Compare commits

..

102 Commits

Author SHA1 Message Date
Awni Hannun
28301807c2 Version bump and os error (#807) 2024-03-07 13:57:58 -08:00
Awni Hannun
74ed0974b3 Support 13.0+ with xcode 14.3 (#806)
* Support 13.0+ with xcode 14.3

* revert revert
2024-03-07 13:27:57 -08:00
Jagrit Digani
ec8a4864fa Fix SDPA kernel bug on Mac OS 13.3 SDK (#805)
* Move sdpa kernel to allocate tgp mem statically and allow macOS 13.3 SDK builds

* Style
2024-03-07 10:18:09 -08:00
Awni Hannun
b7588fd5d7 fix inplace to not make a shallow copy (#804) 2024-03-07 09:34:11 -08:00
Awni Hannun
f512b905c7 Minimum xcode / sdk (#800)
* minimum xcode /sdk

* try multiple xcode versions in CI

* update python

* metal validation for python tests
2024-03-07 08:19:43 -08:00
Awni Hannun
afd5274049 route to fallback for bfloat (#794) 2024-03-06 15:39:12 -08:00
Awni Hannun
1074674e32 Add a maximum graph depth (#797)
* add a maximum graph depth

* remember how to use C++
2024-03-06 15:39:00 -08:00
AlexCheema
7762e07fde Update function_transforms.rst (#796)
Fix typo in function_transforms.rst
2024-03-06 12:03:37 -08:00
Luca Arnaboldi
cbefd9129e Implementation of pickle, copy and deepcopy for Python arrays (#300 & #367). (#713)
* Implemented pickling and copy for Python arrays(#300 & #367)

* Fixing typos

* Pickle with NumPy arrays

* Pickle: workaround for bfloat16

* Revert "Pickle: workaround for bfloat16"

This reverts commit 25afe6bc09.

* Added an error when pickling bfloat16

* Update python/tests/test_array.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/tests/test_array.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/array.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/array.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* clang-format applied

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-03-06 08:02:41 -08:00
Angelos Katharopoulos
e39bebe13e Fix reshaping of empty arrays (#791) 2024-03-05 23:33:22 -08:00
Angelos Katharopoulos
14b4e51a7c Improved quantized matrix vector product (#786) 2024-03-05 17:32:19 -08:00
Awni Hannun
cbcf44a4ca Some fixes in cache / thread safety (#777)
* some fixes in cache / thread safety

* speed up no cache case

* fix opt test

* optimizer docs

* otpimizer docs

* fix adafactor

* fix adafactor
2024-03-05 13:30:50 -08:00
Awni Hannun
859ae15a54 Fix test (#785) 2024-03-04 23:02:27 -08:00
Brian Keene
0787724c44 Fast Inference SDPA op (#735)
* Fast Inference SDPA op

Implements metal shaders for:

o = mx.fast_inference_sdpa(queries, keys, values, scale, mask)

Supports fp16, fp32 dtypes; assumes d_k = 128.

Generic op support / prompt encoding supported via mlx primitives.
Metal implementation is for the inference use case only.

Majority of performance benefits appears to results from GQA & reduced
bandwidth requirements; there is approximate performance parity for the
MHA use case (from some measurements on M3 Max).

* Flush shared memory to zero before unprotected reads for (scores @ values)

* Move to fast:: namespace, address reviewer comments

... also attempt to revert formatter auto-change for files not relevant
to this change

* Shared memory flush to top of kernel

* Resolve compiler warnings

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/src/fast.cpp

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update docstring per PR feedback

* Softmax in higher precision, ...

* route to fallback for more use cases - batch size > 1, head_dim other
  than 128, etc.
* Address linux build failure
* Address other reviewer comments

* Remove extraneous eval_cpu function per review

---------

Co-authored-by: Atila Orhon <64497909+atiorh@users.noreply.github.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: atila <atiorh@icloud.com>
2024-03-04 21:06:11 -08:00
Awni Hannun
7b463ffb07 Ios compile (#784)
* try to fix build for ios

* skip cpu compile

* fix namespace

* fix namespace

* Use CMake for platform specific cpu compile

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-03-04 20:02:26 -08:00
Jagrit Digani
6686e61ca4 Reduce update (#783)
* Split reduction files to reduce compile times

* Add small and medium axis size specializations for row reductions

* Add non-row-reduction options for small and med kernels
2024-03-04 19:09:51 -08:00
Awni Hannun
c096a77b9b revision bump (#778) 2024-03-04 13:41:53 -08:00
Awni Hannun
5121f028d9 nice tensordot for mlx c (#782) 2024-03-04 09:51:02 -08:00
Piotr Rybiec
6a665ea6ed Dilation for convolutional layers (#766)
* add dilation parameter to Conv1d layer

* space here too

* add conv1d dilation test

* add dilation parameter for Conv2d layer

* conv2d dilation test
2024-03-04 06:43:00 -08:00
Awni Hannun
bc06cb9ff6 Pickle + dtype fix for numpy conversion (#763)
* pickle + dtype fix for numpy conversion

* fix getattribute on Module base

* remove unused function

* fix tests

* add topk to ops

* fix doc
2024-03-02 06:09:29 -08:00
Angelos Katharopoulos
8e281c76c3 Fix the top-k op (#768) 2024-03-01 22:08:43 -08:00
Awni Hannun
d5964a2710 bindings for memory info (#761)
* bindings for memory info

* update api

* keep cache low if requested

* fix default

* nit in ops error
2024-03-01 19:51:58 -08:00
Ikko Eltociear Ashimine
cf3eb87e52 Fix typo in transforms.cpp (#764)
occuring -> occurring
2024-02-29 22:23:46 -08:00
Awni Hannun
ab3a466711 bump (#760) 2024-02-29 11:58:54 -08:00
Awni Hannun
4494970f47 avoid nested closures in module (#759) 2024-02-29 09:39:52 -08:00
Jagrit Digani
776c3d226d Convolution update (#651)
* Init steel conv and update Conv primitive

* Update slow CPU implementation to support flipping and input dilation winograd conv routing

Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-28 20:11:16 -08:00
Awni Hannun
f5f18b704f fix temporary bug (#752) 2024-02-27 17:44:39 -08:00
Awni Hannun
420ff2f331 Add back compiled function signatures and docstrings (#749)
* try to add back compiled function signatures and docstrings

* add indentation to docstring
2024-02-27 13:18:59 -08:00
Awni Hannun
56ba3ec40e fix cpu compile on older OS (#747) 2024-02-26 22:20:53 -08:00
Noah Kasmanoff
de3d2467a3 Update: Fast GeLU Approximation (#744)
* add: fast gelu approx

* fix docs

* Update gelu_fast_approx function documentation

* Update python/mlx/nn/layers/activations.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* fix: test gelu

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-26 21:08:50 -08:00
Awni Hannun
fe1dabf272 Fix compile with non standard types (#745)
* refactor tree utils

* fix compile + tree code refactor

* Add an extra test

* add a few missing activations to docs

* hash structure

* Encode the full argument structure

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-26 19:28:53 -08:00
Hinrik Snær Guðmundsson
08226ab491 added atleast *args input support (#710)
* added atleast list(array) input support

* function overloading implemented

* Refactoring

* fixed formatting

* removed pos_only
2024-02-26 11:17:59 -08:00
Chime Ogbuji
3b661b7394 Add linear warmup and schedule joining for use with existing schedules (#721)
* Add linear warmup to schedules for use with existing schedules

* Changed parameters for simplicity of most common case (0 initial value)

* Added ScheduleJoiner and updated documentation

* ScheduleJoiner -> join_schedules (ala optax #)

* black compliance

* Different evaluation of schedules

* nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-26 07:28:48 -08:00
Awni Hannun
e6418781ab Fix logsumexp edge case (#740)
* fix logsumexp

* fix inf constant

* also fix power grad

* fix ternary dispatch
2024-02-25 08:39:55 -08:00
Awni Hannun
ac02cf33bd Fix some issues using MLX in C++ (#739)
* fix preamble build

* fix some issues with using MLX as a dep in C++
2024-02-24 22:20:57 -08:00
Gabrijel Boduljak
22364c40b7 Upsample2d (#414)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-23 09:55:04 -08:00
Noah Farr
d729a1991b Fix arange with inf step (#686)
* Fix case for step=inf in arange and add inf check for start/stop

* Add test cases for arange

* Update ops.cpp to include climits header

* Fix arange

* Fix formatting

* Refactor

* Add missing include
2024-02-23 06:18:15 -08:00
Rifur13
126c9869c8 Implement the 'where' primitive for conditional selection (#664) 2024-02-22 15:10:48 -08:00
Angelos Katharopoulos
ad4a45e615 Fix the release builds in CI (#729) 2024-02-22 14:09:13 -08:00
Awni Hannun
04fc896016 version bump (#727) 2024-02-22 11:54:17 -08:00
Jagrit Digani
884b4ed43b Fix threadgroup memory in arg reduce (#723) 2024-02-21 19:42:16 -08:00
Vijay Krish
972d9a3aea Up to 10x faster scatter. (#709)
* Faster scatter.

Add specialization for 1-d index tensors.

* Address review comments.

- Check for row contiguity of index, update tensors
  instead of checking strides.
- Add support for 1d specialization with col contiguous update
  tensor, along with a test.

* Nit1

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Nit2

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-21 11:09:30 -08:00
Angelos Katharopoulos
7dcdd88e27 Change the logo and add a dark option (#716) 2024-02-20 10:57:02 -08:00
Awni Hannun
8120a3b65c link to other APIs (#715)
* link to other APIs

* remove sec
2024-02-20 09:54:49 -08:00
Awni Hannun
5798256fcf Shapeless compilation for some graphs (#687)
* shapeless compilation for some graphs

* update compile benchmark

* default compile a few activations

* buffer donation

* bugfix

* shapeless fix

* update tests to work for cpu and gpu fusion

* test kwargs

* add kwargs to compile

* Recompile when python arguments change

* no compile for tanh

* some constant tests

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-19 21:43:54 -08:00
Awni Hannun
d0fda82595 fix tolist for half types (#702) 2024-02-19 09:44:27 -08:00
Hinrik Snær Guðmundsson
f883fcede0 Added support for atleast_1d, atleast_2d, atleast_3d (#694) 2024-02-19 09:40:52 -08:00
Diogo
e1bdf6a8d9 discover doctests in cmake (#703) 2024-02-19 07:03:56 -08:00
Awni Hannun
1a4f4c5ea6 Refactor CPU compile preamble (#708)
* refactor cpu preamble

* fix include order

* fix some issues'

* fixes for linux

* try to fix includes

* add back warning suppression

* more linux fixes
2024-02-19 06:12:53 -08:00
Jack Mousseau
0925af43b0 Remove unused variables (#706) 2024-02-18 12:50:10 -08:00
Awni Hannun
dc937b8ed3 CPU compile (#691)
* build and load shared object for cpu compile

* nits

* cpu compile tests pass

* cpu compile tests pass

* fix preamble for g++

* donation

* fix gpu buffer donation

* reuse prebuilt libraries

* faster contiguity conditoins

* fix test

* rid compiler warning

* fast erf

* Fix float16 for compile and add more types to cpu compile

* Remove a forgotten comment

* use cached libs

* nits

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-17 06:54:32 -08:00
Awni Hannun
c3965fc5ee Separate fast ops and primitives (#699) 2024-02-16 19:16:39 -08:00
Awni Hannun
bf7cd29970 version bump (#698) 2024-02-16 08:44:08 -08:00
Nripesh Niketan
a000d2288c feat: update black pre-commit hook to 24.2.0 (#696) 2024-02-16 06:01:59 -08:00
Mike Drob
165abf0e4c Auto-run PRs from contributors (#692) 2024-02-15 17:30:35 -08:00
Srimukh Sripada
818cda16bc Support LR schedulers (#334)
* Add a few LR schedulers

* Move parents's constructor call to the top

* Fix docstring

* refactor optimizers into two files

* add docs

* nit

* Fix Callable type annotation for python 3.8

---------

Co-authored-by: Awni Hannun <awni@apple.com>
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-15 11:26:20 -08:00
toji
85143fecdd improved error msg for invalid axis(mx.split) (#685)
* improved error msg for invalid axis(`mx.split`)

* Apply suggestions from code review

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* fixed formatting issue

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-02-15 07:25:38 -08:00
Diogo
35431a4ac8 Adds device context manager (#679) 2024-02-14 14:14:58 -08:00
Awni Hannun
ccf1645995 Custom primitive + RoPE fat op (#676)
* extensions start

* rope custom op

* fix build

* docs + rope benchmark

* fix test

* Add a Metal kernel for RoPE

* Fix position of traditional

* transform tests

* Move rope computation to float and fix tests

* Fix the test and a typo

* change to fast

* fix no metal build

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-14 14:04:25 -08:00
Jagrit Digani
1a48713d32 Update gather and scatter to not use Argument Encoder (#683)
* Replace argument encoder usage for gather and scatter

* Use constant address space for shapes and strides

* Split gather and scatter to improve compile times

* Enable the GPU tests

* Update the CI config

* Fix scatter dispatch for scalar indices

* Remove arg encoder utils

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-14 13:42:13 -08:00
Awni Hannun
1eb04aa23f Fix empty array construction in cpp (#684) 2024-02-13 23:34:17 -08:00
Noah Farr
0c65517e91 Return empty array when repeats is 0 in mx.repeat (#681)
* Return empty array when repeats is 0

* Add test case for repeats = 0
2024-02-13 17:49:31 -08:00
Vijay Krish
2fdc2462c3 Faster gather and scatter. (#682)
Reduce unnecessary integer ops, especially since
there kernels are integer bound.

Increase number of iterations for benchmarks for
better smoothing.

Github Issue #506

Co-authored-by: Vijay Krishnamoorthy <vijay_krish@apple.com>
2024-02-13 17:47:41 -08:00
Hinrik Snær Guðmundsson
be6e9d6a9f Fixed wording in extensions.rst (#678)
changed "learn how add" -> "learn how to add"
2024-02-13 08:39:02 -08:00
Gabrijel Boduljak
e54cbb7ba6 Pooling layers (#357)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-02-12 22:08:13 -08:00
Angelos Katharopoulos
40c108766b Quantized matmul fix (#677)
* Fix qmv for small or unaligned matrices

* Fix qmm
2024-02-12 18:54:21 -08:00
Mike Drob
4cc70290f7 PR Builder Workflow (#659) 2024-02-12 17:47:21 -08:00
Awni Hannun
74caa68d02 nit in readme (#675) 2024-02-12 12:25:04 -08:00
Awni Hannun
3756381358 Faster bfloat quantized mat-vec and vec-mat (#663) 2024-02-11 21:53:16 -08:00
Awni Hannun
d12573daa6 quote file name (#670) 2024-02-11 10:33:30 -08:00
Nripesh Niketan
0dbc4c7547 feat: Update pre-commit-config.yaml (#667) 2024-02-11 06:08:20 -08:00
Vijay Krish
06072601ce Scatter optimization : Eliminate 64b integer divide. (#662)
Launch 2D grid to eliminate divide and mod in device code,
since 64b integer division is very expensive.

Github Issue #506

Co-authored-by: Vijay Krishnamoorthy <vijay_krish@apple.com>
2024-02-10 08:49:51 -08:00
Angelos Katharopoulos
11d2c8f7a1 Linux build for CI of other packages (#660) 2024-02-09 18:17:04 -08:00
Awni Hannun
7f3f8d8f8d Fix the softmax fix (#661) 2024-02-09 17:02:13 -08:00
Awni Hannun
b96be943dc bug fix (#658) 2024-02-09 16:50:45 -08:00
Abdussamet Türker
b670485185 Remainder negative numerator bug fixed (#641)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-09 16:49:14 -08:00
Diogo
b57bd0488d Metadata support for safetensors (#639)
* metadata support for safetensors

* aliases making it alittle more readable

* addressing comments

* python binding tests
2024-02-08 19:33:15 -08:00
Angelos Katharopoulos
221f8d3fc2 Bump the version to 0.2 (#656) 2024-02-08 11:27:12 -08:00
Awni Hannun
5c03efaf29 Compile docs (#653)
* compile docs

* docs nits + comments
2024-02-08 11:21:50 -08:00
LeonEricsson
7dccd42133 updated calls to use loc &scale (#643) 2024-02-08 09:01:59 -08:00
Awni Hannun
1b97b2958b Compile with capture (#629)
* Simple kernel generation

* Remove the generate kernel from graph_utils

* fix multi-output with compile

* fuse with stopgrad

* v1 input, output capture in compile

* cleanup tree update with visitor update

* nit

* remove todo

* state for model, optional explicit init and more pure optimizer steps

* move learning rate to state

* add lr to opt state, some fixes in capture

* fix optim

* update tuple of containers as well

* fix stream for compiled output

* rng state for compile

* nit

* updates and comments

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-02-07 17:29:22 -08:00
Awni Hannun
e5e816a5ef fix sequential with empty modules at end (#647) 2024-02-07 13:22:27 -08:00
Angelos Katharopoulos
28eac18571 Kernel generation (#614)
Generate reusable element-wise kernels given a computation graph.
2024-02-07 13:15:59 -08:00
Noah Farr
5fd11c347d Add loc and scale to random.normal (#638)
* Add loc and scale to random.normal

* Add tests for loc and scale for random.normal

* Run pre-commit hooks

* Fix code review
2024-02-07 11:49:59 -08:00
Aryan Gupta
ef73393a19 Feat: Add weights argument in BCE Loss and tests (#620) 2024-02-07 09:39:52 -08:00
Angelos Katharopoulos
ea406d5e33 CI change (#645)
* CI update

* Skip large binary test for now

* Upgrade pip

* Add proper env variable skipping

* Update the CI

* Fix workflow name

* Set the low memory flag for the tests

* Change build process

* Add pip upgrade

* Use a venv

* Add a missing env activate

* Add setuptools

* Add twine upload back

* Re-enable automatic release builds
2024-02-07 06:04:34 -08:00
Awni Hannun
146bd69470 Skip compile when transforming (#635)
* skip compile when transforming

* simplify message
2024-02-05 21:28:37 -08:00
Jagrit Digani
316ff490b3 Remove masks from BlockLoader and clear out load case for invalid thread (#634) 2024-02-05 16:00:17 -08:00
Awni Hannun
d40a04f8dc minor fixes (#631)
* minor fixes

* var with ddof >= nelements
2024-02-05 13:27:49 -08:00
Awni Hannun
d75ae52ecd Compile primitive (#571)
* Compiled primitive with basic binary, unary graph-level fusion
2024-02-05 06:51:22 -08:00
Avikant Srivastava
31fea3758e feat: enhancement of the error message for mlx.core.mean (#608)
* add error message
2024-02-05 01:21:49 -08:00
Awni Hannun
e319383ef9 Faster gather (#626)
* faster gather

* update copyright
2024-02-04 17:25:44 -08:00
Awni Hannun
5c3ac52dd7 fix test (#627) 2024-02-04 16:18:03 -08:00
David Koski
ebfd3618b0 fixes for building and running on iOS (#619)
* fixes for building and running on iOS

* per suggestion just use Accelerate
2024-02-04 12:29:17 -08:00
Avikant Srivastava
11a9fd40f0 fix: handle linspace function when num is 1 (#602)
* fix: handle linspace function when num is 1

* add comment

* fix test case

* remove breakpoint
2024-02-04 11:03:49 -08:00
Daniel Strobusch
4fd2fb84a6 make python array SupportsAbs conform (like numpy) (#624) 2024-02-04 09:31:02 -08:00
Daniel Strobusch
9852af1a19 fix "shape" docstring. (#623) 2024-02-04 09:21:22 -08:00
minghuaw
16750f3c51 Fix typo in CMakeLists.txt (#616) 2024-02-03 05:59:26 -08:00
Awni Hannun
95b5fb8245 minor changes (#613) 2024-02-02 11:48:35 -08:00
AtomicVar
83f63f2184 Add Margin Ranking Loss (#536) 2024-02-02 10:57:31 -08:00
Awni Hannun
cb6156d35d Fix eval in trace bugs (#612)
* Fix eval in trace bugs

* comment nit
2024-02-02 09:57:12 -08:00
Piotr Rybiec
506d43035c typo fix (#607) 2024-02-01 17:39:55 -08:00
220 changed files with 16927 additions and 4226 deletions

View File

@@ -1,5 +1,8 @@
version: 2.1
orbs:
apple: ml-explore/pr-approval@0.1.0
parameters:
nightly_build:
type: boolean
@@ -7,6 +10,9 @@ parameters:
weekly_build:
type: boolean
default: false
test_release:
type: boolean
default: false
jobs:
linux_build_and_test:
@@ -57,17 +63,22 @@ jobs:
command: ./build/tests/tests
mac_build_and_test:
machine: true
resource_class: ml-explore/m-builder
parameters:
xcode_version:
type: string
default: "15.2.0"
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.large.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=3.9
conda activate runner-env
brew install python@3.8
python3.8 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install pybind11-stubgen
@@ -78,203 +89,169 @@ jobs:
- run:
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext --inplace
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py develop
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
- run:
name: Generate package stubs
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
source env/bin/activate
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
DEVICE=gpu python -m xmlrunner discover -v python/tests -o test-results/gpu
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
# TODO: Reenable when extension api becomes stable
# - run:
# name: Build example extension
# command: |
# eval "$(conda shell.bash hook)"
# conda activate runner-env
# cd examples/extensions && python -m pip install .
# cd examples/extensions && python3.11 -m pip install .
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j
- run:
name: Run CPP tests
command: METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
command: |
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
DEVICE=cpu ./build/tests/tests
build_release:
machine: true
resource_class: ml-explore/m-builder
parameters:
python_version:
type: string
default: "3.9"
macos_version:
xcode_version:
type: string
default: "14"
default: "15.2.0"
build_env:
type: string
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.large.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
brew install python@<< parameters.python_version >>
python<< parameters.python_version >> -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install --upgrade setuptools
pip install pybind11-stubgen
pip install numpy
pip install twine
# TODO: Update build system to switch away from setup.py develop
pip install build
- run:
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
PYPI_RELEASE=1 \
source env/bin/activate
DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py develop
pip install . -v
- run:
name: Generate package stubs
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
source env/bin/activate
python setup.py generate_stubs
- run:
name: Publish Python package
name: Build Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
PYPI_RELEASE=1 \
source env/bin/activate
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
twine upload dist/* --repository mlx
python -m build -w
- when:
condition: << parameters.build_env >>
steps:
- run:
name: Upload package
command: |
source env/bin/activate
twine upload dist/*
- store_artifacts:
path: dist/
build_dev_release:
machine: true
resource_class: ml-explore/m-builder
build_linux_test_release:
parameters:
python_version:
type: string
default: "3.9"
macos_version:
extra_env:
type: string
default: "14"
default: "DEV_RELEASE=1"
docker:
- image: ubuntu:20.04
steps:
- checkout
- run:
name: Install dependencies
name: Build wheel
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
PYTHON=python<< parameters.python_version >>
apt-get update
apt-get upgrade -y
DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
apt-get install -y apt-utils
apt-get install -y software-properties-common
add-apt-repository -y ppa:deadsnakes/ppa
apt-get install -y $PYTHON $PYTHON-dev $PYTHON-full
apt-get install -y libblas-dev liblapack-dev liblapacke-dev
apt-get install -y build-essential git
$PYTHON -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install --upgrade setuptools
pip install pybind11-stubgen
pip install numpy
pip install twine
- run:
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
DEV_RELEASE=1 \
pip install auditwheel
pip install patchelf
pip install build
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py develop
- run:
name: Generate package stubs
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
pip install . -v
python setup.py generate_stubs
- run:
name: Publish Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
DEV_RELEASE=1 \
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
twine upload dist/* --repository mlx
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- store_artifacts:
path: dist/
build_package:
machine: true
resource_class: ml-explore/m-builder
parameters:
python_version:
type: string
default: "3.9"
macos_version:
type: string
default: "14"
steps:
- checkout
- run:
name: Install dependencies
command: |
eval "$(conda shell.bash hook)"
rm -r $CONDA_PREFIX/envs/runner-env
conda create -y -n runner-env python=<< parameters.python_version >>
conda activate runner-env
pip install --upgrade cmake
pip install --upgrade pybind11[global]
pip install pybind11-stubgen
pip install numpy
pip install twine
- run:
name: Install Python package
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py develop
- run:
name: Generate package stubs
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
python setup.py generate_stubs
- run:
name: Build package distribution
command: |
eval "$(conda shell.bash hook)"
conda activate runner-env
DEVELOPER_DIR=$(developer_dir_macos_<< parameters.macos_version >>) \
CMAKE_BUILD_PARALLEL_LEVEL="" \
python setup.py bdist_wheel
- store_artifacts:
path: dist/
path: wheelhouse/
workflows:
build_and_test:
when:
and:
- matches:
pattern: "^(?!pull/)[-\\w]+$"
value: << pipeline.git.branch >>
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- mac_build_and_test:
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0"]
- linux_build_and_test
- mac_build_and_test
build_pypi_release:
when:
and:
- not: << pipeline.parameters.nightly_build >>
- not: << pipeline.parameters.weekly_build >>
- not: << pipeline.parameters.test_release >>
jobs:
- build_release:
filters:
tags:
@@ -284,20 +261,53 @@ workflows:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["15.0.0", "15.2.0"]
build_env: ["PYPI_RELEASE=1"]
prb:
when:
matches:
pattern: "^pull/\\d+(/head)?$"
value: << pipeline.git.branch >>
jobs:
- hold:
type: approval
- apple/authenticate:
context: pr-approval
- mac_build_and_test:
requires: [ hold ]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
when: << pipeline.parameters.nightly_build >>
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.nightly_build >>
jobs:
- build_package:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["15.0.0", "15.2.0"]
weekly_build:
when: << pipeline.parameters.weekly_build >>
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.weekly_build >>
jobs:
- build_dev_release:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
macos_version: ["13", "14"]
xcode_version: ["15.0.0", "15.2.0"]
build_env: ["DEV_RELEASE=1"]
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
jobs:
- build_linux_test_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -5,7 +5,7 @@ repos:
- id: clang-format
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 23.12.1
rev: 24.2.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort

View File

@@ -10,9 +10,11 @@ MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile` and safetensor support
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
</a>
@@ -252,4 +254,4 @@ Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
limitations under the License.

View File

@@ -18,7 +18,7 @@ option(MLX_BUILD_METAL "Build metal backend" ON)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.1.0)
set(MLX_VERSION 0.6.0)
endif()
# --------------------- Processor tests -------------------------
@@ -28,7 +28,6 @@ message(STATUS "Building MLX for ${CMAKE_HOST_SYSTEM_PROCESSOR} processor on ${C
set(MLX_BUILD_ARM OFF)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if (${CMAKE_HOST_SYSTEM_PROCESSOR} MATCHES "x86_64" AND ${CMAKE_HOST_APPLE})
message(FATAL_ERROR
"Building for x86_64 on macOS is not supported."
@@ -67,8 +66,6 @@ if (MLX_BUILD_METAL AND NOT METAL_LIB)
set(MLX_BUILD_METAL OFF)
elseif (MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
add_compile_definitions(_METAL_)
# Throw an error if xcrun not found
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION
@@ -80,10 +77,8 @@ elseif (MLX_BUILD_METAL)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14_iOS17-beta.zip)
elseif (${MACOS_VERSION} GREATER_EQUAL 13.3)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS13.3_iOS16.4.zip)
else()
message(FATAL_ERROR "MLX requires macOS >= 13.4 to be built with MLX_BUILD_METAL=ON" )
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
endif()
FetchContent_Declare(
@@ -123,8 +118,8 @@ else()
/usr/include
/usr/local/include
$ENV{BLAS_HOME}/include)
message(STATUS "Blas lib" ${BLAS_LIBRARIES})
message(STATUS "Blas incclude" ${BLAS_INCLUDE_DIRS})
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx ${BLAS_LIBRARIES})
find_package(LAPACK REQUIRED)
@@ -134,7 +129,7 @@ else()
find_path(LAPACK_INCLUDE_DIRS lapacke.h
/usr/include
/usr/local/include)
message(STATUS "Lapack lib" ${LAPACK_LIBRARIES})
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx ${LAPACK_LIBRARIES})

View File

@@ -1,4 +1,4 @@
include CMakeLists.txt
recursive-include mlx/ *
include python/src/*
python/mlx/py.typed # support type hinting as in PEP-561
include python/mlx/py.typed # support type hinting as in PEP-561

View File

@@ -6,15 +6,17 @@
[![CircleCI](https://circleci.com/gh/ml-explore/mlx.svg?style=svg)](https://circleci.com/gh/ml-explore/mlx)
MLX is an array framework for machine learning on Apple silicon, brought to you
by Apple machine learning research.
MLX is an array framework for machine learning research on Apple silicon,
brought to you by Apple machine learning research.
Some key features of MLX include:
- **Familiar APIs**: MLX has a Python API that closely follows NumPy.
MLX also has a fully featured C++ API, which closely mirrors the Python API.
MLX has higher-level packages like `mlx.nn` and `mlx.optimizers` with APIs
that closely follow PyTorch to simplify building more complex models.
- **Familiar APIs**: MLX has a Python API that closely follows NumPy. MLX
also has fully featured C++, [C](https://github.com/ml-explore/mlx-c), and
[Swift](https://github.com/ml-explore/mlx-swift/) APIs, which closely mirror
the Python API. MLX has higher-level packages like `mlx.nn` and
`mlx.optimizers` with APIs that closely follow PyTorch to simplify building
more complex models.
- **Composable function transformations**: MLX supports composable function
transformations for automatic differentiation, automatic vectorization,

View File

@@ -73,6 +73,7 @@ void time_unary_ops() {
void time_binary_ops() {
int M = 1000, N = 100, K = 10;
auto condition = random::randint(0, 2, {M, N, K});
auto a = random::uniform({M, N, K});
auto b = random::uniform({M, N, K});
auto device = default_device();
@@ -84,7 +85,9 @@ void time_binary_ops() {
TIME(divide, a, b, device);
TIME(maximum, a, b, device);
TIME(minimum, a, b, device);
TIME(where, condition, a, b, device);
condition = array({true});
b = random::uniform({1});
eval(b);
TIMEM("scalar", add, a, b, device);
@@ -93,7 +96,9 @@ void time_binary_ops() {
TIMEM("scalar", multiply, a, b, device);
TIMEM("vector-scalar", divide, a, b, device);
TIMEM("scalar-vector", divide, b, a, device);
TIMEM("scalar-vector", where, condition, a, b, device);
condition = broadcast_to(array({true}), {1000, 100});
a = broadcast_to(random::uniform({1}), {1000, 100});
b = broadcast_to(random::uniform({1}), {1000, 100});
eval(a, b);
@@ -101,6 +106,7 @@ void time_binary_ops() {
TIMEM("scalar-scalar broadcast", subtract, a, b, device);
TIMEM("scalar-scalar broadcast", multiply, a, b, device);
TIMEM("scalar-scalar broadcast", divide, a, b, device);
TIMEM("scalar-scalar broadcast", where, condition, a, b, device);
}
void time_strided_ops() {

View File

@@ -380,10 +380,6 @@ if __name__ == "__main__":
if len(args.axis) > 1:
args.axis.pop(0)
if args.print_pid:
print(os.getpid())
input("Press enter to run")
if args.cpu:
mx.set_default_device(mx.cpu)
else:
@@ -406,6 +402,10 @@ if __name__ == "__main__":
x = xs[0]
axis = args.axis[0]
if args.print_pid:
print(os.getpid())
input("Press enter to run")
if args.benchmark == "matmul_square":
print(bench(matmul_square, x))

View File

@@ -331,10 +331,6 @@ if __name__ == "__main__":
if len(args.axis) > 1:
args.axis.pop(0)
if args.print_pid:
print(os.getpid())
input("Press enter to run")
torch.set_num_threads(1)
device = "cpu" if args.cpu else "mps"
@@ -354,6 +350,10 @@ if __name__ == "__main__":
x = xs[0]
axis = args.axis[0]
if args.print_pid:
print(os.getpid())
input("Press enter to run")
if args.benchmark == "matmul_square":
print(bench(matmul_square, x))

View File

@@ -80,10 +80,8 @@ if __name__ == "__main__":
_filter = make_predicate(args.filter, args.negative_filter)
if args.mlx_dtypes:
compare_filtered = (
lambda x: compare_mlx_dtypes(
x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1]
)
compare_filtered = lambda x: (
compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
if _filter(x)
else None
)

View File

@@ -0,0 +1,109 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
import math
import random
import mlx.core as mx
from time_utils import time_fn
def bench_gelu():
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
x = mx.random.uniform(shape=(1000, 1024))
def gen_fun(fun):
def bench_fun(x):
for _ in range(10):
x = fun(x)
return x
return bench_fun
time_fn(gen_fun(gelu), x, msg="fixed gelu")
time_fn(gen_fun(mx.compile(gelu)), x, msg="compiled fixed gelu")
def randint():
return random.randint(1, x.shape[0])
def gen_fun(fun):
def bench_fun(x, y):
x = x[: randint()]
for _ in range(10):
x = fun(x)
y = fun(y)
return x, y
return bench_fun
y = mx.random.uniform(shape=(1000, 1024))
time_fn(gen_fun(gelu), x, y, msg="variable gelu")
time_fn(gen_fun(mx.compile(gelu)), x, y, msg="compiled variable gelu")
time_fn(
gen_fun(mx.compile(gelu, shapeless=True)),
x,
y,
msg="shapeless variable gelu",
)
def bench_layernorm():
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
mx.eval(weight, bias)
def layernorm(x):
x = x.astype(mx.float32)
means = mx.mean(x, axis=-1, keepdims=True)
var = mx.var(x, axis=-1, keepdims=True)
x = (x - means) * mx.rsqrt(var + 1e-4)
x = x.astype(mx.float16)
return weight * x + bias
x = mx.random.uniform(shape=(1000, 4096)).astype(mx.float16)
def gen_fun(fun):
def bench_fun(x):
for _ in range(10):
x = fun(x)
return x
return bench_fun
time_fn(gen_fun(layernorm), x, msg="fixed layernorm")
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled fixed layernorm")
def randint():
return random.randint(1, x.shape[0])
def gen_fun(fun):
def bench_fun(x):
x = x[: randint()]
for _ in range(10):
x = fun(x)
return x
return bench_fun
random.seed(0)
time_fn(gen_fun(layernorm), x, msg="variable layernorm")
random.seed(0)
time_fn(gen_fun(mx.compile(layernorm)), x, msg="compiled variable layernorm")
random.seed(0)
time_fn(
gen_fun(mx.compile(layernorm, shapeless=True)),
x,
msg="shapeless variable layernorm",
)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Compile benchmarks.")
args = parser.parse_args()
bench_gelu()
bench_layernorm()

View File

@@ -0,0 +1,129 @@
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
import numpy as np
import torch
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
device_name = device_name.decode("utf-8").strip("\n")
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, C)).astype(np_dtype)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_2D(strides, padding)
f_pt = make_pt_conv_2D(strides, padding)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2)),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2)),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2)),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2)),
)
for dtype in dtypes:
print("(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, diff%")
for N, H, W, C, kH, kW, O, strides, padding in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,53 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
from time import time
import mlx.core as mx
import torch
from time_utils import measure_runtime
def benchmark_gather_mlx(x_shape, idx_shape):
def gather(x, idx):
mx.eval(x[idx])
idx = mx.random.randint(0, x_shape[0] - 1, idx_shape)
x = mx.random.normal(x_shape).astype(mx.float32)
runtime = measure_runtime(gather, x=x, idx=idx)
print(f"MLX: {runtime:.3f}ms")
def benchmark_gather_torch(x_shape, idx_shape, device):
def gather(x, idx, device):
_ = x[idx]
if device == torch.device("mps"):
torch.mps.synchronize()
idx = torch.randint(0, x_shape[0] - 1, idx_shape).to(device)
x = torch.randn(x_shape, dtype=torch.float32).to(device)
runtime = measure_runtime(gather, x=x, idx=idx, device=device)
print(f"PyTorch: {runtime:.3f}ms")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Gather benchmarks.")
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
device = torch.device("cpu")
else:
device = torch.device("mps")
idx_shapes = [(1_000_000,), (100_000,), ()]
x_shapes = [(100, 64), (100, 1024), (4, 1_000_000)]
for x_shape, idx_shape in zip(x_shapes, idx_shapes):
print("=" * 20)
print(f"X {x_shape}, Indices {idx_shape}")
benchmark_gather_mlx(x_shape, idx_shape)
benchmark_gather_torch(x_shape, idx_shape, device=device)

View File

@@ -0,0 +1,35 @@
# Copyright © 2023-2024 Apple Inc.
import mlx.core as mx
import mlx.nn as nn
from time_utils import time_fn
def time_rope():
rope = nn.RoPE(4096)
# vec
x = mx.random.uniform(shape=(1, 4096)).astype(mx.float16)
mx.eval(x)
def rope_vec(x):
for _ in range(32):
x = rope(x)
return x
time_fn(rope_vec, x)
# matrix
x = mx.random.uniform(shape=(1024, 4096)).astype(mx.float16)
mx.eval(x)
def rope_mat(x):
for _ in range(32):
x = rope(x)
return x
time_fn(rope_mat, x)
if __name__ == "__main__":
time_rope()

View File

@@ -0,0 +1,96 @@
# Copyright © 2023-2024 Apple Inc.
import argparse
import mlx.core as mx
import torch
from time_utils import measure_runtime
def benchmark_scatter_mlx(dst_shape, x_shape, idx_shapes):
def scatter(dst, x, idx):
dst[*idx] = x
mx.eval(dst)
idx = []
for idx_shape in idx_shapes:
idx.append(mx.random.randint(0, dst_shape[0] - 1, idx_shape))
x = mx.random.normal(x_shape).astype(mx.float32)
dst = mx.random.normal(dst_shape).astype(mx.float32)
runtime = measure_runtime(scatter, dst=dst, x=x, idx=idx)
print(f"MLX: {runtime:.3f}ms")
def benchmark_scatter_torch(dst_shape, x_shape, idx_shapes, device):
def gather(dst, x, idx, device):
dst[*idx] = x
if device == torch.device("mps"):
torch.mps.synchronize()
idx = []
for idx_shape in idx_shapes:
idx.append(torch.randint(0, dst_shape[0] - 1, idx_shape).to(device))
x = torch.randn(x_shape, dtype=torch.float32).to(device)
dst = torch.randn(dst_shape, dtype=torch.float32).to(device)
runtime = measure_runtime(gather, dst=dst, x=x, idx=idx, device=device)
print(f"PyTorch: {runtime:.3f}ms")
if __name__ == "__main__":
parser = argparse.ArgumentParser("Gather benchmarks.")
parser.add_argument("--cpu", action="store_true", help="Use the CPU.")
args = parser.parse_args()
if args.cpu:
mx.set_default_device(mx.cpu)
device = torch.device("cpu")
else:
device = torch.device("mps")
dst_shapes = [
(10, 64),
(100_000, 64),
(1_000_000, 64),
(100_000,),
(2_000_00,),
(20_000_000,),
(10000, 64),
(100, 64),
(100, 10_000, 64),
(10, 100, 100, 21),
(1_000, 1_000, 10),
]
idx_shapes = [
[(1_000_000,)],
[(1_000_000,)],
[(100_000,)],
[(1_000_000,)],
[(20_000_000,)],
[(20_000_000,)],
[(1000000,)],
[(10000000,)],
[(1_000,)],
[(10_000,)],
[(1_000,), (1_000,)],
]
x_shapes = [
(1_000_000, 64),
(1_000_000, 64),
(100_000, 64),
(1_000_000,),
(20_000_000,),
(20_000_000,),
(1000000, 64),
(10000000, 64),
(1_000, 10_000, 64),
(10_000, 100, 100, 21),
(1_000, 10),
]
for dst_shape, x_shape, idx_shape in zip(dst_shapes, x_shapes, idx_shapes):
print("=" * 20)
print(f"X {x_shape}, Indices {idx_shape}")
benchmark_scatter_mlx(dst_shape, x_shape, idx_shape)
benchmark_scatter_torch(dst_shape, x_shape, idx_shape, device=device)

View File

@@ -1,4 +1,4 @@
# Copyright © 2023 Apple Inc.
# Copyright © 2023-2024 Apple Inc.
import time
@@ -6,7 +6,11 @@ import mlx.core as mx
def time_fn(fn, *args, **kwargs):
print(f"Timing {fn.__name__} ...", end=" ")
msg = kwargs.pop("msg", None)
if msg:
print(f"Timing {msg} ...", end=" ")
else:
print(f"Timing {fn.__name__} ...", end=" ")
# warmup
for _ in range(5):
@@ -20,3 +24,15 @@ def time_fn(fn, *args, **kwargs):
msec = 1e3 * (toc - tic) / num_iters
print(f"{msec:.5f} msec")
def measure_runtime(fn, **kwargs):
# Warmup
for _ in range(5):
fn(**kwargs)
tic = time.time()
iters = 100
for _ in range(iters):
fn(**kwargs)
return (time.time() - tic) * 1000 / iters

1
docs/.gitignore vendored
View File

@@ -1,2 +1,3 @@
src/python/_autosummary*/
src/python/nn/_autosummary*/
src/python/optimizers/_autosummary*/

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1,19 +0,0 @@
{{ fullname | escape | underline}}
.. currentmodule:: {{ module }}
.. autoclass:: {{ objname }}
{#{% block methods %}
{% if methods %}
.. rubric:: {{ _('Methods') }}
.. autosummary::
{% for item in methods %}
{%- if item not in inherited_members and item != '__init__' %}
~{{ name }}.{{ item }}
{%- endif %}
{%- endfor %}
{% endif %}
{% endblock %}#}

View File

@@ -26,6 +26,7 @@ extensions = [
python_use_unqualified_type_names = True
autosummary_generate = True
autosummary_filename_map = {"mlx.core.Stream": "stream_class"}
intersphinx_mapping = {
"https://docs.python.org/3": None,
@@ -48,10 +49,12 @@ html_theme_options = {
"repository_url": "https://github.com/ml-explore/mlx",
"use_repository_button": True,
"navigation_with_keys": False,
"logo": {
"image_light": "_static/mlx_logo.png",
"image_dark": "_static/mlx_logo_dark.png",
},
}
html_logo = "_static/mlx_logo.png"
# -- Options for HTMLHelp output ---------------------------------------------

View File

@@ -35,7 +35,7 @@ However, you work with vector math libraries often and realize that the
You would really like the part of your applications that does this operation
on the CPU to be very fast - so you decide that you want it to rely on the
``axpby`` routine provided by the Accelerate_ framework. Continuing to impose
our assumptions on to you, let's also assume that you want to learn how add
our assumptions on to you, let's also assume that you want to learn how to add
your own implementation for the gradients of your new operation while going
over the ins-and-outs of the MLX framework.
@@ -677,9 +677,9 @@ Let's look at the overall directory structure first.
Binding to Python
^^^^^^^^^^^^^^^^^^
We use PyBind11_ to build a Python API for the C++ library. Since bindings
for all needed components such as `mlx.core.array`, `mlx.core.stream`, etc.
are already provided, adding our :meth:`axpby` becomes very simple!
We use PyBind11_ to build a Python API for the C++ library. Since bindings for
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
already provided, adding our :meth:`axpby` is simple!
.. code-block:: C++
@@ -927,18 +927,18 @@ Results:
We see some modest improvements right away!
This operation is now good to be used to build other operations,
in :class:`mlx.nn.Module` calls, and also as a part of graph
transformations like :meth:`grad`!
This operation is now good to be used to build other operations, in
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
:meth:`grad`!
Scripts
-------
.. admonition:: Download the code
The full example code is available in `mlx-examples <code>`_.
The full example code is available in `mlx <code>`_.
.. code: `TODO_LINK/extensions`_
.. code: `https://github.com/ml-explore/mlx/tree/main/examples/extensions/`_
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
.. _Metal: https://developer.apple.com/documentation/metal?language=objc

View File

@@ -41,6 +41,7 @@ are the CPU and GPU.
usage/indexing
usage/saving_and_loading
usage/function_transforms
usage/compile
usage/numpy
usage/using_streams
@@ -63,6 +64,7 @@ are the CPU and GPU.
python/transforms
python/fft
python/linalg
python/metal
python/nn
python/optimizers
python/tree_utils

View File

@@ -15,10 +15,10 @@ To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.8
- macOS >= 13.3
- macOS >= 13.5
.. note::
MLX is only available on devices running macOS >= 13.3
MLX is only available on devices running macOS >= 13.5
It is highly recommended to use macOS 14 (Sonoma)
@@ -54,7 +54,7 @@ Build Requirements
- A C++ compiler with C++17 support (e.g. Clang >= 5.0)
- `cmake <https://cmake.org/>`_ -- version 3.24 or later, and ``make``
- Xcode >= 14.3 (Xcode >= 15.0 for macOS 14 and above)
- Xcode >= 15.0 and macOS SDK >= 14.0
.. note::
Ensure your shell environment is native ``arm``, not ``x86`` via Rosetta. If

View File

@@ -9,9 +9,10 @@ Devices and Streams
:toctree: _autosummary
Device
Stream
default_device
set_default_device
Stream
default_stream
new_stream
set_default_stream
stream

14
docs/src/python/metal.rst Normal file
View File

@@ -0,0 +1,14 @@
Metal
=====
.. currentmodule:: mlx.core.metal
.. autosummary::
:toctree: _autosummary
is_available
get_active_memory
get_peak_memory
get_cache_memory
set_memory_limit
set_cache_limit

View File

@@ -12,13 +12,24 @@ simple functions.
:toctree: _autosummary_functions
:template: nn-module-template.rst
elu
gelu
gelu_approx
gelu_fast_approx
glu
hardswish
leaky_relu
log_sigmoid
log_softmax
mish
prelu
relu
relu6
selu
softshrink
sigmoid
silu
softmax
softplus
softshrink
step
tanh

View File

@@ -10,6 +10,8 @@ Layers
:template: nn-module-template.rst
ALiBi
AvgPool1d
AvgPool2d
BatchNorm
Conv1d
Conv2d
@@ -22,6 +24,8 @@ Layers
InstanceNorm
LayerNorm
Linear
MaxPool1d
MaxPool2d
Mish
MultiHeadAttention
PReLU
@@ -36,3 +40,4 @@ Layers
Softshrink
Step
Transformer
Upsample

View File

@@ -18,6 +18,7 @@ Loss Functions
kl_div_loss
l1_loss
log_cosh_loss
margin_ranking_loss
mse_loss
nll_loss
smooth_l1_loss

View File

@@ -11,6 +11,7 @@ Module
:toctree: _autosummary
Module.training
Module.state
.. rubric:: Methods

View File

@@ -25,6 +25,9 @@ Operations
argpartition
argsort
array_equal
atleast_1d
atleast_2d
atleast_3d
broadcast_to
ceil
clip
@@ -32,6 +35,7 @@ Operations
convolve
conv1d
conv2d
conv_general
cos
cosh
dequantize
@@ -53,6 +57,7 @@ Operations
greater_equal
identity
inner
isclose
isnan
isposinf
isneginf
@@ -117,6 +122,8 @@ Operations
tan
tanh
tensordot
tile
topk
transpose
tri
tril

View File

@@ -29,20 +29,8 @@ model's parameters and the **optimizer state**.
# Compute the new parameters but also the optimizer state.
mx.eval(model.parameters(), optimizer.state)
.. currentmodule:: mlx.optimizers
.. toctree::
.. autosummary::
:toctree: _autosummary
:template: optimizers-template.rst
OptimizerState
Optimizer
SGD
RMSprop
Adagrad
Adafactor
AdaDelta
Adam
AdamW
Adamax
Lion
optimizers/optimizer
optimizers/common_optimizers
optimizers/schedulers

View File

@@ -0,0 +1,20 @@
.. _common_optimizers:
Common Optimizers
=================
.. currentmodule:: mlx.optimizers
.. autosummary::
:toctree: _autosummary
:template: optimizers-template.rst
SGD
RMSprop
Adagrad
Adafactor
AdaDelta
Adam
AdamW
Adamax
Lion

View File

@@ -0,0 +1,23 @@
Optimizer
=========
.. currentmodule:: mlx.optimizers
.. autoclass:: Optimizer
.. rubric:: Attributes
.. autosummary::
:toctree: _autosummary
Optimizer.state
.. rubric:: Methods
.. autosummary::
:toctree: _autosummary
Optimizer.apply_gradients
Optimizer.init
Optimizer.update

View File

@@ -0,0 +1,15 @@
.. _schedulers:
Schedulers
==========
.. currentmodule:: mlx.optimizers
.. autosummary::
:toctree: _autosummary
cosine_decay
exponential_decay
join_schedules
linear_schedule
step_decay

View File

@@ -9,6 +9,9 @@ Transforms
:toctree: _autosummary
eval
compile
disable_compile
enable_compile
grad
value_and_grad
jvp

430
docs/src/usage/compile.rst Normal file
View File

@@ -0,0 +1,430 @@
.. _compile:
Compilation
===========
.. currentmodule:: mlx.core
MLX has a :func:`compile` function transformation which compiles computation
graphs. Function compilation results in smaller graphs by merging common work
and fusing certain operations. In many cases this can lead to big improvements
in run-time and memory use.
Getting started with :func:`compile` is simple, but there are some edge cases
that are good to be aware of for more complex graphs and advanced usage.
Basics of Compile
-----------------
Let's start with a simple example:
.. code-block:: python
def fun(x, y):
return mx.exp(-x) + y
x = mx.array(1.0)
y = mx.array(2.0)
# Regular call, no compilation
# Prints: array(2.36788, dtype=float32)
print(fun(x, y))
# Compile the function
compiled_fun = mx.compile(fun)
# Prints: array(2.36788, dtype=float32)
print(compiled_fun(x, y))
The output of both the regular function and the compiled function is the same
up to numerical precision.
The first time you call a compiled function, MLX will build the compute
graph, optimize it, and generate and compile code. This can be relatively
slow. However, MLX will cache compiled functions, so calling a compiled
function multiple times will not initiate a new compilation. This means you
should typically compile functions that you plan to use more than once.
.. code-block:: python
def fun(x, y):
return mx.exp(-x) + y
x = mx.array(1.0)
y = mx.array(2.0)
compiled_fun = mx.compile(fun)
# Compiled here
compiled_fun(x, y)
# Not compiled again
compiled_fun(x, y)
# Not compiled again
mx.compile(fun)(x, y)
There are some important cases to be aware of that can cause a function to
be recompiled:
* Changing the shape or number of dimensions
* Changing the type of any of the inputs
* Changing the number of inputs to the function
In certain cases only some of the compilation stack will be rerun (for
example when changing the shapes) and in other cases the full compilation
stack will be rerun (for example when changing the types). In general you
should avoid compiling functions too frequently.
Another idiom to watch out for is compiling functions which get created and
destroyed frequently. This can happen, for example, when compiling an anonymous
function in a loop:
.. code-block:: python
a = mx.array(1.0)
# Don't do this, compiles lambda at each iteration
for _ in range(5):
mx.compile(lambda x: mx.exp(mx.abs(x)))(a)
Example Speedup
---------------
The :func:`mlx.nn.gelu` is a nonlinear activation function commonly used with
Transformer-based models. The implementation involves several unary and binary
element-wise operations:
.. code-block:: python
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
If you use this function with small arrays, it will be overhead bound. If you
use it with large arrays it will be memory bandwidth bound. However, all of
the operations in the ``gelu`` are fusible into a single kernel with
:func:`compile`. This can speedup both cases considerably.
Let's compare the runtime of the regular function versus the compiled
function. We'll use the following timing helper which does a warm up and
handles synchronization:
.. code-block:: python
import time
def timeit(fun, x):
# warm up
for _ in range(10):
mx.eval(fun(x))
tic = time.perf_counter()
for _ in range(100):
mx.eval(fun(x))
toc = time.perf_counter()
tpi = 1e3 * (toc - tic) / 100
print(f"Time per iteration {tpi:.3f} (ms)")
Now make an array, and benchmark both functions:
.. code-block:: python
x = mx.random.uniform(shape=(32, 1000, 4096))
timeit(nn.gelu, x)
timeit(mx.compile(nn.gelu), x)
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.
.. note::
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
functions can still be helpful, but won't typically result in as large a
speedup as compiling operations that run on the GPU.
Debugging
---------
When a compiled function is first called, it is traced with placeholder
inputs. This means you can't evaluate arrays (for example to print their
contents) inside compiled functions.
.. code-block:: python
@mx.compile
def fun(x):
z = -x
print(z) # Crash
return mx.exp(z)
fun(mx.array(5.0))
For debugging, inspecting arrays can be helpful. One way to do that is to
globally disable compilation using the :func:`disable_compile` function or
``MLX_DISABLE_COMPILE`` flag. For example the following is okay even though
``fun`` is compiled:
.. code-block:: python
@mx.compile
def fun(x):
z = -x
print(z) # Okay
return mx.exp(z)
mx.disable_compile()
fun(mx.array(5.0))
Pure Functions
--------------
Compiled functions are intended to be *pure*; that is they should not have side
effects. For example:
.. code-block:: python
state = []
@mx.compile
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z)
fun(mx.array(1.0), mx.array(2.0))
# Crash!
print(state)
After the first call of ``fun``, the ``state`` list will hold a placeholder
array. The placeholder does not have any data; it is only used to build the
computation graph. Printing such an array results in a crash.
You have two options to deal with this. The first option is to simply return
``state`` as an output:
.. code-block:: python
state = []
@mx.compile
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z), state
_, state = fun(mx.array(1.0), mx.array(2.0))
# Prints [array(3, dtype=float32)]
print(state)
In some cases returning updated state can be pretty inconvenient. Hence,
:func:`compile` has a parameter to capture implicit outputs:
.. code-block:: python
from functools import partial
state = []
# Tell compile to capture state as an output
@partial(mx.compile, outputs=state)
def fun(x, y):
z = x + y
state.append(z)
return mx.exp(z), state
fun(mx.array(1.0), mx.array(2.0))
# Prints [array(3, dtype=float32)]
print(state)
This is particularly useful for compiling a function which includes an update
to a container of arrays, as is commonly done when training the parameters of a
:class:`mlx.nn.Module`.
Compiled functions will also treat any inputs not in the parameter list as
constants. For example:
.. code-block:: python
state = [mx.array(1.0)]
@mx.compile
def fun(x):
return x + state[0]
# Prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
# Update state
state[0] = mx.array(5.0)
# Still prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
In order to have the change of state reflected in the outputs of ``fun`` you
again have two options. The first option is to simply pass ``state`` as input
to the function. In some cases this can be pretty inconvenient. Hence,
:func:`compile` also has a parameter to capture implicit inputs:
.. code-block:: python
from functools import partial
state = [mx.array(1.0)]
# Tell compile to capture state as an input
@partial(mx.compile, inputs=state)
def fun(x):
return x + state[0]
# Prints array(2, dtype=float32)
print(fun(mx.array(1.0)))
# Update state
state[0] = mx.array(5.0)
# Prints array(6, dtype=float32)
print(fun(mx.array(1.0)))
Compiling Training Graphs
-------------------------
This section will step through how to use :func:`compile` with a simple example
of a common setup: training a model with :obj:`mlx.nn.Module` using an
:obj:`mlx.optimizers.Optimizer` with state. We will show how to compile the
full forward, backward, and update with :func:`compile`.
To start, here is the simple example without any compilation:
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
# 4 examples with 10 features each
x = mx.random.uniform(shape=(4, 10))
# 0, 1 targets
y = mx.array([0, 1, 0, 1])
# Simple linear model
model = nn.Linear(10, 1)
# SGD with momentum
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
def loss_fn(model, x, y):
logits = model(x).squeeze()
return nn.losses.binary_cross_entropy(logits, y)
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
# Perform 10 steps of gradient descent
for it in range(10):
loss, grads = loss_and_grad_fn(model, x, y)
optimizer.update(model, grads)
mx.eval(model.parameters(), optimizer.state)
To compile the update we can put it all in a function and compile it with the
appropriate input and output captures. Here's the same example but compiled:
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
import mlx.optimizers as optim
from functools import partial
# 4 examples with 10 features each
x = mx.random.uniform(shape=(4, 10))
# 0, 1 targets
y = mx.array([0, 1, 0, 1])
# Simple linear model
model = nn.Linear(10, 1)
# SGD with momentum
optimizer = optim.SGD(learning_rate=0.1, momentum=0.8)
def loss_fn(model, x, y):
logits = model(x).squeeze()
return nn.losses.binary_cross_entropy(logits, y)
# The state that will be captured as input and output
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(x, y):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
loss, grads = loss_and_grad_fn(model, x, y)
optimizer.update(model, grads)
return loss
# Perform 10 steps of gradient descent
for it in range(10):
loss = step(x, y)
# Evaluate the model and optimizer state
mx.eval(state)
print(loss)
.. note::
If you are using a module which performs random sampling such as
:func:`mlx.nn.Dropout`, make sure you also include ``mx.random.state`` in the
``state`` captured by :func:`compile`, i.e. ``state = [model.state,
optimizer.state, mx.random.state]``.
.. note::
For more examples of compiling full training graphs checkout the `MLX
Examples <https://github.com/ml-explore/mlx-examples>`_ GitHub repo.
Transformations with Compile
----------------------------
In MLX function transformations are composable. You can apply any function
transformation to the output of any other function transformation. For more on
this, see the documentation on :ref:`function transforms
<function_transforms>`.
Compiling transformed functions works just as expected:
.. code-block:: python
grad_fn = mx.grad(mx.exp)
compiled_grad_fn = mx.compile(grad_fn)
# Prints: array(2.71828, dtype=float32)
print(grad_fn(mx.array(1.0)))
# Also prints: array(2.71828, dtype=float32)
print(compiled_grad_fn(mx.array(1.0)))
.. note::
In order to compile as much as possible, a transformation of a compiled
function will not by default be compiled. To compile the transformed
function simply pass it through :func:`compile`.
You can also compile functions which themselves call compiled functions. A
good practice is to compile the outer most function to give :func:`compile`
the most opportunity to optimize the computation graph:
.. code-block:: python
@mx.compile
def inner(x):
return mx.exp(-mx.abs(x))
def outer(x):
inner(inner(x))
# Compiling the outer function is good to do as it will likely
# be faster even though the inner functions are compiled
fun = mx.compile(outer)

View File

@@ -5,9 +5,12 @@ Function Transforms
.. currentmodule:: mlx.core
MLX uses composable function transformations for automatic differentiation and
vectorization. The key idea behind composable function transformations is that
every transformation returns a function which can be further transformed.
MLX uses composable function transformations for automatic differentiation,
vectorization, and compute graph optimizations. To see the complete list of
function transformations check-out the :ref:`API documentation <transforms>`.
The key idea behind composable function transformations is that every
transformation returns a function which can be further transformed.
Here is a simple example:
@@ -36,10 +39,10 @@ Using :func:`grad` on the output of :func:`grad` is always ok. You keep
getting higher order derivatives.
Any of the MLX function transformations can be composed in any order to any
depth. To see the complete list of function transformations check-out the
:ref:`API documentation <transforms>`. See the following sections for more
information on :ref:`automatic differentiaion <auto diff>` and
:ref:`automatic vectorization <vmap>`.
depth. See the following sections for more information on :ref:`automatic
differentiation <auto diff>` and :ref:`automatic vectorization <vmap>`.
For more information on :func:`compile` see the :ref:`compile documentation <compile>`.
Automatic Differentiation
-------------------------

View File

@@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.24)
cmake_minimum_required(VERSION 3.27)
project(mlx_sample_extensions LANGUAGES CXX)
@@ -63,4 +63,4 @@ target_link_libraries(mlx_sample_extensions PRIVATE mlx_ext)
if(BUILD_SHARED_LIBS)
target_link_options(mlx_sample_extensions PRIVATE -Wl,-rpath,@loader_path)
endif()
endif()

View File

@@ -3,9 +3,10 @@ target_sources(
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp

View File

@@ -82,6 +82,13 @@ array::array(std::initializer_list<float> data)
init(data.begin());
}
array::array(std::initializer_list<int> data, Dtype dtype)
: array_desc_(std::make_shared<ArrayDesc>(
std::vector<int>{static_cast<int>(data.size())},
dtype)) {
init(data.begin());
}
/* Build an array from a shared buffer */
array::array(
allocator::Buffer data,
@@ -180,7 +187,7 @@ array::ArrayDesc::ArrayDesc(
primitive(std::move(primitive)),
inputs(inputs) {
std::tie(size, strides) = cum_prod(this->shape);
for (auto& in : inputs) {
for (auto& in : this->inputs) {
is_tracer |= in.is_tracer();
depth = std::max(in.graph_depth(), depth);
}
@@ -197,7 +204,7 @@ array::ArrayDesc::ArrayDesc(
primitive(std::move(primitive)),
inputs(std::move(inputs)) {
std::tie(size, strides) = cum_prod(this->shape);
for (auto& in : inputs) {
for (auto& in : this->inputs) {
is_tracer |= in.is_tracer();
depth = std::max(in.graph_depth(), depth);
}

View File

@@ -41,6 +41,9 @@ class array {
/* Special case so empty lists default to float32. */
array(std::initializer_list<float> data);
/* Special case so array({}, type) is an empty array. */
array(std::initializer_list<int> data, Dtype dtype);
template <typename T>
array(
std::initializer_list<T> data,
@@ -121,6 +124,9 @@ class array {
template <typename T>
T item();
template <typename T>
T item() const;
struct ArrayIterator {
using iterator_category = std::random_access_iterator_tag;
using difference_type = size_t;
@@ -268,7 +274,7 @@ class array {
};
/** The depth of the array in the graph. Evaluated arrays have depth 0. */
uint16_t graph_depth() const {
uint32_t graph_depth() const {
return array_desc_->depth;
}
@@ -383,7 +389,7 @@ class array {
uint32_t position{0};
// The depth of the array in the graph.
uint16_t depth{0};
uint32_t depth{0};
explicit ArrayDesc(const std::vector<int>& shape, Dtype dtype);
@@ -454,6 +460,18 @@ T array::item() {
return *data<T>();
}
template <typename T>
T array::item() const {
if (size() != 1) {
throw std::invalid_argument("item can only be called on arrays of size 1.");
}
if (!is_evaled()) {
throw std::invalid_argument(
"item() const can only be called on evaled arrays");
}
return *data<T>();
}
template <typename It>
void array::init(It src) {
set_data(allocator::malloc(size() * size_of(dtype())));

View File

@@ -46,6 +46,9 @@ inline void matmul_cblas_general(
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;
@@ -94,6 +97,9 @@ inline void matmul_bnns_general(
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;

View File

@@ -37,6 +37,7 @@ DEFAULT(Concatenate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(Depends)
DEFAULT_MULTI(DivMod)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
@@ -57,10 +58,13 @@ DEFAULT(Minimum)
DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT_MULTI(QRF)
DEFAULT(RandomBits)
DEFAULT(Reshape)
DEFAULT(Remainder)
DEFAULT(Round)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Slice)
@@ -68,8 +72,6 @@ DEFAULT_MULTI(Split)
DEFAULT(Sort)
DEFAULT(StopGradient)
DEFAULT(Transpose)
DEFAULT_MULTI(DivMod)
DEFAULT_MULTI(QRF)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
@@ -80,11 +82,8 @@ void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
} else if (in.dtype() == int32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
} else if (is_unsigned(in.dtype())) {
// No-op for unsigned types
out.copy_shared_buffer(in);
} else {
unary(in, out, AbsOp());
eval(inputs, out);
}
}
@@ -291,45 +290,6 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
// TODO: Avoid code duplication with the common backend.
struct RemainderFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return std::fmod(numerator, denominator);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
};
void Remainder::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
a,
b,
out,
RemainderFn{},
UseDefaultBinaryOp(),
UseDefaultBinaryOp(),
[](const auto* a, const auto* b, auto* o, auto n) {
int num_el = n;
vvremainderf((float*)o, (const float*)a, (const float*)b, &num_el);
});
} else {
binary(a, b, out, RemainderFn{});
}
}
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];

View File

@@ -24,8 +24,6 @@ void _qmm_t_4_64(
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
const int Kg = K / group_size;
const int Kw = K / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;

View File

@@ -274,7 +274,12 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto check_input = [](array x) {
if (x.strides()[x.ndim() - 1] == 1) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});

View File

@@ -1,8 +1,42 @@
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
set(COMPILER ${CMAKE_CXX_COMPILER})
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${COMPILER}
${PROJECT_SOURCE_DIR}
${CLANG}
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h
)
add_custom_target(
cpu_compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
@@ -10,11 +44,28 @@ target_sources(
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)
if (IOS)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp
)
else()
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
)
endif()

View File

@@ -7,6 +7,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/binary_two.h"
#include "mlx/backend/common/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -73,7 +74,7 @@ void Add::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x + y; });
binary(a, b, out, detail::Add());
}
void DivMod::eval(
@@ -135,88 +136,56 @@ void Divide::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x / y; });
binary(a, b, out, detail::Divide());
}
struct RemainderFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return std::fmod(numerator, denominator);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
};
void Remainder::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, RemainderFn{});
binary(a, b, out, detail::Remainder());
}
void Equal::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (equal_nan_) {
comparison_op(inputs[0], inputs[1], out, [](auto x, auto y) {
return x == y || (std::isnan(x) && std::isnan(y));
});
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
} else {
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x == y; });
comparison_op(inputs[0], inputs[1], out, detail::Equal());
}
}
void Greater::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x > y; });
comparison_op(inputs[0], inputs[1], out, detail::Greater());
}
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x >= y; });
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
}
void Less::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x < y; });
comparison_op(inputs[0], inputs[1], out, detail::Less());
}
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x <= y; });
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
}
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
auto op = [](auto x, auto y) {
constexpr float inf = std::numeric_limits<float>::infinity();
auto maxval = (x > y) ? x : y;
auto minval = (x > y) ? y : x;
return (minval == -inf || maxval == inf)
? maxval
: static_cast<decltype(x)>(
maxval + std::log1p(std::exp(minval - maxval)));
};
if (is_floating_point(out.dtype())) {
if (out.dtype() == float32) {
binary_op<float>(a, b, out, op);
binary_op<float>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == float16) {
binary_op<float16_t>(a, b, out, op);
binary_op<float16_t>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == bfloat16) {
binary_op<bfloat16_t>(a, b, out, op);
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
} else {
std::ostringstream err;
err << "[logaddexp] Does not support " << out.dtype();
@@ -233,84 +202,40 @@ void Maximum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (is_floating_point(out.dtype())) {
binary(a, b, out, [](auto x, auto y) {
if (std::isnan(x)) {
return x;
}
return (x > y) ? x : y;
});
} else {
binary(a, b, out, [](auto x, auto y) { return (x > y) ? x : y; });
}
binary(a, b, out, detail::Maximum());
}
void Minimum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (is_floating_point(out.dtype())) {
binary(a, b, out, [](auto x, auto y) {
if (std::isnan(x)) {
return x;
}
return (x < y) ? x : y;
});
} else {
binary(a, b, out, [](auto x, auto y) { return (x < y) ? x : y; });
}
binary(a, b, out, detail::Minimum());
}
void Multiply::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x * y; });
binary(a, b, out, detail::Multiply());
}
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(
inputs[0], inputs[1], out, [](auto x, auto y) { return x != y; });
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
}
struct PowerFn {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
return std::pow(base, exp);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
if (exp < 0) {
throw std::invalid_argument(
"Integers cannot be raise to negative powers");
}
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
};
void Power::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, PowerFn{});
binary(a, b, out, detail::Power());
}
void Subtract::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, [](auto x, auto y) { return x - y; });
binary(a, b, out, detail::Subtract());
}
} // namespace mlx::core

View File

@@ -9,7 +9,7 @@ namespace mlx::core {
namespace {
enum BinaryOpType {
enum class BinaryOpType {
ScalarScalar,
ScalarVector,
VectorScalar,
@@ -20,17 +20,17 @@ enum BinaryOpType {
BinaryOpType get_binary_op_type(const array& a, const array& b) {
BinaryOpType bopt;
if (a.data_size() == 1 && b.data_size() == 1) {
bopt = ScalarScalar;
bopt = BinaryOpType::ScalarScalar;
} else if (a.data_size() == 1 && b.flags().contiguous) {
bopt = ScalarVector;
bopt = BinaryOpType::ScalarVector;
} else if (b.data_size() == 1 && a.flags().contiguous) {
bopt = VectorScalar;
bopt = BinaryOpType::VectorScalar;
} else if (
a.flags().row_contiguous && b.flags().row_contiguous ||
a.flags().col_contiguous && b.flags().col_contiguous) {
bopt = VectorVector;
bopt = BinaryOpType::VectorVector;
} else {
bopt = General;
bopt = BinaryOpType::General;
}
return bopt;
}
@@ -42,11 +42,11 @@ void set_binary_op_output_data(
BinaryOpType bopt,
bool donate_with_move = false) {
switch (bopt) {
case ScalarScalar:
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
break;
case ScalarVector:
case BinaryOpType::ScalarVector:
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(b);
@@ -61,7 +61,7 @@ void set_binary_op_output_data(
b.flags());
}
break;
case VectorScalar:
case BinaryOpType::VectorScalar:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
@@ -76,7 +76,7 @@ void set_binary_op_output_data(
a.flags());
}
break;
case VectorVector:
case BinaryOpType::VectorVector:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (donate_with_move) {
out.move_shared_buffer(a);
@@ -97,7 +97,7 @@ void set_binary_op_output_data(
a.flags());
}
break;
case General:
case BinaryOpType::General:
if (a.is_donatable() && a.flags().row_contiguous &&
a.itemsize() == out.itemsize() && a.size() == out.size()) {
if (donate_with_move) {
@@ -424,25 +424,25 @@ void binary_op(
set_binary_op_output_data(a, b, out, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == ScalarScalar) {
if (bopt == BinaryOpType::ScalarScalar) {
*(out.data<U>()) = op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == ScalarVector) {
if (bopt == BinaryOpType::ScalarVector) {
opsv(a.data<T>(), b.data<T>(), out.data<U>(), b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == VectorScalar) {
if (bopt == BinaryOpType::VectorScalar) {
opvs(a.data<T>(), b.data<T>(), out.data<U>(), a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == VectorVector) {
if (bopt == BinaryOpType::VectorVector) {
opvv(a.data<T>(), b.data<T>(), out.data<U>(), out.size());
return;
}
@@ -475,17 +475,17 @@ void binary_op(
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = VectorVector;
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = VectorScalar;
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = ScalarVector;
bopt = BinaryOpType::ScalarVector;
dim = d;
}
@@ -495,20 +495,20 @@ void binary_op(
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = General;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case VectorVector:
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
break;
case VectorScalar:
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
break;
case ScalarVector:
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
break;
default:

View File

@@ -260,14 +260,14 @@ void binary_op(
set_binary_op_output_data(a, b, out_b, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == ScalarScalar) {
if (bopt == BinaryOpType::ScalarScalar) {
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == ScalarVector) {
if (bopt == BinaryOpType::ScalarVector) {
opsv(
a.data<T>(),
b.data<T>(),
@@ -278,7 +278,7 @@ void binary_op(
}
// The full computation is vector scalar so delegate to the op
if (bopt == VectorScalar) {
if (bopt == BinaryOpType::VectorScalar) {
opvs(
a.data<T>(),
b.data<T>(),
@@ -289,7 +289,7 @@ void binary_op(
}
// The full computation is vector vector so delegate to the op
if (bopt == VectorVector) {
if (bopt == BinaryOpType::VectorVector) {
opvv(
a.data<T>(),
b.data<T>(),
@@ -327,17 +327,17 @@ void binary_op(
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = VectorVector;
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = VectorScalar;
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = ScalarVector;
bopt = BinaryOpType::ScalarVector;
dim = d;
}
@@ -347,20 +347,20 @@ void binary_op(
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = General;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case VectorVector:
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
break;
case VectorScalar:
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
break;
case ScalarVector:
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
break;
default:

View File

@@ -0,0 +1,114 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/compiled.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
void print_constant(std::ostream& os, const array& x) {
switch (x.dtype()) {
case float32:
return print_float_constant<float>(os, x);
case float16:
return print_float_constant<float16_t>(os, x);
case bfloat16:
return print_float_constant<bfloat16_t>(os, x);
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
return print_int_constant<int8_t>(os, x);
case int16:
return print_int_constant<int16_t>(os, x);
case int32:
return print_int_constant<int32_t>(os, x);
case int64:
return print_int_constant<int64_t>(os, x);
case uint8:
return print_int_constant<uint8_t>(os, x);
case uint16:
return print_int_constant<uint16_t>(os, x);
case uint32:
return print_int_constant<uint32_t>(os, x);
case uint64:
return print_int_constant<uint64_t>(os, x);
case bool_:
os << std::boolalpha << x.item<bool>();
return;
default:
throw std::runtime_error("Unsupported constant type");
}
}
std::string get_type_string(Dtype d) {
switch (d) {
case float32:
return "float";
case float16:
return "float16_t";
case bfloat16:
return "bfloat16_t";
case complex64:
return "complex64_t";
case bool_:
return "bool";
case int8:
return "int8_t";
case int16:
return "int16_t";
case int32:
return "int32_t";
case int64:
return "int64_t";
case uint8:
return "uint8_t";
case uint16:
return "uint16_t";
case uint32:
return "uint32_t";
case uint64:
return "uint64_t";
default: {
std::ostringstream msg;
msg << "Unsupported compilation type " << d;
throw std::runtime_error(msg.str());
}
}
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids) {
std::ostringstream os;
std::ostringstream constant_hasher;
// The primitives describing the tape. For unary and binary primitives this
// must be enough to describe the full computation.
for (auto& a : tape) {
a.primitive().print(os);
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
os << "C";
print_constant(constant_hasher, x);
} else {
os << (is_scalar(x) ? "S" : "V");
}
}
os << "_";
for (auto& x : inputs) {
if (constant_ids.find(x.id()) != constant_ids.end()) {
continue;
}
os << kindof(x.dtype()) << x.itemsize();
}
os << "_" << std::hash<std::string>{}(constant_hasher.str());
return os.str();
}
} // namespace mlx::core

View File

@@ -0,0 +1,56 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <iomanip>
#include <sstream>
#include <unordered_set>
#include "mlx/array.h"
#include "mlx/primitives.h"
namespace mlx::core {
inline bool is_static_cast(const Primitive& p) {
return (
typeid(p) == typeid(Broadcast) || typeid(p) == typeid(Copy) ||
typeid(p) == typeid(StopGradient) || typeid(p) == typeid(AsType));
}
std::string build_lib_name(
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids);
std::string get_type_string(Dtype d);
template <typename T>
void print_float_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
os << std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< x.item<T>() << std::setprecision(old_precision);
}
template <typename T>
void print_int_constant(std::ostream& os, const array& x) {
os << x.item<T>();
}
template <typename T>
void print_complex_constant(std::ostream& os, const array& x) {
auto old_precision = os.precision();
T constant = x.item<T>();
os << get_type_string(x.dtype()) << "("
<< std::setprecision(std::numeric_limits<float>::digits10 + 1)
<< constant.real() << ", " << constant.imag() << ")"
<< std::setprecision(old_precision);
}
void print_constant(std::ostream& os, const array& x);
inline bool is_scalar(const array& x) {
return x.ndim() == 0;
}
} // namespace mlx::core

View File

@@ -0,0 +1,408 @@
// Copyright © 2023-2024 Apple Inc.
#include <dlfcn.h>
#include <filesystem>
#include <list>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
#include "mlx/device.h"
#include "mlx/graph_utils.h"
namespace mlx::core {
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
namespace detail {
bool compile_available_for_device(const Device& device) {
return true;
}
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::string& source_code = "") {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
if (!lib) {
std::ostringstream msg;
msg << "Could not load C++ shared library " << dlerror();
throw std::runtime_error(msg.str());
}
}
~DLib() {
dlclose(lib);
}
void* lib;
};
// Statics to cache compiled libraries and functions
static std::list<DLib> libs;
static std::unordered_map<std::string, void*> kernels;
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
return it->second;
}
if (source_code.empty()) {
return nullptr;
}
std::ostringstream shared_lib_name;
shared_lib_name << "lib" << kernel_name << ".so";
auto shared_lib_path = get_temp_file(shared_lib_name.str());
bool lib_exists = false;
{
std::ifstream f(shared_lib_path.c_str());
lib_exists = f.good();
}
if (!lib_exists) {
// Open source file and write source code to it
std::ostringstream source_file_name;
source_file_name << kernel_name << ".cpp";
auto source_file_path = get_temp_file(source_file_name.str());
std::ofstream source_file(source_file_path);
source_file << source_code;
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
<< source_file_path << " -o " << shared_lib_path;
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to compile function " << kernel_name
<< " with error code " << return_code << "." << std::endl;
throw std::runtime_error(msg.str());
}
}
// load library
libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
<< kernel_name << std::endl
<< dlerror();
throw std::runtime_error(msg.str());
}
kernels.insert({kernel_name, fun});
return fun;
}
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
// Start the kernel
os << "void " << kernel_name << "(void** args) {" << std::endl;
// Add the input arguments
int cnt = 0;
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << xname << " = (" << tstr << "*)args[" << cnt++
<< "];" << std::endl;
// Scalars and contiguous need no strides
if (!is_scalar(x) && !contiguous) {
os << " const size_t* " << xname << "_strides = (size_t*)args[" << cnt++
<< "];" << std::endl;
}
}
// Add the output arguments
for (auto& x : outputs) {
auto tstr = get_type_string(x.dtype());
os << " " << tstr << "* " << namer.get_name(x) << " = (" << tstr
<< "*)args[" << cnt++ << "];" << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " const int* shape = (int*)args[" << cnt++ << "];" << std::endl;
} else {
os << " const size_t size = (size_t)args[" << cnt++ << "];" << std::endl;
}
if (contiguous) {
os << " for (size_t i = 0; i < size; ++i) {" << std::endl;
} else {
for (int d = 0; d < ndim; ++d) {
os << " for (int i" << d << " = 0; i" << d << " < shape[" << d
<< "]; ++i" << d << ") {" << std::endl;
}
}
// Read the inputs in tmps
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
if (is_constant(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[i];" << std::endl;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = *"
<< xname << ";" << std::endl;
}
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
if (contiguous) {
os << " " << namer.get_name(x) << "[i] = tmp_" << namer.get_name(x)
<< ";" << std::endl;
} else {
os << " *" << namer.get_name(x) << "++ = tmp_" << namer.get_name(x)
<< ";" << std::endl;
}
}
// Close loops
if (contiguous) {
os << " }" << std::endl;
} else {
for (int d = ndim - 1; d >= 0; --d) {
// Update pointers
for (auto& x : inputs) {
if (is_constant(x) || is_scalar(x)) {
continue;
}
auto& xname = namer.get_name(x);
os << " " << xname << " += " << xname << "_strides[" << d << "];"
<< std::endl;
if (d < ndim - 1) {
os << " " << xname << " -= " << xname << "_strides[" << d + 1 << "]"
<< " * shape[" << d + 1 << "];" << std::endl;
}
}
os << " }" << std::endl;
}
}
// Finish the kernel
os << "}" << std::endl;
}
void Compiled::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Figure out which kernel we are using
auto& shape = outputs[0].shape();
bool contiguous = true;
{
bool all_contig = true;
bool all_row_contig = true;
bool all_col_contig = true;
int non_scalar_inputs = 0;
for (auto& x : inputs) {
if (is_scalar(x)) {
continue;
}
non_scalar_inputs++;
bool shape_eq = x.shape() == shape;
all_contig &= (x.flags().contiguous && shape_eq);
all_row_contig &= (x.flags().row_contiguous && shape_eq);
all_col_contig &= (x.flags().col_contiguous && shape_eq);
}
if (non_scalar_inputs > 1 && !all_row_contig && !all_col_contig) {
contiguous = false;
} else if (non_scalar_inputs == 1 && !all_contig) {
contiguous = false;
}
}
// Handle all broadcasting and collect function input arguments
std::vector<void*> args;
std::vector<std::vector<size_t>> strides;
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
args.push_back((void*)x.data<void>());
if (contiguous || is_scalar(x)) {
continue;
}
// Broadcast the input to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < shape.size() - x.ndim(); j++) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
strides.push_back(std::move(xstrides));
args.push_back(strides.back().data());
}
// Get the kernel name from the lib
int ndim = shape.size();
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
kernel_name += std::to_string(shape.size());
}
// Get the function
auto fn_ptr = compile(kernel_name);
// If it doesn't exist, compile it
if (fn_ptr == nullptr) {
std::ostringstream kernel;
kernel << get_kernel_preamble() << std::endl;
kernel << "extern \"C\" {" << std::endl;
build_kernel(
kernel,
kernel_name,
inputs_,
outputs_,
tape_,
constant_ids_,
contiguous,
ndim);
// Close extern "C"
kernel << "}" << std::endl;
// Compile and get function pointer
fn_ptr = compile(kernel_name, kernel.str());
}
// Allocate space for the outputs possibly with input donation
if (contiguous) {
int o = 0;
std::vector<size_t> strides;
size_t data_size;
array::Flags flags;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().contiguous && !is_scalar(in) && in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
// Get representative input flags to properly set non-donated outputs
if (strides.empty() && in.size() == outputs[0].size()) {
strides = in.strides();
flags = in.flags();
data_size = in.data_size();
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(
allocator::malloc_or_wait(data_size * outputs[o].itemsize()),
data_size,
strides,
flags);
}
} else {
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].copy_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
for (auto& x : outputs) {
args.push_back(x.data<void>());
}
if (!contiguous) {
args.push_back((void*)outputs[0].shape().data());
} else {
args.push_back((void*)outputs[0].data_size());
}
auto fun = (void (*)(void**))fn_ptr;
fun(args.data());
}
} // namespace mlx::core

View File

@@ -0,0 +1,23 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/common/compiled.h"
namespace mlx::core {
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is not available so check if the device is a GPU
// device.
namespace detail {
bool compile_available_for_device(const Device& device) {
return device == Device::gpu;
}
} // namespace detail
void Compiled::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error(
"[Compiled::eval_cpu] CPU compialtion not supported on the platform.");
}
} // namespace mlx::core

View File

@@ -0,0 +1,11 @@
// Copyright © 2023-24 Apple Inc.
#pragma once
// clang-format off
#include "mlx/types/half_types.h"
#include "mlx/types/complex.h"
#include "mlx/backend/common/ops.h"
// clang-format on
const char* get_kernel_preamble();

View File

@@ -1,9 +1,10 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <numeric>
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/cblas_new.h>
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
@@ -27,14 +28,16 @@ void slow_conv_1D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const T* start_wt_ptr = wt.data<T>();
const T* in_ptr = in.data<T>();
T* out_ptr = out.data<T>();
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(2); // In channels
@@ -61,12 +64,15 @@ void slow_conv_1D(
for (int wh = 0; wh < wH; ++wh) {
const T* wt_ptr = filter_wt_ptr + wh * wt_stride_H;
int ih = oh * wt_strides[0] - padding[0] + wh * wt_dilation[0];
int wh_flip = flip ? (wH - wh - 1) : wh;
int ih = oh * wt_strides[0] - padding[0] + wh_flip * wt_dilation[0];
if (ih >= 0 && ih < iH) {
auto ih_div = std::div(ih, in_dilation[0]);
if (ih >= 0 && ih < iH && ih_div.rem == 0) {
for (int c = 0; c < C; ++c) {
r += static_cast<float>(
in_ptr[ih * in_stride_H + c * in_stride_C]) *
in_ptr[ih_div.quot * in_stride_H + c * in_stride_C]) *
static_cast<float>(wt_ptr[c * wt_stride_C]);
} // c
@@ -90,14 +96,16 @@ void slow_conv_2D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const T* st_wt_ptr = wt.data<T>();
const T* st_in_ptr = in.data<T>();
T* st_out_ptr = out.data<T>();
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = in.shape(1); // Input spatial dim
const int iW = in.shape(2); // Input spatial dim
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int iW = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
const int oH = out.shape(1); // Output spatial dim
const int oW = out.shape(2); // Output spatial dim
const int O = wt.shape(0); // Out channels
@@ -120,6 +128,8 @@ void slow_conv_2D(
const size_t out_stride_W = out.strides()[2];
const size_t out_stride_O = out.strides()[3];
bool is_idil_one = in_dilation[0] == 1 && in_dilation[1] == 1;
auto pt_conv_no_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
@@ -131,8 +141,10 @@ void slow_conv_2D(
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int ih = ih_base + wh * wt_dilation[0];
int iw = iw_base + ww * wt_dilation[1];
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
@@ -153,25 +165,74 @@ void slow_conv_2D(
} // o
};
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_w = flip ? -wt_dilation[1] : wt_dilation[1];
int init_h = (flip ? (wH - 1) * wt_dilation[0] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[1] : 0);
int f_wgt_jump_h = std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_w = std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_out_jump_h = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_w = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[0] - padding[0] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
base_h[i] = wh_base;
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[1] - padding[1] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
base_w[j] = ww_base;
}
auto pt_conv_all_checks =
[&](const T* in_ptr, const T* wt_ptr, T* out_ptr, int oh, int ow) {
out_ptr += oh * out_stride_H + ow * out_stride_W;
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int ih = ih_base + wh * wt_dilation[0];
int iw = iw_base + ww * wt_dilation[1];
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
const T* in_ptr_pt =
in_ptr + ih * in_stride_H + iw * in_stride_W;
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
@@ -191,13 +252,17 @@ void slow_conv_2D(
};
int oH_border_0 = 0;
int oH_border_1 = (padding[0] + wt_strides[0] + 1) / wt_strides[0];
int oH_border_2 = (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0];
int oH_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[0] - wH * wt_dilation[0]) / wt_strides[0]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 = (padding[1] + wt_strides[0] + 1) / wt_strides[1];
int oW_border_2 = (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1];
int oW_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[1] - wW * wt_dilation[1]) / wt_strides[1]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
@@ -246,15 +311,18 @@ void dispatch_slow_conv_1D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (in.dtype() == float32) {
return slow_conv_1D<float>(in, wt, out, padding, wt_strides, wt_dilation);
return slow_conv_1D<float>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == float16) {
return slow_conv_1D<float16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == bfloat16) {
return slow_conv_1D<bfloat16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else {
throw std::invalid_argument(
"[Convolution::eval] got unsupported data type.");
@@ -267,15 +335,18 @@ void dispatch_slow_conv_2D(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (in.dtype() == float32) {
return slow_conv_2D<float>(in, wt, out, padding, wt_strides, wt_dilation);
return slow_conv_2D<float>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == float16) {
return slow_conv_2D<float16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == bfloat16) {
return slow_conv_2D<bfloat16_t>(
in, wt, out, padding, wt_strides, wt_dilation);
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else {
throw std::invalid_argument(
"[Convolution::eval] got unsupported data type.");
@@ -493,13 +564,16 @@ void conv_1D_cpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
if (wt_dilation[0] == 1) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation);
}
return dispatch_slow_conv_1D(in, wt, out, padding, wt_strides, wt_dilation);
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
void conv_2D_cpu(
@@ -508,8 +582,11 @@ void conv_2D_cpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
return dispatch_slow_conv_2D(in, wt, out, padding, wt_strides, wt_dilation);
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
} // namespace
@@ -523,12 +600,26 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
// 2D convolution
if (in.ndim() == (2 + 2)) {
return conv_2D_cpu(
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// 1D convolution
else if (in.ndim() == (1 + 2)) {
return conv_1D_cpu(
in, wt, out, padding_, kernel_strides_, kernel_dilation_);
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// Throw error
else {

View File

@@ -1,7 +1,7 @@
// Copyright © 2023-2024 Apple Inc.
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/cblas_new.h>
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
@@ -41,6 +41,7 @@ DEFAULT(ArgSort)
DEFAULT(AsType)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Convolution)
@@ -78,6 +79,7 @@ DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT(Power)
DEFAULT_MULTI(QRF)
DEFAULT(QuantizedMatmul)
DEFAULT(RandomBits)
DEFAULT(Reduce)
@@ -85,6 +87,7 @@ DEFAULT(Reshape)
DEFAULT(Round)
DEFAULT(Scan)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Sin)
@@ -100,8 +103,6 @@ DEFAULT(Subtract)
DEFAULT(Tan)
DEFAULT(Tanh)
DEFAULT(Transpose)
DEFAULT_MULTI(DivMod)
DEFAULT_MULTI(QRF)
namespace {
@@ -131,7 +132,9 @@ inline void matmul_common_general(
size_t M = a.shape(-2);
size_t N = b.shape(-1);
size_t K = a.shape(-1);
if (M == 0 || N == 0) {
return;
}
if (K == 0) {
std::memset(static_cast<void*>(out.data<float>()), 0, out.nbytes());
return;

View File

@@ -1,11 +0,0 @@
// Copyright © 2023 Apple Inc.
namespace mlx::core {
/* Approximation to the inverse error function.
* Based on code from:
* https://stackoverflow.com/questions/27229371/inverse-error-function-in-c#answer-49743348
*/
float erfinv(float a);
} // namespace mlx::core

View File

@@ -0,0 +1,34 @@
#!/bin/bash
#
# This script generates a C++ function that provides the CPU
# code for use with kernel generation.
#
# Copyright © 2023-24 Apple Inc.
OUTPUT_FILE=$1
GCC=$2
SRCDIR=$3
CLANG=$4
if [ $CLANG = "TRUE" ]; then
read -r -d '' INCLUDES <<- EOM
#include <cmath>
#include <complex>
#include <cstdint>
#include <vector>
EOM
fi
CONTENT=$($GCC -I $SRCDIR -E $SRCDIR/mlx/backend/common/compiled_preamble.h 2>/dev/null)
cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() {
return R"preamble(
$INCLUDES
$CONTENT
using namespace mlx::core::detail;
)preamble";
}
EOF

602
mlx/backend/common/ops.h Normal file
View File

@@ -0,0 +1,602 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <stdint.h>
#include <cmath>
#include <complex>
namespace mlx::core::detail {
namespace {
constexpr float inf = std::numeric_limits<float>::infinity();
} // namespace
typedef union {
int i;
float f;
} IntOrFloat;
inline float fast_exp(float x) {
if (x == -std::numeric_limits<float>::infinity()) {
return 0.0f;
} else if (x == std::numeric_limits<float>::infinity() || std::isnan(x)) {
return x;
}
x *= 1.442695; // multiply with log_2(e)
float ipart, fpart;
IntOrFloat epart;
x = std::max(-80.f, std::min(x, 80.f));
ipart = std::floor(x + 0.5);
fpart = x - ipart;
x = 1.535336188319500e-4f;
x = x * fpart + 1.339887440266574e-3f;
x = x * fpart + 9.618437357674640e-3f;
x = x * fpart + 5.550332471162809e-2f;
x = x * fpart + 2.402264791363012e-1f;
x = x * fpart + 6.931472028550421e-1f;
x = x * fpart + 1.000000000000000f;
// generate 2**ipart in the floating point representation using integer
// bitshifting
epart.i = (int(ipart) + 127) << 23;
return epart.f * x;
}
inline float fast_erf(float a) {
float r, s, t, u;
t = std::abs(a);
s = a * a;
if (t > 0.927734375f) {
// maximum error 0.99527 ulp
r = std::fma(
-1.72853470e-5f, t, 3.83197126e-4f); // -0x1.220000p-16,0x1.91cfb2p-12
u = std::fma(
-3.88396438e-3f, t, 2.42546219e-2f); // -0x1.fd1438p-9, 0x1.8d6342p-6
r = std::fma(r, s, u);
r = std::fma(r, t, -1.06777877e-1f); // -0x1.b55cb8p-4
r = std::fma(r, t, -6.34846687e-1f); // -0x1.450aa0p-1
r = std::fma(r, t, -1.28717512e-1f); // -0x1.079d0cp-3
r = std::fma(r, t, -t);
// TODO, replace with expm1 when implemented
r = 1.0f - std::exp(r);
r = std::copysign(r, a);
} else {
// maximum error 0.98929 ulp
r = -5.96761703e-4f; // -0x1.38e000p-11
r = std::fma(r, s, 4.99119423e-3f); // 0x1.471a58p-8
r = std::fma(r, s, -2.67681349e-2f); // -0x1.b691b2p-6
r = std::fma(r, s, 1.12819925e-1f); // 0x1.ce1c44p-4
r = std::fma(r, s, -3.76125336e-1f); // -0x1.812700p-2
r = std::fma(r, s, 1.28379166e-1f); // 0x1.06eba8p-3
r = std::fma(r, a, a);
}
return r;
}
inline float fast_erfinv(float a) {
auto t = std::fma(a, 0.0f - a, 1.0f);
t = std::log(t);
float p;
if (std::abs(t) > 6.125f) { // maximum ulp error = 2.35793
p = 3.03697567e-10f; // 0x1.4deb44p-32
p = std::fma(p, t, 2.93243101e-8f); // 0x1.f7c9aep-26
p = std::fma(p, t, 1.22150334e-6f); // 0x1.47e512p-20
p = std::fma(p, t, 2.84108955e-5f); // 0x1.dca7dep-16
p = std::fma(p, t, 3.93552968e-4f); // 0x1.9cab92p-12
p = std::fma(p, t, 3.02698812e-3f); // 0x1.8cc0dep-9
p = std::fma(p, t, 4.83185798e-3f); // 0x1.3ca920p-8
p = std::fma(p, t, -2.64646143e-1f); // -0x1.0eff66p-2
p = std::fma(p, t, 8.40016484e-1f); // 0x1.ae16a4p-1
} else { // maximum ulp error = 2.35002
p = 5.43877832e-9f; // 0x1.75c000p-28
p = std::fma(p, t, 1.43285448e-7f); // 0x1.33b402p-23
p = std::fma(p, t, 1.22774793e-6f); // 0x1.499232p-20
p = std::fma(p, t, 1.12963626e-7f); // 0x1.e52cd2p-24
p = std::fma(p, t, -5.61530760e-5f); // -0x1.d70bd0p-15
p = std::fma(p, t, -1.47697632e-4f); // -0x1.35be90p-13
p = std::fma(p, t, 2.31468678e-3f); // 0x1.2f6400p-9
p = std::fma(p, t, 1.15392581e-2f); // 0x1.7a1e50p-7
p = std::fma(p, t, -2.32015476e-1f); // -0x1.db2aeep-3
p = std::fma(p, t, 8.86226892e-1f); // 0x1.c5bf88p-1
}
return a * p;
}
struct Abs {
template <typename T>
T operator()(T x) {
return std::abs(x);
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct ArcCos {
template <typename T>
T operator()(T x) {
return std::acos(x);
};
};
struct ArcCosh {
template <typename T>
T operator()(T x) {
return std::acosh(x);
};
};
struct ArcSin {
template <typename T>
T operator()(T x) {
return std::asin(x);
};
};
struct ArcSinh {
template <typename T>
T operator()(T x) {
return std::asinh(x);
};
};
struct ArcTan {
template <typename T>
T operator()(T x) {
return std::atan(x);
};
};
struct ArcTanh {
template <typename T>
T operator()(T x) {
return std::atanh(x);
};
};
struct Ceil {
template <typename T>
T operator()(T x) {
return std::ceil(x);
};
int8_t operator()(int8_t x) {
return x;
};
int16_t operator()(int16_t x) {
return x;
};
int32_t operator()(int32_t x) {
return x;
};
int64_t operator()(int64_t x) {
return x;
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct Cos {
template <typename T>
T operator()(T x) {
return std::cos(x);
};
};
struct Cosh {
template <typename T>
T operator()(T x) {
return std::cosh(x);
};
};
struct Erf {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erf(static_cast<float>(x)));
};
};
struct ErfInv {
template <typename T>
T operator()(T x) {
return static_cast<T>(fast_erfinv(static_cast<float>(x)));
};
};
struct Exp {
template <typename T>
T operator()(T x) {
return fast_exp(x);
};
complex64_t operator()(complex64_t x) {
return std::exp(x);
}
};
struct Floor {
template <typename T>
T operator()(T x) {
return std::floor(x);
};
int8_t operator()(int8_t x) {
return x;
};
int16_t operator()(int16_t x) {
return x;
};
int32_t operator()(int32_t x) {
return x;
};
int64_t operator()(int64_t x) {
return x;
};
uint8_t operator()(uint8_t x) {
return x;
};
uint16_t operator()(uint16_t x) {
return x;
};
uint32_t operator()(uint32_t x) {
return x;
};
uint64_t operator()(uint64_t x) {
return x;
};
bool operator()(bool x) {
return x;
};
};
struct Log {
template <typename T>
T operator()(T x) {
return std::log(x);
};
};
struct Log2 {
template <typename T>
T operator()(T x) {
return std::log2(x);
};
};
struct Log10 {
template <typename T>
T operator()(T x) {
return std::log10(x);
};
};
struct Log1p {
template <typename T>
T operator()(T x) {
return log1p(x);
};
};
struct LogicalNot {
template <typename T>
T operator()(T x) {
return !x;
};
};
struct Negative {
template <typename T>
T operator()(T x) {
return -x;
};
};
struct Round {
template <typename T>
T operator()(T x) {
return std::rint(x);
}
complex64_t operator()(complex64_t x) {
return {std::rint(x.real()), std::rint(x.imag())};
}
};
struct Sigmoid {
template <typename T>
T operator()(T x) {
auto one = static_cast<decltype(x)>(1.0);
return one / (one + fast_exp(-x));
}
};
struct Sign {
template <typename T>
T operator()(T x) {
return (x > T(0)) - (x < T(0));
}
uint8_t operator()(uint8_t x) {
return x != 0;
}
uint16_t operator()(uint16_t x) {
return x != 0;
}
uint32_t operator()(uint32_t x) {
return x != 0;
}
uint64_t operator()(uint64_t x) {
return x != 0;
}
};
struct Sin {
template <typename T>
T operator()(T x) {
return std::sin(x);
};
};
struct Sinh {
template <typename T>
T operator()(T x) {
return std::sinh(x);
};
};
struct Square {
template <typename T>
T operator()(T x) {
return x * x;
};
};
struct Sqrt {
template <typename T>
T operator()(T x) {
return std::sqrt(x);
};
};
struct Rsqrt {
template <typename T>
T operator()(T x) {
return static_cast<decltype(x)>(1.0) / std::sqrt(x);
};
};
struct Tan {
template <typename T>
T operator()(T x) {
return std::tan(x);
};
};
struct Tanh {
template <typename T>
T operator()(T x) {
return std::tanh(x);
};
};
struct Add {
template <typename T>
T operator()(T x, T y) {
return x + y;
}
};
struct Divide {
template <typename T>
T operator()(T x, T y) {
return x / y;
}
};
struct Remainder {
template <typename T>
std::enable_if_t<std::is_integral_v<T> & !std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
return numerator % denominator;
}
template <typename T>
std::enable_if_t<std::is_integral_v<T> & std::is_signed_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = numerator % denominator;
if (r != 0 && (r < 0 != denominator < 0))
r += denominator;
return r;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(
T numerator,
T denominator) {
auto r = std::fmod(numerator, denominator);
if (r != 0 && (r < 0 != denominator < 0)) {
r += denominator;
}
return r;
}
complex64_t operator()(complex64_t numerator, complex64_t denominator) {
return numerator % denominator;
}
};
struct Equal {
template <typename T>
bool operator()(T x, T y) {
return x == y;
}
};
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
return x == y || (std::isnan(x) && std::isnan(y));
}
};
struct Greater {
template <typename T>
bool operator()(T x, T y) {
return x > y;
}
};
struct GreaterEqual {
template <typename T>
bool operator()(T x, T y) {
return x >= y;
}
};
struct Less {
template <typename T>
bool operator()(T x, T y) {
return x < y;
}
};
struct LessEqual {
template <typename T>
bool operator()(T x, T y) {
return x <= y;
}
};
struct Maximum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return (x > y) ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return (x > y) ? x : y;
}
};
struct Minimum {
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T x, T y) {
return x < y ? x : y;
}
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T x, T y) {
if (std::isnan(x)) {
return x;
}
return x < y ? x : y;
}
};
struct LogAddExp {
template <typename T>
T operator()(T x, T y) {
constexpr float inf = std::numeric_limits<float>::infinity();
auto maxval = Maximum()(x, y);
auto minval = Minimum()(x, y);
return (minval == -inf || maxval == inf)
? maxval
: static_cast<decltype(x)>(
maxval + std::log1p(fast_exp(minval - maxval)));
};
};
struct Multiply {
template <typename T>
T operator()(T x, T y) {
return x * y;
}
};
struct NotEqual {
template <typename T>
bool operator()(T x, T y) {
return x != y;
}
};
struct Power {
template <typename T>
std::enable_if_t<!std::is_integral_v<T>, T> operator()(T base, T exp) {
return std::pow(base, exp);
}
template <typename T>
std::enable_if_t<std::is_integral_v<T>, T> operator()(T base, T exp) {
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
};
struct Subtract {
template <typename T>
T operator()(T x, T y) {
return x - y;
}
};
struct LogicalAnd {
template <typename T>
T operator()(T x, T y) {
return x && y;
};
};
struct LogicalOr {
template <typename T>
T operator()(T x, T y) {
return x || y;
};
};
struct Select {
template <typename T>
T operator()(bool condition, T x, T y) {
return condition ? x : y;
}
};
} // namespace mlx::core::detail

View File

@@ -10,7 +10,7 @@
#include "mlx/backend/common/arange.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/erf.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/threefry.h"
#include "mlx/backend/common/unary.h"
#include "mlx/backend/common/utils.h"
@@ -26,7 +26,7 @@ void Abs::eval(const std::vector<array>& inputs, array& out) {
// No-op for unsigned types
out.copy_shared_buffer(in);
} else {
unary(in, out, AbsOp());
unary(in, out, detail::Abs());
}
}
@@ -38,7 +38,7 @@ void ArcCos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::acos(x); });
unary_fp(in, out, detail::ArcCos());
} else {
throw std::invalid_argument(
"[arccos] Cannot compute inverse cosine of elements in array"
@@ -50,7 +50,7 @@ void ArcCosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::acosh(x); });
unary_fp(in, out, detail::ArcCosh());
} else {
throw std::invalid_argument(
"[arccosh] Cannot compute inverse hyperbolic cosine of elements in"
@@ -62,7 +62,7 @@ void ArcSin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::asin(x); });
unary_fp(in, out, detail::ArcSin());
} else {
throw std::invalid_argument(
"[arcsin] Cannot compute inverse sine of elements in array"
@@ -74,7 +74,7 @@ void ArcSinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::asinh(x); });
unary_fp(in, out, detail::ArcSinh());
} else {
throw std::invalid_argument(
"[arcsinh] Cannot compute inverse hyperbolic sine of elements in"
@@ -86,7 +86,7 @@ void ArcTan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::atan(x); });
unary_fp(in, out, detail::ArcTan());
} else {
throw std::invalid_argument(
"[arctan] Cannot compute inverse tangent of elements in array"
@@ -98,7 +98,7 @@ void ArcTanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::atanh(x); });
unary_fp(in, out, detail::ArcTanh());
} else {
throw std::invalid_argument(
"[arctanh] Cannot compute inverse hyperbolic tangent of elements in"
@@ -172,7 +172,7 @@ void Ceil::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, [](auto x) { return std::ceil(x); });
unary_fp(in, out, detail::Ceil());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -212,7 +212,7 @@ void Cos::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::cos(x); });
unary_fp(in, out, detail::Cos());
} else {
throw std::invalid_argument(
"[cos] Cannot compute cosine of elements in array"
@@ -224,7 +224,7 @@ void Cosh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::cosh(x); });
unary_fp(in, out, detail::Cosh());
} else {
throw std::invalid_argument(
"[cosh] Cannot compute hyperbolic cosine of elements in array"
@@ -256,17 +256,13 @@ void Erf::eval(const std::vector<array>& inputs, array& out) {
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
unary_op<float>(in, out, [](auto x) { return std::erf(x); });
unary_op<float>(in, out, detail::Erf());
break;
case float16:
unary_op<float16_t>(in, out, [](auto x) {
return static_cast<float16_t>(std::erf(static_cast<float>(x)));
});
unary_op<float16_t>(in, out, detail::Erf());
break;
case bfloat16:
unary_op<bfloat16_t>(in, out, [](auto x) {
return static_cast<bfloat16_t>(std::erf(static_cast<float>(x)));
});
unary_op<bfloat16_t>(in, out, detail::Erf());
break;
default:
throw std::invalid_argument(
@@ -280,17 +276,13 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
const auto& in = inputs[0];
switch (out.dtype()) {
case float32:
unary_op<float>(in, out, [](auto x) { return erfinv(x); });
unary_op<float>(in, out, detail::ErfInv());
break;
case float16:
unary_op<float16_t>(in, out, [](auto x) {
return static_cast<float16_t>(erfinv(static_cast<float>(x)));
});
unary_op<float16_t>(in, out, detail::ErfInv());
break;
case bfloat16:
unary_op<bfloat16_t>(in, out, [](auto x) {
return static_cast<bfloat16_t>(erfinv(static_cast<float>(x)));
});
unary_op<bfloat16_t>(in, out, detail::ErfInv());
break;
default:
throw std::invalid_argument(
@@ -302,9 +294,8 @@ void ErfInv::eval(const std::vector<array>& inputs, array& out) {
void Exp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::exp(x); });
unary_fp(in, out, detail::Exp());
} else {
throw std::invalid_argument(
"[exp] Cannot exponentiate elements in array"
@@ -316,7 +307,7 @@ void Floor::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, [](auto x) { return std::floor(x); });
unary_fp(in, out, detail::Floor());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -344,13 +335,13 @@ void Log::eval(const std::vector<array>& inputs, array& out) {
if (is_floating_point(out.dtype())) {
switch (base_) {
case Base::e:
unary_fp(in, out, [](auto x) { return std::log(x); });
unary_fp(in, out, detail::Log());
break;
case Base::two:
unary_fp(in, out, [](auto x) { return std::log2(x); });
unary_fp(in, out, detail::Log2());
break;
case Base::ten:
unary_fp(in, out, [](auto x) { return std::log10(x); });
unary_fp(in, out, detail::Log10());
break;
}
} else {
@@ -364,7 +355,7 @@ void Log1p::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::log1p(x); });
unary_fp(in, out, detail::Log1p());
} else {
throw std::invalid_argument(
"[log1p] Cannot compute log of elements in array with"
@@ -375,27 +366,27 @@ void Log1p::eval(const std::vector<array>& inputs, array& out) {
void LogicalNot::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return !x; });
unary(in, out, detail::LogicalNot());
}
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, [](auto x, auto y) { return x && y; });
binary(in1, in2, out, detail::LogicalAnd());
}
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalOr requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, [](auto x, auto y) { return x || y; });
binary(in1, in2, out, detail::LogicalOr());
}
void Negative::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return -x; });
unary(in, out, detail::Negative());
}
void Pad::eval(const std::vector<array>& inputs, array& out) {
@@ -498,7 +489,7 @@ void Round::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (not is_integral(in.dtype())) {
unary_fp(in, out, RoundOp());
unary_fp(in, out, detail::Round());
} else {
// No-op integer types
out.copy_shared_buffer(in);
@@ -509,11 +500,7 @@ void Sigmoid::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
auto sigmoid_op = [](auto x) {
auto one = static_cast<decltype(x)>(1.0);
return one / (one + std::exp(-x));
};
unary_fp(in, out, sigmoid_op);
unary_fp(in, out, detail::Sigmoid());
} else {
throw std::invalid_argument(
"[sigmoid] Cannot sigmoid of elements in array with"
@@ -527,7 +514,7 @@ void Sign::eval(const std::vector<array>& inputs, array& out) {
if (in.dtype() == bool_) {
out.copy_shared_buffer(in);
} else {
unary(in, out, SignOp());
unary(in, out, detail::Sign());
}
}
@@ -535,7 +522,7 @@ void Sin::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::sin(x); });
unary_fp(in, out, detail::Sin());
} else {
throw std::invalid_argument(
"[sin] Cannot compute sine of elements in array"
@@ -547,7 +534,7 @@ void Sinh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::sinh(x); });
unary_fp(in, out, detail::Sinh());
} else {
throw std::invalid_argument(
"[sinh] Cannot compute hyperbolic sine of elements in array"
@@ -656,18 +643,16 @@ void Split::eval(
void Square::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
unary(in, out, [](auto x) { return x * x; });
unary(in, out, detail::Square());
}
void Sqrt::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (recip_) {
unary_fp(in, out, [](auto x) {
return static_cast<decltype(x)>(1.0) / sqrt(x);
});
unary_fp(in, out, detail::Rsqrt());
} else {
unary_fp(in, out, [](auto x) { return sqrt(x); });
unary_fp(in, out, detail::Sqrt());
}
}
@@ -680,7 +665,7 @@ void Tan::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::tan(x); });
unary_fp(in, out, detail::Tan());
} else {
throw std::invalid_argument(
"[tan] Cannot compute tangent of elements in array"
@@ -692,7 +677,7 @@ void Tanh::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::tanh(x); });
unary_fp(in, out, detail::Tanh());
} else {
throw std::invalid_argument(
"[tanh] Cannot compute hyperbolic tangent of elements in array"

View File

@@ -5,7 +5,7 @@
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <vecLib/lapack.h>
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif

View File

@@ -0,0 +1,13 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/fast_primitives.h"
namespace mlx::core::fast {
void RoPE::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
throw std::runtime_error("NYI");
}
} // namespace mlx::core::fast

View File

@@ -0,0 +1,72 @@
// Copyright © 2023 Apple Inc.
#include <cassert>
#include "mlx/backend/common/ternary.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <typename Op>
void select_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
switch (out.dtype()) {
case bool_:
ternary_op<bool, bool, bool, bool>(a, b, c, out, op);
break;
case uint8:
ternary_op<bool, uint8_t, uint8_t, uint8_t>(a, b, c, out, op);
break;
case uint16:
ternary_op<bool, uint16_t, uint16_t, uint16_t>(a, b, c, out, op);
break;
case uint32:
ternary_op<bool, uint32_t, uint32_t, uint32_t>(a, b, c, out, op);
break;
case uint64:
ternary_op<bool, uint64_t, uint64_t, uint64_t>(a, b, c, out, op);
break;
case int8:
ternary_op<bool, int8_t, int8_t, int8_t>(a, b, c, out, op);
break;
case int16:
ternary_op<bool, int16_t, int16_t, int16_t>(a, b, c, out, op);
break;
case int32:
ternary_op<bool, int32_t, int32_t, int32_t>(a, b, c, out, op);
break;
case int64:
ternary_op<bool, int64_t, int64_t, int64_t>(a, b, c, out, op);
break;
case float16:
ternary_op<bool, float16_t, float16_t, float16_t>(a, b, c, out, op);
break;
case float32:
ternary_op<bool, float, float, float>(a, b, c, out, op);
break;
case bfloat16:
ternary_op<bool, bfloat16_t, bfloat16_t, bfloat16_t>(a, b, c, out, op);
break;
case complex64:
ternary_op<bool, complex64_t, complex64_t, complex64_t>(a, b, c, out, op);
break;
}
}
} // namespace
void Select::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 3);
const auto& condition = inputs[0];
const auto& a = inputs[1];
const auto& b = inputs[2];
select_op(condition, a, b, out, detail::Select());
}
} // namespace mlx::core

View File

@@ -53,7 +53,12 @@ void Softmax::eval(const std::vector<array>& inputs, array& out) {
// Make sure that the last dimension is contiguous
auto check_input = [](array x) {
if (x.strides().back() == 1) {
bool no_copy = x.strides()[x.ndim() - 1] == 1;
if (x.ndim() > 1) {
auto s = x.strides()[x.ndim() - 2];
no_copy &= (s == 0 || s == x.shape().back());
}
if (no_copy) {
return x;
} else {
array x_copy(x.shape(), x.dtype(), nullptr, {});

View File

@@ -0,0 +1,226 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/ops.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
namespace {
// TODO: Add support for more combinations of input types.
enum class TernaryOpType {
ScalarScalarScalar,
General,
};
TernaryOpType
get_ternary_op_type(const array& a, const array& b, const array& c) {
TernaryOpType topt;
if (a.data_size() == 1 && b.data_size() == 1 && c.data_size() == 1) {
topt = TernaryOpType::ScalarScalarScalar;
} else {
topt = TernaryOpType::General;
}
return topt;
}
void set_ternary_op_output_data(
const array& a,
const array& b,
const array& c,
array& out,
TernaryOpType topt,
bool donate_with_move = false) {
switch (topt) {
case TernaryOpType::ScalarScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, b.strides(), b.flags());
break;
case TernaryOpType::General:
out.set_data(allocator::malloc_or_wait(out.nbytes()));
break;
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims1(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
c_idx += c.strides()[0];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims2(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
c_idx += c.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims3(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
c_idx += c.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dims4(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t c_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
c_idx += c.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
c_idx += c.strides()[2] - c.strides()[3] * c.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
c_idx += c.strides()[1] - c.strides()[2] * c.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
c_idx += c.strides()[0] - c.strides()[1] * c.shape()[1];
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op_dispatch_dims(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
switch (out.ndim()) {
case 1:
ternary_op_dims1<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 2:
ternary_op_dims2<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 3:
ternary_op_dims3<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
case 4:
ternary_op_dims4<T1, T2, T3, U, Op>(a, b, c, out, op);
return;
}
const T1* a_ptr = a.data<T1>();
const T2* b_ptr = b.data<T2>();
const T3* c_ptr = c.data<T3>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
int c_idx = elem_to_loc(i, c.shape(), c.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx], c_ptr[c_idx]);
}
}
template <typename T1, typename T2, typename T3, typename U, typename Op>
void ternary_op(
const array& a,
const array& b,
const array& c,
array& out,
Op op) {
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
// The full computation is scalar-scalar-scalar so we call the base op once.
if (topt == TernaryOpType::ScalarScalarScalar) {
*(out.data<U>()) = op(*a.data<T1>(), *b.data<T2>(), *c.data<T3>());
return;
}
ternary_op_dispatch_dims<T1, T2, T3, U>(a, b, c, out, op);
}
} // namespace
} // namespace mlx::core

View File

@@ -11,59 +11,6 @@ namespace mlx::core {
namespace {
struct AbsOp {
template <typename T>
T operator()(T x) {
return std::abs(x);
}
uint8_t operator()(uint8_t x) {
return x;
}
uint16_t operator()(uint16_t x) {
return x;
}
uint32_t operator()(uint32_t x) {
return x;
}
uint64_t operator()(uint64_t x) {
return x;
}
bool operator()(bool x) {
return x;
}
};
struct SignOp {
template <typename T>
T operator()(T x) {
return (x > T(0)) - (x < T(0));
}
uint8_t operator()(uint8_t x) {
return x != 0;
}
uint16_t operator()(uint16_t x) {
return x != 0;
}
uint32_t operator()(uint32_t x) {
return x != 0;
}
uint64_t operator()(uint64_t x) {
return x != 0;
}
};
struct RoundOp {
template <typename T>
T operator()(T x) {
return std::rint(x);
}
complex64_t operator()(complex64_t x) {
return {std::rint(x.real()), std::rint(x.imag())};
}
};
void set_unary_output_data(const array& in, array& out) {
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.copy_shared_buffer(in);

View File

@@ -1,20 +1,44 @@
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${CMAKE_C_COMPILER}
${PROJECT_SOURCE_DIR}
DEPENDS make_compiled_preamble.sh
kernels/compiled_preamble.h
kernels/unary.h
kernels/binary.h
)
add_custom_target(
compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_dependencies(mlx compiled_preamble)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
${CMAKE_CURRENT_SOURCE_DIR}/metal.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/rope.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)
if (NOT MLX_METAL_PATH)

View File

@@ -1,5 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/allocator.h"
#include "mlx/backend/metal/metal.h"
@@ -23,16 +22,6 @@ void* Buffer::raw_ptr() {
namespace metal {
static bool cache_enabled_ = true;
bool cache_enabled() {
return cache_enabled_;
}
void set_cache_enabled(bool enabled) {
cache_enabled_ = enabled;
}
namespace {
BufferCache::BufferCache(MTL::Device* device)
@@ -44,7 +33,6 @@ BufferCache::~BufferCache() {
}
void BufferCache::clear() {
std::lock_guard<std::mutex> lk(cache_mutex_);
for (auto& [size, holder] : buffer_pool_) {
if (holder->buf)
holder->buf->release();
@@ -57,12 +45,9 @@ void BufferCache::clear() {
}
MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
std::lock_guard<std::mutex> lk(cache_mutex_);
// Find the closest buffer in pool
MTL::Buffer* pbuf = nullptr;
// Make sure we use most of the available memory
auto it = buffer_pool_.lower_bound(size);
// Make sure we use most of the available memory
@@ -85,8 +70,6 @@ MTL::Buffer* BufferCache::reuse_from_cache(size_t size) {
}
void BufferCache::recycle_to_cache(MTL::Buffer* buf) {
std::lock_guard<std::mutex> lk(cache_mutex_);
// Add to cache
if (buf) {
BufferHolder* bh = new BufferHolder(buf);
@@ -100,7 +83,6 @@ void BufferCache::release_cached_buffers(size_t min_bytes_to_free) {
if (min_bytes_to_free >= 0.9 * pool_size_) {
clear();
} else {
std::lock_guard<std::mutex> lk(cache_mutex_);
size_t total_bytes_freed = 0;
while (tail_ && (total_bytes_freed < min_bytes_to_free)) {
@@ -158,9 +140,23 @@ void BufferCache::remove_from_list(BufferCache::BufferHolder* to_remove) {
MetalAllocator::MetalAllocator()
: device_(device(mlx::core::Device::gpu).mtl_device()),
buffer_cache_(device_),
peak_allocated_size_(0),
block_limit_(1.5 * device_->recommendedMaxWorkingSetSize()),
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()) {}
gc_limit_(0.95 * device_->recommendedMaxWorkingSetSize()),
max_pool_size_(block_limit_) {}
size_t MetalAllocator::set_cache_limit(size_t limit) {
std::swap(limit, max_pool_size_);
return limit;
};
size_t MetalAllocator::set_memory_limit(size_t limit, bool relaxed) {
std::swap(limit, block_limit_);
relaxed_ = relaxed;
gc_limit_ = std::min(
block_limit_,
static_cast<size_t>(0.95 * device_->recommendedMaxWorkingSetSize()));
return limit;
};
Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
// Metal doesn't like empty buffers
@@ -174,41 +170,53 @@ Buffer MetalAllocator::malloc(size_t size, bool allow_swap /* = false */) {
}
// Try the cache
std::unique_lock lk(mutex_);
MTL::Buffer* buf = buffer_cache_.reuse_from_cache(size);
if (!buf) {
size_t mem_required = get_active_memory() + get_cache_memory() + size;
// If there is too much memory pressure, fail (likely causes a wait).
if (!allow_swap && device_->currentAllocatedSize() + size >= block_limit_) {
if (!(allow_swap && relaxed_) && mem_required >= block_limit_) {
return Buffer{nullptr};
}
auto thread_pool = metal::new_scoped_memory_pool();
// If we have a lot of memory pressure, check if we can reclaim some memory
// from the cache
if (device_->currentAllocatedSize() + size >= gc_limit_) {
size_t min_bytes_to_free =
size + device_->currentAllocatedSize() - gc_limit_;
buffer_cache_.release_cached_buffers(min_bytes_to_free);
// If we have a lot of memory pressure or are over the maximum cache size,
// try to reclaim memory from the cache
if (mem_required >= gc_limit_) {
buffer_cache_.release_cached_buffers(mem_required - gc_limit_);
}
// Allocate new buffer if needed
size_t res_opt = MTL::ResourceStorageModeShared;
res_opt |= MTL::ResourceHazardTrackingModeTracked;
lk.unlock();
buf = device_->newBuffer(size, res_opt);
lk.lock();
}
peak_allocated_size_ =
std::max(peak_allocated_size_, device_->currentAllocatedSize());
active_memory_ += buf->length();
peak_memory_ = std::max(peak_memory_, active_memory_);
// Maintain the cache below the requested limit
if (get_cache_memory() >= max_pool_size_) {
auto thread_pool = metal::new_scoped_memory_pool();
buffer_cache_.release_cached_buffers(get_cache_memory() - max_pool_size_);
}
return Buffer{static_cast<void*>(buf)};
}
void MetalAllocator::free(Buffer buffer) {
auto buf = static_cast<MTL::Buffer*>(buffer.ptr());
if (cache_enabled()) {
std::unique_lock lk(mutex_);
active_memory_ -= buf->length();
if (get_cache_memory() < max_pool_size_) {
buffer_cache_.recycle_to_cache(buf);
} else {
lk.unlock();
auto thread_pool = metal::new_scoped_memory_pool();
buf->release();
}
}
@@ -218,6 +226,22 @@ MetalAllocator& allocator() {
return allocator_;
}
size_t set_cache_limit(size_t limit) {
return allocator().set_cache_limit(limit);
}
size_t set_memory_limit(size_t limit, bool relaxed /* = true */) {
return allocator().set_memory_limit(limit, relaxed);
}
size_t get_active_memory() {
return allocator().get_active_memory();
}
size_t get_peak_memory() {
return allocator().get_peak_memory();
}
size_t get_cache_memory() {
return allocator().get_cache_memory();
}
} // namespace metal
} // namespace mlx::core

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#pragma once
@@ -19,11 +19,13 @@ class BufferCache {
public:
BufferCache(MTL::Device* device);
~BufferCache();
void clear();
MTL::Buffer* reuse_from_cache(size_t size);
void recycle_to_cache(MTL::Buffer* buf);
void release_cached_buffers(size_t min_bytes_to_free);
size_t cache_size() {
return pool_size_;
}
private:
struct BufferHolder {
@@ -35,11 +37,11 @@ class BufferCache {
MTL::Buffer* buf;
};
void clear();
void add_at_head(BufferHolder* to_add);
void remove_from_list(BufferHolder* to_remove);
MTL::Device* device_;
std::mutex cache_mutex_;
std::multimap<size_t, BufferHolder*> buffer_pool_;
BufferHolder* head_;
@@ -54,6 +56,17 @@ class MetalAllocator : public allocator::Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
size_t get_active_memory() {
return active_memory_;
};
size_t get_peak_memory() {
return peak_memory_;
};
size_t get_cache_memory() {
return buffer_cache_.cache_size();
};
size_t set_cache_limit(size_t limit);
size_t set_memory_limit(size_t limit, bool relaxed);
private:
MTL::Device* device_;
@@ -64,9 +77,14 @@ class MetalAllocator : public allocator::Allocator {
BufferCache buffer_cache_;
// Allocation stats
size_t peak_allocated_size_;
size_t block_limit_;
size_t gc_limit_;
size_t active_memory_{0};
size_t peak_memory_{0};
size_t max_pool_size_;
bool relaxed_{true};
std::mutex mutex_;
};
MetalAllocator& allocator();

View File

@@ -0,0 +1,378 @@
// Copyright © 2023-2024 Apple Inc.
#include <sstream>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/compiled_preamble.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/graph_utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
inline void build_kernel(
std::ostream& os,
const std::string& kernel_name,
const std::vector<array>& inputs,
const std::vector<array>& outputs,
const std::vector<array>& tape,
const std::unordered_set<uintptr_t>& constant_ids,
bool contiguous,
int ndim,
bool dynamic_dims) {
// All outputs should have the exact same shape and will be row contiguous
auto output_shape = outputs[0].shape();
auto output_strides = outputs[0].strides();
// Constants are scalars that are captured by value and cannot change
auto is_constant = [&constant_ids](const array& x) {
return constant_ids.find(x.id()) != constant_ids.end();
};
NodeNamer namer;
bool add_indices = false;
int cnt = 0;
// Start the kernel
os << "[[host_name(\"" << kernel_name << "\")]]" << std::endl
<< "[[kernel]] void " << kernel_name << "(" << std::endl;
// Add the input arguments
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
// Skip constants from the input list
if (is_constant(x)) {
continue;
}
// Scalars and contiguous need no strides
if (is_scalar(x) || contiguous) {
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]]," << std::endl;
} else {
add_indices = true;
os << " device const " << get_type_string(x.dtype()) << "* " << xname
<< " [[buffer(" << cnt++ << ")]]," << std::endl
<< " constant const size_t* " << xname << "_strides [[buffer("
<< cnt++ << ")]]," << std::endl;
}
}
// Add the output arguments
for (auto& x : outputs) {
os << " device " << get_type_string(x.dtype()) << "* "
<< namer.get_name(x) << " [[buffer(" << cnt++ << ")]]," << std::endl;
}
// Add output strides and shape to extract the indices.
if (!contiguous) {
os << " constant const size_t* output_strides [[buffer(" << cnt++
<< ")]]," << std::endl
<< " constant const int* output_shape [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
if (dynamic_dims) {
os << " constant const int& ndim [[buffer(" << cnt++ << ")]],"
<< std::endl;
}
// The thread index in the whole grid
os << " uint3 pos [[thread_position_in_grid]]," << std::endl
<< " uint3 grid [[threads_per_grid]]) {" << std::endl
<< " uint index = pos.x + grid.x * (pos.y + grid.y * pos.z);"
<< std::endl;
// Extract the indices per axis to individual uints if we have arrays that
// are broadcasted or transposed
if (add_indices) {
if (!dynamic_dims) {
if (ndim == 1) {
os << " uint index_0 = pos.x;" << std::endl;
} else if (ndim == 2) {
os << " uint index_0 = pos.y;" << std::endl
<< " uint index_1 = pos.x;" << std::endl;
} else if (ndim == 3) {
os << " uint index_0 = pos.z;" << std::endl
<< " uint index_1 = pos.y;" << std::endl
<< " uint index_2 = pos.x;" << std::endl;
} else {
for (int i = 0; i < ndim - 2; i++) {
os << " uint index_" << i << " = (index / uint(output_strides[" << i
<< "])) % output_shape[" << i << "];" << std::endl;
}
os << " uint index_" << ndim - 2 << " = pos.y;" << std::endl
<< " uint index_" << ndim - 1 << " = pos.x;" << std::endl;
}
}
}
// Read the inputs in tmps
for (auto& x : inputs) {
auto& xname = namer.get_name(x);
if (is_constant(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = ";
print_constant(os, x);
os << ";" << std::endl;
} else if (is_scalar(x)) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[0];" << std::endl;
} else if (contiguous) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[index];" << std::endl;
} else if (!dynamic_dims) {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[";
os << "index_0 * " << xname << "_strides[0]";
for (int i = 1; i < ndim; i++) {
os << " + index_" << i << " * " << xname << "_strides[" << i << "]";
}
os << "];" << std::endl;
} else {
os << " " << get_type_string(x.dtype()) << " tmp_" << xname << " = "
<< xname << "[elem_to_loc(index, output_shape, " << xname
<< "_strides, ndim)];" << std::endl;
}
}
// Actually write the computation
for (auto& x : tape) {
os << " " << get_type_string(x.dtype()) << " tmp_" << namer.get_name(x)
<< " = ";
if (is_static_cast(x.primitive())) {
os << "static_cast<" << get_type_string(x.dtype()) << ">(tmp_"
<< namer.get_name(x.inputs()[0]) << ");" << std::endl;
} else {
x.primitive().print(os);
os << "()(";
for (int i = 0; i < x.inputs().size() - 1; i++) {
os << "tmp_" << namer.get_name(x.inputs()[i]) << ", ";
}
os << "tmp_" << namer.get_name(x.inputs().back()) << ");" << std::endl;
}
}
// Write the outputs from tmps
for (auto& x : outputs) {
os << " " << namer.get_name(x) << "[index] = tmp_" << namer.get_name(x)
<< ";" << std::endl;
}
// Finish the kernel
os << "}" << std::endl;
if (cnt > 31) {
std::ostringstream msg;
msg << "[compile] Too many inputs/outputs fused in the Metal Compiled "
<< "primitive which exhausted the available argument buffers for "
<< "the kernel. Please file an issue with the function that results "
<< "in this error. The name of the kernel is '" << kernel_name << "'";
throw std::runtime_error(msg.str());
}
}
void Compiled::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Make the name for the kernel library
if (kernel_lib_.empty()) {
kernel_lib_ = build_lib_name(inputs_, outputs_, tape_, constant_ids_);
}
// Get the kernel if someone else built it already
auto& s = stream();
auto& d = metal::device(s.device);
auto lib = d.get_library(kernel_lib_);
// If not we have to build it ourselves
if (lib == nullptr) {
std::ostringstream kernel;
kernel << metal::get_kernel_preamble() << std::endl;
build_kernel(
kernel,
kernel_lib_ + "_contiguous",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ true,
/* ndim = */ 0,
/* dynamic_dims = */ false);
for (int i = 1; i < 8; i++) {
build_kernel(
kernel,
kernel_lib_ + "_strided_" + std::to_string(i),
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ i,
/* dynamic_dims = */ false);
}
build_kernel(
kernel,
kernel_lib_ + "_strided_dynamic",
inputs_,
outputs_,
tape_,
constant_ids_,
/* contiguous = */ false,
/* ndim = */ 0,
/* dynamic_dims = */ true);
lib = d.get_library(kernel_lib_, kernel.str());
}
// Figure out which kernel we are using
auto& output_shape = outputs[0].shape();
bool contiguous = true;
for (auto& x : inputs) {
if ((!x.flags().row_contiguous || x.shape() != output_shape) &&
!is_scalar(x)) {
contiguous = false;
break;
}
}
// Collapse contiguous dims to route to a faster kernel if possible. Also
// handle all broadcasting.
std::vector<std::vector<size_t>> initial_strides;
initial_strides.push_back(outputs[0].strides());
std::vector<int> shape;
std::vector<std::vector<size_t>> strides;
if (!contiguous) {
for (int i = 0; i < inputs.size(); i++) {
// Skip constants.
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
// Skip scalar inputs.
if (is_scalar(x)) {
continue;
}
// Broadcast the inputs to the output shape.
std::vector<size_t> xstrides;
int j = 0;
for (; j < output_shape.size() - x.ndim(); j++) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
}
for (int i = 0; i < x.ndim(); i++, j++) {
if (x.shape(i) == 1) {
if (output_shape[j] == 1) {
xstrides.push_back(outputs[0].strides()[j]);
} else {
xstrides.push_back(0);
}
} else {
xstrides.push_back(x.strides()[i]);
}
}
initial_strides.push_back(std::move(xstrides));
}
std::tie(shape, strides) =
collapse_contiguous_dims(output_shape, initial_strides);
}
// Get the kernel from the lib
int ndim = shape.size();
bool dynamic = ndim >= 8;
auto kernel_name = kernel_lib_ + (contiguous ? "_contiguous" : "_strided_");
if (!contiguous) {
if (dynamic) {
kernel_name += "dynamic";
} else {
kernel_name += std::to_string(shape.size());
}
}
auto kernel = d.get_kernel(kernel_name, lib);
auto compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// Put the inputs in
int cnt = 0;
int stride_idx = 1; // idx 0 is the output strides
for (int i = 0; i < inputs.size(); i++) {
if (constant_ids_.find(inputs_[i].id()) != constant_ids_.end()) {
continue;
}
auto& x = inputs[i];
set_array_buffer(compute_encoder, x, cnt++);
if (!contiguous && !is_scalar(x)) {
compute_encoder->setBytes(
strides[stride_idx].data(),
strides[stride_idx].size() * sizeof(size_t),
cnt++);
stride_idx++;
}
}
// Allocate space for the outputs possibly with input donation
{
int o = 0;
for (int i = 0; i < inputs.size() && o < outputs.size(); ++i) {
auto& in = inputs[i];
// Conditions for donation
// - Row contiguous
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
outputs[o++].move_shared_buffer(in);
}
}
for (; o < outputs.size(); ++o) {
outputs[o].set_data(allocator::malloc_or_wait(outputs[o].nbytes()));
}
}
// Put the outputs in
for (auto& x : outputs) {
set_array_buffer(compute_encoder, x, cnt++);
}
// Put the output shape and strides in
if (!contiguous) {
compute_encoder->setBytes(
strides[0].data(), strides[0].size() * sizeof(size_t), cnt++);
compute_encoder->setBytes(shape.data(), shape.size() * sizeof(int), cnt++);
}
// Put the number of dims in if it is dynamic
if (dynamic) {
compute_encoder->setBytes(&ndim, sizeof(int), cnt++);
}
// Launch the kernel
if (contiguous) {
size_t nthreads = outputs[0].size();
MTL::Size grid_dims(nthreads, 1, 1);
MTL::Size group_dims(
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
} else {
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = outputs[0].size() / (dim0 * dim1);
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::binary] Must use 1024 sized block");
}
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,9 @@
// Copyright © 2023-24 Apple Inc.
#pragma once
namespace mlx::core::metal {
const char* get_kernel_preamble();
}

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
@@ -7,80 +7,72 @@
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels/conv_params.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/steel/conv/params.h"
#include "mlx/backend/metal/matmul.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
using namespace mlx::steel;
namespace mlx::core {
namespace {
void explicit_gemm_conv_1D_gpu(
template <int N>
void explicit_gemm_conv_ND_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<1>& conv_params) {
// Pad input
std::vector<int> padded_shape = {
conv_params.N, conv_params.iS[0] + 2 * conv_params.pad[0], conv_params.C};
array in_padded(padded_shape, in.dtype(), nullptr, {});
const MLXConvParams<N>& conv_params) {
// Prepare unfolding array
std::vector<int> unfolded_shape = {
static_cast<int>(out.size() / conv_params.O),
static_cast<int>(wt.size() / conv_params.O)};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
// Fill with zeros
copy_gpu(array(0, in.dtype()), in_padded, CopyType::Scalar, s);
in_unfolded.set_data(allocator::malloc_or_wait(in_unfolded.nbytes()));
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Prepare unfolding kernel
std::ostringstream kname;
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, in_unfolded, 1);
// Make strided view
std::vector<int> strided_shape = {
conv_params.N, conv_params.oS[0], conv_params.wS[0], conv_params.C};
compute_encoder->setBytes(&conv_params, sizeof(conv_params), 2);
std::vector<size_t> strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * conv_params.str[0],
in_padded.strides()[1],
in_padded.strides()[2]};
auto flags = in_padded.flags();
// Launch unfolding kernel
int tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
int tgp_y = 256 / tgp_x;
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
MTL::Size group_dims = MTL::Size(tgp_x, tgp_y, 1);
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
// Materialize strided view
std::vector<int> strided_reshape = {
conv_params.N * conv_params.oS[0], conv_params.wS[0] * conv_params.C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_gpu(in_strided_view, in_strided, CopyType::General, s);
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Perform gemm
std::vector<array> copies = {in_padded, in_strided};
std::vector<array> copies;
return steel_matmul(
s,
d,
/*a = */ in_strided,
/*a = */ in_unfolded,
/*b = */ wt,
/*c = */ out,
/*M = */ strided_reshape[0],
/*M = */ unfolded_shape[0],
/*N = */ conv_params.O,
/*K = */ strided_reshape[1],
/*K = */ unfolded_shape[1],
/*batch_size_out = */ 1,
/*a_cols = */ strided_reshape[1],
/*b_cols = */ strided_reshape[1],
/*a_cols = */ unfolded_shape[1],
/*b_cols = */ unfolded_shape[1],
/*a_transposed = */ false,
/*b_transposed = */ true,
/*copies = */ copies);
@@ -94,7 +86,9 @@ void conv_1D_gpu(
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation) {
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ in.shape(0),
@@ -105,24 +99,19 @@ void conv_1D_gpu(
/* const int oS[NDIM] = */ {out.shape(1)},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int dil[NDIM] = */ {wt_dilation[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
/* const int idil[NDIM] = */ {in_dilation[0]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
};
/* const int groups = */ 1,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (wt_dilation[0] == 1) {
explicit_gemm_conv_1D_gpu(s, d, in, wt, out, conv_params);
}
// Direct to fallback conv
else {
throw std::invalid_argument("[conv_1D_gpu] Dilation needs to be 1.");
}
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
void slow_conv_2D_gpu(
@@ -168,114 +157,262 @@ void implicit_gemm_conv_2D_gpu(
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
int bm = 32, bn = 32, bk = 16;
// Deduce implicit gemm size
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
// Determine block and warp tiles
int wm = 2, wn = 2;
int bm = implicit_M >= 8192 && conv_params.C >= 64 ? 64 : 32;
int bn = (bm == 64 || implicit_N >= 64) ? 64 : 32;
int bk = 16;
if (implicit_N <= 16) {
bn = 8;
wm = 4;
wn = 1;
}
int tn = (implicit_N + bn - 1) / bn;
int tm = (implicit_M + bm - 1) / bm;
int swizzle_log = 0;
// Fix small channel specialization
int n_channel_specialization = 0;
int channel_k_iters = ((conv_params.C + bk - 1) / bk);
int gemm_k_iters = conv_params.wS[0] * conv_params.wS[1] * channel_k_iters;
if (conv_params.C <= 2) {
gemm_k_iters = (implicit_K + bk - 1) / bk;
n_channel_specialization = conv_params.C;
} else if (conv_params.C <= 4) {
gemm_k_iters = ((conv_params.wS[0] * conv_params.wS[1] * 4) + bk - 1) / bk;
n_channel_specialization = conv_params.C;
}
bool small_filter = (!n_channel_specialization) &&
(conv_params.wS[0] <= 16 && conv_params.wS[1] <= 16);
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::ostringstream kname;
kname << "implicit_gemm_conv_2d_" << type_to_name(out) << "_bm" << bm << "_bn"
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn;
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_channel_"
<< (n_channel_specialization ? std::to_string(n_channel_specialization)
: "l")
<< "_filter_" << (small_filter ? 's' : 'l');
// Encode and dispatch kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
size_t grid_dim_x = (implicit_N + bn - 1) / bn;
size_t grid_dim_y = (implicit_M + bm - 1) / bm;
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, 1);
// Encode arrays
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, wt, 1);
set_array_buffer(compute_encoder, out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
// Launch kernel
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
}
void explicit_gemm_conv_2D_gpu(
void implicit_gemm_conv_2D_general_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
// Pad input
std::vector<int> padded_shape = {
conv_params.N,
conv_params.iS[0] + 2 * conv_params.pad[0],
conv_params.iS[1] + 2 * conv_params.pad[1],
conv_params.C};
array in_padded(padded_shape, in.dtype(), nullptr, {});
// Deduce implicit gemm size
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
// Fill with zeros
copy_gpu(array(0, in.dtype()), in_padded, CopyType::Scalar, s);
// Determine block and warp tiles
int wm = 2, wn = 2;
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
conv_params.pad[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Make jump params
int f_wgt_jump_h =
std::lcm(conv_params.idil[0], conv_params.kdil[0]) / conv_params.kdil[0];
int f_wgt_jump_w =
std::lcm(conv_params.idil[1], conv_params.kdil[1]) / conv_params.kdil[1];
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
int f_out_jump_h =
std::lcm(conv_params.idil[0], conv_params.str[0]) / conv_params.str[0];
int f_out_jump_w =
std::lcm(conv_params.idil[1], conv_params.str[1]) / conv_params.str[1];
// Make strided view
std::vector<int> strided_shape = {
conv_params.N,
conv_params.oS[0],
conv_params.oS[1],
conv_params.wS[0],
conv_params.wS[1],
conv_params.C};
int adj_out_h = (conv_params.oS[0] + f_out_jump_h - 1) / f_out_jump_h;
int adj_out_w = (conv_params.oS[1] + f_out_jump_w - 1) / f_out_jump_w;
int adj_out_hw = adj_out_h * adj_out_w;
int adj_implicit_m = conv_params.N * adj_out_hw;
std::vector<size_t> strided_strides = {
in_padded.strides()[0],
in_padded.strides()[1] * conv_params.str[0],
in_padded.strides()[2] * conv_params.str[1],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]};
auto flags = in_padded.flags();
Conv2DGeneralJumpParams jump_params{
/* const int f_wgt_jump_h = */ f_wgt_jump_h,
/* const int f_wgt_jump_w = */ f_wgt_jump_w,
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
/* const int f_out_jump_h = */ f_out_jump_h,
/* const int f_out_jump_w = */ f_out_jump_w,
// Materialize strided view
std::vector<int> strided_reshape = {
conv_params.N * conv_params.oS[0] * conv_params.oS[1],
conv_params.wS[0] * conv_params.wS[1] * conv_params.C};
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy_gpu(in_strided_view, in_strided, CopyType::General, s);
/* const int adj_out_h = */ adj_out_h,
/* const int adj_out_w = */ adj_out_w,
/* const int adj_out_hw = */ adj_out_hw,
/* const int adj_implicit_m = */ adj_implicit_m};
// Perform gemm
std::vector<array> copies = {in_padded, in_strided};
return steel_matmul(
s,
d,
/*a = */ in_strided,
/*b = */ wt,
/*c = */ out,
/*M = */ strided_reshape[0],
/*N = */ conv_params.O,
/*K = */ strided_reshape[1],
/*batch_size_out = */ 1,
/*a_cols = */ strided_reshape[1],
/*b_cols = */ strided_reshape[1],
/*a_transposed = */ false,
/*b_transposed = */ true,
/*copies = */ copies);
// Make base info
std::vector<Conv2DGeneralBaseInfo> base_h(f_out_jump_h);
std::vector<Conv2DGeneralBaseInfo> base_w(f_out_jump_w);
int jump_h = conv_params.flip ? -conv_params.kdil[0] : conv_params.kdil[0];
int jump_w = conv_params.flip ? -conv_params.kdil[1] : conv_params.kdil[1];
int init_h =
(conv_params.flip ? (conv_params.wS[0] - 1) * conv_params.kdil[0] : 0);
int init_w =
(conv_params.flip ? (conv_params.wS[1] - 1) * conv_params.kdil[1] : 0);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * conv_params.str[0] - conv_params.pad[0] + init_h;
int wh_base = 0;
while (wh_base < conv_params.wS[0] && ih_loop % conv_params.idil[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
int wh_size =
((conv_params.wS[0] - wh_base) + f_wgt_jump_h - 1) / f_wgt_jump_h;
base_h[i] = {wh_base, wh_size};
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * conv_params.str[1] - conv_params.pad[1] + init_w;
int ww_base = 0;
while (ww_base < conv_params.wS[1] && iw_loop % conv_params.idil[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
int ww_size =
((conv_params.wS[1] - ww_base) + f_wgt_jump_w - 1) / f_wgt_jump_w;
base_w[j] = {ww_base, ww_size};
}
// Collect block sizes
int bm = adj_implicit_m >= 8192 && conv_params.C >= 64 ? 64 : 32;
int bn = (bm == 64 && implicit_N >= 64) ? 64 : 32;
int bk = 16;
int tn = (implicit_N + bn - 1) / bn;
int tm = (adj_implicit_m + bm - 1) / bm;
int swizzle_log = 0;
// Get channel iteration info
int channel_k_iters = ((conv_params.C + bk - 1) / bk);
int gemm_k_iters = channel_k_iters;
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::ostringstream kname;
kname << "implicit_gemm_conv_2d_general_" << type_to_name(out) << "_bm" << bm
<< "_bn" << bn << "_bk" << bk << "_wm" << wm << "_wn" << wn;
// Encode and dispatch kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
size_t grid_dim_z = f_out_jump_h * f_out_jump_w;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, grid_dim_z);
// Encode arrays
set_array_buffer(compute_encoder, in, 0);
set_array_buffer(compute_encoder, wt, 1);
set_array_buffer(compute_encoder, out, 2);
// Encode params
compute_encoder->setBytes(&conv_params, sizeof(MLXConvParams<2>), 3);
compute_encoder->setBytes(&gemm_params, sizeof(ImplicitGemmConv2DParams), 4);
compute_encoder->setBytes(&jump_params, sizeof(Conv2DGeneralJumpParams), 5);
compute_encoder->setBytes(
base_h.data(), sizeof(Conv2DGeneralBaseInfo) * base_h.size(), 6);
compute_encoder->setBytes(
base_w.data(), sizeof(Conv2DGeneralBaseInfo) * base_w.size(), 7);
// Launch kernel
compute_encoder->dispatchThreadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_gpu(
@@ -300,6 +437,7 @@ void winograd_conv_2D_gpu(
// Fill with zeros
array zero_arr = array(0, in.dtype());
copy_gpu(zero_arr, in_padded, CopyType::Scalar, s);
copies_w.push_back(zero_arr);
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
@@ -328,7 +466,8 @@ void winograd_conv_2D_gpu(
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int str[NDIM] = */ {1, 1},
/* const int pad[NDIM] = */ {0, 0},
/* const int dil[NDIM] = */ {1, 1},
/* const int kdil[NDIM] = */ {1, 1},
/* const int idil[NDIM] = */ {1, 1},
/* const size_t in_strides[NDIM + 2] = */
{in_padded.strides()[0],
in_padded.strides()[1],
@@ -338,6 +477,8 @@ void winograd_conv_2D_gpu(
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ false,
};
int O_c = conv_params.O;
@@ -461,6 +602,8 @@ void conv_2D_gpu(
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip,
std::vector<array>& copies) {
// Make conv params
MLXConvParams<2> conv_params{
@@ -472,37 +615,47 @@ void conv_2D_gpu(
/* const int oS[NDIM] = */ {out.shape(1), out.shape(2)},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1]},
/* const int pad[NDIM] = */ {padding[0], padding[1]},
/* const int dil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
/* const int kdil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
/* const int idil[NDIM] = */ {in_dilation[0], in_dilation[1]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2], in.strides()[3]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ flip,
};
bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
bool inp_large = (conv_params.in_strides[0] >= 1ul << 18);
bool channels_large = (conv_params.C + conv_params.O) >= 512;
bool channels_med = (conv_params.C + conv_params.O) >= 256;
// Direct to winograd conv
if (conv_params.C % 32 == 0 && conv_params.O % 32 == 0 &&
conv_params.C >= 64 && conv_params.O >= 64 && conv_params.wS[0] == 3 &&
conv_params.wS[1] == 3 && conv_params.str[0] == 1 &&
conv_params.str[1] == 1 && conv_params.dil[0] == 1 &&
conv_params.dil[1] == 1) {
winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
if (!flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 &&
(channels_large || (channels_med && inp_large))) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
// Direct to implicit gemm conv
else if (conv_params.C % 32 == 0 && conv_params.O % 32 == 0) {
implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
(conv_params.O <= 16 || conv_params.O % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
else if (conv_params.C % 16 == 0 && conv_params.O % 16 == 0) {
return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
}
// Direct to explicit gemm conv
else if (wt_dilation[0] == 1 && wt_dilation[1] == 1) {
explicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
// Direct to fallback conv
else {
slow_conv_2D_gpu(s, d, in, wt, out, conv_params);
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
@@ -533,11 +686,31 @@ void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
// 2D conv
if (out.ndim() == 4) {
conv_2D_gpu(
s, d, in, wt, out, padding_, kernel_strides_, kernel_dilation_, copies);
s,
d,
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_,
copies);
}
// 1D conv
else if (out.ndim() == 3) {
conv_1D_gpu(s, d, in, wt, out, padding_, kernel_strides_, kernel_dilation_);
conv_1D_gpu(
s,
d,
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// Throw error
else {

View File

@@ -26,7 +26,8 @@ static constexpr const char* default_mtllib_path = METAL_PATH;
auto load_device() {
auto devices = MTL::CopyAllDevices();
auto device = static_cast<MTL::Device*>(devices->object(0));
auto device = static_cast<MTL::Device*>(devices->object(0))
?: MTL::CreateSystemDefaultDevice();
if (!device) {
throw std::runtime_error("Failed to load device");
}
@@ -214,15 +215,6 @@ MTL::ComputeCommandEncoder* Device::get_command_encoder(int index) {
return eit->second;
}
MTL::ArgumentEncoder* Device::argument_encoder(
const std::vector<MTL::ArgumentDescriptor*>& arg_descs) const {
// NB array here is already autoreleased but the returned argument
// encoder is owned by the caller and must be released/autoreleased
NS::Array* arg_desc_arr = NS::Array::array(
reinterpret_cast<NS::Object* const*>(arg_descs.data()), arg_descs.size());
return device_->newArgumentEncoder(arg_desc_arr);
}
void Device::register_library(
const std::string& lib_name,
const std::string& lib_path) {
@@ -413,6 +405,11 @@ MTL::ComputePipelineState* Device::get_kernel_(
return kernel;
}
MTL::Library* Device::get_library(const std::string& name) {
auto it = library_map_.find(name);
return (it != library_map_.end()) ? it->second : nullptr;
}
MTL::Library* Device::get_library(
const std::string& name,
const std::string& source,

View File

@@ -62,6 +62,8 @@ class Device {
const std::function<std::string(const std::string&)>& lib_path_func =
get_colocated_mtllib_path);
MTL::Library* get_library(const std::string& name);
MTL::Library* get_library(
const std::string& name,
const std::string& source_string,

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <numeric>
@@ -39,114 +39,75 @@ void Gather::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& s = stream();
auto& d = metal::device(s.device);
int idx_ndim = nidx ? inputs[1].ndim() : 0;
size_t ndim = src.ndim();
std::ostringstream kname;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
kname << "gather" << type_to_name(src) << idx_type_name << "_" << nidx;
if (idx_ndim <= 1) {
kname << "_" << idx_ndim;
}
auto compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder->setComputePipelineState(kernel);
size_t slice_size = 1;
for (auto s : slice_sizes_) {
slice_size *= s;
}
size_t ndim = src.ndim();
size_t nthreads = out.size();
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
// Launch 2D grid of threads: indices x slice
size_t dim0 = out.size() / slice_size;
size_t dim1 = slice_size;
auto group_dims = get_block_dims(dim0, dim1, 1);
MTL::Size grid_dims = MTL::Size(dim0, dim1, 1);
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
compute_encoder->setComputePipelineState(kernel);
// Make the argument buffer to store the indices for the
// `Indices` struct in kernels/indexing.metal
std::vector<MTL::ArgumentDescriptor*> arg_descs(4);
arg_descs[0] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[0]->setIndex(0);
arg_descs[0]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[0]->setArrayLength(nidx);
// Shapes
arg_descs[1] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[1]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[1]->setIndex(nidx + 1);
// Strides
arg_descs[2] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[2]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[2]->setIndex(nidx + 2);
// Indices ndim
arg_descs[3] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[3]->setDataType(MTL::DataType::DataTypeInt);
arg_descs[3]->setIndex(nidx + 3);
// Get the argument encoder
auto arg_enc = d.argument_encoder(arg_descs);
// Allocate and fill buffers for shapes and strides
int idx_ndim = nidx ? inputs[1].ndim() : 0;
auto idx_shapes_buf = allocator::malloc_or_wait(sizeof(int) * idx_ndim);
auto idx_strides_buf = allocator::malloc_or_wait(sizeof(size_t) * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy(
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end(),
static_cast<int*>(idx_shapes_buf.raw_ptr()) + i * idx_ndim);
std::copy(
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end(),
static_cast<size_t*>(idx_strides_buf.raw_ptr()) + i * idx_ndim);
inputs[i + 1].strides().end());
}
// Allocate the argument buffer
auto arg_buf = allocator::malloc_or_wait(arg_enc->encodedLength());
// Register data with the encoder
arg_enc->setArgumentBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0);
for (int i = 0; i < nidx; ++i) {
set_array_buffer(compute_encoder, arg_enc, inputs[i + 1], i);
}
if (idx_ndim > 0) {
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), 0, nidx + 1);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()),
MTL::ResourceUsageRead);
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), 0, nidx + 2);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()),
MTL::ResourceUsageRead);
}
*static_cast<int*>(arg_enc->constantData(nidx + 3)) = idx_ndim;
// Set all the buffers
set_array_buffer(compute_encoder, src, 0);
compute_encoder->setBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0, 1);
set_array_buffer(compute_encoder, out, 2);
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 3);
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 4);
compute_encoder->setBytes(&ndim, sizeof(size_t), 5);
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 6);
compute_encoder->setBytes(&slice_size, sizeof(size_t), 7);
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 8);
set_array_buffer(compute_encoder, out, 1);
// Set source info
compute_encoder->setBytes(src.shape().data(), ndim * sizeof(int), 2);
compute_encoder->setBytes(src.strides().data(), ndim * sizeof(size_t), 3);
compute_encoder->setBytes(&ndim, sizeof(size_t), 4);
compute_encoder->setBytes(slice_sizes_.data(), ndim * sizeof(int), 5);
compute_encoder->setBytes(axes_.data(), nidx * sizeof(int), 6);
// Set index info
//
// We don't need to check for empty idx_shapes because gather has a
// idx_ndim == 0 specialization
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 7);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 8);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 9);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Launch grid
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Cleanup temporaries
arg_enc->release();
d.get_command_buffer(s.index)->addCompletedHandler(
[arg_buf, idx_shapes_buf, idx_strides_buf](MTL::CommandBuffer*) {
allocator::free(arg_buf);
allocator::free(idx_shapes_buf);
allocator::free(idx_strides_buf);
});
}
void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
@@ -181,7 +142,28 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
// Get kernel name
std::ostringstream kname;
std::string idx_type_name = nidx ? type_to_name(inputs[1]) : "";
kname << "scatter" << type_to_name(out) << idx_type_name;
int idx_ndim = nidx ? inputs[1].ndim() : 0;
bool index_nd1_specialization = (idx_ndim == 1);
// Bail from fast path (1d index specialization) if scatter dims aren't
// the outermost dims and contiguous since update access won't be raster
// order.
for (auto i = 0; i < axes_.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= (axes_[i] == i);
}
// Bail from fast path (1d index specialization) if any of the dims are
// broadcasted, since we can't rely on linear indexing in that case.
for (int i = 1; i < inputs.size() && index_nd1_specialization; i++) {
index_nd1_specialization &= inputs[i].flags().row_contiguous;
}
if (index_nd1_specialization) {
kname << "scatter_1d_index" << type_to_name(out) << idx_type_name;
} else {
kname << "scatter" << type_to_name(out) << idx_type_name;
}
switch (reduce_type_) {
case Scatter::None:
kname << "_none";
@@ -206,126 +188,109 @@ void Scatter::eval_gpu(const std::vector<array>& inputs, array& out) {
auto& upd = inputs.back();
size_t nthreads = upd.size();
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
compute_encoder->setComputePipelineState(kernel);
// Make the argument buffer to store the indices for the
// `Indices` struct in kernels/indexing.metal
std::vector<MTL::ArgumentDescriptor*> arg_descs(4);
arg_descs[0] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[0]->setIndex(0);
arg_descs[0]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[0]->setArrayLength(nidx);
// Set all the buffers
set_array_buffer(compute_encoder, upd, 1);
set_array_buffer(compute_encoder, out, 2);
// Shapes
arg_descs[1] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[1]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[1]->setIndex(nidx + 1);
// Strides
arg_descs[2] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[2]->setDataType(MTL::DataType::DataTypePointer);
arg_descs[2]->setIndex(nidx + 2);
// Indices ndim
arg_descs[3] = MTL::ArgumentDescriptor::argumentDescriptor();
arg_descs[3]->setDataType(MTL::DataType::DataTypeInt);
arg_descs[3]->setIndex(nidx + 3);
// Get the argument encoder
auto arg_enc = d.argument_encoder(arg_descs);
// Allocate and fill buffers for shapes and strides
int idx_ndim = nidx ? inputs[1].ndim() : 0;
auto idx_shapes_buf = allocator::malloc_or_wait(sizeof(int) * idx_ndim);
auto idx_strides_buf = allocator::malloc_or_wait(sizeof(size_t) * idx_ndim);
for (int i = 0; i < nidx; ++i) {
std::copy(
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end(),
static_cast<int*>(idx_shapes_buf.raw_ptr()) + i * idx_ndim);
std::copy(
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end(),
static_cast<size_t*>(idx_strides_buf.raw_ptr()) + i * idx_ndim);
}
// Allocate the argument buffer
auto arg_buf = allocator::malloc_or_wait(arg_enc->encodedLength());
// Register data with the encoder
arg_enc->setArgumentBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0);
for (int i = 0; i < nidx; ++i) {
set_array_buffer(compute_encoder, arg_enc, inputs[i + 1], i);
}
if (idx_ndim > 0) {
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()), 0, nidx + 1);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_shapes_buf.ptr()),
MTL::ResourceUsageRead);
arg_enc->setBuffer(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()), 0, nidx + 2);
compute_encoder->useResource(
static_cast<MTL::Buffer*>(idx_strides_buf.ptr()),
MTL::ResourceUsageRead);
}
*static_cast<int*>(arg_enc->constantData(nidx + 3)) = idx_ndim;
compute_encoder->setBuffer(static_cast<MTL::Buffer*>(arg_buf.ptr()), 0, 0);
size_t upd_ndim = upd.ndim();
// Set update info
uint upd_ndim = upd.ndim();
size_t upd_size = 1;
for (int i = idx_ndim; i < upd.ndim(); ++i) {
upd_size *= upd.shape(i);
}
set_array_buffer(compute_encoder, upd, 1);
set_array_buffer(compute_encoder, out, 2);
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
} else {
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
if (index_nd1_specialization) {
bool upd_col_contiguous = upd.flags().col_contiguous;
compute_encoder->setBytes(
upd.strides().data(), upd_ndim * sizeof(size_t), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
} else {
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
out.shape().data(), out.shape().size() * sizeof(int), 3);
compute_encoder->setBytes(
out.strides().data(), out_ndim * sizeof(size_t), 8);
out.strides().data(), out.strides().size() * sizeof(size_t), 4);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_col_contiguous, sizeof(bool), 6);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
} else {
// Collect all idx shapes and strides into one place
std::vector<int> idx_shapes;
std::vector<size_t> idx_strides;
for (int i = 0; i < nidx; ++i) {
idx_shapes.insert(
idx_shapes.end(),
inputs[i + 1].shape().begin(),
inputs[i + 1].shape().end());
idx_strides.insert(
idx_strides.end(),
inputs[i + 1].strides().begin(),
inputs[i + 1].strides().end());
}
if (upd_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 3);
compute_encoder->setBytes(&stride_, sizeof(size_t), 4);
} else {
compute_encoder->setBytes(upd.shape().data(), upd_ndim * sizeof(int), 3);
compute_encoder->setBytes(
upd.strides().data(), upd_ndim * sizeof(size_t), 4);
}
compute_encoder->setBytes(&upd_ndim, sizeof(size_t), 5);
compute_encoder->setBytes(&upd_size, sizeof(size_t), 6);
// Set output info
size_t out_ndim = out.ndim();
if (out_ndim == 0) {
// Need placeholders so Metal doesn't compalain
int shape_ = 0;
size_t stride_ = 0;
compute_encoder->setBytes(&shape_, sizeof(int), 7);
compute_encoder->setBytes(&stride_, sizeof(size_t), 8);
} else {
compute_encoder->setBytes(out.shape().data(), out_ndim * sizeof(int), 7);
compute_encoder->setBytes(
out.strides().data(), out_ndim * sizeof(size_t), 8);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
// Set index info
if (idx_ndim == 0) {
// Add a 0 in idx_shapes and strides to avoid the missing buffer binding
// error in the metal API.
idx_shapes.push_back(0);
idx_strides.push_back(0);
}
compute_encoder->setBytes(
idx_shapes.data(), idx_shapes.size() * sizeof(int), 11);
compute_encoder->setBytes(
idx_strides.data(), idx_strides.size() * sizeof(size_t), 12);
compute_encoder->setBytes(&idx_ndim, sizeof(int), 13);
// Set index buffers
for (int i = 1; i < nidx + 1; ++i) {
set_array_buffer(compute_encoder, inputs[i], 20 + i);
}
// Launch grid
MTL::Size grid_dims = MTL::Size(upd_size, nthreads / upd_size, 1);
MTL::Size group_dims = get_block_dims(upd_size, nthreads / upd_size, 1);
compute_encoder->dispatchThreads(grid_dims, group_dims);
}
compute_encoder->setBytes(&out_ndim, sizeof(size_t), 9);
compute_encoder->setBytes(axes_.data(), axes_.size() * sizeof(int), 10);
compute_encoder->dispatchThreads(grid_dims, group_dims);
// Cleanup temporaries
arg_enc->release();
d.get_command_buffer(s.index)->addCompletedHandler(
[arg_buf, idx_shapes_buf, idx_strides_buf](MTL::CommandBuffer*) {
allocator::free(arg_buf);
allocator::free(idx_shapes_buf);
allocator::free(idx_strides_buf);
});
}
} // namespace mlx::core

View File

@@ -3,10 +3,12 @@ set(
${CMAKE_CURRENT_SOURCE_DIR}/atomic.h
${CMAKE_CURRENT_SOURCE_DIR}/bf16.h
${CMAKE_CURRENT_SOURCE_DIR}/bf16_math.h
${CMAKE_CURRENT_SOURCE_DIR}/binary.h
${CMAKE_CURRENT_SOURCE_DIR}/complex.h
${CMAKE_CURRENT_SOURCE_DIR}/defines.h
${CMAKE_CURRENT_SOURCE_DIR}/erf.h
${CMAKE_CURRENT_SOURCE_DIR}/reduce.h
${CMAKE_CURRENT_SOURCE_DIR}/indexing.h
${CMAKE_CURRENT_SOURCE_DIR}/unary.h
${CMAKE_CURRENT_SOURCE_DIR}/utils.h
)
@@ -21,12 +23,15 @@ set(
"gemv"
"quantized"
"random"
"reduce"
"rope"
"scan"
"scaled_dot_product_attention"
"softmax"
"sort"
"ternary"
"unary"
"indexing"
"gather"
"scatter"
)
function(build_kernel_base TARGET SRCFILE DEPS)
@@ -45,11 +50,7 @@ endfunction(build_kernel_base)
function(build_kernel KERNEL)
set(SRCFILE ${CMAKE_CURRENT_SOURCE_DIR}/${KERNEL}.metal)
set(HEADERS_PADDED ${HEADERS})
if(${KERNEL} STREQUAL "conv")
set(HEADERS_PADDED ${HEADERS_PADDED} ${CMAKE_CURRENT_SOURCE_DIR}/conv.h)
endif()
build_kernel_base(${KERNEL} ${SRCFILE} "${HEADERS_PADDED}")
build_kernel_base(${KERNEL} ${SRCFILE} "${HEADERS}")
endfunction(build_kernel)
foreach(KERNEL ${KERNELS})
@@ -66,6 +67,15 @@ foreach(KERNEL ${STEEL_KERNELS})
set(KERNEL_AIR ${TARGET}.air ${KERNEL_AIR})
endforeach()
file(GLOB_RECURSE REDUCE_KERNELS ${CMAKE_CURRENT_SOURCE_DIR}/reduction/*.metal)
file(GLOB_RECURSE REDUCE_HEADERS ${CMAKE_CURRENT_SOURCE_DIR}/reduction/*.h)
foreach(KERNEL ${REDUCE_KERNELS})
cmake_path(GET KERNEL STEM TARGET)
build_kernel_base(${TARGET} ${KERNEL} "${REDUCE_HEADERS}")
set(KERNEL_AIR ${TARGET}.air ${KERNEL_AIR})
endforeach()
add_custom_command(
OUTPUT ${MLX_METAL_PATH}/mlx.metallib
COMMAND xcrun -sdk macosx metallib ${KERNEL_AIR} -o ${MLX_METAL_PATH}/mlx.metallib

View File

@@ -11,8 +11,6 @@ template <typename U>
struct IndexValPair {
uint32_t index;
U val;
IndexValPair(uint32_t _index, U _val) : index(_index), val(_val) {}
};
template <typename U>
@@ -65,10 +63,10 @@ struct ArgMax {
template <typename U>
IndexValPair<U> simd_shuffle_down(IndexValPair<U> data, uint16_t delta) {
return IndexValPair<U>(
return IndexValPair<U>{
simd_shuffle_down(data.index, delta),
simd_shuffle_down(data.val, delta)
);
};
}
@@ -82,7 +80,6 @@ template <typename T, typename Op, int N_READS>
const device size_t& ndim [[buffer(5)]],
const device size_t& axis_stride [[buffer(6)]],
const device size_t& axis_size [[buffer(7)]],
threadgroup IndexValPair<T> *local_data [[threadgroup(0)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint lsize [[threads_per_threadgroup]],
@@ -111,7 +108,9 @@ template <typename T, typename Op, int N_READS>
auto in_idx = elem_to_loc(gid / lsize, shape, in_strides, ndim);
auto out_idx = elem_to_loc(gid / lsize, shape, out_strides, ndim);
IndexValPair<T> best(0, Op::init);
IndexValPair<T> best{0, Op::init};
threadgroup IndexValPair<T> local_data[32];
// Loop over the reduction axis in lsize*N_READS buckets
for (uint r=0; r < ceildiv(axis_size, N_READS*lsize); r++) {
@@ -172,7 +171,6 @@ template <typename T, typename Op, int N_READS>
const device size_t& ndim [[buffer(5)]], \
const device size_t& axis_stride [[buffer(6)]], \
const device size_t& axis_size [[buffer(7)]], \
threadgroup IndexValPair<itype> *local_data [[threadgroup(0)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint lsize [[threads_per_threadgroup]], \

View File

@@ -0,0 +1,231 @@
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <metal_integer>
#include <metal_math>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/utils.h"
struct Add {
template <typename T>
T operator()(T x, T y) {
return x + y;
}
};
struct Divide {
template <typename T>
T operator()(T x, T y) {
return x / y;
}
};
struct Remainder {
template <typename T>
metal::enable_if_t<metal::is_integral_v<T> & !metal::is_signed_v<T>, T>
operator()(T x, T y) {
return x % y;
}
template <typename T>
metal::enable_if_t<metal::is_integral_v<T> & metal::is_signed_v<T>, T>
operator()(T x, T y) {
auto r = x % y;
if (r != 0 && (r < 0 != y < 0)) {
r += y;
}
return r;
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
T r = fmod(x, y);
if (r != 0 && (r < 0 != y < 0)) {
r += y;
}
return r;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
return x % y;
}
};
struct Equal {
template <typename T>
bool operator()(T x, T y) {
return x == y;
}
};
struct NaNEqual {
template <typename T>
bool operator()(T x, T y) {
return x == y || (metal::isnan(x) && metal::isnan(y));
}
template <>
bool operator()(complex64_t x, complex64_t y) {
return x == y ||
(metal::isnan(x.real) && metal::isnan(y.real) && metal::isnan(x.imag) &&
metal::isnan(y.imag)) ||
(x.real == y.real && metal::isnan(x.imag) && metal::isnan(y.imag)) ||
(metal::isnan(x.real) && metal::isnan(y.real) && x.imag == y.imag);
}
};
struct Greater {
template <typename T>
bool operator()(T x, T y) {
return x > y;
}
};
struct GreaterEqual {
template <typename T>
bool operator()(T x, T y) {
return x >= y;
}
};
struct Less {
template <typename T>
bool operator()(T x, T y) {
return x < y;
}
};
struct LessEqual {
template <typename T>
bool operator()(T x, T y) {
return x <= y;
}
};
struct LogAddExp {
template <typename T>
T operator()(T x, T y) {
if (metal::isnan(x) || metal::isnan(y)) {
return metal::numeric_limits<T>::quiet_NaN();
}
constexpr T inf = metal::numeric_limits<T>::infinity();
T maxval = metal::max(x, y);
T minval = metal::min(x, y);
return (minval == -inf || maxval == inf)
? maxval
: (maxval + log1p(metal::exp(minval - maxval)));
};
};
struct Maximum {
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T x, T y) {
return metal::max(x, y);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
if (metal::isnan(x)) {
return x;
}
return x > y ? x : y;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag)) {
return x;
}
return x > y ? x : y;
}
};
struct Minimum {
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T x, T y) {
return metal::min(x, y);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
if (metal::isnan(x)) {
return x;
}
return x < y ? x : y;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag)) {
return x;
}
return x < y ? x : y;
}
};
struct Multiply {
template <typename T>
T operator()(T x, T y) {
return x * y;
}
};
struct NotEqual {
template <typename T>
bool operator()(T x, T y) {
return x != y;
}
template <>
bool operator()(complex64_t x, complex64_t y) {
return x.real != y.real || x.imag != y.imag;
}
};
struct Power {
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T base, T exp) {
return metal::pow(base, exp);
}
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T base, T exp) {
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
auto x_theta = metal::atan(x.imag / x.real);
auto x_ln_r = 0.5 * metal::log(x.real * x.real + x.imag * x.imag);
auto mag = metal::exp(y.real * x_ln_r - y.imag * x_theta);
auto phase = y.imag * x_ln_r + y.real * x_theta;
return {mag * metal::cos(phase), mag * metal::sin(phase)};
}
};
struct Subtract {
template <typename T>
T operator()(T x, T y) {
return x - y;
}
};
struct LogicalAnd {
template <typename T>
T operator()(T x, T y) {
return x && y;
};
};
struct LogicalOr {
template <typename T>
T operator()(T x, T y) {
return x || y;
};
};

View File

@@ -1,186 +1,6 @@
// Copyright © 2023 Apple Inc.
#include <metal_integer>
#include <metal_math>
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/bf16.h"
struct Add {
template <typename T> T operator()(T x, T y) { return x + y; }
};
struct Divide {
template <typename T> T operator()(T x, T y) { return x / y; }
};
struct Remainder {
template <typename T> T operator()(T x, T y) { return x % y; }
template <> float operator()(float x, float y) { return fmod(x, y); }
template <> half operator()(half x, half y) { return fmod(x, y); }
template <> bfloat16_t operator()(bfloat16_t x, bfloat16_t y) { return fmod(x, y); }
};
struct Equal {
template <typename T> bool operator()(T x, T y) { return x == y; }
};
struct NaNEqual {
template <typename T> bool operator()(T x, T y) {
return x == y || (metal::isnan(x) && metal::isnan(y));
}
template <>
bool operator()(complex64_t x, complex64_t y) {
return x == y ||
(metal::isnan(x.real) && metal::isnan(y.real)
&& metal::isnan(x.imag) && metal::isnan(y.imag)) ||
(x.real == y.real && metal::isnan(x.imag) && metal::isnan(y.imag)) ||
(metal::isnan(x.real) && metal::isnan(y.real) && x.imag == y.imag);
}
};
struct Greater {
template <typename T> bool operator()(T x, T y) { return x > y; }
};
struct GreaterEqual {
template <typename T> bool operator()(T x, T y) { return x >= y; }
};
struct Less {
template <typename T> bool operator()(T x, T y) { return x < y; }
};
struct LessEqual {
template <typename T> bool operator()(T x, T y) { return x <= y; }
};
struct LogAddExp {
template <typename T>
T operator()(T x, T y) {
if (metal::isnan(x) || metal::isnan(y)) {
return metal::numeric_limits<T>::quiet_NaN();
}
constexpr T inf = metal::numeric_limits<T>::infinity();
T maxval = metal::max(x, y);
T minval = metal::min(x, y);
return (minval == -inf || maxval == inf) ? maxval :
(maxval + log1p(metal::exp(minval - maxval)));
};
};
struct Maximum {
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T x, T y) {
return metal::max(x, y);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
if (metal::isnan(x)) {
return x;
}
return x > y ? x : y;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag)) {
return x;
}
return x > y ? x : y;
}
};
struct Minimum {
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T x, T y) {
return metal::min(x, y);
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
if (metal::isnan(x)) {
return x;
}
return x < y ? x : y;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
if (metal::isnan(x.real) || metal::isnan(x.imag)) {
return x;
}
return x < y ? x : y;
}
};
struct Multiply {
template <typename T> T operator()(T x, T y) { return x * y; }
};
struct NotEqual {
template <typename T> bool operator()(T x, T y) { return x != y; }
template <>
bool operator()(complex64_t x, complex64_t y) {
return x.real != y.real || x.imag != y.imag;
}
};
struct Power {
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T base, T exp) {
return metal::pow(base, exp);
}
template <typename T>
metal::enable_if_t<metal::is_integral_v<T>, T> operator()(T base, T exp) {
T res = 1;
while (exp) {
if (exp & 1) {
res *= base;
}
exp >>= 1;
base *= base;
}
return res;
}
template <>
complex64_t operator()(complex64_t x, complex64_t y) {
auto x_theta = metal::atan(x.imag / x.real);
auto x_ln_r = 0.5 * metal::log(x.real * x.real + x.imag * x.imag);
auto mag = metal::exp(y.real * x_ln_r - y.imag * x_theta);
auto phase = y.imag * x_ln_r + y.real * x_theta;
return {mag * metal::cos(phase), mag * metal::sin(phase)};
}
};
struct Subtract {
template <typename T> T operator()(T x, T y) { return x - y; }
};
struct LogicalAnd {
template <typename T>
T operator()(T x, T y) { return x && y; };
};
struct LogicalOr {
template <typename T>
T operator()(T x, T y) { return x || y; };
};
template <typename T, typename U, typename Op>
[[kernel]] void binary_op_s2s(
device const T* a,
device const T* b,
device U* c,
uint index [[thread_position_in_grid]]) {
c[index] = Op()(a[0], b[0]);
}
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/binary.h"
template <typename T, typename U, typename Op>
[[kernel]] void binary_op_ss(

View File

@@ -14,10 +14,29 @@ struct FloorDivide {
};
struct Remainder {
template <typename T> T operator()(T x, T y) { return x % y; }
template <> float operator()(float x, float y) { return fmod(x, y); }
template <> half operator()(half x, half y) { return fmod(x, y); }
template <> bfloat16_t operator()(bfloat16_t x, bfloat16_t y) { return fmod(x, y); }
template <typename T>
metal::enable_if_t<metal::is_integral_v<T> & !metal::is_signed_v<T>, T> operator()(T x, T y) {
return x % y;
}
template <typename T>
metal::enable_if_t<metal::is_integral_v<T> & metal::is_signed_v<T>, T> operator()(T x, T y) {
auto r = x % y;
if (r != 0 && (r < 0 != y < 0)) {
r += y;
}
return r;
}
template <typename T>
metal::enable_if_t<!metal::is_integral_v<T>, T> operator()(T x, T y) {
T r = fmod(x, y);
if (r != 0 && (r < 0 != y < 0)) {
r += y;
}
return r;
}
template <> complex64_t operator()(complex64_t x, complex64_t y) {
return x % y;
}
};
template <typename T, typename U, typename Op1, typename Op2>

View File

@@ -0,0 +1,7 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/binary.h"
#include "mlx/backend/metal/kernels/ternary.h"
#include "mlx/backend/metal/kernels/unary.h"
typedef half float16_t;

View File

@@ -121,5 +121,11 @@ constexpr complex64_t operator/(complex64_t a, complex64_t b) {
constexpr complex64_t operator%(complex64_t a, complex64_t b) {
auto real = a.real - (b.real * static_cast<int64_t>(a.real / b.real));
auto imag = a.imag - (b.imag * static_cast<int64_t>(a.imag / b.imag));
if (real != 0 && (real < 0 != b.real < 0)) {
real += b.real;
}
if (imag != 0 && (imag < 0 != b.imag < 0)) {
imag += b.imag;
}
return {real, imag};
}

View File

@@ -1,481 +0,0 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <metal_simdgroup>
#include <metal_simdgroup_matrix>
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/conv_params.h"
#define MLX_MTL_CONST static constant constexpr const
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// Loading helper
///////////////////////////////////////////////////////////////////////////////
template <
typename T,
int BM,
int BN,
int BK,
int vec_size,
int tgp_size,
int tgp_padding = 0>
struct Conv2DInputBlockLoader {
// Destination dimensions
MLX_MTL_CONST int dst_fd = BM;
MLX_MTL_CONST int dst_ld = BK + tgp_padding;
MLX_MTL_CONST int n_vecs = BK / vec_size;
// Stride along block row within the block
MLX_MTL_CONST int bstride = tgp_size / n_vecs;
MLX_MTL_CONST int n_rows = dst_fd / bstride;
// Thread location indices
const short thread_idx;
const short bi;
const short bj;
// threadgroup and device memory
threadgroup T* dst;
const device T* src;
const constant MLXConvParams<2>& params;
int weight_h;
int weight_w;
int offsets_n[n_rows];
int offsets_oh[n_rows];
int offsets_ow[n_rows];
/* Constructor */
METAL_FUNC Conv2DInputBlockLoader(
const device T* src_,
threadgroup T* dst_,
const constant MLXConvParams<2>& params_,
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]])
: thread_idx(simd_group_id * 32 + simd_lane_id),
bi(thread_idx / n_vecs),
bj(vec_size * (thread_idx % n_vecs)),
dst(dst_ + bi * dst_ld + bj),
src(src_ + bj),
params(params_),
weight_h(0),
weight_w(0) {
int out_n_pixels = params.oS[0] * params.oS[1];
for (int i = 0; i < n_rows; ++i) {
int offset_nhw = tid.y * BM + bi + i * bstride;
offsets_n[i] = offset_nhw / out_n_pixels;
int hw = offset_nhw % out_n_pixels;
offsets_oh[i] = hw / params.oS[1];
offsets_ow[i] = hw % params.oS[1];
}
(void)lid;
}
/* Load from device memory into threadgroup memory - without bound checking */
METAL_FUNC void load_unsafe() const {
#pragma clang loop unroll(full)
for (short i = 0, is = 0; i < n_rows; ++i, is += bstride) {
int n = offsets_n[i];
int oh = offsets_oh[i];
int ow = offsets_ow[i];
int ih = oh * params.str[0] - params.pad[0] + weight_h * params.dil[0];
int iw = ow * params.str[1] - params.pad[1] + weight_w * params.dil[1];
// Read from input if in bounds
if (ih >= 0 && ih < params.iS[0] && iw >= 0 && iw < params.iS[1]) {
const device T* curr_src = src + n * params.in_strides[0] +
ih * params.in_strides[1] + iw * params.in_strides[2];
#pragma clang loop unroll(full)
for (short j = 0; j < vec_size; ++j) {
dst[is * dst_ld + j] = curr_src[j];
}
}
// Zero pad otherwise
else {
#pragma clang loop unroll(full)
for (short j = 0; j < vec_size; ++j) {
dst[is * dst_ld + j] = T(0);
}
}
}
}
/* Iteration helper */
METAL_FUNC void next() {
if (++weight_w < params.wS[1]) {
return;
}
weight_w = 0;
if (++weight_h < params.wS[0]) {
return;
}
weight_h = 0;
src += BK;
}
};
template <
typename T,
int BM,
int BN,
int BK,
int vec_size,
int tgp_size,
int tgp_padding = 0>
struct Conv2DWeightBlockLoader {
// Destination dimensions
MLX_MTL_CONST int dst_fd = BN;
MLX_MTL_CONST int dst_ld = BK + tgp_padding;
MLX_MTL_CONST int n_vecs = BK / vec_size;
// Stride along block row within the block
MLX_MTL_CONST int bstride = tgp_size / n_vecs;
MLX_MTL_CONST int n_rows = dst_fd / bstride;
// Leading dimension for src
const int src_ld;
// Thread location indices
const short thread_idx;
const short bi;
const short bj;
// threadgroup and device memory
threadgroup T* dst;
const device T* src;
const constant MLXConvParams<2>& params;
int weight_h;
int weight_w;
/* Constructor */
METAL_FUNC Conv2DWeightBlockLoader(
const device T* src_,
threadgroup T* dst_,
const constant MLXConvParams<2>& params_,
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]])
: src_ld(params_.wt_strides[0]),
thread_idx(simd_group_id * 32 + simd_lane_id),
bi(thread_idx / n_vecs),
bj(vec_size * (thread_idx % n_vecs)),
dst(dst_ + bi * dst_ld + bj),
src(src_ + bi * src_ld + bj),
params(params_),
weight_h(0),
weight_w(0) {
(void)lid;
(void)tid;
}
/* Load from device memory into threadgroup memory - without bound checking */
METAL_FUNC void load_unsafe() const {
const device T* curr_src =
src + weight_h * params.wt_strides[1] + weight_w * params.wt_strides[2];
#pragma clang loop unroll(full)
for (short i = 0; i < dst_fd; i += bstride) {
#pragma clang loop unroll(full)
for (short j = 0; j < vec_size; j++) {
dst[i * dst_ld + j] = curr_src[i * src_ld + j];
}
}
}
/* Iteration helper */
METAL_FUNC void next() {
if (++weight_w < params.wS[1]) {
return;
}
weight_w = 0;
if (++weight_h < params.wS[0]) {
return;
}
weight_h = 0;
src += BK;
}
};
///////////////////////////////////////////////////////////////////////////////
// Transforms
///////////////////////////////////////////////////////////////////////////////
template <typename OutT, typename InT>
struct TransformNone {
static METAL_FUNC OutT apply(InT x) {
return static_cast<OutT>(x);
}
};
template <typename T>
struct AccumHelper {
typedef float accum_type;
};
///////////////////////////////////////////////////////////////////////////////
// MMA helper
///////////////////////////////////////////////////////////////////////////////
template <
typename T,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
int tgp_padding_a = 0,
int tgp_padding_b = 0,
typename AccumType = typename AccumHelper<T>::accum_type,
typename Epilogue = TransformNone<T, AccumType>>
struct Conv2DBlockMMA {
// Warp tile size along M
MLX_MTL_CONST int TM = BM / (WM * 8);
// Warp tile size along N
MLX_MTL_CONST int TN = BN / (WN * 8);
// Warp tile simdgroup matrix strides along M
MLX_MTL_CONST int TM_stride = 8 * WM;
// Warp tile simdgroup matrix strides along M
MLX_MTL_CONST int TN_stride = 8 * WN;
// Leading dimensions of threadgroup A, B blocks
MLX_MTL_CONST int lda_tgp = (transpose_a ? BM : BK) + tgp_padding_a;
MLX_MTL_CONST int ldb_tgp = (transpose_b ? BK : BN) + tgp_padding_b;
// Strides of A, B along reduction axis
MLX_MTL_CONST short simd_stride_a =
transpose_a ? TM_stride : TM_stride * lda_tgp;
MLX_MTL_CONST short simd_stride_b =
transpose_b ? TN_stride * ldb_tgp : TN_stride;
// Jump between elements
MLX_MTL_CONST short jump_a = transpose_a ? lda_tgp : 1;
MLX_MTL_CONST short jump_b = transpose_b ? ldb_tgp : 1;
// Offsets within threadgroup
const int tm;
const int tn;
// Simdgroup matrices
simdgroup_matrix<AccumType, 8, 8> Asimd[TM];
simdgroup_matrix<AccumType, 8, 8> Bsimd[TN];
simdgroup_matrix<AccumType, 8, 8> results[TM * TN] = {
simdgroup_matrix<AccumType, 8, 8>(0)};
short sm;
short sn;
/* Constructor */
METAL_FUNC Conv2DBlockMMA(
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]])
: tm(8 * (simd_group_id / WN)), tn(8 * (simd_group_id % WN)) {
short qid = simd_lane_id / 4;
sm = (qid & 4) + (simd_lane_id / 2) % 4;
sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
}
/* (BM, BK) X (BK, BN) multiply accumulate function */
METAL_FUNC void mma(const threadgroup T* As, const threadgroup T* Bs) {
// Iterate over BK in blocks of 8
#pragma clang loop unroll(full)
for (short kk = 0; kk < BK; kk += 8) {
short2 offset_a =
transpose_a ? short2(tm + sm, kk + sn) : short2(kk + sn, tm + sm);
short2 offset_b =
transpose_b ? short2(kk + sm, tn + sn) : short2(tn + sn, kk + sm);
const threadgroup T* As__ = As + offset_a.y * lda_tgp + offset_a.x;
const threadgroup T* Bs__ = Bs + offset_b.y * ldb_tgp + offset_b.x;
simdgroup_barrier(mem_flags::mem_none);
// Load elements from threadgroup A as simdgroup matrices
#pragma clang loop unroll(full)
for (short i = 0; i < TM; i++) {
Asimd[i].thread_elements()[0] = static_cast<AccumType>(As__[0]);
Asimd[i].thread_elements()[1] = static_cast<AccumType>(As__[jump_a]);
As__ += simd_stride_a;
}
simdgroup_barrier(mem_flags::mem_none);
// Load elements from threadgroup B as simdgroup matrices
#pragma clang loop unroll(full)
for (short j = 0; j < TN; j++) {
Bsimd[j].thread_elements()[0] = static_cast<AccumType>(Bs__[0]);
Bsimd[j].thread_elements()[1] = static_cast<AccumType>(Bs__[jump_b]);
Bs__ += simd_stride_b;
}
simdgroup_barrier(mem_flags::mem_none);
// Multiply and accumulate into result simdgroup matrices
#pragma clang loop unroll(full)
for (short i = 0; i < TM; i++) {
#pragma clang loop unroll(full)
for (short j = 0; j < TN; j++) {
simdgroup_multiply_accumulate(
results[i * TN + j], Asimd[i], Bsimd[j], results[i * TN + j]);
}
}
}
}
/* Store results from simdgroup_matrix results into device memory */
METAL_FUNC void store_result(device T* C, const int ldc) const {
#pragma clang loop unroll(full)
for (int i = 0; i < TM; i++) {
#pragma clang loop unroll(full)
for (int j = 0; j < TN; j++) {
C[(i * TM_stride + sm + tm) * ldc + j * TN_stride + tn + sn] =
Epilogue::apply(results[i * TN + j].thread_elements()[0]);
C[(i * TM_stride + sm + tm) * ldc + j * TN_stride + tn + sn + 1] =
Epilogue::apply(results[i * TN + j].thread_elements()[1]);
}
}
}
METAL_FUNC void
store_result_safe(device T* C, const int ldc, short2 dst_tile_dims) const {
#pragma clang loop unroll(full)
for (int i = 0; i < TM; i++) {
if (tm + i * TM_stride + sm < dst_tile_dims.y) {
#pragma clang loop unroll(full)
for (int j = 0; j < TN; j++) {
if (tn + j * TN_stride + sn < dst_tile_dims.x) {
C[(tm + i * TM_stride + sm) * ldc + tn + j * TN_stride + sn] =
Epilogue::apply(results[i * TN + j].thread_elements()[0]);
}
if (tn + j * TN_stride + sn + 1 < dst_tile_dims.x) {
C[(tm + i * TM_stride + sm) * ldc + tn + j * TN_stride + sn + 1] =
Epilogue::apply(results[i * TN + j].thread_elements()[1]);
}
}
}
}
}
};
///////////////////////////////////////////////////////////////////////////////
// GEMM kernels
///////////////////////////////////////////////////////////////////////////////
template <
typename T,
int BM,
int BN,
int BK,
int WM,
int WN,
bool transpose_a,
bool transpose_b,
typename AccumType = typename AccumHelper<T>::accum_type,
typename Epilogue = TransformNone<T, AccumType>>
struct Conv2DImplicitGEMMKernel {
MLX_MTL_CONST short tgp_padding_a = 16 / sizeof(T);
MLX_MTL_CONST short tgp_padding_b = 16 / sizeof(T);
MLX_MTL_CONST short tgp_mem_size_a =
transpose_a ? BK * (BM + tgp_padding_a) : BM * (BK + tgp_padding_a);
MLX_MTL_CONST short tgp_mem_size_b =
transpose_b ? BN * (BK + tgp_padding_b) : BK * (BN + tgp_padding_b);
MLX_MTL_CONST short tgp_mem_size = tgp_mem_size_a + tgp_mem_size_b;
MLX_MTL_CONST short tgp_size = WM * WN * 32;
MLX_MTL_CONST short vec_size = (BM == 64 && BN == 64) ? 8 : 4;
using loader_a_t =
Conv2DInputBlockLoader<T, BM, BN, BK, vec_size, tgp_size, tgp_padding_a>;
using loader_b_t =
Conv2DWeightBlockLoader<T, BM, BN, BK, vec_size, tgp_size, tgp_padding_b>;
using mma_t = Conv2DBlockMMA<
T,
BM,
BN,
BK,
WM,
WN,
transpose_a,
transpose_b,
tgp_padding_a,
tgp_padding_b,
AccumType,
Epilogue>;
/* Main kernel function */
static METAL_FUNC void run(
const device T* A [[buffer(0)]],
const device T* B [[buffer(1)]],
device T* C [[buffer(2)]],
const constant MLXConvParams<2>& params [[buffer(3)]],
threadgroup T* tgp_memory [[threadgroup(0)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
const int c_row = tid.y * BM;
const int c_col = tid.x * BN;
const int K = params.wt_strides[0];
const int N = params.O;
B += c_col * K;
C += c_row * N + c_col;
// Prepare threadgroup memory for loading
threadgroup T* As = tgp_memory;
threadgroup T* Bs = tgp_memory + tgp_mem_size_a;
// Prepare threadgroup loading operations
loader_a_t loader_a(A, As, params, tid, lid, simd_gid, simd_lid);
loader_b_t loader_b(B, Bs, params, tid, lid, simd_gid, simd_lid);
// Prepare threadgroup mma operation
mma_t mma_op(simd_gid, simd_lid);
for (int k = 0; k < K; k += BK) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load elements into threadgroup
loader_a.load_unsafe();
loader_b.load_unsafe();
threadgroup_barrier(mem_flags::mem_threadgroup);
// Multiply and accumulate threadgroup elements
mma_op.mma(As, Bs);
// Prepare for next iteration
loader_a.next();
loader_b.next();
}
threadgroup_barrier(mem_flags::mem_none);
// Store results to device memory
mma_op.store_result(C, N);
}
};

View File

@@ -1,16 +1,102 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <metal_stdlib>
#include <metal_simdgroup>
#include <metal_simdgroup_matrix>
#include <metal_stdlib>
#include "mlx/backend/metal/kernels/conv_params.h"
#include "mlx/backend/metal/kernels/steel/conv/params.h"
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/conv.h"
#define MLX_MTL_CONST static constant constexpr const
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
/// Slow and naive kernels
/// Naive unfold with dilation
///////////////////////////////////////////////////////////////////////////////
template <typename T, int N>
[[kernel]] void naive_unfold_Nd(
const device T* in [[buffer(0)]],
device T* out [[buffer(1)]],
const constant MLXConvParams<N>* params [[buffer(2)]],
uint3 gid [[thread_position_in_grid]]) {
int filter_size = params->C;
for(short i = 0; i < N; i++) filter_size *= params->wS[i];
int out_pixels = 1;
for(short i = 0; i < N; i++) out_pixels *= params->oS[i];
// Set out
out += gid.z * filter_size + gid.y * (params->C);
// Corrdinates in input
int is[N] = {0};
// gid.z: N oS (Batch and row in unfolded output)
// gid.y: wS (Filter location to unfold input)
// gid.x: C (channel)
int n = (gid.z) / out_pixels;
int oS = (gid.z) % out_pixels;
int wS = gid.y;
bool valid = n < params->N;
// Unroll dimensions
for (int i = N - 1; i >= 0; --i) {
int os_ = (oS % params->oS[i]);
int ws_ = (wS % params->wS[i]);
ws_ = params->flip ? params->wS[i] - ws_ - 1 : ws_;
int is_ = os_ * params->str[i] - params->pad[i] + ws_ * params->kdil[i];
int is_max = 1 + params->idil[i] * (params->iS[i] - 1);
valid &= is_ >= 0 && is_ < is_max && (is_ % params->idil[i] == 0);
is[i] = is_ / params->idil[i];
oS /= params->oS[i];
wS /= params->wS[i];
}
if(valid) {
size_t in_offset = n * params->in_strides[0];
for(int i = 0; i < N; ++i) {
in_offset += is[i] * params->in_strides[i + 1];
}
out[gid.x] = in[in_offset + gid.x];
} else {
out[gid.x] = T(0);
}
}
#define instantiate_naive_unfold_nd(name, itype, n) \
template [[host_name("naive_unfold_nd_" #name "_" #n)]] \
[[kernel]] void naive_unfold_Nd( \
const device itype* in [[buffer(0)]], \
device itype* out [[buffer(1)]], \
const constant MLXConvParams<n>* params [[buffer(2)]], \
uint3 gid [[thread_position_in_grid]]);
#define instantiate_naive_unfold_nd_dims(name, itype) \
instantiate_naive_unfold_nd(name, itype, 1) \
instantiate_naive_unfold_nd(name, itype, 2) \
instantiate_naive_unfold_nd(name, itype, 3)
instantiate_naive_unfold_nd_dims(float32, float);
instantiate_naive_unfold_nd_dims(float16, half);
instantiate_naive_unfold_nd_dims(bfloat16, bfloat16_t);
///////////////////////////////////////////////////////////////////////////////
/// Slow and naive conv2d kernels
///////////////////////////////////////////////////////////////////////////////
template <typename T,
@@ -58,8 +144,8 @@ template <typename T,
// Local in
for(int m = 0; m < TM; m++) {
int i = out_h[m] * params.str[0] - params.pad[0] + h * params.dil[0];
int j = out_w[m] * params.str[1] - params.pad[1] + w * params.dil[1];
int i = out_h[m] * params.str[0] - params.pad[0] + h * params.kdil[0];
int j = out_w[m] * params.str[1] - params.pad[1] + w * params.kdil[1];
bool valid = i >= 0 && i < params.iS[0] && j >= 0 && j < params.iS[1];
in_local[m] = valid ? in[i * params.in_strides[1] + j * params.in_strides[2] + c] : T(0);
@@ -116,59 +202,6 @@ instantiate_naive_conv_2d_blocks(float32, float);
instantiate_naive_conv_2d_blocks(float16, half);
instantiate_naive_conv_2d_blocks(bfloat16, bfloat16_t);
///////////////////////////////////////////////////////////////////////////////
/// Implicit gemm kernels
///////////////////////////////////////////////////////////////////////////////
template <typename T,
int BM,
int BN,
int BK,
int WM,
int WN>
[[kernel, max_total_threads_per_threadgroup(WM * WN * 32)]] void implicit_gemm_conv_2d(
const device T* in [[buffer(0)]],
const device T* wt [[buffer(1)]],
device T* out [[buffer(2)]],
const constant MLXConvParams<2>& params [[buffer(3)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
using gemm_kernel = Conv2DImplicitGEMMKernel<T, BM, BN, BK, WM, WN, /*transpose_a*/ false, /*transpose_b*/ true>;
threadgroup T tgp_memory[gemm_kernel::tgp_mem_size];
gemm_kernel::run(
in, wt, out,
params, tgp_memory,
tid, lid, simd_gid, simd_lid
);
}
#define instantiate_implicit_conv_2d(name, itype, bm, bn, bk, wm, wn) \
template [[host_name("implicit_gemm_conv_2d_" #name "_bm" #bm "_bn" #bn "_bk" #bk "_wm" #wm "_wn" #wn)]] \
[[kernel]] void implicit_gemm_conv_2d<itype, bm, bn, bk, wm, wn>( \
const device itype* in [[buffer(0)]], \
const device itype* wt [[buffer(1)]], \
device itype* out [[buffer(2)]], \
const constant MLXConvParams<2>& params [[buffer(3)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define instantiate_implicit_2d_blocks(name, itype) \
instantiate_implicit_conv_2d(name, itype, 32, 32, 32, 2, 2) \
instantiate_implicit_conv_2d(name, itype, 32, 32, 16, 2, 2) \
instantiate_implicit_conv_2d(name, itype, 64, 64, 16, 2, 2)
instantiate_implicit_2d_blocks(float32, float);
instantiate_implicit_2d_blocks(float16, half);
instantiate_implicit_2d_blocks(bfloat16, bfloat16_t);
///////////////////////////////////////////////////////////////////////////////
/// Winograd kernels
///////////////////////////////////////////////////////////////////////////////

View File

@@ -1,19 +0,0 @@
// Copyright © 2023 Apple Inc.
#pragma once
template <int NDIM>
struct MLXConvParams {
const int N; // Batch size
const int C; // In channels
const int O; // Out channels
const int iS[NDIM]; // Input spatial dim
const int wS[NDIM]; // Weight spatial dim
const int oS[NDIM]; // Output spatial dim
const int str[NDIM]; // Kernel strides
const int pad[NDIM]; // Input padding
const int dil[NDIM]; // Kernel dilation
const size_t in_strides[NDIM + 2]; // In strides
const size_t wt_strides[NDIM + 2]; // Wt strides
const size_t out_strides[NDIM + 2]; // Out strides
};

View File

@@ -0,0 +1,187 @@
// Copyright © 2023-2024 Apple Inc.
#include <metal_atomic>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/indexing.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
/////////////////////////////////////////////////////////////////////
// Gather kernel
/////////////////////////////////////////////////////////////////////
template <typename T, typename IdxT, int NIDX, int IDX_NDIM>
METAL_FUNC void gather_impl(
const device T *src [[buffer(0)]],
device T *out [[buffer(1)]],
const constant int *src_shape [[buffer(2)]],
const constant size_t *src_strides [[buffer(3)]],
const constant size_t& src_ndim [[buffer(4)]],
const constant int *slice_sizes [[buffer(5)]],
const constant int *axes [[buffer(6)]],
const thread Indices<IdxT, NIDX>& indices,
uint2 index [[thread_position_in_grid]],
uint2 grid_dim [[threads_per_grid]]) {
auto ind_idx = index.x;
auto ind_offset = index.y;
size_t src_idx = 0;
for (int i = 0; i < NIDX; ++i) {
size_t idx_loc;
if (IDX_NDIM == 0) {
idx_loc = 0;
} else if (IDX_NDIM == 1) {
idx_loc = ind_idx * indices.strides[indices.ndim * i];
} else {
idx_loc = elem_to_loc(
ind_idx,
&indices.shapes[indices.ndim * i],
&indices.strides[indices.ndim * i],
indices.ndim);
}
auto ax = axes[i];
auto idx_val = offset_neg_idx(
indices.buffers[i][idx_loc], src_shape[ax]);
src_idx += idx_val * src_strides[ax];
}
auto src_offset = elem_to_loc(
ind_offset, slice_sizes, src_strides, src_ndim);
size_t out_idx = index.y + static_cast<size_t>(grid_dim.y) * index.x;
out[out_idx] = src[src_offset + src_idx];
}
#define make_gather_impl(IDX_ARG, IDX_ARR) \
template <typename T, typename IdxT, int NIDX, int IDX_NDIM> \
[[kernel]] void gather( \
const device T *src [[buffer(0)]], \
device T *out [[buffer(1)]], \
const constant int *src_shape [[buffer(2)]], \
const constant size_t *src_strides [[buffer(3)]], \
const constant size_t& src_ndim [[buffer(4)]], \
const constant int *slice_sizes [[buffer(5)]], \
const constant int *axes [[buffer(6)]], \
const constant int *idx_shapes [[buffer(7)]], \
const constant size_t *idx_strides [[buffer(8)]], \
const constant int& idx_ndim [[buffer(9)]], \
IDX_ARG(IdxT) \
uint2 index [[thread_position_in_grid]], \
uint2 grid_dim [[threads_per_grid]]) { \
\
Indices<IdxT, NIDX> idxs{ \
{{IDX_ARR()}}, \
idx_shapes, \
idx_strides, \
idx_ndim}; \
\
return gather_impl<T, IdxT, NIDX, IDX_NDIM>( \
src, \
out, \
src_shape, \
src_strides, \
src_ndim, \
slice_sizes, \
axes, \
idxs, \
index, \
grid_dim); \
}
#define make_gather(n) make_gather_impl(IDX_ARG_ ##n, IDX_ARR_ ##n)
make_gather(0)
make_gather(1)
make_gather(2)
make_gather(3)
make_gather(4)
make_gather(5)
make_gather(6)
make_gather(7)
make_gather(8)
make_gather(9)
make_gather(10)
/////////////////////////////////////////////////////////////////////
// Gather instantiations
/////////////////////////////////////////////////////////////////////
#define instantiate_gather6(name, src_t, idx_t, nidx, IDX_ARG, nd, nd_name) \
template [[host_name("gather" name "_" #nidx "" #nd_name)]] \
[[kernel]] void gather<src_t, idx_t, nidx, nd>( \
const device src_t *src [[buffer(0)]], \
device src_t *out [[buffer(1)]], \
const constant int *src_shape [[buffer(2)]], \
const constant size_t *src_strides [[buffer(3)]], \
const constant size_t& src_ndim [[buffer(4)]], \
const constant int *slice_sizes [[buffer(5)]], \
const constant int *axes [[buffer(6)]], \
const constant int *idx_shapes [[buffer(7)]], \
const constant size_t *idx_strides [[buffer(8)]], \
const constant int& idx_ndim [[buffer(9)]], \
IDX_ARG(idx_t) \
uint2 index [[thread_position_in_grid]], \
uint2 grid_dim [[threads_per_grid]]);
#define instantiate_gather5(name, src_t, idx_t, nidx, nd, nd_name) \
instantiate_gather6(name, src_t, idx_t, nidx, IDX_ARG_ ##nidx, nd, nd_name)
#define instantiate_gather4(name, src_t, idx_t, nidx) \
instantiate_gather5(name, src_t, idx_t, nidx, 0, _0) \
instantiate_gather5(name, src_t, idx_t, nidx, 1, _1) \
instantiate_gather5(name, src_t, idx_t, nidx, 2, )
// Special for case NIDX=0
instantiate_gather4("bool_", bool, bool, 0)
instantiate_gather4("uint8", uint8_t, bool, 0)
instantiate_gather4("uint16", uint16_t, bool, 0)
instantiate_gather4("uint32", uint32_t, bool, 0)
instantiate_gather4("uint64", uint64_t, bool, 0)
instantiate_gather4("int8", int8_t, bool, 0)
instantiate_gather4("int16", int16_t, bool, 0)
instantiate_gather4("int32", int32_t, bool, 0)
instantiate_gather4("int64", int64_t, bool, 0)
instantiate_gather4("float16", half, bool, 0)
instantiate_gather4("float32", float, bool, 0)
instantiate_gather4("bfloat16", bfloat16_t, bool, 0)
#define instantiate_gather3(name, src_type, ind_type) \
instantiate_gather4(name, src_type, ind_type, 1) \
instantiate_gather4(name, src_type, ind_type, 2) \
instantiate_gather4(name, src_type, ind_type, 3) \
instantiate_gather4(name, src_type, ind_type, 4) \
instantiate_gather4(name, src_type, ind_type, 5) \
instantiate_gather4(name, src_type, ind_type, 6) \
instantiate_gather4(name, src_type, ind_type, 7) \
instantiate_gather4(name, src_type, ind_type, 8) \
instantiate_gather4(name, src_type, ind_type, 9) \
instantiate_gather4(name, src_type, ind_type, 10)
#define instantiate_gather(name, src_type) \
instantiate_gather3(#name "bool_", src_type, bool) \
instantiate_gather3(#name "uint8", src_type, uint8_t) \
instantiate_gather3(#name "uint16", src_type, uint16_t) \
instantiate_gather3(#name "uint32", src_type, uint32_t) \
instantiate_gather3(#name "uint64", src_type, uint64_t) \
instantiate_gather3(#name "int8", src_type, int8_t) \
instantiate_gather3(#name "int16", src_type, int16_t) \
instantiate_gather3(#name "int32", src_type, int32_t) \
instantiate_gather3(#name "int64", src_type, int64_t)
instantiate_gather(bool_, bool)
instantiate_gather(uint8, uint8_t)
instantiate_gather(uint16, uint16_t)
instantiate_gather(uint32, uint32_t)
instantiate_gather(uint64, uint64_t)
instantiate_gather(int8, int8_t)
instantiate_gather(int16, int16_t)
instantiate_gather(int32, int32_t)
instantiate_gather(int64, int64_t)
instantiate_gather(float16, half)
instantiate_gather(float32, float)
instantiate_gather(bfloat16, bfloat16_t)

View File

@@ -0,0 +1,54 @@
// Copyright © 2023-2024 Apple Inc.
#include <metal_stdlib>
using namespace metal;
/////////////////////////////////////////////////////////////////////
// Indexing utils
/////////////////////////////////////////////////////////////////////
template <typename IdxT, int NIDX>
struct Indices {
const array<const device IdxT*, NIDX> buffers;
const constant int* shapes;
const constant size_t* strides;
const int ndim;
};
template <typename IdxT>
METAL_FUNC size_t offset_neg_idx(IdxT idx, size_t size) {
if (is_unsigned_v<IdxT>) {
return idx;
} else {
return (idx < 0) ? idx + size : idx;
}
}
#define IDX_ARG_N(idx_t, n) const device idx_t *idx##n [[buffer(n)]],
#define IDX_ARG_0(idx_t)
#define IDX_ARG_1(idx_t) IDX_ARG_0(idx_t) IDX_ARG_N(idx_t, 21)
#define IDX_ARG_2(idx_t) IDX_ARG_1(idx_t) IDX_ARG_N(idx_t, 22)
#define IDX_ARG_3(idx_t) IDX_ARG_2(idx_t) IDX_ARG_N(idx_t, 23)
#define IDX_ARG_4(idx_t) IDX_ARG_3(idx_t) IDX_ARG_N(idx_t, 24)
#define IDX_ARG_5(idx_t) IDX_ARG_4(idx_t) IDX_ARG_N(idx_t, 25)
#define IDX_ARG_6(idx_t) IDX_ARG_5(idx_t) IDX_ARG_N(idx_t, 26)
#define IDX_ARG_7(idx_t) IDX_ARG_6(idx_t) IDX_ARG_N(idx_t, 27)
#define IDX_ARG_8(idx_t) IDX_ARG_7(idx_t) IDX_ARG_N(idx_t, 28)
#define IDX_ARG_9(idx_t) IDX_ARG_8(idx_t) IDX_ARG_N(idx_t, 29)
#define IDX_ARG_10(idx_t) IDX_ARG_9(idx_t) IDX_ARG_N(idx_t, 30)
#define IDX_ARR_N(n) idx##n,
#define IDX_ARR_0()
#define IDX_ARR_1() IDX_ARR_0() IDX_ARR_N(21)
#define IDX_ARR_2() IDX_ARR_1() IDX_ARR_N(22)
#define IDX_ARR_3() IDX_ARR_2() IDX_ARR_N(23)
#define IDX_ARR_4() IDX_ARR_3() IDX_ARR_N(24)
#define IDX_ARR_5() IDX_ARR_4() IDX_ARR_N(25)
#define IDX_ARR_6() IDX_ARR_5() IDX_ARR_N(26)
#define IDX_ARR_7() IDX_ARR_6() IDX_ARR_N(27)
#define IDX_ARR_8() IDX_ARR_7() IDX_ARR_N(28)
#define IDX_ARR_9() IDX_ARR_8() IDX_ARR_N(29)
#define IDX_ARR_10() IDX_ARR_9() IDX_ARR_N(30)

View File

@@ -1,254 +0,0 @@
// Copyright © 2023 Apple Inc.
#include <metal_atomic>
#include <metal_texture>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/reduce.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
/////////////////////////////////////////////////////////////////////
// Gather kernel
/////////////////////////////////////////////////////////////////////
template <typename IdxT, int NIDX>
struct Indices {
const array<device IdxT*, NIDX> buffers [[id(0)]];
device int* shapes [[id(NIDX + 1)]];
device size_t* strides [[id(NIDX + 2)]];
const int ndim [[id(NIDX + 3)]];
};
template <typename IdxT>
inline size_t offset_neg_idx(IdxT idx, size_t size) {
return (idx < 0) ? idx + size : idx;
}
template <>
inline size_t offset_neg_idx(bool idx, size_t) {
return idx;
}
template <>
inline size_t offset_neg_idx(uint32_t idx, size_t) {
return idx;
}
template <typename T, typename IdxT, int NIDX>
[[kernel]] void gather(
const device T *src [[buffer(0)]],
const device Indices<IdxT, NIDX>& indices [[buffer(1)]],
device T *out [[buffer(2)]],
const device int *src_shape [[buffer(3)]],
const device size_t *src_strides [[buffer(4)]],
const device size_t& src_ndim [[buffer(5)]],
const device int *slice_sizes [[buffer(6)]],
const device size_t& slice_size [[buffer(7)]],
const device int *axes [[buffer(8)]],
uint gid [[thread_position_in_grid]]) {
auto ind_idx = gid / slice_size;
auto ind_offset = gid % slice_size;
size_t src_idx = 0;
for (int i = 0; i < NIDX; ++i) {
auto idx_loc = elem_to_loc(
ind_idx,
&indices.shapes[indices.ndim * i],
&indices.strides[indices.ndim * i],
indices.ndim);
auto ax = axes[i];
auto idx_val = offset_neg_idx(
indices.buffers[i][idx_loc], src_shape[ax]);
src_idx += idx_val * src_strides[ax];
}
auto src_offset = elem_to_loc(
ind_offset, slice_sizes, src_strides, src_ndim);
out[gid] = src[src_idx + src_offset];
}
#define instantiate_gather4(name, src_type, ind_type, nindex) \
template [[host_name("gather" name "_" #nindex)]] \
[[kernel]] void gather( \
const device src_type *src [[buffer(0)]], \
const device Indices<ind_type, nindex>& indices [[buffer(1)]], \
device src_type *out [[buffer(2)]], \
const device int *src_shape [[buffer(3)]], \
const device size_t *src_strides [[buffer(4)]], \
const device size_t& src_ndim [[buffer(5)]], \
const device int *slice_sizes [[buffer(6)]], \
const device size_t& slice_size [[buffer(7)]], \
const device int* axes [[buffer(8)]], \
uint gid [[thread_position_in_grid]]);
// Special for case NIDX=0
instantiate_gather4("bool_", bool, bool, 0)
instantiate_gather4("uint8", uint8_t, bool, 0)
instantiate_gather4("uint16", uint16_t, bool, 0)
instantiate_gather4("uint32", uint32_t, bool, 0)
instantiate_gather4("uint64", uint64_t, bool, 0)
instantiate_gather4("int8", int8_t, bool, 0)
instantiate_gather4("int16", int16_t, bool, 0)
instantiate_gather4("int32", int32_t, bool, 0)
instantiate_gather4("int64", int64_t, bool, 0)
instantiate_gather4("float16", half, bool, 0)
instantiate_gather4("float32", float, bool, 0)
instantiate_gather4("bfloat16", bfloat16_t, bool, 0)
#define instantiate_gather3(name, src_type, ind_type) \
instantiate_gather4(name, src_type, ind_type, 1) \
instantiate_gather4(name, src_type, ind_type, 2) \
instantiate_gather4(name, src_type, ind_type, 3) \
instantiate_gather4(name, src_type, ind_type, 4) \
instantiate_gather4(name, src_type, ind_type, 5) \
instantiate_gather4(name, src_type, ind_type, 6) \
instantiate_gather4(name, src_type, ind_type, 7) \
instantiate_gather4(name, src_type, ind_type, 8) \
instantiate_gather4(name, src_type, ind_type, 9) \
instantiate_gather4(name, src_type, ind_type, 10)
#define instantiate_gather(name, src_type) \
instantiate_gather3(#name "bool_", src_type, bool) \
instantiate_gather3(#name "uint8", src_type, uint8_t) \
instantiate_gather3(#name "uint16", src_type, uint16_t) \
instantiate_gather3(#name "uint32", src_type, uint32_t) \
instantiate_gather3(#name "uint64", src_type, uint64_t) \
instantiate_gather3(#name "int8", src_type, int8_t) \
instantiate_gather3(#name "int16", src_type, int16_t) \
instantiate_gather3(#name "int32", src_type, int32_t) \
instantiate_gather3(#name "int64", src_type, int64_t)
instantiate_gather(bool_, bool)
instantiate_gather(uint8, uint8_t)
instantiate_gather(uint16, uint16_t)
instantiate_gather(uint32, uint32_t)
instantiate_gather(uint64, uint64_t)
instantiate_gather(int8, int8_t)
instantiate_gather(int16, int16_t)
instantiate_gather(int32, int32_t)
instantiate_gather(int64, int64_t)
instantiate_gather(float16, half)
instantiate_gather(float32, float)
instantiate_gather(bfloat16, bfloat16_t)
/////////////////////////////////////////////////////////////////////
// Scatter kernel
/////////////////////////////////////////////////////////////////////
template <typename T, typename IdxT, typename Op, int NIDX>
[[kernel]] void scatter(
const device Indices<IdxT, NIDX>& indices [[buffer(0)]],
const device T *updates [[buffer(1)]],
device mlx_atomic<T> *out [[buffer(2)]],
const device int *upd_shape [[buffer(3)]],
const device size_t *upd_strides [[buffer(4)]],
const device size_t& upd_ndim [[buffer(5)]],
const device size_t& upd_size [[buffer(6)]],
const device int *out_shape [[buffer(7)]],
const device size_t *out_strides [[buffer(8)]],
const device size_t& out_ndim [[buffer(9)]],
const device int* axes [[buffer(10)]],
uint gid [[thread_position_in_grid]]) {
Op op;
auto ind_idx = gid / upd_size;
auto ind_offset = gid % upd_size;
size_t out_idx = 0;
for (int i = 0; i < NIDX; ++i) {
auto idx_loc = elem_to_loc(
ind_idx,
&indices.shapes[indices.ndim * i],
&indices.strides[indices.ndim * i],
indices.ndim);
auto ax = axes[i];
auto idx_val = offset_neg_idx(
indices.buffers[i][idx_loc], out_shape[ax]);
out_idx += idx_val * out_strides[ax];
}
auto out_offset = elem_to_loc(
ind_offset, upd_shape + indices.ndim, out_strides, out_ndim);
auto upd_idx = elem_to_loc(gid, upd_shape, upd_strides, upd_ndim);
op.atomic_update(out, updates[upd_idx], out_idx + out_offset);
}
#define instantiate_scatter4(name, type, ind_type, op_type, nindex) \
template [[host_name("scatter" name "_" #nindex)]] \
[[kernel]] void scatter<type, ind_type, op_type, nindex>( \
const device Indices<ind_type, nindex>& indices [[buffer(0)]], \
const device type *updates [[buffer(1)]], \
device mlx_atomic<type> *out [[buffer(2)]], \
const device int *upd_shape [[buffer(3)]], \
const device size_t *upd_strides [[buffer(4)]], \
const device size_t& upd_ndim [[buffer(5)]], \
const device size_t& upd_size [[buffer(6)]], \
const device int *out_shape [[buffer(7)]], \
const device size_t *out_strides [[buffer(8)]], \
const device size_t& out_ndim [[buffer(9)]], \
const device int* axes [[buffer(10)]], \
uint gid [[thread_position_in_grid]]);
// Special case NINDEX=0
#define instantiate_scatter_nd0(name, type) \
instantiate_scatter4(#name "none", type, bool, None, 0) \
instantiate_scatter4(#name "_sum", type, bool, Sum<type>, 0) \
instantiate_scatter4(#name "_prod", type, bool, Prod<type>, 0) \
instantiate_scatter4(#name "_max", type, bool, Max<type>, 0) \
instantiate_scatter4(#name "_min", type, bool, Min<type>, 0)
#define instantiate_scatter3(name, type, ind_type, op_type) \
instantiate_scatter4(name, type, ind_type, op_type, 1) \
instantiate_scatter4(name, type, ind_type, op_type, 2) \
instantiate_scatter4(name, type, ind_type, op_type, 3) \
instantiate_scatter4(name, type, ind_type, op_type, 4) \
instantiate_scatter4(name, type, ind_type, op_type, 5) \
instantiate_scatter4(name, type, ind_type, op_type, 6) \
instantiate_scatter4(name, type, ind_type, op_type, 7) \
instantiate_scatter4(name, type, ind_type, op_type, 8) \
instantiate_scatter4(name, type, ind_type, op_type, 9) \
instantiate_scatter4(name, type, ind_type, op_type, 10)
#define instantiate_scatter2(name, type, ind_type) \
instantiate_scatter3(name "_none", type, ind_type, None) \
instantiate_scatter3(name "_sum", type, ind_type, Sum<type>) \
instantiate_scatter3(name "_prod", type, ind_type, Prod<type>) \
instantiate_scatter3(name "_max", type, ind_type, Max<type>) \
instantiate_scatter3(name "_min", type, ind_type, Min<type>)
#define instantiate_scatter(name, type) \
instantiate_scatter2(#name "bool_", type, bool) \
instantiate_scatter2(#name "uint8", type, uint8_t) \
instantiate_scatter2(#name "uint16", type, uint16_t) \
instantiate_scatter2(#name "uint32", type, uint32_t) \
instantiate_scatter2(#name "uint64", type, uint64_t) \
instantiate_scatter2(#name "int8", type, int8_t) \
instantiate_scatter2(#name "int16", type, int16_t) \
instantiate_scatter2(#name "int32", type, int32_t) \
instantiate_scatter2(#name "int64", type, int64_t)
// TODO uint64 and int64 unsupported
instantiate_scatter_nd0(bool_, bool)
instantiate_scatter_nd0(uint8, uint8_t)
instantiate_scatter_nd0(uint16, uint16_t)
instantiate_scatter_nd0(uint32, uint32_t)
instantiate_scatter_nd0(int8, int8_t)
instantiate_scatter_nd0(int16, int16_t)
instantiate_scatter_nd0(int32, int32_t)
instantiate_scatter_nd0(float16, half)
instantiate_scatter_nd0(float32, float)
instantiate_scatter_nd0(bfloat16, bfloat16_t)
instantiate_scatter(bool_, bool)
instantiate_scatter(uint8, uint8_t)
instantiate_scatter(uint16, uint16_t)
instantiate_scatter(uint32, uint32_t)
instantiate_scatter(int8, int8_t)
instantiate_scatter(int16, int16_t)
instantiate_scatter(int32, int32_t)
instantiate_scatter(float16, half)
instantiate_scatter(float32, float)
instantiate_scatter(bfloat16, bfloat16_t)

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <metal_stdlib>
#include <metal_simdgroup>
@@ -15,7 +15,151 @@ using namespace metal;
MLX_MTL_CONST int SIMD_SIZE = 32;
template <typename T, const int BM, const int BN, const int group_size, const int bits>
template <typename T> struct AccT {
typedef T acc_t;
};
template <> struct AccT<bfloat16_t> {
typedef float acc_t;
};
template <typename T, typename U, int values_per_thread, int bits>
inline U load_vector(const device T *x, thread U *x_thread) {
static_assert(bits == 2 || bits == 4 || bits == 8, "Template undefined for bits not in {2, 4, 8}");
U sum = 0;
if (bits == 2) {
for (int i = 0; i < values_per_thread; i += 4) {
sum += x[i] + x[i+1] + x[i+2] + x[i+3];
x_thread[i] = x[i];
x_thread[i+1] = x[i+1] / 4.0f;
x_thread[i+2] = x[i+2] / 16.0f;
x_thread[i+3] = x[i+3] / 64.0f;
}
}
else if (bits == 4) {
for (int i = 0; i < values_per_thread; i += 4) {
sum += x[i] + x[i+1] + x[i+2] + x[i+3];
x_thread[i] = x[i];
x_thread[i+1] = x[i+1] / 16.0f;
x_thread[i+2] = x[i+2] / 256.0f;
x_thread[i+3] = x[i+3] / 4096.0f;
}
}
else if (bits == 8) {
for (int i = 0; i < values_per_thread; i++) {
sum += x[i];
x_thread[i] = x[i];
}
}
return sum;
}
template <typename U, int values_per_thread, int bits>
inline U qdot(const device uint8_t* w, const thread U *x_thread, U scale, U bias, U sum) {
static_assert(bits == 2 || bits == 4 || bits == 8, "Template undefined for bits not in {2, 4, 8}");
U accum = 0;
if (bits == 2) {
for (int i = 0; i < (values_per_thread / 4); i++) {
accum += (
x_thread[4*i] * (w[i] & 0x03)
+ x_thread[4*i+1] * (w[i] & 0x0c)
+ x_thread[4*i+2] * (w[i] & 0x30)
+ x_thread[4*i+3] * (w[i] & 0xc0));
}
}
else if (bits == 4) {
const device uint16_t* ws = (const device uint16_t*)w;
for (int i = 0; i < (values_per_thread / 4); i++) {
accum += (
x_thread[4*i] * (ws[i] & 0x000f)
+ x_thread[4*i+1] * (ws[i] & 0x00f0)
+ x_thread[4*i+2] * (ws[i] & 0x0f00)
+ x_thread[4*i+3] * (ws[i] & 0xf000));
}
}
else if (bits == 8) {
for (int i = 0; i < values_per_thread; i++) {
accum += x_thread[i] * w[i];
}
}
return scale * accum + sum * bias;
}
template <typename T, int group_size, int bits, int packs_per_thread>
[[kernel]] void qmv_fast(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
const device T* biases [[buffer(2)]],
const device T* x [[buffer(3)]],
device T* y [[buffer(4)]],
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
constexpr int num_simdgroups = 2;
constexpr int results_per_simdgroup = 4;
constexpr int pack_factor = 32 / bits;
constexpr int values_per_thread = pack_factor * packs_per_thread;
constexpr int block_size = values_per_thread * SIMD_SIZE;
constexpr int scale_step_per_thread = group_size / values_per_thread;
typedef float U;
thread U x_thread[values_per_thread];
thread U result[results_per_simdgroup] = {0};
// Adjust positions
const int in_vec_size_w = in_vec_size / pack_factor;
const int in_vec_size_g = in_vec_size / group_size;
const int out_row = tid.y * (num_simdgroups * results_per_simdgroup) + simd_gid * results_per_simdgroup;
w += out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + out_row;
for (int k = 0; k < in_vec_size; k += block_size) {
U sum = load_vector<T, U, values_per_thread, bits>(x, x_thread);
for (int row = 0; row < results_per_simdgroup; row++) {
const device uint8_t* wl = (const device uint8_t *)(w + row * in_vec_size_w);
const device T* sl = scales + row * in_vec_size_g;
const device T* bl = biases + row * in_vec_size_g;
U s = sl[0];
U b = bl[0];
result[row] += qdot<U, values_per_thread, bits>(wl, x_thread, s, b, sum);
}
w += block_size / pack_factor;
scales += block_size / group_size;
biases += block_size / group_size;
x += block_size;
}
for (int row = 0; row < results_per_simdgroup; row++) {
result[row] = simd_sum(result[row]);
if (simd_lid == 0) {
y[row] = static_cast<T>(result[row]);
}
}
}
template <typename T, const int group_size, const int bits>
[[kernel]] void qmv(
const device uint32_t* w [[buffer(0)]],
const device T* scales [[buffer(1)]],
@@ -25,82 +169,101 @@ template <typename T, const int BM, const int BN, const int group_size, const in
const constant int& in_vec_size [[buffer(5)]],
const constant int& out_vec_size [[buffer(6)]],
uint3 tid [[threadgroup_position_in_grid]],
uint lid [[thread_index_in_threadgroup]],
uint simd_gid [[simdgroup_index_in_threadgroup]],
uint simd_lid [[thread_index_in_simdgroup]]) {
static_assert(BN == SIMD_SIZE, "qmv expects BN to be equal to SIMD_SIZE");
constexpr int num_simdgroups = 2;
constexpr int results_per_simdgroup = 4;
constexpr int packs_per_thread = 1;
constexpr int pack_factor = 32 / bits;
constexpr int values_per_thread = pack_factor * packs_per_thread;
constexpr int block_size = values_per_thread * SIMD_SIZE;
constexpr int scale_step_per_thread = group_size / values_per_thread;
constexpr int bitmask = (1 << bits) - 1;
constexpr int el_per_thread = 32 / bits;
constexpr int colgroup = BN * el_per_thread;
constexpr int groups_per_block = colgroup / group_size;
constexpr int simdgroups_fetching_vec = colgroup / SIMD_SIZE;
typedef float U;
threadgroup T scales_block[BM * groups_per_block];
threadgroup T biases_block[BM * groups_per_block];
threadgroup T x_block[colgroup];
thread uint32_t w_local;
thread T result = 0;
thread T scale = 1;
thread T bias = 0;
thread T x_thread[el_per_thread];
thread U x_thread[values_per_thread];
thread U result[results_per_simdgroup] = {0};
// Adjust positions
const int in_vec_size_w = in_vec_size / el_per_thread;
const int in_vec_size_w = in_vec_size / pack_factor;
const int in_vec_size_g = in_vec_size / group_size;
int out_row = tid.y * BM + simd_gid;
w += out_row * in_vec_size_w;
scales += out_row * in_vec_size_g;
biases += out_row * in_vec_size_g;
x += tid.z * in_vec_size;
y += tid.z * out_vec_size;
const int out_row = tid.y * (num_simdgroups * results_per_simdgroup) + simd_gid * results_per_simdgroup;
const int used_out_row = min(out_vec_size - results_per_simdgroup, out_row);
// Loop over in_vec in blocks of colgroup
for (int i=0; i<in_vec_size; i+=colgroup) {
// Load the vec to shared memory
threadgroup_barrier(mem_flags::mem_threadgroup);
if (simd_gid < simdgroups_fetching_vec) {
x_block[lid] = x[lid + i];
}
if (simd_lid == 0) {
#pragma clang loop unroll(full)
for (int j=0; j<groups_per_block; j++) {
scales_block[simd_gid * groups_per_block + j] = scales[i / group_size + j];
if (out_row >= out_vec_size) {
return;
}
// In this case we need to properly guard all our reads because there isn't
// even 1 tile in the matrix
if (out_vec_size < (num_simdgroups * results_per_simdgroup)) {
w += out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + out_row;
for (int k = 0; k < in_vec_size; k += block_size) {
U sum = load_vector<T, U, values_per_thread, bits>(x, x_thread);
for (int row = 0; out_row + row < out_vec_size; row++) {
const device uint8_t* wl = (const device uint8_t *)(w + row * in_vec_size_w);
const device T* sl = scales + row * in_vec_size_g;
const device T* bl = biases + row * in_vec_size_g;
U s = sl[0];
U b = bl[0];
result[row] += qdot<U, values_per_thread, bits>(wl, x_thread, s, b, sum);
}
#pragma clang loop unroll(full)
for (int j=0; j<groups_per_block; j++) {
biases_block[simd_gid * groups_per_block + j] = biases[i / group_size + j];
w += block_size / pack_factor;
scales += block_size / group_size;
biases += block_size / group_size;
x += block_size;
}
for (int row = 0; out_row + row < out_vec_size; row++) {
result[row] = simd_sum(result[row]);
if (simd_lid == 0) {
y[row] = static_cast<T>(result[row]);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load in_vec, scale, bias to registers
#pragma clang loop unroll(full)
for (int j=0; j<el_per_thread; j++) {
x_thread[j] = x_block[simd_lid*el_per_thread + j];
}
scale = scales_block[simd_gid * groups_per_block + simd_lid * el_per_thread / group_size];
bias = biases_block[simd_gid * groups_per_block + simd_lid * el_per_thread / group_size];
// Load the matrix elements
w_local = w[i / el_per_thread + simd_lid];
// Do all the work.
#pragma clang loop unroll(full)
for (int k=0; k<el_per_thread; k++) {
result += (scale * static_cast<T>(w_local & bitmask) + bias) * x_thread[k];
w_local >>= bits;
}
}
// Accumulate in the simdgroup
result = simd_sum(result);
// In this case the last tile is moved back to redo some output values
else {
w += used_out_row * in_vec_size_w + simd_lid * packs_per_thread;
scales += used_out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
biases += used_out_row * in_vec_size_g + simd_lid / scale_step_per_thread;
x += tid.z * in_vec_size + simd_lid * values_per_thread;
y += tid.z * out_vec_size + used_out_row;
// Store the result
if (simd_lid == 0) {
y[out_row] = result;
for (int k = 0; k < in_vec_size; k += block_size) {
U sum = load_vector<T, U, values_per_thread, bits>(x, x_thread);
for (int row = 0; row < results_per_simdgroup; row++) {
const device uint8_t* wl = (const device uint8_t *)(w + row * in_vec_size_w);
const device T* sl = scales + row * in_vec_size_g;
const device T* bl = biases + row * in_vec_size_g;
U s = sl[0];
U b = bl[0];
result[row] += qdot<U, values_per_thread, bits>(wl, x_thread, s, b, sum);
}
w += block_size / pack_factor;
scales += block_size / group_size;
biases += block_size / group_size;
x += block_size;
}
for (int row = 0; row < results_per_simdgroup; row++) {
result[row] = simd_sum(result[row]);
if (simd_lid == 0) {
y[row] = static_cast<T>(result[row]);
}
}
}
}
@@ -129,15 +292,16 @@ template <typename T, const int BM, const int BN, const int group_size, const in
constexpr int colgroup = BN * el_per_int;
constexpr int groups_per_block = colgroup / group_size;
threadgroup T scales_block[BM * groups_per_block];
threadgroup T biases_block[BM * groups_per_block];
threadgroup T x_block[BM];
typedef typename AccT<T>::acc_t U;
threadgroup U scales_block[BM * groups_per_block];
threadgroup U biases_block[BM * groups_per_block];
threadgroup U x_block[BM];
thread uint32_t w_local;
thread T result[el_per_int] = {0};
thread T scale = 1;
thread T bias = 0;
thread T x_local = 0;
thread U result[el_per_int] = {0};
thread U scale = 1;
thread U bias = 0;
thread U x_local = 0;
// Adjust positions
const int out_vec_size_w = out_vec_size / el_per_int;
@@ -186,7 +350,7 @@ template <typename T, const int BM, const int BN, const int group_size, const in
// Do all the work.
#pragma clang loop unroll(full)
for (int k=0; k<el_per_int; k++) {
result[k] += (scale * static_cast<T>(w_local & bitmask) + bias) * x_local;
result[k] += (scale * static_cast<U>(w_local & bitmask) + bias) * x_local;
w_local >>= bits;
}
}
@@ -201,7 +365,7 @@ template <typename T, const int BM, const int BN, const int group_size, const in
if (simd_lid == 0) {
#pragma clang loop unroll(full)
for (int k=0; k<el_per_int; k++) {
y[k] = result[k];
y[k] = static_cast<T>(result[k]);
}
}
}
@@ -240,7 +404,6 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
using mma_t = mlx::steel::BlockMMA<T, T, BM, BN, BK, WM, WN, false, true, BK, BK>;
using loader_x_t = mlx::steel::BlockLoader<T, BM, BK, BK, 1, WM * WN * SIMD_SIZE, 1, 4>;
threadgroup T scales_block[BN * groups_per_block];
threadgroup T biases_block[BN * groups_per_block];
threadgroup T Xs[BM * BK];
@@ -303,7 +466,7 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
const device uint32_t * w_local = w + offset_row * K_w + offset_col;
threadgroup T * Ws_local = Ws + offset_row * BK + offset_col * el_per_int;
if (y_col + offset_col < N) {
if (y_row + offset_row < N) {
uint32_t wi = *w_local;
T scale = scales_block[offset_row * groups_per_block + offset_col / (group_size / el_per_int)];
T bias = biases_block[offset_row * groups_per_block + offset_col / (group_size / el_per_int)];
@@ -418,8 +581,9 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
for (int k=0; k<K; k += BK) {
threadgroup_barrier(mem_flags::mem_threadgroup);
// Load the x tile
if (num_els < BM) {
loader_x.load_safe(short2(BK, num_els));
short num_k = min(BK, K - k);
if (num_els < BM || num_k < BK) {
loader_x.load_safe(short2(num_k, num_els));
} else {
loader_x.load_unsafe();
}
@@ -447,7 +611,7 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
// Load the w tile
{
if (k + BK >= K) {
if (num_k < BK) {
for (int wo=0; wo<w_els_per_thread; wo++) {
int offset = lid * w_els_per_thread + wo;
int offset_row = offset / (BN / el_per_int);
@@ -514,9 +678,38 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
}
#define instantiate_qmv(name, itype, group_size, bits) \
template [[host_name("qmv_" #name "_gs_" #group_size "_b_" #bits)]] \
[[kernel]] void qmv<itype, 32, 32, group_size, bits>( \
#define instantiate_qmv_fast(name, itype, group_size, bits, packs_per_thread) \
template [[host_name("qmv_" #name "_gs_" #group_size "_b_" #bits "_fast")]] \
[[kernel]] void qmv_fast<itype, group_size, bits, packs_per_thread>( \
const device uint32_t* w [[buffer(0)]], \
const device itype* scales [[buffer(1)]], \
const device itype* biases [[buffer(2)]], \
const device itype* x [[buffer(3)]], \
device itype* y [[buffer(4)]], \
const constant int& in_vec_size [[buffer(5)]], \
const constant int& out_vec_size [[buffer(6)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);
#define instantiate_qmv_fast_types(group_size, bits, packs_per_thread) \
instantiate_qmv_fast(float32, float, group_size, bits, packs_per_thread) \
instantiate_qmv_fast(float16, half, group_size, bits, packs_per_thread) \
instantiate_qmv_fast(bfloat16, bfloat16_t, group_size, bits, packs_per_thread)
instantiate_qmv_fast_types(128, 2, 1)
instantiate_qmv_fast_types(128, 4, 2)
instantiate_qmv_fast_types(128, 8, 2)
instantiate_qmv_fast_types( 64, 2, 1)
instantiate_qmv_fast_types( 64, 4, 2)
instantiate_qmv_fast_types( 64, 8, 2)
instantiate_qmv_fast_types( 32, 2, 1)
instantiate_qmv_fast_types( 32, 4, 2)
instantiate_qmv_fast_types( 32, 8, 2)
#define instantiate_qmv(name, itype, group_size, bits) \
template [[host_name("qmv_" #name "_gs_" #group_size "_b_" #bits)]] \
[[kernel]] void qmv<itype, group_size, bits>( \
const device uint32_t* w [[buffer(0)]], \
const device itype* scales [[buffer(1)]], \
const device itype* biases [[buffer(2)]], \
@@ -525,7 +718,6 @@ template <typename T, const int BM, const int BK, const int BN, const int group_
const constant int& in_vec_size [[buffer(5)]], \
const constant int& out_vec_size [[buffer(6)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint lid [[thread_index_in_threadgroup]], \
uint simd_gid [[simdgroup_index_in_threadgroup]], \
uint simd_lid [[thread_index_in_simdgroup]]);

View File

@@ -1,619 +0,0 @@
// Copyright © 2023 Apple Inc.
#include <metal_atomic>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/reduce.h"
#include "mlx/backend/metal/kernels/utils.h"
using namespace metal;
static constant uint8_t simd_size = 32;
template <typename T, typename Op>
[[kernel]] void init_reduce(
device T *out [[buffer(0)]],
uint tid [[thread_position_in_grid]]) {
out[tid] = Op::init;
}
#define instantiate_init_reduce(name, otype, op) \
template [[host_name("i" #name)]] \
[[kernel]] void init_reduce<otype, op>( \
device otype *out [[buffer(1)]], \
uint tid [[thread_position_in_grid]]);
///////////////////////////////////////////////////////////////////////////////
// All reduce
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
inline U per_thread_all_reduce(
const device T *in,
const device size_t& in_size,
uint gid,
uint grid_size) {
Op op;
U total_val = Op::init;
if (gid * N_READS < in_size) {
in += gid * N_READS;
int r = 0;
for(; r < (int)ceildiv(in_size, grid_size * N_READS) - 1; r++) {
U vals[N_READS] = {op.init};
for(int i = 0; i < N_READS; i++) {
vals[i] = static_cast<U>(in[i]);
}
for(int i = 0; i < N_READS; i++) {
total_val = op(vals[i], total_val);
}
in += grid_size * N_READS;
}
// Separate case for the last set as we close the reduction size
size_t curr_idx = (gid + r * (size_t)grid_size) * N_READS;
if (curr_idx < in_size) {
int max_reads = in_size - curr_idx;
T vals[N_READS];
for(int i = 0, idx = 0; i < N_READS; i++, idx++) {
idx = idx < max_reads ? idx : max_reads - 1;
vals[i] = in[idx];
}
for(int i = 0; i < N_READS; i++) {
U val = i < max_reads ? vals[i] : Op::init;
total_val = op(static_cast<U>(val), total_val);
}
}
}
return total_val;
}
// NB: This kernel assumes threads_per_threadgroup is at most
// 1024. This way with a simd_size of 32, we are guaranteed to
// complete the reduction in two steps of simd-level reductions.
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void all_reduce(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const device size_t& in_size [[buffer(2)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint grid_size [[threads_per_grid]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_all_reduce<T, U, Op, N_READS>(in, in_size, gid, grid_size);
// Reduction within simd group
total_val = op.simd_reduce(total_val);
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
// Reduction within thread group
threadgroup_barrier(mem_flags::mem_threadgroup);
total_val = lid < simd_per_group ? local_vals[lid] : op.init;
total_val = op.simd_reduce(total_val);
// Reduction across threadgroups
if (lid == 0) {
op.atomic_update(out, total_val);
}
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void all_reduce_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const device size_t& in_size [[buffer(2)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint grid_size [[threads_per_grid]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint thread_group_id [[threadgroup_position_in_grid]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_all_reduce<T, U, Op, N_READS>(in, in_size, gid, grid_size);
// Reduction within simd group (simd_add isn't supported for uint64/int64 types)
for (uint16_t lane_offset = simd_size/2; lane_offset > 0; lane_offset /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, lane_offset));
}
// Write simd group reduction results to local memory
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction of simdgroup reduction results within threadgroup.
total_val = lid < simd_per_group ? local_vals[lid] : op.init;
for (uint16_t lane_offset = simd_size/2; lane_offset > 0; lane_offset /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, lane_offset));
}
// Reduction across threadgroups
if (lid == 0) {
out[thread_group_id] = total_val;
}
}
#define instantiate_all_reduce(name, itype, otype, op) \
template [[host_name("all_reduce_" #name)]] \
[[kernel]] void all_reduce<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const device size_t& in_size [[buffer(2)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint grid_size [[threads_per_grid]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_all_reduce_no_atomics(name, itype, otype, op) \
template [[host_name("all_reduce_no_atomics_" #name)]] \
[[kernel]] void all_reduce_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const device size_t& in_size [[buffer(2)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint grid_size [[threads_per_grid]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
uint thread_group_id [[threadgroup_position_in_grid]]);
///////////////////////////////////////////////////////////////////////////////
// Row atomics
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
inline U per_thread_row_reduce(
const device T *in,
const constant size_t& reduction_size,
const constant size_t& out_size,
const constant int* shape,
const constant size_t* strides,
const constant int& ndim,
uint lsize_x,
uint lid_x,
uint2 tid) {
Op op;
// Each threadgroup handles 1 reduction
// TODO: Specializing elem_to_loc would be slightly faster
int idx = tid.y * out_size + tid.x;
int extra_offset = elem_to_loc(idx, shape, strides, ndim);
in += extra_offset + lid_x * N_READS;
// The reduction is accumulated here
U total_val = Op::init;
// Loop over the reduction size within thread group
int r = 0;
for (; r < (int)ceildiv(reduction_size, N_READS*lsize_x) - 1; r++) {
T vals[N_READS];
for(int i = 0; i < N_READS; i++) {
vals[i] = in[i];
}
for(int i = 0; i < N_READS; i++) {
total_val = op(static_cast<U>(vals[i]), total_val);
}
in += lsize_x * N_READS;
}
// Separate case for the last set as we close the reduction size
size_t reduction_index = (lid_x + (size_t)lsize_x * r) * N_READS;
if(reduction_index < reduction_size) {
int max_reads = reduction_size - reduction_index;
T vals[N_READS];
for(int i = 0; i < N_READS; i++) {
int idx = min(i, max_reads - 1);
vals[i] = static_cast<U>(in[idx]);
}
for(int i = 0; i < N_READS; i++) {
T val = i < max_reads ? vals[i] : Op::init;
total_val = op(static_cast<U>(val), total_val);
}
}
return total_val;
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void row_reduce_general(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_row_reduce<T, U, Op, N_READS>(in, reduction_size, out_size, shape, strides, ndim, lsize.x, lid.x, tid.xy);
total_val = op.simd_reduce(total_val);
// Prepare next level
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction within thread group
// Only needed if multiple simd groups
if(reduction_size > simd_size) {
total_val = lid.x < simd_per_group ? local_vals[lid.x] : op.init;
total_val = op.simd_reduce(total_val);
}
// Update output
if (lid.x == 0) {
op.atomic_update(out, total_val, tid.x);
}
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void row_reduce_general_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant int* shape [[buffer(4)]],
const constant size_t* strides [[buffer(5)]],
const constant int& ndim [[buffer(6)]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]],
uint3 gsize [[threads_per_grid]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_row_reduce<T, U, Op, N_READS>(in, reduction_size, out_size, shape, strides, ndim, lsize.x, lid.x, tid.xy);
// Reduction within simd group - simd_add isn't supported for int64 types
for (uint16_t i = simd_size/2; i > 0; i /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, i));
}
// Prepare next level
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction within thread group
// Only needed if thread group has multiple simd groups
if(ceildiv(reduction_size, N_READS) > simd_size) {
total_val = lid.x < simd_per_group ? local_vals[lid.x] : op.init;
for (uint16_t i = simd_size/2; i > 0; i /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, i));
}
}
// Write row reduce output for threadgroup with 1st thread in thread group
if (lid.x == 0) {
out[(ceildiv(gsize.y, lsize.y) * tid.x) + tid.y] = total_val;
}
}
#define instantiate_row_reduce_general(name, itype, otype, op) \
template [[host_name("row_reduce_general_" #name)]] \
[[kernel]] void row_reduce_general<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant int* shape [[buffer(4)]], \
const constant size_t* strides [[buffer(5)]], \
const constant int& ndim [[buffer(6)]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_row_reduce_general_no_atomics(name, itype, otype, op) \
template [[host_name("row_reduce_general_no_atomics_" #name)]] \
[[kernel]] void row_reduce_general_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant int* shape [[buffer(4)]], \
const constant size_t* strides [[buffer(5)]], \
const constant int& ndim [[buffer(6)]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 gsize [[threads_per_grid]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
///////////////////////////////////////////////////////////////////////////////
// Column reduce
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
inline U _contiguous_strided_reduce(
const device T *in,
threadgroup U *local_data,
uint in_idx,
uint reduction_size,
uint reduction_stride,
uint2 tid,
uint2 lid,
uint2 lsize) {
Op op;
U total_val = Op::init;
uint base_offset = (tid.y * lsize.y + lid.y) * N_READS;
for(uint r = 0; r < N_READS && (base_offset + r) < reduction_size; r++) {
uint offset = base_offset + r;
total_val = op(static_cast<U>(total_val), in[in_idx + offset * reduction_stride]);
}
local_data[lsize.y * lid.x + lid.y] = total_val;
threadgroup_barrier(mem_flags::mem_threadgroup);
U val = Op::init;
if(lid.y == 0) {
// Perform reduction across columns in thread group
for(uint i = 0; i < lsize.y; i++) {
val = op(val, local_data[lsize.y * lid.x + i]);
}
}
return val;
}
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
[[kernel]] void col_reduce_general(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant size_t& out_size [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
threadgroup U *local_data [[threadgroup(0)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]]) {
auto out_idx = tid.x * lsize.x + lid.x;
auto in_idx = elem_to_loc(
out_idx + tid.z * out_size,
shape,
strides,
ndim
);
Op op;
if(out_idx < out_size) {
U val = _contiguous_strided_reduce<T, U, Op, N_READS>(
in,
local_data,
in_idx,
reduction_size,
reduction_stride,
tid.xy,
lid.xy,
lsize.xy);
// Write out reduction results generated by threadgroups working on specific output element, contiguously.
if (lid.y == 0) {
op.atomic_update(out, val, out_idx);
}
}
}
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
[[kernel]] void col_reduce_general_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant size_t& out_size [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
threadgroup U *local_data [[threadgroup(0)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 gid [[thread_position_in_grid]],
uint3 lsize [[threads_per_threadgroup]],
uint3 gsize [[threads_per_grid]]) {
auto out_idx = tid.x * lsize.x + lid.x;
auto in_idx = elem_to_loc(
out_idx + tid.z * out_size,
shape,
strides,
ndim
);
if(out_idx < out_size) {
U val = _contiguous_strided_reduce<T, U, Op, N_READS>(
in,
local_data,
in_idx,
reduction_size,
reduction_stride,
tid.xy,
lid.xy,
lsize.xy);
// Write out reduction results generated by threadgroups working on specific output element, contiguously.
if (lid.y == 0) {
uint tgsize_y = ceildiv(gsize.y, lsize.y);
uint tgsize_z = ceildiv(gsize.z, lsize.z);
out[tgsize_y * tgsize_z * gid.x + tgsize_y * tid.z + tid.y] = val;
}
}
}
#define instantiate_col_reduce_general(name, itype, otype, op) \
template [[host_name("col_reduce_general_" #name)]] \
[[kernel]] void col_reduce_general<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& reduction_stride [[buffer(3)]], \
const constant size_t& out_size [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
threadgroup otype *local_data [[threadgroup(0)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]]);
#define instantiate_col_reduce_general_no_atomics(name, itype, otype, op) \
template [[host_name("col_reduce_general_no_atomics_" #name)]] \
[[kernel]] void col_reduce_general_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& reduction_stride [[buffer(3)]], \
const constant size_t& out_size [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
threadgroup otype *local_data [[threadgroup(0)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 gid [[thread_position_in_grid]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 gsize [[threads_per_grid]]);
///////////////////////////////////////////////////////////////////////////////
// Instantiations
///////////////////////////////////////////////////////////////////////////////
#define instantiate_reduce(name, itype, otype, op) \
instantiate_all_reduce(name, itype, otype, op) \
instantiate_row_reduce_general(name, itype, otype, op) \
instantiate_col_reduce_general(name, itype, otype, op)
#define instantiate_reduce_no_atomics(name, itype, otype, op) \
instantiate_all_reduce_no_atomics(name, itype, otype, op) \
instantiate_row_reduce_general_no_atomics(name, itype, otype, op) \
instantiate_col_reduce_general_no_atomics(name, itype, otype, op)
#define instantiate_same_reduce_no_atomics(name, tname, type, op) \
instantiate_init_reduce(name ##tname, type, op<type>) \
instantiate_reduce_no_atomics(name ##tname, type, type, op<type>)
#define instantiate_same_reduce(name, tname, type, op) \
instantiate_init_reduce(name ##tname, type, op<type>) \
instantiate_reduce(name ##tname, type, type, op<type>)
#define instantiate_reduce_from_types_helper(name, tname, itype, otype, op) \
instantiate_reduce(name ##tname, itype, otype, op)
#define instantiate_reduce_from_types(name, otype, op) \
instantiate_reduce_from_types_helper(name, bool_, bool, otype, op) \
instantiate_reduce_from_types_helper(name, uint8, uint8_t, otype, op) \
instantiate_reduce_from_types_helper(name, uint16, uint16_t, otype, op) \
instantiate_reduce_from_types_helper(name, uint32, uint32_t, otype, op) \
instantiate_reduce_from_types_helper(name, int8, int8_t, otype, op) \
instantiate_reduce_from_types_helper(name, int16, int16_t, otype, op) \
instantiate_reduce_from_types_helper(name, int32, int32_t, otype, op) \
instantiate_reduce_from_types_helper(name, int64, int64_t, otype, op) \
instantiate_reduce_from_types_helper(name, float16, half, otype, op) \
instantiate_reduce_from_types_helper(name, float32, float, otype, op) \
instantiate_reduce_from_types_helper(name, bfloat16, bfloat16_t, otype, op)
// special case bool with larger output type
instantiate_reduce(sumbool_, bool, uint32_t, Sum<uint32_t>)
instantiate_same_reduce(sum, uint8, uint8_t, Sum)
instantiate_same_reduce(sum, uint16, uint16_t, Sum)
instantiate_same_reduce(sum, uint32, uint32_t, Sum)
instantiate_same_reduce(sum, int8, int8_t, Sum)
instantiate_same_reduce(sum, int16, int16_t, Sum)
instantiate_same_reduce(sum, int32, int32_t, Sum)
instantiate_same_reduce(sum, float16, half, Sum)
instantiate_same_reduce(sum, float32, float, Sum)
instantiate_same_reduce_no_atomics(sum, int64, int64_t, Sum)
instantiate_same_reduce_no_atomics(sum, uint64, uint64_t, Sum)
instantiate_same_reduce(prod, uint8, uint8_t, Prod)
instantiate_same_reduce(prod, uint16, uint16_t, Prod)
instantiate_same_reduce(prod, uint32, uint32_t, Prod)
instantiate_same_reduce(prod, int8, int8_t, Prod)
instantiate_same_reduce(prod, int16, int16_t, Prod)
instantiate_same_reduce(prod, int32, int32_t, Prod)
instantiate_same_reduce(prod, float16, half, Prod)
instantiate_same_reduce(prod, float32, float, Prod)
instantiate_same_reduce_no_atomics(prod, int64, int64_t, Prod)
instantiate_same_reduce_no_atomics(prod, uint64, uint64_t, Prod)
instantiate_same_reduce(sum, bfloat16, bfloat16_t, Sum)
instantiate_same_reduce(prod, bfloat16, bfloat16_t, Prod)
instantiate_init_reduce(andbool_, bool, And)
instantiate_reduce_from_types(and, bool, And)
instantiate_init_reduce(orbool_, bool, Or)
instantiate_reduce_from_types(or, bool, Or)
// Compiler segfaulted with the names "min" or "max" ...
instantiate_same_reduce(min_, uint8, uint8_t, Min)
instantiate_same_reduce(min_, uint16, uint16_t, Min)
instantiate_same_reduce(min_, uint32, uint32_t, Min)
instantiate_same_reduce(min_, int8, int8_t, Min)
instantiate_same_reduce(min_, int16, int16_t, Min)
instantiate_same_reduce(min_, int32, int32_t, Min)
instantiate_same_reduce(min_, float16, half, Min)
instantiate_same_reduce(min_, float32, float, Min)
instantiate_same_reduce_no_atomics(min_, int64, int64_t, Min)
instantiate_same_reduce_no_atomics(min_, uint64, uint64_t, Min)
instantiate_same_reduce(max_, uint8, uint8_t, Max)
instantiate_same_reduce(max_, uint16, uint16_t, Max)
instantiate_same_reduce(max_, uint32, uint32_t, Max)
instantiate_same_reduce(max_, int8, int8_t, Max)
instantiate_same_reduce(max_, int16, int16_t, Max)
instantiate_same_reduce(max_, int32, int32_t, Max)
instantiate_same_reduce(max_, float16, half, Max)
instantiate_same_reduce(max_, float32, float, Max)
instantiate_same_reduce_no_atomics(max_, int64, int64_t, Max)
instantiate_same_reduce_no_atomics(max_, uint64, uint64_t, Max)
instantiate_same_reduce(min_, bfloat16, bfloat16_t, Min)
instantiate_same_reduce(max_, bfloat16, bfloat16_t, Max)

View File

@@ -0,0 +1,185 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/reduction/utils.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
#include "mlx/backend/metal/kernels/reduction/reduce_inst.h"
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// All reduce helper
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
METAL_FUNC U per_thread_all_reduce(
const device T* in,
const device size_t& in_size,
uint gid,
uint grid_size) {
Op op;
U total_val = Op::init;
if (gid * N_READS < in_size) {
in += gid * N_READS;
int r = 0;
for (; r < (int)ceildiv(in_size, grid_size * N_READS) - 1; r++) {
U vals[N_READS] = {op.init};
for (int i = 0; i < N_READS; i++) {
vals[i] = static_cast<U>(in[i]);
}
for (int i = 0; i < N_READS; i++) {
total_val = op(vals[i], total_val);
}
in += grid_size * N_READS;
}
// Separate case for the last set as we close the reduction size
size_t curr_idx = (gid + r * (size_t)grid_size) * N_READS;
if (curr_idx < in_size) {
int max_reads = in_size - curr_idx;
T vals[N_READS];
for (int i = 0, idx = 0; i < N_READS; i++, idx++) {
idx = idx < max_reads ? idx : max_reads - 1;
vals[i] = in[idx];
}
for (int i = 0; i < N_READS; i++) {
U val = i < max_reads ? vals[i] : Op::init;
total_val = op(static_cast<U>(val), total_val);
}
}
}
return total_val;
}
///////////////////////////////////////////////////////////////////////////////
// All reduce kernel
///////////////////////////////////////////////////////////////////////////////
// NB: This kernel assumes threads_per_threadgroup is at most
// 1024. This way with a simd_size of 32, we are guaranteed to
// complete the reduction in two steps of simd-level reductions.
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void all_reduce(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const device size_t& in_size [[buffer(2)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint grid_size [[threads_per_grid]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_all_reduce<T, U, Op, N_READS>(in, in_size, gid, grid_size);
// Reduction within simd group
total_val = op.simd_reduce(total_val);
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
// Reduction within thread group
threadgroup_barrier(mem_flags::mem_threadgroup);
total_val = lid < simd_per_group ? local_vals[lid] : op.init;
total_val = op.simd_reduce(total_val);
// Reduction across threadgroups
if (lid == 0) {
op.atomic_update(out, total_val);
}
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void all_reduce_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const device size_t& in_size [[buffer(2)]],
uint gid [[thread_position_in_grid]],
uint lid [[thread_position_in_threadgroup]],
uint grid_size [[threads_per_grid]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint thread_group_id [[threadgroup_position_in_grid]]) {
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_all_reduce<T, U, Op, N_READS>(in, in_size, gid, grid_size);
// Reduction within simd group (simd_add isn't supported for uint64/int64 types)
for (uint16_t lane_offset = simd_size/2; lane_offset > 0; lane_offset /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, lane_offset));
}
// Write simd group reduction results to local memory
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction of simdgroup reduction results within threadgroup.
total_val = lid < simd_per_group ? local_vals[lid] : op.init;
for (uint16_t lane_offset = simd_size/2; lane_offset > 0; lane_offset /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, lane_offset));
}
// Reduction across threadgroups
if (lid == 0) {
out[thread_group_id] = total_val;
}
}
#define instantiate_all_reduce(name, itype, otype, op) \
template [[host_name("all_reduce_" #name)]] \
[[kernel]] void all_reduce<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const device size_t& in_size [[buffer(2)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint grid_size [[threads_per_grid]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_all_reduce_no_atomics(name, itype, otype, op) \
template [[host_name("all_reduce_no_atomics_" #name)]] \
[[kernel]] void all_reduce_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const device size_t& in_size [[buffer(2)]], \
uint gid [[thread_position_in_grid]], \
uint lid [[thread_position_in_threadgroup]], \
uint grid_size [[threads_per_grid]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
uint thread_group_id [[threadgroup_position_in_grid]]);
///////////////////////////////////////////////////////////////////////////////
// Instantiations
///////////////////////////////////////////////////////////////////////////////
#define instantiate_same_all_reduce_helper(name, tname, type, op) \
instantiate_all_reduce(name ##tname, type, type, op<type>)
#define instantiate_same_all_reduce_na_helper(name, tname, type, op) \
instantiate_all_reduce_no_atomics(name ##tname, type, type, op<type>)
instantiate_reduce_ops(instantiate_same_all_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_all_reduce_na_helper, instantiate_reduce_helper_64b)
instantiate_reduce_from_types(instantiate_all_reduce, and, bool, And)
instantiate_reduce_from_types(instantiate_all_reduce, or, bool, Or)
// special case bool with larger output type
instantiate_all_reduce(sumbool_, bool, uint32_t, Sum<uint32_t>)

View File

@@ -0,0 +1,184 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/reduction/utils.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
#include "mlx/backend/metal/kernels/reduction/reduce_inst.h"
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// Column reduce helper
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
METAL_FUNC U _contiguous_strided_reduce(
const device T* in,
threadgroup U* local_data,
uint in_idx,
uint reduction_size,
uint reduction_stride,
uint2 tid,
uint2 lid,
uint2 lsize) {
Op op;
U total_val = Op::init;
uint base_offset = (tid.y * lsize.y + lid.y) * N_READS;
for (uint r = 0; r < N_READS && (base_offset + r) < reduction_size; r++) {
uint offset = base_offset + r;
total_val =
op(static_cast<U>(total_val), in[in_idx + offset * reduction_stride]);
}
local_data[lsize.y * lid.x + lid.y] = total_val;
threadgroup_barrier(mem_flags::mem_threadgroup);
U val = Op::init;
if (lid.y == 0) {
// Perform reduction across columns in thread group
for (uint i = 0; i < lsize.y; i++) {
val = op(val, local_data[lsize.y * lid.x + i]);
}
}
return val;
}
///////////////////////////////////////////////////////////////////////////////
// Column reduce kernel
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
[[kernel]] void col_reduce_general(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant size_t& out_size [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
threadgroup U *local_data [[threadgroup(0)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]]) {
auto out_idx = tid.x * lsize.x + lid.x;
auto in_idx = elem_to_loc(
out_idx + tid.z * out_size,
shape,
strides,
ndim
);
Op op;
if(out_idx < out_size) {
U val = _contiguous_strided_reduce<T, U, Op, N_READS>(
in,
local_data,
in_idx,
reduction_size,
reduction_stride,
tid.xy,
lid.xy,
lsize.xy);
// Write out reduction results generated by threadgroups working on specific output element, contiguously.
if (lid.y == 0) {
op.atomic_update(out, val, out_idx);
}
}
}
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
[[kernel]] void col_reduce_general_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& reduction_stride [[buffer(3)]],
const constant size_t& out_size [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
threadgroup U *local_data [[threadgroup(0)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 gid [[thread_position_in_grid]],
uint3 lsize [[threads_per_threadgroup]],
uint3 gsize [[threads_per_grid]]) {
auto out_idx = tid.x * lsize.x + lid.x;
auto in_idx = elem_to_loc(
out_idx + tid.z * out_size,
shape,
strides,
ndim
);
if(out_idx < out_size) {
U val = _contiguous_strided_reduce<T, U, Op, N_READS>(
in,
local_data,
in_idx,
reduction_size,
reduction_stride,
tid.xy,
lid.xy,
lsize.xy);
// Write out reduction results generated by threadgroups working on specific output element, contiguously.
if (lid.y == 0) {
uint tgsize_y = ceildiv(gsize.y, lsize.y);
uint tgsize_z = ceildiv(gsize.z, lsize.z);
out[tgsize_y * tgsize_z * gid.x + tgsize_y * tid.z + tid.y] = val;
}
}
}
#define instantiate_col_reduce_general(name, itype, otype, op) \
template [[host_name("col_reduce_general_" #name)]] \
[[kernel]] void col_reduce_general<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& reduction_stride [[buffer(3)]], \
const constant size_t& out_size [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
threadgroup otype *local_data [[threadgroup(0)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]]);
#define instantiate_col_reduce_general_no_atomics(name, itype, otype, op) \
template [[host_name("col_reduce_general_no_atomics_" #name)]] \
[[kernel]] void col_reduce_general_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& reduction_stride [[buffer(3)]], \
const constant size_t& out_size [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
threadgroup otype *local_data [[threadgroup(0)]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 gid [[thread_position_in_grid]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 gsize [[threads_per_grid]]);
///////////////////////////////////////////////////////////////////////////////
// Instantiations
///////////////////////////////////////////////////////////////////////////////
#define instantiate_same_col_reduce_helper(name, tname, type, op) \
instantiate_col_reduce_general(name ##tname, type, type, op<type>)
#define instantiate_same_col_reduce_na_helper(name, tname, type, op) \
instantiate_col_reduce_general_no_atomics(name ##tname, type, type, op<type>)
instantiate_reduce_ops(instantiate_same_col_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_col_reduce_na_helper, instantiate_reduce_helper_64b)
instantiate_col_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)
instantiate_reduce_from_types(instantiate_col_reduce_general, and, bool, And)
instantiate_reduce_from_types(instantiate_col_reduce_general, or, bool, Or)

View File

@@ -0,0 +1,33 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/reduction/utils.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
#include "mlx/backend/metal/kernels/reduction/reduce_inst.h"
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// Reduce init
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename Op>
[[kernel]] void init_reduce(
device T *out [[buffer(0)]],
uint tid [[thread_position_in_grid]]) {
out[tid] = Op::init;
}
#define instantiate_init_reduce(name, otype, op) \
template [[host_name("i" #name)]] \
[[kernel]] void init_reduce<otype, op>( \
device otype *out [[buffer(1)]], \
uint tid [[thread_position_in_grid]]);
#define instantiate_init_reduce_helper(name, tname, type, op) \
instantiate_init_reduce(name ##tname, type, op<type>)
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_init_reduce_helper, instantiate_reduce_helper_64b)
instantiate_init_reduce(andbool_, bool, And)
instantiate_init_reduce(orbool_, bool, Or)

View File

@@ -0,0 +1,369 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/backend/metal/kernels/reduction/utils.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
#include "mlx/backend/metal/kernels/reduction/reduce_inst.h"
using namespace metal;
///////////////////////////////////////////////////////////////////////////////
// Small row reductions
///////////////////////////////////////////////////////////////////////////////
// Each thread reduces for one output
template <typename T, typename U, typename Op>
[[kernel]] void row_reduce_general_small(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant size_t& non_row_reductions [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
uint lid [[thread_position_in_grid]]) {
Op op;
uint out_idx = lid;
if(out_idx >= out_size) {
return;
}
U total_val = Op::init;
for(short r = 0; r < short(non_row_reductions); r++) {
uint in_idx = elem_to_loc(out_idx + r * out_size, shape, strides, ndim);
const device T * in_row = in + in_idx;
for(short i = 0; i < short(reduction_size); i++) {
total_val = op(static_cast<U>(in_row[i]), total_val);
}
}
out[out_idx] = total_val;
}
// Each simdgroup reduces for one output
template <typename T, typename U, typename Op>
[[kernel]] void row_reduce_general_med(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant size_t& non_row_reductions [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
uint tid [[threadgroup_position_in_grid]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_per_group [[dispatch_simdgroups_per_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
Op op;
uint out_idx = simd_per_group * tid + simd_group_id;
if(out_idx >= out_size) {
return;
}
U total_val = Op::init;
if(short(non_row_reductions) == 1) {
uint in_idx = elem_to_loc(out_idx, shape, strides, ndim);
const device T * in_row = in + in_idx;
for(short i = simd_lane_id; i < short(reduction_size); i += 32) {
total_val = op(static_cast<U>(in_row[i]), total_val);
}
}
else if (short(non_row_reductions) >= 32) {
for(short r = simd_lane_id; r < short(non_row_reductions); r+=32) {
uint in_idx = elem_to_loc(out_idx + r * out_size, shape, strides, ndim);
const device T * in_row = in + in_idx;
for(short i = 0; i < short(reduction_size); i++) {
total_val = op(static_cast<U>(in_row[i]), total_val);
}
}
}
else {
const short n_reductions = short(reduction_size) * short(non_row_reductions);
const short reductions_per_thread = (n_reductions + simd_size - 1) / simd_size;
const short r_st = simd_lane_id / reductions_per_thread;
const short r_ed = short(non_row_reductions);
const short r_jump = simd_size / reductions_per_thread;
const short i_st = simd_lane_id % reductions_per_thread;
const short i_ed = short(reduction_size);
const short i_jump = reductions_per_thread;
for(short r = r_st; r < r_ed; r += r_jump) {
uint in_idx = elem_to_loc(out_idx + r * out_size, shape, strides, ndim);
const device T * in_row = in + in_idx;
for(short i = i_st; i < i_ed; i += i_jump) {
total_val = op(static_cast<U>(in_row[i]), total_val);
}
}
}
total_val = op.simd_reduce(total_val);
if(simd_lane_id == 0) {
out[out_idx] = total_val;
}
}
#define instantiate_row_reduce_small(name, itype, otype, op) \
template[[host_name("row_reduce_general_small_" #name)]] \
[[kernel]] void row_reduce_general_small<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant size_t& non_row_reductions [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
uint lid [[thread_position_in_grid]]); \
template[[host_name("row_reduce_general_med_" #name)]] \
[[kernel]] void row_reduce_general_med<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant size_t& non_row_reductions [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
uint tid [[threadgroup_position_in_grid]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_per_group [[dispatch_simdgroups_per_threadgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
///////////////////////////////////////////////////////////////////////////////
// Large row reductions
///////////////////////////////////////////////////////////////////////////////
template <typename T, typename U, typename Op, int N_READS = REDUCE_N_READS>
METAL_FUNC U per_thread_row_reduce(
const device T* in,
const constant size_t& reduction_size,
const constant size_t& out_size,
const constant int* shape,
const constant size_t* strides,
const constant int& ndim,
uint lsize_x,
uint lid_x,
uint2 tid) {
Op op;
// Each threadgroup handles 1 reduction
// TODO: Specializing elem_to_loc would be slightly faster
int idx = tid.y * out_size + tid.x;
int extra_offset = elem_to_loc(idx, shape, strides, ndim);
in += extra_offset + lid_x * N_READS;
// The reduction is accumulated here
U total_val = Op::init;
// Loop over the reduction size within thread group
int r = 0;
for (; r < (int)ceildiv(reduction_size, N_READS * lsize_x) - 1; r++) {
T vals[N_READS];
for (int i = 0; i < N_READS; i++) {
vals[i] = in[i];
}
for (int i = 0; i < N_READS; i++) {
total_val = op(static_cast<U>(vals[i]), total_val);
}
in += lsize_x * N_READS;
}
// Separate case for the last set as we close the reduction size
size_t reduction_index = (lid_x + (size_t)lsize_x * r) * N_READS;
if (reduction_index < reduction_size) {
int max_reads = reduction_size - reduction_index;
T vals[N_READS];
for (int i = 0; i < N_READS; i++) {
int idx = min(i, max_reads - 1);
vals[i] = static_cast<U>(in[idx]);
}
for (int i = 0; i < N_READS; i++) {
T val = i < max_reads ? vals[i] : Op::init;
total_val = op(static_cast<U>(val), total_val);
}
}
return total_val;
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void row_reduce_general(
const device T *in [[buffer(0)]],
device mlx_atomic<U> *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant size_t& non_row_reductions [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
(void)non_row_reductions;
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_row_reduce<T, U, Op, N_READS>(in, reduction_size, out_size, shape, strides, ndim, lsize.x, lid.x, tid.xy);
total_val = op.simd_reduce(total_val);
// Prepare next level
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction within thread group
// Only needed if multiple simd groups
if(reduction_size > simd_size) {
total_val = lid.x < simd_per_group ? local_vals[lid.x] : op.init;
total_val = op.simd_reduce(total_val);
}
// Update output
if (lid.x == 0) {
op.atomic_update(out, total_val, tid.x);
}
}
template <typename T, typename U, typename Op, int N_READS=REDUCE_N_READS>
[[kernel]] void row_reduce_general_no_atomics(
const device T *in [[buffer(0)]],
device U *out [[buffer(1)]],
const constant size_t& reduction_size [[buffer(2)]],
const constant size_t& out_size [[buffer(3)]],
const constant size_t& non_row_reductions [[buffer(4)]],
const constant int* shape [[buffer(5)]],
const constant size_t* strides [[buffer(6)]],
const constant int& ndim [[buffer(7)]],
uint3 lid [[thread_position_in_threadgroup]],
uint3 lsize [[threads_per_threadgroup]],
uint3 gsize [[threads_per_grid]],
uint3 tid [[threadgroup_position_in_grid]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_per_group [[simdgroups_per_threadgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
(void)non_row_reductions;
Op op;
threadgroup U local_vals[simd_size];
U total_val = per_thread_row_reduce<T, U, Op, N_READS>(in, reduction_size, out_size, shape, strides, ndim, lsize.x, lid.x, tid.xy);
// Reduction within simd group - simd_add isn't supported for int64 types
for (uint16_t i = simd_size/2; i > 0; i /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, i));
}
// Prepare next level
if (simd_lane_id == 0) {
local_vals[simd_group_id] = total_val;
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// Reduction within thread group
// Only needed if thread group has multiple simd groups
if(ceildiv(reduction_size, N_READS) > simd_size) {
total_val = lid.x < simd_per_group ? local_vals[lid.x] : op.init;
for (uint16_t i = simd_size/2; i > 0; i /= 2) {
total_val = op(total_val, simd_shuffle_down(total_val, i));
}
}
// Write row reduce output for threadgroup with 1st thread in thread group
if (lid.x == 0) {
out[(ceildiv(gsize.y, lsize.y) * tid.x) + tid.y] = total_val;
}
}
#define instantiate_row_reduce_general(name, itype, otype, op) \
instantiate_row_reduce_small(name, itype, otype, op) \
template [[host_name("row_reduce_general_" #name)]] \
[[kernel]] void row_reduce_general<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device mlx_atomic<otype> *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant size_t& non_row_reductions [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
#define instantiate_row_reduce_general_no_atomics(name, itype, otype, op) \
instantiate_row_reduce_small(name, itype, otype, op) \
template [[host_name("row_reduce_general_no_atomics_" #name)]] \
[[kernel]] void row_reduce_general_no_atomics<itype, otype, op>( \
const device itype *in [[buffer(0)]], \
device otype *out [[buffer(1)]], \
const constant size_t& reduction_size [[buffer(2)]], \
const constant size_t& out_size [[buffer(3)]], \
const constant size_t& non_row_reductions [[buffer(4)]], \
const constant int* shape [[buffer(5)]], \
const constant size_t* strides [[buffer(6)]], \
const constant int& ndim [[buffer(7)]], \
uint3 lid [[thread_position_in_threadgroup]], \
uint3 lsize [[threads_per_threadgroup]], \
uint3 gsize [[threads_per_grid]], \
uint3 tid [[threadgroup_position_in_grid]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_per_group [[simdgroups_per_threadgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]]);
///////////////////////////////////////////////////////////////////////////////
// Instantiations
///////////////////////////////////////////////////////////////////////////////
#define instantiate_same_row_reduce_helper(name, tname, type, op) \
instantiate_row_reduce_general(name ##tname, type, type, op<type>)
#define instantiate_same_row_reduce_na_helper(name, tname, type, op) \
instantiate_row_reduce_general_no_atomics(name ##tname, type, type, op<type>)
instantiate_reduce_ops(instantiate_same_row_reduce_helper, instantiate_reduce_helper_types)
instantiate_reduce_ops(instantiate_same_row_reduce_na_helper, instantiate_reduce_helper_64b)
instantiate_reduce_from_types(instantiate_row_reduce_general, and, bool, And)
instantiate_reduce_from_types(instantiate_row_reduce_general, or, bool, Or)
instantiate_row_reduce_general(sumbool_, bool, uint32_t, Sum<uint32_t>)

View File

@@ -1,4 +1,4 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#pragma once

View File

@@ -0,0 +1,71 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include <metal_atomic>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
#define instantiate_reduce_helper_floats(inst_f, name, op) \
inst_f(name, float16, half, op) inst_f(name, float32, float, op) \
inst_f(name, bfloat16, bfloat16_t, op)
#define instantiate_reduce_helper_uints(inst_f, name, op) \
inst_f(name, uint8, uint8_t, op) inst_f(name, uint16, uint16_t, op) \
inst_f(name, uint32, uint32_t, op)
#define instantiate_reduce_helper_ints(inst_f, name, op) \
inst_f(name, int8, int8_t, op) inst_f(name, int16, int16_t, op) \
inst_f(name, int32, int32_t, op)
#define instantiate_reduce_helper_64b(inst_f, name, op) \
inst_f(name, int64, int64_t, op) inst_f(name, uint64, uint64_t, op)
#define instantiate_reduce_helper_types(inst_f, name, op) \
instantiate_reduce_helper_floats(inst_f, name, op) \
instantiate_reduce_helper_uints(inst_f, name, op) \
instantiate_reduce_helper_ints(inst_f, name, op)
#define instantiate_reduce_ops(inst_f, type_f) \
type_f(inst_f, sum, Sum) type_f(inst_f, prod, Prod) \
type_f(inst_f, min_, Min) type_f(inst_f, max_, Max)
// Special case for bool reductions
#define instantiate_reduce_from_types_helper( \
inst_f, name, tname, itype, otype, op) \
inst_f(name##tname, itype, otype, op)
#define instantiate_reduce_from_types(inst_f, name, otype, op) \
instantiate_reduce_from_types_helper(inst_f, name, bool_, bool, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint8, uint8_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint16, uint16_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, uint32, uint32_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int8, int8_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int16, int16_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int32, int32_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, int64, int64_t, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, name, float16, half, otype, op) \
instantiate_reduce_from_types_helper( \
inst_f, \
name, \
float32, \
float, \
otype, \
op) \
instantiate_reduce_from_types_helper( \
inst_f, \
name, \
bfloat16, \
bfloat16_t, \
otype, \
op)

View File

@@ -0,0 +1,14 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include <metal_atomic>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/steel/utils.h"
#include "mlx/backend/metal/kernels/utils.h"
#include "mlx/backend/metal/kernels/reduction/ops.h"
static constant constexpr const uint8_t simd_size = 32;

View File

@@ -0,0 +1,68 @@
// Copyright © 2023-2024 Apple Inc.
#include <metal_math>
#include "mlx/backend/metal/kernels/bf16.h"
#include "mlx/backend/metal/kernels/utils.h"
template <typename T, bool traditional>
[[kernel]] void rope(
const device T *in [[buffer(0)]],
device T * out [[buffer(1)]],
constant const size_t strides[3],
constant const int& offset,
constant const float& base,
constant const float& scale,
uint3 pos [[thread_position_in_grid]],
uint3 grid [[threads_per_grid]]) {
// Compute the input and output indices
uint in_index_1, in_index_2;
uint out_index_1, out_index_2;
if (traditional) {
out_index_1 = 2 * (pos.x + grid.x * (pos.y + grid.y * pos.z));
out_index_2 = out_index_1 + 1;
in_index_1 = 2 * pos.x * strides[2] + pos.y * strides[1] + pos.z * strides[0];
in_index_2 = in_index_1 + strides[2];
} else {
out_index_1 = pos.x + 2*(grid.x * (pos.y + grid.y * pos.z));
out_index_2 = out_index_1 + grid.x;
in_index_1 = pos.x * strides[2] + pos.y * strides[1] + pos.z * strides[0];
in_index_2 = in_index_1 + grid.x * strides[2];
}
// Figure out L and d.
float L = scale * static_cast<float>(pos.y + offset);
float d = static_cast<float>(pos.x) / static_cast<float>(grid.x);
// Compute costheta, sintheta
float theta = L * metal::exp2(-d * base);
float costheta = metal::fast::cos(theta);
float sintheta = metal::fast::sin(theta);
// Read and write the output
float x1 = static_cast<float>(in[in_index_1]);
float x2 = static_cast<float>(in[in_index_2]);
float rx1 = x1 * costheta - x2 * sintheta;
float rx2 = x1 * sintheta + x2 * costheta;
out[out_index_1] = static_cast<T>(rx1);
out[out_index_2] = static_cast<T>(rx2);
}
#define instantiate_rope(name, type, traditional) \
template [[host_name("rope_" #name)]] \
[[kernel]] void rope<type, traditional>( \
const device type* in [[buffer(0)]], \
device type* out [[buffer(1)]], \
constant const size_t strides[3], \
constant const int& offset, \
constant const float& base, \
constant const float& scale, \
uint3 pos [[thread_position_in_grid]], \
uint3 grid [[threads_per_grid]]);
instantiate_rope(traditional_float16, half, true)
instantiate_rope(traditional_bfloat16, bfloat16_t, true)
instantiate_rope(traditional_float32, float, true)
instantiate_rope(float16, half, false)
instantiate_rope(bfloat16, bfloat16_t, false)
instantiate_rope(float32, float, false)

View File

@@ -0,0 +1,452 @@
#include <metal_stdlib>
#include <metal_simdgroup>
#include "mlx/backend/metal/kernels/scaled_dot_product_attention_params.h"
using namespace metal;
template<typename T, typename T2, typename T4, uint16_t TILE_SIZE_CONST, uint16_t NSIMDGROUPS>
[[kernel]] void fast_inference_sdpa_compute_partials_template(const device T *Q [[buffer(0)]],
const device T *K [[buffer(1)]],
const device T *V [[buffer(2)]],
const device uint64_t& L [[buffer(3)]],
const device MLXScaledDotProductAttentionParams& params [[buffer(4)]],
device float* O_partials [[buffer(5)]],
device float* p_lse [[buffer(6)]],
device float* p_maxes [[buffer(7)]],
uint simd_lane_id [[thread_index_in_simdgroup]],
uint simd_group_id [[simdgroup_index_in_threadgroup]],
uint3 tid [[threadgroup_position_in_grid]]) {
threadgroup T threadgroup_block[32768 / sizeof(T)];
constexpr const size_t DK = 128;
constexpr const ulong SIMDGROUP_MATRIX_LOAD_FACTOR = 8;
constexpr const size_t THREADS_PER_SIMDGROUP = 32;
constexpr const uint iter_offset = NSIMDGROUPS * 4;
const bool is_gqa = params.N_KV_HEADS != params.N_Q_HEADS;
uint kv_head_offset_factor = tid.x;
if(is_gqa) {
int q_kv_head_ratio = params.N_Q_HEADS / params.N_KV_HEADS;
kv_head_offset_factor = tid.x / q_kv_head_ratio;
}
constexpr const uint16_t P_VEC4 = TILE_SIZE_CONST / NSIMDGROUPS / 4;
constexpr const size_t MATRIX_LOADS_PER_SIMDGROUP = TILE_SIZE_CONST / (SIMDGROUP_MATRIX_LOAD_FACTOR * NSIMDGROUPS);
constexpr const size_t MATRIX_COLS = DK / SIMDGROUP_MATRIX_LOAD_FACTOR;
constexpr const uint totalSmemV = SIMDGROUP_MATRIX_LOAD_FACTOR * SIMDGROUP_MATRIX_LOAD_FACTOR * (MATRIX_LOADS_PER_SIMDGROUP + 1) * NSIMDGROUPS;
threadgroup T4* smemFlush = (threadgroup T4*)threadgroup_block;
#pragma clang loop unroll(full)
for(uint i = 0; i < 8; i++) {
smemFlush[simd_lane_id + simd_group_id * THREADS_PER_SIMDGROUP + i * NSIMDGROUPS * THREADS_PER_SIMDGROUP] = T4(0.f);
}
threadgroup_barrier(mem_flags::mem_threadgroup);
// TODO: multiple query sequence length for speculative decoding
const uint tgroup_query_head_offset = tid.x * DK + tid.z * (params.N_Q_HEADS * DK);
const uint tgroup_k_head_offset = kv_head_offset_factor * DK * L;
const uint tgroup_k_tile_offset = tid.y * TILE_SIZE_CONST * DK;
const uint tgroup_k_batch_offset = tid.z * L * params.N_KV_HEADS * DK;
const device T* baseK = K + tgroup_k_batch_offset + tgroup_k_tile_offset + tgroup_k_head_offset;
const device T* baseQ = Q + tgroup_query_head_offset;
device T4* simdgroupQueryData = (device T4*)baseQ;
constexpr const size_t ACCUM_PER_GROUP = TILE_SIZE_CONST / NSIMDGROUPS;
float threadAccum[ACCUM_PER_GROUP];
#pragma clang loop unroll(full)
for(size_t threadAccumIndex = 0; threadAccumIndex < ACCUM_PER_GROUP; threadAccumIndex++) {
threadAccum[threadAccumIndex] = -INFINITY;
}
uint KROW_ACCUM_INDEX = 0;
const int32_t SEQUENCE_LENGTH_LESS_TILE_SIZE = L - TILE_SIZE_CONST;
const bool LAST_TILE = (tid.y + 1) * TILE_SIZE_CONST >= L;
const bool LAST_TILE_ALIGNED = (SEQUENCE_LENGTH_LESS_TILE_SIZE == int32_t(tid.y * TILE_SIZE_CONST));
T4 thread_data_x4;
T4 thread_data_y4;
if(!LAST_TILE || LAST_TILE_ALIGNED) {
thread_data_x4 = *(simdgroupQueryData + simd_lane_id);
#pragma clang loop unroll(full)
for(size_t KROW = simd_group_id; KROW < TILE_SIZE_CONST; KROW += NSIMDGROUPS) {
const uint KROW_OFFSET = KROW * DK;
const device T* baseKRow = baseK + KROW_OFFSET;
device T4* keysData = (device T4*)baseKRow;
thread_data_y4 = *(keysData + simd_lane_id);
T kq_scalar = dot(thread_data_x4, thread_data_y4);
threadAccum[KROW_ACCUM_INDEX] = float(kq_scalar);
KROW_ACCUM_INDEX++;
}
} else {
thread_data_x4 = *(simdgroupQueryData + simd_lane_id);
const uint START_ROW = tid.y * TILE_SIZE_CONST;
const device T* baseKThisHead = K + tgroup_k_batch_offset + tgroup_k_head_offset;
for(size_t KROW = START_ROW + simd_group_id; KROW < L; KROW += NSIMDGROUPS) {
const uint KROW_OFFSET = KROW * DK;
const device T* baseKRow = baseKThisHead + KROW_OFFSET;
device T4* keysData = (device T4*)baseKRow;
thread_data_y4 = *(keysData + simd_lane_id);
T kq_scalar = dot(thread_data_x4, thread_data_y4);
threadAccum[KROW_ACCUM_INDEX] = float(kq_scalar);
KROW_ACCUM_INDEX++;
}
}
threadgroup float* smemP = (threadgroup float*)threadgroup_block;
#pragma clang loop unroll(full)
for(size_t i = 0; i < P_VEC4; i++) {
thread_data_x4 = T4(threadAccum[4 * i], threadAccum[4 * i + 1], threadAccum[4 * i + 2], threadAccum[4 * i + 3]);
simdgroup_barrier(mem_flags::mem_none);
thread_data_y4 = simd_sum(thread_data_x4);
if(simd_lane_id == 0) {
const uint base_smem_p_offset = i * iter_offset + simd_group_id;
smemP[base_smem_p_offset + NSIMDGROUPS * 0] = float(thread_data_y4.x);
smemP[base_smem_p_offset + NSIMDGROUPS * 1] = float(thread_data_y4.y);
smemP[base_smem_p_offset + NSIMDGROUPS * 2] = float(thread_data_y4.z);
smemP[base_smem_p_offset + NSIMDGROUPS * 3] = float(thread_data_y4.w);
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
float groupMax;
float lse = 0.f;
constexpr const size_t THREADS_PER_THREADGROUP_TIMES_4 = 4 * 32;
constexpr const size_t ACCUM_ARRAY_LENGTH = TILE_SIZE_CONST / THREADS_PER_THREADGROUP_TIMES_4 + 1;
float4 pvals[ACCUM_ARRAY_LENGTH];
#pragma clang loop unroll(full)
for(uint accum_array_iter = 0; accum_array_iter < ACCUM_ARRAY_LENGTH; accum_array_iter++) {
pvals[accum_array_iter] = float4(-INFINITY);
}
if (TILE_SIZE_CONST == 64) {
threadgroup float2* smemPtrFlt2 = (threadgroup float2*)threadgroup_block;
float2 vals = smemPtrFlt2[simd_lane_id];
vals *= params.INV_ALPHA;
float maxval = max(vals.x, vals.y);
simdgroup_barrier(mem_flags::mem_none);
groupMax = simd_max(maxval);
float2 expf_shifted = exp(vals - groupMax);
float sumExpLocal = expf_shifted.x + expf_shifted.y;
simdgroup_barrier(mem_flags::mem_none);
float tgroupExpSum = simd_sum(sumExpLocal);
lse = log(tgroupExpSum);
float2 local_p_hat = expf_shifted / tgroupExpSum;
pvals[0].x = local_p_hat.x;
pvals[0].y = local_p_hat.y;
smemPtrFlt2[simd_lane_id] = float2(0.f);
}
constexpr const bool TILE_SIZE_LARGER_THAN_64 = TILE_SIZE_CONST > 64;
constexpr const int TILE_SIZE_ITERS_128 = TILE_SIZE_CONST / 128;
if (TILE_SIZE_LARGER_THAN_64) {
float maxval = -INFINITY;
threadgroup float4* smemPtrFlt4 = (threadgroup float4*)threadgroup_block;
#pragma clang loop unroll(full)
for(int i = 0; i < TILE_SIZE_ITERS_128; i++) {
float4 vals = smemPtrFlt4[simd_lane_id + i * THREADS_PER_SIMDGROUP];
vals *= params.INV_ALPHA;
pvals[i] = vals;
maxval = fmax3(vals.x, vals.y, maxval);
maxval = fmax3(vals.z, vals.w, maxval);
}
simdgroup_barrier(mem_flags::mem_none);
groupMax = simd_max(maxval);
float sumExpLocal = 0.f;
#pragma clang loop unroll(full)
for(int i = 0; i < TILE_SIZE_ITERS_128; i++) {
pvals[i] = exp(pvals[i] - groupMax);
sumExpLocal += pvals[i].x + pvals[i].y + pvals[i].z + pvals[i].w;
}
simdgroup_barrier(mem_flags::mem_none);
float tgroupExpSum = simd_sum(sumExpLocal);
lse = log(tgroupExpSum);
#pragma clang loop unroll(full)
for(int i = 0; i < TILE_SIZE_ITERS_128; i++) {
pvals[i] = pvals[i] / tgroupExpSum;
smemPtrFlt4[simd_lane_id + i * THREADS_PER_SIMDGROUP] = float4(0.f);
}
}
threadgroup T* smemV = (threadgroup T*)threadgroup_block;
const size_t v_batch_offset = tid.z * params.N_KV_HEADS * L * DK;
const size_t v_head_offset = kv_head_offset_factor * L * DK;
const size_t v_tile_offset = tid.y * TILE_SIZE_CONST * DK;
const size_t v_offset = v_batch_offset + v_head_offset + v_tile_offset;
device T* baseV = (device T*)V + v_offset;
threadgroup float* smemOpartial = (threadgroup float*)(smemV + totalSmemV);
if (!LAST_TILE || LAST_TILE_ALIGNED) {
#pragma clang loop unroll(full)
for(size_t col = 0; col < MATRIX_COLS; col++) {
uint matrix_load_loop_iter = 0;
constexpr const size_t TILE_SIZE_CONST_DIV_8 = TILE_SIZE_CONST / 8;
for(size_t tile_start = simd_group_id; tile_start < TILE_SIZE_CONST_DIV_8; tile_start += NSIMDGROUPS) {
simdgroup_matrix<T, 8, 8> tmp;
ulong simdgroup_matrix_offset = matrix_load_loop_iter * NSIMDGROUPS * SIMDGROUP_MATRIX_LOAD_FACTOR + simd_group_id * SIMDGROUP_MATRIX_LOAD_FACTOR;
ulong2 matrixOrigin = ulong2(col * SIMDGROUP_MATRIX_LOAD_FACTOR, simdgroup_matrix_offset);
simdgroup_load(tmp, baseV, DK, matrixOrigin, true);
const ulong2 matrixOriginSmem = ulong2(simdgroup_matrix_offset, 0);
const ulong elemsPerRowSmem = TILE_SIZE_CONST;
simdgroup_store(tmp, smemV, elemsPerRowSmem, matrixOriginSmem, false);
matrix_load_loop_iter++;
};
threadgroup_barrier(mem_flags::mem_threadgroup);
if (TILE_SIZE_CONST == 64) {
T2 local_p_hat = T2(pvals[0].x, pvals[0].y);
uint loop_iter = 0;
threadgroup float* oPartialSmem = smemOpartial + SIMDGROUP_MATRIX_LOAD_FACTOR * col;
#pragma clang loop unroll(full)
for(size_t row = simd_group_id; row < SIMDGROUP_MATRIX_LOAD_FACTOR; row += NSIMDGROUPS) {
threadgroup T* smemV_row = smemV + (TILE_SIZE_CONST * row);
threadgroup T2* smemV2 = (threadgroup T2*)smemV_row;
T2 v_local = *(smemV2 + simd_lane_id);
T val = dot(local_p_hat, v_local);
simdgroup_barrier(mem_flags::mem_none);
T row_sum = simd_sum(val);
oPartialSmem[simd_group_id + loop_iter * NSIMDGROUPS] = float(row_sum);
loop_iter++;
}
}
if (TILE_SIZE_CONST > 64) {
constexpr const size_t TILE_SIZE_CONST_DIV_128 = (TILE_SIZE_CONST + 1) / 128;
threadgroup float* oPartialSmem = smemOpartial + SIMDGROUP_MATRIX_LOAD_FACTOR * col;
uint loop_iter = 0;
for(size_t row = simd_group_id; row < SIMDGROUP_MATRIX_LOAD_FACTOR; row += NSIMDGROUPS) {
threadgroup T* smemV_row = smemV + (TILE_SIZE_CONST * row);
T row_sum = 0.f;
for(size_t i = 0; i < TILE_SIZE_CONST_DIV_128; i++) {
threadgroup T4* smemV2 = (threadgroup T4*)smemV_row;
T4 v_local = *(smemV2 + simd_lane_id + i * THREADS_PER_SIMDGROUP);
T4 p_local = T4(pvals[i]);
T val = dot(p_local, v_local);
row_sum += val;
}
simdgroup_barrier(mem_flags::mem_none);
row_sum = simd_sum(row_sum);
oPartialSmem[simd_group_id + loop_iter * NSIMDGROUPS] = float(row_sum);
loop_iter++;
}
}
}
} else {
const int32_t START_ROW = tid.y * TILE_SIZE_CONST;
const int32_t MAX_START_ROW = L - SIMDGROUP_MATRIX_LOAD_FACTOR + 1;
const device T* baseVThisHead = V + v_batch_offset + v_head_offset;
constexpr const int ROWS_PER_ITER = 8;
#pragma clang loop unroll(full)
for(size_t col = 0; col < MATRIX_COLS; col++) {
uint smem_col_index = simd_group_id * SIMDGROUP_MATRIX_LOAD_FACTOR;
int32_t tile_start;
for(tile_start = START_ROW + simd_group_id * SIMDGROUP_MATRIX_LOAD_FACTOR; tile_start < MAX_START_ROW; tile_start += NSIMDGROUPS * SIMDGROUP_MATRIX_LOAD_FACTOR) {
simdgroup_matrix<T, 8, 8> tmp;
ulong2 matrixOrigin = ulong2(col * SIMDGROUP_MATRIX_LOAD_FACTOR, tile_start);
simdgroup_load(tmp, baseVThisHead, DK, matrixOrigin, /* transpose */ true);
const ulong2 matrixOriginSmem = ulong2(smem_col_index, 0);
constexpr const ulong elemsPerRowSmem = TILE_SIZE_CONST;
simdgroup_store(tmp, smemV, elemsPerRowSmem, matrixOriginSmem, /* transpose */ false);
smem_col_index += NSIMDGROUPS * SIMDGROUP_MATRIX_LOAD_FACTOR;
};
tile_start = ((L / SIMDGROUP_MATRIX_LOAD_FACTOR) * SIMDGROUP_MATRIX_LOAD_FACTOR);
const int32_t INT_L = int32_t(L);
for(int row_index = tile_start + simd_group_id ; row_index < INT_L; row_index += NSIMDGROUPS) {
if(simd_lane_id < SIMDGROUP_MATRIX_LOAD_FACTOR) {
const uint elems_per_row_gmem = DK;
const uint col_index_v_gmem = col * SIMDGROUP_MATRIX_LOAD_FACTOR + simd_lane_id;
const uint row_index_v_gmem = row_index;
const uint elems_per_row_smem = TILE_SIZE_CONST;
const uint col_index_v_smem = row_index % TILE_SIZE_CONST;
const uint row_index_v_smem = simd_lane_id;
const uint scalar_offset_gmem = row_index_v_gmem * elems_per_row_gmem + col_index_v_gmem;
const uint scalar_offset_smem = row_index_v_smem * elems_per_row_smem + col_index_v_smem;
T vdata = T(*(baseVThisHead + scalar_offset_gmem));
smemV[scalar_offset_smem] = vdata;
smem_col_index += NSIMDGROUPS;
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if (TILE_SIZE_CONST == 64) {
T2 local_p_hat = T2(pvals[0].x, pvals[0].y);
threadgroup float* oPartialSmem = smemOpartial + SIMDGROUP_MATRIX_LOAD_FACTOR * col;
for(size_t smem_row_index = simd_group_id;
smem_row_index < ROWS_PER_ITER; smem_row_index += NSIMDGROUPS) {
threadgroup T* smemV_row = smemV + (TILE_SIZE_CONST * smem_row_index);
threadgroup T2* smemV2 = (threadgroup T2*)smemV_row;
T2 v_local = *(smemV2 + simd_lane_id);
T val = dot(local_p_hat, v_local);
simdgroup_barrier(mem_flags::mem_none);
T row_sum = simd_sum(val);
oPartialSmem[smem_row_index] = float(row_sum);
}
}
if (TILE_SIZE_CONST > 64) {
threadgroup float* oPartialSmem = smemOpartial + SIMDGROUP_MATRIX_LOAD_FACTOR * col;
uint loop_count = 0;
for(size_t row_index = simd_group_id;
row_index < ROWS_PER_ITER; row_index += NSIMDGROUPS) {
T row_sum = 0.f;
for(size_t tile_iters = 0; tile_iters < TILE_SIZE_ITERS_128; tile_iters++) {
threadgroup T* smemV_row = smemV + (TILE_SIZE_CONST * row_index);
threadgroup T4* smemV2 = (threadgroup T4*)smemV_row;
T4 v_local = *(smemV2 + simd_lane_id + tile_iters * THREADS_PER_SIMDGROUP);
T4 p_local = T4(pvals[tile_iters]);
row_sum += dot(p_local, v_local);
}
simdgroup_barrier(mem_flags::mem_none);
row_sum = simd_sum(row_sum);
oPartialSmem[simd_group_id + NSIMDGROUPS * loop_count] = float(row_sum);
loop_count++;
}
}
}
}
threadgroup_barrier(mem_flags::mem_threadgroup);
if(simd_group_id == 0) {
threadgroup float4* oPartialVec4 = (threadgroup float4*)smemOpartial;
float4 vals = *(oPartialVec4 + simd_lane_id);
device float* oPartialGmem = O_partials + tid.x * DK * params.KV_TILES + tid.y * DK;
device float4* oPartialGmemVec4 = (device float4*)oPartialGmem;
oPartialGmemVec4[simd_lane_id] = vals;
}
if(simd_group_id == 0 && simd_lane_id == 0) {
const uint tileIndex = tid.y;
const uint gmem_partial_scalar_offset = tid.z * params.N_Q_HEADS * params.KV_TILES + tid.x * params.KV_TILES + tileIndex;
p_lse[gmem_partial_scalar_offset] = lse;
p_maxes[gmem_partial_scalar_offset] = groupMax;
}
}
#define instantiate_fast_inference_sdpa_to_partials_kernel(itype, itype2, itype4, tile_size, nsimdgroups) \
template [[host_name("fast_inference_sdpa_compute_partials_" #itype "_" #tile_size "_" #nsimdgroups )]] \
[[kernel]] void fast_inference_sdpa_compute_partials_template<itype, itype2, itype4, tile_size, nsimdgroups>( \
const device itype *Q [[buffer(0)]], \
const device itype *K [[buffer(1)]], \
const device itype *V [[buffer(2)]], \
const device uint64_t& L [[buffer(3)]], \
const device MLXScaledDotProductAttentionParams& params [[buffer(4)]], \
device float* O_partials [[buffer(5)]], \
device float* p_lse [[buffer(6)]], \
device float* p_maxes [[buffer(7)]], \
uint simd_lane_id [[thread_index_in_simdgroup]], \
uint simd_group_id [[simdgroup_index_in_threadgroup]], \
uint3 tid [[threadgroup_position_in_grid]]);
#define instantiate_fast_inference_sdpa_to_partials_shapes_helper(itype, itype2, itype4, tile_size) \
instantiate_fast_inference_sdpa_to_partials_kernel(itype, itype2, itype4, tile_size, 4) \
instantiate_fast_inference_sdpa_to_partials_kernel(itype, itype2, itype4, tile_size, 8) \
instantiate_fast_inference_sdpa_to_partials_shapes_helper(float, float2, float4, 64);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(float, float2, float4, 128);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(float, float2, float4, 256);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(float, float2, float4, 512);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(half, half2, half4, 64);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(half, half2, half4, 128);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(half, half2, half4, 256);
instantiate_fast_inference_sdpa_to_partials_shapes_helper(half, half2, half4, 512);
template <typename T>
void fast_inference_sdpa_reduce_tiles_template(
const device float *O_partials [[buffer(0)]],
const device float *p_lse[[buffer(1)]],
const device float *p_maxes [[buffer(2)]],
const device MLXScaledDotProductAttentionParams& params [[buffer(3)]],
device T* O [[buffer(4)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]]) {
constexpr const int DK = 128;
const ulong offset_rows = tid.z * params.KV_TILES * params.N_Q_HEADS + tid.x * params.KV_TILES;
const device float* p_lse_row = p_lse + offset_rows;
const device float* p_rowmax_row = p_maxes + offset_rows;
// reserve some number of registers. this constitutes an assumption on max value of KV TILES.
constexpr const uint8_t reserve = 128;
float p_lse_regs[reserve];
float p_rowmax_regs[reserve];
float weights[reserve];
float true_max = -INFINITY;
for(size_t i = 0; i < params.KV_TILES; i++) {
p_lse_regs[i] = float(*(p_lse_row + i));
p_rowmax_regs[i] = float(*(p_rowmax_row + i));
true_max = fmax(p_rowmax_regs[i], true_max);
weights[i] = exp(p_lse_regs[i]);
}
float denom = 0.f;
for(size_t i = 0; i < params.KV_TILES; i++) {
weights[i] *= exp(p_rowmax_regs[i]-true_max);
denom += weights[i];
}
const device float* O_partials_with_offset = O_partials + tid.z * params.N_Q_HEADS * DK * params.KV_TILES + tid.x * DK * params.KV_TILES;
float o_value = 0.f;
for(size_t i = 0; i < params.KV_TILES; i++) {
float val = *(O_partials_with_offset + i * DK + lid.x);
o_value += val * weights[i] / denom;
}
device T* O_gmem = O + tid.z * params.N_Q_HEADS * DK + tid.x * DK;
O_gmem[lid.x] = T(o_value);
return;
}
kernel void fast_inference_sdpa_reduce_tiles_float(
const device float *O_partials [[buffer(0)]],
const device float *p_lse[[buffer(1)]],
const device float *p_maxes [[buffer(2)]],
const device MLXScaledDotProductAttentionParams& params [[buffer(3)]],
device float* O [[buffer(4)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]])
{
fast_inference_sdpa_reduce_tiles_template<float>(O_partials, p_lse, p_maxes, params,
O, tid, lid);
}
kernel void fast_inference_sdpa_reduce_tiles_half(
const device float *O_partials [[buffer(0)]],
const device float *p_lse[[buffer(1)]],
const device float *p_maxes [[buffer(2)]],
const device MLXScaledDotProductAttentionParams& params [[buffer(3)]],
device half* O [[buffer(4)]],
uint3 tid [[threadgroup_position_in_grid]],
uint3 lid [[thread_position_in_threadgroup]])
{
fast_inference_sdpa_reduce_tiles_template<half>(O_partials, p_lse, p_maxes, params,
O, tid, lid);
}

Some files were not shown because too many files have changed in this diff Show More