Compare commits

...

203 Commits

Author SHA1 Message Date
Awni Hannun
c096a77b9b revision bump (#778) 2024-03-04 13:41:53 -08:00
Awni Hannun
5121f028d9 nice tensordot for mlx c (#782) 2024-03-04 09:51:02 -08:00
Piotr Rybiec
6a665ea6ed Dilation for convolutional layers (#766)
* add dilation parameter to Conv1d layer

* space here too

* add conv1d dilation test

* add dilation parameter for Conv2d layer

* conv2d dilation test
2024-03-04 06:43:00 -08:00
Awni Hannun
bc06cb9ff6 Pickle + dtype fix for numpy conversion (#763)
* pickle + dtype fix for numpy conversion

* fix getattribute on Module base

* remove unused function

* fix tests

* add topk to ops

* fix doc
2024-03-02 06:09:29 -08:00
Angelos Katharopoulos
8e281c76c3 Fix the top-k op (#768) 2024-03-01 22:08:43 -08:00
Awni Hannun
d5964a2710 bindings for memory info (#761)
* bindings for memory info

* update api

* keep cache low if requested

* fix default

* nit in ops error
2024-03-01 19:51:58 -08:00
Ikko Eltociear Ashimine
cf3eb87e52 Fix typo in transforms.cpp (#764)
occuring -> occurring
2024-02-29 22:23:46 -08:00
Awni Hannun
ab3a466711 bump (#760) 2024-02-29 11:58:54 -08:00
Awni Hannun
4494970f47 avoid nested closures in module (#759) 2024-02-29 09:39:52 -08:00
Jagrit Digani
776c3d226d Convolution update (#651)
* Init steel conv and update Conv primitive

* Update slow CPU implementation to support flipping and input dilation winograd conv routing

Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-28 20:11:16 -08:00
Awni Hannun
f5f18b704f fix temporary bug (#752) 2024-02-27 17:44:39 -08:00
Awni Hannun
420ff2f331 Add back compiled function signatures and docstrings (#749)
* try to add back compiled function signatures and docstrings

* add indentation to docstring
2024-02-27 13:18:59 -08:00
Awni Hannun
56ba3ec40e fix cpu compile on older OS (#747) 2024-02-26 22:20:53 -08:00
Noah Kasmanoff
de3d2467a3 Update: Fast GeLU Approximation (#744)
* add: fast gelu approx

* fix docs

* Update gelu_fast_approx function documentation

* Update python/mlx/nn/layers/activations.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* fix: test gelu

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-26 21:08:50 -08:00
Awni Hannun
fe1dabf272 Fix compile with non standard types (#745)
* refactor tree utils

* fix compile + tree code refactor

* Add an extra test

* add a few missing activations to docs

* hash structure

* Encode the full argument structure

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-26 19:28:53 -08:00
Hinrik Snær Guðmundsson
08226ab491 added atleast *args input support (#710)
* added atleast list(array) input support

* function overloading implemented

* Refactoring

* fixed formatting

* removed pos_only
2024-02-26 11:17:59 -08:00
Chime Ogbuji
3b661b7394 Add linear warmup and schedule joining for use with existing schedules (#721)
* Add linear warmup to schedules for use with existing schedules

* Changed parameters for simplicity of most common case (0 initial value)

* Added ScheduleJoiner and updated documentation

* ScheduleJoiner -> join_schedules (ala optax #)

* black compliance

* Different evaluation of schedules

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-26 07:28:48 -08:00
Awni Hannun
e6418781ab Fix logsumexp edge case (#740)
* fix logsumexp

* fix inf constant

* also fix power grad

* fix ternary dispatch
2024-02-25 08:39:55 -08:00
Awni Hannun
ac02cf33bd Fix some issues using MLX in C++ (#739)
* fix preamble build

* fix some issues with using MLX as a dep in C++
2024-02-24 22:20:57 -08:00
Gabrijel Boduljak
22364c40b7 Upsample2d (#414)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-23 09:55:04 -08:00
Noah Farr
d729a1991b Fix arange with inf step (#686)
* Fix case for step=inf in arange and add inf check for start/stop

* Add test cases for arange

* Update ops.cpp to include climits header

* Fix arange

* Fix formatting

* Refactor

* Add missing include
2024-02-23 06:18:15 -08:00
Rifur13
126c9869c8 Implement the 'where' primitive for conditional selection (#664) 2024-02-22 15:10:48 -08:00
Angelos Katharopoulos
ad4a45e615 Fix the release builds in CI (#729) 2024-02-22 14:09:13 -08:00
Awni Hannun
04fc896016 version bump (#727) 2024-02-22 11:54:17 -08:00
Jagrit Digani
884b4ed43b Fix threadgroup memory in arg reduce (#723) 2024-02-21 19:42:16 -08:00
Vijay Krish
972d9a3aea Up to 10x faster scatter. (#709)
* Faster scatter.

Add specialization for 1-d index tensors.

* Address review comments.

- Check for row contiguity of index, update tensors
  instead of checking strides.
- Add support for 1d specialization with col contiguous update
  tensor, along with a test.

* Nit1

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Nit2

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-21 11:09:30 -08:00
Angelos Katharopoulos
7dcdd88e27 Change the logo and add a dark option (#716) 2024-02-20 10:57:02 -08:00
Awni Hannun
8120a3b65c link to other APIs (#715)
* link to other APIs

* remove sec
2024-02-20 09:54:49 -08:00
Awni Hannun
5798256fcf Shapeless compilation for some graphs (#687)
* shapeless compilation for some graphs

* update compile benchmark

* default compile a few activations

* buffer donation

* bugfix

* shapeless fix

* update tests to work for cpu and gpu fusion

* test kwargs

* add kwargs to compile

* Recompile when python arguments change

* no compile for tanh

* some constant tests

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-19 21:43:54 -08:00
Awni Hannun
d0fda82595 fix tolist for half types (#702) 2024-02-19 09:44:27 -08:00
Hinrik Snær Guðmundsson
f883fcede0 Added support for atleast_1d, atleast_2d, atleast_3d (#694) 2024-02-19 09:40:52 -08:00
Diogo
e1bdf6a8d9 discover doctests in cmake (#703) 2024-02-19 07:03:56 -08:00
Awni Hannun
1a4f4c5ea6 Refactor CPU compile preamble (#708)
* refactor cpu preamble

* fix include order

* fix some issues'

* fixes for linux

* try to fix includes

* add back warning suppression

* more linux fixes
2024-02-19 06:12:53 -08:00
Jack Mousseau
0925af43b0 Remove unused variables (#706) 2024-02-18 12:50:10 -08:00
Awni Hannun
dc937b8ed3 CPU compile (#691)
* build and load shared object for cpu compile

* nits

* cpu compile tests pass

* cpu compile tests pass

* fix preamble for g++

* donation

* fix gpu buffer donation

* reuse prebuilt libraries

* faster contiguity conditoins

* fix test

* rid compiler warning

* fast erf

* Fix float16 for compile and add more types to cpu compile

* Remove a forgotten comment

* use cached libs

* nits

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-17 06:54:32 -08:00
Awni Hannun
c3965fc5ee Separate fast ops and primitives (#699) 2024-02-16 19:16:39 -08:00
Awni Hannun
bf7cd29970 version bump (#698) 2024-02-16 08:44:08 -08:00
Nripesh Niketan
a000d2288c feat: update black pre-commit hook to 24.2.0 (#696) 2024-02-16 06:01:59 -08:00
Mike Drob
165abf0e4c Auto-run PRs from contributors (#692) 2024-02-15 17:30:35 -08:00
Srimukh Sripada
818cda16bc Support LR schedulers (#334)
* Add a few LR schedulers

* Move parents's constructor call to the top

* Fix docstring

* refactor optimizers into two files

* add docs

* nit

* Fix Callable type annotation for python 3.8

---------

Co-authored-by: Awni Hannun <awni@apple.com>
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-15 11:26:20 -08:00
toji
85143fecdd improved error msg for invalid axis(mx.split) (#685)
* improved error msg for invalid axis(`mx.split`)

* Apply suggestions from code review

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* fixed formatting issue

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-15 07:25:38 -08:00
Diogo
35431a4ac8 Adds device context manager (#679) 2024-02-14 14:14:58 -08:00
Awni Hannun
ccf1645995 Custom primitive + RoPE fat op (#676)
* extensions start

* rope custom op

* fix build

* docs + rope benchmark

* fix test

* Add a Metal kernel for RoPE

* Fix position of traditional

* transform tests

* Move rope computation to float and fix tests

* Fix the test and a typo

* change to fast

* fix no metal build

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-14 14:04:25 -08:00
Jagrit Digani
1a48713d32 Update gather and scatter to not use Argument Encoder (#683)
* Replace argument encoder usage for gather and scatter

* Use constant address space for shapes and strides

* Split gather and scatter to improve compile times

* Enable the GPU tests

* Update the CI config

* Fix scatter dispatch for scalar indices

* Remove arg encoder utils

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-14 13:42:13 -08:00
Awni Hannun
1eb04aa23f Fix empty array construction in cpp (#684) 2024-02-13 23:34:17 -08:00
Noah Farr
0c65517e91 Return empty array when repeats is 0 in mx.repeat (#681)
* Return empty array when repeats is 0

* Add test case for repeats = 0
2024-02-13 17:49:31 -08:00
Vijay Krish
2fdc2462c3 Faster gather and scatter. (#682)
Reduce unnecessary integer ops, especially since
there kernels are integer bound.

Increase number of iterations for benchmarks for
better smoothing.

Github Issue #506

Co-authored-by: Vijay Krishnamoorthy <vijay_krish@apple.com>
2024-02-13 17:47:41 -08:00
Hinrik Snær Guðmundsson
be6e9d6a9f Fixed wording in extensions.rst (#678)
changed "learn how add" -> "learn how to add"
2024-02-13 08:39:02 -08:00
Gabrijel Boduljak
e54cbb7ba6 Pooling layers (#357)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-12 22:08:13 -08:00
Angelos Katharopoulos
40c108766b Quantized matmul fix (#677)
* Fix qmv for small or unaligned matrices

* Fix qmm
2024-02-12 18:54:21 -08:00
Mike Drob
4cc70290f7 PR Builder Workflow (#659) 2024-02-12 17:47:21 -08:00
Awni Hannun
74caa68d02 nit in readme (#675) 2024-02-12 12:25:04 -08:00
Awni Hannun
3756381358 Faster bfloat quantized mat-vec and vec-mat (#663) 2024-02-11 21:53:16 -08:00
Awni Hannun
d12573daa6 quote file name (#670) 2024-02-11 10:33:30 -08:00
Nripesh Niketan
0dbc4c7547 feat: Update pre-commit-config.yaml (#667) 2024-02-11 06:08:20 -08:00
Vijay Krish
06072601ce Scatter optimization : Eliminate 64b integer divide. (#662)
Launch 2D grid to eliminate divide and mod in device code,
since 64b integer division is very expensive.

Github Issue #506

Co-authored-by: Vijay Krishnamoorthy <vijay_krish@apple.com>
2024-02-10 08:49:51 -08:00
Angelos Katharopoulos
11d2c8f7a1 Linux build for CI of other packages (#660) 2024-02-09 18:17:04 -08:00
Awni Hannun
7f3f8d8f8d Fix the softmax fix (#661) 2024-02-09 17:02:13 -08:00
Awni Hannun
b96be943dc bug fix (#658) 2024-02-09 16:50:45 -08:00
Abdussamet Türker
b670485185 Remainder negative numerator bug fixed (#641)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-09 16:49:14 -08:00
Diogo
b57bd0488d Metadata support for safetensors (#639)
* metadata support for safetensors

* aliases making it alittle more readable

* addressing comments

* python binding tests
2024-02-08 19:33:15 -08:00
Angelos Katharopoulos
221f8d3fc2 Bump the version to 0.2 (#656) 2024-02-08 11:27:12 -08:00
Awni Hannun
5c03efaf29 Compile docs (#653)
* compile docs

* docs nits + comments
2024-02-08 11:21:50 -08:00
LeonEricsson
7dccd42133 updated calls to use loc &scale (#643) 2024-02-08 09:01:59 -08:00
Awni Hannun
1b97b2958b Compile with capture (#629)
* Simple kernel generation

* Remove the generate kernel from graph_utils

* fix multi-output with compile

* fuse with stopgrad

* v1 input, output capture in compile

* cleanup tree update with visitor update

* nit

* remove todo

* state for model, optional explicit init and more pure optimizer steps

* move learning rate to state

* add lr to opt state, some fixes in capture

* fix optim

* update tuple of containers as well

* fix stream for compiled output

* rng state for compile

* nit

* updates and comments

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-07 17:29:22 -08:00
Awni Hannun
e5e816a5ef fix sequential with empty modules at end (#647) 2024-02-07 13:22:27 -08:00
Angelos Katharopoulos
28eac18571 Kernel generation (#614)
Generate reusable element-wise kernels given a computation graph.
2024-02-07 13:15:59 -08:00
Noah Farr
5fd11c347d Add loc and scale to random.normal (#638)
* Add loc and scale to random.normal

* Add tests for loc and scale for random.normal

* Run pre-commit hooks

* Fix code review
2024-02-07 11:49:59 -08:00
Aryan Gupta
ef73393a19 Feat: Add weights argument in BCE Loss and tests (#620) 2024-02-07 09:39:52 -08:00
Angelos Katharopoulos
ea406d5e33 CI change (#645)
* CI update

* Skip large binary test for now

* Upgrade pip

* Add proper env variable skipping

* Update the CI

* Fix workflow name

* Set the low memory flag for the tests

* Change build process

* Add pip upgrade

* Use a venv

* Add a missing env activate

* Add setuptools

* Add twine upload back

* Re-enable automatic release builds
2024-02-07 06:04:34 -08:00
Awni Hannun
146bd69470 Skip compile when transforming (#635)
* skip compile when transforming

* simplify message
2024-02-05 21:28:37 -08:00
Jagrit Digani
316ff490b3 Remove masks from BlockLoader and clear out load case for invalid thread (#634) 2024-02-05 16:00:17 -08:00
Awni Hannun
d40a04f8dc minor fixes (#631)
* minor fixes

* var with ddof >= nelements
2024-02-05 13:27:49 -08:00
Awni Hannun
d75ae52ecd Compile primitive (#571)
* Compiled primitive with basic binary, unary graph-level fusion
2024-02-05 06:51:22 -08:00
Avikant Srivastava
31fea3758e feat: enhancement of the error message for mlx.core.mean (#608)
* add error message
2024-02-05 01:21:49 -08:00
Awni Hannun
e319383ef9 Faster gather (#626)
* faster gather

* update copyright
2024-02-04 17:25:44 -08:00
Awni Hannun
5c3ac52dd7 fix test (#627) 2024-02-04 16:18:03 -08:00
David Koski
ebfd3618b0 fixes for building and running on iOS (#619)
* fixes for building and running on iOS

* per suggestion just use Accelerate
2024-02-04 12:29:17 -08:00
Avikant Srivastava
11a9fd40f0 fix: handle linspace function when num is 1 (#602)
* fix: handle linspace function when num is 1

* add comment

* fix test case

* remove breakpoint
2024-02-04 11:03:49 -08:00
Daniel Strobusch
4fd2fb84a6 make python array SupportsAbs conform (like numpy) (#624) 2024-02-04 09:31:02 -08:00
Daniel Strobusch
9852af1a19 fix "shape" docstring. (#623) 2024-02-04 09:21:22 -08:00
minghuaw
16750f3c51 Fix typo in CMakeLists.txt (#616) 2024-02-03 05:59:26 -08:00
Awni Hannun
95b5fb8245 minor changes (#613) 2024-02-02 11:48:35 -08:00
AtomicVar
83f63f2184 Add Margin Ranking Loss (#536) 2024-02-02 10:57:31 -08:00
Awni Hannun
cb6156d35d Fix eval in trace bugs (#612)
* Fix eval in trace bugs

* comment nit
2024-02-02 09:57:12 -08:00
Piotr Rybiec
506d43035c typo fix (#607) 2024-02-01 17:39:55 -08:00
Angelos Katharopoulos
36cff34701 Bump the version (#604) 2024-02-01 11:41:38 -08:00
Awni Hannun
e88e474fd1 Reduce vmap + some fixes (#601) 2024-02-01 11:30:28 -08:00
David Koski
601c6d6aa8 Fix for AdaDelta (#603)
- state was being read from parameter "s"
- but being stored in parameter "u"
2024-02-01 09:56:27 -08:00
Angelos Katharopoulos
ba8d6bf365 Change the transformer to norm_first by default (#599) 2024-01-31 12:55:30 -08:00
Sugato Ray
4a5f3b21bb Add py.typed to support PEP-561 (type-hinting) for mlx (#588)
* Add `py.typed` to support PEP-561 (type-hinting)

This adds support for type-hinting information as laid in [PEP-561](https://peps.python.org/pep-0561/).

* add py.typed to MANIFEST.in
2024-01-31 12:05:42 -08:00
Vijay Krish
fcc5ac1c64 Add GPU support for uint64/int64 reductions (#569) 2024-01-31 11:18:04 -08:00
nathan
bad67fec37 Added TeX line breaks to mlx.optimizers.Lion docstring (#595)
Fixes the "misplaced &" MathJax error in documentation.
2024-01-30 19:37:34 -08:00
Angelos Katharopoulos
199aebcf77 Change the variance computation (#319) 2024-01-30 19:28:56 -08:00
Angelos Katharopoulos
0de5988f92 Custom VJP and checkpointing (#541)
* Implement custom_vjp and checkpointing
* Add a dependency management primitive
* Change the eval order to deep branches first
* Add graph depth tracking to the array
2024-01-30 16:04:45 -08:00
Jacket
143e2690d5 Fix SGD implementation (#473) 2024-01-30 15:50:46 -08:00
Jagrit Digani
375446453e Update Compute Pipeline Creation API (#581)
* Add option to specialize metal functions on function constants
* Update Compute Pipeline Creation API
* Add options to make libraries from source and stitching
* Update function specialization name options
2024-01-30 15:42:36 -08:00
Angelos Katharopoulos
1895d34c20 Fix log1p with inf inputs (#592) 2024-01-30 14:02:50 -08:00
Awni Hannun
09b9275027 Make shape a tuple (#591)
* shape tuple

* also remove simplify from docs

* rebase
2024-01-30 13:11:01 -08:00
Andre Slavescu
d3a9005454 Softshrink mapping + op (#552)
* Added Softshrink mapping + op

* formatting

* docs + nits in docstring

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-30 12:56:28 -08:00
Jacket
3f7aba8498 Implement diagonal operator (#562)
* Implement diagonal operator

This implements mx.diagonal in operator level, inspired by
@ManishAradwad.

* added `mx.diag` with tests

* corrected few things

* nits in bindings

* updates to diag

---------

Co-authored-by: ManishAradwad <manisharadwad@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-30 09:45:48 -08:00
Angelos Katharopoulos
65d0b8df9f Fix binary op dispatch (#584) 2024-01-29 19:36:17 -08:00
Awni Hannun
3c2f192345 Propagate nans in binary ops (#579)
* propagate nans in binary ops

* handle empty matmul

* cpu minimum/maximum propagate nan

* benchmark maximum

* add min as well

* throw on negative indices with full

* verbose on linux

* fix matmul for zero K
2024-01-29 11:19:38 -08:00
Angelos Katharopoulos
37d98ba6ff No gil eval (#565) 2024-01-26 22:03:52 -08:00
Awni Hannun
8993382aaa Buffer Donation (#519)
* buffer donation

* fix to move shared pointer

* format

* gpu in place for copy and binary

* revert ops test

* cpu in place

* a little cleanup

* remove useless bench
2024-01-26 16:30:33 -08:00
Awni Hannun
07f35c9d8a Fix a few issues: docs for flatten, erf, dequantize validation (#560)
* doc flatten

* erf doc

* check values for dequantize

* format
2024-01-26 15:16:46 -08:00
Jagrit Digani
bf17ab5002 Add more checks and clearer error messages to conv operations (#563)
* Add more checks and clearer error messages to conv operations
2024-01-26 15:13:26 -08:00
Awni Hannun
8fa6b322b9 Compile front-end (#476)
* fix tests for linux

* make a move on compile

* basic compile scaffold works

* compile binding

* clean

* fix

* fix grad, more tests

* basic python tests

* fix segfault on python exit

* compile works with python closures

* fix test

* fix python globals bug, and erase

* simplify

* more cpp tests

* bug fix with move function and compile at exit

* simplify inputs also

* enable and disable compiler

* remove simplify

* simplify tests use compile now

* fix multi-output with compile

* clear output tree from cache when function goes out of scope

* ../python/src/transforms.cpp

* remove closure capture

* comments
2024-01-26 13:45:30 -08:00
David Koski
874b739f3c Fix cache key in RoPE (#561) 2024-01-26 13:10:02 -08:00
taher
077c1ee64a QR factorization (#310)
* add qr factorization

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-26 09:27:31 -08:00
Rifur13
2463496471 [Fix] mx.allclose bug with infinite values (#539)
* Added isclose op and fixed comparison with inf values

* Added 'equal_nan' to match numpy

* format

* Add test

* Update python/src/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Addressed CR comments

* Update python/src/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* nits

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-25 20:47:06 -08:00
Angelos Katharopoulos
87b7fa9ba2 Bump the version (#554) 2024-01-25 11:01:05 -08:00
Danilo Peixoto
624065c074 Fix package installation for CI (#521)
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-01-25 09:43:34 -08:00
Awni Hannun
f27ec5e097 More helpful error message in vjp transform + concate bug (#543)
* more helpful message in vjp transform

* fix concatenate on mismatch dims

* typo

* typo
2024-01-24 09:58:33 -08:00
Awni Hannun
f30e63353a Minor updates to address a few issues (#537)
* docs on arg indices return type

* arange with nan

* undo isort
2024-01-23 22:24:41 -08:00
Juarez Bochi
4fe2fa2a64 GGUF: Avoid dequantization when format is compatible (#426)
* GGUF: Don't dequantize q4_1

* Fix weight order. First in low bits

* Add unpacking for q4_0

* Don't dequantize q8_0

* rebase quants and split file

* don't quantize every weight

* reapply patch

* error handling

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-23 15:43:57 -08:00
Hazem Essam
37fc9db82c Added Adafactor (#415)
* Added adafactor

* Added Adafactor and ran pre-commit

* modified operations

* Added docstrings

* Switched two ops to fix a bug

* added underscore for internal functions and removed the plus sign in the last return statment

* Removed parameter rms from the optimizer state because its not needed

* Added simple MNIST test for Adafactor and temporary training log

* remove test files

* nits in docs

* comment nit

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-23 15:11:27 -08:00
AtomicVar
755dcf6137 Enable cross_entropy loss to handle dense targets (#517)
* Enable cross_entropy loss to handle dense targets

Dense targets means probabilities or one-hot encodings.

* better shape check of weights

* nits in docstring

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-23 12:17:22 -08:00
LeonEricsson
6b4b30e3fc Common neural network initializers nn.initializers (#456)
* initial commit: constant, normal, uniform

* identity, glorot and he initializers

* docstrings

* rm file

* nits

* nits

* nits

* testing suite

* docs

* nits in docs

* more docs

* remove unused template

* rename packakge to nn.innit

* docs, receptive field

* more docs

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-23 06:47:20 -08:00
Awni Hannun
86e0c79467 remove stale benchmarks (#527) 2024-01-22 22:17:58 -08:00
Awni Hannun
98c37d3a22 use axes in tensordot (#525) 2024-01-22 21:17:00 -08:00
Sugato Ray
f326dd8334 Update README.md (#524)
Add conda install option in docs.
2024-01-22 20:53:54 -08:00
Jagrit Digani
6d3bee3364 Fix oob reads in gemv kernel (#523) 2024-01-22 12:06:04 -08:00
Danilo Peixoto
ecb174ca9d Type annotations for mlx.core module (#512) 2024-01-21 12:53:12 -08:00
Awni Hannun
7a34e46677 Quantize with groups of 32 (#511)
* allow quantize with group sizes of 32

* missing cpu dispatch

* remove print

* Fix qvm for group_size 32

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-01-21 06:19:05 -08:00
Nripesh Niketan
92c22c1ea3 feat: Update isort version to 5.13.2 (#514) 2024-01-21 06:11:48 -08:00
Awni Hannun
d52383367a format (#510) 2024-01-20 10:33:46 -08:00
Arda Orçun
363d3add6d Add ValuError message for Adamax (#508)
* ValuError message added

* beta errors added

* some corrections and testing

* Learning rate limitation deleted
2024-01-20 07:56:15 -08:00
Awni Hannun
b207c2c86b Power VJP fix for 0 (#505) 2024-01-20 01:17:40 -08:00
Awni Hannun
6bf779e72b fix array from list for > 32 bit types (#501) 2024-01-19 15:49:25 -08:00
Juarez Bochi
ddf50113c5 GGUF: Load and save metadata (#446)
* gguf metadata
---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-19 14:06:05 -08:00
Arda Orçun
6589c869d6 Added MSE message (#500)
* Added MSE message

* changed wrong line.

* Update examples/python/linear_regression.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-01-19 06:27:50 -08:00
Anchen
f6feb61f92 feat: add support for saving safetensors in the save_weights (#497)
* feat: add save safetensors support in module save_weights

* chore: checking missing changes

* Update python/mlx/nn/layers/base.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* chore: update docstring for load_weights

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-01-19 06:19:33 -08:00
Awni Hannun
c4ec836523 fix isinf for integer types (#494) 2024-01-19 05:31:10 -08:00
AtomicVar
550d4bf7c0 Update binary_cross_entropy function to handle both logits and probabilities (#492) 2024-01-18 19:22:23 -08:00
Awni Hannun
f6e911ced0 version bump (#490)
* version bump

* Fix the dev version string

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-01-18 12:00:24 -08:00
Awni Hannun
3d99a8d31d Fix format / build (#489) 2024-01-18 10:01:59 -08:00
Ethan
a749a91c75 Support disable metal buffer cache to prevent performance degradation caused by large memory caching (#390)
* support disable metal buffer cache, due to large unused memory buffered when llm generated long context tokens

* Run format and add "cache_enabled" feature tests
2024-01-18 08:33:34 -08:00
toji
49a52610b7 Added formatter structure and a boolean value formatter (#354)
* added formatter structure and a boolean value formatter

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-18 07:49:41 -08:00
AtomicVar
d1fef34138 Add Gaussian NLL loss function (#477)
* Add Gaussian NLL loss function

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-18 06:44:44 -08:00
Angelos Katharopoulos
9c111f176d Fix split optimization for array iterator (#484) 2024-01-18 05:50:25 -08:00
Awni Hannun
78e5f2d17d usage doc for function transformations (#481) 2024-01-17 17:10:53 -08:00
Angelos Katharopoulos
90c234b7ac Fix round to round half-cases to even (#482) 2024-01-17 15:27:23 -08:00
Angelos Katharopoulos
135fd796d2 Fix detach for multi-output primitives (#480) 2024-01-17 14:08:07 -08:00
Jagrit Digani
78102a47ad Update GEMM (#424)
* Organize and collect metal subroutine templates and elements in `metal/kernels/steel/`
* Update gemm elements for better performance 
* Add split-K specialization for gemm
* Add `addmm` primitive, op and bindings for fused matmul and bias addition 
* Update tests and benchmarks as needed
2024-01-17 12:42:39 -08:00
Diogo
556cdf0e06 Resolves build issues with the extension example (#419)
* resolved extension build issues and added test to ci

* missing gguflib

* rebased

* force mlx install from fix branch

* linux build issue

* point to git install and comment out ci tests
2024-01-17 12:07:05 -08:00
Awni Hannun
275db7221a Command buffer reports errors (#479)
* command buffer reports errors

* typo

* simplify
2024-01-17 11:53:30 -08:00
AtomicVar
4a9012cba0 Sort some APIs docs by names (a-z) (#472) 2024-01-16 19:37:50 -08:00
Awni Hannun
a2bf7693dd Primitive's VJP takes outputs as input (#475)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-01-16 19:03:53 -08:00
Angelos Katharopoulos
d8fabaa12b Split multi output (#461)
* Multi-output split primitive
* Add the multi-output split to the ArrayIterator
* Add some grad tests for split
2024-01-16 13:33:55 -08:00
Avikant Srivastava
4e290d282f feat: add time based seed to random.h (#457)
* random seed from time

* fix: chrono

* refactor: snake case
2024-01-16 07:32:28 -08:00
Yashraj Singh
e72458a3fa implemented isposinf and isneginf in one PR (#470)
* ran precommit

* updated docs
2024-01-16 06:48:07 -08:00
Awni Hannun
a2ffea683a Fix eye for larger matrices (#463)
* fix eye
* fix scatter for <32bit (non native atomic) types
* fix int overflow
2024-01-16 00:51:24 -08:00
Angelos Katharopoulos
c15fe3e61b Allow arbitrary first dimension in quantization kernels. (#458)
* Allow arbitrary first dim on qmm_t and qmv
* Allow arbitrary first dim on qmm and qvm
* Specialized aligned vs unaligned case
* Add more checks for valid quantizations
2024-01-16 00:46:21 -08:00
Tristan Bilot
f44c132f4a Add scatter_min VJP (#462) 2024-01-16 00:37:40 -08:00
Matthew Ernst
92a2fdd577 Adds isinf (#445)
* adds isinf

Signed-off-by: matthewfernst <matthew.f.ernst@gmail.com>

* use stream + nits

* typo

---------

Signed-off-by: matthewfernst <matthew.f.ernst@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-15 19:50:44 -08:00
Tristan Bilot
6022d4129e scatter_max vjp + bindings + tests (#431)
Co-authored-by: DjamelMesbah <djamel.mesbah@adservio.fr>
2024-01-14 14:12:15 -08:00
Awni Hannun
4bc446be08 Use a dummy primitive to only sync with one output (#453)
* Use a dummy primitive to only sync with one output
* Fix test and choose stream with slight care
2024-01-14 14:09:40 -08:00
Awni Hannun
41cc7bdfdb Fix stub generation, change graph exporting for arrows to go to outputs (#455) 2024-01-14 14:06:16 -08:00
Awni Hannun
6e81c3e164 Sync only with outputs we need to sync with (#447) 2024-01-13 01:47:25 -08:00
Diogo
2e29d0815b Add tile op (#438) 2024-01-12 23:03:16 -08:00
Awni Hannun
1b71487e1f docs (#444) 2024-01-12 13:34:16 -08:00
Ayush Shridhar
1416e7b664 Add isnan (#423) 2024-01-12 11:16:48 -08:00
davidkoski
29081204d1 array.swapaxes should point to swapaxes free function (#441) 2024-01-12 11:06:16 -08:00
Angelos Katharopoulos
006d01ba42 Fix packaging of gguflib (#435) 2024-01-11 13:56:03 -08:00
Awni Hannun
46dc24d835 version bump (#433) 2024-01-11 12:29:35 -08:00
Awni Hannun
c9934fe8a4 Metal validation (#432)
* tests clear metal validation

* add cpp test with metal validation to circleci

* nit
2024-01-11 11:57:24 -08:00
Avikant Srivastava
975e265f74 feat: Add numpy constants (#428)
* add numpy constants

* feat: add unittests

* add newaxis

* add test for newaxis transformation

* refactor
2024-01-11 06:47:29 -08:00
Awni Hannun
c92a134b0d more docs (#421)
* more docs

* fix link

* nits + comments
2024-01-10 14:04:12 -08:00
Awni Hannun
3b4f066dac Correct types for vjp + tests (#418)
* correct types for vjp + tests

* fix build + comment
2024-01-10 13:32:37 -08:00
Juarez Bochi
b7f905787e GGUF support (#350)
* Initial GGUF support for tensor fields.

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-10 13:22:48 -08:00
Chunyang Wen
e3e933c6bc Add type hint for Module (#412) 2024-01-10 11:23:42 -08:00
Awni Hannun
1d90a76d63 in place ops behave in place, fix some overloads (#411) 2024-01-09 16:05:38 -08:00
Angelos Katharopoulos
961435a243 Scatter vjp (#394)
* Add a first scatter vjp
* Implement the scatter_add vjp
* Add array.at to implement user friendly scatters
2024-01-09 13:36:51 -08:00
Awni Hannun
e9ca65c939 Fix BN stats to not expand shape (#409)
* fix BN stats to not expand shape

* nit
2024-01-09 11:54:51 -08:00
Dwayne Robinson
753867123d Fix data_types.rst uint64 (#406)
uint64 correctly says 8 bytes, but the description is copy pasta.
2024-01-09 06:40:10 -08:00
Awni Hannun
f099ebe535 Multi output primitives (#330)
* Multi-output primitives

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-01-08 16:39:08 -08:00
BigsnarfDude
f45f70f133 Update mlx-example link for llms llama in llama-inference.rst (#405) 2024-01-08 16:29:53 -08:00
YUN, Junwoo
0b8aeddac6 Additoinal losses (#336)
* cosine similarity loss

---------

Co-authored-by: Awni Hannun <awni@apple.com>

* Docstring nits
2024-01-08 14:01:13 -08:00
Jagrit Digani
432ee5650b Update cpp tests with allclose and doctest::Approx for numerical tolerance (#401) 2024-01-08 09:35:05 -08:00
Nripesh Niketan
73321b8097 feat: add logicalAnd and logicalOR (#386)
* feat: add logicalAnd and logicalOR

* run pre-commit

* Refactor logical_and and logical_or functions

* Add acknowledgement

* Add logical AND and logical OR operators

* Refactor logical_and and logical_or functions

* Add support for logical operators on bool arrays

* Update mlx/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update mlx/ops.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Add logical AND and OR operators for arrays and scalars

* Refactor vjp and jvp methods in primitives.cpp

* Add overloaded operators for logical AND and OR

* format

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-08 07:00:05 -08:00
Hazem Essam
022a944367 Added GLU activation function and Gated activation function (#329)
* Added GLU activation function and gated activation function

* Ran pre-commit

* Ran pre commit

* Removed old sigmoid implementation to match with main

* Removed gated activation from __init__.py

* Removed unused test cases

* Removed unused imports

* format / docstring

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-08 06:13:16 -08:00
Chris Costes
026ef9aae4 Update Install Instructions (#397)
* Add note to install instructions for building from source to ensure native arm64 environment and tools.

* Add troubleshooting info.

* remove cmake bits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-01-07 19:11:04 -08:00
Angelos Katharopoulos
a611b0bc82 Removes the retain_graph flag (#385)
* Adds global tracing flag
* Removes retain_graph in favor of is_tracer
2024-01-07 15:16:51 -08:00
Diogo
449b43762e Add inner / outer op (#348)
* inner / outer impl

* python tests

* ops list and ack

* updated descriptions

* use test helper

* removed dtype check and flatten outer to 1-D

* updated docs

* just use the reshape to flatten
2024-01-07 09:01:09 -08:00
Angelos Katharopoulos
6ea6b4258d Fix style check (#395) 2024-01-07 05:54:58 -08:00
Anchen
48f6ca8c3a Add theta cache for Rope and mask cache for ALiBi (#375) 2024-01-07 00:22:58 -08:00
Awni Hannun
c6d2878c1a safely divide for 0 size inputs (#388) 2024-01-07 00:19:54 -08:00
Awni Hannun
b34bf5d52b fix saving for non-contiguous arrays (#389) 2024-01-06 12:44:02 -08:00
Angelos Katharopoulos
608bd43604 Move the matmul type check in the op (#384) 2024-01-05 19:10:13 -08:00
Angelos Katharopoulos
4c48f6460d Fix segfault from buffer protocol and tests (#383)
* Fix segfault from buffer protocol and tests

* Fix tf test
2024-01-05 18:17:44 -08:00
Daniel Strobusch
1331fa19f6 Make array conform to the Python Buffer Protocol (#323) 2024-01-05 15:58:33 -08:00
Daniel Strobusch
dfdb284e16 make behaviour of dtype arguments consistent and compliant to numpy (#379)
All functions that take an optional dtype should

* have a default dtype visible in the generated docs (accomplished via `"dtype"_a = std::optional{float32}`)
* behave identical when `dtype=None` or no dtype is passed

This important when passing kw args down from a numpy function like:

```
def f(x, dtype=None):
  mx.random.uniform(dtype=dtype)
  # ...
```

NumPy functions behave like this.

It also fixes a minor bug in `tri`: #378

Closes #378
2024-01-05 09:37:46 -08:00
mutexuan
d8f41a5c0f support python mlx.array creation from list of mlx.array's (#325)
* support python mlx.array creation from list of mlx.array's

* include bfloat16 in UT

* refactor so that sub array made of all python primitive types gets initialized by fill_vector

* address PR comment: arr.shape().size() -> arr.ndim()

* address PR comment: get back Dtype constness and let stack to handle type promotions automatically
2024-01-04 18:53:33 -08:00
Awni Hannun
b9e415d19c bump pre commit and fix format (#373) 2024-01-04 16:28:52 -08:00
davidkoski
c82a8cc526 move all ObjC (via metal-cpp) interaction until post static initializers (#370)
* move all ObjC (via metal-cpp) interaction until post static initializers

- metal-cpp relies on static initializers to cache class and selector pointers
- code in mlx was using metal-cpp to set up NSAutoreleasePools during its own static init time
- but this code was silently failing as the class and selector pointers from metal-cpp were still nil

- defer the creation of NSAutoreleasePools until after static init time
- ensure that we have coverage where autorelease pools are needed

* Update device.cpp

remove commented code

* Update device.cpp

remove commented out code

* Update scheduler.h

update comment

* per discussion use the pool inside the task() -- this will be metal only, not needed for cpu

* Update allocator.cpp

move pool to release/alloc area
2024-01-04 16:12:00 -08:00
Angelos Katharopoulos
75dc537e44 Fix the sigmoid module (#371) 2024-01-04 13:16:36 -08:00
Awni Hannun
cf88db44b5 revert copy (#366) 2024-01-04 10:43:29 -08:00
Chunyang Wen
16856a0160 Remove useless pass (#364)
Co-authored-by: Chunyang Wen <chunyang_wen@apple.com>
2024-01-04 06:34:01 -08:00
Awni Hannun
d752f8e142 Fix CI (#359)
* fix ci

* check for linux for fp16
2024-01-04 06:33:08 -08:00
toji
d2467c320d Added support for python copy (#335)
* Added support for python copy

* precommit changes

* removed `_compiled_call_impl` line

* added tests and suggested changes

* ACK changes
2024-01-03 20:59:40 -08:00
Diogo
0d31128a44 use union instead of | (#358) 2024-01-03 19:33:19 -08:00
Diogo
1ac18eac20 simple numpy helper for tests (#352) 2024-01-03 19:19:19 -08:00
272 changed files with 29697 additions and 7450 deletions

View File

@@ -1,5 +1,8 @@
version: 2.1
orbs:
apple: ml-explore/pr-approval@0.1.0
parameters:
nightly_build:
type: boolean
@@ -7,6 +10,9 @@ parameters:
weekly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
jobs:
linux_build_and_test:
@@ -26,18 +32,28 @@ jobs:
command: |
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install pybind11-stubgen
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
- run:
name: Build python package
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py develop
- run:
name: Run the python tests
name: Generate package stubs
command: |
python3 -m unittest discover python/tests
python3 setup.py generate_stubs
- run:
name: Run Python tests
command: |
python3 -m unittest discover python/tests -v
# TODO: Reenable when extension api becomes stable
# - run:
# name: Build example extension
# command: |
# cd examples/extensions && python3 -m pip install .
- run:
name: Build CPP only
command: |
@@ -47,154 +63,188 @@ jobs:
command: ./build/tests/tests
mac_build_and_test:
machine: true
resource_class: ml-explore/m-builder
macos:
xcode: "15.2.0"
resource_class: macos.m1.large.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=3.9
conda activate runner-env
brew install python@3.9
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install pybind11-stubgen
pip install numpy
pip install torch
pip install tensorflow
pip install unittest-xml-reporting
- run:
name: Build python package
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext --inplace
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py develop
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
- run:
name: Run the python tests
name: Generate package stubs
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
DEVICE=gpu python -m xmlrunner discover -v python/tests -o test-results/gpu
source env/bin/activate
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu python3.9 -m xmlrunner discover -v python/tests -o test-results/gpu
# TODO: Reenable when extension api becomes stable
# - run:
# name: Build example extension
# command: |
# cd examples/extensions && python3.11 -m pip install .
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j
- run:
name: Run CPP tests
command: |
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
DEVICE=cpu ./build/tests/tests
build_release:
machine: true
resource_class: ml-explore/m-builder
parameters:
python_version:
type: string
default: "3.9"
macos_version:
xcode_version:
type: string
default: "14"
default: "15.2.0"
build_env:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.large.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
brew install python@<< parameters.python_version >>
python<< parameters.python_version >> -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install --upgrade setuptools
pip install pybind11-stubgen
pip install numpy
pip install twine
pip install build
- run:
name: Build package
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
PYPI_RELEASE=1 \
source env/bin/activate
DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
twine upload dist/* --repository mlx
pip install . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
python setup.py generate_stubs
- run:
name: Build Python package
command: |
source env/bin/activate
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python -m build -w
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
source env/bin/activate
twine upload dist/*
- store_artifacts:
path: dist/
build_dev_release:
machine: true
resource_class: ml-explore/m-builder
build_linux_test_release:
parameters:
python_version:
type: string
default: "3.9"
macos_version:
extra_env:
type: string
default: "14"
default: "DEV_RELEASE=1"
docker:
- image: ubuntu:20.04
steps:
- checkout
- run:
name: Install dependencies
name: Build wheel
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
PYTHON=python<< parameters.python_version >>
apt-get update
apt-get upgrade -y
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
apt-get install -y apt-utils
apt-get install -y software-properties-common
add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get install -y build-essential git
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install --upgrade setuptools
pip install pybind11-stubgen
pip install numpy
pip install twine
- run:
name: Build package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
DEV_RELEASE=1 \
pip install auditwheel
pip install patchelf
pip install build
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
twine upload dist/* --repository mlx
- store_artifacts:
path: dist/
build_package:
machine: true
resource_class: ml-explore/m-builder
parameters:
python_version:
type: string
default: "3.9"
macos_version:
type: string
default: "14"
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install numpy
pip install twine
- run:
name: Build package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
pip install . -v
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- store_artifacts:
path: dist/
path: wheelhouse/
workflows:
build_and_test:
when:
and:
- matches:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- linux_build_and_test
- mac_build_and_test
- linux_build_and_test
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
filters:
tags:
@@ -204,20 +254,53 @@ workflows:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["14.3.1", "15.2.0"]
build_env: ["PYPI_RELEASE=1"]
prb:
when:
matches:
pattern: "^pull/\\d+(/head)?$"
value: << pipeline.git.branch >>
jobs:
- hold:
type: approval
- apple/authenticate:
context: pr-approval
- mac_build_and_test:
requires: [ hold ]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
when: << pipeline.parameters.nightly_build >>
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.nightly_build >>
jobs:
- build_package:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["14.3.1", "15.2.0"]
weekly_build:
when: << pipeline.parameters.weekly_build >>
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.weekly_build >>
jobs:
- build_dev_release:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["14.3.1", "15.2.0"]
build_env: ["DEV_RELEASE=1"]
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
jobs:
- build_linux_test_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -5,11 +5,11 @@ repos:
- id: clang-format
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 22.10.0
rev: 24.2.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
rev: 5.12.0
rev: 5.13.2
hooks:
- id: isort
args:

View File

@@ -7,11 +7,12 @@ with a short description of your contribution(s) below. For example:
MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops.
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot` and safetensor support
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
@@ -252,4 +253,4 @@ Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
limitations under the License.

View File

@@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.24)
project(mlx LANGUAGES CXX)
project(mlx LANGUAGES C CXX)
# ----------------------------- Setup -----------------------------
set(CMAKE_MODULE_PATH "${PROJECT_SOURCE_DIR}/cmake")
@@ -18,7 +18,7 @@ option(MLX_BUILD_METAL "Build metal backend" ON)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.0.7)
set(MLX_VERSION 0.5.1)
endif()
# --------------------- Processor tests -------------------------
@@ -29,9 +29,15 @@ set(MLX_BUILD_ARM OFF)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64")
message(WARNING
"Building for x86_64 on macOS is not supported."
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64" AND ${CMAKE_HOST_APPLE})
message(FATAL_ERROR
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, check the build"
" documentation for possible fixes: "
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
elseif (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64")
message(WARNING
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, "
" make sure you are building for arm64.")
elseif(${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "arm64")
@@ -61,15 +67,13 @@ if (MLX_BUILD_METAL AND NOT METAL_LIB)
set(MLX_BUILD_METAL OFF)
elseif (MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
add_compile_definitions(_METAL_)
# Throw an error if xcrun not found
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION
COMMAND_ERROR_IS_FATAL ANY)
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
if (${MACOS_VERSION} GREATER_EQUAL 14.2)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
@@ -98,15 +102,6 @@ elseif (MLX_BUILD_METAL)
${QUARTZ_LIB})
endif()
MESSAGE(STATUS "Downloading json")
FetchContent_Declare(json URL https://github.com/nlohmann/json/releases/download/v3.11.3/json.tar.xz)
FetchContent_MakeAvailable(json)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${json_SOURCE_DIR}/single_include/nlohmann>
$<INSTALL_INTERFACE:include/json>
)
find_library(ACCELERATE_LIBRARY Accelerate)
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
@@ -126,16 +121,27 @@ else()
/usr/include
/usr/local/include
$ENV{BLAS_HOME}/include)
message(STATUS ${BLAS_LIBRARIES})
message(STATUS ${BLAS_INCLUDE_DIRS})
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx ${BLAS_LIBRARIES})
find_package(LAPACK REQUIRED)
if (NOT LAPACK_FOUND)
message(FATAL_ERROR "Must have LAPACK installed")
endif()
find_path(LAPACK_INCLUDE_DIRS lapacke.h
/usr/include
/usr/local/include)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx ${LAPACK_LIBRARIES})
endif()
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
target_include_directories(
mlx
mlx
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>

View File

@@ -1,3 +1,4 @@
include CMakeLists.txt
recursive-include mlx/ *
include python/src/*
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -6,15 +6,17 @@
[![CircleCI](https://circleci.com/gh/ml-explore/mlx.svg?style=svg)](https://circleci.com/gh/ml-explore/mlx)
MLX is an array framework for machine learning on Apple silicon, brought to you
by Apple machine learning research.
MLX is an array framework for machine learning research on Apple silicon,
brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy.
MLX also has a fully featured C++ API, which closely mirrors the Python API.
MLX has higher-level packages like `mlx.nn` and `mlx.optimizers` with APIs
that closely follow PyTorch to simplify building more complex models.
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,
@@ -61,17 +63,25 @@ variety of examples, including:
## Quickstart
See the [quick start
guide](https://ml-explore.github.io/mlx/build/html/quick_start.html)
guide](https://ml-explore.github.io/mlx/build/html/usage/quick_start.html)
in the documentation.
## Installation
MLX is available on [PyPI](https://pypi.org/project/mlx/). To install the Python API, run:
**With `pip`**:
```
pip install mlx
```
**With `conda`**:
```
conda install -c conda-forge mlx
```
Checkout the
[documentation](https://ml-explore.github.io/mlx/build/html/install.html#)
for more information on building the C++ and Python APIs from source.

View File

@@ -73,6 +73,7 @@ void time_unary_ops() {
void time_binary_ops() {
int M = 1000, N = 100, K = 10;
auto condition = random::randint(0, 2, {M, N, K});
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
@@ -84,7 +85,9 @@ void time_binary_ops() {
TIME(divide, a, b, device);
TIME(maximum, a, b, device);
TIME(minimum, a, b, device);
TIME(where, condition, a, b, device);
condition = array({true});
b = random::uniform({1});
eval(b);
TIMEM("scalar", add, a, b, device);
@@ -93,7 +96,9 @@ void time_binary_ops() {
TIMEM("scalar", multiply, a, b, device);
TIMEM("vector-scalar", divide, a, b, device);
TIMEM("scalar-vector", divide, b, a, device);
TIMEM("scalar-vector", where, condition, a, b, device);
condition = broadcast_to(array({true}), {1000, 100});
a = broadcast_to(random::uniform({1}), {1000, 100});
b = broadcast_to(random::uniform({1}), {1000, 100});
eval(a, b);
@@ -101,6 +106,7 @@ void time_binary_ops() {
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
TIMEM("scalar-scalar broadcast", divide, a, b, device);
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
}
void time_strided_ops() {
@@ -233,6 +239,20 @@ void time_gather_scatter() {
TIME(single_element_add);
}
void time_divmod() {
auto a = random::normal({1000});
auto b = random::normal({1000});
eval({a, b});
auto divmod_fused = [&a, &b]() { return divmod(a, b); };
TIME(divmod_fused);
auto divmod_separate = [&a, &b]() {
return std::vector<array>{floor_divide(a, b), remainder(a, b)};
};
TIME(divmod_separate);
}
int main() {
std::cout << "Benchmarks for " << default_device() << std::endl;
time_creation_ops();
@@ -246,4 +266,5 @@ int main() {
time_matmul();
time_reductions();
time_gather_scatter();
time_divmod();
}

View File

@@ -166,13 +166,13 @@ if __name__ == "__main__":
dtypes = ("float32", "float16")
transposes = ("nn", "nt", "tn")
shapes = (
(16, 234, 768, 3072),
(1, 64, 64, 25344),
(16, 1024, 1024, 1024),
(1, 1024, 1024, 2048),
(4, 1024, 1024, 4096),
(4, 1024, 4096, 1024),
(1, 4096, 4096, 4096),
(15, 1023, 1023, 1023),
(17, 1025, 1025, 1025),
)
for dtype in dtypes:

View File

@@ -60,20 +60,60 @@ def matmul(x, y):
mx.eval(ys)
def _quant_matmul(x, w, s, b, group_size, bits):
def _quant_matmul(x, w, s, b, transpose, group_size, bits):
ys = []
for i in range(10):
ys.append(mx.quantized_matmul(x, w, s, b, group_size=group_size, bits=bits))
ys.append(
mx.quantized_matmul(
x, w, s, b, transpose=transpose, group_size=group_size, bits=bits
)
)
mx.eval(ys)
quant_matmul = {
"quant_matmul_64_2": partial(_quant_matmul, group_size=64, bits=2),
"quant_matmul_64_4": partial(_quant_matmul, group_size=64, bits=4),
"quant_matmul_64_8": partial(_quant_matmul, group_size=64, bits=8),
"quant_matmul_128_2": partial(_quant_matmul, group_size=128, bits=2),
"quant_matmul_128_4": partial(_quant_matmul, group_size=128, bits=4),
"quant_matmul_128_8": partial(_quant_matmul, group_size=128, bits=8),
"quant_matmul_32_2": partial(_quant_matmul, transpose=False, group_size=32, bits=2),
"quant_matmul_32_4": partial(_quant_matmul, transpose=False, group_size=32, bits=4),
"quant_matmul_32_8": partial(_quant_matmul, transpose=False, group_size=32, bits=8),
"quant_matmul_64_2": partial(_quant_matmul, transpose=False, group_size=64, bits=2),
"quant_matmul_64_4": partial(_quant_matmul, transpose=False, group_size=64, bits=4),
"quant_matmul_64_8": partial(_quant_matmul, transpose=False, group_size=64, bits=8),
"quant_matmul_128_2": partial(
_quant_matmul, transpose=False, group_size=128, bits=2
),
"quant_matmul_128_4": partial(
_quant_matmul, transpose=False, group_size=128, bits=4
),
"quant_matmul_128_8": partial(
_quant_matmul, transpose=False, group_size=128, bits=8
),
"quant_matmul_t_32_2": partial(
_quant_matmul, transpose=True, group_size=32, bits=2
),
"quant_matmul_t_32_4": partial(
_quant_matmul, transpose=True, group_size=32, bits=4
),
"quant_matmul_t_32_8": partial(
_quant_matmul, transpose=True, group_size=32, bits=8
),
"quant_matmul_t_64_2": partial(
_quant_matmul, transpose=True, group_size=64, bits=2
),
"quant_matmul_t_64_4": partial(
_quant_matmul, transpose=True, group_size=64, bits=4
),
"quant_matmul_t_64_8": partial(
_quant_matmul, transpose=True, group_size=64, bits=8
),
"quant_matmul_t_128_2": partial(
_quant_matmul, transpose=True, group_size=128, bits=2
),
"quant_matmul_t_128_4": partial(
_quant_matmul, transpose=True, group_size=128, bits=4
),
"quant_matmul_t_128_8": partial(
_quant_matmul, transpose=True, group_size=128, bits=8
),
}
@@ -229,6 +269,13 @@ def linear(w, b, x):
mx.eval(ys)
def linear_fused(w, b, x):
ys = []
for i in range(10):
ys.append(mx.addmm(b, x, mx.transpose(w, (1, 0))))
mx.eval(ys)
def rope(x):
*_, N, D = x.shape
ys = []
@@ -369,7 +416,10 @@ if __name__ == "__main__":
print(bench(quant_matmul[args.benchmark], *xs))
elif args.benchmark == "linear":
print(bench(linear, *xs))
if args.fused:
print(bench(linear_fused, *xs))
else:
print(bench(linear, *xs))
elif args.benchmark == "sum_axis":
print(bench(reduction, "sum", axis, x))

View File

@@ -80,10 +80,8 @@ if __name__ == "__main__":
_filter = make_predicate(args.filter, args.negative_filter)
if args.mlx_dtypes:
compare_filtered = (
lambda x: compare_mlx_dtypes(
x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1]
)
compare_filtered = lambda x: (
compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
if _filter(x)
else None
)

View File

@@ -0,0 +1,109 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
import math
import random
import mlx.core as mx
from time_utils import time_fn
def bench_gelu():
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
x = mx.random.uniform(shape=(1000, 1024))
def gen_fun(fun):
def bench_fun(x):
for _ in range(10):
x = fun(x)
return x
return bench_fun
time_fn(gen_fun(gelu), x, msg="fixed gelu")
time_fn(gen_fun(mx.compile(gelu)), x, msg="compiled fixed gelu")
def randint():
return random.randint(1, x.shape[0])
def gen_fun(fun):
def bench_fun(x, y):
x = x[: randint()]
for _ in range(10):
x = fun(x)
y = fun(y)
return x, y
return bench_fun
y = mx.random.uniform(shape=(1000, 1024))
time_fn(gen_fun(gelu), x, y, msg="variable gelu")
time_fn(gen_fun(mx.compile(gelu)), x, y, msg="compiled variable gelu")
time_fn(
gen_fun(mx.compile(gelu, shapeless=True)),
x,
y,
msg="shapeless variable gelu",
)
def bench_layernorm():
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
mx.eval(weight, bias)
def layernorm(x):
x = x.astype(mx.float32)
means = mx.mean(x, axis=-1, keepdims=True)
var = mx.var(x, axis=-1, keepdims=True)
x = (x - means) * mx.rsqrt(var + 1e-4)
x = x.astype(mx.float16)
return weight * x + bias
x = mx.random.uniform(shape=(1000, 4096)).astype(mx.float16)
def gen_fun(fun):
def bench_fun(x):
for _ in range(10):
x = fun(x)
return x
return bench_fun
time_fn(gen_fun(layernorm), x, msg="fixed layernorm")
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled fixed layernorm")
def randint():
return random.randint(1, x.shape[0])
def gen_fun(fun):
def bench_fun(x):
x = x[: randint()]
for _ in range(10):
x = fun(x)
return x
return bench_fun
random.seed(0)
time_fn(gen_fun(layernorm), x, msg="variable layernorm")
random.seed(0)
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled variable layernorm")
random.seed(0)
time_fn(
gen_fun(mx.compile(layernorm, shapeless=True)),
x,
msg="shapeless variable layernorm",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Compile benchmarks.")
args = parser.parse_args()
bench_gelu()
bench_layernorm()

View File

@@ -0,0 +1,129 @@
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
import numpy as np
import torch
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
device_name = device_name.decode("utf-8").strip("\n")
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, C)).astype(np_dtype)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_2D(strides, padding)
f_pt = make_pt_conv_2D(strides, padding)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2)),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2)),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2)),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2)),
)
for dtype in dtypes:
print("(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, diff%")
for N, H, W, C, kH, kW, O, strides, padding in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,53 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
from time import time
import mlx.core as mx
import torch
from time_utils import measure_runtime
def benchmark_gather_mlx(x_shape, idx_shape):
def gather(x, idx):
mx.eval(x[idx])
idx = mx.random.randint(0, x_shape[0] - 1, idx_shape)
x = mx.random.normal(x_shape).astype(mx.float32)
runtime = measure_runtime(gather, x=x, idx=idx)
print(f"MLX: {runtime:.3f}ms")
def benchmark_gather_torch(x_shape, idx_shape, device):
def gather(x, idx, device):
_ = x[idx]
if device == torch.device("mps"):
torch.mps.synchronize()
idx = torch.randint(0, x_shape[0] - 1, idx_shape).to(device)
x = torch.randn(x_shape, dtype=torch.float32).to(device)
runtime = measure_runtime(gather, x=x, idx=idx, device=device)
print(f"PyTorch: {runtime:.3f}ms")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Gather benchmarks.")
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
device = torch.device("cpu")
else:
device = torch.device("mps")
idx_shapes = [(1_000_000,), (100_000,), ()]
x_shapes = [(100, 64), (100, 1024), (4, 1_000_000)]
for x_shape, idx_shape in zip(x_shapes, idx_shapes):
print("=" * 20)
print(f"X {x_shape}, Indices {idx_shape}")
benchmark_gather_mlx(x_shape, idx_shape)
benchmark_gather_torch(x_shape, idx_shape, device=device)

View File

@@ -1,198 +0,0 @@
# Copyright © 2023 Apple Inc.
import math
import time
import jax
import jax.numpy as jnp
from flax import linen as nn
class RoPE(nn.Module):
dims: int
traditional: bool = False
def _compute_rope(self, costheta, sintheta, x):
x1 = x[..., : self.dims // 2]
x2 = x[..., self.dims // 2 : self.dims]
rx1 = x1 * costheta - x2 * sintheta
rx2 = x1 * sintheta + x2 * costheta
if self.dims < x.shape[-1]:
rx = jnp.concatenate([rx1, rx2, x[..., self.dims :]], axis=-1)
else:
rx = jnp.concatenate([rx1, rx2], axis=-1)
return rx
def _compute_traditional_rope(self, costheta, sintheta, x):
x1 = x[..., ::2]
x2 = x[..., 1::2]
rx1 = x1 * costheta - x2 * sintheta
rx2 = x1 * sintheta + x2 * costheta
if self.dims < x.shape[-1]:
raise NotImplementedError(
"RoPE doesn't implement partial traditional application"
)
rx = jnp.concatenate([rx1[..., None], rx2[..., None]], axis=-1)
return rx
@staticmethod
def create_cos_sin_theta(
N: int,
D: int,
offset: int = 0,
base: float = 10000,
dtype=jnp.float32,
):
D = D // 2
positions = jnp.arange(offset, N, dtype=dtype)
freqs = jnp.exp(-jnp.arange(0, D, dtype=dtype) * (math.log(base) / D))
theta = positions.reshape((-1, 1)) * freqs.reshape((1, -1))
costheta = jnp.cos(theta)
sintheta = jnp.sin(theta)
return costheta, sintheta
@nn.compact
def __call__(self, x, offset: int = 0):
shape = x.shape
x = x.reshape((-1, shape[-2], shape[-1]))
N = x.shape[1] + offset
costheta, sintheta = RoPE.create_cos_sin_theta(
N, self.dims, offset=offset, dtype=x.dtype
)
rope = (
self._compute_traditional_rope if self.traditional else self._compute_rope
)
rx = rope(costheta, sintheta, x)
return rx.reshape(shape)
class LlamaAttention(nn.Module):
dims: int
num_heads: int
dtype: jnp.dtype
def setup(self):
num_heads = self.num_heads
dims = self.dims
self.rope = RoPE(dims // num_heads, True)
self.query_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
self.key_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
self.value_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
self.out_proj = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
queries = queries.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
keys = keys.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
values = values.reshape((B, L, num_heads, -1)).transpose((0, 2, 1, 3))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = jnp.concatenate([key_cache, keys], axis=2)
values = jnp.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Dimensions are [batch x num heads x sequence x hidden dim]
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.transpose((0, 1, 3, 2))
if mask is not None:
scores = scores + mask
scores = jax.nn.softmax(scores, axis=-1)
values_hat = (scores @ values).transpose((0, 2, 1, 3)).reshape((B, L, -1))
return self.out_proj(values_hat), (keys, values)
class LlamaEncoderLayer(nn.Module):
dims: int
mlp_dims: int
num_heads: int
dtype: jnp.dtype
def setup(self):
dims = self.dims
mlp_dims = self.mlp_dims
num_heads = self.num_heads
self.attention = LlamaAttention(dims, num_heads, dtype)
self.norm1 = nn.RMSNorm(param_dtype=self.dtype)
self.norm2 = nn.RMSNorm(param_dtype=self.dtype)
self.linear1 = nn.Dense(mlp_dims, use_bias=False, param_dtype=self.dtype)
self.linear2 = nn.Dense(mlp_dims, use_bias=False, param_dtype=self.dtype)
self.linear3 = nn.Dense(dims, use_bias=False, param_dtype=self.dtype)
def __call__(self, x, mask=None, cache=None):
y = self.norm1(x)
y, cache = self.attention(y, y, y, mask, cache)
x = x + y
y = self.norm2(x)
a = self.linear1(y)
b = self.linear2(y)
y = jax.nn.silu(a) * b
y = self.linear3(y)
x = x + y
return x, cache
def measure(model, x, cache):
for i in range(5):
y, c = model(x, mask=None, cache=cache)
jax.block_until_ready((y, c))
start = time.time()
for i in range(5):
y, c = model(x, mask=None, cache=cache)
jax.block_until_ready((y, c))
end = time.time()
return (end - start) * 1000 / 5
if __name__ == "__main__":
H = 32
D = 4096
F = 43 * 256
C = 1000
dtype = jnp.float16
k1, k2, k3, k4 = jax.random.split(jax.random.PRNGKey(0), 4)
x = jax.random.normal(k1, (1, 1, D), dtype)
cache = [
jax.random.normal(k2, [1, H, C, D // H], dtype),
jax.random.normal(k3, [1, H, C, D // H], dtype),
]
layer = LlamaEncoderLayer(D, F, H, dtype=dtype)
params = layer.init(k4, x, mask=None, cache=cache)["params"]
@jax.jit
def model_fn(x, mask, cache):
return layer.apply({"params": params}, x, mask=mask, cache=cache)
T = measure(model_fn, x, cache)
print("Time per layer per token:", T, "ms")
print("Lower bound total time per token:", T * 32, "ms")

View File

@@ -1,118 +0,0 @@
# Copyright © 2023 Apple Inc.
import math
import time
import mlx.core as mx
import mlx.nn as nn
import mlx.utils
class LlamaAttention(nn.Module):
def __init__(self, dims: int, num_heads: int):
super().__init__()
self.num_heads = num_heads
self.rope = nn.RoPE(dims // num_heads, True)
self.query_proj = nn.Linear(dims, dims, False)
self.key_proj = nn.Linear(dims, dims, False)
self.value_proj = nn.Linear(dims, dims, False)
self.out_proj = nn.Linear(dims, dims, False)
def __call__(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
queries = mx.transpose(mx.reshape(queries, (B, L, num_heads, -1)), (0, 2, 1, 3))
keys = mx.transpose(mx.reshape(keys, (B, L, num_heads, -1)), (0, 2, 1, 3))
values = mx.transpose(mx.reshape(values, (B, L, num_heads, -1)), (0, 2, 1, 3))
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = mx.concatenate([key_cache, keys], axis=2)
values = mx.concatenate([value_cache, values], axis=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Dimensions are [batch x num heads x sequence x hidden dim]
scale = mx.array(math.sqrt(1 / queries.shape[-1]), dtype=queries.dtype)
scores = (queries * scale) @ mx.transpose(keys, (0, 1, 3, 2))
if mask is not None:
scores = scores + mask
scores = mx.softmax(scores, axis=-1)
values_hat = mx.reshape(mx.transpose(scores @ values, (0, 2, 1, 3)), (B, L, -1))
return self.out_proj(values_hat), (keys, values)
class LlamaEncoderLayer(nn.Module):
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
super().__init__()
self.attention = LlamaAttention(dims, num_heads)
self.norm1 = nn.RMSNorm(dims)
self.norm2 = nn.RMSNorm(dims)
self.linear1 = nn.Linear(dims, mlp_dims, False)
self.linear2 = nn.Linear(dims, mlp_dims, False)
self.linear3 = nn.Linear(mlp_dims, dims, False)
def __call__(self, x, mask=None, cache=None):
y = self.norm1(x)
y, cache = self.attention(y, y, y, mask, cache)
x = x + y
y = self.norm2(x)
a = self.linear1(y)
b = self.linear2(y)
y = a * mx.sigmoid(a) * b
y = self.linear3(y)
x = x + y
return x, cache
def measure(model, x, cache):
for i in range(5):
y, c = model(x, mask=None, cache=cache)
mx.eval(y, c)
start = time.time()
rs = []
for i in range(5):
y, c = model(x, mask=None, cache=cache)
rs.append((y, c))
mx.eval(rs)
end = time.time()
return (end - start) * 1000 / 5
if __name__ == "__main__":
H = 32
D = 4096
F = 43 * 256
C = 1000
mx.set_default_device(mx.gpu)
dtype = mx.float16
layer = LlamaEncoderLayer(D, F, H)
layer.update(mlx.utils.tree_map(lambda x: x.astype(dtype), layer.parameters()))
k1, k2, k3 = mx.random.split(mx.random.key(0), 3)
x = mx.random.normal([1, 1, D], dtype=dtype)
cache = [
mx.random.normal([1, H, C, D // H], dtype=dtype),
mx.random.normal([1, H, C, D // H], dtype=dtype),
]
mx.eval(x, cache)
T = measure(layer, x, cache)
print("Time per layer per token:", T, "ms")
print("Lower bound total time per token:", T * 32, "ms")

View File

@@ -1,199 +0,0 @@
# Copyright © 2023 Apple Inc.
import math
import time
import torch
import torch.mps
import torch.nn as nn
def sync_if_needed(x):
if x.device != torch.device("cpu"):
torch.mps.synchronize()
class RoPE(nn.Module):
def __init__(self, dims: int, traditional: bool = False):
super().__init__()
self.dims = dims
self.traditional = traditional
def _compute_rope(self, costheta, sintheta, x):
x1 = x[..., : self.dims // 2]
x2 = x[..., self.dims // 2 : self.dims]
rx1 = x1 * costheta - x2 * sintheta
rx2 = x1 * sintheta + x2 * costheta
if self.dims < x.shape[-1]:
rx = torch.cat([rx1, rx2, x[..., self.dims :]], dim=-1)
else:
rx = torch.cat([rx1, rx2], dim=-1)
return rx
def _compute_traditional_rope(self, costheta, sintheta, x):
x1 = x[..., ::2]
x2 = x[..., 1::2]
rx1 = x1 * costheta - x2 * sintheta
rx2 = x1 * sintheta + x2 * costheta
if self.dims < x.shape[-1]:
raise NotImplementedError(
"RoPE doesn't implement partial traditional application"
)
rx = torch.cat([rx1[..., None], rx2[..., None]], dim=-1)
return rx
def forward(self, x, offset: int = 0):
shape = x.shape
x = x.view(-1, shape[-2], shape[-1])
N = x.shape[1] + offset
costheta, sintheta = RoPE.create_cos_sin_theta(
N, self.dims, offset=offset, device=x.device, dtype=x.dtype
)
rope = (
self._compute_traditional_rope if self.traditional else self._compute_rope
)
rx = rope(costheta, sintheta, x)
return rx.view(*shape)
@staticmethod
def create_cos_sin_theta(
N: int,
D: int,
offset: int = 0,
base: float = 10000,
device="cpu",
dtype=torch.float32,
):
D = D // 2
positions = torch.arange(offset, N, dtype=dtype, device=device)
freqs = torch.exp(
-torch.arange(0, D, dtype=dtype, device=device) * (math.log(base) / D)
)
theta = positions.view(-1, 1) * freqs.view(1, -1)
costheta = torch.cos(theta)
sintheta = torch.sin(theta)
return costheta, sintheta
class RMSNorm(nn.Module):
def __init__(self, dims: int, epsilon: float = 1e-6):
super().__init__()
self.gamma = nn.Parameter(torch.ones((dims,)))
self.epsilon = epsilon
def forward(self, x):
n = torch.rsqrt(x.square().mean(dim=-1, keepdims=True) + self.epsilon)
return self.gamma * x * n
class LlamaAttention(nn.Module):
def __init__(self, dims: int, num_heads: int):
super().__init__()
self.num_heads = num_heads
self.rope = RoPE(dims // num_heads, True)
self.query_proj = nn.Linear(dims, dims, bias=False)
self.key_proj = nn.Linear(dims, dims, bias=False)
self.value_proj = nn.Linear(dims, dims, bias=False)
self.out_proj = nn.Linear(dims, dims, bias=False)
def forward(self, queries, keys, values, mask=None, cache=None):
queries = self.query_proj(queries)
keys = self.key_proj(keys)
values = self.value_proj(values)
num_heads = self.num_heads
B, L, D = queries.shape
queries = queries.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
keys = keys.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
values = values.view(B, L, num_heads, -1).permute(0, 2, 1, 3)
if cache is not None:
key_cache, value_cache = cache
queries = self.rope(queries, offset=key_cache.shape[2])
keys = self.rope(keys, offset=key_cache.shape[2])
keys = torch.cat([key_cache, keys], dim=2)
values = torch.cat([value_cache, values], dim=2)
else:
queries = self.rope(queries)
keys = self.rope(keys)
# Dimensions are [batch x num heads x sequence x hidden dim]
scale = math.sqrt(1 / queries.shape[-1])
scores = (queries * scale) @ keys.permute(0, 1, 3, 2)
if mask is not None:
scores = scores + mask
scores = torch.softmax(scores, dim=-1)
values_hat = (scores @ values).permute(0, 2, 1, 3).reshape(B, L, -1)
return self.out_proj(values_hat), (keys, values)
class LlamaEncoderLayer(nn.Module):
def __init__(self, dims: int, mlp_dims: int, num_heads: int):
super().__init__()
self.attention = LlamaAttention(dims, num_heads)
self.norm1 = RMSNorm(dims)
self.norm2 = RMSNorm(dims)
self.linear1 = nn.Linear(dims, mlp_dims, bias=False)
self.linear2 = nn.Linear(dims, mlp_dims, bias=False)
self.linear3 = nn.Linear(mlp_dims, dims, bias=False)
def forward(self, x, mask=None, cache=None):
y = self.norm1(x)
y, cache = self.attention(y, y, y, mask, cache)
x = x + y
y = self.norm2(x)
a = self.linear1(y)
b = self.linear2(y)
y = torch.nn.functional.silu(a) * b
y = self.linear3(y)
x = x + y
return x, cache
@torch.no_grad()
def measure(model, x, cache):
for i in range(5):
y, c = model(x, mask=None, cache=cache)
sync_if_needed(x)
start = time.time()
for i in range(5):
y, c = model(x, mask=None, cache=cache)
sync_if_needed(x)
end = time.time()
return (end - start) * 1000 / 5
if __name__ == "__main__":
H = 32
D = 4096
F = 43 * 256
C = 1000
device = torch.device("mps")
dtype = torch.float16
layer = LlamaEncoderLayer(D, F, H).to(device).to(dtype)
x = torch.randn(1, 1, D).to(device).to(dtype)
cache = [
torch.randn(1, H, C, D // H).to(device).to(dtype),
torch.randn(1, H, C, D // H).to(device).to(dtype),
]
T = measure(layer, x, cache)
print("Time per layer per token:", T, "ms")
print("Lower bound total time per token:", T * 32, "ms")

View File

@@ -0,0 +1,35 @@
# Copyright © 2023-2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
from time_utils import time_fn
def time_rope():
rope = nn.RoPE(4096)
# vec
x = mx.random.uniform(shape=(1, 4096)).astype(mx.float16)
mx.eval(x)
def rope_vec(x):
for _ in range(32):
x = rope(x)
return x
time_fn(rope_vec, x)
# matrix
x = mx.random.uniform(shape=(1024, 4096)).astype(mx.float16)
mx.eval(x)
def rope_mat(x):
for _ in range(32):
x = rope(x)
return x
time_fn(rope_mat, x)
if __name__ == "__main__":
time_rope()

View File

@@ -0,0 +1,96 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
import mlx.core as mx
import torch
from time_utils import measure_runtime
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
def scatter(dst, x, idx):
dst[*idx] = x
mx.eval(dst)
idx = []
for idx_shape in idx_shapes:
idx.append(mx.random.randint(0, dst_shape[0] - 1, idx_shape))
x = mx.random.normal(x_shape).astype(mx.float32)
dst = mx.random.normal(dst_shape).astype(mx.float32)
runtime = measure_runtime(scatter, dst=dst, x=x, idx=idx)
print(f"MLX: {runtime:.3f}ms")
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
def gather(dst, x, idx, device):
dst[*idx] = x
if device == torch.device("mps"):
torch.mps.synchronize()
idx = []
for idx_shape in idx_shapes:
idx.append(torch.randint(0, dst_shape[0] - 1, idx_shape).to(device))
x = torch.randn(x_shape, dtype=torch.float32).to(device)
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
runtime = measure_runtime(gather, dst=dst, x=x, idx=idx, device=device)
print(f"PyTorch: {runtime:.3f}ms")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Gather benchmarks.")
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
device = torch.device("cpu")
else:
device = torch.device("mps")
dst_shapes = [
(10, 64),
(100_000, 64),
(1_000_000, 64),
(100_000,),
(2_000_00,),
(20_000_000,),
(10000, 64),
(100, 64),
(100, 10_000, 64),
(10, 100, 100, 21),
(1_000, 1_000, 10),
]
idx_shapes = [
[(1_000_000,)],
[(1_000_000,)],
[(100_000,)],
[(1_000_000,)],
[(20_000_000,)],
[(20_000_000,)],
[(1000000,)],
[(10000000,)],
[(1_000,)],
[(10_000,)],
[(1_000,), (1_000,)],
]
x_shapes = [
(1_000_000, 64),
(1_000_000, 64),
(100_000, 64),
(1_000_000,),
(20_000_000,),
(20_000_000,),
(1000000, 64),
(10000000, 64),
(1_000, 10_000, 64),
(10_000, 100, 100, 21),
(1_000, 10),
]
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
print("=" * 20)
print(f"X {x_shape}, Indices {idx_shape}")
benchmark_scatter_mlx(dst_shape, x_shape, idx_shape)
benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device=device)

View File

@@ -44,6 +44,13 @@ def time_matmul():
time_fn(mx.matmul, a, b)
def time_maximum():
a = mx.random.uniform(shape=(32, 1024, 1024))
b = mx.random.uniform(shape=(32, 1024, 1024))
mx.eval(a, b)
time_fn(mx.maximum, a, b)
def time_negative():
a = mx.random.uniform(shape=(10000, 1000))
mx.eval(a)
@@ -101,6 +108,7 @@ if __name__ == "__main__":
time_add()
time_matmul()
time_maximum()
time_exp()
time_negative()
time_logsumexp()

View File

@@ -1,4 +1,4 @@
# Copyright © 2023 Apple Inc.
# Copyright © 2023-2024 Apple Inc.
import time
@@ -6,7 +6,11 @@ import mlx.core as mx
def time_fn(fn, *args, **kwargs):
print(f"Timing {fn.__name__} ...", end=" ")
msg = kwargs.pop("msg", None)
if msg:
print(f"Timing {msg} ...", end=" ")
else:
print(f"Timing {fn.__name__} ...", end=" ")
# warmup
for _ in range(5):
@@ -20,3 +24,15 @@ def time_fn(fn, *args, **kwargs):
msec = 1e3 * (toc - tic) / num_iters
print(f"{msec:.5f} msec")
def measure_runtime(fn, **kwargs):
# Warmup
for _ in range(5):
fn(**kwargs)
tic = time.time()
iters = 100
for _ in range(iters):
fn(**kwargs)
return (time.time() - tic) * 1000 / iters

1
docs/.gitignore vendored
View File

@@ -1,2 +1,3 @@
src/python/_autosummary*/
src/python/nn/_autosummary*/
src/python/optimizers/_autosummary*/

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1,19 +0,0 @@
{{ fullname | escape | underline}}
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{#{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
{%- if item not in inherited_members and item != '__init__' %}
~{{ name }}.{{ item }}
{%- endif %}
{%- endfor %}
{% endif %}
{% endblock %}#}

View File

@@ -5,13 +5,15 @@
import os
import subprocess
import mlx.core as mx
# -- Project information -----------------------------------------------------
project = "MLX"
copyright = "2023, MLX Contributors"
author = "MLX Contributors"
version = "0.0.7"
release = "0.0.7"
version = ".".join(mx.__version__.split(".")[:3])
release = version
# -- General configuration ---------------------------------------------------
@@ -24,6 +26,7 @@ extensions = [
python_use_unqualified_type_names = True
autosummary_generate = True
autosummary_filename_map = {"mlx.core.Stream": "stream_class"}
intersphinx_mapping = {
"https://docs.python.org/3": None,
@@ -46,10 +49,12 @@ html_theme_options = {
"repository_url": "https://github.com/ml-explore/mlx",
"use_repository_button": True,
"navigation_with_keys": False,
"logo": {
"image_light": "_static/mlx_logo.png",
"image_dark": "_static/mlx_logo_dark.png",
},
}
html_logo = "_static/mlx_logo.png"
# -- Options for HTMLHelp output ---------------------------------------------

View File

@@ -35,7 +35,7 @@ However, you work with vector math libraries often and realize that the
You would really like the part of your applications that does this operation
on the CPU to be very fast - so you decide that you want it to rely on the
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
our assumptions on to you, let's also assume that you want to learn how add
our assumptions on to you, let's also assume that you want to learn how to add
your own implementation for the gradients of your new operation while going
over the ins-and-outs of the MLX framework.
@@ -677,9 +677,9 @@ Let's look at the overall directory structure first.
Binding to Python
^^^^^^^^^^^^^^^^^^
We use PyBind11_ to build a Python API for the C++ library. Since bindings
for all needed components such as `mlx.core.array`, `mlx.core.stream`, etc.
are already provided, adding our :meth:`axpby` becomes very simple!
We use PyBind11_ to build a Python API for the C++ library. Since bindings for
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
already provided, adding our :meth:`axpby` is simple!
.. code-block:: C++
@@ -927,18 +927,18 @@ Results:
We see some modest improvements right away!
This operation is now good to be used to build other operations,
in :class:`mlx.nn.Module` calls, and also as a part of graph
transformations such as :meth:`grad` and :meth:`simplify`!
This operation is now good to be used to build other operations, in
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
:meth:`grad`!
Scripts
-------
.. admonition:: Download the code
The full example code is available in `mlx-examples <code>`_.
The full example code is available in `mlx <code>`_.
.. code: `TODO_LINK/extensions`_
.. code: `https://github.com/ml-explore/mlx/tree/main/examples/extensions/`_
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
.. _Metal: https://developer.apple.com/documentation/metal?language=objc

View File

@@ -371,7 +371,7 @@ Scripts
The full example code is available in `mlx-examples`_.
.. _mlx-examples: https://github.com/ml-explore/mlx-examples/tree/main/llama
.. _mlx-examples: https://github.com/ml-explore/mlx-examples/tree/main/llms/llama
.. [1] Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B. and Liu, Y., 2021.
Roformer: Enhanced transformer with rotary position embedding. arXiv

View File

@@ -35,9 +35,15 @@ are the CPU and GPU.
:caption: Usage
:maxdepth: 1
quick_start
unified_memory
using_streams
usage/quick_start
usage/lazy_evaluation
usage/unified_memory
usage/indexing
usage/saving_and_loading
usage/function_transforms
usage/compile
usage/numpy
usage/using_streams
.. toctree::
:caption: Examples
@@ -58,6 +64,7 @@ are the CPU and GPU.
python/transforms
python/fft
python/linalg
python/metal
python/nn
python/optimizers
python/tree_utils

View File

@@ -1,8 +1,8 @@
Build and Install
=================
Install from PyPI
-----------------
Python Installation
-------------------
MLX is available on PyPI. All you have to do to use MLX with your own Apple
silicon computer is
@@ -21,6 +21,14 @@ To install from PyPI you must meet the following requirements:
MLX is only available on devices running macOS >= 13.3
It is highly recommended to use macOS 14 (Sonoma)
MLX is also available on conda-forge. To install MLX with conda do:
.. code-block:: shell
conda install conda-forge::mlx
Troubleshooting
^^^^^^^^^^^^^^^
@@ -48,6 +56,9 @@ Build Requirements
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
- Xcode >= 14.3 (Xcode >= 15.0 for macOS 14 and above)
.. note::
Ensure your shell environment is native ``arm``, not ``x86`` via Rosetta. If
the output of ``uname -p`` is ``x86``, see the :ref:`troubleshooting section <build shell>` below.
Python API
^^^^^^^^^^
@@ -169,6 +180,7 @@ should point to the path to the built metal library.
Troubleshooting
^^^^^^^^^^^^^^^
Metal not found
~~~~~~~~~~~~~~~
@@ -189,3 +201,34 @@ Then set the active developer directory:
.. code-block:: shell
sudo xcode-select --switch /Applications/Xcode.app/Contents/Developer
x86 Shell
~~~~~~~~~
.. _build shell:
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
Rosetta instead of natively.
To fix this, find the application in Finder (``/Applications`` for iTerm,
``/Applications/Utilities`` for Terminal), right-click, and click “Get Info”.
Uncheck “Open using Rosetta”, close the “Get Info” window, and restart your
terminal.
Verify the terminal is now running natively the following command:
.. code-block:: shell
$ uname -p
arm
Also check that cmake is using the correct architecture:
.. code-block:: shell
$ cmake --system-information | grep CMAKE_HOST_SYSTEM_PROCESSOR
CMAKE_HOST_SYSTEM_PROCESSOR "arm64"
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
but the build errors out with "Building for x86_64 on macOS is not supported."
wipe your build cahce with ``rm -rf build/`` and try again.

View File

@@ -29,9 +29,9 @@ The default floating point type is ``float32`` and the default integer type is
* - ``uint32``
- 4
- 32-bit unsigned integer
* - ``uint32``
* - ``uint64``
- 8
- 32-bit unsigned integer
- 64-bit unsigned integer
* - ``int8``
- 1
- 8-bit signed integer

View File

@@ -9,9 +9,10 @@ Devices and Streams
:toctree: _autosummary
Device
Stream
default_device
set_default_device
Stream
default_stream
new_stream
set_default_stream
stream

View File

@@ -9,3 +9,4 @@ Linear Algebra
:toctree: _autosummary
norm
qr

14
docs/src/python/metal.rst Normal file
View File

@@ -0,0 +1,14 @@
Metal
=====
.. currentmodule:: mlx.core.metal
.. autosummary::
:toctree: _autosummary
is_available
get_active_memory
get_peak_memory
get_cache_memory
set_memory_limit
set_cache_limit

View File

@@ -180,3 +180,4 @@ In detail:
nn/layers
nn/functions
nn/losses
nn/init

View File

@@ -12,12 +12,24 @@ simple functions.
:toctree: _autosummary_functions
:template: nn-module-template.rst
elu
gelu
gelu_approx
gelu_fast_approx
relu
prelu
silu
step
selu
glu
hardswish
leaky_relu
log_sigmoid
log_softmax
mish
prelu
relu
relu6
selu
sigmoid
silu
softmax
softplus
softshrink
step
tanh

View File

@@ -0,0 +1,45 @@
.. _init:
.. currentmodule:: mlx.nn.init
Initializers
------------
The ``mlx.nn.init`` package contains commonly used initializers for neural
network parameters. Initializers return a function which can be applied to any
input :obj:`mlx.core.array` to produce an initialized output.
For example:
.. code:: python
import mlx.core as mx
import mlx.nn as nn
init_fn = nn.init.uniform()
# Produces a [2, 2] uniform matrix
param = init_fn(mx.zeros((2, 2)))
To re-initialize all the parameter in an :obj:`mlx.nn.Module` from say a uniform
distribution, you can do:
.. code:: python
import mlx.nn as nn
model = nn.Sequential(nn.Linear(5, 10), nn.ReLU(), nn.Linear(10, 5))
init_fn = nn.init.uniform(low=-0.1, high=0.1)
model.apply(init_fn)
.. autosummary::
:toctree: _autosummary
constant
normal
uniform
identity
glorot_normal
glorot_uniform
he_normal
he_uniform

View File

@@ -9,29 +9,35 @@ Layers
:toctree: _autosummary
:template: nn-module-template.rst
Sequential
ReLU
PReLU
GELU
SiLU
Step
SELU
Mish
Embedding
Linear
QuantizedLinear
ALiBi
AvgPool1d
AvgPool2d
BatchNorm
Conv1d
Conv2d
BatchNorm
LayerNorm
RMSNorm
GroupNorm
InstanceNorm
Dropout
Dropout2d
Dropout3d
Transformer
Embedding
GELU
GroupNorm
InstanceNorm
LayerNorm
Linear
MaxPool1d
MaxPool2d
Mish
MultiHeadAttention
ALiBi
PReLU
QuantizedLinear
RMSNorm
ReLU
RoPE
SELU
Sequential
SiLU
SinusoidalPositionalEncoding
Softshrink
Step
Transformer
Upsample

View File

@@ -10,13 +10,16 @@ Loss Functions
:template: nn-module-template.rst
binary_cross_entropy
cosine_similarity_loss
cross_entropy
gaussian_nll_loss
hinge_loss
huber_loss
kl_div_loss
l1_loss
log_cosh_loss
margin_ranking_loss
mse_loss
nll_loss
smooth_l1_loss
triplet_loss
hinge_loss
huber_loss
log_cosh_loss
triplet_loss

View File

@@ -11,6 +11,7 @@ Module
:toctree: _autosummary
Module.training
Module.state
.. rubric:: Methods

View File

@@ -25,6 +25,9 @@ Operations
argpartition
argsort
array_equal
atleast_1d
atleast_2d
atleast_3d
broadcast_to
ceil
clip
@@ -32,10 +35,14 @@ Operations
convolve
conv1d
conv2d
conv_general
cos
cosh
dequantize
diag
diagonal
divide
divmod
equal
erf
erfinv
@@ -49,6 +56,12 @@ Operations
greater
greater_equal
identity
inner
isclose
isnan
isposinf
isneginf
isinf
less
less_equal
linspace
@@ -59,6 +72,8 @@ Operations
log1p
logaddexp
logical_not
logical_and
logical_or
logsumexp
matmul
max
@@ -71,6 +86,7 @@ Operations
negative
ones
ones_like
outer
partition
pad
prod
@@ -84,6 +100,7 @@ Operations
save
savez
savez_compressed
save_gguf
save_safetensors
sigmoid
sign
@@ -105,6 +122,8 @@ Operations
tan
tanh
tensordot
tile
topk
transpose
tri
tril

View File

@@ -29,19 +29,8 @@ model's parameters and the **optimizer state**.
# Compute the new parameters but also the optimizer state.
mx.eval(model.parameters(), optimizer.state)
.. currentmodule:: mlx.optimizers
.. toctree::
.. autosummary::
:toctree: _autosummary
:template: optimizers-template.rst
OptimizerState
Optimizer
SGD
RMSprop
Adagrad
AdaDelta
Adam
AdamW
Adamax
Lion
optimizers/optimizer
optimizers/common_optimizers
optimizers/schedulers

View File

@@ -0,0 +1,20 @@
.. _common_optimizers:
Common Optimizers
=================
.. currentmodule:: mlx.optimizers
.. autosummary::
:toctree: _autosummary
:template: optimizers-template.rst
SGD
RMSprop
Adagrad
Adafactor
AdaDelta
Adam
AdamW
Adamax
Lion

View File

@@ -0,0 +1,23 @@
Optimizer
=========
.. currentmodule:: mlx.optimizers
.. autoclass:: Optimizer
.. rubric:: Attributes
.. autosummary::
:toctree: _autosummary
Optimizer.state
.. rubric:: Methods
.. autosummary::
:toctree: _autosummary
Optimizer.apply_gradients
Optimizer.init
Optimizer.update

View File

@@ -0,0 +1,15 @@
.. _schedulers:
Schedulers
==========
.. currentmodule:: mlx.optimizers
.. autosummary::
:toctree: _autosummary
cosine_decay
exponential_decay
join_schedules
linear_schedule
step_decay

View File

@@ -33,13 +33,13 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
.. autosummary::
:toctree: _autosummary
seed
key
split
bernoulli
categorical
gumbel
key
normal
randint
uniform
seed
split
truncated_normal
uniform

View File

@@ -9,9 +9,11 @@ Transforms
:toctree: _autosummary
eval
compile
disable_compile
enable_compile
grad
value_and_grad
jvp
vjp
vmap
simplify

430
docs/src/usage/compile.rst Normal file
View File

@@ -0,0 +1,430 @@
.. _compile:
Compilation
===========
.. currentmodule:: mlx.core
MLX has a :func:`compile` function transformation which compiles computation
graphs. Function compilation results in smaller graphs by merging common work
and fusing certain operations. In many cases this can lead to big improvements
in run-time and memory use.
Getting started with :func:`compile` is simple, but there are some edge cases
that are good to be aware of for more complex graphs and advanced usage.
Basics of Compile
-----------------
Let's start with a simple example:
.. code-block:: python
def fun(x, y):
return mx.exp(-x) + y
x = mx.array(1.0)
y = mx.array(2.0)
# Regular call, no compilation
# Prints: array(2.36788, dtype=float32)
print(fun(x, y))
# Compile the function
compiled_fun = mx.compile(fun)
# Prints: array(2.36788, dtype=float32)
print(compiled_fun(x, y))
The output of both the regular function and the compiled function is the same
up to numerical precision.
The first time you call a compiled function, MLX will build the compute
graph, optimize it, and generate and compile code. This can be relatively
slow. However, MLX will cache compiled functions, so calling a compiled
function multiple times will not initiate a new compilation. This means you
should typically compile functions that you plan to use more than once.
.. code-block:: python
def fun(x, y):
return mx.exp(-x) + y
x = mx.array(1.0)
y = mx.array(2.0)
compiled_fun = mx.compile(fun)
# Compiled here
compiled_fun(x, y)
# Not compiled again
compiled_fun(x, y)
# Not compiled again
mx.compile(fun)(x, y)
There are some important cases to be aware of that can cause a function to
be recompiled:
* Changing the shape or number of dimensions
* Changing the type of any of the inputs
* Changing the number of inputs to the function
In certain cases only some of the compilation stack will be rerun (for
example when changing the shapes) and in other cases the full compilation
stack will be rerun (for example when changing the types). In general you
should avoid compiling functions too frequently.
Another idiom to watch out for is compiling functions which get created and
destroyed frequently. This can happen, for example, when compiling an anonymous
function in a loop:
.. code-block:: python
a = mx.array(1.0)
# Don't do this, compiles lambda at each iteration
for _ in range(5):
mx.compile(lambda x: mx.exp(mx.abs(x)))(a)
Example Speedup
---------------
The :func:`mlx.nn.gelu` is a nonlinear activation function commonly used with
Transformer-based models. The implementation involves several unary and binary
element-wise operations:
.. code-block:: python
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
If you use this function with small arrays, it will be overhead bound. If you
use it with large arrays it will be memory bandwidth bound. However, all of
the operations in the ``gelu`` are fusible into a single kernel with
:func:`compile`. This can speedup both cases considerably.
Let's compare the runtime of the regular function versus the compiled
function. We'll use the following timing helper which does a warm up and
handles synchronization:
.. code-block:: python
import time
def timeit(fun, x):
# warm up
for _ in range(10):
mx.eval(fun(x))
tic = time.perf_counter()
for _ in range(100):
mx.eval(fun(x))
toc = time.perf_counter()
tpi = 1e3 * (toc - tic) / 100
print(f"Time per iteration {tpi:.3f} (ms)")
Now make an array, and benchmark both functions:
.. code-block:: python
x = mx.random.uniform(shape=(32, 1000, 4096))
timeit(nn.gelu, x)
timeit(mx.compile(nn.gelu), x)
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.
.. note::
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
functions can still be helpful, but won't typically result in as large a
speedup as compiling operations that run on the GPU.
Debugging
---------
When a compiled function is first called, it is traced with placeholder
inputs. This means you can't evaluate arrays (for example to print their
contents) inside compiled functions.
.. code-block:: python
@mx.compile
def fun(x):
z = -x
print(z) # Crash
return mx.exp(z)
fun(mx.array(5.0))
For debugging, inspecting arrays can be helpful. One way to do that is to
globally disable compilation using the :func:`disable_compile` function or
``MLX_DISABLE_COMPILE`` flag. For example the following is okay even though
``fun`` is compiled:
.. code-block:: python
@mx.compile
def fun(x):
z = -x
print(z) # Okay
return mx.exp(z)
mx.disable_compile()
fun(mx.array(5.0))
Pure Functions
--------------
Compiled functions are intended to be *pure*; that is they should not have side
effects. For example:
.. code-block:: python
state = []
@mx.compile
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z)
fun(mx.array(1.0), mx.array(2.0))
# Crash!
print(state)
After the first call of ``fun``, the ``state`` list will hold a placeholder
array. The placeholder does not have any data; it is only used to build the
computation graph. Printing such an array results in a crash.
You have two options to deal with this. The first option is to simply return
``state`` as an output:
.. code-block:: python
state = []
@mx.compile
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z), state
_, state = fun(mx.array(1.0), mx.array(2.0))
# Prints [array(3, dtype=float32)]
print(state)
In some cases returning updated state can be pretty inconvenient. Hence,
:func:`compile` has a parameter to capture implicit outputs:
.. code-block:: python
from functools import partial
state = []
# Tell compile to capture state as an output
@partial(mx.compile, outputs=state)
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z), state
fun(mx.array(1.0), mx.array(2.0))
# Prints [array(3, dtype=float32)]
print(state)
This is particularly useful for compiling a function which includes an update
to a container of arrays, as is commonly done when training the parameters of a
:class:`mlx.nn.Module`.
Compiled functions will also treat any inputs not in the parameter list as
constants. For example:
.. code-block:: python
state = [mx.array(1.0)]
@mx.compile
def fun(x):
return x + state[0]
# Prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
# Update state
state[0] = mx.array(5.0)
# Still prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
In order to have the change of state reflected in the outputs of ``fun`` you
again have two options. The first option is to simply pass ``state`` as input
to the function. In some cases this can be pretty inconvenient. Hence,
:func:`compile` also has a parameter to capture implicit inputs:
.. code-block:: python
from functools import partial
state = [mx.array(1.0)]
# Tell compile to capture state as an input
@partial(mx.compile, inputs=state)
def fun(x):
return x + state[0]
# Prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
# Update state
state[0] = mx.array(5.0)
# Prints array(6, dtype=float32)
print(fun(mx.array(1.0)))
Compiling Training Graphs
-------------------------
This section will step through how to use :func:`compile` with a simple example
of a common setup: training a model with :obj:`mlx.nn.Module` using an
:obj:`mlx.optimizers.Optimizer` with state. We will show how to compile the
full forward, backward, and update with :func:`compile`.
To start, here is the simple example without any compilation:
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
# 4 examples with 10 features each
x = mx.random.uniform(shape=(4, 10))
# 0, 1 targets
y = mx.array([0, 1, 0, 1])
# Simple linear model
model = nn.Linear(10, 1)
# SGD with momentum
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
def loss_fn(model, x, y):
logits = model(x).squeeze()
return nn.losses.binary_cross_entropy(logits, y)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
# Perform 10 steps of gradient descent
for it in range(10):
loss, grads = loss_and_grad_fn(model, x, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
To compile the update we can put it all in a function and compile it with the
appropriate input and output captures. Here's the same example but compiled:
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from functools import partial
# 4 examples with 10 features each
x = mx.random.uniform(shape=(4, 10))
# 0, 1 targets
y = mx.array([0, 1, 0, 1])
# Simple linear model
model = nn.Linear(10, 1)
# SGD with momentum
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
def loss_fn(model, x, y):
logits = model(x).squeeze()
return nn.losses.binary_cross_entropy(logits, y)
# The state that will be captured as input and output
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(x, y):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, x, y)
optimizer.update(model, grads)
return loss
# Perform 10 steps of gradient descent
for it in range(10):
loss = step(x, y)
# Evaluate the model and optimizer state
mx.eval(state)
print(loss)
.. note::
If you are using a module which performs random sampling such as
:func:`mlx.nn.Dropout`, make sure you also include ``mx.random.state`` in the
``state`` captured by :func:`compile`, i.e. ``state = [model.state,
optimizer.state, mx.random.state]``.
.. note::
For more examples of compiling full training graphs checkout the `MLX
Examples <https://github.com/ml-explore/mlx-examples>`_ GitHub repo.
Transformations with Compile
----------------------------
In MLX function transformations are composable. You can apply any function
transformation to the output of any other function transformation. For more on
this, see the documentation on :ref:`function transforms
<function_transforms>`.
Compiling transformed functions works just as expected:
.. code-block:: python
grad_fn = mx.grad(mx.exp)
compiled_grad_fn = mx.compile(grad_fn)
# Prints: array(2.71828, dtype=float32)
print(grad_fn(mx.array(1.0)))
# Also prints: array(2.71828, dtype=float32)
print(compiled_grad_fn(mx.array(1.0)))
.. note::
In order to compile as much as possible, a transformation of a compiled
function will not by default be compiled. To compile the transformed
function simply pass it through :func:`compile`.
You can also compile functions which themselves call compiled functions. A
good practice is to compile the outer most function to give :func:`compile`
the most opportunity to optimize the computation graph:
.. code-block:: python
@mx.compile
def inner(x):
return mx.exp(-mx.abs(x))
def outer(x):
inner(inner(x))
# Compiling the outer function is good to do as it will likely
# be faster even though the inner functions are compiled
fun = mx.compile(outer)

View File

@@ -0,0 +1,191 @@
.. _function_transforms:
Function Transforms
===================
.. currentmodule:: mlx.core
MLX uses composable function transformations for automatic differentiation,
vectorization, and compute graph optimizations. To see the complete list of
function transformations check-out the :ref:`API documentation <transforms>`.
The key idea behind composable function transformations is that every
transformation returns a function which can be further transformed.
Here is a simple example:
.. code-block:: shell
>>> dfdx = mx.grad(mx.sin)
>>> dfdx(mx.array(mx.pi))
array(-1, dtype=float32)
>>> mx.cos(mx.array(mx.pi))
array(-1, dtype=float32)
The output of :func:`grad` on :func:`sin` is simply another function. In this
case it is the gradient of the sine function which is exactly the cosine
function. To get the second derivative you can do:
.. code-block:: shell
>>> d2fdx2 = mx.grad(mx.grad(mx.sin))
>>> d2fdx2(mx.array(mx.pi / 2))
array(-1, dtype=float32)
>>> mx.sin(mx.array(mx.pi / 2))
array(1, dtype=float32)
Using :func:`grad` on the output of :func:`grad` is always ok. You keep
getting higher order derivatives.
Any of the MLX function transformations can be composed in any order to any
depth. See the following sections for more information on :ref:`automatic
differentiaion <auto diff>` and :ref:`automatic vectorization <vmap>`.
For more information on :func:`compile` see the :ref:`compile documentation <compile>`.
Automatic Differentiation
-------------------------
.. _auto diff:
Automatic differentiation in MLX works on functions rather than on implicit
graphs.
.. note::
If you are coming to MLX from PyTorch, you no longer need functions like
``backward``, ``zero_grad``, and ``detach``, or properties like
``requires_grad``.
The most basic example is taking the gradient of a scalar-valued function as we
saw above. You can use the :func:`grad` and :func:`value_and_grad` function to
compute gradients of more complex functions. By default these functions compute
the gradient with respect to the first argument:
.. code-block:: python
def loss_fn(w, x, y):
return mx.mean(mx.square(w * x - y))
w = mx.array(1.0)
x = mx.array([0.5, -0.5])
y = mx.array([1.5, -1.5])
# Computes the gradient of loss_fn with respect to w:
grad_fn = mx.grad(loss_fn)
dloss_dw = grad_fn(w, x, y)
# Prints array(-1, dtype=float32)
print(dloss_dw)
# To get the gradient with respect to x we can do:
grad_fn = mx.grad(loss_fn, argnums=1)
dloss_dx = grad_fn(w, x, y)
# Prints array([-1, 1], dtype=float32)
print(dloss_dx)
One way to get the loss and gradient is to call ``loss_fn`` followed by
``grad_fn``, but this can result in a lot of redundant work. Instead, you
should use :func:`value_and_grad`. Continuing the above example:
.. code-block:: python
# Computes the gradient of loss_fn with respect to w:
loss_and_grad_fn = mx.value_and_grad(loss_fn)
loss, dloss_dw = loss_and_grad_fn(w, x, y)
# Prints array(1, dtype=float32)
print(loss)
# Prints array(-1, dtype=float32)
print(dloss_dw)
You can also take the gradient with respect to arbitrarily nested Python
containers of arrays (specifically any of :obj:`list`, :obj:`tuple`, or
:obj:`dict`).
Suppose we wanted a weight and a bias parameter in the above example. A nice
way to do that is the following:
.. code-block:: python
def loss_fn(params, x, y):
w, b = params["weight"], params["bias"]
h = w * x + b
return mx.mean(mx.square(h - y))
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
x = mx.array([0.5, -0.5])
y = mx.array([1.5, -1.5])
# Computes the gradient of loss_fn with respect to both the
# weight and bias:
grad_fn = mx.grad(loss_fn)
grads = grad_fn(params, x, y)
# Prints
# {'weight': array(-1, dtype=float32), 'bias': array(0, dtype=float32)}
print(grads)
Notice the tree structure of the parameters is preserved in the gradients.
In some cases you may want to stop gradients from propagating through a
part of the function. You can use the :func:`stop_gradient` for that.
Automatic Vectorization
-----------------------
.. _vmap:
Use :func:`vmap` to automate vectorizing complex functions. Here we'll go
through a basic and contrived example for the sake of clarity, but :func:`vmap`
can be quite powerful for more complex functions which are difficult to optimize
by hand.
.. warning::
Some operations are not yet supported with :func:`vmap`. If you encounter an error
like: ``ValueError: Primitive's vmap not implemented.`` file an `issue
<https://github.com/ml-explore/mlx/issues>`_ and include your function.
We will prioritize including it.
A naive way to add the elements from two sets of vectors is with a loop:
.. code-block:: python
xs = mx.random.uniform(shape=(4096, 100))
ys = mx.random.uniform(shape=(100, 4096))
def naive_add(xs, ys):
return [xs[i] + ys[:, i] for i in range(xs.shape[1])]
Instead you can use :func:`vmap` to automatically vectorize the addition:
.. code-block:: python
# Vectorize over the second dimension of x and the
# first dimension of y
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
The ``in_axes`` parameter can be used to specify which dimensions of the
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
where the vectorized axes should be in the outputs.
Let's time these two different versions:
.. code-block:: python
import timeit
print(timeit.timeit(lambda: mx.eval(naive_add(xs, ys)), number=100))
print(timeit.timeit(lambda: mx.eval(vmap_add(xs, ys)), number=100))
On an M1 Max the naive version takes in total ``0.390`` seconds whereas the
vectorized version takes only ``0.025`` seconds, more than ten times faster.
Of course, this operation is quite contrived. A better approach is to simply do
``xs + ys.T``, but for more complex functions :func:`vmap` can be quite handy.

123
docs/src/usage/indexing.rst Normal file
View File

@@ -0,0 +1,123 @@
.. _indexing:
Indexing Arrays
===============
.. currentmodule:: mlx.core
For the most part, indexing an MLX :obj:`array` works the same as indexing a
NumPy :obj:`numpy.ndarray`. See the `NumPy documentation
<https://numpy.org/doc/stable/user/basics.indexing.html>`_ for more details on
how that works.
For example, you can use regular integers and slices (:obj:`slice`) to index arrays:
.. code-block:: shell
>>> arr = mx.arange(10)
>>> arr[3]
array(3, dtype=int32)
>>> arr[-2] # negative indexing works
array(8, dtype=int32)
>>> arr[2:8:2] # start, stop, stride
array([2, 4, 6], dtype=int32)
For multi-dimensional arrays, the ``...`` or :obj:`Ellipsis` syntax works as in NumPy:
.. code-block:: shell
>>> arr = mx.arange(8).reshape(2, 2, 2)
>>> arr[:, :, 0]
array(3, dtype=int32)
array([[0, 2],
[4, 6]], dtype=int32
>>> arr[..., 0]
array([[0, 2],
[4, 6]], dtype=int32
You can index with ``None`` to create a new axis:
.. code-block:: shell
>>> arr = mx.arange(8)
>>> arr.shape
[8]
>>> arr[None].shape
[1, 8]
You can also use an :obj:`array` to index another :obj:`array`:
.. code-block:: shell
>>> arr = mx.arange(10)
>>> idx = mx.array([5, 7])
>>> arr[idx]
array([5, 7], dtype=int32)
Mixing and matching integers, :obj:`slice`, ``...``, and :obj:`array` indices
works just as in NumPy.
Other functions which may be useful for indexing arrays are :func:`take` and
:func:`take_along_axis`.
Differences from NumPy
----------------------
.. Note::
MLX indexing is different from NumPy indexing in two important ways:
* Indexing does not perform bounds checking. Indexing out of bounds is
undefined behavior.
* Boolean mask based indexing is not yet supported.
The reason for the lack of bounds checking is that exceptions cannot propagate
from the GPU. Performing bounds checking for array indices before launching the
kernel would be extremely inefficient.
Indexing with boolean masks is something that MLX may support in the future. In
general, MLX has limited support for operations for which outputs
*shapes* are dependent on input *data*. Other examples of these types of
operations which MLX does not yet support include :func:`numpy.nonzero` and the
single input version of :func:`numpy.where`.
In Place Updates
----------------
In place updates to indexed arrays are possible in MLX. For example:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> a[2] = 0
>>> a
array([1, 2, 0], dtype=int32)
Just as in NumPy, in place updates will be reflected in all references to the
same array:
.. code-block:: shell
>>> a = mx.array([1, 2, 3])
>>> b = a
>>> b[2] = 0
>>> b
array([1, 2, 0], dtype=int32)
>>> a
array([1, 2, 0], dtype=int32)
Transformations of functions which use in-place updates are allowed and work as
expected. For example:
.. code-block:: python
def fun(x, idx):
x[idx] = 2.0
return x.sum()
dfdx = mx.grad(fun)(mx.array([1.0, 2.0, 3.0]), mx.array([1]))
print(dfdx) # Prints: array([1, 0, 1], dtype=float32)
In the above ``dfdx`` will have the correct gradient, namely zeros at ``idx``
and ones elsewhere.

View File

@@ -0,0 +1,144 @@
.. _lazy eval:
Lazy Evaluation
===============
.. currentmodule:: mlx.core
Why Lazy Evaluation
-------------------
When you perform operations in MLX, no computation actually happens. Instead a
compute graph is recorded. The actual computation only happens if an
:func:`eval` is performed.
MLX uses lazy evaluation because it has some nice features, some of which we
describe below.
Transforming Compute Graphs
^^^^^^^^^^^^^^^^^^^^^^^^^^^
Lazy evaluation let's us record a compute graph without actually doing any
computations. This is useful for function transformations like :func:`grad` and
:func:`vmap` and graph optimizations.
Currently, MLX does not compile and rerun compute graphs. They are all
generated dynamically. However, lazy evaluation makes it much easier to
integrate compilation for future performance enhancements.
Only Compute What You Use
^^^^^^^^^^^^^^^^^^^^^^^^^
In MLX you do not need to worry as much about computing outputs that are never
used. For example:
.. code-block:: python
def fun(x):
a = fun1(x)
b = expensive_fun(a)
return a, b
y, _ = fun(x)
Here, we never actually compute the output of ``expensive_fun``. Use this
pattern with care though, as the graph of ``expensive_fun`` is still built, and
that has some cost associated to it.
Similarly, lazy evaluation can be beneficial for saving memory while keeping
code simple. Say you have a very large model ``Model`` derived from
:obj:`mlx.nn.Module`. You can instantiate this model with ``model = Model()``.
Typically, this will initialize all of the weights as ``float32``, but the
initialization does not actually compute anything until you perform an
:func:`eval`. If you update the model with ``float16`` weights, your maximum
consumed memory will be half that required if eager computation was used
instead.
This pattern is simple to do in MLX thanks to lazy computation:
.. code-block:: python
model = Model() # no memory used yet
model.load_weights("weights_fp16.safetensors")
When to Evaluate
----------------
A common question is when to use :func:`eval`. The trade-off is between
letting graphs get too large and not batching enough useful work.
For example:
.. code-block:: python
for _ in range(100):
a = a + b
mx.eval(a)
b = b * 2
mx.eval(b)
This is a bad idea because there is some fixed overhead with each graph
evaluation. On the other hand, there is some slight overhead which grows with
the compute graph size, so extremely large graphs (while computationally
correct) can be costly.
Luckily, a wide range of compute graph sizes work pretty well with MLX:
anything from a few tens of operations to many thousands of operations per
evaluation should be okay.
Most numerical computations have an iterative outer loop (e.g. the iteration in
stochastic gradient descent). A natural and usually efficient place to use
:func:`eval` is at each iteration of this outer loop.
Here is a concrete example:
.. code-block:: python
for batch in dataset:
# Nothing has been evaluated yet
loss, grad = value_and_grad_fn(model, batch)
# Still nothing has been evaluated
optimizer.update(model, grad)
# Evaluate the loss and the new parameters which will
# run the full gradient computation and optimizer update
mx.eval(loss, model.parameters())
An important behavior to be aware of is when the graph will be implicitly
evaluated. Anytime you ``print`` an array, convert it to an
:obj:`numpy.ndarray`, or otherwise access it's memory via :obj:`memoryview`,
the graph will be evaluated. Saving arrays via :func:`save` (or any other MLX
saving functions) will also evaluate the array.
Calling :func:`array.item` on a scalar array will also evaluate it. In the
example above, printing the loss (``print(loss)``) or adding the loss scalar to
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
these lines are before ``mx.eval(loss, model.parameters())`` then this
will be a partial evaluation, computing only the forward pass.
Also, calling :func:`eval` on an array or set of arrays multiple times is
perfectly fine. This is effectively a no-op.
.. warning::
Using scalar arrays for control-flow will cause an evaluation.
Here is an example:
.. code-block:: python
def fun(x):
h, y = first_layer(x)
if y > 0: # An evaluation is done here!
z = second_layer_a(h)
else:
z = second_layer_b(h)
return z
Using arrays for control flow should be done with care. The above example works
and can even be used with gradient transformations. However, this can be very
inefficient if evaluations are done too frequently.

108
docs/src/usage/numpy.rst Normal file
View File

@@ -0,0 +1,108 @@
.. _numpy:
Conversion to NumPy and Other Frameworks
========================================
MLX array implements the `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
Let's convert an array to NumPy and back.
.. code-block:: python
import mlx.core as mx
import numpy as np
a = mx.arange(3)
b = np.array(a) # copy of a
c = mx.array(b) # copy of b
.. note::
Since NumPy does not support ``bfloat16`` arrays, you will need to convert to ``float16`` or ``float32`` first:
``np.array(a.astype(mx.float32))``.
Otherwise, you will receive an error like: ``Item size 2 for PEP 3118 buffer format string does not match the dtype V item size 0.``
By default, NumPy copies data to a new array. This can be prevented by creating an array view:
.. code-block:: python
a = mx.arange(3)
a_view = np.array(a, copy=False)
print(a_view.flags.owndata) # False
a_view[0] = 1
print(a[0].item()) # 1
A NumPy array view is a normal NumPy array, except that it does not own its memory.
This means writing to the view is reflected in the original array.
While this is quite powerful to prevent copying arrays, it should be noted that external changes to the memory of arrays cannot be reflected in gradients.
Let's demonstrate this in an example:
.. code-block:: python
def f(x):
x_view = np.array(x, copy=False)
x_view[:] *= x_view # modify memory without telling mx
return x.sum()
x = mx.array([3.0])
y, df = mx.value_and_grad(f)(x)
print("f(x) = x² =", y.item()) # 9.0
print("f'(x) = 2x !=", df.item()) # 1.0
The function ``f`` indirectly modifies the array ``x`` through a memory view.
However, this modification is not reflected in the gradient, as seen in the last line outputting ``1.0``,
representing the gradient of the sum operation alone.
The squaring of ``x`` occurs externally to MLX, meaning that no gradient is incorporated.
It's important to note that a similar issue arises during array conversion and copying.
For instance, a function defined as ``mx.array(np.array(x)**2).sum()`` would also result in an incorrect gradient,
even though no in-place operations on MLX memory are executed.
PyTorch
-------
.. warning::
PyTorch Support for :obj:`memoryview` is experimental and can break for
multi-dimensional arrays. Casting to NumPy first is advised for now.
PyTorch supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
.. code-block:: python
import mlx.core as mx
import torch
a = mx.arange(3)
b = torch.tensor(memoryview(a))
c = mx.array(b.numpy())
Conversion from PyTorch tensors back to arrays must be done via intermediate NumPy arrays with ``numpy()``.
JAX
---
JAX fully supports the buffer protocol.
.. code-block:: python
import mlx.core as mx
import jax.numpy as jnp
a = mx.arange(3)
b = jnp.array(a)
c = mx.array(b)
TensorFlow
----------
TensorFlow supports the buffer protocol, but it requires an explicit :obj:`memoryview`.
.. code-block:: python
import mlx.core as mx
import tensorflow as tf
a = mx.arange(3)
b = tf.constant(memoryview(a))
c = mx.array(b)

View File

@@ -40,6 +40,9 @@ automatically evaluate the array.
>> np.array(c) # Also evaluates c
array([2., 4., 6., 8.], dtype=float32)
See the page on :ref:`Lazy Evaluation <lazy eval>` for more details.
Function and Graph Transformations
----------------------------------

View File

@@ -0,0 +1,81 @@
.. _saving_and_loading:
Saving and Loading Arrays
=========================
.. currentmodule:: mlx.core
MLX supports multiple array serialization formats.
.. list-table:: Serialization Formats
:widths: 20 8 25 25
:header-rows: 1
* - Format
- Extension
- Function
- Notes
* - NumPy
- ``.npy``
- :func:`save`
- Single arrays only
* - NumPy archive
- ``.npz``
- :func:`savez` and :func:`savez_compressed`
- Multiple arrays
* - Safetensors
- ``.safetensors``
- :func:`save_safetensors`
- Multiple arrays
* - GGUF
- ``.gguf``
- :func:`save_gguf`
- Multiple arrays
The :func:`load` function will load any of the supported serialization
formats. It determines the format from the extensions. The output of
:func:`load` depends on the format.
Here's an example of saving a single array to a file:
.. code-block:: shell
>>> a = mx.array([1.0])
>>> mx.save("array", a)
The array ``a`` will be saved in the file ``array.npy`` (notice the extension
is automatically added). Including the extension is optional; if it is missing
it will be added. You can load the array with:
.. code-block:: shell
>>> mx.load("array.npy", a)
array([1], dtype=float32)
Here's an example of saving several arrays to a single file:
.. code-block:: shell
>>> a = mx.array([1.0])
>>> b = mx.array([2.0])
>>> mx.savez("arrays", a, b=b)
For compatibility with :func:`numpy.savez` the MLX :func:`savez` takes arrays
as arguments. If the keywords are missing, then default names will be
provided. This can be loaded with:
.. code-block:: shell
>>> mx.load("arrays.npz")
{'b': array([2], dtype=float32), 'arr_0': array([1], dtype=float32)}
In this case :func:`load` returns a dictionary of names to arrays.
The functions :func:`save_safetensors` and :func:`save_gguf` are similar to
:func:`savez`, but they take as input a :obj:`dict` of string names to arrays:
.. code-block:: shell
>>> a = mx.array([1.0])
>>> b = mx.array([2.0])
>>> mx.save_safetensors("arrays", {"a": a, "b": b})

View File

@@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.24)
cmake_minimum_required(VERSION 3.27)
project(mlx_sample_extensions LANGUAGES CXX)
@@ -63,4 +63,4 @@ target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
if(BUILD_SHARED_LIBS)
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
endif()
endif()

View File

@@ -104,7 +104,10 @@ void axpby_impl(
}
/** Fall back implementation for evaluation on CPU */
void Axpby::eval(const std::vector<array>& inputs, array& out) {
void Axpby::eval(
const std::vector<array>& inputs,
std::vector<array>& out_arr) {
auto out = out_arr[0];
// Check the inputs (registered in the op while constructing the out array)
assert(inputs.size() == 2);
auto& x = inputs[0];
@@ -175,7 +178,10 @@ void axpby_impl_accelerate(
}
/** Evaluate primitive on CPU using accelerate specializations */
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
void Axpby::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outarr) {
auto out = outarr[0];
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
@@ -189,13 +195,15 @@ void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
}
// Fall back to common backend if specializations are not available
eval(inputs, out);
eval(inputs, outarr);
}
#else // Accelerate not available
/** Evaluate primitive on CPU falling back to common backend */
void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
void Axpby::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& out) {
eval(inputs, out);
}
@@ -208,8 +216,11 @@ void Axpby::eval_cpu(const std::vector<array>& inputs, array& out) {
#ifdef _METAL_
/** Evaluate primitive on GPU */
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
void Axpby::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outarr) {
// Prepare inputs
auto out = outarr[0];
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
@@ -295,7 +306,9 @@ void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
#else // Metal is not available
/** Fail evaluation on GPU */
void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
void Axpby::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& out) {
throw std::runtime_error("Axpby has no GPU implementation.");
}
@@ -306,7 +319,7 @@ void Axpby::eval_gpu(const std::vector<array>& inputs, array& out) {
///////////////////////////////////////////////////////////////////////////////
/** The Jacobian-vector product. */
array Axpby::jvp(
std::vector<array> Axpby::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
@@ -321,32 +334,33 @@ array Axpby::jvp(
if (argnums.size() > 1) {
auto scale = argnums[0] == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, tangents[0].dtype());
return multiply(scale_arr, tangents[0], stream());
return {multiply(scale_arr, tangents[0], stream())};
}
// If, argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
else {
return axpby(tangents[0], tangents[1], alpha_, beta_, stream());
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
}
}
/** The vector-Jacobian product. */
std::vector<array> Axpby::vjp(
const std::vector<array>& primals,
const array& cotan,
const std::vector<int>& argnums) {
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>&) {
// Reverse mode diff
std::vector<array> vjps;
for (auto arg : argnums) {
auto scale = arg == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, cotan.dtype());
vjps.push_back(multiply(scale_arr, cotan, stream()));
auto scale_arr = array(scale, cotangents[0].dtype());
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
}
return vjps;
}
/** Vectorize primitive along given axis */
std::pair<array, int> Axpby::vmap(
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("Axpby has no vmap implementation.");

View File

@@ -42,11 +42,13 @@ class Axpby : public Primitive {
* To avoid unnecessary allocations, the evaluation function
* is responsible for allocating space for the array.
*/
void eval_cpu(const std::vector<array>& inputs, array& out) override;
void eval_gpu(const std::vector<array>& inputs, array& out) override;
void eval_cpu(const std::vector<array>& inputs, std::vector<array>& out)
override;
void eval_gpu(const std::vector<array>& inputs, std::vector<array>& out)
override;
/** The Jacobian-vector product. */
array jvp(
std::vector<array> jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) override;
@@ -54,8 +56,9 @@ class Axpby : public Primitive {
/** The vector-Jacobian product. */
std::vector<array> vjp(
const std::vector<array>& primals,
const array& cotan,
const std::vector<int>& argnums) override;
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) override;
/**
* The primitive must know how to vectorize itself across
@@ -63,7 +66,7 @@ class Axpby : public Primitive {
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<array, int> vmap(
std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
@@ -80,7 +83,7 @@ class Axpby : public Primitive {
float beta_;
/** Fall back implementation for evaluation on CPU */
void eval(const std::vector<array>& inputs, array& out);
void eval(const std::vector<array>& inputs, std::vector<array>& out);
};
} // namespace mlx::core

View File

@@ -0,0 +1,3 @@
[build-system]
requires = ["setuptools>=42", "pybind11>=2.10", "cmake>=3.24", "mlx @ git+https://github.com/mlx-explore/mlx@main"]
build-backend = "setuptools.build_meta"

View File

@@ -41,6 +41,6 @@ error_norm = mx.sum(mx.square(w - w_star)).item() ** 0.5
throughput = num_iters / (toc - tic)
print(
f"Loss {loss.item():.5f}, |w-w*| = {error_norm:.5f}, "
f"Loss {loss.item():.5f}, L2 distance: |w-w*| = {error_norm:.5f}, "
f"Throughput {throughput:.5f} (it/s)"
)

View File

@@ -3,8 +3,10 @@ target_sources(
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
@@ -19,7 +21,7 @@ target_sources(
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if (MLX_BUILD_ACCELERATE)
if (MLX_BUILD_ACCELERATE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
else()
target_sources(

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <functional>
@@ -6,6 +6,7 @@
#include "mlx/ops.h"
#include "mlx/primitives.h"
#include "mlx/transforms.h"
#include "mlx/transforms_impl.h"
namespace mlx::core {
@@ -21,6 +22,12 @@ std::pair<size_t, std::vector<size_t>> cum_prod(const std::vector<int>& shape) {
return {cum_prod, strides};
}
/** Return true if we are currently performing a function transformation in
* order to keep the graph when evaluating tracer arrays. */
bool in_tracing() {
return detail::InTracing::in_tracing();
}
} // namespace
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
@@ -32,7 +39,7 @@ array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
array::array(
const std::vector<int>& shape,
Dtype dtype,
std::unique_ptr<Primitive> primitive,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs)
: array_desc_(std::make_shared<ArrayDesc>(
shape,
@@ -40,6 +47,34 @@ array::array(
std::move(primitive),
inputs)) {}
array::array(
std::vector<int> shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array>&& inputs)
: array_desc_(std::make_shared<ArrayDesc>(
std::move(shape),
dtype,
std::move(primitive),
std::move(inputs))) {}
std::vector<array> array::make_arrays(
const std::vector<std::vector<int>>& shapes,
const std::vector<Dtype>& dtypes,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs) {
std::vector<array> outputs;
for (int i = 0; i < shapes.size(); ++i) {
outputs.push_back(array(shapes[i], dtypes[i], primitive, inputs));
}
for (int i = 0; i < outputs.size(); ++i) {
auto siblings = outputs;
siblings.erase(siblings.begin() + i);
outputs[i].set_siblings(std::move(siblings), i);
}
return outputs;
}
array::array(std::initializer_list<float> data)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
@@ -47,6 +82,13 @@ array::array(std::initializer_list<float> data)
init(data.begin());
}
array::array(std::initializer_list<int> data, Dtype dtype)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
dtype)) {
init(data.begin());
}
/* Build an array from a shared buffer */
array::array(
allocator::Buffer data,
@@ -58,12 +100,26 @@ array::array(
}
void array::detach() {
for (auto& s : array_desc_->siblings) {
s.array_desc_->inputs.clear();
s.array_desc_->siblings.clear();
s.array_desc_->position = 0;
s.array_desc_->depth = 0;
s.array_desc_->primitive = nullptr;
}
array_desc_->inputs.clear();
array_desc_->siblings.clear();
array_desc_->position = 0;
array_desc_->depth = 0;
array_desc_->primitive = nullptr;
}
void array::eval(bool retain_graph /* = false */) {
mlx::core::eval({*this}, retain_graph);
void array::eval() {
mlx::core::eval({*this});
}
bool array::is_tracer() const {
return array_desc_->is_tracer && in_tracing();
}
void array::set_data(allocator::Buffer buffer, deleter_t d) {
@@ -108,6 +164,14 @@ void array::copy_shared_buffer(const array& other) {
copy_shared_buffer(other, other.strides(), other.flags(), other.data_size());
}
void array::move_shared_buffer(array other) {
array_desc_->data = std::move(other.array_desc_->data);
array_desc_->strides = other.strides();
array_desc_->flags = other.flags();
array_desc_->data_size = other.data_size();
array_desc_->data_ptr = other.array_desc_->data_ptr;
}
array::ArrayDesc::ArrayDesc(const std::vector<int>& shape, Dtype dtype)
: shape(shape), dtype(dtype) {
std::tie(size, strides) = cum_prod(shape);
@@ -116,21 +180,43 @@ array::ArrayDesc::ArrayDesc(const std::vector<int>& shape, Dtype dtype)
array::ArrayDesc::ArrayDesc(
const std::vector<int>& shape,
Dtype dtype,
std::unique_ptr<Primitive> primitive,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs)
: shape(shape),
dtype(dtype),
primitive(std::move(primitive)),
inputs(inputs) {
std::tie(size, strides) = cum_prod(shape);
for (auto& in : inputs) {
std::tie(size, strides) = cum_prod(this->shape);
for (auto& in : this->inputs) {
is_tracer |= in.is_tracer();
depth = std::max(in.graph_depth(), depth);
}
depth++;
}
// Needed because the Primitive type used in array.h is incomplete and the
// compiler needs to see the call to the destructor after the type is complete.
array::ArrayDesc::~ArrayDesc() = default;
array::ArrayDesc::ArrayDesc(
std::vector<int>&& shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array>&& inputs)
: shape(std::move(shape)),
dtype(dtype),
primitive(std::move(primitive)),
inputs(std::move(inputs)) {
std::tie(size, strides) = cum_prod(this->shape);
for (auto& in : this->inputs) {
is_tracer |= in.is_tracer();
depth = std::max(in.graph_depth(), depth);
}
depth++;
}
array::ArrayIterator::ArrayIterator(const array& arr, int idx)
: arr(arr), idx(idx) {
if (arr.ndim() == 0) {
throw std::invalid_argument("Cannot iterate over 0-d array.");
}
}
array::ArrayIterator::reference array::ArrayIterator::operator*() const {
auto start = std::vector<int>(arr.ndim(), 0);

View File

@@ -1,5 +1,4 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <algorithm>
#include <cstdint>
@@ -42,6 +41,9 @@ class array {
/* Special case so empty lists default to float32. */
array(std::initializer_list<float> data);
/* Special case so array({}, type) is an empty array. */
array(std::initializer_list<int> data, Dtype dtype);
template <typename T>
array(
std::initializer_list<T> data,
@@ -116,11 +118,14 @@ class array {
};
/** Evaluate the array. */
void eval(bool retain_graph = false);
void eval();
/** Get the value from a scalar array. */
template <typename T>
T item(bool retain_graph = false);
T item();
template <typename T>
T item() const;
struct ArrayIterator {
using iterator_category = std::random_access_iterator_tag;
@@ -128,11 +133,7 @@ class array {
using value_type = const array;
using reference = value_type;
explicit ArrayIterator(const array& arr, int idx = 0) : arr(arr), idx(idx) {
if (arr.ndim() == 0) {
throw std::invalid_argument("Cannot iterate over 0-d array.");
}
}
explicit ArrayIterator(const array& arr, int idx = 0);
reference operator*() const;
@@ -174,7 +175,19 @@ class array {
array(
const std::vector<int>& shape,
Dtype dtype,
std::unique_ptr<Primitive> primitive,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs);
array(
std::vector<int> shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array>&& inputs);
static std::vector<array> make_arrays(
const std::vector<std::vector<int>>& shapes,
const std::vector<Dtype>& dtypes,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs);
/** A unique identifier for an array. */
@@ -182,6 +195,11 @@ class array {
return reinterpret_cast<std::uintptr_t>(array_desc_.get());
}
/** A unique identifier for an arrays primitive. */
std::uintptr_t primitive_id() const {
return reinterpret_cast<std::uintptr_t>(array_desc_->primitive.get());
}
struct Data {
allocator::Buffer buffer;
deleter_t d;
@@ -209,6 +227,11 @@ class array {
return *(array_desc_->primitive);
};
/** A shared pointer to the array's primitive. */
std::shared_ptr<Primitive>& primitive_ptr() const {
return array_desc_->primitive;
};
/** Check if the array has an attached primitive or is a leaf node. */
bool has_primitive() const {
return array_desc_->primitive != nullptr;
@@ -219,12 +242,42 @@ class array {
return array_desc_->inputs;
};
/** A non-const reference to the array's inputs so that they can be used to
* edit the graph. */
std::vector<array>& editable_inputs() {
std::vector<array>& inputs() {
return array_desc_->inputs;
}
/** True indicates the arrays buffer is safe to reuse */
bool is_donatable() const {
return array_desc_.use_count() == 1 && (array_desc_->data.use_count() == 1);
}
/** The array's siblings. */
const std::vector<array>& siblings() const {
return array_desc_->siblings;
};
void set_siblings(std::vector<array> siblings, uint16_t position) {
array_desc_->siblings = std::move(siblings);
array_desc_->position = position;
}
/** The outputs of the array's primitive (i.e. this array and
* its siblings) in the order the primitive expects. */
std::vector<array> outputs() const {
auto idx = array_desc_->position;
std::vector<array> outputs;
outputs.reserve(siblings().size() + 1);
outputs.insert(outputs.end(), siblings().begin(), siblings().begin() + idx);
outputs.push_back(*this);
outputs.insert(outputs.end(), siblings().begin() + idx, siblings().end());
return outputs;
};
/** The depth of the array in the graph. Evaluated arrays have depth 0. */
uint16_t graph_depth() const {
return array_desc_->depth;
}
/** Detach the array from the graph. */
void detach();
@@ -245,6 +298,12 @@ class array {
return array_desc_->data->buffer;
};
// Return a copy of the shared pointer
// to the array::Data struct
std::shared_ptr<Data> data_shared_ptr() const {
return array_desc_->data;
}
// Return a raw pointer to the arrays data
template <typename T>
T* data() {
return static_cast<T*>(array_desc_->data_ptr);
@@ -265,9 +324,7 @@ class array {
array_desc_->is_tracer = is_tracer;
}
// Check if the array is a tracer array
bool is_tracer() const {
return array_desc_->is_tracer;
}
bool is_tracer() const;
void set_data(allocator::Buffer buffer, deleter_t d = allocator::free);
@@ -287,6 +344,8 @@ class array {
void copy_shared_buffer(const array& other);
void move_shared_buffer(array other);
void overwrite_descriptor(const array& other) {
array_desc_ = other.array_desc_;
}
@@ -301,7 +360,7 @@ class array {
std::vector<size_t> strides;
size_t size;
Dtype dtype;
std::unique_ptr<Primitive> primitive{nullptr};
std::shared_ptr<Primitive> primitive{nullptr};
// Indicates an array is being used in a graph transform
// and should not be detached from the graph
@@ -323,22 +382,34 @@ class array {
Flags flags;
std::vector<array> inputs;
// An array to keep track of the siblings from a multi-output
// primitive.
std::vector<array> siblings;
// The arrays position in the output list
uint32_t position{0};
// The depth of the array in the graph.
uint16_t depth{0};
explicit ArrayDesc(const std::vector<int>& shape, Dtype dtype);
explicit ArrayDesc(
const std::vector<int>& shape,
Dtype dtype,
std::unique_ptr<Primitive> primitive,
std::shared_ptr<Primitive> primitive,
const std::vector<array>& inputs);
~ArrayDesc();
explicit ArrayDesc(
std::vector<int>&& shape,
Dtype dtype,
std::shared_ptr<Primitive> primitive,
std::vector<array>&& inputs);
};
// The ArrayDesc contains the details of the materialized array including the
// shape, strides, the data type. It also includes
// the primitive which knows how to compute the array's data from its inputs
// and a the list of array's inputs for the primitive.
// and the list of array's inputs for the primitive.
std::shared_ptr<ArrayDesc> array_desc_{nullptr};
};
@@ -381,11 +452,23 @@ array::array(
}
template <typename T>
T array::item(bool retain_graph /* = false */) {
T array::item() {
if (size() != 1) {
throw std::invalid_argument("item can only be called on arrays of size 1.");
}
eval(retain_graph);
eval();
return *data<T>();
}
template <typename T>
T array::item() const {
if (size() != 1) {
throw std::invalid_argument("item can only be called on arrays of size 1.");
}
if (!is_evaled()) {
throw std::invalid_argument(
"item() const can only be called on evaled arrays");
}
return *data<T>();
}

View File

@@ -29,12 +29,16 @@ std::tuple<bool, size_t, array> check_transpose(const array& arr) {
}
}
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
inline void matmul_cblas_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[matmul_cblas] on CPU currently only supports float32");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
@@ -42,6 +46,14 @@ inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
for (int i = 0; i < (a.size() / (M * K)); ++i) {
cblas_sgemm(
CblasRowMajor,
@@ -50,21 +62,34 @@ inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
M,
N,
K,
1.0f, // alpha
alpha, // alpha
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
lda,
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
ldb,
0.0f, // beta
beta, // beta
out.data<float>() + M * N * i,
out.shape(-1) // ldc
);
}
}
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
// TODO: Update to utilize BNNS broadcasting
inline void matmul_cblas(const array& a_pre, const array& b_pre, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[matmul_cblas] on CPU currently only supports float32");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_cblas_general(a_pre, b_pre, out);
}
inline void matmul_bnns_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
// TODO: Update to utilize BNNS broadcasting
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
@@ -72,11 +97,19 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
BNNSDataType bnns_dtype = to_bnns_dtype(out.dtype());
const BNNSLayerParametersBroadcastMatMul gemm_params{
/* float alpha = */ 1.0,
/* float beta = */ 0.0,
/* float alpha = */ alpha,
/* float beta = */ beta,
/* bool transA = */ a_transposed,
/* bool transB = */ b_transposed,
/* bool quadratic = */ false,
@@ -157,6 +190,12 @@ inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
BNNSFilterDestroy(bnns_filter);
}
inline void matmul_bnns(const array& a_pre, const array& b_pre, array& out) {
// TODO: Update to utilize BNNS broadcasting
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_bnns_general(a_pre, b_pre, out);
}
} // namespace
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
@@ -166,4 +205,16 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
return matmul_bnns(inputs[0], inputs[1], out);
}
} // namespace mlx::core
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy(c, out, ctype);
if (out.dtype() == float32) {
return matmul_cblas_general(inputs[0], inputs[1], out, alpha_, beta_);
}
return matmul_bnns_general(inputs[0], inputs[1], out, alpha_, beta_);
}
} // namespace mlx::core

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <cmath>
@@ -17,6 +17,12 @@
primitive::eval(inputs, out); \
}
#define DEFAULT_MULTI(primitive) \
void primitive::eval_cpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
primitive::eval(inputs, outputs); \
}
namespace mlx::core {
// Use the default implementation for the following primitives
@@ -29,6 +35,9 @@ DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(Depends)
DEFAULT_MULTI(DivMod)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
@@ -41,17 +50,25 @@ DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
DEFAULT(LogicalNot)
DEFAULT(LogicalAnd)
DEFAULT(LogicalOr)
DEFAULT(LogAddExp)
DEFAULT(Maximum)
DEFAULT(Minimum)
DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT_MULTI(QRF)
DEFAULT(RandomBits)
DEFAULT(Reshape)
DEFAULT(Remainder)
DEFAULT(Round)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Slice)
DEFAULT_MULTI(Split)
DEFAULT(Sort)
DEFAULT(StopGradient)
DEFAULT(Transpose)
@@ -60,26 +77,13 @@ void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, size);
set_unary_output_data(in, out);
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else if (in.dtype() == int32 && in.flags().contiguous) {
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, size);
} else if (is_unsigned(in.dtype())) {
// No-op for unsigned types
out.copy_shared_buffer(in);
set_unary_output_data(in, out);
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
} else {
unary(in, out, AbsOp());
eval(inputs, out);
}
}
@@ -127,12 +131,8 @@ void ArcCos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvacosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -143,12 +143,8 @@ void ArcCosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvacoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -159,12 +155,8 @@ void ArcSin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvasinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -175,12 +167,8 @@ void ArcSinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvasinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -191,12 +179,8 @@ void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvatanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -207,12 +191,8 @@ void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvatanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -224,30 +204,23 @@ void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
if (in.flags().contiguous) {
auto allocfn = [&in, &out]() {
out.set_data(
allocator::malloc_or_wait(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
};
// Use accelerate functions if possible
if (in.dtype() == float32 && out.dtype() == uint32) {
allocfn();
set_unary_output_data(in, out);
vDSP_vfixu32(
in.data<float>(), 1, out.data<uint32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == float32 && out.dtype() == int32) {
allocfn();
set_unary_output_data(in, out);
vDSP_vfix32(in.data<float>(), 1, out.data<int32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == uint32 && out.dtype() == float32) {
allocfn();
set_unary_output_data(in, out);
vDSP_vfltu32(
in.data<uint32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
} else if (in.dtype() == int32 && out.dtype() == float32) {
allocfn();
set_unary_output_data(in, out);
vDSP_vflt32(in.data<int32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
}
@@ -259,12 +232,8 @@ void Cos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvcosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -275,12 +244,8 @@ void Cosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvcoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -325,55 +290,12 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
// TODO: Avoid code duplication with the common backend.
struct RemainderFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return std::fmod(numerator, denominator);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
};
void Remainder::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
a,
b,
out,
RemainderFn{},
UseDefaultBinaryOp(),
UseDefaultBinaryOp(),
[](const auto* a, const auto* b, auto* o, auto n) {
int num_el = n;
vvremainderf((float*)o, (const float*)a, (const float*)b, &num_el);
});
} else {
binary(a, b, out, RemainderFn{});
}
}
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::exp(x); });
@@ -400,12 +322,8 @@ void Log::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
switch (base_) {
case Base::e:
vvlogf(
@@ -429,12 +347,8 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvlog1pf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (is_floating_point(out.dtype())) {
@@ -446,47 +360,6 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void Maximum::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return (x > y) ? x : y; },
UseDefaultBinaryOp(),
UseDefaultBinaryOp(),
[](const auto* a, const auto* b, auto* out, int n) {
vDSP_vmax((const float*)a, 1, (const float*)b, 1, (float*)out, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return (x > y) ? x : y; });
}
}
void Minimum::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return (x < y) ? x : y; },
UseDefaultBinaryOp(),
UseDefaultBinaryOp(),
[](const auto* a, const auto* b, auto* out, int n) {
vDSP_vmin((const float*)a, 1, (const float*)b, 1, (float*)out, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return (x < y) ? x : y; });
}
}
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
@@ -516,13 +389,8 @@ void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, size);
set_unary_output_data(in, out);
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else {
unary(in, out, [](auto x) { return -x; });
}
@@ -535,7 +403,13 @@ void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() == float32 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
int size = a.size();
out.set_data(allocator::malloc_or_wait(out.nbytes()));
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
out.copy_shared_buffer(a);
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
vvpowf(out.data<float>(), b.data<float>(), a.data<float>(), &size);
} else {
eval(inputs, out);
@@ -577,12 +451,8 @@ void Sin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvsinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -593,12 +463,8 @@ void Sinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvsinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -609,12 +475,8 @@ void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
} else {
unary(in, out, [](auto x) { return x * x; });
@@ -625,12 +487,8 @@ void Sqrt::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
if (recip_) {
vvrsqrtf(out.data<float>(), in.data<float>(), &size);
} else {
@@ -685,12 +543,8 @@ void Tan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvtanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
@@ -701,12 +555,8 @@ void Tanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
vvtanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);

View File

@@ -24,8 +24,6 @@ void _qmm_t_4_64(
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
const int Kg = K / group_size;
const int Kw = K / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;

View File

@@ -274,7 +274,12 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto check_input = [](array x) {
if (x.strides()[x.ndim() - 1] == 1) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});

View File

@@ -1,8 +1,42 @@
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${COMPILER}
${PROJECT_SOURCE_DIR}
${CLANG}
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h
)
add_custom_target(
cpu_compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
@@ -10,10 +44,14 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)

View File

@@ -6,6 +6,8 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/binary_two.h"
#include "mlx/backend/common/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -72,95 +74,118 @@ void Add::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x + y; });
binary(a, b, out, detail::Add());
}
void DivMod::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
auto integral_op = [](auto x, auto y) {
return std::make_pair(x / y, x % y);
};
auto float_op = [](auto x, auto y) {
return std::make_pair(std::trunc(x / y), std::fmod(x, y));
};
switch (outputs[0].dtype()) {
case bool_:
binary_op<bool>(a, b, outputs, integral_op);
case uint8:
binary_op<uint8_t>(a, b, outputs, integral_op);
break;
case uint16:
binary_op<uint16_t>(a, b, outputs, integral_op);
break;
case uint32:
binary_op<uint32_t>(a, b, outputs, integral_op);
break;
case uint64:
binary_op<uint64_t>(a, b, outputs, integral_op);
break;
case int8:
binary_op<int8_t>(a, b, outputs, integral_op);
break;
case int16:
binary_op<int16_t>(a, b, outputs, integral_op);
break;
case int32:
binary_op<int32_t>(a, b, outputs, integral_op);
break;
case int64:
binary_op<int64_t>(a, b, outputs, integral_op);
break;
case float16:
binary_op<float16_t>(a, b, outputs, float_op);
break;
case float32:
binary_op<float>(a, b, outputs, float_op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, outputs, float_op);
break;
case complex64:
// Should never get here
throw std::runtime_error("[DivMod] Complex type not supported");
break;
}
}
void Divide::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x / y; });
binary(a, b, out, detail::Divide());
}
struct RemainderFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return std::fmod(numerator, denominator);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
};
void Remainder::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, RemainderFn{});
binary(a, b, out, detail::Remainder());
}
void Equal::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (equal_nan_) {
comparison_op(inputs[0], inputs[1], out, [](auto x, auto y) {
return x == y || (std::isnan(x) && std::isnan(y));
});
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
} else {
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x == y; });
comparison_op(inputs[0], inputs[1], out, detail::Equal());
}
}
void Greater::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x > y; });
comparison_op(inputs[0], inputs[1], out, detail::Greater());
}
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x >= y; });
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
}
void Less::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x < y; });
comparison_op(inputs[0], inputs[1], out, detail::Less());
}
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x <= y; });
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
}
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
auto op = [](auto x, auto y) {
constexpr float inf = std::numeric_limits<float>::infinity();
auto maxval = (x > y) ? x : y;
auto minval = (x > y) ? y : x;
return (minval == -inf || maxval == inf)
? maxval
: static_cast<decltype(x)>(
maxval + std::log1p(std::exp(minval - maxval)));
};
if (is_floating_point(out.dtype())) {
if (out.dtype() == float32) {
binary_op<float>(a, b, out, op);
binary_op<float>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == float16) {
binary_op<float16_t>(a, b, out, op);
binary_op<float16_t>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == bfloat16) {
binary_op<bfloat16_t>(a, b, out, op);
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
} else {
std::ostringstream err;
err << "[logaddexp] Does not support " << out.dtype();
@@ -177,65 +202,40 @@ void Maximum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return (x > y) ? x : y; });
binary(a, b, out, detail::Maximum());
}
void Minimum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return (x < y) ? x : y; });
binary(a, b, out, detail::Minimum());
}
void Multiply::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x * y; });
binary(a, b, out, detail::Multiply());
}
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x != y; });
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
}
struct PowerFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
return std::pow(base, exp);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
if (exp < 0) {
throw std::invalid_argument(
"Integers cannot be raise to negative powers");
}
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
};
void Power::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, PowerFn{});
binary(a, b, out, detail::Power());
}
void Subtract::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x - y; });
binary(a, b, out, detail::Subtract());
}
} // namespace mlx::core

View File

@@ -1,7 +1,6 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
@@ -10,7 +9,7 @@ namespace mlx::core {
namespace {
enum BinaryOpType {
enum class BinaryOpType {
ScalarScalar,
ScalarVector,
VectorScalar,
@@ -21,17 +20,17 @@ enum BinaryOpType {
BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType bopt;
if (a.data_size() == 1 && b.data_size() == 1) {
bopt = ScalarScalar;
bopt = BinaryOpType::ScalarScalar;
} else if (a.data_size() == 1 && b.flags().contiguous) {
bopt = ScalarVector;
bopt = BinaryOpType::ScalarVector;
} else if (b.data_size() == 1 && a.flags().contiguous) {
bopt = VectorScalar;
bopt = BinaryOpType::VectorScalar;
} else if (
a.flags().row_contiguous && b.flags().row_contiguous ||
a.flags().col_contiguous && b.flags().col_contiguous) {
bopt = VectorVector;
bopt = BinaryOpType::VectorVector;
} else {
bopt = General;
bopt = BinaryOpType::General;
}
return bopt;
}
@@ -40,29 +39,83 @@ void set_binary_op_output_data(
const array& a,
const array& b,
array& out,
BinaryOpType bopt) {
BinaryOpType bopt,
bool donate_with_move = false) {
switch (bopt) {
case ScalarScalar:
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
break;
case ScalarVector:
out.set_data(
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
b.data_size(),
b.strides(),
b.flags());
case BinaryOpType::ScalarVector:
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(
allocator::malloc_or_wait(b.data_size() * out.itemsize()),
b.data_size(),
b.strides(),
b.flags());
}
break;
case VectorScalar:
case VectorVector:
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
case BinaryOpType::VectorScalar:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
}
break;
case General:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
case BinaryOpType::VectorVector:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
}
break;
case BinaryOpType::General:
if (a.is_donatable() && a.flags().row_contiguous &&
a.itemsize() == out.itemsize() && a.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (
b.is_donatable() && b.flags().row_contiguous &&
b.itemsize() == out.itemsize() && b.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
out.copy_shared_buffer(b);
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
break;
}
}
@@ -73,6 +126,12 @@ struct UseDefaultBinaryOp {
// Should we throw? This should normally never be called.
assert(false);
}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
};
template <typename T, typename U, typename Op>
@@ -89,6 +148,18 @@ struct DefaultVectorScalar {
a++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *b;
while (size-- > 0) {
auto dst = op(*a, scalar);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
}
}
};
template <typename T, typename U, typename Op>
@@ -105,6 +176,18 @@ struct DefaultScalarVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *a;
while (size-- > 0) {
auto dst = op(scalar, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
b++;
}
}
};
template <typename T, typename U, typename Op>
@@ -121,6 +204,18 @@ struct DefaultVectorVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
while (size-- > 0) {
auto dst = op(*a, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op>
@@ -329,25 +424,25 @@ void binary_op(
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == ScalarScalar) {
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == ScalarVector) {
if (bopt == BinaryOpType::ScalarVector) {
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == VectorScalar) {
if (bopt == BinaryOpType::VectorScalar) {
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == VectorVector) {
if (bopt == BinaryOpType::VectorVector) {
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
@@ -380,17 +475,17 @@ void binary_op(
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = VectorVector;
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = VectorScalar;
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = ScalarVector;
bopt = BinaryOpType::ScalarVector;
dim = d;
}
@@ -400,20 +495,20 @@ void binary_op(
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = General;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case VectorVector:
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
break;
case VectorScalar:
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
break;
case ScalarVector:
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
break;
default:

View File

@@ -0,0 +1,536 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
namespace {
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out_a.size(); ++i) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[i] = dst.first;
dst_b[i] = dst.second;
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst_a += stride;
dst_b += stride;
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[1];
b_idx += b.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst_a += stride;
dst_b += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[2];
b_idx += b.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
switch (out_a.ndim()) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out_a, out_b, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out_a, out_b, op);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
std::tie(dst_a[i], dst_b[i]) = op(a_ptr[a_idx], b_ptr[b_idx]);
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int dim,
int stride) {
// Number of dimensions to loop over for vectorized ops
switch (dim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
dst_a += stride;
dst_b += stride;
}
}
template <
typename T,
typename U,
typename Op,
typename OpSV,
typename OpVS,
typename OpVV>
void binary_op(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
auto bopt = get_binary_op_type(a, b);
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::ScalarScalar) {
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
opsv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
opvs(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
opvv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
out_a.size());
return;
}
// General computation so let's try to optimize
// Get the left-most dim such that the array is row contiguous after
auto& strides = out_a.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto ndim = out_a.ndim();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
break;
default:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, op);
break;
}
}
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv and opvs were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
opvv);
}
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opvs was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// All ops provided
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
}
template <typename T, typename Op>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op) {
DefaultScalarVector<T, T, Op> opsv(op);
DefaultVectorScalar<T, T, Op> opvs(op);
DefaultVectorVector<T, T, Op> opvv(op);
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
template <typename... Ops>
void binary(
const array& a,
const array& b,
std::vector<array>& outputs,
Ops... ops) {
switch (outputs[0].dtype()) {
case bool_:
binary_op<bool>(a, b, outputs, ops...);
break;
case uint8:
binary_op<uint8_t>(a, b, outputs, ops...);
break;
case uint16:
binary_op<uint16_t>(a, b, outputs, ops...);
break;
case uint32:
binary_op<uint32_t>(a, b, outputs, ops...);
break;
case uint64:
binary_op<uint64_t>(a, b, outputs, ops...);
break;
case int8:
binary_op<int8_t>(a, b, outputs, ops...);
break;
case int16:
binary_op<int16_t>(a, b, outputs, ops...);
break;
case int32:
binary_op<int32_t>(a, b, outputs, ops...);
break;
case int64:
binary_op<int64_t>(a, b, outputs, ops...);
break;
case float16:
binary_op<float16_t>(a, b, outputs, ops...);
break;
case float32:
binary_op<float>(a, b, outputs, ops...);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, outputs, ops...);
break;
case complex64:
binary_op<complex64_t>(a, b, outputs, ops...);
break;
}
}
} // namespace
} // namespace mlx::core

View File

@@ -0,0 +1,507 @@
// Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include <filesystem>
#include <list>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
#include "mlx/backend/common/utils.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids) {
std::ostringstream os;
std::ostringstream constant_hasher;
// The primitives describing the tape. For unary and binary primitives this
// must be enough to describe the full computation.
for (auto& a : tape) {
a.primitive().print(os);
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
os << "C";
print_constant(constant_hasher, x);
} else {
os << (is_scalar(x) ? "S" : "V");
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
continue;
}
os << kindof(x.dtype()) << x.itemsize();
}
os << "_" << std::hash<std::string>{}(constant_hasher.str());
return os.str();
}
void print_constant(std::ostream& os, const array& x) {
switch (x.dtype()) {
case float32:
return print_float_constant<float>(os, x);
case float16:
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
return print_int_constant<int8_t>(os, x);
case int16:
return print_int_constant<int16_t>(os, x);
case int32:
return print_int_constant<int32_t>(os, x);
case int64:
return print_int_constant<int64_t>(os, x);
case uint8:
return print_int_constant<uint8_t>(os, x);
case uint16:
return print_int_constant<uint16_t>(os, x);
case uint32:
return print_int_constant<uint32_t>(os, x);
case uint64:
return print_int_constant<uint64_t>(os, x);
case bool_:
os << std::boolalpha << x.item<bool>();
return;
default:
throw std::runtime_error("Unsupported constant type");
}
}
std::string get_type_string(Dtype d) {
switch (d) {
case float32:
return "float";
case float16:
return "float16_t";
case bfloat16:
return "bfloat16_t";
case complex64:
return "complex64_t";
case bool_:
return "bool";
case int8:
return "int8_t";
case int16:
return "int16_t";
case int32:
return "int32_t";
case int64:
return "int64_t";
case uint8:
return "uint8_t";
case uint16:
return "uint16_t";
case uint32:
return "uint32_t";
case uint64:
return "uint64_t";
default: {
std::ostringstream msg;
msg << "Unsupported compilation type " << d;
throw std::runtime_error(msg.str());
}
}
}
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::string& source_code = "") {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
if (!lib) {
std::ostringstream msg;
msg << "Could not load C++ shared library " << dlerror();
throw std::runtime_error(msg.str());
}
}
~DLib() {
dlclose(lib);
}
void* lib;
};
// Statics to cache compiled libraries and functions
static std::list<DLib> libs;
static std::unordered_map<std::string, void*> kernels;
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
return it->second;
}
if (source_code.empty()) {
return nullptr;
}
std::ostringstream shared_lib_name;
shared_lib_name << "lib" << kernel_name << ".so";
auto shared_lib_path = get_temp_file(shared_lib_name.str());
bool lib_exists = false;
{
std::ifstream f(shared_lib_path.c_str());
lib_exists = f.good();
}
if (!lib_exists) {
// Open source file and write source code to it
std::ostringstream source_file_name;
source_file_name << kernel_name << ".cpp";
auto source_file_path = get_temp_file(source_file_name.str());
std::ofstream source_file(source_file_path);
source_file << source_code;
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
<< source_file_path << " -o " << shared_lib_path;
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to compile function " << kernel_name
<< " with error code " << return_code << "." << std::endl;
throw std::runtime_error(msg.str());
}
}
// load library
libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
<< kernel_name << std::endl
<< dlerror();
throw std::runtime_error(msg.str());
}
kernels.insert({kernel_name, fun});
return fun;
}
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
// Start the kernel
os << "void " << kernel_name << "(void** args) {" << std::endl;
// Add the input arguments
int cnt = 0;
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
<< "];" << std::endl;
// Scalars and contiguous need no strides
if (!is_scalar(x) && !contiguous) {
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
<< "];" << std::endl;
}
}
// Add the output arguments
for (auto& x : outputs) {
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
<< "*)args[" << cnt++ << "];" << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
} else {
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
}
if (contiguous) {
os << " for (size_t i = 0; i < size; ++i) {" << std::endl;
} else {
for (int d = 0; d < ndim; ++d) {
os << " for (int i" << d << " = 0; i" << d << " < shape[" << d
<< "]; ++i" << d << ") {" << std::endl;
}
}
// Read the inputs in tmps
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
if (is_constant(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[i];" << std::endl;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = *"
<< xname << ";" << std::endl;
}
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
if (contiguous) {
os << " " << namer.get_name(x) << "[i] = tmp_" << namer.get_name(x)
<< ";" << std::endl;
} else {
os << " *" << namer.get_name(x) << "++ = tmp_" << namer.get_name(x)
<< ";" << std::endl;
}
}
// Close loops
if (contiguous) {
os << " }" << std::endl;
} else {
for (int d = ndim - 1; d >= 0; --d) {
// Update pointers
for (auto& x : inputs) {
if (is_constant(x) || is_scalar(x)) {
continue;
}
auto& xname = namer.get_name(x);
os << " " << xname << " += " << xname << "_strides[" << d << "];"
<< std::endl;
if (d < ndim - 1) {
os << " " << xname << " -= " << xname << "_strides[" << d + 1 << "]"
<< " * shape[" << d + 1 << "];" << std::endl;
}
}
os << " }" << std::endl;
}
}
// Finish the kernel
os << "}" << std::endl;
}
void Compiled::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Figure out which kernel we are using
auto& shape = outputs[0].shape();
bool contiguous = true;
{
bool all_contig = true;
bool all_row_contig = true;
bool all_col_contig = true;
int non_scalar_inputs = 0;
for (auto& x : inputs) {
if (is_scalar(x)) {
continue;
}
non_scalar_inputs++;
bool shape_eq = x.shape() == shape;
all_contig &= (x.flags().contiguous && shape_eq);
all_row_contig &= (x.flags().row_contiguous && shape_eq);
all_col_contig &= (x.flags().col_contiguous && shape_eq);
}
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
contiguous = false;
} else if (non_scalar_inputs == 1 && !all_contig) {
contiguous = false;
}
}
// Handle all broadcasting and collect function input arguments
std::vector<void*> args;
std::vector<std::vector<size_t>> strides;
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
args.push_back((void*)x.data<void>());
if (contiguous || is_scalar(x)) {
continue;
}
// Broadcast the input to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < shape.size() - x.ndim(); j++) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
strides.push_back(std::move(xstrides));
args.push_back(strides.back().data());
}
// Get the kernel name from the lib
int ndim = shape.size();
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
kernel_name += std::to_string(shape.size());
}
// Get the function
auto fn_ptr = compile(kernel_name);
// If it doesn't exist, compile it
if (fn_ptr == nullptr) {
std::ostringstream kernel;
kernel << get_kernel_preamble() << std::endl;
kernel << "extern \"C\" {" << std::endl;
build_kernel(
kernel,
kernel_name,
inputs_,
outputs_,
tape_,
constant_ids_,
contiguous,
ndim);
// Close extern "C"
kernel << "}" << std::endl;
// Compile and get function pointer
fn_ptr = compile(kernel_name, kernel.str());
}
// Allocate space for the outputs possibly with input donation
if (contiguous) {
int o = 0;
std::vector<size_t> strides;
size_t data_size;
array::Flags flags;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().contiguous && !is_scalar(in) && in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
// Get representative input flags to properly set non-donated outputs
if (strides.empty() && in.size() == outputs[0].size()) {
strides = in.strides();
flags = in.flags();
data_size = in.data_size();
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
data_size,
strides,
flags);
}
} else {
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
for (auto& x : outputs) {
args.push_back(x.data<void>());
}
if (!contiguous) {
args.push_back((void*)outputs[0].shape().data());
} else {
args.push_back((void*)outputs[0].data_size());
}
auto fun = (void (*)(void**))fn_ptr;
fun(args.data());
}
} // namespace mlx::core

View File

@@ -0,0 +1,56 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <iomanip>
#include <sstream>
#include <unordered_set>
#include "mlx/array.h"
#include "mlx/primitives.h"
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids);
std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>
void print_int_constant(std::ostream& os, const array& x) {
os << x.item<T>();
}
template <typename T>
void print_complex_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
T constant = x.item<T>();
os << get_type_string(x.dtype()) << "("
<< std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< constant.real() << ", " << constant.imag() << ")"
<< std::setprecision(old_precision);
}
void print_constant(std::ostream& os, const array& x);
inline bool is_scalar(const array& x) {
return x.ndim() == 0;
}
} // namespace mlx::core

View File

@@ -0,0 +1,11 @@
// Copyright © 2023-24 Apple Inc.
#pragma once
// clang-format off
#include "mlx/types/half_types.h"
#include "mlx/types/complex.h"
#include "mlx/backend/common/ops.h"
// clang-format on
const char* get_kernel_preamble();

View File

@@ -1,9 +1,10 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <numeric>
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/cblas_new.h>
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
@@ -27,14 +28,16 @@ void slow_conv_1D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const T* start_wt_ptr = wt.data<T>();
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(2); // In channels
@@ -61,12 +64,15 @@ void slow_conv_1D(
for (int wh = 0; wh < wH; ++wh) {
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
int ih = oh * wt_strides[0] - padding[0] + wh * wt_dilation[0];
int wh_flip = flip ? (wH - wh - 1) : wh;
int ih = oh * wt_strides[0] - padding[0] + wh_flip * wt_dilation[0];
if (ih >= 0 && ih < iH) {
auto ih_div = std::div(ih, in_dilation[0]);
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
for (int c = 0; c < C; ++c) {
r += static_cast<float>(
in_ptr[ih * in_stride_H + c * in_stride_C]) *
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
static_cast<float>(wt_ptr[c * wt_stride_C]);
} // c
@@ -90,14 +96,16 @@ void slow_conv_2D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const T* st_wt_ptr = wt.data<T>();
const T* st_in_ptr = in.data<T>();
T* st_out_ptr = out.data<T>();
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iW = in.shape(2); // Input spatial dim
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int iW = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int oW = out.shape(2); // Output spatial dim
const int O = wt.shape(0); // Out channels
@@ -120,6 +128,8 @@ void slow_conv_2D(
const size_t out_stride_W = out.strides()[2];
const size_t out_stride_O = out.strides()[3];
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
auto pt_conv_no_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
@@ -131,8 +141,10 @@ void slow_conv_2D(
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int ih = ih_base + wh * wt_dilation[0];
int iw = iw_base + ww * wt_dilation[1];
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
@@ -153,25 +165,74 @@ void slow_conv_2D(
} // o
};
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int f_wgt_jump_h = std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w = std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_out_jump_h = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding[0] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
base_h[i] = wh_base;
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding[1] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
base_w[j] = ww_base;
}
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int ih = ih_base + wh * wt_dilation[0];
int iw = iw_base + ww * wt_dilation[1];
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
const T* in_ptr_pt =
in_ptr + ih * in_stride_H + iw * in_stride_W;
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
@@ -191,13 +252,17 @@ void slow_conv_2D(
};
int oH_border_0 = 0;
int oH_border_1 = (padding[0] + wt_strides[0] + 1) / wt_strides[0];
int oH_border_2 = (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0];
int oH_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 = (padding[1] + wt_strides[0] + 1) / wt_strides[1];
int oW_border_2 = (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1];
int oW_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
@@ -246,15 +311,18 @@ void dispatch_slow_conv_1D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (in.dtype() == float32) {
return slow_conv_1D<float>(in, wt, out, padding, wt_strides, wt_dilation);
return slow_conv_1D<float>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == float16) {
return slow_conv_1D<float16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == bfloat16) {
return slow_conv_1D<bfloat16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else {
throw std::invalid_argument(
"[Convolution::eval] got unsupported data type.");
@@ -267,15 +335,18 @@ void dispatch_slow_conv_2D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (in.dtype() == float32) {
return slow_conv_2D<float>(in, wt, out, padding, wt_strides, wt_dilation);
return slow_conv_2D<float>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == float16) {
return slow_conv_2D<float16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == bfloat16) {
return slow_conv_2D<bfloat16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else {
throw std::invalid_argument(
"[Convolution::eval] got unsupported data type.");
@@ -493,13 +564,16 @@ void conv_1D_cpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
if (wt_dilation[0] == 1) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation);
}
return dispatch_slow_conv_1D(in, wt, out, padding, wt_strides, wt_dilation);
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
void conv_2D_cpu(
@@ -508,8 +582,11 @@ void conv_2D_cpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
return dispatch_slow_conv_2D(in, wt, out, padding, wt_strides, wt_dilation);
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
} // namespace
@@ -523,12 +600,26 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
// 2D convolution
if (in.ndim() == (2 + 2)) {
return conv_2D_cpu(
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// 1D convolution
else if (in.ndim() == (1 + 2)) {
return conv_1D_cpu(
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// Throw error
else {

View File

@@ -289,11 +289,16 @@ void copy(const array& src, array& dst, CopyType ctype) {
// Allocate the output
switch (ctype) {
case CopyType::Vector:
dst.set_data(
allocator::malloc_or_wait(src.data_size() * dst.itemsize()),
src.data_size(),
src.strides(),
src.flags());
if (src.is_donatable() && src.itemsize() == dst.itemsize()) {
dst.copy_shared_buffer(src);
} else {
auto size = src.data_size();
dst.set_data(
allocator::malloc_or_wait(size * dst.itemsize()),
size,
src.strides(),
src.flags());
}
break;
case CopyType::Scalar:
case CopyType::General:

View File

@@ -1,11 +1,13 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/cblas_new.h>
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
@@ -16,6 +18,12 @@
primitive::eval(inputs, out); \
}
#define DEFAULT_MULTI(primitive) \
void primitive::eval_cpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
primitive::eval(inputs, outputs); \
}
namespace mlx::core {
DEFAULT(Abs)
@@ -33,12 +41,15 @@ DEFAULT(ArgSort)
DEFAULT(AsType)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Convolution)
DEFAULT(Copy)
DEFAULT(Cos)
DEFAULT(Cosh)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(Depends)
DEFAULT(Divide)
DEFAULT(Remainder)
DEFAULT(Equal)
@@ -57,6 +68,8 @@ DEFAULT(Load)
DEFAULT(Log)
DEFAULT(Log1p)
DEFAULT(LogicalNot)
DEFAULT(LogicalAnd)
DEFAULT(LogicalOr)
DEFAULT(LogAddExp)
DEFAULT(Maximum)
DEFAULT(Minimum)
@@ -66,6 +79,7 @@ DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT(Power)
DEFAULT_MULTI(QRF)
DEFAULT(QuantizedMatmul)
DEFAULT(RandomBits)
DEFAULT(Reduce)
@@ -73,6 +87,7 @@ DEFAULT(Reshape)
DEFAULT(Round)
DEFAULT(Scan)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Sin)
@@ -80,6 +95,7 @@ DEFAULT(Sinh)
DEFAULT(Slice)
DEFAULT(Softmax)
DEFAULT(Sort)
DEFAULT_MULTI(Split)
DEFAULT(Square)
DEFAULT(Sqrt)
DEFAULT(StopGradient)
@@ -88,16 +104,14 @@ DEFAULT(Tan)
DEFAULT(Tanh)
DEFAULT(Transpose)
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[Matmul::eval_cpu] Currently only supports float32.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& a_pre = inputs[0];
auto& b_pre = inputs[1];
namespace {
inline void matmul_common_general(
const array& a_pre,
const array& b_pre,
array& out,
float alpha = 1.0f,
float beta = 0.0f) {
auto check_transpose = [](const array& arr) {
auto stx = arr.strides()[arr.ndim() - 2];
auto sty = arr.strides()[arr.ndim() - 1];
@@ -115,9 +129,17 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
auto [a_transposed, lda, a] = check_transpose(a_pre);
auto [b_transposed, ldb, b] = check_transpose(b_pre);
int M = a.shape(-2);
int N = b.shape(-1);
int K = a.shape(-1);
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
}
for (int i = 0; i < (a.size() / (M * K)); ++i) {
cblas_sgemm(
CblasRowMajor,
@@ -126,16 +148,41 @@ void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
M,
N,
K,
1.0f, // alpha
alpha, // alpha
a.data<float>() + elem_to_loc(M * K * i, a.shape(), a.strides()),
lda,
b.data<float>() + elem_to_loc(K * N * i, b.shape(), b.strides()),
ldb,
0.0f, // beta
beta, // beta
out.data<float>() + M * N * i,
out.shape(-1) // ldc
);
}
}
} // namespace
void Matmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[Matmul::eval_cpu] Currently only supports float32.");
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
return matmul_common_general(inputs[0], inputs[1], out);
}
void AddMM::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.dtype() != float32) {
throw std::runtime_error(
"[AddMM::eval_cpu] Currently only supports float32.");
}
// Fill output with C
auto& c = inputs[2];
CopyType ctype = c.data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy(c, out, ctype);
return matmul_common_general(inputs[0], inputs[1], out, alpha_, beta_);
}
} // namespace mlx::core

View File

@@ -1,11 +0,0 @@
// Copyright © 2023 Apple Inc.
namespace mlx::core {
/* Approximation to the inverse error function.
* Based on code from:
* https://stackoverflow.com/questions/27229371/inverse-error-function-in-c#answer-49743348
*/
float erfinv(float a);
} // namespace mlx::core

View File

@@ -0,0 +1,34 @@
#!/bin/bash
#
# This script generates a C++ function that provides the CPU
# code for use with kernel generation.
#
# Copyright © 2023-24 Apple Inc.
OUTPUT_FILE=$1
GCC=$2
SRCDIR=$3
CLANG=$4
if [ $CLANG = "TRUE" ]; then
read -r -d '' INCLUDES <<- EOM
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
EOM
fi
CONTENT=$($GCC -I $SRCDIR -E $SRCDIR/mlx/backend/common/compiled_preamble.h 2>/dev/null)
cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() {
return R"preamble(
$INCLUDES
$CONTENT
using namespace mlx::core::detail;
)preamble";
}
EOF

602
mlx/backend/common/ops.h Normal file
View File

@@ -0,0 +1,602 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <stdint.h>
#include <cmath>
#include <complex>
namespace mlx::core::detail {
namespace {
constexpr float inf = std::numeric_limits<float>::infinity();
} // namespace
typedef union {
int i;
float f;
} IntOrFloat;
inline float fast_exp(float x) {
if (x == -std::numeric_limits<float>::infinity()) {
return 0.0f;
} else if (x == std::numeric_limits<float>::infinity() || std::isnan(x)) {
return x;
}
x *= 1.442695; // multiply with log_2(e)
float ipart, fpart;
IntOrFloat epart;
x = std::max(-80.f, std::min(x, 80.f));
ipart = std::floor(x + 0.5);
fpart = x - ipart;
x = 1.535336188319500e-4f;
x = x * fpart + 1.339887440266574e-3f;
x = x * fpart + 9.618437357674640e-3f;
x = x * fpart + 5.550332471162809e-2f;
x = x * fpart + 2.402264791363012e-1f;
x = x * fpart + 6.931472028550421e-1f;
x = x * fpart + 1.000000000000000f;
// generate 2**ipart in the floating point representation using integer
// bitshifting
epart.i = (int(ipart) + 127) << 23;
return epart.f * x;
}
inline float fast_erf(float a) {
float r, s, t, u;
t = std::abs(a);
s = a * a;
if (t > 0.927734375f) {
// maximum error 0.99527 ulp
r = std::fma(
-1.72853470e-5f, t, 3.83197126e-4f); // -0x1.220000p-16,0x1.91cfb2p-12
u = std::fma(
-3.88396438e-3f, t, 2.42546219e-2f); // -0x1.fd1438p-9, 0x1.8d6342p-6
r = std::fma(r, s, u);
r = std::fma(r, t, -1.06777877e-1f); // -0x1.b55cb8p-4
r = std::fma(r, t, -6.34846687e-1f); // -0x1.450aa0p-1
r = std::fma(r, t, -1.28717512e-1f); // -0x1.079d0cp-3
r = std::fma(r, t, -t);
// TODO, replace with expm1 when implemented
r = 1.0f - std::exp(r);
r = std::copysign(r, a);
} else {
// maximum error 0.98929 ulp
r = -5.96761703e-4f; // -0x1.38e000p-11
r = std::fma(r, s, 4.99119423e-3f); // 0x1.471a58p-8
r = std::fma(r, s, -2.67681349e-2f); // -0x1.b691b2p-6
r = std::fma(r, s, 1.12819925e-1f); // 0x1.ce1c44p-4
r = std::fma(r, s, -3.76125336e-1f); // -0x1.812700p-2
r = std::fma(r, s, 1.28379166e-1f); // 0x1.06eba8p-3
r = std::fma(r, a, a);
}
return r;
}
inline float fast_erfinv(float a) {
auto t = std::fma(a, 0.0f - a, 1.0f);
t = std::log(t);
float p;
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
p = 3.03697567e-10f; // 0x1.4deb44p-32
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
} else { // maximum ulp error = 2.35002
p = 5.43877832e-9f; // 0x1.75c000p-28
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
}
return a * p;
}
struct Abs {
template <typename T>
T operator()(T x) {
return std::abs(x);
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct ArcCos {
template <typename T>
T operator()(T x) {
return std::acos(x);
};
};
struct ArcCosh {
template <typename T>
T operator()(T x) {
return std::acosh(x);
};
};
struct ArcSin {
template <typename T>
T operator()(T x) {
return std::asin(x);
};
};
struct ArcSinh {
template <typename T>
T operator()(T x) {
return std::asinh(x);
};
};
struct ArcTan {
template <typename T>
T operator()(T x) {
return std::atan(x);
};
};
struct ArcTanh {
template <typename T>
T operator()(T x) {
return std::atanh(x);
};
};
struct Ceil {
template <typename T>
T operator()(T x) {
return std::ceil(x);
};
int8_t operator()(int8_t x) {
return x;
};
int16_t operator()(int16_t x) {
return x;
};
int32_t operator()(int32_t x) {
return x;
};
int64_t operator()(int64_t x) {
return x;
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct Cos {
template <typename T>
T operator()(T x) {
return std::cos(x);
};
};
struct Cosh {
template <typename T>
T operator()(T x) {
return std::cosh(x);
};
};
struct Erf {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erf(static_cast<float>(x)));
};
};
struct ErfInv {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erfinv(static_cast<float>(x)));
};
};
struct Exp {
template <typename T>
T operator()(T x) {
return fast_exp(x);
};
complex64_t operator()(complex64_t x) {
return std::exp(x);
}
};
struct Floor {
template <typename T>
T operator()(T x) {
return std::floor(x);
};
int8_t operator()(int8_t x) {
return x;
};
int16_t operator()(int16_t x) {
return x;
};
int32_t operator()(int32_t x) {
return x;
};
int64_t operator()(int64_t x) {
return x;
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct Log {
template <typename T>
T operator()(T x) {
return std::log(x);
};
};
struct Log2 {
template <typename T>
T operator()(T x) {
return std::log2(x);
};
};
struct Log10 {
template <typename T>
T operator()(T x) {
return std::log10(x);
};
};
struct Log1p {
template <typename T>
T operator()(T x) {
return log1p(x);
};
};
struct LogicalNot {
template <typename T>
T operator()(T x) {
return !x;
};
};
struct Negative {
template <typename T>
T operator()(T x) {
return -x;
};
};
struct Round {
template <typename T>
T operator()(T x) {
return std::rint(x);
}
complex64_t operator()(complex64_t x) {
return {std::rint(x.real()), std::rint(x.imag())};
}
};
struct Sigmoid {
template <typename T>
T operator()(T x) {
auto one = static_cast<decltype(x)>(1.0);
return one / (one + fast_exp(-x));
}
};
struct Sign {
template <typename T>
T operator()(T x) {
return (x > T(0)) - (x < T(0));
}
uint8_t operator()(uint8_t x) {
return x != 0;
}
uint16_t operator()(uint16_t x) {
return x != 0;
}
uint32_t operator()(uint32_t x) {
return x != 0;
}
uint64_t operator()(uint64_t x) {
return x != 0;
}
};
struct Sin {
template <typename T>
T operator()(T x) {
return std::sin(x);
};
};
struct Sinh {
template <typename T>
T operator()(T x) {
return std::sinh(x);
};
};
struct Square {
template <typename T>
T operator()(T x) {
return x * x;
};
};
struct Sqrt {
template <typename T>
T operator()(T x) {
return std::sqrt(x);
};
};
struct Rsqrt {
template <typename T>
T operator()(T x) {
return static_cast<decltype(x)>(1.0) / std::sqrt(x);
};
};
struct Tan {
template <typename T>
T operator()(T x) {
return std::tan(x);
};
};
struct Tanh {
template <typename T>
T operator()(T x) {
return std::tanh(x);
};
};
struct Add {
template <typename T>
T operator()(T x, T y) {
return x + y;
}
};
struct Divide {
template <typename T>
T operator()(T x, T y) {
return x / y;
}
};
struct Remainder {
template <typename T>
std::enable_if_t<std::is_integral_v<T> & !std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
template <typename T>
std::enable_if_t<std::is_integral_v<T> & std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = numerator % denominator;
if (r != 0 && (r < 0 != denominator < 0))
r += denominator;
return r;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = std::fmod(numerator, denominator);
if (r != 0 && (r < 0 != denominator < 0)) {
r += denominator;
}
return r;
}
complex64_t operator()(complex64_t numerator, complex64_t denominator) {
return numerator % denominator;
}
};
struct Equal {
template <typename T>
bool operator()(T x, T y) {
return x == y;
}
};
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
return x == y || (std::isnan(x) && std::isnan(y));
}
};
struct Greater {
template <typename T>
bool operator()(T x, T y) {
return x > y;
}
};
struct GreaterEqual {
template <typename T>
bool operator()(T x, T y) {
return x >= y;
}
};
struct Less {
template <typename T>
bool operator()(T x, T y) {
return x < y;
}
};
struct LessEqual {
template <typename T>
bool operator()(T x, T y) {
return x <= y;
}
};
struct Maximum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return (x > y) ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return (x > y) ? x : y;
}
};
struct Minimum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return x < y ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return x < y ? x : y;
}
};
struct LogAddExp {
template <typename T>
T operator()(T x, T y) {
constexpr float inf = std::numeric_limits<float>::infinity();
auto maxval = Maximum()(x, y);
auto minval = Minimum()(x, y);
return (minval == -inf || maxval == inf)
? maxval
: static_cast<decltype(x)>(
maxval + std::log1p(fast_exp(minval - maxval)));
};
};
struct Multiply {
template <typename T>
T operator()(T x, T y) {
return x * y;
}
};
struct NotEqual {
template <typename T>
bool operator()(T x, T y) {
return x != y;
}
};
struct Power {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
return std::pow(base, exp);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
};
struct Subtract {
template <typename T>
T operator()(T x, T y) {
return x - y;
}
};
struct LogicalAnd {
template <typename T>
T operator()(T x, T y) {
return x && y;
};
};
struct LogicalOr {
template <typename T>
T operator()(T x, T y) {
return x || y;
};
};
struct Select {
template <typename T>
T operator()(bool condition, T x, T y) {
return condition ? x : y;
}
};
} // namespace mlx::core::detail

View File

@@ -8,8 +8,9 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/arange.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/erf.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/threefry.h"
#include "mlx/backend/common/unary.h"
#include "mlx/backend/common/utils.h"
@@ -25,7 +26,7 @@ void Abs::eval(const std::vector<array>& inputs, array& out) {
// No-op for unsigned types
out.copy_shared_buffer(in);
} else {
unary(in, out, AbsOp());
unary(in, out, detail::Abs());
}
}
@@ -37,7 +38,7 @@ void ArcCos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::acos(x); });
unary_fp(in, out, detail::ArcCos());
} else {
throw std::invalid_argument(
"[arccos] Cannot compute inverse cosine of elements in array"
@@ -49,7 +50,7 @@ void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::acosh(x); });
unary_fp(in, out, detail::ArcCosh());
} else {
throw std::invalid_argument(
"[arccosh] Cannot compute inverse hyperbolic cosine of elements in"
@@ -61,7 +62,7 @@ void ArcSin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::asin(x); });
unary_fp(in, out, detail::ArcSin());
} else {
throw std::invalid_argument(
"[arcsin] Cannot compute inverse sine of elements in array"
@@ -73,7 +74,7 @@ void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::asinh(x); });
unary_fp(in, out, detail::ArcSinh());
} else {
throw std::invalid_argument(
"[arcsinh] Cannot compute inverse hyperbolic sine of elements in"
@@ -85,7 +86,7 @@ void ArcTan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::atan(x); });
unary_fp(in, out, detail::ArcTan());
} else {
throw std::invalid_argument(
"[arctan] Cannot compute inverse tangent of elements in array"
@@ -97,7 +98,7 @@ void ArcTanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::atanh(x); });
unary_fp(in, out, detail::ArcTanh());
} else {
throw std::invalid_argument(
"[arctanh] Cannot compute inverse hyperbolic tangent of elements in"
@@ -171,7 +172,7 @@ void Ceil::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, [](auto x) { return std::ceil(x); });
unary_fp(in, out, detail::Ceil());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -211,7 +212,7 @@ void Cos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::cos(x); });
unary_fp(in, out, detail::Cos());
} else {
throw std::invalid_argument(
"[cos] Cannot compute cosine of elements in array"
@@ -223,7 +224,7 @@ void Cosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::cosh(x); });
unary_fp(in, out, detail::Cosh());
} else {
throw std::invalid_argument(
"[cosh] Cannot compute hyperbolic cosine of elements in array"
@@ -231,25 +232,37 @@ void Cosh::eval(const std::vector<array>& inputs, array& out) {
}
}
void CustomVJP::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() > outputs.size());
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
i++, j++) {
outputs[i].copy_shared_buffer(inputs[j]);
}
}
void Depends::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() > outputs.size());
for (int i = 0; i < outputs.size(); i++) {
outputs[i].copy_shared_buffer(inputs[i]);
}
}
void Erf::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<float>(in, out, [](auto x) { return std::erf(x); });
unary_op<float>(in, out, detail::Erf());
break;
case float16:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<float16_t>(in, out, [](auto x) {
return static_cast<float16_t>(std::erf(static_cast<float>(x)));
});
unary_op<float16_t>(in, out, detail::Erf());
break;
case bfloat16:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<bfloat16_t>(in, out, [](auto x) {
return static_cast<bfloat16_t>(std::erf(static_cast<float>(x)));
});
unary_op<bfloat16_t>(in, out, detail::Erf());
break;
default:
throw std::invalid_argument(
@@ -263,20 +276,13 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<float>(in, out, [](auto x) { return erfinv(x); });
unary_op<float>(in, out, detail::ErfInv());
break;
case float16:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<float16_t>(in, out, [](auto x) {
return static_cast<float16_t>(erfinv(static_cast<float>(x)));
});
unary_op<float16_t>(in, out, detail::ErfInv());
break;
case bfloat16:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
unary_op<bfloat16_t>(in, out, [](auto x) {
return static_cast<bfloat16_t>(erfinv(static_cast<float>(x)));
});
unary_op<bfloat16_t>(in, out, detail::ErfInv());
break;
default:
throw std::invalid_argument(
@@ -288,9 +294,8 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
void Exp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::exp(x); });
unary_fp(in, out, detail::Exp());
} else {
throw std::invalid_argument(
"[exp] Cannot exponentiate elements in array"
@@ -302,7 +307,7 @@ void Floor::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, [](auto x) { return std::floor(x); });
unary_fp(in, out, detail::Floor());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -330,13 +335,13 @@ void Log::eval(const std::vector<array>& inputs, array& out) {
if (is_floating_point(out.dtype())) {
switch (base_) {
case Base::e:
unary_fp(in, out, [](auto x) { return std::log(x); });
unary_fp(in, out, detail::Log());
break;
case Base::two:
unary_fp(in, out, [](auto x) { return std::log2(x); });
unary_fp(in, out, detail::Log2());
break;
case Base::ten:
unary_fp(in, out, [](auto x) { return std::log10(x); });
unary_fp(in, out, detail::Log10());
break;
}
} else {
@@ -350,7 +355,7 @@ void Log1p::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::log1p(x); });
unary_fp(in, out, detail::Log1p());
} else {
throw std::invalid_argument(
"[log1p] Cannot compute log of elements in array with"
@@ -361,13 +366,27 @@ void Log1p::eval(const std::vector<array>& inputs, array& out) {
void LogicalNot::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return !x; });
unary(in, out, detail::LogicalNot());
}
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalAnd());
}
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalOr requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalOr());
}
void Negative::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return -x; });
unary(in, out, detail::Negative());
}
void Pad::eval(const std::vector<array>& inputs, array& out) {
@@ -470,7 +489,7 @@ void Round::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, RoundOp());
unary_fp(in, out, detail::Round());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -481,11 +500,7 @@ void Sigmoid::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
auto sigmoid_op = [](auto x) {
auto one = static_cast<decltype(x)>(1.0);
return one / (one + std::exp(-x));
};
unary_fp(in, out, sigmoid_op);
unary_fp(in, out, detail::Sigmoid());
} else {
throw std::invalid_argument(
"[sigmoid] Cannot sigmoid of elements in array with"
@@ -499,7 +514,7 @@ void Sign::eval(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
out.copy_shared_buffer(in);
} else {
unary(in, out, SignOp());
unary(in, out, detail::Sign());
}
}
@@ -507,7 +522,7 @@ void Sin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::sin(x); });
unary_fp(in, out, detail::Sin());
} else {
throw std::invalid_argument(
"[sin] Cannot compute sine of elements in array"
@@ -519,7 +534,7 @@ void Sinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::sinh(x); });
unary_fp(in, out, detail::Sinh());
} else {
throw std::invalid_argument(
"[sinh] Cannot compute hyperbolic sine of elements in array"
@@ -573,21 +588,71 @@ void Slice::eval(const std::vector<array>& inputs, array& out) {
out.copy_shared_buffer(in, strides, flags, data_size, data_offset);
}
void Split::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
auto& in = inputs[0];
auto compute_new_flags = [](const auto& shape,
const auto& strides,
size_t in_data_size,
auto flags) {
size_t data_size = 1;
size_t f_stride = 1;
size_t b_stride = 1;
flags.row_contiguous = true;
flags.col_contiguous = true;
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
flags.col_contiguous &= strides[i] == f_stride || shape[i] == 1;
flags.row_contiguous &= strides[ri] == b_stride || shape[ri] == 1;
f_stride *= shape[i];
b_stride *= shape[ri];
if (strides[i] > 0) {
data_size *= shape[i];
}
}
if (data_size == 1) {
// Broadcasted scalar array is contiguous.
flags.contiguous = true;
} else if (data_size == in_data_size) {
// Means we sliced a broadcasted dimension so leave the "no holes" flag
// alone.
} else {
// We sliced something. So either we are row or col contiguous or we
// punched a hole.
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
}
return std::pair<decltype(flags), size_t>{flags, data_size};
};
std::vector<int> indices(1, 0);
indices.insert(indices.end(), indices_.begin(), indices_.end());
for (int i = 0; i < indices.size(); i++) {
size_t offset = indices[i] * in.strides()[axis_];
auto [new_flags, data_size] = compute_new_flags(
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
outputs[i].copy_shared_buffer(
in, in.strides(), new_flags, data_size, offset);
}
}
void Square::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return x * x; });
unary(in, out, detail::Square());
}
void Sqrt::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (recip_) {
unary_fp(in, out, [](auto x) {
return static_cast<decltype(x)>(1.0) / sqrt(x);
});
unary_fp(in, out, detail::Rsqrt());
} else {
unary_fp(in, out, [](auto x) { return sqrt(x); });
unary_fp(in, out, detail::Sqrt());
}
}
@@ -600,7 +665,7 @@ void Tan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::tan(x); });
unary_fp(in, out, detail::Tan());
} else {
throw std::invalid_argument(
"[tan] Cannot compute tangent of elements in array"
@@ -612,7 +677,7 @@ void Tanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::tanh(x); });
unary_fp(in, out, detail::Tanh());
} else {
throw std::invalid_argument(
"[tanh] Cannot compute hyperbolic tangent of elements in array"

153
mlx/backend/common/qrf.cpp Normal file
View File

@@ -0,0 +1,153 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
namespace mlx::core {
template <typename T>
struct lpack;
template <>
struct lpack<float> {
static void xgeqrf(
const int* m,
const int* n,
float* a,
const int* lda,
float* tau,
float* work,
const int* lwork,
int* info) {
sgeqrf_(m, n, a, lda, tau, work, lwork, info);
}
static void xorgqr(
const int* m,
const int* n,
const int* k,
float* a,
const int* lda,
const float* tau,
float* work,
const int* lwork,
int* info) {
sorgqr_(m, n, k, a, lda, tau, work, lwork, info);
}
};
template <typename T>
void qrf_impl(const array& a, array& q, array& r) {
const int M = a.shape(-2);
const int N = a.shape(-1);
const int lda = std::max(M, N);
size_t num_matrices = a.size() / (M * N);
int num_reflectors = std::min(M, N);
auto tau =
allocator::malloc_or_wait(sizeof(T) * num_matrices * num_reflectors);
// Copy A to inplace input and make it col-contiguous
array in(a.shape(), float32, nullptr, {});
auto flags = in.flags();
// Copy the input to be column contiguous
flags.col_contiguous = num_matrices == 1;
flags.row_contiguous = false;
std::vector<size_t> strides = in.strides();
strides[in.ndim() - 2] = 1;
strides[in.ndim() - 1] = M;
in.set_data(
allocator::malloc_or_wait(in.nbytes()), in.nbytes(), strides, flags);
copy_inplace(a, in, CopyType::GeneralGeneral);
T optimal_work;
int lwork = -1;
int info;
// Compute workspace size
lpack<T>::xgeqrf(
&M, &N, nullptr, &lda, nullptr, &optimal_work, &lwork, &info);
// Update workspace size
lwork = optimal_work;
auto work = allocator::malloc_or_wait(sizeof(T) * lwork);
// Loop over matrices
for (int i = 0; i < num_matrices; ++i) {
// Solve
lpack<T>::xgeqrf(
&M,
&N,
in.data<float>() + M * N * i,
&lda,
static_cast<T*>(tau.raw_ptr()) + num_reflectors * i,
static_cast<T*>(work.raw_ptr()),
&lwork,
&info);
}
allocator::free(work);
r.set_data(allocator::malloc_or_wait(r.nbytes()));
copy_inplace(in, r, CopyType::General);
for (int i = 0; i < num_matrices; ++i) {
// Zero lower triangle
for (int j = 0; j < r.shape(-2); ++j) {
for (int k = 0; k < j; ++k) {
r.data<T>()[i * N * M + j * N + k] = 0;
}
}
}
// Get work size
lwork = -1;
lpack<T>::xorgqr(
&M,
&N,
&num_reflectors,
nullptr,
&lda,
nullptr,
&optimal_work,
&lwork,
&info);
lwork = optimal_work;
work = allocator::malloc_or_wait(sizeof(T) * lwork);
// Loop over matrices
for (int i = 0; i < num_matrices; ++i) {
// Compute Q
lpack<T>::xorgqr(
&M,
&N,
&num_reflectors,
in.data<float>() + M * N * i,
&lda,
static_cast<T*>(tau.raw_ptr()) + num_reflectors * i,
static_cast<T*>(work.raw_ptr()),
&lwork,
&info);
}
q.set_data(allocator::malloc_or_wait(q.nbytes()));
copy_inplace(in, q, CopyType::General);
// Cleanup
allocator::free(work);
allocator::free(tau);
}
void QRF::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
if (!(inputs[0].dtype() == float32)) {
throw std::runtime_error("[QRF::eval] only supports float32.");
}
qrf_impl<float>(inputs[0], outputs[0], outputs[1]);
}
} // namespace mlx::core

View File

@@ -1,7 +1,6 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include <iostream>
#include "mlx/backend/metal/copy.h"
#include "mlx/primitives.h"
@@ -119,6 +118,12 @@ void _qmm_dispatch_typed(
switch (bits) {
case 2: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 2, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 2, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 2, 64>(result, x, w, scales, biases, M, N, K);
@@ -135,6 +140,12 @@ void _qmm_dispatch_typed(
}
case 4: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 4, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 4, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 4, 64>(result, x, w, scales, biases, M, N, K);
@@ -151,6 +162,12 @@ void _qmm_dispatch_typed(
}
case 8: {
switch (group_size) {
case 32:
if (transposed_w) {
return _qmm_t<T, 8, 32>(result, x, w, scales, biases, M, N, K);
} else {
return _qmm<T, 8, 32>(result, x, w, scales, biases, M, N, K);
}
case 64:
if (transposed_w) {
return _qmm_t<T, 8, 64>(result, x, w, scales, biases, M, N, K);

View File

@@ -0,0 +1,13 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/fast_primitives.h"
namespace mlx::core::fast {
void RoPE::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("NYI");
}
} // namespace mlx::core::fast

View File

@@ -0,0 +1,72 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include "mlx/backend/common/ternary.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename Op>
void select_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
switch (out.dtype()) {
case bool_:
ternary_op<bool, bool, bool, bool>(a, b, c, out, op);
break;
case uint8:
ternary_op<bool, uint8_t, uint8_t, uint8_t>(a, b, c, out, op);
break;
case uint16:
ternary_op<bool, uint16_t, uint16_t, uint16_t>(a, b, c, out, op);
break;
case uint32:
ternary_op<bool, uint32_t, uint32_t, uint32_t>(a, b, c, out, op);
break;
case uint64:
ternary_op<bool, uint64_t, uint64_t, uint64_t>(a, b, c, out, op);
break;
case int8:
ternary_op<bool, int8_t, int8_t, int8_t>(a, b, c, out, op);
break;
case int16:
ternary_op<bool, int16_t, int16_t, int16_t>(a, b, c, out, op);
break;
case int32:
ternary_op<bool, int32_t, int32_t, int32_t>(a, b, c, out, op);
break;
case int64:
ternary_op<bool, int64_t, int64_t, int64_t>(a, b, c, out, op);
break;
case float16:
ternary_op<bool, float16_t, float16_t, float16_t>(a, b, c, out, op);
break;
case float32:
ternary_op<bool, float, float, float>(a, b, c, out, op);
break;
case bfloat16:
ternary_op<bool, bfloat16_t, bfloat16_t, bfloat16_t>(a, b, c, out, op);
break;
case complex64:
ternary_op<bool, complex64_t, complex64_t, complex64_t>(a, b, c, out, op);
break;
}
}
} // namespace
void Select::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
const auto& condition = inputs[0];
const auto& a = inputs[1];
const auto& b = inputs[2];
select_op(condition, a, b, out, detail::Select());
}
} // namespace mlx::core

View File

@@ -53,7 +53,12 @@ void Softmax::eval(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto check_input = [](array x) {
if (x.strides().back() == 1) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});

View File

@@ -0,0 +1,226 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
namespace {
// TODO: Add support for more combinations of input types.
enum class TernaryOpType {
ScalarScalarScalar,
General,
};
TernaryOpType
get_ternary_op_type(const array& a, const array& b, const array& c) {
TernaryOpType topt;
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
topt = TernaryOpType::ScalarScalarScalar;
} else {
topt = TernaryOpType::General;
}
return topt;
}
void set_ternary_op_output_data(
const array& a,
const array& b,
const array& c,
array& out,
TernaryOpType topt,
bool donate_with_move = false) {
switch (topt) {
case TernaryOpType::ScalarScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, b.strides(), b.flags());
break;
case TernaryOpType::General:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
break;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims1(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
c_idx += c.strides()[0];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims2(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
c_idx += c.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims3(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
c_idx += c.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims4(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
c_idx += c.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
c_idx += c.strides()[2] - c.strides()[3] * c.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
switch (out.ndim()) {
case 1:
ternary_op_dims1<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 2:
ternary_op_dims2<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 3:
ternary_op_dims3<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 4:
ternary_op_dims4<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
}
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
int c_idx = elem_to_loc(i, c.shape(), c.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
return;
}
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
} // namespace
} // namespace mlx::core

View File

@@ -11,68 +11,24 @@ namespace mlx::core {
namespace {
struct AbsOp {
template <typename T>
T operator()(T x) {
return std::abs(x);
void set_unary_output_data(const array& in, array& out) {
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.copy_shared_buffer(in);
} else {
auto size = in.data_size();
out.set_data(
allocator::malloc_or_wait(size * out.itemsize()),
size,
in.strides(),
in.flags());
}
uint8_t operator()(uint8_t x) {
return x;
}
uint16_t operator()(uint16_t x) {
return x;
}
uint32_t operator()(uint32_t x) {
return x;
}
uint64_t operator()(uint64_t x) {
return x;
}
bool operator()(bool x) {
return x;
}
};
struct SignOp {
template <typename T>
T operator()(T x) {
return (x > T(0)) - (x < T(0));
}
uint8_t operator()(uint8_t x) {
return x != 0;
}
uint16_t operator()(uint16_t x) {
return x != 0;
}
uint32_t operator()(uint32_t x) {
return x != 0;
}
uint64_t operator()(uint64_t x) {
return x != 0;
}
};
struct RoundOp {
template <typename T>
T operator()(T x) {
return std::round(x);
}
complex64_t operator()(complex64_t x) {
return {std::round(x.real()), std::round(x.imag())};
}
};
}
template <typename T, typename Op>
void unary_op(const array& a, array& out, Op op) {
const T* a_ptr = a.data<T>();
if (a.flags().contiguous) {
out.set_data(
allocator::malloc_or_wait(a.data_size() * out.itemsize()),
a.data_size(),
a.strides(),
a.flags());
set_unary_output_data(a, out);
T* dst = out.data<T>();
for (size_t i = 0; i < a.data_size(); ++i) {
dst[i] = op(a_ptr[i]);

View File

@@ -1,7 +1,28 @@
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${CMAKE_C_COMPILER}
${PROJECT_SOURCE_DIR}
DEPENDS make_compiled_preamble.sh
kernels/compiled_preamble.h
kernels/unary.h
kernels/binary.h
)
add_custom_target(
compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_dependencies(mlx compiled_preamble)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
@@ -11,10 +32,12 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)
if (NOT MLX_METAL_PATH)

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
@@ -29,6 +29,7 @@ BufferCache::BufferCache(MTL::Device* device)
: device_(device), head_(nullptr), tail_(nullptr), pool_size_(0) {}
BufferCache::~BufferCache() {
auto thread_pool = metal::new_scoped_memory_pool();
clear();
}
@@ -147,11 +148,30 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
buffer_cache_(device_),
peak_allocated_size_(0),
block_limit_(1.5 * device_->recommendedMaxWorkingSetSize()),
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()) {}
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()),
max_pool_size_(block_limit_) {}
size_t MetalAllocator::set_cache_limit(size_t limit) {
std::swap(limit, max_pool_size_);
return limit;
};
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
std::swap(limit, block_limit_);
relaxed_ = relaxed;
gc_limit_ = std::min(
block_limit_,
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()));
return limit;
};
Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Metal doesn't like empty buffers
if (size == 0) {
return Buffer{nullptr};
}
// Align up memory
if (size > vm_page_size) {
size = vm_page_size * ((size + vm_page_size - 1) / vm_page_size);
@@ -159,19 +179,21 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Try the cache
MTL::Buffer* buf = buffer_cache_.reuse_from_cache(size);
size_t pool_size = get_cache_memory();
if (!buf) {
size_t mem_required = get_active_memory() + pool_size + size;
// If there is too much memory pressure, fail (likely causes a wait).
if (!allow_swap && device_->currentAllocatedSize() + size >= block_limit_) {
if (!(allow_swap && relaxed_) && mem_required >= block_limit_) {
return Buffer{nullptr};
}
auto thread_pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure, check if we can reclaim some memory
// from the cache
if (device_->currentAllocatedSize() + size >= gc_limit_) {
size_t min_bytes_to_free =
size + device_->currentAllocatedSize() - gc_limit_;
buffer_cache_.release_cached_buffers(min_bytes_to_free);
if (mem_required >= gc_limit_) {
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
}
// Allocate new buffer if needed
@@ -180,15 +202,26 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
buf = device_->newBuffer(size, res_opt);
}
peak_allocated_size_ =
std::max(peak_allocated_size_, device_->currentAllocatedSize());
// Maintain the cache below the requested limit
if (pool_size >= max_pool_size_) {
auto thread_pool = metal::new_scoped_memory_pool();
buffer_cache_.release_cached_buffers(pool_size - max_pool_size_);
}
active_memory_ += buf->length();
peak_memory_ = std::max(peak_memory_, active_memory_);
return Buffer{static_cast<void*>(buf)};
}
void MetalAllocator::free(Buffer buffer) {
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
buffer_cache_.recycle_to_cache(buf);
active_memory_ -= buf->length();
if (max_pool_size_ > 0) {
buffer_cache_.recycle_to_cache(buf);
} else {
buf->release();
}
}
MetalAllocator& allocator() {
@@ -196,6 +229,22 @@ MetalAllocator& allocator() {
return allocator_;
}
size_t set_cache_limit(size_t limit) {
return allocator().set_cache_limit(limit);
}
size_t set_memory_limit(size_t limit, bool relaxed /* = true */) {
return allocator().set_memory_limit(limit, relaxed);
}
size_t get_active_memory() {
return allocator().get_active_memory();
}
size_t get_peak_memory() {
return allocator().get_peak_memory();
}
size_t get_cache_memory() {
return allocator().get_cache_memory();
}
} // namespace metal
} // namespace mlx::core

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#pragma once
@@ -24,6 +24,9 @@ class BufferCache {
MTL::Buffer* reuse_from_cache(size_t size);
void recycle_to_cache(MTL::Buffer* buf);
void release_cached_buffers(size_t min_bytes_to_free);
size_t pool_size() {
return pool_size_;
}
private:
struct BufferHolder {
@@ -54,6 +57,17 @@ class MetalAllocator : public allocator::Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
size_t get_active_memory() {
return active_memory_;
};
size_t get_peak_memory() {
return peak_memory_;
};
size_t get_cache_memory() {
return buffer_cache_.pool_size();
};
size_t set_cache_limit(size_t limit);
size_t set_memory_limit(size_t limit, bool relaxed);
private:
MTL::Device* device_;
@@ -64,9 +78,12 @@ class MetalAllocator : public allocator::Allocator {
BufferCache buffer_cache_;
// Allocation stats
size_t peak_allocated_size_;
size_t block_limit_;
size_t gc_limit_;
size_t active_memory_{0};
size_t peak_memory_{0};
size_t max_pool_size_;
bool relaxed_{true};
};
MetalAllocator& allocator();

View File

@@ -0,0 +1,378 @@
// Copyright © 2023-2024 Apple Inc.
#include <sstream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/compiled_preamble.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim,
bool dynamic_dims) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
bool add_indices = false;
int cnt = 0;
// Start the kernel
os << "[[host_name(\"" << kernel_name << "\")]]" << std::endl
<< "[[kernel]] void " << kernel_name << "(" << std::endl;
// Add the input arguments
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
// Scalars and contiguous need no strides
if (is_scalar(x) || contiguous) {
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]]," << std::endl;
} else {
add_indices = true;
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]]," << std::endl
<< " constant const size_t* " << xname << "_strides [[buffer("
<< cnt++ << ")]]," << std::endl;
}
}
// Add the output arguments
for (auto& x : outputs) {
os << " device " << get_type_string(x.dtype()) << "* "
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]]," << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " constant const size_t* output_strides [[buffer(" << cnt++
<< ")]]," << std::endl
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
if (dynamic_dims) {
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
// The thread index in the whole grid
os << " uint3 pos [[thread_position_in_grid]]," << std::endl
<< " uint3 grid [[threads_per_grid]]) {" << std::endl
<< " uint index = pos.x + grid.x * (pos.y + grid.y * pos.z);"
<< std::endl;
// Extract the indices per axis to individual uints if we have arrays that
// are broadcasted or transposed
if (add_indices) {
if (!dynamic_dims) {
if (ndim == 1) {
os << " uint index_0 = pos.x;" << std::endl;
} else if (ndim == 2) {
os << " uint index_0 = pos.y;" << std::endl
<< " uint index_1 = pos.x;" << std::endl;
} else if (ndim == 3) {
os << " uint index_0 = pos.z;" << std::endl
<< " uint index_1 = pos.y;" << std::endl
<< " uint index_2 = pos.x;" << std::endl;
} else {
for (int i = 0; i < ndim - 2; i++) {
os << " uint index_" << i << " = (index / uint(output_strides[" << i
<< "])) % output_shape[" << i << "];" << std::endl;
}
os << " uint index_" << ndim - 2 << " = pos.y;" << std::endl
<< " uint index_" << ndim - 1 << " = pos.x;" << std::endl;
}
}
}
// Read the inputs in tmps
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
if (is_constant(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index];" << std::endl;
} else if (!dynamic_dims) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[";
os << "index_0 * " << xname << "_strides[0]";
for (int i = 1; i < ndim; i++) {
os << " + index_" << i << " * " << xname << "_strides[" << i << "]";
}
os << "];" << std::endl;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[elem_to_loc(index, output_shape, " << xname
<< "_strides, ndim)];" << std::endl;
}
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
<< ";" << std::endl;
}
// Finish the kernel
os << "}" << std::endl;
if (cnt > 31) {
std::ostringstream msg;
msg << "[compile] Too many inputs/outputs fused in the Metal Compiled "
<< "primitive which exhausted the available argument buffers for "
<< "the kernel. Please file an issue with the function that results "
<< "in this error. The name of the kernel is '" << kernel_name << "'";
throw std::runtime_error(msg.str());
}
}
void Compiled::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Make the name for the kernel library
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Get the kernel if someone else built it already
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_);
// If not we have to build it ourselves
if (lib == nullptr) {
std::ostringstream kernel;
kernel << metal::get_kernel_preamble() << std::endl;
build_kernel(
kernel,
kernel_lib_ + "_contiguous",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
kernel_lib_ + "_strided_" + std::to_string(i),
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ i,
/* dynamic_dims = */ false);
}
build_kernel(
kernel,
kernel_lib_ + "_strided_dynamic",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ 0,
/* dynamic_dims = */ true);
lib = d.get_library(kernel_lib_, kernel.str());
}
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
bool contiguous = true;
for (auto& x : inputs) {
if ((!x.flags().row_contiguous || x.shape() != output_shape) &&
!is_scalar(x)) {
contiguous = false;
break;
}
}
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
std::vector<std::vector<size_t>> initial_strides;
initial_strides.push_back(outputs[0].strides());
std::vector<int> shape;
std::vector<std::vector<size_t>> strides;
if (!contiguous) {
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
// Skip scalar inputs.
if (is_scalar(x)) {
continue;
}
// Broadcast the inputs to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < output_shape.size() - x.ndim(); j++) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
initial_strides.push_back(std::move(xstrides));
}
std::tie(shape, strides) =
collapse_contiguous_dims(output_shape, initial_strides);
}
// Get the kernel from the lib
int ndim = shape.size();
bool dynamic = ndim >= 8;
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
if (dynamic) {
kernel_name += "dynamic";
} else {
kernel_name += std::to_string(shape.size());
}
}
auto kernel = d.get_kernel(kernel_name, lib);
auto compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// Put the inputs in
int cnt = 0;
int stride_idx = 1; // idx 0 is the output strides
for (int i = 0; i < inputs.size(); i++) {
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
set_array_buffer(compute_encoder, x, cnt++);
if (!contiguous && !is_scalar(x)) {
compute_encoder->setBytes(
strides[stride_idx].data(),
strides[stride_idx].size() * sizeof(size_t),
cnt++);
stride_idx++;
}
}
// Allocate space for the outputs possibly with input donation
{
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].move_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
// Put the outputs in
for (auto& x : outputs) {
set_array_buffer(compute_encoder, x, cnt++);
}
// Put the output shape and strides in
if (!contiguous) {
compute_encoder->setBytes(
strides[0].data(), strides[0].size() * sizeof(size_t), cnt++);
compute_encoder->setBytes(shape.data(), shape.size() * sizeof(int), cnt++);
}
// Put the number of dims in if it is dynamic
if (dynamic) {
compute_encoder->setBytes(&ndim, sizeof(int), cnt++);
}
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].size();
MTL::Size grid_dims(nthreads, 1, 1);
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
} else {
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = outputs[0].size() / (dim0 * dim1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
}
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,9 @@
// Copyright © 2023-24 Apple Inc.
#pragma once
namespace mlx::core::metal {
const char* get_kernel_preamble();
}

View File

@@ -1,87 +1,78 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <iostream>
#include <numeric>
#include <sstream>
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels/conv_params.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/steel/conv/params.h"
#include "mlx/backend/metal/matmul.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
using namespace mlx::steel;
namespace mlx::core {
namespace {
void explicit_gemm_conv_1D_gpu(
template <int N>
void explicit_gemm_conv_ND_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<1>& conv_params) {
// Pad input
std::vector<int> padded_shape = {
conv_params.N, conv_params.iS[0] + 2 * conv_params.pad[0], conv_params.C};
array in_padded(padded_shape, in.dtype(), nullptr, {});
const MLXConvParams<N>& conv_params) {
// Prepare unfolding array
std::vector<int> unfolded_shape = {
static_cast<int>(out.size() / conv_params.O),
static_cast<int>(wt.size() / conv_params.O)};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
// Fill with zeros
copy_gpu(array(0, in.dtype()), in_padded, CopyType::Scalar, s);
in_unfolded.set_data(allocator::malloc_or_wait(in_unfolded.nbytes()));
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Prepare unfolding kernel
std::ostringstream kname;
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, in_unfolded, 1);
// Make strided view
std::vector<int> strided_shape = {
conv_params.N, conv_params.oS[0], conv_params.wS[0], conv_params.C};
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
std::vector<size_t> strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * conv_params.str[0],
in_padded.strides()[1],
in_padded.strides()[2]};
auto flags = in_padded.flags();
// Launch unfolding kernel
int tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
int tgp_y = 256 / tgp_x;
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
// Materialize strided view
std::vector<int> strided_reshape = {
conv_params.N * conv_params.oS[0], conv_params.wS[0] * conv_params.C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_gpu(in_strided_view, in_strided, CopyType::General, s);
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Perform gemm
std::vector<array> copies = {in_padded, in_strided};
mlx_matmul(
std::vector<array> copies;
return steel_matmul(
s,
d,
/*a = */ in_strided,
/*a = */ in_unfolded,
/*b = */ wt,
/*c = */ out,
/*M = */ strided_reshape[0],
/*M = */ unfolded_shape[0],
/*N = */ conv_params.O,
/*K = */ strided_reshape[1],
/*K = */ unfolded_shape[1],
/*batch_size_out = */ 1,
/*a_cols = */ strided_reshape[1],
/*b_cols = */ strided_reshape[1],
/*a_cols = */ unfolded_shape[1],
/*b_cols = */ unfolded_shape[1],
/*a_transposed = */ false,
/*b_transposed = */ true,
/*copies = */ copies);
@@ -95,7 +86,9 @@ void conv_1D_gpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ in.shape(0),
@@ -106,24 +99,19 @@ void conv_1D_gpu(
/* const int oS[NDIM] = */ {out.shape(1)},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int dil[NDIM] = */ {wt_dilation[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
/* const int idil[NDIM] = */ {in_dilation[0]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
};
/* const int groups = */ 1,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (wt_dilation[0] == 1) {
explicit_gemm_conv_1D_gpu(s, d, in, wt, out, conv_params);
}
// Direct to fallback conv
else {
throw std::invalid_argument("[conv_1D_gpu] Dilation needs to be 1.");
}
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
void slow_conv_2D_gpu(
@@ -169,114 +157,262 @@ void implicit_gemm_conv_2D_gpu(
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
int bm = 32, bn = 32, bk = 16;
// Deduce implicit gemm size
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
// Determine block and warp tiles
int wm = 2, wn = 2;
int bm = implicit_M >= 8192 && conv_params.C >= 64 ? 64 : 32;
int bn = (bm == 64 || implicit_N >= 64) ? 64 : 32;
int bk = 16;
if (implicit_N <= 16) {
bn = 8;
wm = 4;
wn = 1;
}
int tn = (implicit_N + bn - 1) / bn;
int tm = (implicit_M + bm - 1) / bm;
int swizzle_log = 0;
// Fix small channel specialization
int n_channel_specialization = 0;
int channel_k_iters = ((conv_params.C + bk - 1) / bk);
int gemm_k_iters = conv_params.wS[0] * conv_params.wS[1] * channel_k_iters;
if (conv_params.C <= 2) {
gemm_k_iters = (implicit_K + bk - 1) / bk;
n_channel_specialization = conv_params.C;
} else if (conv_params.C <= 4) {
gemm_k_iters = ((conv_params.wS[0] * conv_params.wS[1] * 4) + bk - 1) / bk;
n_channel_specialization = conv_params.C;
}
bool small_filter = (!n_channel_specialization) &&
(conv_params.wS[0] <= 16 && conv_params.wS[1] <= 16);
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::ostringstream kname;
kname << "implicit_gemm_conv_2d_" << type_to_name(out) << "_bm" << bm << "_bn"
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn;
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_channel_"
<< (n_channel_specialization ? std::to_string(n_channel_specialization)
: "l")
<< "_filter_" << (small_filter ? 's' : 'l');
// Encode and dispatch kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
size_t grid_dim_x = (implicit_N + bn - 1) / bn;
size_t grid_dim_y = (implicit_M + bm - 1) / bm;
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, 1);
// Encode arrays
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, wt, 1);
set_array_buffer(compute_encoder, out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
// Launch kernel
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
}
void explicit_gemm_conv_2D_gpu(
void implicit_gemm_conv_2D_general_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
// Pad input
std::vector<int> padded_shape = {
conv_params.N,
conv_params.iS[0] + 2 * conv_params.pad[0],
conv_params.iS[1] + 2 * conv_params.pad[1],
conv_params.C};
array in_padded(padded_shape, in.dtype(), nullptr, {});
// Deduce implicit gemm size
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
// Fill with zeros
copy_gpu(array(0, in.dtype()), in_padded, CopyType::Scalar, s);
// Determine block and warp tiles
int wm = 2, wn = 2;
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
conv_params.pad[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Make jump params
int f_wgt_jump_h =
std::lcm(conv_params.idil[0], conv_params.kdil[0]) / conv_params.kdil[0];
int f_wgt_jump_w =
std::lcm(conv_params.idil[1], conv_params.kdil[1]) / conv_params.kdil[1];
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
int f_out_jump_h =
std::lcm(conv_params.idil[0], conv_params.str[0]) / conv_params.str[0];
int f_out_jump_w =
std::lcm(conv_params.idil[1], conv_params.str[1]) / conv_params.str[1];
// Make strided view
std::vector<int> strided_shape = {
conv_params.N,
conv_params.oS[0],
conv_params.oS[1],
conv_params.wS[0],
conv_params.wS[1],
conv_params.C};
int adj_out_h = (conv_params.oS[0] + f_out_jump_h - 1) / f_out_jump_h;
int adj_out_w = (conv_params.oS[1] + f_out_jump_w - 1) / f_out_jump_w;
int adj_out_hw = adj_out_h * adj_out_w;
int adj_implicit_m = conv_params.N * adj_out_hw;
std::vector<size_t> strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * conv_params.str[0],
in_padded.strides()[2] * conv_params.str[1],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]};
auto flags = in_padded.flags();
Conv2DGeneralJumpParams jump_params{
/* const int f_wgt_jump_h = */ f_wgt_jump_h,
/* const int f_wgt_jump_w = */ f_wgt_jump_w,
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
/* const int f_out_jump_h = */ f_out_jump_h,
/* const int f_out_jump_w = */ f_out_jump_w,
// Materialize strided view
std::vector<int> strided_reshape = {
conv_params.N * conv_params.oS[0] * conv_params.oS[1],
conv_params.wS[0] * conv_params.wS[1] * conv_params.C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_gpu(in_strided_view, in_strided, CopyType::General, s);
/* const int adj_out_h = */ adj_out_h,
/* const int adj_out_w = */ adj_out_w,
/* const int adj_out_hw = */ adj_out_hw,
/* const int adj_implicit_m = */ adj_implicit_m};
// Perform gemm
std::vector<array> copies = {in_padded, in_strided};
mlx_matmul(
s,
d,
/*a = */ in_strided,
/*b = */ wt,
/*c = */ out,
/*M = */ strided_reshape[0],
/*N = */ conv_params.O,
/*K = */ strided_reshape[1],
/*batch_size_out = */ 1,
/*a_cols = */ strided_reshape[1],
/*b_cols = */ strided_reshape[1],
/*a_transposed = */ false,
/*b_transposed = */ true,
/*copies = */ copies);
// Make base info
std::vector<Conv2DGeneralBaseInfo> base_h(f_out_jump_h);
std::vector<Conv2DGeneralBaseInfo> base_w(f_out_jump_w);
int jump_h = conv_params.flip ? -conv_params.kdil[0] : conv_params.kdil[0];
int jump_w = conv_params.flip ? -conv_params.kdil[1] : conv_params.kdil[1];
int init_h =
(conv_params.flip ? (conv_params.wS[0] - 1) * conv_params.kdil[0] : 0);
int init_w =
(conv_params.flip ? (conv_params.wS[1] - 1) * conv_params.kdil[1] : 0);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * conv_params.str[0] - conv_params.pad[0] + init_h;
int wh_base = 0;
while (wh_base < conv_params.wS[0] && ih_loop % conv_params.idil[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
int wh_size =
((conv_params.wS[0] - wh_base) + f_wgt_jump_h - 1) / f_wgt_jump_h;
base_h[i] = {wh_base, wh_size};
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * conv_params.str[1] - conv_params.pad[1] + init_w;
int ww_base = 0;
while (ww_base < conv_params.wS[1] && iw_loop % conv_params.idil[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
int ww_size =
((conv_params.wS[1] - ww_base) + f_wgt_jump_w - 1) / f_wgt_jump_w;
base_w[j] = {ww_base, ww_size};
}
// Collect block sizes
int bm = adj_implicit_m >= 8192 && conv_params.C >= 64 ? 64 : 32;
int bn = (bm == 64 && implicit_N >= 64) ? 64 : 32;
int bk = 16;
int tn = (implicit_N + bn - 1) / bn;
int tm = (adj_implicit_m + bm - 1) / bm;
int swizzle_log = 0;
// Get channel iteration info
int channel_k_iters = ((conv_params.C + bk - 1) / bk);
int gemm_k_iters = channel_k_iters;
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::ostringstream kname;
kname << "implicit_gemm_conv_2d_general_" << type_to_name(out) << "_bm" << bm
<< "_bn" << bn << "_bk" << bk << "_wm" << wm << "_wn" << wn;
// Encode and dispatch kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
size_t grid_dim_z = f_out_jump_h * f_out_jump_w;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, grid_dim_z);
// Encode arrays
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, wt, 1);
set_array_buffer(compute_encoder, out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
compute_encoder->setBytes(&jump_params, sizeof(Conv2DGeneralJumpParams), 5);
compute_encoder->setBytes(
base_h.data(), sizeof(Conv2DGeneralBaseInfo) * base_h.size(), 6);
compute_encoder->setBytes(
base_w.data(), sizeof(Conv2DGeneralBaseInfo) * base_w.size(), 7);
// Launch kernel
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_gpu(
@@ -301,6 +437,7 @@ void winograd_conv_2D_gpu(
// Fill with zeros
array zero_arr = array(0, in.dtype());
copy_gpu(zero_arr, in_padded, CopyType::Scalar, s);
copies_w.push_back(zero_arr);
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
@@ -329,7 +466,8 @@ void winograd_conv_2D_gpu(
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int str[NDIM] = */ {1, 1},
/* const int pad[NDIM] = */ {0, 0},
/* const int dil[NDIM] = */ {1, 1},
/* const int kdil[NDIM] = */ {1, 1},
/* const int idil[NDIM] = */ {1, 1},
/* const size_t in_strides[NDIM + 2] = */
{in_padded.strides()[0],
in_padded.strides()[1],
@@ -339,6 +477,8 @@ void winograd_conv_2D_gpu(
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ false,
};
int O_c = conv_params.O;
@@ -411,7 +551,7 @@ void winograd_conv_2D_gpu(
copies_w.push_back(out_wg);
{
std::vector<array> empty_copies;
mlx_matmul(
steel_matmul(
s,
d,
/*a = */ inp_wg,
@@ -462,6 +602,8 @@ void conv_2D_gpu(
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip,
std::vector<array>& copies) {
// Make conv params
MLXConvParams<2> conv_params{
@@ -473,37 +615,47 @@ void conv_2D_gpu(
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1]},
/* const int pad[NDIM] = */ {padding[0], padding[1]},
/* const int dil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
/* const int kdil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
/* const int idil[NDIM] = */ {in_dilation[0], in_dilation[1]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2], in.strides()[3]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ flip,
};
bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
bool inp_large = (conv_params.in_strides[0] >= 1ul << 18);
bool channels_large = (conv_params.C + conv_params.O) >= 512;
bool channels_med = (conv_params.C + conv_params.O) >= 256;
// Direct to winograd conv
if (conv_params.C % 32 == 0 && conv_params.O % 32 == 0 &&
conv_params.C >= 64 && conv_params.O >= 64 && conv_params.wS[0] == 3 &&
conv_params.wS[1] == 3 && conv_params.str[0] == 1 &&
conv_params.str[1] == 1 && conv_params.dil[0] == 1 &&
conv_params.dil[1] == 1) {
winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
if (!flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 &&
(channels_large || (channels_med && inp_large))) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
// Direct to implicit gemm conv
else if (conv_params.C % 32 == 0 && conv_params.O % 32 == 0) {
implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
(conv_params.O <= 16 || conv_params.O % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
else if (conv_params.C % 16 == 0 && conv_params.O % 16 == 0) {
return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
}
// Direct to explicit gemm conv
else if (wt_dilation[0] == 1 && wt_dilation[1] == 1) {
explicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
// Direct to fallback conv
else {
slow_conv_2D_gpu(s, d, in, wt, out, conv_params);
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
@@ -534,11 +686,31 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
// 2D conv
if (out.ndim() == 4) {
conv_2D_gpu(
s, d, in, wt, out, padding_, kernel_strides_, kernel_dilation_, copies);
s,
d,
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_,
copies);
}
// 1D conv
else if (out.ndim() == 3) {
conv_1D_gpu(s, d, in, wt, out, padding_, kernel_strides_, kernel_dilation_);
conv_1D_gpu(
s,
d,
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// Throw error
else {

View File

@@ -12,14 +12,21 @@ namespace mlx::core {
void copy_gpu(const array& in, array& out, CopyType ctype, const Stream& s) {
if (ctype == CopyType::Vector) {
out.set_data(
allocator::malloc_or_wait(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.move_shared_buffer(in);
} else {
out.set_data(
allocator::malloc_or_wait(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
if (out.size() == 0) {
return;
}
if (ctype == CopyType::GeneralGeneral) {
ctype = CopyType::General;
}
@@ -64,7 +71,8 @@ void copy_gpu_inplace(
auto kernel = d.get_kernel(kname.str());
auto compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
set_array_buffer(compute_encoder, in, 0);
bool donate_in = in.data_shared_ptr() == nullptr;
set_array_buffer(compute_encoder, donate_in ? out : in, 0);
set_array_buffer(compute_encoder, out, 1);
if (ctype == CopyType::General || ctype == CopyType::GeneralGeneral) {

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-24 Apple Inc.
#include <dlfcn.h>
#include <cstdlib>
@@ -19,16 +19,15 @@ namespace mlx::core::metal {
namespace {
// Catch things related to the main-thread static variables
static std::shared_ptr<void> global_memory_pool = new_scoped_memory_pool();
// TODO nicer way to set this or possibly expose as an environment variable
static constexpr int MAX_BUFFERS_PER_QUEUE = 12;
static constexpr const char* default_mtllib_path = METAL_PATH;
auto load_device() {
MTL::Device* device = MTL::CreateSystemDefaultDevice();
auto devices = MTL::CopyAllDevices();
auto device = static_cast<MTL::Device*>(devices->object(0))
?: MTL::CreateSystemDefaultDevice();
if (!device) {
throw std::runtime_error("Failed to load device");
}
@@ -120,6 +119,7 @@ Device::Device() {
}
Device::~Device() {
auto pool = new_scoped_memory_pool();
for (auto& q : queue_map_) {
q.second->release();
}
@@ -139,6 +139,8 @@ Device::~Device() {
}
void Device::new_queue(int index) {
auto thread_pool = metal::new_scoped_memory_pool();
// Multiple threads can ask the device for queues
// We lock this as a critical section for safety
const std::lock_guard<std::mutex> lock(mtx_);
@@ -213,15 +215,6 @@ MTL::ComputeCommandEncoder* Device::get_command_encoder(int index) {
return eit->second;
}
MTL::ArgumentEncoder* Device::argument_encoder(
const std::vector<MTL::ArgumentDescriptor*>& arg_descs) const {
// NB array here is already autoreleased but the returned argument
// encoder is owned by the caller and must be released/autoreleased
NS::Array* arg_desc_arr = NS::Array::array(
reinterpret_cast<NS::Object* const*>(arg_descs.data()), arg_descs.size());
return device_->newArgumentEncoder(arg_desc_arr);
}
void Device::register_library(
const std::string& lib_name,
const std::string& lib_path) {
@@ -241,37 +234,127 @@ void Device::register_library(
}
}
MTL::ComputePipelineState* Device::get_kernel(
const std::string& name,
const std::string& lib_name /* = "mlx" */) {
auto pool = new_scoped_memory_pool();
// Look for cached kernel
if (auto it = kernel_map_.find(name); it != kernel_map_.end()) {
return it->second;
}
// Prepare new kernel
MTL::Library* Device::get_library_cache_(const std::string& lib_name) {
// Search for cached metal lib
MTL::Library* mtl_lib;
if (auto it = library_map_.find(name); it != library_map_.end()) {
if (auto it = library_map_.find(lib_name); it != library_map_.end()) {
mtl_lib = it->second;
} else { // Look for metallib alongside library
register_library(lib_name);
mtl_lib = library_map_[lib_name];
}
return mtl_lib;
}
MTL::Library* Device::get_library_(const std::string& source_string) {
auto pool = new_scoped_memory_pool();
auto ns_code =
NS::String::string(source_string.c_str(), NS::ASCIIStringEncoding);
NS::Error* error = nullptr;
auto mtl_lib = device_->newLibrary(ns_code, nullptr, &error);
// Throw error if unable to compile library
if (!mtl_lib) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load build metal library from source"
<< "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
throw std::runtime_error(msg.str());
}
return mtl_lib;
}
MTL::Library* Device::get_library_(const MTL::StitchedLibraryDescriptor* desc) {
auto pool = new_scoped_memory_pool();
NS::Error* error = nullptr;
auto mtl_lib = device_->newLibrary(desc, &error);
// Throw error if unable to compile library
if (!mtl_lib) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load build stitched metal library"
<< "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
throw std::runtime_error(msg.str());
}
return mtl_lib;
}
MTL::Function* Device::get_function_(
const std::string& name,
MTL::Library* mtl_lib) {
// Pull kernel from library
auto ns_name = NS::String::string(name.c_str(), NS::ASCIIStringEncoding);
auto mtl_function = mtl_lib->newFunction(ns_name);
return mtl_function;
}
MTL::Function* Device::get_function_(
const std::string& name,
const std::string& specialized_name,
const MTLFCList& func_consts,
MTL::Library* mtl_lib) {
if (func_consts.empty() && (specialized_name == name)) {
return get_function_(name, mtl_lib);
}
// Prepare function constants
auto mtl_func_consts = MTL::FunctionConstantValues::alloc()->init();
for (auto [value, type, index] : func_consts) {
mtl_func_consts->setConstantValue(value, type, index);
}
// Prepare function desc
auto desc = MTL::FunctionDescriptor::functionDescriptor();
desc->setName(NS::String::string(name.c_str(), NS::ASCIIStringEncoding));
desc->setSpecializedName(
NS::String::string(specialized_name.c_str(), NS::ASCIIStringEncoding));
desc->setConstantValues(mtl_func_consts);
// Pull kernel from library
NS::Error* error = nullptr;
auto mtl_function = mtl_lib->newFunction(desc, &error);
// Throw error if unable to build metal function
if (!mtl_function) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load function " << name << "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
throw std::runtime_error(msg.str());
}
mtl_func_consts->release();
desc->release();
return mtl_function;
}
MTL::ComputePipelineState* Device::get_kernel_(
const std::string& name,
const MTL::Function* mtl_function) {
// Compile kernel to compute pipeline
NS::Error* error = nullptr;
MTL::ComputePipelineState* kernel;
if (mtl_function) {
kernel = device_->newComputePipelineState(mtl_function, &error);
mtl_function->release();
}
// Throw error if unable to compile metal function
if (!mtl_function || !kernel) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load kernel " << name << "\n";
@@ -281,11 +364,175 @@ MTL::ComputePipelineState* Device::get_kernel(
throw std::runtime_error(msg.str());
}
// Add kernel to cache
kernel_map_.insert({name, kernel});
return kernel;
}
MTL::ComputePipelineState* Device::get_kernel_(
const std::string& name,
const MTL::Function* mtl_function,
const MTL::LinkedFunctions* linked_functions) {
// Check inputs
if (!linked_functions) {
return get_kernel_(name, mtl_function);
}
if (!mtl_function) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load kernel " << name << "\n";
throw std::runtime_error(msg.str());
}
// Prepare compute pipeline state descriptor
auto desc = MTL::ComputePipelineDescriptor::alloc()->init();
desc->setComputeFunction(mtl_function);
desc->setLinkedFunctions(linked_functions);
// Compile kernel to compute pipeline
NS::Error* error = nullptr;
auto kernel = device_->newComputePipelineState(
desc, MTL::PipelineOptionNone, nullptr, &error);
// Throw error if unable to compile metal function
if (!kernel) {
std::ostringstream msg;
msg << "[metal::Device] Unable to load kernel " << name << "\n";
if (error) {
msg << error->localizedDescription()->utf8String() << "\n";
}
throw std::runtime_error(msg.str());
}
return kernel;
}
MTL::Library* Device::get_library(const std::string& name) {
auto it = library_map_.find(name);
return (it != library_map_.end()) ? it->second : nullptr;
}
MTL::Library* Device::get_library(
const std::string& name,
const std::string& source,
bool cache /* = true */) {
if (cache) {
if (auto it = library_map_.find(name); it != library_map_.end()) {
return it->second;
}
}
auto mtl_lib = get_library_(source);
if (cache) {
library_map_.insert({name, mtl_lib});
}
return mtl_lib;
}
MTL::Library* Device::get_library(
const std::string& name,
const MTL::StitchedLibraryDescriptor* desc,
bool cache /* = true */) {
if (cache) {
if (auto it = library_map_.find(name); it != library_map_.end()) {
return it->second;
}
}
auto mtl_lib = get_library_(desc);
if (cache) {
library_map_.insert({name, mtl_lib});
}
return mtl_lib;
}
MTL::Function* Device::get_function(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& specialized_name /* = "" */,
const MTLFCList& func_consts /* = {} */) {
return get_function_(base_name, specialized_name, func_consts, mtl_lib);
}
MTL::Function* Device::get_function(
const std::string& base_name,
const std::string& lib_name /* = "mlx" */,
const std::string& specialized_name /* = "" */,
const MTLFCList& func_consts /* = {} */) {
// Search for cached metal lib
MTL::Library* mtl_lib = get_library_cache_(lib_name);
return get_function(base_name, mtl_lib, specialized_name, func_consts);
}
MTL::LinkedFunctions* Device::get_linked_functions_(
const std::vector<MTL::Function*>& funcs) {
if (funcs.empty()) {
return nullptr;
}
auto lfuncs = MTL::LinkedFunctions::linkedFunctions();
std::vector<NS::Object*> objs(funcs.size());
for (int i = 0; i < funcs.size(); i++) {
objs[i] = funcs[i];
}
NS::Array* funcs_arr = NS::Array::array(objs.data(), funcs.size());
lfuncs->setPrivateFunctions(funcs_arr);
return lfuncs;
}
MTL::ComputePipelineState* Device::get_kernel(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& hash_name /* = "" */,
const MTLFCList& func_consts /* = {} */,
const std::vector<MTL::Function*>& linked_functions /* = {} */) {
auto pool = new_scoped_memory_pool();
// Look for cached kernel
const auto& kname = hash_name.empty() ? base_name : hash_name;
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
// Pull kernel from library
auto mtl_function = get_function_(base_name, kname, func_consts, mtl_lib);
// Compile kernel to compute pipeline
auto mtl_linked_funcs = get_linked_functions_(linked_functions);
auto kernel = get_kernel_(kname, mtl_function, mtl_linked_funcs);
mtl_function->release();
mtl_linked_funcs->release();
// Add kernel to cache
kernel_map_.insert({kname, kernel});
return kernel;
}
MTL::ComputePipelineState* Device::get_kernel(
const std::string& base_name,
const std::string& lib_name /* = "mlx" */,
const std::string& hash_name /* = "" */,
const MTLFCList& func_consts /* = {} */,
const std::vector<MTL::Function*>& linked_functions /* = {} */) {
// Look for cached kernel
const auto& kname = hash_name.size() == 0 ? base_name : hash_name;
if (auto it = kernel_map_.find(kname); it != kernel_map_.end()) {
return it->second;
}
// Search for cached metal lib
MTL::Library* mtl_lib = get_library_cache_(lib_name);
return get_kernel(base_name, mtl_lib, kname, func_consts, linked_functions);
}
Device& device(mlx::core::Device) {
static Device metal_device;
return metal_device;

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-24 Apple Inc.
#pragma once
@@ -31,6 +31,9 @@ inline std::string get_colocated_mtllib_path(const std::string& lib_name) {
return mtllib_path;
}
using MTLFCList =
std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>;
class Device {
public:
Device();
@@ -59,14 +62,73 @@ class Device {
const std::function<std::string(const std::string&)>& lib_path_func =
get_colocated_mtllib_path);
MTL::ComputePipelineState* get_kernel(
MTL::Library* get_library(const std::string& name);
MTL::Library* get_library(
const std::string& name,
const std::string& lib_name = "mlx");
const std::string& source_string,
bool cache = true);
MTL::Library* get_library(
const std::string& name,
const MTL::StitchedLibraryDescriptor* desc,
bool cache = true);
MTL::Function* get_function(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& specialized_name = "",
const MTLFCList& func_consts = {});
MTL::Function* get_function(
const std::string& base_name,
const std::string& lib_name = "mlx",
const std::string& specialized_name = "",
const MTLFCList& func_consts = {});
MTL::ComputePipelineState* get_kernel(
const std::string& base_name,
MTL::Library* mtl_lib,
const std::string& hash_name = "",
const MTLFCList& func_consts = {},
const std::vector<MTL::Function*>& linked_functions = {});
MTL::ComputePipelineState* get_kernel(
const std::string& base_name,
const std::string& lib_name = "mlx",
const std::string& hash_name = "",
const MTLFCList& func_consts = {},
const std::vector<MTL::Function*>& linked_functions = {});
MTL::ArgumentEncoder* argument_encoder(
const std::vector<MTL::ArgumentDescriptor*>& arg_descs) const;
private:
MTL::Library* get_library_cache_(const std::string& name);
MTL::Library* get_library_(const std::string& source_string);
MTL::Library* get_library_(const MTL::StitchedLibraryDescriptor* desc);
MTL::Function* get_function_(const std::string& name, MTL::Library* mtl_lib);
MTL::Function* get_function_(
const std::string& name,
const std::string& specialized_name,
const MTLFCList& func_consts,
MTL::Library* mtl_lib);
MTL::LinkedFunctions* get_linked_functions_(
const std::vector<MTL::Function*>& funcs);
MTL::ComputePipelineState* get_kernel_(
const std::string& name,
const MTL::Function* mtl_function);
MTL::ComputePipelineState* get_kernel_(
const std::string& name,
const MTL::Function* mtl_function,
const MTL::LinkedFunctions* linked_functions);
MTL::Device* device_;
std::unordered_map<int32_t, MTL::CommandQueue*> queue_map_;
std::unordered_map<int32_t, std::pair<int, MTL::CommandBuffer*>> buffer_map_;

View File

@@ -1,5 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <numeric>
@@ -33,114 +32,82 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
}
out.set_data(allocator::malloc_or_wait(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& d = metal::device(s.device);
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
std::ostringstream kname;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
kname << "gather" << type_to_name(src) << idx_type_name << "_" << nidx;
if (idx_ndim <= 1) {
kname << "_" << idx_ndim;
}
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
size_t slice_size = 1;
for (auto s : slice_sizes_) {
slice_size *= s;
}
size_t ndim = src.ndim();
size_t nthreads = out.size();
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
// Launch 2D grid of threads: indices x slice
size_t dim0 = out.size() / slice_size;
size_t dim1 = slice_size;
auto group_dims = get_block_dims(dim0, dim1, 1);
MTL::Size grid_dims = MTL::Size(dim0, dim1, 1);
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
compute_encoder->setComputePipelineState(kernel);
// Make the argument buffer to store the indices for the
// `Indices` struct in kernels/indexing.metal
std::vector<MTL::ArgumentDescriptor*> arg_descs(4);
arg_descs[0] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[0]->setIndex(0);
arg_descs[0]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[0]->setArrayLength(nidx);
// Shapes
arg_descs[1] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[1]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[1]->setIndex(nidx + 1);
// Strides
arg_descs[2] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[2]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[2]->setIndex(nidx + 2);
// Indices ndim
arg_descs[3] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[3]->setDataType(MTL::DataType::DataTypeInt);
arg_descs[3]->setIndex(nidx + 3);
// Get the argument encoder
auto arg_enc = d.argument_encoder(arg_descs);
// Allocate and fill buffers for shapes and strides
int idx_ndim = nidx ? inputs[1].ndim() : 0;
auto idx_shapes_buf = allocator::malloc_or_wait(sizeof(int) * idx_ndim);
auto idx_strides_buf = allocator::malloc_or_wait(sizeof(size_t) * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy(
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end(),
static_cast<int*>(idx_shapes_buf.raw_ptr()) + i * idx_ndim);
std::copy(
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end(),
static_cast<size_t*>(idx_strides_buf.raw_ptr()) + i * idx_ndim);
inputs[i + 1].strides().end());
}
// Allocate the argument buffer
auto arg_buf = allocator::malloc_or_wait(arg_enc->encodedLength());
// Register data with the encoder
arg_enc->setArgumentBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0);
for (int i = 0; i < nidx; ++i) {
set_array_buffer(compute_encoder, arg_enc, inputs[i + 1], i);
}
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), 0, nidx + 1);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), MTL::ResourceUsageRead);
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), 0, nidx + 2);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), MTL::ResourceUsageRead);
*static_cast<int*>(arg_enc->constantData(nidx + 3)) = idx_ndim;
// Set all the buffers
set_array_buffer(compute_encoder, src, 0);
compute_encoder->setBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0, 1);
set_array_buffer(compute_encoder, out, 2);
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 3);
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 4);
compute_encoder->setBytes(&ndim, sizeof(size_t), 5);
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 6);
compute_encoder->setBytes(&slice_size, sizeof(size_t), 7);
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 8);
set_array_buffer(compute_encoder, out, 1);
// Set source info
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 2);
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 3);
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 6);
// Set index info
//
// We don't need to check for empty idx_shapes because gather has a
// idx_ndim == 0 specialization
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 7);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 8);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 9);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Launch grid
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Cleanup temporaries
arg_enc->release();
d.get_command_buffer(s.index)->addCompletedHandler(
[arg_buf, idx_shapes_buf, idx_strides_buf](MTL::CommandBuffer*) {
allocator::free(arg_buf);
allocator::free(idx_shapes_buf);
allocator::free(idx_strides_buf);
});
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -163,6 +130,11 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
inputs[0].data_size() == 1 ? CopyType::Scalar : CopyType::General;
copy_gpu(inputs[0], out, copy_type);
// Empty update
if (inputs.back().size() == 0) {
return;
}
// Get stream
auto& s = stream();
auto& d = metal::device(s.device);
@@ -170,7 +142,28 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
// Get kernel name
std::ostringstream kname;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
kname << "scatter" << type_to_name(out) << idx_type_name;
int idx_ndim = nidx ? inputs[1].ndim() : 0;
bool index_nd1_specialization = (idx_ndim == 1);
// Bail from fast path (1d index specialization) if scatter dims aren't
// the outermost dims and contiguous since update access won't be raster
// order.
for (auto i = 0; i < axes_.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= (axes_[i] == i);
}
// Bail from fast path (1d index specialization) if any of the dims are
// broadcasted, since we can't rely on linear indexing in that case.
for (int i = 1; i < inputs.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= inputs[i].flags().row_contiguous;
}
if (index_nd1_specialization) {
kname << "scatter_1d_index" << type_to_name(out) << idx_type_name;
} else {
kname << "scatter" << type_to_name(out) << idx_type_name;
}
switch (reduce_type_) {
case Scatter::None:
kname << "_none";
@@ -195,104 +188,109 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& upd = inputs.back();
size_t nthreads = upd.size();
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
compute_encoder->setComputePipelineState(kernel);
// Make the argument buffer to store the indices for the
// `Indices` struct in kernels/indexing.metal
std::vector<MTL::ArgumentDescriptor*> arg_descs(4);
arg_descs[0] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[0]->setIndex(0);
arg_descs[0]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[0]->setArrayLength(nidx);
// Set all the buffers
set_array_buffer(compute_encoder, upd, 1);
set_array_buffer(compute_encoder, out, 2);
// Shapes
arg_descs[1] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[1]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[1]->setIndex(nidx + 1);
// Strides
arg_descs[2] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[2]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[2]->setIndex(nidx + 2);
// Indices ndim
arg_descs[3] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[3]->setDataType(MTL::DataType::DataTypeInt);
arg_descs[3]->setIndex(nidx + 3);
// Get the argument encoder
auto arg_enc = d.argument_encoder(arg_descs);
// Allocate and fill buffers for shapes and strides
int idx_ndim = nidx ? inputs[1].ndim() : 0;
auto idx_shapes_buf = allocator::malloc_or_wait(sizeof(int) * idx_ndim);
auto idx_strides_buf = allocator::malloc_or_wait(sizeof(size_t) * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy(
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end(),
static_cast<int*>(idx_shapes_buf.raw_ptr()) + i * idx_ndim);
std::copy(
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end(),
static_cast<size_t*>(idx_strides_buf.raw_ptr()) + i * idx_ndim);
}
// Allocate the argument buffer
auto arg_buf = allocator::malloc_or_wait(arg_enc->encodedLength());
// Register data with the encoder
arg_enc->setArgumentBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0);
for (int i = 0; i < nidx; ++i) {
set_array_buffer(compute_encoder, arg_enc, inputs[i + 1], i);
}
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), 0, nidx + 1);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), MTL::ResourceUsageRead);
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), 0, nidx + 2);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), MTL::ResourceUsageRead);
*static_cast<int*>(arg_enc->constantData(nidx + 3)) = idx_ndim;
compute_encoder->setBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0, 0);
size_t upd_ndim = upd.ndim();
// Set update info
uint upd_ndim = upd.ndim();
size_t upd_size = 1;
for (int i = idx_ndim; i < upd.ndim(); ++i) {
upd_size *= upd.shape(i);
}
set_array_buffer(compute_encoder, upd, 1);
set_array_buffer(compute_encoder, out, 2);
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
compute_encoder->setBytes(upd.strides().data(), upd_ndim * sizeof(size_t), 4);
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
size_t out_ndim = out.ndim();
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
compute_encoder->setBytes(out.strides().data(), out_ndim * sizeof(size_t), 8);
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
if (index_nd1_specialization) {
bool upd_col_contiguous = upd.flags().col_contiguous;
compute_encoder->setBytes(
out.shape().data(), out.shape().size() * sizeof(int), 3);
compute_encoder->setBytes(
out.strides().data(), out.strides().size() * sizeof(size_t), 4);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_col_contiguous, sizeof(bool), 6);
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Cleanup temporaries
arg_enc->release();
d.get_command_buffer(s.index)->addCompletedHandler(
[arg_buf, idx_shapes_buf, idx_strides_buf](MTL::CommandBuffer*) {
allocator::free(arg_buf);
allocator::free(idx_shapes_buf);
allocator::free(idx_strides_buf);
});
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
} else {
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
for (int i = 0; i < nidx; ++i) {
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end());
}
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
} else {
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
compute_encoder->setBytes(
upd.strides().data(), upd_ndim * sizeof(size_t), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
// Set output info
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
} else {
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
compute_encoder->setBytes(
out.strides().data(), out_ndim * sizeof(size_t), 8);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
// Set index info
if (idx_ndim == 0) {
// Add a 0 in idx_shapes and strides to avoid the missing buffer binding
// error in the metal API.
idx_shapes.push_back(0);
idx_strides.push_back(0);
}
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 11);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 12);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 13);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
}
} // namespace mlx::core

View File

@@ -1,11 +1,15 @@
set(
HEADERS
${CMAKE_CURRENT_SOURCE_DIR}/atomic.h
${CMAKE_CURRENT_SOURCE_DIR}/bf16.h
${CMAKE_CURRENT_SOURCE_DIR}/bf16_math.h
${CMAKE_CURRENT_SOURCE_DIR}/binary.h
${CMAKE_CURRENT_SOURCE_DIR}/complex.h
${CMAKE_CURRENT_SOURCE_DIR}/defines.h
${CMAKE_CURRENT_SOURCE_DIR}/erf.h
${CMAKE_CURRENT_SOURCE_DIR}/indexing.h
${CMAKE_CURRENT_SOURCE_DIR}/reduce.h
${CMAKE_CURRENT_SOURCE_DIR}/unary.h
${CMAKE_CURRENT_SOURCE_DIR}/utils.h
)
@@ -14,40 +18,40 @@ set(
"arange"
"arg_reduce"
"binary"
"binary_two"
"conv"
"copy"
"gemm"
"gemv"
"quantized"
"random"
"reduce"
"rope"
"scan"
"softmax"
"sort"
"ternary"
"unary"
"indexing"
"gather"
"scatter"
)
function(build_kernel KERNEL)
set(SRCFILE ${CMAKE_CURRENT_SOURCE_DIR}/${KERNEL}.metal)
set(HEADERS_PADDED ${HEADERS})
if(${KERNEL} STREQUAL "gemm")
set(HEADERS_PADDED ${HEADERS_PADDED} ${CMAKE_CURRENT_SOURCE_DIR}/gemm/gemm.h)
endif()
if(${KERNEL} STREQUAL "conv")
set(HEADERS_PADDED ${HEADERS_PADDED} ${CMAKE_CURRENT_SOURCE_DIR}/gemm/conv.h)
endif()
function(build_kernel_base TARGET SRCFILE DEPS)
add_custom_command(
COMMAND xcrun -sdk macosx metal -Wall -Wextra
-fno-fast-math
-c ${SRCFILE}
-I${PROJECT_SOURCE_DIR}
-o ${KERNEL}.air
DEPENDS ${SRCFILE} ${HEADERS_PADDED}
OUTPUT ${KERNEL}.air
COMMENT "Building ${KERNEL}.air"
-o ${TARGET}.air
DEPENDS ${SRCFILE} ${DEPS}
OUTPUT ${TARGET}.air
COMMENT "Building ${TARGET}.air"
VERBATIM
)
endfunction(build_kernel_base)
function(build_kernel KERNEL)
set(SRCFILE ${CMAKE_CURRENT_SOURCE_DIR}/${KERNEL}.metal)
build_kernel_base(${KERNEL} ${SRCFILE} "${HEADERS}")
endfunction(build_kernel)
foreach(KERNEL ${KERNELS})
@@ -55,6 +59,15 @@ foreach(KERNEL ${KERNELS})
set(KERNEL_AIR ${KERNEL}.air ${KERNEL_AIR})
endforeach()
file(GLOB_RECURSE STEEL_KERNELS ${CMAKE_CURRENT_SOURCE_DIR}/steel/*.metal)
file(GLOB_RECURSE STEEL_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/steel/*.h)
foreach(KERNEL ${STEEL_KERNELS})
cmake_path(GET KERNEL STEM TARGET)
build_kernel_base(${TARGET} ${KERNEL} "${STEEL_HEADERS}")
set(KERNEL_AIR ${TARGET}.air ${KERNEL_AIR})
endforeach()
add_custom_command(
OUTPUT ${MLX_METAL_PATH}/mlx.metallib
COMMAND xcrun -sdk macosx metallib ${KERNEL_AIR} -o ${MLX_METAL_PATH}/mlx.metallib

View File

@@ -11,8 +11,6 @@ template <typename U>
struct IndexValPair {
uint32_t index;
U val;
IndexValPair(uint32_t _index, U _val) : index(_index), val(_val) {}
};
template <typename U>
@@ -63,24 +61,12 @@ struct ArgMax {
}
};
bool simd_shuffle_down(bool data, uint16_t delta) {
return simd_shuffle_down(static_cast<uint32_t>(data), delta);
}
uint64_t simd_shuffle_down(uint64_t data, uint16_t delta) {
return as_type<uint64_t>(simd_shuffle_down(as_type<uint2>(data), delta));
}
int64_t simd_shuffle_down(int64_t data, uint16_t delta) {
return as_type<int64_t>(simd_shuffle_down(as_type<uint2>(data), delta));
}
template <typename U>
IndexValPair<U> simd_shuffle_down(IndexValPair<U> data, uint16_t delta) {
return IndexValPair<U>(
return IndexValPair<U>{
simd_shuffle_down(data.index, delta),
simd_shuffle_down(data.val, delta)
);
};
}
@@ -94,7 +80,6 @@ template <typename T, typename Op, int N_READS>
const device size_t& ndim [[buffer(5)]],
const device size_t& axis_stride [[buffer(6)]],
const device size_t& axis_size [[buffer(7)]],
threadgroup IndexValPair<T> *local_data [[threadgroup(0)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
@@ -123,7 +108,9 @@ template <typename T, typename Op, int N_READS>
auto in_idx = elem_to_loc(gid / lsize, shape, in_strides, ndim);
auto out_idx = elem_to_loc(gid / lsize, shape, out_strides, ndim);
IndexValPair<T> best(0, Op::init);
IndexValPair<T> best{0, Op::init};
threadgroup IndexValPair<T> local_data[32];
// Loop over the reduction axis in lsize*N_READS buckets
for (uint r=0; r < ceildiv(axis_size, N_READS*lsize); r++) {
@@ -184,7 +171,6 @@ template <typename T, typename Op, int N_READS>
const device size_t& ndim [[buffer(5)]], \
const device size_t& axis_stride [[buffer(6)]], \
const device size_t& axis_size [[buffer(7)]], \
threadgroup IndexValPair<itype> *local_data [[threadgroup(0)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \

Some files were not shown because too many files have changed in this diff Show More