
||||
for (auto& s : siblings()) {
|
||||
do_detach &= (s.array_desc_.use_count() == n);
|
||||
if (!do_detach) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (do_detach) {
|
||||
for (auto& s : siblings()) {
|
||||
for (auto& ss : s.siblings()) {
|
||||
ss.array_desc_ = nullptr;
|
||||
}
|
||||
s.array_desc_->siblings.clear();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void array::ArrayDesc::init() {
|
||||
strides.resize(shape.size());
|
||||
size = 1;
|
||||
for (int i = shape.size() - 1; i >= 0; --i) {
|
||||
strides[i] = size;
|
||||
size *= shape[i];
|
||||
}
|
||||
for (auto& in : inputs) {
|
||||
is_tracer |= in.is_tracer();
|
||||
}
|
||||
}
|
||||
|
||||
// Needed because the Primitive type used in array.h is incomplete and the
|
||||
// compiler needs to see the call to the desctructor after the type is complete.
|
||||
array::ArrayDesc::~ArrayDesc() = default;
|
||||
array::ArrayDesc::ArrayDesc(std::vector<int> shape, Dtype dtype)
|
||||
: shape(std::move(shape)), dtype(dtype), status(Status::available) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::ArrayDesc(
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs)
|
||||
: shape(std::move(shape)),
|
||||
dtype(dtype),
|
||||
status(Status::unscheduled),
|
||||
primitive(std::move(primitive)),
|
||||
inputs(std::move(inputs)) {
|
||||
init();
|
||||
}
|
||||
|
||||
array::ArrayDesc::~ArrayDesc() {
|
||||
// When an array description is destroyed it will delete a bunch of arrays
|
||||
// that may also destory their corresponding descriptions and so on and so
|
||||
// forth.
|
||||
//
|
||||
// This calls recursively the destructor and can result in stack overflow, we
|
||||
// instead put them in a vector and destroy them one at a time resulting in a
|
||||
// max stack depth of 2.
|
||||
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
|
||||
|
||||
for (array& a : inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
|
||||
while (!for_deletion.empty()) {
|
||||
// top is going to be deleted at the end of the block *after* the arrays
|
||||
// with inputs have been moved into the vector
|
||||
auto top = std::move(for_deletion.back());
|
||||
for_deletion.pop_back();
|
||||
|
||||
for (array& a : top->inputs) {
|
||||
if (a.array_desc_.use_count() == 1) {
|
||||
for_deletion.push_back(std::move(a.array_desc_));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayIterator::ArrayIterator(const array& arr, int idx)
|
||||
: arr(arr), idx(idx) {
|
||||
if (arr.ndim() == 0) {
|
||||
throw std::invalid_argument("Cannot iterate over 0-d array.");
|
||||
}
|
||||
}
|
||||
|
||||
array::ArrayIterator::reference array::ArrayIterator::operator*() const {
|
||||
auto start = std::vector<int>(arr.ndim(), 0);
|
||||
|
203
mlx/array.h
203
mlx/array.h
@@ -1,6 +1,6 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
@@ -9,6 +9,7 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/event.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -32,7 +33,7 @@ class array {
|
||||
template <typename It>
|
||||
array(
|
||||
It data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype =
|
||||
TypeToDtype<typename std::iterator_traits<It>::value_type>());
|
||||
|
||||
@@ -42,16 +43,19 @@ class array {
|
||||
/* Special case so empty lists default to float32. */
|
||||
array(std::initializer_list<float> data);
|
||||
|
||||
/* Special case so array({}, type) is an empty array. */
|
||||
array(std::initializer_list<int> data, Dtype dtype);
|
||||
|
||||
template <typename T>
|
||||
array(
|
||||
std::initializer_list<T> data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype = TypeToDtype<T>());
|
||||
|
||||
/* Build an array from a buffer */
|
||||
array(
|
||||
allocator::Buffer data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
deleter_t deleter = allocator::free);
|
||||
|
||||
@@ -110,17 +114,29 @@ class array {
|
||||
return array_desc_->strides;
|
||||
};
|
||||
|
||||
/**
|
||||
* Get the stride of the corresponding dimension.
|
||||
*
|
||||
* This function supports negative indexing and provides
|
||||
* bounds checking. */
|
||||
size_t strides(int dim) const {
|
||||
return strides().at(dim < 0 ? dim + ndim() : dim);
|
||||
};
|
||||
|
||||
/** Get the arrays data type. */
|
||||
Dtype dtype() const {
|
||||
return array_desc_->dtype;
|
||||
};
|
||||
|
||||
/** Evaluate the array. */
|
||||
void eval(bool retain_graph = false);
|
||||
void eval();
|
||||
|
||||
/** Get the value from a scalar array. */
|
||||
template <typename T>
|
||||
T item(bool retain_graph = false);
|
||||
T item();
|
||||
|
||||
template <typename T>
|
||||
T item() const;
|
||||
|
||||
struct ArrayIterator {
|
||||
using iterator_category = std::random_access_iterator_tag;
|
||||
@@ -128,11 +144,7 @@ class array {
|
||||
using value_type = const array;
|
||||
using reference = value_type;
|
||||
|
||||
explicit ArrayIterator(const array& arr, int idx = 0) : arr(arr), idx(idx) {
|
||||
if (arr.ndim() == 0) {
|
||||
throw std::invalid_argument("Cannot iterate over 0-d array.");
|
||||
}
|
||||
}
|
||||
explicit ArrayIterator(const array& arr, int idx = 0);
|
||||
|
||||
reference operator*() const;
|
||||
|
||||
@@ -172,9 +184,15 @@ class array {
|
||||
*/
|
||||
|
||||
array(
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::unique_ptr<Primitive> primitive,
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
|
||||
static std::vector<array> make_arrays(
|
||||
std::vector<std::vector<int>> shapes,
|
||||
const std::vector<Dtype>& dtypes,
|
||||
const std::shared_ptr<Primitive>& primitive,
|
||||
const std::vector<array>& inputs);
|
||||
|
||||
/** A unique identifier for an array. */
|
||||
@@ -182,11 +200,16 @@ class array {
|
||||
return reinterpret_cast<std::uintptr_t>(array_desc_.get());
|
||||
}
|
||||
|
||||
/** A unique identifier for an arrays primitive. */
|
||||
std::uintptr_t primitive_id() const {
|
||||
return reinterpret_cast<std::uintptr_t>(array_desc_->primitive.get());
|
||||
}
|
||||
|
||||
struct Data {
|
||||
allocator::Buffer buffer;
|
||||
deleter_t d;
|
||||
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
|
||||
: buffer(buffer), d(d){};
|
||||
: buffer(buffer), d(d) {};
|
||||
// Not copyable
|
||||
Data(const Data& d) = delete;
|
||||
Data& operator=(const Data& d) = delete;
|
||||
@@ -209,6 +232,11 @@ class array {
|
||||
return *(array_desc_->primitive);
|
||||
};
|
||||
|
||||
/** A shared pointer to the array's primitive. */
|
||||
std::shared_ptr<Primitive>& primitive_ptr() const {
|
||||
return array_desc_->primitive;
|
||||
};
|
||||
|
||||
/** Check if the array has an attached primitive or is a leaf node. */
|
||||
bool has_primitive() const {
|
||||
return array_desc_->primitive != nullptr;
|
||||
@@ -219,12 +247,42 @@ class array {
|
||||
return array_desc_->inputs;
|
||||
};
|
||||
|
||||
/** A non-const reference to the array's inputs so that they can be used to
|
||||
* edit the graph. */
|
||||
std::vector<array>& editable_inputs() {
|
||||
std::vector<array>& inputs() {
|
||||
return array_desc_->inputs;
|
||||
}
|
||||
|
||||
/** True indicates the arrays buffer is safe to reuse */
|
||||
bool is_donatable() const {
|
||||
return array_desc_.use_count() == 1 && (array_desc_->data.use_count() == 1);
|
||||
}
|
||||
|
||||
/** The array's siblings. */
|
||||
const std::vector<array>& siblings() const {
|
||||
return array_desc_->siblings;
|
||||
};
|
||||
|
||||
/** The array's siblings. */
|
||||
std::vector<array>& siblings() {
|
||||
return array_desc_->siblings;
|
||||
};
|
||||
|
||||
void set_siblings(std::vector<array> siblings, uint16_t position) {
|
||||
array_desc_->siblings = std::move(siblings);
|
||||
array_desc_->position = position;
|
||||
}
|
||||
|
||||
/** The outputs of the array's primitive (i.e. this array and
|
||||
* its siblings) in the order the primitive expects. */
|
||||
std::vector<array> outputs() const {
|
||||
auto idx = array_desc_->position;
|
||||
std::vector<array> outputs;
|
||||
outputs.reserve(siblings().size() + 1);
|
||||
outputs.insert(outputs.end(), siblings().begin(), siblings().begin() + idx);
|
||||
outputs.push_back(*this);
|
||||
outputs.insert(outputs.end(), siblings().begin() + idx, siblings().end());
|
||||
return outputs;
|
||||
};
|
||||
|
||||
/** Detach the array from the graph. */
|
||||
void detach();
|
||||
|
||||
@@ -245,6 +303,12 @@ class array {
|
||||
return array_desc_->data->buffer;
|
||||
};
|
||||
|
||||
// Return a copy of the shared pointer
|
||||
// to the array::Data struct
|
||||
std::shared_ptr<Data> data_shared_ptr() const {
|
||||
return array_desc_->data;
|
||||
}
|
||||
// Return a raw pointer to the arrays data
|
||||
template <typename T>
|
||||
T* data() {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
@@ -255,9 +319,27 @@ class array {
|
||||
return static_cast<T*>(array_desc_->data_ptr);
|
||||
};
|
||||
|
||||
// Check if the array has been evaluated
|
||||
bool is_evaled() const {
|
||||
return array_desc_->data != nullptr;
|
||||
enum Status { unscheduled, scheduled, available };
|
||||
|
||||
bool is_available() const {
|
||||
return status() == Status::available;
|
||||
}
|
||||
const Status status() const {
|
||||
return array_desc_->status;
|
||||
}
|
||||
|
||||
void set_status(Status s) const {
|
||||
array_desc_->status = s;
|
||||
}
|
||||
|
||||
// Get the array's shared event
|
||||
Event& event() const {
|
||||
return array_desc_->event;
|
||||
}
|
||||
|
||||
// Attach an event to a not yet evaluated array
|
||||
void attach_event(Event e) const {
|
||||
array_desc_->event = std::move(e);
|
||||
}
|
||||
|
||||
// Mark the array as a tracer array (true) or not.
|
||||
@@ -265,9 +347,7 @@ class array {
|
||||
array_desc_->is_tracer = is_tracer;
|
||||
}
|
||||
// Check if the array is a tracer array
|
||||
bool is_tracer() const {
|
||||
return array_desc_->is_tracer;
|
||||
}
|
||||
bool is_tracer() const;
|
||||
|
||||
void set_data(allocator::Buffer buffer, deleter_t d = allocator::free);
|
||||
|
||||
@@ -287,10 +367,21 @@ class array {
|
||||
|
||||
void copy_shared_buffer(const array& other);
|
||||
|
||||
void move_shared_buffer(
|
||||
array other,
|
||||
const std::vector<size_t>& strides,
|
||||
Flags flags,
|
||||
size_t data_size,
|
||||
size_t offset = 0);
|
||||
|
||||
void move_shared_buffer(array other);
|
||||
|
||||
void overwrite_descriptor(const array& other) {
|
||||
array_desc_ = other.array_desc_;
|
||||
}
|
||||
|
||||
~array();
|
||||
|
||||
private:
|
||||
// Initialize the arrays data
|
||||
template <typename It>
|
||||
@@ -301,7 +392,12 @@ class array {
|
||||
std::vector<size_t> strides;
|
||||
size_t size;
|
||||
Dtype dtype;
|
||||
std::unique_ptr<Primitive> primitive{nullptr};
|
||||
std::shared_ptr<Primitive> primitive;
|
||||
|
||||
Status status;
|
||||
|
||||
// An event on the array used for synchronization
|
||||
Event event;
|
||||
|
||||
// Indicates an array is being used in a graph transform
|
||||
// and should not be detached from the graph
|
||||
@@ -309,7 +405,7 @@ class array {
|
||||
|
||||
// This is a shared pointer so that *different* arrays
|
||||
// can share the underlying data buffer.
|
||||
std::shared_ptr<Data> data{nullptr};
|
||||
std::shared_ptr<Data> data;
|
||||
|
||||
// Properly offset data pointer
|
||||
void* data_ptr{nullptr};
|
||||
@@ -323,23 +419,32 @@ class array {
|
||||
Flags flags;
|
||||
|
||||
std::vector<array> inputs;
|
||||
// An array to keep track of the siblings from a multi-output
|
||||
// primitive.
|
||||
std::vector<array> siblings;
|
||||
// The arrays position in the output list
|
||||
uint32_t position{0};
|
||||
|
||||
explicit ArrayDesc(const std::vector<int>& shape, Dtype dtype);
|
||||
explicit ArrayDesc(std::vector<int> shape, Dtype dtype);
|
||||
|
||||
explicit ArrayDesc(
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype,
|
||||
std::unique_ptr<Primitive> primitive,
|
||||
const std::vector<array>& inputs);
|
||||
std::shared_ptr<Primitive> primitive,
|
||||
std::vector<array> inputs);
|
||||
|
||||
~ArrayDesc();
|
||||
|
||||
private:
|
||||
// Initialize size, strides, and other metadata
|
||||
void init();
|
||||
};
|
||||
|
||||
// The ArrayDesc contains the details of the materialized array including the
|
||||
// shape, strides, the data type. It also includes
|
||||
// the primitive which knows how to compute the array's data from its inputs
|
||||
// and a the list of array's inputs for the primitive.
|
||||
std::shared_ptr<ArrayDesc> array_desc_{nullptr};
|
||||
// and the list of array's inputs for the primitive.
|
||||
std::shared_ptr<ArrayDesc> array_desc_;
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
@@ -351,9 +456,9 @@ array::array(T val, Dtype dtype /* = TypeToDtype<T>() */)
|
||||
template <typename It>
|
||||
array::array(
|
||||
It data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<typename std::iterator_traits<It>::value_type>() */) :
|
||||
array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
init(data);
|
||||
}
|
||||
|
||||
@@ -370,9 +475,9 @@ array::array(
|
||||
template <typename T>
|
||||
array::array(
|
||||
std::initializer_list<T> data,
|
||||
const std::vector<int>& shape,
|
||||
std::vector<int> shape,
|
||||
Dtype dtype /* = TypeToDtype<T>() */)
|
||||
: array_desc_(std::make_shared<ArrayDesc>(shape, dtype)) {
|
||||
: array_desc_(std::make_shared<ArrayDesc>(std::move(shape), dtype)) {
|
||||
if (data.size() != size()) {
|
||||
throw std::invalid_argument(
|
||||
"Data size and provided shape mismatch in array construction.");
|
||||
@@ -381,11 +486,24 @@ array::array(
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T array::item(bool retain_graph /* = false */) {
|
||||
T array::item() {
|
||||
if (size() != 1) {
|
||||
throw std::invalid_argument("item can only be called on arrays of size 1.");
|
||||
}
|
||||
eval(retain_graph);
|
||||
eval();
|
||||
return *data<T>();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T array::item() const {
|
||||
if (size() != 1) {
|
||||
throw std::invalid_argument("item can only be called on arrays of size 1.");
|
||||
}
|
||||
if (status() == Status::unscheduled) {
|
||||
throw std::invalid_argument(
|
||||
"item() const can only be called on evaled arrays");
|
||||
}
|
||||
const_cast<array*>(this)->eval();
|
||||
return *data<T>();
|
||||
}
|
||||
|
||||
@@ -435,4 +553,15 @@ void array::init(It src) {
|
||||
}
|
||||
}
|
||||
|
||||
/* Utilities for determining whether a template parameter is array. */
|
||||
template <typename T>
|
||||
inline constexpr bool is_array_v =
|
||||
std::is_same_v<std::remove_cv_t<std::remove_reference_t<T>>, array>;
|
||||
|
||||
template <typename... T>
|
||||
inline constexpr bool is_arrays_v = (is_array_v<T> && ...);
|
||||
|
||||
template <typename... T>
|
||||
using enable_for_arrays_t = typename std::enable_if_t<is_arrays_v<T...>>;
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
@@ -29,12 +29,16 @@ std::tuple<bool, size_t, array> check_transpose(const array& arr) {
|
||||
}
|
||||
}
|
||||
|
||||
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||
inline void matmul_cblas_general(
|
||||
const array& a_pre,
|
||||
const array& b_pre,
|
||||
array& out,
|
||||
float alpha = 1.0f,
|
||||
float beta = 0.0f) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[matmul_cblas] on CPU currently only supports float32");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
@@ -42,6 +46,14 @@ inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
for (int i = 0; i < (a.size() / (M * K)); ++i) {
|
||||
cblas_sgemm(
|
||||
CblasRowMajor,
|
||||
@@ -50,21 +62,34 @@ inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
1.0f, // alpha
|
||||
alpha, // alpha
|
||||
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
|
||||
lda,
|
||||
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
|
||||
ldb,
|
||||
0.0f, // beta
|
||||
beta, // beta
|
||||
out.data<float>() + M * N * i,
|
||||
out.shape(-1) // ldc
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
// TODO: Update to utilize BNNS broadcasting
|
||||
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
|
||||
if (out.dtype() != float32) {
|
||||
throw std::runtime_error(
|
||||
"[matmul_cblas] on CPU currently only supports float32");
|
||||
}
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
return matmul_cblas_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
inline void matmul_bnns_general(
|
||||
const array& a_pre,
|
||||
const array& b_pre,
|
||||
array& out,
|
||||
float alpha = 1.0f,
|
||||
float beta = 0.0f) {
|
||||
// TODO: Update to utilize BNNS broadcasting
|
||||
|
||||
auto [a_transposed, lda, a] = check_transpose(a_pre);
|
||||
auto [b_transposed, ldb, b] = check_transpose(b_pre);
|
||||
@@ -72,11 +97,19 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
size_t N = b.shape(-1);
|
||||
size_t K = a.shape(-1);
|
||||
|
||||
if (M == 0 || N == 0) {
|
||||
return;
|
||||
}
|
||||
if (K == 0) {
|
||||
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
|
||||
return;
|
||||
}
|
||||
|
||||
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
|
||||
|
||||
const BNNSLayerParametersBroadcastMatMul gemm_params{
|
||||
/* float alpha = */ 1.0,
|
||||
/* float beta = */ 0.0,
|
||||
/* float alpha = */ alpha,
|
||||
/* float beta = */ beta,
|
||||
/* bool transA = */ a_transposed,
|
||||
/* bool transB = */ b_transposed,
|
||||
/* bool quadratic = */ false,
|
||||
@@ -157,6 +190,46 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
BNNSFilterDestroy(bnns_filter);
|
||||
}
|
||||
|
||||
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
|
||||
// TODO: Update to utilize BNNS broadcasting
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
return matmul_bnns_general(a_pre, b_pre, out);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
inline void mask_matrix(
|
||||
T* data,
|
||||
const bool* mask,
|
||||
int tile_size,
|
||||
const int X,
|
||||
const int Y,
|
||||
const size_t X_data_str,
|
||||
const size_t Y_data_str,
|
||||
const size_t X_mask_str,
|
||||
const size_t Y_mask_str) {
|
||||
int tX = (X + tile_size - 1) / tile_size;
|
||||
int tY = (Y + tile_size - 1) / tile_size;
|
||||
|
||||
for (int i = 0; i < tX; i++) {
|
||||
for (int j = 0; j < tY; j++) {
|
||||
bool do_mask = mask[i * X_mask_str + j * Y_mask_str];
|
||||
if (!do_mask) {
|
||||
int loc_x = i * tile_size;
|
||||
int loc_y = j * tile_size;
|
||||
T* data_block = data + loc_x * X_data_str + loc_y * Y_data_str;
|
||||
|
||||
int size_x = std::min(tile_size, X - loc_x);
|
||||
int size_y = std::min(tile_size, Y - loc_y);
|
||||
for (int ii = 0; ii < size_x; ii++) {
|
||||
for (int jj = 0; jj < size_y; jj++) {
|
||||
data_block[ii * X_data_str + jj * Y_data_str] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
@@ -166,4 +239,16 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
return matmul_bnns(inputs[0], inputs[1], out);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
// Fill output with C
|
||||
auto& c = inputs[2];
|
||||
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
|
||||
copy(c, out, ctype);
|
||||
|
||||
if (out.dtype() == float32) {
|
||||
return matmul_cblas_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||
}
|
||||
return matmul_bnns_general(inputs[0], inputs[1], out, alpha_, beta_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user