Compare commits

...

262 Commits

Author SHA1 Message Date
Alex Barron
f5b0f11968 add fast::quantized_kv_update 2024-10-26 00:24:49 -07:00
Alex Barron
b509c2ad76 update bench 2024-10-25 12:10:24 -07:00
Alex Barron
852336b8a2 clean 2024-10-25 12:10:24 -07:00
Alex Barron
6649244686 revert sdpa 2024-10-25 12:10:24 -07:00
Alex Barron
047a584e3d 8 bit working 2024-10-25 12:10:24 -07:00
Alex Barron
ef14b1e9c3 4 bit working 2024-10-25 12:10:24 -07:00
Alex Barron
5824626c0b start 2024-10-25 12:10:24 -07:00
Awni Hannun
8e88e30d95 BFS graph evaluation order (#1525)
* bfs order

* try fix event issue
2024-10-25 10:27:19 -07:00
Awni Hannun
0eb56d5be0 Wired (#1510)
* expose residency sets as wire/unwire

* returns wired size

* fix

* runtime support check

* fix os check

* fix test

* fix no metal build

* docs

* nit

* nits in docs

* nits
2024-10-25 09:35:33 -07:00
Paul Hansel
f70764a162 Fix typo in build docs (#1522) 2024-10-24 20:55:06 -07:00
Awni Hannun
dad1b00b13 fix (#1523) 2024-10-24 19:17:46 -07:00
Venkata Naga Aditya Datta Chivukula
430ffef58a [Feature] Added Sparse Initialization (#1498)
Co-authored-by: Saanidhyavats <saanidhyavats@gmail.com>
2024-10-24 12:31:24 -07:00
Alex Barron
3d17077187 Add mx.array.__format__ (#1521)
* add __format__

* actually test something

* fix
2024-10-24 11:11:39 -07:00
Angelos Katharopoulos
c9b41d460f Working 64-bit scans (#1506) 2024-10-24 11:05:46 -07:00
xnorai
32972a5924 C++20 compatibility for fmt (#1519)
* C++20 compatibility for fmt

* Address review feedback

* Remove stray string

* Add newlines back
2024-10-24 08:54:51 -07:00
Dhruv Govil
f6afb9c09b Remove use of vector<const T> (#1514) 2024-10-22 16:31:52 -07:00
Kashif Rasul
3ddc07e936 Eigenvalues and eigenvectors (#1334)
* initial eigvalsh

* add compute_vectors

* add compute_vectors_

* return a pair

* add eigh to return only eigenvectors

* fixed typo

* merge merge Eighvalsh and Eigh into a single primitive

* use the same primate with the flag

* fix primatives

* use MULTI

* fix eval_gpu

* fix decleration

* rename EighPrimitive to Eigh

* tests

* tests

* fix rebase and format

* cleanup lapack

* format

* add cblas.h

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-10-22 12:18:48 -07:00
Awni Hannun
c26208f67d Remove Hazard tracking with Fences (#1509)
* remove hazard tracking

* with fence map

* no hazard tracking with fences

* nits

* fix fence retain

* cleanup

* fix quantized rebase
2024-10-21 19:33:32 -07:00
Alex Barron
d15fa13daf Batched Quantized Matmul + Fast Small QMV (#1503)
* add fast qmv for small dims

* fix test

* batched cpu

* add batched template param

* refactor metal quantized.cpp
2024-10-21 16:23:17 -07:00
Awni Hannun
58a855682c v0.19.0 (#1502) 2024-10-18 11:55:18 -07:00
Awni Hannun
92d7cb71f8 Fix compile (#1501)
* fix compile

* fix space
2024-10-18 11:06:40 -07:00
Angelos Katharopoulos
50d8bed468 Fused attention for single query (#1497) 2024-10-18 00:58:52 -07:00
Awni Hannun
9dd72cd421 fix gumbel (#1495) 2024-10-17 13:52:39 -07:00
Awni Hannun
343aa46b78 No more 3.8 (#1493) 2024-10-16 17:51:38 -07:00
Awni Hannun
b8ab89b413 Docs in ci (#1491)
* docs in circle
2024-10-15 17:40:00 -07:00
Awni Hannun
f9f8c167d4 fix submodule stubs (#1492) 2024-10-15 16:23:37 -07:00
Awni Hannun
3f86399922 Real and Imag (#1490)
* real and imag

* fix

* fix
2024-10-15 16:23:15 -07:00
LastWhisper
2b8ace6a03 Typing the dropout. (#1479) 2024-10-15 06:45:46 -07:00
Awni Hannun
0ab8e099e8 Fix cpu segfault (#1488)
* fix cpu segfault

* nit in tests
2024-10-14 16:17:03 -07:00
Awni Hannun
020f048cd0 A few updates for CPU (#1482)
* some updates

* format

* fix

* nit
2024-10-14 12:45:49 -07:00
Awni Hannun
881615b072 Faster metal compiled kernels + some fixes (#1486)
* bump mac tests to use py39

* work per thread for compiled kernels

* fixe for large arrays

* fix
2024-10-14 12:45:38 -07:00
Awni Hannun
0eef4febfd bump mac tests to use py39 (#1485) 2024-10-14 10:40:32 -07:00
Awni Hannun
b54a70ec2d Make push button linux distribution (#1476)
* try again

* try again

* try again

* try again

* try again

* try again

* try again

* try again

* .circleci/config.yml

* one more fix

* nit
2024-10-14 06:21:44 -07:00
Awni Hannun
bf6ec92216 Make the GPU device more thread safe (#1478)
* gpu stream safety

* comment

* fix
2024-10-12 17:49:15 -07:00
Awni Hannun
c21331d47f version bump (#1477) 2024-10-10 13:05:17 -07:00
Awni Hannun
e1c9600da3 Add mx.random.permutation (#1471)
* random permutation

* comment
2024-10-08 19:42:19 -07:00
Awni Hannun
1fa0d20a30 consistently handle all -inf in softmax (#1470) 2024-10-08 09:54:02 -07:00
Awni Hannun
3274c6a087 Fix array is_available race cases (#1468) 2024-10-07 19:13:50 -07:00
Angelos Katharopoulos
9b12093739 Add the roll op (#1455) 2024-10-07 17:21:42 -07:00
Awni Hannun
f374b6ca4d Bump nanobind to 2.2 (#1461)
* bump nanobind

* extension version for tests
2024-10-07 16:52:40 -07:00
Awni Hannun
0070e1db40 Fix deep recursion with siblings (#1462)
* fix recursion with siblings

* fix

* add test

* increase tol
2024-10-07 06:15:33 -07:00
Awni Hannun
95d04805b3 Fix complex power on Metal (#1460) 2024-10-06 19:58:30 -07:00
Awni Hannun
e4534dac17 Conv grad with groups + bugfix (#1449)
* fix bug in flipped conv with groups, start of grad for groups

* fix

* fix

* fix + test
2024-10-06 07:08:53 -07:00
Angelos Katharopoulos
fef3c4ec1d Fix mpi test in CI (#1456)
* Fix mpi test in CI

* Set bind to none
2024-10-06 06:09:17 -07:00
Awni Hannun
1bdc038bf9 fix argpartition + faster {arg} sorts / partitions (#1453) 2024-10-03 14:21:25 -07:00
Awni Hannun
5523d9c426 faster cpu indexing (#1450) 2024-10-03 13:53:47 -07:00
Angelos Katharopoulos
d878015228 Fix normalization check_input (#1452) 2024-10-03 13:26:56 -07:00
Cheng
5900e3249f Fix building on Linux (#1446) 2024-09-30 07:00:39 -07:00
Angelos Katharopoulos
bacced53d3 Fix row reduce with very few rows (#1447) 2024-09-29 20:00:35 -07:00
Lucas Newman
4a64d4bff1 Add support for grouped 1D convolutions to the nn API (#1444)
* Fix the weight shape for grouped convolutions from the nn API.

* Add tests.

* Pre-commit formatting.

* Add input validation.

* Use integer division instead of casting.

* docs

* nit

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-28 06:41:07 -07:00
Awni Hannun
b1e2b53c2d bump (#1445) 2024-09-27 13:53:02 -07:00
Awni Hannun
11354d5bff Avoid io timeout for large arrays (#1442) 2024-09-27 13:32:14 -07:00
Awni Hannun
718aea3f1d allow take to work with integer index (#1440) 2024-09-26 15:58:03 -07:00
Awni Hannun
5b6f38df2b Faster cpu ops (#1434)
* faster binary and cleaner copy

* use recursive template for other ops

* more cleanup

* fix from cleanup

* more clean

* fix binary

* use contiguous iterator

* add 3d

* nits

* fix

* fix?

* fix

* fix rebase
2024-09-26 09:19:13 -07:00
Awni Hannun
0b4a58699e Some overhead reductions in mx.fast.metal_kernel (#1437)
* some overhead reductions

* fix

* use +=

* use more +=
2024-09-25 17:25:21 -07:00
Awni Hannun
4f9f9ebb6f Faster Metal unary and binary for general case (#1431)
* faster unary and binary for general case

* update ternary + jit fix

* fix jit

* unary work per thread
2024-09-25 12:07:43 -07:00
Awni Hannun
afc9c0ec1b dtype is copy assignable (#1436) 2024-09-25 12:07:13 -07:00
Awni Hannun
195b429d99 Put along axis + fixe for partition grad (#1430)
* put along axis, fixes for partition grad

* zeros for arg reduce
2024-09-23 10:03:38 -07:00
Luke Carlson
2b878e9dd7 Create CITATION.cff (#1425) 2024-09-20 11:39:46 -07:00
Awni Hannun
67b6bf530d Optimization for general ND copies (#1421) 2024-09-17 17:59:51 -07:00
Nripesh Niketan
6af5ca35b2 feat: add cross_product (#1252)
* feat: add cross_product

* lint

* python binding

* refactor: Improve error message for cross_product function

* refactor: more close to numpy cross product

* refactor: improve error message for cross_product function

* finish

* fix acks

* allow old numpy

* doc

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-17 13:12:43 -07:00
Awni Hannun
4f46e9c997 More fixes for arrays with large sizes (#1405)
* compile works for big arrays when contiguous

* style

* nits in docs

* a bunch more stuff

* update jit

* update jit

* use constant for shapes and strides and remove elem_to_loc overload

* use kernel instantiation

* docs nits

* update binary and ternary

* comments
2024-09-17 12:46:31 -07:00
Awni Hannun
c6739ba7f3 Faster RNN layers (#1419)
* faster rnn

* use admm
2024-09-17 06:04:19 -07:00
Angelos Katharopoulos
914409fef9 Data parallel helper (#1407) 2024-09-16 18:17:21 -07:00
jjuang-apple
8d68a3e805 remove fmt dependencies from MLX install (#1417) 2024-09-16 13:32:28 -07:00
jjuang-apple
6bbcc453ef avoid using find_library to make install truly portable (#1416) 2024-09-16 13:21:32 -07:00
Awni Hannun
d5ed4d7a71 override class function (#1418) 2024-09-16 13:21:04 -07:00
Nripesh Niketan
669c27140d Chore: add pre-commit hook for cmake (#1362)
* reset and lint

* format

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-16 12:53:01 -07:00
Max-Heinrich Laves
adcc88e208 Conv cpu improvements (#1410) 2024-09-15 18:45:10 -07:00
Awni Hannun
d6492b0163 fix clip (#1415) 2024-09-14 16:09:09 -07:00
Awni Hannun
b3f52c9fbe ensure io/comm streams are active before eval (#1412) 2024-09-14 06:17:36 -07:00
c0g
bd8396fad8 Fix typo in transformer docs (#1414) 2024-09-14 06:05:15 -07:00
Angelos Katharopoulos
d0c58841d1 Patch bump (#1408) 2024-09-12 16:44:23 -07:00
Angelos Katharopoulos
881f09b2e2 Allow querying the allocator for the buffer size (#1404) 2024-09-11 21:02:16 -07:00
Awni Hannun
8b30acd7eb fix module attribute set, reset, set (#1403) 2024-09-11 16:30:42 -07:00
Awni Hannun
02efb310ca Xcode 160 (#1384)
* xcode 16.0 with debug tests

* limit nproc for builds

* vmap bug

* assert bug

* run python tests in debug mode

* fix view, bool copies preserve bits'

* actual view fix
2024-09-10 15:15:17 -07:00
Awni Hannun
e7e59c6f05 Fix copying scalars by adding fill_gpu (#1402)
* fix copying scalars by adding fill_gpu

* Another copy scalar changed to fill

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-09-09 15:54:08 -07:00
Awni Hannun
3ae6aabe9f throw for certain cases of non captured inputs in compile (#1401) 2024-09-09 14:54:31 -07:00
xnorai
dc627dcb5e Replace the use of result_of_t with invoke_result_t (#1397)
* Fix C++20 incompatibility

* Fix C++20 incompatibility
2024-09-06 19:52:57 -07:00
Max-Heinrich Laves
efeb9c0f02 Transposed Convolution (#1245)
* initial implementation for conv_transpose

ran pre-commit

implemented conv_transpose

updated conv_general docstring

updated conv_general docstring

updated code comments

removed commented run_conv_checks

updated acknowledgments

added missing entry to ops.rst

added op to nn.layers

resolved merge conflicts

* removed ConvolutionTranspose primitive as suggested by reviewer

removed ConvolutionTranspose primitive as suggested by reviewer

* remove transpose flag, add another test

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-09-06 19:52:38 -07:00
Awni Hannun
ba3e913c7a Simplifications for MLX C (#1396)
* simplifications for MLX C

* use vectors instead of map

* update examples
2024-09-06 19:16:50 -07:00
Awni Hannun
7cca1727af Fix slice data size (#1394)
* fix slice data size and add tests

* fix contiguous flag

* simplify stride and perform copy for non-contiguous arrays

* fix cpu

* comment
2024-09-04 19:10:43 -07:00
Bhargav Yagnik
11371fe251 Test to prevent bugs like #1386 (#1391)
* updated test_array for missing ops

* formatting changes
2024-09-04 17:24:30 -07:00
Awni Hannun
41c603d48a fix jit reduce (#1395) 2024-09-04 14:03:10 -07:00
Angelos Katharopoulos
969337345f Fix reduce edge case (#1389) 2024-09-01 21:37:51 -07:00
Awni Hannun
9592766939 add std as method (#1387)
* add std as method

* add std as method
2024-09-01 19:49:16 -07:00
Angelos Katharopoulos
58dca7d846 Fix copy in the sort primitive (#1383) 2024-08-31 08:32:14 -07:00
Awni Hannun
0d302cd25b Fix compiel with byte sized constants (#1381) 2024-08-30 17:24:35 -07:00
Alex Barron
da691257ec Fix overflow in quantize/dequantize (#1379)
* add 2d indices to prevent overflow

* use nthreads not out size
2024-08-30 13:32:41 -07:00
Angelos Katharopoulos
1600092e92 Patch bump (#1376) 2024-08-29 16:54:30 -07:00
Awni Hannun
dba2bd1105 Even Even Faster IO (#1374)
* even more faster io

* make reader pool static

* make python reader thread safe

* one more optimization
2024-08-29 16:05:40 -07:00
Alex Barron
28be4de7c2 Fix JIT reductions (#1373) 2024-08-28 16:39:11 -07:00
Awni Hannun
a6c3b38fba Async load (#1372)
* async load

* async load
2024-08-28 14:21:55 -07:00
Awni Hannun
fcb65a3897 Even Faster I/O (#1369)
* try multithreading for faster IO

* smaller batch size

* Account for pread returning less than size

* nit

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-08-28 11:49:07 -07:00
Saanidhya
4e22a1dffe In continuation to PR1243 to solve issue #1240 (#1365)
* Solves issue #1240

* Correction

* Update python/mlx/utils.py

* Update python/mlx/utils.py

---------

Co-authored-by: Awni Hannun <awni@apple.com>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-08-28 11:40:41 -07:00
Awni Hannun
291cf40aca Some fixes to typing (#1371)
* some fixes to typing

* fix module reference

* comment
2024-08-28 11:16:19 -07:00
Jeethu Rao
bd47e1f066 Fix neon_fast_exp and add more softmax tests (#1367) 2024-08-27 23:42:42 -07:00
Aditya Dhulipala
e6b223df5f Pinv (#875) 2024-08-27 23:06:12 -07:00
Angelos Katharopoulos
e64349bbdd Make eval just wait if all arrays are scheduled (#1368) 2024-08-27 17:01:22 -07:00
Angelos Katharopoulos
cdb59faea6 Adds send/recv ops in distributed (#1366) 2024-08-26 23:01:37 -07:00
Alex Barron
1d94ac3f90 Add optional headers to `mx.fast.metal_kernel` (#1358) 2024-08-26 21:45:45 -07:00
Awni Hannun
5f7d19d1f5 MPI ops in GPU stream for faster comms (#1356) 2024-08-26 15:12:50 -07:00
Awni Hannun
2fdf9eb535 Fix ternary for large arrays (#1359)
* fix ternary for large arrays

* fix
2024-08-26 11:22:27 -07:00
Awni Hannun
860d3a50d7 fix extension metal library finding (#1361) 2024-08-26 09:18:50 -07:00
Alex Barron
d1183821a7 int() and float() for mx.array (#1360) 2024-08-25 20:41:44 -07:00
Angelos Katharopoulos
8081df79be Fix boolean all reduce bug (#1355) 2024-08-24 10:09:32 -07:00
Nripesh Niketan
64bec4fad7 Chore: update pre-commit hooks (#1353)
* Chore: update pre-commit refs

* run pre-commit
2024-08-24 06:46:36 -07:00
Alex Barron
b96e105244 Add grid_sample example to metal_kernel docs (#1352)
* Add `zero_outputs` and `atomic_outputs` options to `metal_kernel`

* add grid sample to docs

* zero_outputs -> init_value

* add missing header for linux
2024-08-23 18:24:16 -07:00
Awni Hannun
3b4d5484c7 Bump extension MLX version (#1350)
* Bump extension MLX version

* fix some docs nits
2024-08-23 12:38:34 -07:00
Alex Barron
684e11c664 patch (#1347) 2024-08-23 10:42:02 -07:00
Angelos Katharopoulos
b57a52813b Further reduction tuning (#1349)
* More reduction tuning
* Forgotten pdb
* Small column long row specialization
2024-08-23 10:35:25 -07:00
Alex Barron
da8deb2b62 fix bug with multiple attributes (#1348)
Co-authored-by: Alex Barron <abarron22@apple.com>
2024-08-23 10:06:15 -07:00
Awni Hannun
98b6ce3460 Refactor reductions and fix scatter atomics for large sizes (#1300)
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-08-22 16:03:31 -07:00
Awni Hannun
f9e00efe31 fix nanobind and stub gen in circle (#1346) 2024-08-22 14:07:27 -07:00
Alex Barron
0fd2a1f4b0 Custom Metal Kernels from Python (#1325)
* start

* simple kernels working

* restructure

* inverse example working

* docs + fixes

* missing file

* fix imports

* address comments

* add docs + fix test

* Review comments + refactor to a single function

* update docs

* remove hashing

* fix contig bug in test

* back to a class

* trailing whitespace

* fix tests

* match c++ and python apis

* add link + make args kw_only
2024-08-22 13:46:29 -07:00
Awni Hannun
df3233454d 2d gather specialization (#1339) 2024-08-22 10:48:24 -07:00
Awni Hannun
82db84b899 bump nanobind + fix extension (#1344) 2024-08-21 16:05:07 -07:00
Awni Hannun
8ae751d3da fix io (#1343)
* fix io

* fix io

* comment
2024-08-21 13:14:46 -07:00
Awni Hannun
d40e76809f Fix rope (#1340)
* add test

* fix rope

* fix test
2024-08-20 17:37:52 -07:00
Awni Hannun
bb1b76d9dc RoPE with frequencies as optional input (#1337)
* start rope with freq input

* rope with frequencies

* nits

* fix bug

* fix bug + test

* cleanup

* optional base
2024-08-19 18:30:50 -07:00
Angelos Katharopoulos
9d26441224 Fix contiguity check (#1336)
Co-authored-by: Alex Barron <abarron22@apple.com>
2024-08-19 16:05:06 -07:00
Awni Hannun
f12f24a77c fix compiling with space in paths (#1332) 2024-08-15 16:39:24 -07:00
Awni Hannun
ae5b5cabfd Fix optimizer reloading from checkpoint (#1329)
* fix optimizer reloading from checkpoint

* comment
2024-08-15 07:33:23 -07:00
Awni Hannun
d0630ffe8c Read arrays from files faster (#1330)
* read faster

* faster write as well

* set default permission for linux

* comment
2024-08-14 20:09:56 -07:00
Alex Barron
99bb7d3a58 GPU mx.sign for complex64 (#1326) 2024-08-14 07:54:53 -07:00
Awni Hannun
63ae767232 fix transformer (#1327) 2024-08-13 16:04:26 -07:00
Awni Hannun
eaaea02010 Add isfinite (#1318)
* isfinite

* remove reduce test since fix is not complete
2024-08-13 14:49:28 -07:00
Bhargav Yagnik
a098bc92e0 Fix: Preserve input dtype in Dropout layer output (#1323)
* Fix: Preserve input dtype in Dropout layer output

- Modified Dropout implementation to ensure that the output dtype matches the input dtype.
- This resolves the issue #1321

* Update test cases in test_nn.py

- Revised test cases to align with updated dropout code
- Fixed assertion method: replaced self.assertTrue with self.assertEqual for accurate comparisons in test_nn.py -> test_rope, test_alibi and test_dropout,

* updated dropout.py
2024-08-13 11:54:21 -07:00
Awni Hannun
1086dc4db0 patch (#1320) 2024-08-12 16:13:33 -07:00
Brian Keene
19fb69e2ed Add memory_efficient_threshold kwarg to sdpa kernel (#1319)
Allows opt-in to memory efficient GPU shader at proscribed sequence
length.  Otherwise, utilizes aggregate MLX primitives for best latency.
2024-08-12 12:57:09 -07:00
Awni Hannun
9231617eb3 Move to nanobind v2 (#1316) 2024-08-08 17:17:46 -07:00
Alex Barron
32668a7317 CPU mx.linalg.cholesky_inverse and mx.linalg.tri_inv (#1307)
* add cholesky inv + tri inv

* always run tri_inv on cpu

* consistent naming
2024-08-08 15:18:02 -07:00
Angelos Katharopoulos
780c197f95 Fix test tolerance and patch bump (#1315) 2024-08-08 14:51:09 -07:00
Angelos Katharopoulos
eb8819e91e Revert variance to be numerically stable (#1314) 2024-08-08 13:35:02 -07:00
Awni Hannun
30bbea2f08 Add gemv masked to JIT plus some fixes (#1310)
* add gemv masked to JIT plus some fixes

* some cleanup

* add utils

* fix

* fix 2

* more cleaning

* fix

* remove unused mps matmul support

* one more nit

* revert
2024-08-07 13:38:07 -07:00
Alex Barron
635ccd9e25 Add "edge" mode to mx.pad (#1309)
* Add edge padding mode

* fix pad in pooling

* string arg instead of enum
2024-08-06 11:23:10 -07:00
nicolov
8c9f0278b9 Add vmap to scatter (#1200)
* Add vmap to scatter

* updates

* vmap updates + a few more tests

* bug fix

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-08-05 20:12:27 -07:00
Awni Hannun
58d0e199e1 add bfloat conv for windograd (#1306)
* add bfloat conv for windograd

* accumulate in fp32

* accumulate in fp32

* accumulate in bf16
2024-08-05 15:51:13 -07:00
Awni Hannun
10b5835501 fix creating array from bf16 tensors in jax / torch (#1305) 2024-08-01 16:20:51 -07:00
Awni Hannun
6c8dd307eb faster group norm (#1304) 2024-08-01 12:49:23 -07:00
Awni Hannun
43ffdab172 fix rope and random (#1301)
* fix rope and random

* comment
2024-07-31 16:18:25 -07:00
Awni Hannun
40b6d67333 Fixes for large arrays with a few ops (#1299)
* fixes for large arrays with a few ops

* fix bug

* fix all of copy
2024-07-30 17:18:39 -07:00
Alex Barron
c52d1600f0 Fused Affine Quantize/Dequantize ops (#1282)
* Add fast affine dequantize

* add full quantize kernel

* fused kernel with scale/bias computation

* fix docstring

* fix no jit error

* fix test

* test fix

* reduce fast api to only affine_quantize
2024-07-29 15:11:38 -07:00
Awni Hannun
aa1d6cadad Fix docs latex build and nits (#1297)
* fix docs latex build and nits

* fix stub gen and try to clean up building
2024-07-29 11:44:06 -07:00
Atakan Tekparmak
6e06e3a904 feat: Added "tanh" option to GELU approximation (#1268) 2024-07-28 09:07:56 +02:00
Yaroslav
8cfb9fc0b8 Update requirements.txt (#1291) 2024-07-26 12:59:52 -07:00
Awni Hannun
7b456fd2c0 Array api (#1289)
* some updates for numpy 2.0 and array api

* some updates for numpy 2.0 and array api

* fix array api doc
2024-07-26 10:40:49 -07:00
Awni Hannun
e9e53856d2 patch bump (#1287) 2024-07-25 11:42:09 -07:00
Anton Belov
5029894662 [Issue #1187] Add nan_to_num function initial attempt (#1247)
* initial attempt, working with wrong types

* not compiling; mx.float16 and mx.bfloat16 tests added

* fix nan to num

* nit

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-25 09:57:37 -07:00
Awni Hannun
baf9fa5f42 Einsum (#1269)
* einsum initial

* fix comma break

* sum axis was wrong

* small cleanups

* python binding

* changed bindings to resemble numpy

* remove todo comment

* comment changes

* add count of operands/inputs

* fail fast if operands list is empty

* ignore comma if no output

* einsum path matching numpy

* getting somewhere with path

* remove print

* it passes the first test

* moved einsum tests to seperate file

* seperated einsum path

* moved einsum naive

* remove space from equation

* fast fail if no operands passed

* update tests and remove printf

* small cleanup

* some more cleanups

* removed python helper file

* ack

* utilize std for finding min in vector

* duplicate def

* remove the tuple as it was unreadable

* moved einsum_naive back to ops

* remaining isn't needed

* avoid creating another set

* cleanup

* greedy path, start of naive einsum

* more einsum

* fix some bugs

* some more fixes, tests pass

* benchmark

* some simplify

* fix einsum and test

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>

* add a bunch more tests and fix a bunch more bugs

* some docs nits

---------

Co-authored-by: dc-dc-dc <dgcruz983@gmail.com>
Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-07-25 09:36:44 -07:00
Jagrit Digani
7f914365fd Fix GPU sort for large arrays (#1285)
* Fix GPU sort for large arrays
2024-07-24 14:37:10 -07:00
Paul Paczuski
ebd7135b50 Improve stability of BCE loss calculation for input probabilities close to or exactly 0 or 1 (#1280)
* Improve stability of BCE loss calculation

* Standardize comment

* Apply formatting with black via pre-commit

* Add usage recommendation to docstring

* Update python/mlx/nn/losses.py

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-07-24 08:38:22 -07:00
fgranqvist
50eff6a10a Implement sampling from laplace distribution. (#1279) 2024-07-24 15:15:37 +02:00
Alex Barron
c34a5ae7f7 Fix bfloat16 Hadamard (#1283)
* fix bfloat16 hadamard

* add scale

* review comments

---------

Co-authored-by: Alex Barron <abarron22@apple.com>
2024-07-23 14:54:43 -07:00
Awni Hannun
e2aa6ec8ae some fixes (#1281) 2024-07-23 11:49:05 -07:00
toji
6768c6a54a Adding missing type hints (#1243)
* added type hints for `run`, `tree_map` and `tree_map_with_path`

* fix lint

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-07-23 07:29:38 -07:00
Tim Gymnich
6307d166eb Fix overflow / underflow handling for expm1f (#1278)
* Fix overflow / underflow handling for expm1f

* update tests
2024-07-23 07:29:06 -07:00
Awni Hannun
1fba87b0df Fix leak with multi-output primitives (#1274)
* fix leak with multi-output primitives

* hopefully an actual fix
2024-07-23 06:34:18 -07:00
Awni Hannun
df124e018a fix gguf (#1273)
* fix gguf

* comment
2024-07-18 07:35:35 -07:00
Cheng
2f83d6e4b7 Do not release buffers on exit (#1142) 2024-07-15 15:12:24 -07:00
Feng Shijie
987785d8d7 Fix typo and missing header (#1266) 2024-07-15 08:20:24 -07:00
Awni Hannun
8c01a7893b minor fix in optimizer + docs (#1264) 2024-07-12 12:18:02 -07:00
Awni Hannun
218047c75a docs fixes (#1263) 2024-07-11 15:59:07 -07:00
Alex Barron
d0da74209b version bump (#1260) 2024-07-11 11:17:55 -07:00
Angelos Katharopoulos
5c1fa64fb0 Custom transforms (#1246) 2024-07-10 18:00:01 -07:00
Alex Barron
a3c287354f Fast Hadamard Transform (#1249)
* Working hadamard for powers of 2

* working for m*2^k

* add scale and check contiguity

* add size check

* clean up

* fix test

* add grads + vmap

* gpu only

* skip on linux

* test typo

* add cpu impl

* remove gpu only tests

* fix linux build + add is_equivalent
2024-07-09 20:39:01 -07:00
Angelos Katharopoulos
03cf033f82 Fix reshape copy bug (#1253) 2024-07-07 21:37:00 -07:00
Alex Barron
bdb36c9a63 add zero vjps for bitwise ops and gather w.r.t. index (#1256) 2024-07-07 21:34:59 -07:00
Awni Hannun
20bb301195 CPU binary reduction + Nits (#1242)
* very minor nits

* reduce binary

* fix test
2024-06-28 13:50:42 -07:00
Awni Hannun
d6383a1c6a version bump (#1239) 2024-06-27 10:43:13 -07:00
Angelos Katharopoulos
b05bcfd27f Fixes segfault when compiling checkpointed functions (#1235) 2024-06-26 16:14:45 -07:00
Alex Barron
2615660e62 Fix strided sort bug (#1236)
* Use output strides in sort kernel

* fix zero strides bug
2024-06-26 14:32:11 -07:00
Awni Hannun
5b0af4cdb1 fix donation condition for compilation (#1237) 2024-06-26 09:04:05 -07:00
Jagrit Digani
8c2e15e6c8 Accelerate import updates for iOS (#1227)
* Update veclib and bnns includes to #include <Accelerate/Accelerate.h> for compatibility with ios

* Mark float literals in softmax.cpp to be float16_t for errors in ios

* Add arm neon vector operation guards

* Redirect to common backend for consistency
2024-06-26 09:01:50 -07:00
Awni Hannun
56c8a33439 Get metal version from xcode (#1228)
* get metal version from xcode

* typo

* fix
2024-06-26 07:02:11 -07:00
David Koski
4eef1e8a3e fix typo (#1215) 2024-06-24 13:36:35 -07:00
Alex Barron
95d11bda06 Fix NumPy 2.0 pickle test (#1221)
* fix numpy version <2 temporarily

* typo

* better fix

* Fix just for bfloat16

---------

Co-authored-by: Alex Barron <abarron22@apple.com>
2024-06-23 05:47:22 -07:00
Awni Hannun
af9079cc1f version bump (#1212) 2024-06-14 11:28:51 -07:00
Jagrit Digani
2d6cd47713 Masked gemv (#1211) 2024-06-14 09:52:26 -07:00
Awni Hannun
fe3167d7ea smaller CPU binary (#1203)
* smaller CPU binary

* fix no cpu build
2024-06-14 09:46:55 -07:00
Awni Hannun
31e134be35 Build for macOS 15 (#1208)
* Build for macos 15

* metal32 as well

* comment

---------

Co-authored-by: Awni Hannun <Awni Hannun>
2024-06-13 13:31:44 -07:00
Awni Hannun
e84ba8056d only allow openmpi (#1209) 2024-06-13 12:14:44 -07:00
Fangjun Kuang
f20e97b092 minor fixes (#1194)
* minor fixes

* fix build errors
2024-06-12 22:06:49 -07:00
Alex Barron
934683088e Refactor JIT for unary/binary/ternary ops (#1206)
* refactor unary/binary/ternary ops

* get_primitive_string util

---------
2024-06-12 14:22:12 -07:00
Awni Hannun
de2b9e7d0a Fix kernel deps to reduce build times (#1205) 2024-06-12 11:17:39 -07:00
Alex Barron
dd7d8e5e29 Add Quantized Ops to the JIT (#1204)
* JIT for quantized ops

* remove unused imports

* address comments

* fix imports

* second attempt to fix imports

---------

Co-authored-by: Alex Barron <abarron22@apple.com>
2024-06-12 09:47:12 -07:00
Awni Hannun
df964132fb fix scatter + test (#1202)
* fix scatter + test

* fix test warnings

* fix metal validation
2024-06-11 14:35:12 -07:00
Awni Hannun
709ccc6800 install mpi for release build (#1199) 2024-06-10 10:09:32 -07:00
Awni Hannun
cf236fc390 version (#1191) 2024-06-06 17:16:40 -07:00
Alex Barron
27d70c7d9d Feature complete Metal FFT (#1102)
* feature complete metal fft

* fix contiguity bug

* jit fft

* simplify rader/bluestein constant computation

* remove kernel/utils.h dep

* remove bf16.h dep

* format

---------

Co-authored-by: Alex Barron <abarron22@apple.com>
2024-06-06 12:57:25 -07:00
nicolov
0e585b4409 Add docstring for scatter (#1189)
* Add docstring for scatter

* docs nits

---------

Co-authored-by: Awni Hannun <awni@apple.com>
2024-06-06 11:51:25 -07:00
Angelos Katharopoulos
0163a8e57a Add docs for the distributed namespace (#1184) 2024-06-06 11:37:00 -07:00
Awni Hannun
578842954c fix jit scan when output doesn't have primitive (#1190) 2024-06-06 07:24:58 -07:00
Awni Hannun
496315fe1d Fix scan (#1188)
* fix scan

* improve grid size

* fix cpu cummax
2024-06-05 14:21:58 -07:00
Angelos Katharopoulos
0fe6895893 Fix the hard-shrink test (#1185) 2024-06-04 16:22:56 -07:00
Nikhil Mehta
0b7d71fd2f Add softmin, hardshrink, hardtanh (#1180)
---------

Co-authored-by: Nikhil Mehta <nikmehta@tesla.com>
2024-06-04 15:48:18 -07:00
Awni Hannun
83b11bc58d Fix Metal API validation for empty concat (#1183) 2024-06-04 13:17:08 -07:00
Alex Barron
375a8bbdcc Add some internal GPU apis (#1177)
* Add unary/binary/ternay/slice/concat internal GPU ops

* add pad internal op

* formatting + no_cpu fix
2024-06-04 09:24:26 -07:00
Awni Hannun
ea9090bbc4 Add view op (#1179)
* add view primitive

* nit

* fix view
2024-06-04 08:05:27 -07:00
nicolov
81def6ac76 Fix benchmark (#1175) 2024-06-04 07:50:46 -07:00
Angelos Katharopoulos
3de8ce3f3c In place all-reduce and forgiving init (#1178) 2024-06-03 16:47:47 -07:00
Alex Barron
4d485fca24 Add defines include (#1176)
Co-authored-by: Alex Barron <abarron22@apple.com>
2024-06-03 09:50:10 -07:00
Brian Keene
1865299a30 Metal shaders for memory efficient self attention on large sequences (#964)
* Metal shaders for efficient self attention on large sequences

Updated fast attention: GEMM-ified with Steel primitives
Uses flash attention 1 for scale correction

* more compiler silencing

* Address rebase issues

* Templatize kernel instantiation, revise cpu bindings

* Safer writes to output

* Permit batch size > 1

* Numerical fixes for sdpa self attention

* Re-enable test, remove unused variable

* add benchmarking script

* Disable sdpa prior to perf tuning, and simplify tests for per-patch CI
2024-06-03 09:16:19 -07:00
Dominik Schlösser
3576b547c5 Doc error for default for scale in SinusoidalPositionalEncoding (#1174) 2024-06-02 13:42:45 -07:00
Awni Hannun
079882495d version bump (#1172) 2024-05-31 12:29:12 -07:00
K Venkat Ramnan
ab977109db feat: Added dlpack device (#1165)
* feat: Added dlpack device

* feat: Added device_id to dlpack device

* feat: Added device_id to dlpack device

* doc: updated conversion docs

* doc: updated numpy.rst dlpack information

* doc: updated numpy.rst dlpack information

* Update docs/src/usage/numpy.rst

* Update docs/src/usage/numpy.rst

---------

Co-authored-by: Venkat Ramnan Kalyanakumar <venkatramnankalyanakumar@Venkats-MacBook-Air.local>
Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
2024-05-31 12:29:01 -07:00
Awni Hannun
fd1c08137b stable cumprod grad at 0 (#1167) 2024-05-31 12:28:42 -07:00
Jagrit Digani
76b6cece46 Fix multi-block sort stride management (#1169)
* Fix multi-block sort stride management

* Add seed to tests
2024-05-31 11:10:54 -07:00
Jagrit Digani
9f0df51f8d Fix matvec vector stride bug (#1168) 2024-05-29 12:18:28 -07:00
Awni Hannun
e7a2a3dcd1 Fix a couple bugs (#1161)
* fix jit reduce for RMS norm

* make strides a single buffer

* better eval error message

* fix compiling with inf and bf16

* fix cpu compile with bf16
2024-05-28 15:18:18 -07:00
Awni Hannun
a87ef5bfc1 fix broadcast bug in bitwise ops (#1157) 2024-05-24 11:44:40 -07:00
Awni Hannun
9f9cb7a2ef version bump (#1154) 2024-05-23 18:08:08 -07:00
Awni Hannun
7e26fd8032 Option to JIT steel gemm / conv (#1139) 2024-05-23 18:07:34 -07:00
Jagrit Digani
eab2685c67 Float mask update (#1152)
* Float mask update

* Update CPU impl
2024-05-23 17:20:44 -07:00
Angelos Katharopoulos
50dfb664db Comms (#1097)
* Start the communications branch using MPI
* Add ops and primitives
* Add python bindings for distributed
2024-05-23 17:04:02 -07:00
Awni Hannun
0189ab6ab6 More jitting (#1132)
* docs + circle min size build

* jit scan, arange, softmax

* add sort

* jit reductions

* remove print

* fix deps

* clean includes / nits
2024-05-23 16:23:44 -07:00
Rifur13
9401507336 Add groups to 2-D convolutions (#1129)
* Added groups to 2-D convolutions. Only implemented for **some** specializations.

Also fixed 1D grouped convs with different kernel strides and added more tests.

* fix channels condition
2024-05-22 20:01:44 -07:00
Awni Hannun
eb8321d863 list based indexing (#1150) 2024-05-22 15:52:05 -07:00
Abe Leininger
79ef49b2c2 add mx.trace (#1143) (#1147)
* working c++ trace implementation

* updated throw + added overloads

* added python binding for trace function

* pre-commit reformatting

* add trace to docs

* resolve comments

* remove to_stream call
2024-05-22 15:50:27 -07:00
Awni Hannun
e110ca11e2 Fix offset bug for device buffers (#1151)
* fix bug with large offsets for buffers

* add a test

* remove test as its too big for small machine
2024-05-22 15:50:05 -07:00
Awni Hannun
226748b3e7 JIT compile option for binary minimization (#1091)
* try cpp 20 for compile

* unary, binary, ternary in jit

* nits

* fix gather/scatter

* fix rebase

* reorg compile

* add ternary to compile

* jit copy

* jit compile flag

* fix build

* use linked function for ternary

* some nits

* docs + circle min size build

* docs + circle min size build

* fix extension

* fix no cpu build

* improve includes
2024-05-22 12:57:13 -07:00
Awni Hannun
d568c7ee36 Rename block sparse (#1149)
* block_sparse_mm to gather_mm

* rename

* nit

* nit
2024-05-22 07:48:34 -07:00
Awni Hannun
e6fecbb3e1 Some fixes in docs (#1141)
* fixes in docs

* nit
2024-05-20 11:51:47 -07:00
Angelos Katharopoulos
da83f899bb Improve qvm speed (#1140) 2024-05-20 09:20:44 -07:00
jlwitthuhn
7e5674d8be Treate 'minimum' differently in cosine decay (#1138) 2024-05-20 08:00:48 -07:00
Shixian Sheng
0a558577bf Update README.md (#1136) 2024-05-20 06:16:40 -07:00
Awni Hannun
fb71a82ada Fix copy bug with many dims (#1137) 2024-05-17 21:10:03 -07:00
Awni Hannun
23406c9e9e Choose the right MLX bf16 for extensions (#1135)
* default to custom bf

* choose right bf

* fix extensions

* fix circle conf
2024-05-17 15:09:28 -07:00
Luca Arnaboldi
b3ec792380 Implemented Cholesky on CPU (#1119) 2024-05-17 12:31:59 -07:00
Awni Hannun
6a9b584f3d patch bump (#1131) 2024-05-16 20:51:33 -07:00
Awni Hannun
81dd33af66 allow conversion to dlpack (#1120) 2024-05-16 16:11:37 -07:00
Awni Hannun
8b76571896 Fix extensions (#1126)
* fix extensions

* title

* enable circle

* fix nanobind tag

* fix bug in doc

* try to fix config

* typo
2024-05-16 15:36:25 -07:00
Angelos Katharopoulos
e78a6518fa Block sparse qmm (#1124) 2024-05-16 15:24:14 -07:00
Awni Hannun
1873ffda01 Detect metal version and propagate correctly for JIT (#1109)
* detect metal version and propagate correctly for JIT

* remove softmax

* fix versions
2024-05-15 17:42:09 -07:00
Jacket
c417e42116 [Fix] minor typo in default argument for argpartition's "axis" parameter (#1125)
According to the document, argpartition's axis parameter can be None, but due to a previous typo it can't really accepts a None value.
2024-05-15 15:25:25 -07:00
Jagrit Digani
358e1fd6ab Fused GEMM (#1123)
* Basic gemm working

* Update addmm

* Clear out steel_gemm and steel_addmm kernels

* Fuse and clear out gather gemm

* Update objc releases
2024-05-15 10:30:41 -07:00
Awni Hannun
631dfbe673 fix scatter index bug (#1122) 2024-05-14 15:04:58 -07:00
Cheng
56a4eaed72 Pass missing stream arg in array.flatten (#1111) 2024-05-14 06:50:16 -07:00
Cheng
bf925d9dc7 Move args in conv_general (#1118)
Also fix a typo that padding_lo is passed as padding_hi.
2024-05-14 06:50:09 -07:00
Cheng
1a7ed5dcb6 Fill vector with constructor instead of fill_n (#1113) 2024-05-14 06:28:55 -07:00
Cheng
5be5daa6ef Use compiled function in Sigmoid module (#1116) 2024-05-14 06:25:57 -07:00
Cheng
60cb11764e Use correct module type in quantized.py (#1115) 2024-05-14 06:25:42 -07:00
Cheng
cbd5445ea7 The tile op does not accept None as reps (#1117) 2024-05-14 06:25:25 -07:00
Cheng
2c7e9b5158 Add missing docs for some ops (#1110) 2024-05-14 06:09:05 -07:00
Mike Drob
2263e4b279 Experiment with medium machines for CI (#1000) 2024-05-13 19:40:19 -07:00
Awni Hannun
863039da4c Allow scatter type exception to be caught by checking in op (#1077)
* allow exception to be caught in main thread

* only for gpu

* more detailed scatter error
2024-05-13 17:43:53 -07:00
Awni Hannun
7178ac0111 No CPU option for binary minimization (#1105)
* no cpu build option

* docs

* fix
2024-05-13 16:08:11 -07:00
Ravindra R. Jaju
e7f9710499 Fix typo in a variable name in example code. (#1104)
* Fix typo in a variable name in example code.

* Rename df2dx2 to d2fdx2 - the appropriate naming for the second derivative

* Update CONTRIBUTING.md - add needed python packages, and a virtual-env hint

* Revert "Fix typo in a variable name in example code."

This reverts commit bc10a17534.

* Rename df2dx2 to d2fdx2
2024-05-13 06:04:23 -07:00
Max-Heinrich Laves
ff4223904d Conv3d (#993)
* added conv3d

added conv3d

implemented explicit_gemm_conv_ND_cpu and bounds checks for slow_conv_3D

* incorporated reviewer comments

* fixed test

* reduced tensor shapes in test for conv3d

* Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

Reviewer suggestion
2024-05-11 06:15:02 -07:00
Awni Hannun
a9f80d60f6 improve error messaging in eval (#1101) 2024-05-10 10:04:07 -07:00
Alex Barron
2e158cf6d0 Add conjugate operator (#1100)
* cpu and gpu impl

* add mx.conj and array.conj()

---------

Co-authored-by: Alex Barron <abarron22@apple.com>
2024-05-10 07:22:20 -07:00
Awni Hannun
8bd6bfa4b5 version (#1099) 2024-05-09 17:52:39 -07:00
Awni Hannun
8b1906abd0 Add compiler flags to disable safetensors and gguf (#1098)
* with docs

* nit
2024-05-09 17:39:44 -07:00
Awni Hannun
06375e6605 Split encoders in non-concurrent context with a max ops per encoder (#1085)
* split encoders

* fix race
2024-05-09 16:21:02 -07:00
Awni Hannun
b21242faf1 Allow unary ops to accept array like (#1093) 2024-05-09 09:36:02 -07:00
Rahul Yedida
cc05a281c4 Added ArcTan2 operation (#1079)
* Added ArcTan2 operation

* Cleanup, bug fixes from code review

* Minor cleanup, fixed Linux tests
2024-05-08 08:35:15 -07:00
Jagrit Digani
fe96ceee66 Update block offset adjustment to be in size_t (#1087) 2024-05-08 08:10:23 -07:00
Awni Hannun
9814a2ae12 fix conversion to array (#1070) 2024-05-06 16:02:49 -07:00
Shubham
6992498e7a add keyword positonal (#1081) 2024-05-06 07:18:49 -07:00
Awni Hannun
21623156a3 Reset peak memory (#1074)
* reset peak memory

* fix linux

* nits in docs
2024-05-03 17:12:51 -07:00
Nripesh Niketan
79c859e2e0 feat: implement clip_grad_norm (#1043)
* feat: implement `clip_grad_norm`

* pre-commit

* Add test for clip_grad_norm function in test_optimizers.py

* small fixes

* fix

* lint

* Update tree_reduce

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Update python/mlx/utils.py

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>

* Refactor clip_grad_norm function to include documentation and improve readability

* format docstring

* Add acknowlegements

* text wrap

* pre-commit

* nits in docs

---------

Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
Co-authored-by: Awni Hannun <awni@apple.com>
2024-05-03 09:07:02 -07:00
Awni Hannun
b00ac960b4 change initial memory limits and add memory size to device info (#1064) 2024-05-03 06:50:15 -07:00
393 changed files with 41204 additions and 16951 deletions

View File

@@ -13,8 +13,62 @@ parameters:
test_release:
type: boolean
default: false
linux_release:
type: boolean
default: false
jobs:
build_documentation:
parameters:
upload-docs:
type: boolean
default: false
macos:
xcode: "15.2.0"
resource_class: macos.m1.medium.gen1
steps:
- checkout
- run:
name: Install
command: |
brew install python@3.9
brew install doxygen
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install -r docs/requirements.txt
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install . -v
- when:
condition:
not: << parameters.upload-docs >>
steps:
- run:
name: Build documentation
command: |
source env/bin/activate
cd docs && doxygen && make html O=-W
- when:
condition: << parameters.upload-docs >>
steps:
- add_ssh_keys:
fingerprints:
- "SHA256:OhcVVMovbT0pkgMeiVRyxMnjV9R2t+hKBsNcuxq9h+0"
- run:
name: Upload documentation
command: |
source env/bin/activate
git config user.email "mlx@group.apple.com"
git config user.name "CircleCI Docs"
git checkout gh-pages
git rebase main
cd docs
git rm -rf build/html
doxygen && make html O=-W
git add -f build/html
git commit -m "rebase"
git push -f origin gh-pages
linux_build_and_test:
docker:
- image: cimg/python:3.9
@@ -31,33 +85,35 @@ jobs:
name: Install dependencies
command: |
pip install --upgrade cmake
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
pip install nanobind==2.2.0
pip install numpy
sudo apt-get update
sudo apt-get install libblas-dev liblapack-dev liblapacke-dev
- run:
name: Install Python package
command: |
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" CMAKE_BUILD_PARALLEL_LEVEL="" python3 setup.py develop
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py build_ext --inplace
CMAKE_ARGS="-DMLX_BUILD_METAL=OFF" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python3 setup.py develop
- run:
name: Generate package stubs
command: |
echo "stubs"
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
command: |
python3 -m unittest discover python/tests -v
# TODO: Reenable when extension api becomes stable
# - run:
# name: Build example extension
# command: |
# cd examples/extensions && python3 -m pip install .
- run:
name: Build CPP only
command: |
mkdir -p build && cd build && cmake .. -DMLX_BUILD_METAL=OFF && make -j
mkdir -p build && cd build
cmake .. -DMLX_BUILD_METAL=OFF -DCMAKE_BUILD_TYPE=DEBUG
make -j `nproc`
- run:
name: Run CPP tests
command: ./build/tests/tests
@@ -69,18 +125,19 @@ jobs:
default: "15.2.0"
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.large.gen1
resource_class: macos.m1.medium.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
brew install python@3.8
python3.8 -m venv env
brew install python@3.9
brew install openmpi
python3.9 -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
pip install nanobind==2.2.0
pip install numpy
pip install torch
pip install tensorflow
@@ -89,11 +146,12 @@ jobs:
name: Install Python package
command: |
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e . -v
DEBUG=1 CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` pip install -e . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Run Python tests
@@ -101,23 +159,47 @@ jobs:
source env/bin/activate
LOW_MEMORY=1 DEVICE=cpu python -m xmlrunner discover -v python/tests -o test-results/cpu
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 python -m xmlrunner discover -v python/tests -o test-results/gpu
# TODO: Reenable when extension api becomes stable
# - run:
# name: Build example extension
# command: |
# cd examples/extensions && python3.11 -m pip install .
mpirun --bind-to none -host localhost:8 -np 8 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python python/tests/mpi_test_distributed.py
- run:
name: Build example extension
command: |
source env/bin/activate
cd examples/extensions
pip install -r requirements.txt
python setup.py build_ext -j8
- store_test_results:
path: test-results
- run:
name: Build CPP only
command: |
source env/bin/activate
mkdir -p build && cd build && cmake .. && make -j
mkdir -p build && cd build && cmake .. && make -j `sysctl -n hw.ncpu`
- run:
name: Run CPP tests
command: |
DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 METAL_DEBUG_ERROR_MODE=0 ./build/tests/tests
DEVICE=cpu ./build/tests/tests
- run:
name: Build small binary
command: |
source env/bin/activate
cd build/
cmake .. -DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
make -j `sysctl -n hw.ncpu`
- run:
name: Run Python tests with JIT
command: |
source env/bin/activate
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
CMAKE_ARGS="-DMLX_METAL_JIT=ON" \
pip install -e . -v
LOW_MEMORY=1 DEVICE=gpu METAL_DEVICE_WRAPPER_TYPE=1 \
METAL_DEBUG_ERROR_MODE=0 \
python -m xmlrunner discover -v python/tests -o test-results/gpu_jit
build_release:
parameters:
@@ -132,18 +214,19 @@ jobs:
default: ""
macos:
xcode: << parameters.xcode_version >>
resource_class: macos.m1.large.gen1
resource_class: macos.m1.medium.gen1
steps:
- checkout
- run:
name: Install dependencies
command: |
brew install python@<< parameters.python_version >>
brew install openmpi
python<< parameters.python_version >> -m venv env
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
pip install nanobind==2.2.0
pip install --upgrade setuptools
pip install numpy
pip install twine
@@ -153,19 +236,20 @@ jobs:
command: |
source env/bin/activate
DEV_RELEASE=1 \
CMAKE_BUILD_PARALLEL_LEVEL="" \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
pip install . -v
- run:
name: Generate package stubs
command: |
source env/bin/activate
pip install typing_extensions
python setup.py generate_stubs
- run:
name: Build Python package
command: |
source env/bin/activate
<< parameters.build_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
CMAKE_BUILD_PARALLEL_LEVEL=`sysctl -n hw.ncpu` \
python -m build -w
- when:
condition: << parameters.build_env >>
@@ -178,7 +262,7 @@ jobs:
- store_artifacts:
path: dist/
build_linux_test_release:
build_linux_release:
parameters:
python_version:
type: string
@@ -207,21 +291,28 @@ jobs:
source env/bin/activate
pip install --upgrade pip
pip install --upgrade cmake
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
pip install nanobind==2.2.0
pip install --upgrade setuptools
pip install numpy
pip install auditwheel
pip install patchelf
pip install build
pip install twine
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
pip install . -v
pip install typing_extensions
python setup.py generate_stubs
<< parameters.extra_env >> \
CMAKE_BUILD_PARALLEL_LEVEL="" \
CMAKE_BUILD_PARALLEL_LEVEL=`nproc` \
python -m build --wheel
auditwheel show dist/*
auditwheel repair dist/* --plat manylinux_2_31_x86_64
- run:
name: Upload package
command: |
source env/bin/activate
twine upload wheelhouse/*
- store_artifacts:
path: wheelhouse/
@@ -239,8 +330,9 @@ workflows:
- mac_build_and_test:
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
- linux_build_and_test
- build_documentation
build_pypi_release:
when:
@@ -257,9 +349,17 @@ workflows:
ignore: /.*/
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python_version: ["3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
build_env: ["PYPI_RELEASE=1"]
- build_documentation:
filters:
tags:
only: /^v.*/
branches:
ignore: /.*/
upload-docs: true
prb:
when:
matches:
@@ -274,7 +374,7 @@ workflows:
requires: [ hold ]
matrix:
parameters:
xcode_version: ["15.0.0", "15.2.0"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
- linux_build_and_test:
requires: [ hold ]
nightly_build:
@@ -286,7 +386,7 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python_version: ["3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
weekly_build:
when:
@@ -297,17 +397,17 @@ workflows:
- build_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0"]
python_version: ["3.9", "3.10", "3.11", "3.12"]
xcode_version: ["15.0.0", "15.2.0", "16.0.0"]
build_env: ["DEV_RELEASE=1"]
linux_test_release:
when:
and:
- equal: [ main, << pipeline.git.branch >> ]
- << pipeline.parameters.test_release >>
- << pipeline.parameters.linux_release >>
jobs:
- build_linux_test_release:
- build_linux_release:
matrix:
parameters:
python_version: ["3.8", "3.9", "3.10", "3.11", "3.12"]
python_version: ["3.9", "3.10", "3.11", "3.12"]
extra_env: ["PYPI_RELEASE=1"]

View File

@@ -17,4 +17,4 @@ jobs:
pip install pre-commit black isort clang-format
- name: Run lint
run: |
pre-commit run --all-files
pre-commit run --all-files

View File

@@ -1,11 +1,11 @@
repos:
- repo: https://github.com/pre-commit/mirrors-clang-format
rev: v18.1.4
rev: v18.1.8
hooks:
- id: clang-format
# Using this mirror lets us use mypyc-compiled black, which is about 2x faster
- repo: https://github.com/psf/black-pre-commit-mirror
rev: 24.4.2
rev: 24.8.0
hooks:
- id: black
- repo: https://github.com/pycqa/isort
@@ -14,3 +14,7 @@ repos:
- id: isort
args:
- --profile=black
- repo: https://github.com/cheshirekow/cmake-format-precommit
rev: v0.6.13
hooks:
- id: cmake-format

View File

@@ -7,15 +7,18 @@ with a short description of your contribution(s) below. For example:
MLX was developed with contributions from the following individuals:
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops.
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`. Added `cross`.
- Juarez Bochi: Fixed bug in cross attention.
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream`, safetensors support, `einsum`, and `einsum_path`.
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
- Paul Paczuski: Improved stability of BCE loss calculation
- Max-Heinrich Laves: Added `conv_transpose1d`, `conv_transpose2d`, and `conv_transpose3d` ops.
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />

24
CITATION.cff Normal file
View File

@@ -0,0 +1,24 @@
cff-version: 1.2.0
title: mlx
message: >-
If you use this software, please cite it using the
metadata from this file.
type: software
authors:
- given-names: Awni
family-names: Hannun
affiliation: Apple
- given-names: Jagrit
family-names: Digani
affiliation: Apple
- given-names: Angelos
family-names: Katharopoulos
affiliation: Apple
- given-names: Ronan
family-names: Collobert
affiliation: Apple
repository-code: 'https://github.com/ml-explore'
abstract: >-
MLX: efficient and flexible machine learning on Apple
silicon
license: MIT

View File

@@ -15,40 +15,52 @@ option(MLX_BUILD_EXAMPLES "Build examples for mlx" ON)
option(MLX_BUILD_BENCHMARKS "Build benchmarks for mlx" OFF)
option(MLX_BUILD_PYTHON_BINDINGS "Build python bindings for mlx" OFF)
option(MLX_BUILD_METAL "Build metal backend" ON)
option(MLX_BUILD_CPU "Build cpu backend" ON)
option(MLX_METAL_DEBUG "Enhance metal debug workflow" OFF)
option(MLX_ENABLE_X64_MAC "Enable building for x64 macOS" OFF)
option(MLX_BUILD_GGUF "Include support for GGUF format" ON)
option(MLX_BUILD_SAFETENSORS "Include support for safetensors format" ON)
option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
if(NOT MLX_VERSION)
set(MLX_VERSION 0.12.2)
set(MLX_VERSION 0.19.0)
endif()
# --------------------- Processor tests -------------------------
message(STATUS "Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}")
message(
STATUS
"Building MLX for ${CMAKE_SYSTEM_PROCESSOR} processor on ${CMAKE_SYSTEM_NAME}"
)
set(MLX_BUILD_ARM OFF)
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "x86_64")
if(NOT MLX_ENABLE_X64_MAC)
message(FATAL_ERROR
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, check the build"
" documentation for possible fixes: "
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source")
message(
FATAL_ERROR
"Building for x86_64 on macOS is not supported."
" If you are on an Apple silicon system, check the build"
" documentation for possible fixes: "
"https://ml-explore.github.io/mlx/build/html/install.html#build-from-source"
)
else()
set(MLX_BUILD_METAL OFF)
message(WARNING "Building for x86_64 arch is not officially supported.")
endif()
set(MLX_BUILD_METAL OFF)
elseif(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
set(MLX_BUILD_ARM ON)
endif()
else()
set(MLX_BUILD_METAL OFF)
message(WARNING "MLX is prioritised for Apple silicon systems using macOS.")
endif()
if(${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm64")
set(MLX_BUILD_ARM ON)
endif()
# ----------------------------- Lib -----------------------------
include(FetchContent)
@@ -57,170 +69,192 @@ cmake_policy(SET CMP0135 NEW)
add_library(mlx)
if (MLX_BUILD_METAL)
find_library(METAL_LIB Metal)
find_library(FOUNDATION_LIB Foundation)
find_library(QUARTZ_LIB QuartzCore)
if(MLX_BUILD_METAL)
set(METAL_LIB "-framework Metal")
set(FOUNDATION_LIB "-framework Foundation")
set(QUARTZ_LIB "-framework QuartzCore")
endif()
if (MLX_BUILD_METAL AND NOT METAL_LIB)
if(MLX_BUILD_METAL AND NOT METAL_LIB)
message(STATUS "Metal not found. Unable to build GPU")
set(MLX_BUILD_METAL OFF)
set(MLX_METAL_DEBUG OFF)
elseif (MLX_BUILD_METAL)
elseif(MLX_BUILD_METAL)
message(STATUS "Building METAL sources")
if (MLX_METAL_DEBUG)
if(MLX_METAL_DEBUG)
add_compile_definitions(MLX_METAL_DEBUG)
endif()
# Throw an error if xcrun not found
execute_process(COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION
COMMAND_ERROR_IS_FATAL ANY)
execute_process(
COMMAND zsh "-c" "/usr/bin/xcrun -sdk macosx --show-sdk-version"
OUTPUT_VARIABLE MACOS_VERSION COMMAND_ERROR_IS_FATAL ANY)
if(${MACOS_VERSION} LESS 14.0)
message(
FATAL_ERROR
"MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON")
endif()
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
if (${MACOS_VERSION} GREATER_EQUAL 14.2)
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.2.diff)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14.2_iOS17.2.zip)
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
set(METAL_CPP_PATCH ${CMAKE_CURRENT_SOURCE_DIR}/cmake/metal.14.0.diff)
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS14_iOS17-beta.zip)
else()
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
endif()
FetchContent_Declare(
metal_cpp
URL ${METAL_CPP_URL}
PATCH_COMMAND patch -N -i ${METAL_CPP_PATCH} || true
set(METAL_CPP_URL
https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip
)
# Get the metal version
execute_process(
COMMAND
zsh "-c"
"echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
OUTPUT_VARIABLE MLX_METAL_VERSION COMMAND_ERROR_IS_FATAL ANY)
FetchContent_Declare(metal_cpp URL ${METAL_CPP_URL})
FetchContent_MakeAvailable(metal_cpp)
target_include_directories(
mlx PUBLIC
$<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/metal_cpp>
)
target_link_libraries(
mlx
${METAL_LIB}
${FOUNDATION_LIB}
${QUARTZ_LIB})
mlx PUBLIC $<BUILD_INTERFACE:${metal_cpp_SOURCE_DIR}>
$<INSTALL_INTERFACE:include/metal_cpp>)
target_link_libraries(mlx PUBLIC ${METAL_LIB} ${FOUNDATION_LIB} ${QUARTZ_LIB})
add_compile_definitions("MLX_METAL_VERSION=${MLX_METAL_VERSION}")
endif()
find_library(ACCELERATE_LIBRARY Accelerate)
if (MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
if(MLX_BUILD_CPU)
find_library(ACCELERATE_LIBRARY Accelerate)
if(MLX_BUILD_ARM AND ACCELERATE_LIBRARY)
message(STATUS "Accelerate found ${ACCELERATE_LIBRARY}")
set(MLX_BUILD_ACCELERATE ON)
target_link_libraries(mlx PUBLIC ${ACCELERATE_LIBRARY})
add_compile_definitions(ACCELERATE_NEW_LAPACK)
else()
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
if(${CMAKE_HOST_APPLE})
# The blas shipped in macOS SDK is not supported, search homebrew for
# openblas instead.
set(BLA_VENDOR OpenBLAS)
set(LAPACK_ROOT
"${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
endif()
# Search and link with lapack.
find_package(LAPACK REQUIRED)
if(NOT LAPACK_FOUND)
message(FATAL_ERROR "Must have LAPACK installed")
endif()
find_path(LAPACK_INCLUDE_DIRS lapacke.h /usr/include /usr/local/include
/usr/local/opt/openblas/include)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${LAPACK_LIBRARIES})
# List blas after lapack otherwise we may accidentally incldue an old
# version of lapack.h from the include dirs of blas.
find_package(BLAS REQUIRED)
if(NOT BLAS_FOUND)
message(FATAL_ERROR "Must have BLAS installed")
endif()
# TODO find a cleaner way to do this
find_path(BLAS_INCLUDE_DIRS cblas.h /usr/include /usr/local/include
$ENV{BLAS_HOME}/include)
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx PUBLIC ${BLAS_LIBRARIES})
endif()
else()
message(STATUS "Accelerate or arm neon not found, using default backend.")
set(MLX_BUILD_ACCELERATE OFF)
if(${CMAKE_HOST_APPLE})
# The blas shipped in macOS SDK is not supported, search homebrew for
# openblas instead.
set(BLA_VENDOR OpenBLAS)
set(LAPACK_ROOT "${LAPACK_ROOT};$ENV{LAPACK_ROOT};/usr/local/opt/openblas")
endif()
find_package(MPI)
if(MPI_FOUND)
execute_process(
COMMAND zsh "-c" "mpirun --version"
OUTPUT_VARIABLE MPI_VERSION
ERROR_QUIET)
if(${MPI_VERSION} MATCHES ".*Open MPI.*")
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
elseif(MPI_VERSION STREQUAL "")
set(MPI_FOUND FALSE)
message(
WARNING "MPI found but mpirun is not available. Building without MPI.")
else()
set(MPI_FOUND FALSE)
message(WARNING "MPI which is not OpenMPI found. Building without MPI.")
endif()
# Search and link with lapack.
find_package(LAPACK REQUIRED)
if (NOT LAPACK_FOUND)
message(FATAL_ERROR "Must have LAPACK installed")
endif()
find_path(LAPACK_INCLUDE_DIRS lapacke.h
/usr/include
/usr/local/include
/usr/local/opt/openblas/include)
message(STATUS "Lapack lib " ${LAPACK_LIBRARIES})
message(STATUS "Lapack include " ${LAPACK_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${LAPACK_INCLUDE_DIRS})
target_link_libraries(mlx ${LAPACK_LIBRARIES})
# List blas after lapack otherwise we may accidentally incldue an old version
# of lapack.h from the include dirs of blas.
find_package(BLAS REQUIRED)
if (NOT BLAS_FOUND)
message(FATAL_ERROR "Must have BLAS installed")
endif()
# TODO find a cleaner way to do this
find_path(BLAS_INCLUDE_DIRS cblas.h
/usr/include
/usr/local/include
$ENV{BLAS_HOME}/include)
message(STATUS "Blas lib " ${BLAS_LIBRARIES})
message(STATUS "Blas include " ${BLAS_INCLUDE_DIRS})
target_include_directories(mlx PRIVATE ${BLAS_INCLUDE_DIRS})
target_link_libraries(mlx ${BLAS_LIBRARIES})
endif()
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/mlx)
target_include_directories(
mlx
PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>
)
mlx PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}>
$<INSTALL_INTERFACE:include>)
if (MLX_BUILD_PYTHON_BINDINGS)
FetchContent_Declare(
fmt
GIT_REPOSITORY https://github.com/fmtlib/fmt.git
GIT_TAG 10.2.1
EXCLUDE_FROM_ALL)
FetchContent_MakeAvailable(fmt)
target_link_libraries(mlx PRIVATE $<BUILD_INTERFACE:fmt::fmt-header-only>)
if(MLX_BUILD_PYTHON_BINDINGS)
message(STATUS "Building Python bindings.")
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
find_package(
Python 3.8
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/python/src)
endif()
if (MLX_BUILD_TESTS)
if(MLX_BUILD_TESTS)
include(CTest)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/tests)
endif()
if (MLX_BUILD_EXAMPLES)
if(MLX_BUILD_EXAMPLES)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/examples/cpp)
endif()
if (MLX_BUILD_BENCHMARKS)
if(MLX_BUILD_BENCHMARKS)
add_subdirectory(${CMAKE_CURRENT_LIST_DIR}/benchmarks/cpp)
endif()
# ----------------------------- Installation -----------------------------
include(GNUInstallDirs)
# Install library
install(
TARGETS mlx
EXPORT MLXTargets
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
)
TARGETS mlx
EXPORT MLXTargets
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR}
INCLUDES
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR})
# Install headers
install(
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
COMPONENT headers
FILES_MATCHING PATTERN "*.h"
)
DIRECTORY ${CMAKE_CURRENT_LIST_DIR}/mlx
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
COMPONENT headers
FILES_MATCHING
PATTERN "*.h"
PATTERN "backend/metal/kernels.h" EXCLUDE)
# Install metal dependencies
if (MLX_BUILD_METAL)
if(MLX_BUILD_METAL)
# Install metal cpp
install(
DIRECTORY ${metal_cpp_SOURCE_DIR}/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
COMPONENT metal_cpp_source
)
DIRECTORY ${metal_cpp_SOURCE_DIR}/
DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}/metal_cpp
COMPONENT metal_cpp_source)
endif()
@@ -232,31 +266,24 @@ set(MLX_CMAKE_INSTALL_MODULE_DIR share/cmake/MLX)
install(
EXPORT MLXTargets
FILE MLXTargets.cmake
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
include(CMakePackageConfigHelpers)
write_basic_package_version_file(
${MLX_CMAKE_BUILD_VERSION_CONFIG}
COMPATIBILITY SameMajorVersion
VERSION ${MLX_VERSION}
)
VERSION ${MLX_VERSION})
configure_package_config_file(
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in
${MLX_CMAKE_BUILD_CONFIG}
${CMAKE_CURRENT_LIST_DIR}/mlx.pc.in ${MLX_CMAKE_BUILD_CONFIG}
INSTALL_DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
NO_CHECK_REQUIRED_COMPONENTS_MACRO
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR MLX_CMAKE_INSTALL_MODULE_DIR
)
PATH_VARS CMAKE_INSTALL_LIBDIR CMAKE_INSTALL_INCLUDEDIR
MLX_CMAKE_INSTALL_MODULE_DIR)
install(
FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)
install(FILES ${MLX_CMAKE_BUILD_CONFIG} ${MLX_CMAKE_BUILD_VERSION_CONFIG}
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})
install(
DIRECTORY ${CMAKE_MODULE_PATH}/
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR}
)
install(DIRECTORY ${CMAKE_MODULE_PATH}/
DESTINATION ${MLX_CMAKE_INSTALL_MODULE_DIR})

View File

@@ -88,13 +88,13 @@ for more information on building the C++ and Python APIs from source.
## Contributing
Check out the [contribution guidelines](CONTRIBUTING.md) for more information
Check out the [contribution guidelines](https://github.com/ml-explore/mlx/tree/main/CONTRIBUTING.md) for more information
on contributing to MLX. See the
[docs](https://ml-explore.github.io/mlx/build/html/install.html) for more
information on building from source, and running tests.
We are grateful for all of [our
contributors](ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
contributors](https://github.com/ml-explore/mlx/tree/main/ACKNOWLEDGMENTS.md#Individual-Contributors). If you contribute
to MLX and wish to be acknowledged, please add your name to the list in your
pull request.

View File

@@ -185,7 +185,7 @@ def prelu(x: torch.Tensor) -> torch.Tensor:
def mish(x: torch.Tensor) -> torch.Tensor:
y = x
for _ in range(100):
return torch.nn.functional.mish(y)
y = torch.nn.functional.mish(y)
sync_if_needed(x)
@@ -283,6 +283,14 @@ def topk(axis, x):
sync_if_needed(x)
@torch.no_grad()
def step_function(x):
y = x
for i in range(100):
y = torch.where(y < 0, 0, 1)
sync_if_needed(x)
@torch.no_grad()
def selu(x):
y = x
@@ -446,5 +454,11 @@ if __name__ == "__main__":
elif args.benchmark == "topk":
print(bench(topk, axis, x))
elif args.benchmark == "step":
print(bench(step_function, x))
elif args.benchmark == "selu":
print(bench(selu, x))
else:
raise ValueError("Unknown benchmark")
raise ValueError(f"Unknown benchmark `{args.benchmark}`.")

View File

@@ -16,7 +16,9 @@ def run_or_raise(*args, **kwargs):
result = run(*args, capture_output=True, **kwargs)
return float(result.stdout)
except ValueError:
raise ValueError(f"stdout: {result.stdout}\nstderr: {result.stderr}")
raise ValueError(
f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}"
)
def compare(args):

View File

@@ -9,7 +9,6 @@ from time_utils import time_fn
def bench_gelu():
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
@@ -51,7 +50,6 @@ def bench_gelu():
def bench_layernorm():
weight = mx.random.uniform(shape=(4096,)).astype(mx.float16)
bias = mx.random.uniform(shape=(4096,)).astype(mx.float16)
mx.eval(weight, bias)

View File

@@ -0,0 +1,127 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
return ys
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("cpu")
f_mx = make_mx_conv_2D(strides, padding, groups)
f_pt = make_pt_conv_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
# (4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,143 @@
import time
import mlx.core as mx
import mlx.nn
import mlx.optimizers as opt
import torch
def bench_mlx(steps: int = 20) -> float:
mx.set_default_device(mx.cpu)
class BenchNetMLX(mlx.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=32):
super().__init__()
self.net = mlx.nn.Sequential(
mlx.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
mlx.nn.ReLU(),
mlx.nn.Conv2d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose2d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose2d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def __call__(self, input):
return self.net(input)
benchNet = BenchNetMLX(3)
mx.eval(benchNet.parameters())
optim = opt.Adam(learning_rate=1e-3)
inputs = mx.random.normal([10, 256, 256, 3])
params = benchNet.parameters()
optim.init(params)
state = [benchNet.state, optim.state]
def loss_fn(params, image):
benchNet.update(params)
pred_image = benchNet(image)
return (pred_image - image).abs().mean()
def step(params, image):
loss, grads = mx.value_and_grad(loss_fn)(params, image)
optim.update(benchNet, grads)
return loss
total_time = 0.0
print("MLX:")
for i in range(steps):
start_time = time.perf_counter()
step(benchNet.parameters(), inputs)
mx.eval(state)
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def bench_torch(steps: int = 20) -> float:
device = torch.device("cpu")
class BenchNetTorch(torch.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=32):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Conv2d(in_channels, hidden_channels, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.Conv2d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose2d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def forward(self, input):
return self.net(input)
benchNet = BenchNetTorch(3).to(device)
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
inputs = torch.randn(10, 3, 256, 256, device=device)
def loss_fn(pred_image, image):
return (pred_image - image).abs().mean()
total_time = 0.0
print("PyTorch:")
for i in range(steps):
start_time = time.perf_counter()
optim.zero_grad()
pred_image = benchNet(inputs)
loss = loss_fn(pred_image, inputs)
loss.backward()
optim.step()
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def main():
steps = 20
time_mlx = bench_mlx(steps)
time_torch = bench_torch(steps)
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
print(f"total time of MLX: {time_mlx:9.2f} ms")
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
print(f"total time of PyTorch: {time_torch:9.2f} ms")
diff = time_torch / time_mlx - 1.0
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,129 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups, stream=mx.cpu
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_transpose_2D
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
return ys
return pt_conv_transpose_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (int(O / groups), kH, kW, C)).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("cpu")
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose2d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups, stream=mx.cpu
)
out_pt = torch.conv_transpose2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,110 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv3d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_3D
def make_pt_conv_3D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv3d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
return ys
return pt_conv_3D
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kD * kH * kW * C)
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((0, 4, 1, 2, 3))).to("cpu")
f_mx = make_mx_conv_3D(strides, padding, groups)
f_pt = make_pt_conv_3D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv3d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv3d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
)
for dtype in dtypes:
print(
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,143 @@
import time
import mlx.core as mx
import mlx.nn
import mlx.optimizers as opt
import torch
def bench_mlx(steps: int = 20, shape=(10, 32, 32, 32, 3)) -> float:
mx.set_default_device(mx.cpu)
class BenchNetMLX(mlx.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=16):
super().__init__()
self.net = mlx.nn.Sequential(
mlx.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
mlx.nn.ReLU(),
mlx.nn.Conv3d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose3d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
mlx.nn.ReLU(),
mlx.nn.ConvTranspose3d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def __call__(self, input):
return self.net(input)
benchNet = BenchNetMLX(3)
mx.eval(benchNet.parameters())
optim = opt.Adam(learning_rate=1e-3)
inputs = mx.random.normal(shape)
params = benchNet.parameters()
optim.init(params)
state = [benchNet.state, optim.state]
def loss_fn(params, image):
benchNet.update(params)
pred_image = benchNet(image)
return (pred_image - image).abs().mean()
def step(params, image):
loss, grads = mx.value_and_grad(loss_fn)(params, image)
optim.update(benchNet, grads)
return loss
total_time = 0.0
print("MLX:")
for i in range(steps):
start_time = time.perf_counter()
step(benchNet.parameters(), inputs)
mx.eval(state)
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def bench_torch(steps: int = 20, shape=(10, 3, 32, 32, 32)) -> float:
device = torch.device("cpu")
class BenchNetTorch(torch.nn.Module):
# simple encoder-decoder net
def __init__(self, in_channels, hidden_channels=16):
super().__init__()
self.net = torch.nn.Sequential(
torch.nn.Conv3d(in_channels, hidden_channels, kernel_size=3, padding=1),
torch.nn.ReLU(),
torch.nn.Conv3d(
hidden_channels, 2 * hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose3d(
2 * hidden_channels, hidden_channels, kernel_size=3, padding=1
),
torch.nn.ReLU(),
torch.nn.ConvTranspose3d(
hidden_channels, in_channels, kernel_size=3, padding=1
),
)
def forward(self, input):
return self.net(input)
benchNet = BenchNetTorch(3).to(device)
optim = torch.optim.Adam(benchNet.parameters(), lr=1e-3)
inputs = torch.randn(*shape, device=device)
def loss_fn(pred_image, image):
return (pred_image - image).abs().mean()
total_time = 0.0
print("PyTorch:")
for i in range(steps):
start_time = time.perf_counter()
optim.zero_grad()
pred_image = benchNet(inputs)
loss = loss_fn(pred_image, inputs)
loss.backward()
optim.step()
end_time = time.perf_counter()
print(f"{i:3d}, time={(end_time-start_time) * 1000:7.2f} ms")
total_time += (end_time - start_time) * 1000
return total_time
def main():
steps = 10
time_mlx = bench_mlx(steps)
time_torch = bench_torch(steps)
print(f"average time of MLX: {time_mlx/steps:9.2f} ms")
print(f"total time of MLX: {time_mlx:9.2f} ms")
print(f"average time of PyTorch: {time_torch/steps:9.2f} ms")
print(f"total time of PyTorch: {time_torch:9.2f} ms")
diff = time_torch / time_mlx - 1.0
print(f"torch/mlx diff: {100. * diff:+5.2f}%")
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,116 @@
import argparse
import math
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 1
N_iter_bench = 10
N_iter_func = 5
mx.set_default_device(mx.cpu)
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
def mx_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose3d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_3D
def make_pt_conv_3D(strides=(1, 1, 1), padding=(0, 0, 0), groups=1):
@torch.no_grad()
def pt_conv_3D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose3d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
return ys
return pt_conv_3D
def bench_shape(N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kD * kH * kW * C)
a_np = np.random.uniform(0, 0.5, (N, D, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kD, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 4, 1, 2, 3))).to("cpu")
b_pt = torch.from_numpy(b_np.transpose((4, 0, 1, 2, 3))).to("cpu")
f_mx = make_mx_conv_3D(strides, padding, groups)
f_pt = make_pt_conv_3D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose3d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups
)
out_pt = torch.conv_transpose3d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 4, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, D, H, W, C)}, {(O, kD, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 16, 16, 16, 16, 5, 5, 5, 16, (1, 1, 1), (2, 2, 2), 1),
(4, 16, 16, 16, 32, 5, 5, 5, 32, (1, 1, 1), (2, 2, 2), 1),
)
for dtype in dtypes:
print(
"(N, D, H, W, C), ( O, kD, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, D, H, W, C, kD, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, D, H, W, C, kD, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {D:3d}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kD:2d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -28,11 +28,11 @@ def bench(f, a, b):
return (e - s) * 1e-9
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv2d(a, b, stride=strides, padding=padding)
y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
mx.eval(ys)
return ys
@@ -40,12 +40,12 @@ def make_mx_conv_2D(strides=(1, 1), padding=(0, 0)):
return mx_conv_2D
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv2d(a, b, stride=strides, padding=padding)
y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
ys.append(y)
torch.mps.synchronize()
return ys
@@ -53,11 +53,12 @@ def make_pt_conv_2D(strides=(1, 1), padding=(0, 0)):
return pt_conv_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
@@ -67,15 +68,15 @@ def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
torch.mps.synchronize()
f_mx = make_mx_conv_2D(strides, padding)
f_pt = make_pt_conv_2D(strides, padding)
f_mx = make_mx_conv_2D(strides, padding, groups)
f_pt = make_pt_conv_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding)
out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
out_pt = torch.conv2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
@@ -84,7 +85,7 @@ def bench_shape(N, H, W, C, kH, kW, O, strides, padding, np_dtype):
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
@@ -95,35 +96,40 @@ if __name__ == "__main__":
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2)),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2)),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2)),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2)),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2)),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2)),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2)),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2)),
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 2),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 16),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 64),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print("(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, diff%")
for N, H, W, C, kH, kW, O, strides, padding in shapes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, np_dtype
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {100. * diff:+5.2f}%"
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,135 @@
import argparse
import math
import os
import subprocess
import time
import mlx.core as mx
import numpy as np
import torch
N_warmup = 10
N_iter_bench = 100
N_iter_func = 5
def bench(f, a, b):
for i in range(N_warmup):
f(a, b)
torch.mps.synchronize()
s = time.perf_counter_ns()
for i in range(N_iter_bench):
f(a, b)
e = time.perf_counter_ns()
return (e - s) * 1e-9
def make_mx_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
def mx_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = mx.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
mx.eval(ys)
return ys
return mx_conv_transpose_2D
def make_pt_conv_transpose_2D(strides=(1, 1), padding=(0, 0), groups=1):
@torch.no_grad()
def pt_conv_transpose_2D(a, b):
ys = []
for i in range(N_iter_func):
y = torch.conv_transpose2d(
a, b, stride=strides, padding=padding, groups=groups
)
ys.append(y)
torch.mps.synchronize()
return ys
return pt_conv_transpose_2D
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
scale = 1.0 / math.sqrt(kH * kH * C)
a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
np_dtype
)
a_mx = mx.array(a_np)
b_mx = mx.array(b_np)
a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
b_pt = torch.from_numpy(b_np.transpose((3, 0, 1, 2))).to("mps")
torch.mps.synchronize()
f_mx = make_mx_conv_transpose_2D(strides, padding, groups)
f_pt = make_pt_conv_transpose_2D(strides, padding, groups)
time_torch = bench(f_pt, a_pt, b_pt)
time_mlx = bench(f_mx, a_mx, b_mx)
out_mx = mx.conv_transpose2d(
a_mx, b_mx, stride=strides, padding=padding, groups=groups
)
out_pt = torch.conv_transpose2d(
a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1))
out_pt = out_pt.numpy(force=True)
atol = 2e-5 if np_dtype == np.float32 else 1e-4
if not np.allclose(out_pt, out_mx, atol=atol):
print(
f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
)
return time_mlx, time_torch
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run conv benchmarks")
dtypes = ("float32",)
shapes = (
(4, 32, 32, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 32, 32, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 32, 32, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 32, 32, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 32, 32, 512, 5, 5, 512, (1, 1), (2, 2), 1),
(4, 64, 64, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 64, 64, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 64, 64, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 64, 64, 256, 5, 5, 256, (1, 1), (2, 2), 1),
(4, 128, 128, 32, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 64, (1, 1), (2, 2), 1),
(4, 128, 128, 128, 5, 5, 128, (1, 1), (2, 2), 1),
(4, 256, 256, 32, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 256, 256, 3, 5, 5, 32, (1, 1), (2, 2), 1),
(4, 128, 128, 64, 5, 5, 3, (1, 1), (2, 2), 1),
(4, 128, 128, 3, 5, 5, 64, (1, 1), (2, 2), 1),
)
for dtype in dtypes:
print(
"(N, H, W, C), ( O, kH, kW, C), dtype, stride, pads, groups, diff%"
)
for N, H, W, C, kH, kW, O, strides, padding, groups in shapes:
np_dtype = getattr(np, dtype)
time_mlx, time_torch = bench_shape(
N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype
)
diff = time_torch / time_mlx - 1.0
print(
f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kH:2d}, {kW:2d}, {C:3d}), {dtype}, {strides}, {padding}, {groups:7d}, {100. * diff:+5.2f}%"
)
if time_mlx >= 2.0 * time_torch:
print("ATTENTION ^^^^^^^")

View File

@@ -0,0 +1,66 @@
# Copyright © 2024 Apple Inc.
"""
Run with:
mpirun -n 2 python /path/to/distributed_bench.py
"""
import time
import mlx.core as mx
def time_fn(fn, *args, **kwargs):
msg = kwargs.pop("msg", None)
world = mx.distributed.init()
if world.rank() == 0:
if msg:
print(f"Timing {msg} ...", end=" ")
else:
print(f"Timing {fn.__name__} ...", end=" ")
# warmup
for _ in range(5):
mx.eval(fn(*args, **kwargs))
num_iters = 100
tic = time.perf_counter()
for _ in range(num_iters):
x = mx.eval(fn(*args, **kwargs))
toc = time.perf_counter()
msec = 1e3 * (toc - tic) / num_iters
if world.rank() == 0:
print(f"{msec:.5f} msec")
def time_all_sum():
shape = (4096,)
x = mx.random.uniform(shape=shape)
mx.eval(x)
def sine(x):
for _ in range(20):
x = mx.sin(x)
return x
time_fn(sine, x)
def all_sum_plain(x):
for _ in range(20):
x = mx.distributed.all_sum(x)
return x
time_fn(all_sum_plain, x)
def all_sum_with_sine(x):
for _ in range(20):
x = mx.sin(x)
x = mx.distributed.all_sum(x)
return x
time_fn(all_sum_with_sine, x)
if __name__ == "__main__":
time_all_sum()

View File

@@ -0,0 +1,84 @@
# Copyright © 2024 Apple Inc.
import time
import mlx.core as mx
import numpy as np
def timeit(fn, its=100, args=[]):
for _ in range(5):
fn(*args)
tic = time.perf_counter()
for _ in range(its):
fn(*args)
toc = time.perf_counter()
return 1e3 * (toc - tic) / its
def time_little_einsum_path():
subscripts = "ik,kj->ij"
x = mx.ones((32, 32))
y = mx.ones((32, 32))
mx_time = timeit(mx.einsum_path, args=(subscripts, x, y))
x = np.array(x)
y = np.array(y)
np_time = timeit(np.einsum_path, args=(subscripts, x, y))
print("Timing little einsum path...")
print(f"MLX ... {mx_time:.3f} ms")
print(f"NumPy... {np_time:.3f} ms")
def time_big_einsum_path():
chars = list("abcdefgh")
char_to_dim = {c: v for v, c in enumerate(chars)}
num_inputs = 10
inputs = []
subscripts = []
for _ in range(num_inputs):
subscript = np.random.choice(chars, size=5, replace=False).tolist()
subscripts.append("".join(subscript))
inputs.append(np.ones(list(char_to_dim[c] for c in subscript)))
subscripts = ",".join(subscripts)
np_time = timeit(np.einsum_path, args=(subscripts, *inputs))
inputs = [mx.array(x) for x in inputs]
mx_time = timeit(mx.einsum_path, args=(subscripts, *inputs))
print("Timing big einsum path...")
print(f"MLX ... {mx_time:.3f} ms")
print(f"NumPy... {np_time:.3f} ms")
def time_attention():
def regular_attention(x):
# shape [batch, sequence, num_heads, head_dim]
queries, keys, values = x, x, x
scores = queries.transpose(0, 2, 1, 3) @ keys.transpose(0, 2, 3, 1)
scores = mx.softmax(scores, axis=-1)
output = (scores @ values.transpose(0, 2, 1, 3)).swapaxes(1, 2)
mx.eval(output)
def einsum_attention(x):
# shape [batch, sequence, num_heads, head_dim]
queries, keys, values = x, x, x
scores = mx.einsum("itjk,iujk->ijtu", queries, keys)
scores = mx.softmax(scores, axis=-1)
output = mx.einsum("ijtu,iujk->itjk", scores, values)
mx.eval(output)
x = mx.random.uniform(shape=(8, 512, 32, 128))
regular_time = timeit(regular_attention, args=(x,))
ein_time = timeit(einsum_attention, args=(x,))
print("Timing einsum attention...")
print(f"Regular ... {regular_time:.3f} ms")
print(f"Einsum ... {ein_time:.3f} ms")
if __name__ == "__main__":
time_little_einsum_path()
time_big_einsum_path()
time_attention()

View File

@@ -3,6 +3,8 @@
import matplotlib
import mlx.core as mx
import numpy as np
import sympy
import torch
from time_utils import measure_runtime
matplotlib.use("Agg")
@@ -16,41 +18,100 @@ def bandwidth_gb(runtime_ms, system_size):
return system_size * bytes_per_fft / runtime_ms * ms_per_s / bytes_per_gb
def run_bench(system_size):
def fft(x):
out = mx.fft.fft(x)
def run_bench(system_size, fft_sizes, backend="mlx", dim=1):
def fft_mlx(x):
if dim == 1:
out = mx.fft.fft(x)
elif dim == 2:
out = mx.fft.fft2(x)
mx.eval(out)
return out
bandwidths = []
for k in range(4, 12):
n = 2**k
x = mx.random.uniform(shape=(system_size // n, n)).astype(mx.float32)
x = x.astype(mx.complex64)
mx.eval(x)
runtime_ms = measure_runtime(fft, x=x)
bandwidths.append(bandwidth_gb(runtime_ms, system_size))
def fft_mps(x):
if dim == 1:
out = torch.fft.fft(x)
elif dim == 2:
out = torch.fft.fft2(x)
torch.mps.synchronize()
return out
return bandwidths
bandwidths = []
for n in fft_sizes:
batch_size = system_size // n**dim
shape = [batch_size] + [n for _ in range(dim)]
if backend == "mlx":
x_np = np.random.uniform(size=(system_size // n, n)).astype(np.complex64)
x = mx.array(x_np)
mx.eval(x)
fft = fft_mlx
elif backend == "mps":
x_np = np.random.uniform(size=(system_size // n, n)).astype(np.complex64)
x = torch.tensor(x_np, device="mps")
torch.mps.synchronize()
fft = fft_mps
else:
raise NotImplementedError()
runtime_ms = measure_runtime(fft, x=x)
bandwidth = bandwidth_gb(runtime_ms, np.prod(shape))
print(n, bandwidth)
bandwidths.append(bandwidth)
return np.array(bandwidths)
def time_fft():
x = np.array(range(2, 512))
system_size = int(2**26)
with mx.stream(mx.cpu):
cpu_bandwidths = run_bench(system_size=int(2**22))
print("MLX GPU")
with mx.stream(mx.gpu):
gpu_bandwidths = run_bench(system_size=int(2**29))
gpu_bandwidths = run_bench(system_size=system_size, fft_sizes=x)
# plot bandwidths
x = [2**k for k in range(4, 12)]
plt.scatter(x, gpu_bandwidths, color="green", label="GPU")
plt.scatter(x, cpu_bandwidths, color="red", label="CPU")
plt.title("MLX FFT Benchmark")
plt.xlabel("N")
plt.ylabel("Bandwidth (GB/s)")
plt.legend()
plt.savefig("fft_plot.png")
print("MPS GPU")
mps_bandwidths = run_bench(system_size=system_size, fft_sizes=x, backend="mps")
print("CPU")
system_size = int(2**20)
with mx.stream(mx.cpu):
cpu_bandwidths = run_bench(system_size=system_size, fft_sizes=x)
x = np.array(x)
all_indices = x - x[0]
radix_2to13 = (
np.array([i for i in x if all(p <= 13 for p in sympy.primefactors(i))]) - x[0]
)
bluesteins = (
np.array([i for i in x if any(p > 13 for p in sympy.primefactors(i))]) - x[0]
)
for indices, name in [
(all_indices, "All"),
(radix_2to13, "Radix 2-13"),
(bluesteins, "Bluestein's"),
]:
# plot bandwidths
print(name)
plt.scatter(x[indices], gpu_bandwidths[indices], color="green", label="GPU")
plt.scatter(x[indices], mps_bandwidths[indices], color="blue", label="MPS")
plt.scatter(x[indices], cpu_bandwidths[indices], color="red", label="CPU")
plt.title(f"MLX FFT Benchmark -- {name}")
plt.xlabel("N")
plt.ylabel("Bandwidth (GB/s)")
plt.legend()
plt.savefig(f"{name}.png")
plt.clf()
av_gpu_bandwidth = np.mean(gpu_bandwidths)
av_mps_bandwidth = np.mean(mps_bandwidths)
av_cpu_bandwidth = np.mean(cpu_bandwidths)
print("Average bandwidths:")
print("GPU:", av_gpu_bandwidth)
print("MPS:", av_mps_bandwidth)
print("CPU:", av_cpu_bandwidth)
portion_faster = len(np.where(gpu_bandwidths > mps_bandwidths)[0]) / len(x)
print("Percent MLX faster than MPS: ", portion_faster * 100)
if __name__ == "__main__":

View File

@@ -0,0 +1,70 @@
import argparse
import matplotlib
import mlx.core as mx
import numpy as np
from time_utils import measure_runtime
matplotlib.use("Agg")
import matplotlib.pyplot as plt
def had(x):
y = mx.hadamard_transform(x)
mx.eval(y)
def copy(x):
y = x + 1.0
mx.eval(y)
def run(dtype):
system_size = 2**26
outputs = {}
for test_fn in (had, copy):
for m in [1, 12, 20, 28]:
if test_fn == copy:
key = "copy"
elif m == 1:
key = "had_2^k"
else:
key = "had_m*2^k"
outputs.setdefault(key, {})
for k in range(7, 14):
n = m * 2**k
if n > 2**15:
continue
x_np = np.random.normal(size=(system_size // n, n)).astype(dtype)
x = mx.array(x_np)
runtime_ms = measure_runtime(test_fn, x=x)
bytes_per_gb = 1e9
ms_per_s = 1e3
bytes_per_had = np.dtype(x_np.dtype).itemsize * 2
bandwidth_gb = (
system_size * bytes_per_had / runtime_ms * ms_per_s / bytes_per_gb
)
print(n, bandwidth_gb)
outputs[key][n] = bandwidth_gb
colors = {
"copy": "black",
"had_2^k": "steelblue",
"had_m*2^k": "skyblue",
}
for key, output in outputs.items():
plt.scatter(output.keys(), output.values(), color=colors[key], label=key)
plt.title(f"MLX Hadamard Benchmark -- {dtype.__name__}")
plt.xlabel("N")
plt.ylabel("Bandwidth (GB/s)")
plt.legend()
plt.savefig(f"bench_{dtype.__name__}.png")
plt.clf()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--fp16", action="store_true")
args = parser.parse_args()
dtype = np.float16 if args.fp16 else np.float32
run(dtype)

View File

@@ -0,0 +1,62 @@
import argparse
import math
import mlx.core as mx
from time_utils import time_fn
MAX_SEQ = 300
START_SEQ = 100
SEQ_INCREMENT = 50
def time_self_attention_primitives():
mx.random.seed(3)
B = 2
H = 38
D = 64
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
q = mx.random.uniform(shape=(B, H, R, D))
k = mx.random.uniform(shape=(B, H, R, D))
v = mx.random.uniform(shape=(B, H, R, D))
scale = 1.0 / math.sqrt(float(D))
mx.eval(q, k, v)
def sdpa_primitives(qs, ks, vs, alpha):
s = (alpha * qs) @ ks.transpose(0, 1, 3, 2)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ vs
return o
time_fn(sdpa_primitives, q, k, v, scale)
def time_self_attention_sdpa():
mx.random.seed(3)
B = 2
H = 38
D = 64
for R in range(START_SEQ, MAX_SEQ, SEQ_INCREMENT):
q = mx.random.uniform(shape=(B, H, R, D))
k = mx.random.uniform(shape=(B, H, R, D))
v = mx.random.uniform(shape=(B, H, R, D))
scale = 1.0 / math.sqrt(float(D))
mx.eval(q, k, v)
def sdpa_fused(qs, ks, vs, alpha):
o = mx.fast.scaled_dot_product_attention(qs, ks, vs, scale=alpha)
return o
time_fn(sdpa_fused, q, k, v, scale)
if __name__ == "__main__":
parser = argparse.ArgumentParser("MLX benchmarks.")
parser.add_argument("--gpu", action="store_true", help="Use the Metal back-end.")
args = parser.parse_args()
if args.gpu:
mx.set_default_device(mx.gpu)
else:
mx.set_default_device(mx.cpu)
time_self_attention_sdpa()
time_self_attention_primitives()

View File

@@ -0,0 +1,81 @@
import mlx.core as mx
import numpy as np
from mlx.utils import tree_map
from time_utils import time_fn
L = 65536
H = 32
H_k = 32 // 4
D = 128
def attention(q, k, v):
B, Hq, L, D = q.shape
_, Hk, S, _ = k.shape
q = q.reshape(B, Hk, Hq // Hk, L, D)
k = k[:, :, None, :, :]
v = v[:, :, None, :, :]
s = q @ k.transpose(0, 1, 2, 4, 3)
p = mx.softmax(s.astype(mx.float32), axis=-1).astype(s.dtype)
o = p @ v
return o.reshape(B, Hq, L, D)
def sdpa(q, k, v):
return mx.fast.scaled_dot_product_attention(q, k, v, scale=1.0, mask=None)
def quant_sdpa(q, k, v, bits=4):
return mx.fast.quantized_scaled_dot_product_attention(
q, *k, *v, scale=1.0, mask=None, bits=bits
)
def quant_attention(q, k, v, bits=4):
B, Hq, L, D = q.shape
Hk = k[0].shape[1]
q = q.reshape((B, Hk, Hq // Hk, L, D))
k = tree_map(lambda x: mx.expand_dims(x, axis=2), k)
v = tree_map(lambda x: mx.expand_dims(x, axis=2), v)
scores = mx.quantized_matmul(q, *k, transpose=True, bits=bits)
scores = mx.softmax(scores, axis=-1)
out = mx.quantized_matmul(scores, *v, transpose=False, bits=bits)
out = out.reshape((B, Hq, L, D))
return out
def time_self_attention_primitives(q, k, v):
time_fn(attention, q, k, v)
def time_self_attention_sdpa(q, k, v):
time_fn(sdpa, q, k, v)
def time_self_attention_quant_sdpa(q, k, v, bits=4):
time_fn(quant_sdpa, q, k, v, bits)
def time_self_attention_quant_primitives(q, k, v, bits=4):
time_fn(quant_attention, q, k, v)
if __name__ == "__main__":
mx.random.seed(3)
q = mx.random.uniform(shape=(1, H, 1, D))
k = mx.random.uniform(shape=(1, H_k, L, D))
v = mx.random.uniform(shape=(1, H_k, L, D))
mx.eval(q, k, v)
bits = 4
k_quant = mx.quantize(k, bits=bits)
v_quant = mx.quantize(v, bits=bits)
mx.eval(k_quant, v_quant)
time_self_attention_sdpa(q, k, v)
time_self_attention_quant_sdpa(q, k_quant, v_quant, bits)
time_self_attention_primitives(q, k, v)
time_self_attention_quant_primitives(q, k_quant, v_quant, bits)

View File

@@ -1,56 +1,41 @@
include(CMakeParseArguments)
###############################################################################
# ##############################################################################
# Build metal library
#
# Adds a custom target ${TARGET} to build ${OUTPUT_DIRECTORY}/{TITLE}.metallib
# from list ${SOURCES}, including list ${INCLUDE_DIRS}, depends on list ${DEPS}
#
# Args:
# TARGET: Custom target to be added for the metal library
# TITLE: Name of the .metallib
# OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib
# SOURCES: List of source files
# INCLUDE_DIRS: List of include dirs
# DEPS: List of dependency files (like headers)
# Args: TARGET: Custom target to be added for the metal library TITLE: Name of
# the .metallib OUTPUT_DIRECTORY: Where to place ${TITLE}.metallib SOURCES: List
# of source files INCLUDE_DIRS: List of include dirs DEPS: List of dependency
# files (like headers)
#
macro(mlx_build_metallib)
# Parse args
set(oneValueArgs TARGET TITLE OUTPUT_DIRECTORY)
set(multiValueArgs SOURCES INCLUDE_DIRS DEPS)
cmake_parse_arguments(
MTLLIB
""
"${oneValueArgs}"
"${multiValueArgs}"
${ARGN}
)
cmake_parse_arguments(MTLLIB "" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
# Set output
set(MTLLIB_BUILD_TARGET "${MTLLIB_OUTPUT_DIRECTORY}/${MTLLIB_TITLE}.metallib")
# Collect compile options
# Collect compile options
set(MTLLIB_COMPILE_OPTIONS -Wall -Wextra -fno-fast-math)
# Prepare metallib build command
add_custom_command(
OUTPUT ${MTLLIB_BUILD_TARGET}
COMMAND xcrun -sdk macosx metal
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
${MTLLIB_COMPILE_OPTIONS}
${MTLLIB_SOURCES}
-o ${MTLLIB_BUILD_TARGET}
COMMAND
xcrun -sdk macosx metal
"$<LIST:TRANSFORM,${MTLLIB_INCLUDE_DIRS},PREPEND,-I>"
${MTLLIB_COMPILE_OPTIONS} ${MTLLIB_SOURCES} -o ${MTLLIB_BUILD_TARGET}
DEPENDS ${MTLLIB_DEPS} ${MTLLIB_SOURCES}
COMMAND_EXPAND_LISTS
COMMENT "Building ${MTLLIB_TITLE}.metallib"
VERBATIM
)
VERBATIM)
# Add metallib custom target
add_custom_target(
${MTLLIB_TARGET}
DEPENDS
${MTLLIB_BUILD_TARGET}
)
add_custom_target(${MTLLIB_TARGET} DEPENDS ${MTLLIB_BUILD_TARGET})
endmacro(mlx_build_metallib)
endmacro(mlx_build_metallib)

View File

@@ -1,36 +0,0 @@
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
--- Metal/MTLEvent.hpp 2023-06-01 12:18:26
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:36:59
@@ -62,6 +62,7 @@
uint64_t signaledValue() const;
void setSignaledValue(uint64_t signaledValue);
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
};
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
@@ -138,6 +139,11 @@
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
{
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
+}
+
+// method: waitUntilSignaledValue
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
}
// static method: alloc
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
--- Metal/MTLHeaderBridge.hpp 2023-06-01 12:18:26
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:37:29
@@ -1906,6 +1906,9 @@
"setShouldMaximizeConcurrentCompilation:");
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
"setSignaledValue:");
+_MTL_PRIVATE_DEF_SEL(
+ waitUntilSignaledValue_timeoutMS_,
+ "waitUntilSignaledValue:timeoutMS:");
_MTL_PRIVATE_DEF_SEL(setSize_,
"setSize:");
_MTL_PRIVATE_DEF_SEL(setSlice_,

View File

@@ -1,36 +0,0 @@
diff -ur Metal/MTLEvent.hpp MetalNew/MTLEvent.hpp
--- Metal/MTLEvent.hpp 2024-04-15 07:12:10
+++ MetalNew/MTLEvent.hpp 2024-04-15 07:15:50
@@ -62,6 +62,7 @@
uint64_t signaledValue() const;
void setSignaledValue(uint64_t signaledValue);
+ bool waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS);
};
class SharedEventHandle : public NS::SecureCoding<SharedEventHandle>
@@ -138,6 +139,11 @@
_MTL_INLINE void MTL::SharedEvent::setSignaledValue(uint64_t signaledValue)
{
Object::sendMessage<void>(this, _MTL_PRIVATE_SEL(setSignaledValue_), signaledValue);
+}
+
+// method: waitUntilSignaledValue
+_MTL_INLINE bool MTL::SharedEvent::waitUntilSignaledValue(uint64_t signaledValue, uint64_t timeoutMS) {
+ return Object::sendMessage<bool>(this, _MTL_PRIVATE_SEL(waitUntilSignaledValue_timeoutMS_), signaledValue, timeoutMS);
}
// static method: alloc
diff -ur Metal/MTLHeaderBridge.hpp MetalNew/MTLHeaderBridge.hpp
--- Metal/MTLHeaderBridge.hpp 2024-04-15 07:12:10
+++ MetalNew/MTLHeaderBridge.hpp 2024-04-15 07:16:15
@@ -1918,6 +1918,9 @@
"setShouldMaximizeConcurrentCompilation:");
_MTL_PRIVATE_DEF_SEL(setSignaledValue_,
"setSignaledValue:");
+_MTL_PRIVATE_DEF_SEL(
+ waitUntilSignaledValue_timeoutMS_,
+ "waitUntilSignaledValue:timeoutMS:");
_MTL_PRIVATE_DEF_SEL(setSize_,
"setSize:");
_MTL_PRIVATE_DEF_SEL(setSlice_,

View File

@@ -1,3 +1,4 @@
sphinx
breathe
sphinx-book-theme
mlx

View File

@@ -83,3 +83,15 @@ def setup(app):
# -- Options for LaTeX output ------------------------------------------------
latex_documents = [(main_doc, "MLX.tex", "MLX Documentation", author, "manual")]
latex_elements = {
"preamble": r"""
\usepackage{enumitem}
\setlistdepth{5}
\setlist[itemize,1]{label=$\bullet$}
\setlist[itemize,2]{label=$\bullet$}
\setlist[itemize,3]{label=$\bullet$}
\setlist[itemize,4]{label=$\bullet$}
\setlist[itemize,5]{label=$\bullet$}
\renewlist{itemize}{itemize}{5}
""",
}

View File

@@ -0,0 +1,421 @@
Custom Metal Kernels
====================
MLX supports writing custom Metal kernels through the Python and C++ APIs.
Simple Example
--------------
Let's write a custom kernel that computes ``exp`` elementwise:
.. code-block:: python
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp",
input_names=["inp"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes=[a.shape],
output_dtypes=[a.dtype],
)
return outputs[0]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))
.. note::
We are only required to pass the body of the Metal kernel in ``source``.
The full function signature will be generated using:
* The shapes/dtypes of ``inputs``
In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp``
so we will add ``const device float16_t* inp`` to the signature.
``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present
in ``source``.
* The list of ``output_dtypes``
In the above, ``out`` is an ``mx.array`` of type ``mx.float16``
so we add ``device float16_t* out``.
* Template parameters passed using ``template``
In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function
and instantiates the template with ``custom_kernel_myexp_float<float>``.
Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``.
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]``
These will be added as function arguments.
All the attributes defined in Table 5.8 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ are supported.
Putting this all together, the generated function signature for ``myexp`` is as follows:
.. code-block:: cpp
template <typename T>
[[kernel]] void custom_kernel_myexp_float(
const device float16_t* inp [[buffer(0)]],
device float16_t* out [[buffer(1)]],
uint3 thread_position_in_grid [[thread_position_in_grid]]) {
uint elem = thread_position_in_grid.x;
T tmp = inp[elem];
out[elem] = metal::exp(tmp);
}
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
Using Shape/Strides
-------------------
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
when indexing.
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
input array ``a`` if any are present in ``source``.
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
.. code-block:: python
def exp_elementwise(a: mx.array):
source = """
uint elem = thread_position_in_grid.x;
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
T tmp = inp[loc];
// Output arrays are always row contiguous
out[elem] = metal::exp(tmp);
"""
kernel = mx.fast.metal_kernel(
name="myexp_strided",
input_names=["inp"],
output_names=["out"],
source=source
)
outputs = kernel(
inputs=[a],
template=[("T", mx.float32)],
grid=(a.size, 1, 1),
threadgroup=(256, 1, 1),
output_shapes=[a.shape],
output_dtypes=[a.dtype],
ensure_row_contiguous=False,
)
return outputs[0]
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
# make non-contiguous
a = a[::2]
b = exp_elementwise(a)
assert mx.allclose(b, mx.exp(a))
Complex Example
-----------------------------
Let's implement a more complex example: ``grid_sample`` in ``"bilinear"`` mode.
We'll start with the following MLX implementation using standard ops:
.. code-block:: python
def grid_sample_ref(x, grid):
N, H_in, W_in, _ = x.shape
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
ix_nw = mx.floor(ix).astype(mx.int32)
iy_nw = mx.floor(iy).astype(mx.int32)
ix_ne = ix_nw + 1
iy_ne = iy_nw
ix_sw = ix_nw
iy_sw = iy_nw + 1
ix_se = ix_nw + 1
iy_se = iy_nw + 1
nw = (ix_se - ix) * (iy_se - iy)
ne = (ix - ix_sw) * (iy_sw - iy)
sw = (ix_ne - ix) * (iy - iy_ne)
se = (ix - ix_nw) * (iy - iy_nw)
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
I_nw *= mask_nw[..., None]
I_ne *= mask_ne[..., None]
I_sw *= mask_sw[..., None]
I_se *= mask_se[..., None]
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
return output
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
to write a fast GPU kernel for both the forward and backward passes.
First we'll implement the forward pass as a fused kernel:
.. code-block:: python
@mx.custom_function
def grid_sample(x, grid):
assert x.ndim == 4, "`x` must be 4D."
assert grid.ndim == 4, "`grid` must be 4D."
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
out_shape = (B, gN, gM, C)
assert D == 2, "Last dim of `grid` must be size 2."
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
int gH = grid_shape[1];
int gW = grid_shape[2];
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
uint grid_idx = elem / C * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int batch_idx = elem / C / gH / gW * b_stride;
int channel_idx = elem % C;
int base_idx = batch_idx + channel_idx;
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
"""
kernel = mx.fast.metal_kernel(
name="grid_sample",
input_names=["x", "grid"],
output_names=["out"],
source=source,
)
outputs = kernel(
inputs=[x, grid],
template=[("T", x.dtype)],
output_shapes=[out_shape],
output_dtypes=[x.dtype],
grid=(np.prod(out_shape), 1, 1),
threadgroup=(256, 1, 1),
)
return outputs[0]
For a reasonably sized input such as:
.. code-block:: python
x.shape = (8, 1024, 1024, 64)
grid.shape = (8, 256, 256, 2)
On an M1 Max, we see a big performance improvement:
``55.7ms -> 6.7ms => 8x speed up``
Grid Sample VJP
---------------
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
its custom vjp transform so MLX can differentiate it.
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
requires a few extra ``mx.fast.metal_kernel`` features:
* ``init_value=0``
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
* ``atomic_outputs=True``
Designate all of the kernel outputs as ``atomic`` in the function signature.
This means we can use Metal's ``atomic`` features to simultaneously update the ``x_grad`` and ``grid_grad`` arrays from multiple threadgroups.
See section 6.15 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ for more details.
We can then implement the backwards pass as follows:
.. code-block:: python
@grid_sample.vjp
def grid_sample_vjp(primals, cotangent, _):
x, grid = primals
B, _, _, C = x.shape
_, gN, gM, D = grid.shape
assert D == 2, "Last dim of `grid` must be size 2."
source = """
uint elem = thread_position_in_grid.x;
int H = x_shape[1];
int W = x_shape[2];
int C = x_shape[3];
// Pad C to the nearest larger simdgroup size multiple
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
int gH = grid_shape[1];
int gW = grid_shape[2];
int w_stride = C;
int h_stride = W * w_stride;
int b_stride = H * h_stride;
uint grid_idx = elem / C_padded * 2;
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
int ix_nw = floor(ix);
int iy_nw = floor(iy);
int ix_ne = ix_nw + 1;
int iy_ne = iy_nw;
int ix_sw = ix_nw;
int iy_sw = iy_nw + 1;
int ix_se = ix_nw + 1;
int iy_se = iy_nw + 1;
T nw = (ix_se - ix) * (iy_se - iy);
T ne = (ix - ix_sw) * (iy_sw - iy);
T sw = (ix_ne - ix) * (iy - iy_ne);
T se = (ix - ix_nw) * (iy - iy_nw);
int batch_idx = elem / C_padded / gH / gW * b_stride;
int channel_idx = elem % C_padded;
int base_idx = batch_idx + channel_idx;
T gix = T(0);
T giy = T(0);
if (channel_idx < C) {
int cot_index = elem / C_padded * C + channel_idx;
T cot = cotangent[cot_index];
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
T I_nw = x[offset];
gix -= I_nw * (iy_se - iy) * cot;
giy -= I_nw * (ix_se - ix) * cot;
}
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
T I_ne = x[offset];
gix += I_ne * (iy_sw - iy) * cot;
giy -= I_ne * (ix - ix_sw) * cot;
}
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
T I_sw = x[offset];
gix -= I_sw * (iy - iy_ne) * cot;
giy += I_sw * (ix_ne - ix) * cot;
}
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
T I_se = x[offset];
gix += I_se * (iy - iy_nw) * cot;
giy += I_se * (ix - ix_nw) * cot;
}
}
T gix_mult = W / 2;
T giy_mult = H / 2;
// Reduce across each simdgroup first.
// This is much faster than relying purely on atomics.
gix = simd_sum(gix);
giy = simd_sum(giy);
if (thread_index_in_simdgroup == 0) {
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
}
"""
kernel = mx.fast.metal_kernel(
name="grid_sample_grad",
input_names=["x", "grid", "cotangent"],
output_names=["x_grad", "grid_grad"],
source=source,
atomic_outputs=True,
)
# pad the output channels to simd group size
# so that our `simd_sum`s don't overlap.
simdgroup_size = 32
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
grid_size = B * gN * gM * C_padded
outputs = kernel(
inputs=[x, grid, cotangent],
template=[("T", x.dtype)],
output_shapes=[x.shape, grid.shape],
output_dtypes=[x.dtype, x.dtype],
grid=(grid_size, 1, 1),
threadgroup=(256, 1, 1),
init_value=0,
)
return outputs[0], outputs[1]
There's an even larger speed up for the vjp:
``676.4ms -> 16.7ms => 40x speed up``

View File

@@ -1,5 +1,5 @@
Developer Documentation
=======================
Custom Extensions in MLX
========================
You can extend MLX with custom operations on the CPU or GPU. This guide
explains how to do that with a simple example.
@@ -486,15 +486,14 @@ below.
std::ostringstream kname;
kname << "axpby_" << "general_" << type_to_name(out);
// Make sure the metal library is available and look for it
// in the same folder as this executable if needed
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
// Prepare to encode kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// Kernel parameters are registered with buffer indices corresponding to
@@ -503,11 +502,11 @@ below.
size_t nelem = out.size();
// Encode input arrays to kernel
set_array_buffer(compute_encoder, x, 0);
set_array_buffer(compute_encoder, y, 1);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(y, 1);
// Encode output arrays to kernel
set_array_buffer(compute_encoder, out, 2);
compute_encoder.set_output_array(out, 2);
// Encode alpha and beta
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
@@ -531,7 +530,7 @@ below.
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder->dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
@@ -825,7 +824,7 @@ Let's look at a simple script and its results:
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correctness: {mx.all(c == 6.0).item()}")
print(f"c correct: {mx.all(c == 6.0).item()}")
Output:

View File

@@ -15,7 +15,7 @@ module to concisely define the model architecture.
Attention layer
^^^^^^^^^^^^^^^^
We will start with the llama attention layer which notably uses the RoPE
We will start with the Llama attention layer which notably uses the RoPE
positional encoding. [1]_ In addition, our attention layer will optionally use a
key/value cache that will be concatenated with the provided keys and values to
support efficient inference.

View File

@@ -64,7 +64,7 @@ set:
Next, setup the problem parameters and load the data. To load the data, you need our
`mnist data loader
<https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py>`_, which
we will import as `mnist`.
we will import as ``mnist``.
.. code-block:: python

View File

@@ -43,6 +43,7 @@ are the CPU and GPU.
usage/function_transforms
usage/compile
usage/numpy
usage/distributed
usage/using_streams
.. toctree::
@@ -69,6 +70,7 @@ are the CPU and GPU.
python/metal
python/nn
python/optimizers
python/distributed
python/tree_utils
.. toctree::
@@ -83,3 +85,4 @@ are the CPU and GPU.
dev/extensions
dev/metal_debugger
dev/custom_metal_kernels

View File

@@ -14,7 +14,7 @@ silicon computer is
To install from PyPI you must meet the following requirements:
- Using an M series chip (Apple silicon)
- Using a native Python >= 3.8
- Using a native Python >= 3.9
- macOS >= 13.5
.. note::
@@ -70,36 +70,36 @@ To build and install the MLX python library from source, first, clone MLX from
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
.. code-block:: shell
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
Then simply build and install MLX using pip:
.. code-block:: shell
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install .
For developing use an editable install:
For developing, install the package with development dependencies, and use an
editable install:
.. code-block:: shell
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e .
CMAKE_BUILD_PARALLEL_LEVEL=8 pip install -e ".[dev]"
To make sure the install is working run the tests with:
Once the development dependencies are installed, you can build faster with:
.. code-block:: shell
CMAKE_BUILD_PARALLEL_LEVEL=8 python setup.py build_ext --inplace
Run the tests with:
.. code-block:: shell
pip install ".[testing]"
python -m unittest discover python/tests
Optional: Install stubs to enable auto completions and type checking from your IDE:
Optional: Install stubs to enable auto completions and type checking from your
IDE:
.. code-block:: shell
pip install ".[dev]"
python setup.py generate_stubs
C++ API
@@ -153,11 +153,18 @@ should point to the path to the built metal library.
- OFF
* - MLX_BUILD_METAL
- ON
* - MLX_BUILD_CPU
- ON
* - MLX_BUILD_PYTHON_BINDINGS
- OFF
* - MLX_METAL_DEBUG
- OFF
* - MLX_BUILD_SAFETENSORS
- ON
* - MLX_BUILD_GGUF
- ON
* - MLX_METAL_JIT
- OFF
.. note::
@@ -176,10 +183,37 @@ should point to the path to the built metal library.
xcrun -sdk macosx --show-sdk-version
Binary Size Minimization
~~~~~~~~~~~~~~~~~~~~~~~~
To produce a smaller binary use the CMake flags ``CMAKE_BUILD_TYPE=MinSizeRel``
and ``BUILD_SHARED_LIBS=ON``.
The MLX CMake build has several additional options to make smaller binaries.
For example, if you don't need the CPU backend or support for safetensors and
GGUF, you can do:
.. code-block:: shell
cmake .. \
-DCMAKE_BUILD_TYPE=MinSizeRel \
-DBUILD_SHARED_LIBS=ON \
-DMLX_BUILD_CPU=OFF \
-DMLX_BUILD_SAFETENSORS=OFF \
-DMLX_BUILD_GGUF=OFF \
-DMLX_METAL_JIT=ON
THE ``MLX_METAL_JIT`` flag minimizes the size of the MLX Metal library which
contains pre-built GPU kernels. This substantially reduces the size of the
Metal library by run-time compiling kernels the first time they are used in MLX
on a given machine. Note run-time compilation incurs a cold-start cost which can
be anwywhere from a few hundred millisecond to a few seconds depending on the
application. Once a kernel is compiled, it will be cached by the system. The
Metal kernel cache persists accross reboots.
Troubleshooting
^^^^^^^^^^^^^^^
Metal not found
~~~~~~~~~~~~~~~
@@ -206,7 +240,7 @@ x86 Shell
.. _build shell:
If the ouptut of ``uname -p`` is ``x86`` then your shell is running as x86 via
If the output of ``uname -p`` is ``x86`` then your shell is running as x86 via
Rosetta instead of natively.
To fix this, find the application in Finder (``/Applications`` for iTerm,
@@ -230,4 +264,4 @@ Also check that cmake is using the correct architecture:
If you see ``"x86_64"``, try re-installing ``cmake``. If you see ``"arm64"``
but the build errors out with "Building for x86_64 on macOS is not supported."
wipe your build cahce with ``rm -rf build/`` and try again.
wipe your build cache with ``rm -rf build/`` and try again.

View File

@@ -24,6 +24,7 @@ Array
array.any
array.argmax
array.argmin
array.conj
array.cos
array.cummax
array.cummin
@@ -52,8 +53,10 @@ Array
array.sqrt
array.square
array.squeeze
array.swapaxes
array.std
array.sum
array.swapaxes
array.transpose
array.T
array.var
array.view

View File

@@ -0,0 +1,22 @@
.. _distributed:
.. currentmodule:: mlx.core.distributed
Distributed Communication
==========================
MLX provides a distributed communication package using MPI. The MPI library is
loaded at runtime; if MPI is available then distributed communication is also
made available.
.. autosummary::
:toctree: _autosummary
Group
is_available
init
all_sum
all_gather
send
recv
recv_like

View File

@@ -12,3 +12,5 @@ Fast
layer_norm
rope
scaled_dot_product_attention
affine_quantize
metal_kernel

View File

@@ -8,5 +8,13 @@ Linear Algebra
.. autosummary::
:toctree: _autosummary
inv
tri_inv
norm
cholesky
cholesky_inv
cross
qr
svd
eigvalsh
eigh

View File

@@ -10,9 +10,11 @@ Metal
device_info
get_active_memory
get_peak_memory
reset_peak_memory
get_cache_memory
set_memory_limit
set_cache_limit
set_wired_limit
clear_cache
start_capture
stop_capture

View File

@@ -13,10 +13,13 @@ simple functions.
:template: nn-module-template.rst
elu
celu
gelu
gelu_approx
gelu_fast_approx
glu
hard_shrink
hard_tanh
hardswish
leaky_relu
log_sigmoid
@@ -29,6 +32,7 @@ simple functions.
sigmoid
silu
softmax
softmin
softplus
softshrink
step

View File

@@ -13,18 +13,31 @@ Layers
AvgPool1d
AvgPool2d
BatchNorm
CELU
Conv1d
Conv2d
Conv3d
ConvTranspose1d
ConvTranspose2d
ConvTranspose3d
Dropout
Dropout2d
Dropout3d
Embedding
ELU
GELU
GLU
GroupNorm
GRU
HardShrink
HardTanh
Hardswish
InstanceNorm
LayerNorm
LeakyReLU
Linear
LogSigmoid
LogSoftmax
LSTM
MaxPool1d
MaxPool2d
@@ -35,13 +48,20 @@ Layers
QuantizedLinear
RMSNorm
ReLU
ReLU6
RNN
RoPE
SELU
Sequential
Sigmoid
SiLU
SinusoidalPositionalEncoding
Softmin
Softshrink
Softsign
Softmax
Softplus
Step
Tanh
Transformer
Upsample

View File

@@ -10,6 +10,7 @@ Operations
abs
add
addmm
all
allclose
any
@@ -19,12 +20,14 @@ Operations
arcsin
arcsinh
arctan
arctan2
arctanh
argmax
argmin
argpartition
argsort
array_equal
as_strided
atleast_1d
atleast_2d
atleast_3d
@@ -32,14 +35,19 @@ Operations
bitwise_or
bitwise_xor
block_masked_mm
block_sparse_mm
broadcast_to
ceil
clip
concatenate
conj
conjugate
convolve
conv1d
conv2d
conv3d
conv_transpose1d
conv_transpose2d
conv_transpose3d
conv_general
cos
cosh
@@ -53,6 +61,8 @@ Operations
diagonal
divide
divmod
einsum
einsum_path
equal
erf
erfinv
@@ -64,15 +74,21 @@ Operations
floor
floor_divide
full
gather_mm
gather_qmm
greater
greater_equal
hadamard_transform
identity
imag
inner
isfinite
isclose
isinf
isnan
isneginf
isposinf
issubdtype
left_shift
less
less_equal
@@ -96,6 +112,7 @@ Operations
minimum
moveaxis
multiply
nan_to_num
negative
not_equal
ones
@@ -103,14 +120,19 @@ Operations
outer
partition
pad
power
prod
put_along_axis
quantize
quantized_matmul
radians
real
reciprocal
remainder
repeat
reshape
right_shift
roll
round
rsqrt
save
@@ -141,11 +163,13 @@ Operations
tensordot
tile
topk
trace
transpose
tri
tril
triu
var
view
where
zeros
zeros_like

View File

@@ -1,5 +1,7 @@
.. _optimizers:
.. currentmodule:: mlx.optimizers
Optimizers
==========
@@ -29,8 +31,48 @@ model's parameters and the **optimizer state**.
# Compute the new parameters but also the optimizer state.
mx.eval(model.parameters(), optimizer.state)
Saving and Loading
------------------
To serialize an optimizer, save its state. To load an optimizer, load and set
the saved state. Here's a simple example:
.. code-block:: python
import mlx.core as mx
from mlx.utils import tree_flatten, tree_unflatten
import mlx.optimizers as optim
optimizer = optim.Adam(learning_rate=1e-2)
# Perform some updates with the optimizer
model = {"w" : mx.zeros((5, 5))}
grads = {"w" : mx.ones((5, 5))}
optimizer.update(model, grads)
# Save the state
state = tree_flatten(optimizer.state)
mx.save_safetensors("optimizer.safetensors", dict(state))
# Later on, for example when loading from a checkpoint,
# recreate the optimizer and load the state
optimizer = optim.Adam(learning_rate=1e-2)
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
optimizer.state = state
Note, not every optimizer configuation parameter is saved in the state. For
example, for Adam the learning rate is saved but the ``betas`` and ``eps``
parameters are not. A good rule of thumb is if the parameter can be scheduled
then it will be included in the optimizer state.
.. toctree::
optimizers/optimizer
optimizers/common_optimizers
optimizers/schedulers
.. autosummary::
:toctree: _autosummary
clip_grad_norm

View File

@@ -44,3 +44,5 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
split
truncated_normal
uniform
laplace
permutation

View File

@@ -10,6 +10,7 @@ Transforms
eval
compile
custom_function
disable_compile
enable_compile
grad

View File

@@ -20,3 +20,4 @@ return python trees will be using the default python ``dict``, ``list`` and
tree_unflatten
tree_map
tree_map_with_path
tree_reduce

View File

@@ -33,12 +33,12 @@ Let's start with a simple example:
# Compile the function
compiled_fun = mx.compile(fun)
# Prints: array(2.36788, dtype=float32)
# Prints: array(2.36788, dtype=float32)
print(compiled_fun(x, y))
The output of both the regular function and the compiled function is the same
up to numerical precision.
The first time you call a compiled function, MLX will build the compute
graph, optimize it, and generate and compile code. This can be relatively
slow. However, MLX will cache compiled functions, so calling a compiled
@@ -96,7 +96,7 @@ element-wise operations:
.. code-block:: python
def gelu(x):
def gelu(x):
return x * (1 + mx.erf(x / math.sqrt(2))) / 2
If you use this function with small arrays, it will be overhead bound. If you
@@ -136,13 +136,6 @@ Now make an array, and benchmark both functions:
On an M1 Max the times are 15.5 and 3.1 milliseconds. The compiled ``gelu`` is
five times faster.
.. note::
As of the latest MLX, CPU functions are not fully compiled. Compiling CPU
functions can still be helpful, but won't typically result in as large a
speedup as compiling operations that run on the GPU.
Debugging
---------
@@ -287,7 +280,7 @@ to the function. In some cases this can be pretty inconvenient. Hence,
print(fun(mx.array(1.0)))
Compiling Training Graphs
Compiling Training Graphs
-------------------------
This section will step through how to use :func:`compile` with a simple example
@@ -297,7 +290,7 @@ full forward, backward, and update with :func:`compile`.
To start, here is the simple example without any compilation:
.. code-block:: python
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
@@ -330,7 +323,7 @@ To start, here is the simple example without any compilation:
To compile the update we can put it all in a function and compile it with the
appropriate input and output captures. Here's the same example but compiled:
.. code-block:: python
.. code-block:: python
import mlx.core as mx
import mlx.nn as nn
@@ -355,7 +348,7 @@ appropriate input and output captures. Here's the same example but compiled:
# The state that will be captured as input and output
state = [model.state, optimizer.state]
@partial(mx.compile, inputs=state, outputs=state)
def step(x, y):
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
@@ -410,7 +403,7 @@ Compiling transformed functions works just as expected:
In order to compile as much as possible, a transformation of a compiled
function will not by default be compiled. To compile the transformed
function simply pass it through :func:`compile`.
function simply pass it through :func:`compile`.
You can also compile functions which themselves call compiled functions. A
good practice is to compile the outer most function to give :func:`compile`

View File

@@ -0,0 +1,166 @@
.. _usage_distributed:
Distributed Communication
=========================
.. currentmodule:: mlx.core.distributed
MLX utilizes `MPI <https://en.wikipedia.org/wiki/Message_Passing_Interface>`_ to
provide distributed communication operations that allow the computational cost
of training or inference to be shared across many physical machines. You can
see a list of the supported operations in the :ref:`API docs<distributed>`.
.. note::
A lot of operations may not be supported or not as fast as they should be.
We are adding more and tuning the ones we have as we are figuring out the
best way to do distributed computing on Macs using MLX.
Getting Started
---------------
MLX already comes with the ability to "talk" to MPI if it is installed on the
machine. The minimal distributed program in MLX is as simple as:
.. code:: python
import mlx.core as mx
world = mx.distributed.init()
x = mx.distributed.all_sum(mx.ones(10))
print(world.rank(), x)
The program above sums the array ``mx.ones(10)`` across all
distributed processes. If simply run with ``python``, however, only one
process is launched and no distributed communication takes place.
To launch the program in distributed mode we need to use ``mpirun`` or
``mpiexec`` depending on the MPI installation. The simplest possible way is the
following:
.. code:: shell
$ mpirun -np 2 python test.py
1 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
0 array([2, 2, 2, ..., 2, 2, 2], dtype=float32)
The above launches two processes on the same (local) machine and we can see
both standard output streams. The processes send the array of 1s to each other
and compute the sum which is printed. Launching with ``mpirun -np 4 ...`` would
print 4 etc.
Installing MPI
---------------
MPI can be installed with Homebrew, using the Anaconda package manager or
compiled from source. Most of our testing is done using ``openmpi`` installed
with the Anaconda package manager as follows:
.. code:: shell
$ conda install openmpi
Installing with Homebrew may require specifying the location of ``libmpi.dyld``
so that MLX can find it and load it at runtime. This can simply be achieved by
passing the ``DYLD_LIBRARY_PATH`` environment variable to ``mpirun``.
.. code:: shell
$ mpirun -np 2 -x DYLD_LIBRARY_PATH=/opt/homebrew/lib/ python test.py
Setting up Remote Hosts
-----------------------
MPI can automatically connect to remote hosts and set up the communication over
the network if the remote hosts can be accessed via ssh. A good checklist to
debug connectivity issues is the following:
* ``ssh hostname`` works from all machines to all machines without asking for
password or host confirmation
* ``mpirun`` is accessible on all machines. You can call ``mpirun`` using its
full path to force all machines to use a specific path.
* Ensure that the ``hostname`` used by MPI is the one that you have configured
in the ``.ssh/config`` files on all machines.
.. note::
For an example hostname ``foo.bar.com`` MPI can use only ``foo`` as
the hostname passed to ssh if the current hostname matches ``*.bar.com``.
An easy way to pass the host names to MPI is using a host file. A host file
looks like the following, where ``host1`` and ``host2`` should be the fully
qualified domain names or IPs for these hosts.
.. code::
host1 slots=1
host2 slots=1
When using MLX, it is very likely that you want to use 1 slot per host, ie one
process per host. The hostfile also needs to contain the current
host if you want to run on the local host. Passing the host file to
``mpirun`` is simply done using the ``--hostfile`` command line argument.
Training Example
----------------
In this section we will adapt an MLX training loop to support data parallel
distributed training. Namely, we will average the gradients across a set of
hosts before applying them to the model.
Our training loop looks like the following code snippet if we omit the model,
dataset and optimizer initialization.
.. code:: python
model = ...
optimizer = ...
dataset = ...
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)
optimizer.update(model, grads)
return loss
for x, y in dataset:
loss = step(model, x, y)
mx.eval(loss, model.parameters())
All we have to do to average the gradients across machines is perform an
:func:`all_sum` and divide by the size of the :class:`Group`. Namely we
have to :func:`mlx.utils.tree_map` the gradients with following function.
.. code:: python
def all_avg(x):
return mx.distributed.all_sum(x) / mx.distributed.init().size()
Putting everything together our training loop step looks as follows with
everything else remaining the same.
.. code:: python
from mlx.utils import tree_map
def all_reduce_grads(grads):
N = mx.distributed.init()
if N == 1:
return grads
return tree_map(
lambda x: mx.distributed.all_sum(x) / N,
grads)
def step(model, x, y):
loss, grads = loss_grad_fn(model, x, y)
grads = all_reduce_grads(grads) # <--- This line was added
optimizer.update(model, grads)
return loss
Tuning All Reduce
-----------------
We are working on improving the performance of all reduce on MLX but for now
the two main things one can do to extract the most out of distributed training with MLX are:
1. Perform a few large reductions instead of many small ones to improve
bandwidth and latency
2. Pass ``--mca btl_tcp_links 4`` to ``mpirun`` to configure it to use 4 tcp
connections between each host to improve bandwidth

View File

@@ -25,7 +25,7 @@ Here is a simple example:
The output of :func:`grad` on :func:`sin` is simply another function. In this
case it is the gradient of the sine function which is exactly the cosine
function. To get the second derivative you can do:
function. To get the second derivative you can do:
.. code-block:: shell
@@ -50,7 +50,7 @@ Automatic Differentiation
.. _auto diff:
Automatic differentiation in MLX works on functions rather than on implicit
graphs.
graphs.
.. note::
@@ -114,7 +114,7 @@ way to do that is the following:
def loss_fn(params, x, y):
w, b = params["weight"], params["bias"]
h = w * x + b
h = w * x + b
return mx.mean(mx.square(h - y))
params = {"weight": mx.array(1.0), "bias": mx.array(0.0)}
@@ -132,7 +132,7 @@ way to do that is the following:
Notice the tree structure of the parameters is preserved in the gradients.
In some cases you may want to stop gradients from propagating through a
In some cases you may want to stop gradients from propagating through a
part of the function. You can use the :func:`stop_gradient` for that.
@@ -166,14 +166,14 @@ A naive way to add the elements from two sets of vectors is with a loop:
Instead you can use :func:`vmap` to automatically vectorize the addition:
.. code-block:: python
# Vectorize over the second dimension of x and the
# first dimension of y
vmap_add = mx.vmap(lambda x, y: x + y, in_axes=(1, 0))
The ``in_axes`` parameter can be used to specify which dimensions of the
corresponding input to vectorize over. Similarly, use ``out_axes`` to specify
where the vectorized axes should be in the outputs.
where the vectorized axes should be in the outputs.
Let's time these two different versions:

View File

@@ -51,7 +51,7 @@ You can also use an :obj:`array` to index another :obj:`array`:
.. code-block:: shell
>>> arr = mx.arange(10)
>>> idx = mx.array([5, 7])
>>> idx = mx.array([5, 7])
>>> arr[idx]
array([5, 7], dtype=int32)
@@ -82,7 +82,7 @@ general, MLX has limited support for operations for which outputs
operations which MLX does not yet support include :func:`numpy.nonzero` and the
single input version of :func:`numpy.where`.
In Place Updates
In Place Updates
----------------
In place updates to indexed arrays are possible in MLX. For example:

View File

@@ -13,7 +13,7 @@ compute graph is recorded. The actual computation only happens if an
:func:`eval` is performed.
MLX uses lazy evaluation because it has some nice features, some of which we
describe below.
describe below.
Transforming Compute Graphs
^^^^^^^^^^^^^^^^^^^^^^^^^^^
@@ -116,7 +116,7 @@ saving functions) will also evaluate the array.
Calling :func:`array.item` on a scalar array will also evaluate it. In the
example above, printing the loss (``print(loss)``) or adding the loss scalar to
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
a list (``losses.append(loss.item())``) would cause a graph evaluation. If
these lines are before ``mx.eval(loss, model.parameters())`` then this
will be a partial evaluation, computing only the forward pass.

View File

@@ -3,7 +3,11 @@
Conversion to NumPy and Other Frameworks
========================================
MLX array implements the `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
MLX array supports conversion between other frameworks with either:
* The `Python Buffer Protocol <https://docs.python.org/3/c-api/buffer.html>`_.
* `DLPack <https://dmlc.github.io/dlpack/latest/>`_.
Let's convert an array to NumPy and back.
.. code-block:: python
@@ -62,7 +66,7 @@ even though no in-place operations on MLX memory are executed.
PyTorch
-------
.. warning::
.. warning::
PyTorch Support for :obj:`memoryview` is experimental and can break for
multi-dimensional arrays. Casting to NumPy first is advised for now.

View File

@@ -64,4 +64,4 @@ Other gradient transformations include :func:`vjp` for vector-Jacobian products
and :func:`jvp` for Jacobian-vector products.
Use :func:`value_and_grad` to efficiently compute both a function's output and
gradient with respect to the function's input.
gradient with respect to the function's input.

View File

@@ -8,33 +8,33 @@ Saving and Loading Arrays
MLX supports multiple array serialization formats.
.. list-table:: Serialization Formats
:widths: 20 8 25 25
:widths: 20 8 25 25
:header-rows: 1
* - Format
- Extension
* - Format
- Extension
- Function
- Notes
* - NumPy
- ``.npy``
- Notes
* - NumPy
- ``.npy``
- :func:`save`
- Single arrays only
* - NumPy archive
- ``.npz``
* - NumPy archive
- ``.npz``
- :func:`savez` and :func:`savez_compressed`
- Multiple arrays
- Multiple arrays
* - Safetensors
- ``.safetensors``
- ``.safetensors``
- :func:`save_safetensors`
- Multiple arrays
* - GGUF
- ``.gguf``
- Multiple arrays
* - GGUF
- ``.gguf``
- :func:`save_gguf`
- Multiple arrays
The :func:`load` function will load any of the supported serialization
formats. It determines the format from the extensions. The output of
:func:`load` depends on the format.
:func:`load` depends on the format.
Here's an example of saving a single array to a file:

View File

@@ -20,7 +20,7 @@ Both ``a`` and ``b`` live in unified memory.
In MLX, rather than moving arrays to devices, you specify the device when you
run the operation. Any device can perform any operation on ``a`` and ``b``
without needing to move them from one memory location to another. For example:
without needing to move them from one memory location to another. For example:
.. code-block:: python

View File

@@ -9,3 +9,4 @@ build_example(tutorial.cpp)
build_example(linear_regression.cpp)
build_example(logistic_regression.cpp)
build_example(metal_capture.cpp)
build_example(distributed.cpp)

View File

@@ -0,0 +1,22 @@
// Copyright © 2024 Apple Inc.
#include <iostream>
#include "mlx/mlx.h"
using namespace mlx::core;
int main() {
if (!distributed::is_available()) {
std::cout << "No communication backend found" << std::endl;
return 1;
}
auto global_group = distributed::init();
std::cout << global_group.rank() << " / " << global_group.size() << std::endl;
array x = ones({10});
array out = distributed::all_sum(x, global_group);
std::cout << out << std::endl;
}

View File

@@ -89,8 +89,8 @@ void automatic_differentiation() {
// dfdx is 2 * x
// Get the second derivative by composing grad with grad
auto df2dx2 = grad(grad(fn))(x);
// df2dx2 is 2
auto d2fdx2 = grad(grad(fn))(x);
// d2fdx2 is 2
}
int main() {

View File

@@ -11,10 +11,14 @@ option(BUILD_SHARED_LIBS "Build extensions as a shared library" ON)
# ----------------------------- Dependencies -----------------------------
find_package(MLX CONFIG REQUIRED)
find_package(Python 3.8 COMPONENTS Interpreter Development.Module REQUIRED)
find_package(
Python 3.8
COMPONENTS Interpreter Development.Module
REQUIRED)
execute_process(
COMMAND "${Python_EXECUTABLE}" -m nanobind --cmake_dir
OUTPUT_STRIP_TRAILING_WHITESPACE OUTPUT_VARIABLE NB_DIR)
OUTPUT_STRIP_TRAILING_WHITESPACE
OUTPUT_VARIABLE NB_DIR)
list(APPEND CMAKE_PREFIX_PATH "${NB_DIR}")
find_package(nanobind CONFIG REQUIRED)
@@ -24,16 +28,10 @@ find_package(nanobind CONFIG REQUIRED)
add_library(mlx_ext)
# Add sources
target_sources(
mlx_ext
PUBLIC
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
)
target_sources(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp)
# Add include headers
target_include_directories(
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
)
target_include_directories(mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR})
# Link to mlx
target_link_libraries(mlx_ext PUBLIC mlx)
@@ -43,27 +41,32 @@ target_link_libraries(mlx_ext PUBLIC mlx)
# Build metallib
if(MLX_BUILD_METAL)
mlx_build_metallib(
TARGET mlx_ext_metallib
TITLE mlx_ext
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
)
add_dependencies(
mlx_ext
TARGET
mlx_ext_metallib
)
TITLE
mlx_ext
SOURCES
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
INCLUDE_DIRS
${PROJECT_SOURCE_DIR}
${MLX_INCLUDE_DIRS}
OUTPUT_DIRECTORY
${CMAKE_LIBRARY_OUTPUT_DIRECTORY})
add_dependencies(mlx_ext mlx_ext_metallib)
endif()
# ----------------------------- Python Bindings -----------------------------
nanobind_add_module(
_ext
NB_STATIC STABLE_ABI LTO NOMINSIZE
NB_DOMAIN mlx
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
)
NB_STATIC
STABLE_ABI
LTO
NOMINSIZE
NB_DOMAIN
mlx
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp)
target_link_libraries(_ext PRIVATE mlx_ext)
if(BUILD_SHARED_LIBS)

View File

@@ -1,5 +1,5 @@
## Build the extensions
## Build
```
pip install -e .
@@ -16,3 +16,9 @@ And then run:
```
python setup.py build_ext -j8 --inplace
```
## Test
```
python test.py
```

View File

@@ -249,15 +249,14 @@ void Axpby::eval_gpu(
kname << (contiguous_kernel ? "contiguous_" : "general_");
kname << type_to_name(out);
// Make sure the metal library is available and look for it
// in the same folder as this executable if needed
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
// Make sure the metal library is available
d.register_library("mlx_ext");
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
// Prepare to encode kernel
auto compute_encoder = d.get_command_encoder(s.index);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder->setComputePipelineState(kernel);
// Kernel parameters are registered with buffer indices corresponding to
@@ -266,11 +265,11 @@ void Axpby::eval_gpu(
size_t nelem = out.size();
// Encode input arrays to kernel
set_array_buffer(compute_encoder, x, 0);
set_array_buffer(compute_encoder, y, 1);
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(y, 1);
// Encode output arrays to kernel
set_array_buffer(compute_encoder, out, 2);
compute_encoder.set_output_array(out, 2);
// Encode alpha and beta
compute_encoder->setBytes(&alpha_, sizeof(float), 3);
@@ -296,7 +295,7 @@ void Axpby::eval_gpu(
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder->dispatchThreads(grid_dims, group_dims);
compute_encoder.dispatchThreads(grid_dims, group_dims);
}
#else // Metal is not available

View File

@@ -2,4 +2,4 @@
import mlx.core as mx
from .mlx_sample_extensions import *
from ._ext import axpby

View File

@@ -2,7 +2,7 @@
requires = [
"setuptools>=42",
"cmake>=3.24",
"mlx>=0.9.0",
"nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4",
"mlx>=0.18.0",
"nanobind==2.2.0",
]
build-backend = "setuptools.build_meta"

View File

@@ -1,4 +1,4 @@
setuptools>=42
cmake>=3.24
mlx>=0.9.0
nanobind@git+https://github.com/wjakob/nanobind.git#egg=4148debcf91f5ccab0c3b8d67b5c3cabd61f407f
mlx>=0.18.1
nanobind==2.2.0

View File

@@ -13,7 +13,6 @@ if __name__ == "__main__":
cmdclass={"build_ext": extension.CMakeBuild},
packages=["mlx_sample_extensions"],
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
extras_require={"dev": []},
zip_safe=False,
python_requires=">=3.8",
)

View File

@@ -0,0 +1,10 @@
import mlx.core as mx
from mlx_sample_extensions import axpby
a = mx.ones((3, 4))
b = mx.ones((3, 4))
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c correct: {mx.all(c == 6.0).item()}")

View File

@@ -1,37 +1,40 @@
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h
)
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/allocator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/array.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
${CMAKE_CURRENT_SOURCE_DIR}/graph_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/random.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scheduler.cpp
${CMAKE_CURRENT_SOURCE_DIR}/transforms.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/linalg.cpp
${CMAKE_CURRENT_SOURCE_DIR}/backend/metal/metal.h)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if (MLX_BUILD_ACCELERATE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
if(MLX_BUILD_CPU)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/common)
else()
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp
)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_cpu)
endif()
if (MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/distributed)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/io)
if(MLX_BUILD_ACCELERATE)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/accelerate)
elseif(MLX_BUILD_CPU)
target_sources(
mlx
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/backend/common/default_primitives.cpp)
endif()
if(MLX_BUILD_METAL)
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/metal)
else()
add_subdirectory(${CMAKE_CURRENT_SOURCE_DIR}/backend/no_metal)

View File

@@ -23,11 +23,22 @@ void free(Buffer buffer) {
}
Buffer CommonAllocator::malloc(size_t size, bool) {
return Buffer{std::malloc(size)};
void* ptr = std::malloc(size + sizeof(size_t));
if (ptr != nullptr) {
*static_cast<size_t*>(ptr) = size;
}
return Buffer{ptr};
}
void CommonAllocator::free(Buffer buffer) {
std::free(buffer.raw_ptr());
std::free(buffer.ptr());
}
size_t CommonAllocator::size(Buffer buffer) const {
if (buffer.ptr() == nullptr) {
return 0;
}
return *static_cast<size_t*>(buffer.ptr());
}
Buffer malloc_or_wait(size_t size) {

View File

@@ -41,6 +41,7 @@ class Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) = 0;
virtual void free(Buffer buffer) = 0;
virtual size_t size(Buffer buffer) const = 0;
Allocator() = default;
Allocator(const Allocator& other) = delete;
@@ -57,6 +58,7 @@ class CommonAllocator : public Allocator {
public:
virtual Buffer malloc(size_t size, bool allow_swap = false) override;
virtual void free(Buffer buffer) override;
virtual size_t size(Buffer buffer) const override;
private:
CommonAllocator() = default;

View File

@@ -17,6 +17,10 @@ bool in_tracing() {
return detail::InTracing::in_tracing();
}
bool retain_graph() {
return detail::RetainGraph::retain_graph();
}
} // namespace
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
@@ -91,18 +95,34 @@ void array::detach() {
array_desc_->primitive = nullptr;
}
void array::eval() {
// Ensure the array is ready to be read
if (status() == Status::scheduled) {
bool array::is_available() const {
if (status() == Status::available) {
return true;
} else if (status() == Status::evaluated && event().is_signaled()) {
set_status(Status::available);
return true;
}
return false;
}
void array::wait() {
if (!is_available()) {
event().wait();
set_status(Status::available);
} else if (status() == Status::unscheduled) {
}
}
void array::eval() {
// Ensure the array is ready to be read
if (status() == Status::unscheduled) {
mlx::core::eval({*this});
} else {
wait();
}
}
bool array::is_tracer() const {
return array_desc_->is_tracer && in_tracing();
return array_desc_->is_tracer && in_tracing() || retain_graph();
}
void array::set_data(allocator::Buffer buffer, deleter_t d) {
@@ -158,8 +178,10 @@ void array::move_shared_buffer(
array_desc_->flags = flags;
array_desc_->data_size = data_size;
auto char_offset = sizeof(char) * itemsize() * offset;
array_desc_->data_ptr = static_cast<void*>(
static_cast<char*>(other.array_desc_->data_ptr) + char_offset);
auto data_ptr = other.array_desc_->data_ptr;
other.array_desc_->data_ptr = nullptr;
array_desc_->data_ptr =
static_cast<void*>(static_cast<char*>(data_ptr) + char_offset);
}
void array::move_shared_buffer(array other) {
@@ -171,10 +193,11 @@ array::~array() {
return;
}
// Ignore arrays that will be detached
if (status() != array::Status::unscheduled) {
// Ignore arrays that might be detached during eval
if (status() == array::Status::scheduled) {
return;
}
// Break circular reference for non-detached arrays with siblings
if (auto n = siblings().size(); n > 0) {
bool do_detach = true;
@@ -206,7 +229,7 @@ void array::ArrayDesc::init() {
strides[i] = size;
size *= shape[i];
}
for (auto& in : inputs) {
for (const auto& in : inputs) {
is_tracer |= in.is_tracer();
}
}
@@ -231,31 +254,41 @@ array::ArrayDesc::ArrayDesc(
array::ArrayDesc::~ArrayDesc() {
// When an array description is destroyed it will delete a bunch of arrays
// that may also destory their corresponding descriptions and so on and so
// that may also destroy their corresponding descriptions and so on and so
// forth.
//
// This calls recursively the destructor and can result in stack overflow, we
// instead put them in a vector and destroy them one at a time resulting in a
// max stack depth of 2.
if (inputs.empty()) {
return;
}
std::vector<std::shared_ptr<ArrayDesc>> for_deletion;
for (array& a : inputs) {
if (a.array_desc_.use_count() == 1) {
for_deletion.push_back(std::move(a.array_desc_));
auto append_deletable_inputs = [&for_deletion](ArrayDesc& ad) {
std::unordered_map<std::uintptr_t, array> input_map;
for (array& a : ad.inputs) {
if (a.array_desc_) {
input_map.insert({a.id(), a});
}
}
}
ad.inputs.clear();
for (auto& [_, a] : input_map) {
if (a.array_desc_.use_count() <= a.siblings().size() + 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
};
append_deletable_inputs(*this);
while (!for_deletion.empty()) {
// top is going to be deleted at the end of the block *after* the arrays
// with inputs have been moved into the vector
auto top = std::move(for_deletion.back());
for_deletion.pop_back();
for (array& a : top->inputs) {
if (a.array_desc_.use_count() == 1) {
for_deletion.push_back(std::move(a.array_desc_));
}
}
append_deletable_inputs(*top);
}
}

View File

@@ -73,32 +73,32 @@ class array {
this->array_desc_ = other.array_desc_;
}
return *this;
};
}
/** The size of the array's datatype in bytes. */
size_t itemsize() const {
return size_of(dtype());
};
}
/** The number of elements in the array. */
size_t size() const {
return array_desc_->size;
};
}
/** The number of bytes in the array. */
size_t nbytes() const {
return size() * itemsize();
};
}
/** The number of dimensions of the array. */
size_t ndim() const {
return array_desc_->shape.size();
};
}
/** The shape of the array as a vector of integers. */
const std::vector<int>& shape() const {
return array_desc_->shape;
};
}
/**
* Get the size of the corresponding dimension.
@@ -107,12 +107,12 @@ class array {
* bounds checking. */
int shape(int dim) const {
return shape().at(dim < 0 ? dim + ndim() : dim);
};
}
/** The strides of the array. */
const std::vector<size_t>& strides() const {
return array_desc_->strides;
};
}
/**
* Get the stride of the corresponding dimension.
@@ -121,12 +121,12 @@ class array {
* bounds checking. */
size_t strides(int dim) const {
return strides().at(dim < 0 ? dim + ndim() : dim);
};
}
/** Get the arrays data type. */
Dtype dtype() const {
return array_desc_->dtype;
};
}
/** Evaluate the array. */
void eval();
@@ -160,10 +160,10 @@ class array {
friend bool operator==(const ArrayIterator& a, const ArrayIterator& b) {
return a.arr.id() == b.arr.id() && a.idx == b.idx;
};
}
friend bool operator!=(const ArrayIterator& a, const ArrayIterator& b) {
return !(a == b);
};
}
private:
const array& arr;
@@ -209,7 +209,7 @@ class array {
allocator::Buffer buffer;
deleter_t d;
Data(allocator::Buffer buffer, deleter_t d = allocator::free)
: buffer(buffer), d(d) {};
: buffer(buffer), d(d) {}
// Not copyable
Data(const Data& d) = delete;
Data& operator=(const Data& d) = delete;
@@ -219,33 +219,45 @@ class array {
};
struct Flags {
// True if there are no gaps in the underlying data. Each item
// True iff there are no gaps in the underlying data. Each item
// in the underlying data buffer belongs to at least one index.
//
// True iff:
// prod(shape[i] for i in range(ndim) if strides[i] > 0) == data_size()
bool contiguous : 1;
// True iff:
// strides[-1] == 1 and
// all(strides[i] == (shape[i+1]*strides[i+1]) or shape[i] == 1 for i in
// range(ndim - 1))
bool row_contiguous : 1;
// True iff:
// strides[0] == 1 and
// all(strides[i] == (shape[i-1]*strides[i-1]) or shape[i] == 1 for i in
// range(1, ndim))
bool col_contiguous : 1;
};
/** The array's primitive. */
Primitive& primitive() const {
return *(array_desc_->primitive);
};
}
/** A shared pointer to the array's primitive. */
std::shared_ptr<Primitive>& primitive_ptr() const {
return array_desc_->primitive;
};
}
/** Check if the array has an attached primitive or is a leaf node. */
bool has_primitive() const {
return array_desc_->primitive != nullptr;
};
}
/** The array's inputs. */
const std::vector<array>& inputs() const {
return array_desc_->inputs;
};
}
std::vector<array>& inputs() {
return array_desc_->inputs;
@@ -259,12 +271,12 @@ class array {
/** The array's siblings. */
const std::vector<array>& siblings() const {
return array_desc_->siblings;
};
}
/** The array's siblings. */
std::vector<array>& siblings() {
return array_desc_->siblings;
};
}
void set_siblings(std::vector<array> siblings, uint16_t position) {
array_desc_->siblings = std::move(siblings);
@@ -281,7 +293,7 @@ class array {
outputs.push_back(*this);
outputs.insert(outputs.end(), siblings().begin() + idx, siblings().end());
return outputs;
};
}
/** Detach the array from the graph. */
void detach();
@@ -289,19 +301,32 @@ class array {
/** Get the Flags bit-field. */
const Flags& flags() const {
return array_desc_->flags;
};
}
/** The size (in elements) of the underlying buffer the array points to. */
/** The size (in elements) of the underlying buffer the array points to.
*
* This can be different than the actual size of the array if the array has
* been broadcast or irregularly strided. If ``first`` is the offset into
* the data buffer of the first element of the array (i.e. the offset
* corresponding to ``arr[0, 0, ...]``) and last is the offset into the
* data buffer of the last element of the array (i.e. the offset
* corresponding to ``arr[-1, -1, ...]``) then ``data_size = last - first``.
* Note, ``data_size`` is in units of ``item_size`` (not bytes).
**/
size_t data_size() const {
return array_desc_->data_size;
};
}
allocator::Buffer& buffer() {
return array_desc_->data->buffer;
};
}
const allocator::Buffer& buffer() const {
return array_desc_->data->buffer;
};
}
size_t buffer_size() const {
return allocator::allocator().size(buffer());
}
// Return a copy of the shared pointer
// to the array::Data struct
@@ -312,19 +337,42 @@ class array {
template <typename T>
T* data() {
return static_cast<T*>(array_desc_->data_ptr);
};
}
template <typename T>
const T* data() const {
return static_cast<T*>(array_desc_->data_ptr);
}
enum Status {
// The ouptut of a computation which has not been scheduled.
// For example, the status of `x` in `auto x = a + b`.
unscheduled,
// The ouptut of a computation which has been scheduled but `eval_*` has
// not yet been called on the array's primitive. A possible
// status of `x` in `auto x = a + b; eval(x);`
scheduled,
// The array's `eval_*` function has been run, but the computation is not
// necessarily complete. The array will have memory allocated and if it is
// not a tracer then it will be detached from the graph.
evaluated,
// If the array is the output of a computation then the computation
// is complete. Constant arrays are always available (e.g. `array({1, 2,
// 3})`)
available
};
enum Status { unscheduled, scheduled, available };
// Check if the array is safe to read.
bool is_available() const;
bool is_available() const {
return status() == Status::available;
}
const Status status() const {
// Wait on the array to be available. After this `is_available` returns
// `true`.
void wait();
Status status() const {
return array_desc_->status;
}
@@ -411,8 +459,6 @@ class array {
void* data_ptr{nullptr};
// The size in elements of the data buffer the array accesses
// This can be different than the actual size of the array if it
// has been broadcast or irregularly strided.
size_t data_size;
// Contains useful meta data about the array

View File

@@ -1,10 +1,8 @@
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
)
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp)

View File

@@ -1,9 +1,9 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <Accelerate/Accelerate.h>
#include <simd/vector.h>
#include <vecLib/vDSP.h>
#include "mlx/backend/common/copy.h"
#include "mlx/primitives.h"

View File

@@ -2,8 +2,7 @@
#include <cassert>
#include <vecLib/BNNS/bnns.h>
#include <vecLib/cblas_new.h>
#include <Accelerate/Accelerate.h>
#include "mlx/backend/accelerate/utils.h"
#include "mlx/backend/common/copy.h"

View File

@@ -3,8 +3,7 @@
#include <cassert>
#include <cmath>
#include <vecLib/vDSP.h>
#include <vecLib/vForce.h>
#include <Accelerate/Accelerate.h>
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
@@ -32,12 +31,12 @@ DEFAULT(ArgReduce)
DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(BlockMaskedMM)
DEFAULT(BlockSparseMM)
DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Conjugate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(CustomTransforms)
DEFAULT_MULTI(Depends)
DEFAULT_MULTI(DivMod)
DEFAULT(NumberOfElements)
@@ -47,8 +46,11 @@ DEFAULT(ErfInv)
DEFAULT(FFT)
DEFAULT(Floor)
DEFAULT(Gather)
DEFAULT(GatherMM)
DEFAULT(GatherQMM)
DEFAULT(Greater)
DEFAULT(GreaterEqual)
DEFAULT(Hadamard)
DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
@@ -78,6 +80,8 @@ DEFAULT(StopGradient)
DEFAULT_MULTI(SVD)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
@@ -99,7 +103,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
binary_op<float>(
a,
b,
out,
@@ -114,7 +118,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary(
binary_op<int>(
a,
b,
out,
@@ -129,7 +133,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x + y; });
eval(inputs, out);
}
}
@@ -193,6 +197,26 @@ void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void ArcTan2::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
if (a.is_donatable()) {
out.copy_shared_buffer(a);
} else if (b.is_donatable()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
int size = a.data_size();
vvatan2f(out.data<float>(), a.data<float>(), b.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
@@ -264,7 +288,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b = inputs[1];
if (a.dtype() == int32) {
binary(
binary_op<int>(
a,
b,
out,
@@ -277,7 +301,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
});
} else if (a.dtype() == float32) {
binary(
binary_op<float>(
a,
b,
out,
@@ -292,7 +316,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x / y; });
eval(inputs, out);
}
}
@@ -303,12 +327,8 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, [](auto x) { return std::exp(x); });
} else {
throw std::invalid_argument(
"[exp] Cannot exponentiate elements in array"
" with non floating point type.");
eval(inputs, out);
}
}
@@ -370,12 +390,8 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
auto size = in.data_size();
vvlog1pf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (issubdtype(out.dtype(), inexact)) {
unary_fp(in, out, [](auto x) { return std::log1p(x); });
} else {
throw std::invalid_argument(
"[log1p] Cannot compute log of elements in array with"
" non floating point type.");
eval(inputs, out);
}
}
@@ -385,7 +401,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
binary_op<float>(
a,
b,
out,
@@ -400,7 +416,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x * y; });
eval(inputs, out);
}
}
@@ -411,7 +427,7 @@ void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
set_unary_output_data(in, out);
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else {
unary(in, out, [](auto x) { return -x; });
eval(inputs, out);
}
}
@@ -498,7 +514,7 @@ void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
auto size = in.data_size();
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
} else {
unary(in, out, [](auto x) { return x * x; });
eval(inputs, out);
}
}
@@ -524,7 +540,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
binary_op<float>(
a,
b,
out,
@@ -542,7 +558,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary(
binary_op<int>(
a,
b,
out,
@@ -554,7 +570,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
},
UseDefaultBinaryOp());
} else {
binary(a, b, out, [](auto x, auto y) { return x - y; });
eval(inputs, out);
}
}

View File

@@ -18,49 +18,61 @@ void _qmm_t_4_64(
const float* biases,
int M,
int N,
int K) {
int K,
int B,
bool batched_w) {
constexpr int bits = 4;
constexpr int group_size = 64;
constexpr int bitmask = (1 << bits) - 1;
constexpr int pack_factor = 32 / bits;
constexpr int packs_in_group = group_size / pack_factor;
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const float* scales_local = scales;
const float* biases_local = biases;
int w_els = N * K / pack_factor;
int g_els = w_els * pack_factor / group_size;
for (int n = 0; n < N; n++) {
const simd_float16* x_local = (simd_float16*)x;
simd_float16 sum = 0;
for (int k = 0; k < K; k += group_size) {
float scale = *scales_local++;
float bias = *biases_local++;
for (int i = 0; i < B; i++) {
for (int m = 0; m < M; m++) {
const uint32_t* w_local = w;
const float* scales_local = scales;
const float* biases_local = biases;
for (int kw = 0; kw < packs_in_group; kw += 2) {
// TODO: vectorize this properly
simd_uint16 wi;
for (int e = 0; e < 2; e++) {
uint32_t wii = *w_local++;
for (int p = 0; p < 8; p++) {
wi[e * 8 + p] = wii & bitmask;
wii >>= bits;
for (int n = 0; n < N; n++) {
const simd_float16* x_local = (simd_float16*)x;
simd_float16 sum = 0;
for (int k = 0; k < K; k += group_size) {
float scale = *scales_local++;
float bias = *biases_local++;
for (int kw = 0; kw < packs_in_group; kw += 2) {
// TODO: vectorize this properly
simd_uint16 wi;
for (int e = 0; e < 2; e++) {
uint32_t wii = *w_local++;
for (int p = 0; p < 8; p++) {
wi[e * 8 + p] = wii & bitmask;
wii >>= bits;
}
}
}
simd_float16 wf = simd_float(wi);
wf *= scale;
wf += bias;
simd_float16 wf = simd_float(wi);
wf *= scale;
wf += bias;
sum += (*x_local) * wf;
x_local++;
sum += (*x_local) * wf;
x_local++;
}
}
*result = simd_reduce_add(sum);
result++;
}
*result = simd_reduce_add(sum);
result++;
x += K;
}
if (batched_w) {
w += w_els;
scales += g_els;
biases += g_els;
}
x += K;
}
}
@@ -82,8 +94,10 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
if (condition) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
int K = x.shape(-1);
int M = x.size() / K;
int M = x.shape(-2);
int N = out.shape(-1);
int B = x.size() / K / M;
bool batched_w = w.ndim() > 2;
_qmm_t_4_64(
out.data<float>(),
x.data<float>(),
@@ -92,7 +106,9 @@ void QuantizedMatmul::eval_cpu(const std::vector<array>& inputs, array& out) {
biases.data<float>(),
M,
N,
K);
K,
B,
batched_w);
} else {
eval(inputs, out);
}

View File

@@ -2,8 +2,8 @@
#include <cassert>
#include <Accelerate/Accelerate.h>
#include <simd/vector.h>
#include <vecLib/vDSP.h>
#include "mlx/backend/common/reduce.h"
#include "mlx/primitives.h"

View File

@@ -3,7 +3,10 @@
#include <cassert>
#include <limits>
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
#include <arm_neon.h>
#endif
#include <simd/math.h>
#include <simd/vector.h>
@@ -30,8 +33,8 @@ namespace {
* Note: The implementation below is a general fast exp. There could be faster
* implementations for numbers strictly < 0.
*/
inline simd_float16 simd_fast_exp(simd_float16 x) {
x *= 1.442695; // multiply with log_2(e)
inline simd_float16 simd_fast_exp(simd_float16 x_init) {
auto x = x_init * 1.442695; // multiply with log_2(e)
simd_float16 ipart, fpart;
simd_int16 epart;
x = simd_clamp(x, -80, 80);
@@ -50,28 +53,30 @@ inline simd_float16 simd_fast_exp(simd_float16 x) {
// bitshifting
epart = (simd_int(ipart) + 127) << 23;
return (*(simd_float16*)&epart) * x;
// Avoid supressing NaNs
simd_int16 eq = (x_init == x_init);
return simd_bitselect(x_init, (*(simd_float16*)&epart) * x, eq);
}
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
/**
* The ARM neon equivalent of the fast exp above.
*/
inline float16x8_t neon_fast_exp(float16x8_t x) {
x = vmulq_f16(x, vdupq_n_f16(1.442695)); // multiply with log_2(e)
x = vmaxq_f16(x, vdupq_n_f16(-14)); // clamp under with -14
x = vminq_f16(x, vdupq_n_f16(14)); // clamp over with 14
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(0.5)));
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
float16x8_t fpart = vsubq_f16(x, ipart);
x = vdupq_n_f16(1.535336188319500e-4f);
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(9.618437357674640e-3f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(5.550332471162809e-2f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(2.402264791363012e-1f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(6.931472028550421e-1f), x, fpart);
x = vfmaq_f16(vdupq_n_f16(1.000000000000000f), x, fpart);
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
// generate 2**ipart in the floating point representation using integer
// bitshifting
@@ -107,53 +112,6 @@ inline float16_t neon_reduce_add(float16x8_t x) {
return vget_lane_f16(y, 0);
}
template <typename T, typename VT>
struct AccelerateSimdOps {
VT init(T a) {
return a;
}
VT load(const T* a) {
return *(VT*)a;
}
void store(T* dst, VT x) {
*(VT*)dst = x;
}
VT max(VT a, VT b) {
return simd_max(a, b);
};
VT exp(VT x) {
return simd_fast_exp(x);
}
VT add(VT a, VT b) {
return a + b;
}
VT sub(VT a, T b) {
return a - b;
}
VT mul(VT a, VT b) {
return a * b;
}
VT mul(VT a, T b) {
return a * b;
}
T reduce_max(VT x) {
return simd_reduce_max(x);
}
T reduce_add(VT x) {
return simd_reduce_add(x);
}
};
template <typename T, typename VT>
struct NeonFp16SimdOps {
VT init(T a) {
@@ -170,7 +128,7 @@ struct NeonFp16SimdOps {
VT max(VT a, VT b) {
return vmaxq_f16(a, b);
};
}
VT exp(VT x) {
return neon_fast_exp(x);
@@ -201,6 +159,55 @@ struct NeonFp16SimdOps {
}
};
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
template <typename T, typename VT>
struct AccelerateSimdOps {
VT init(T a) {
return a;
}
VT load(const T* a) {
return *(VT*)a;
}
void store(T* dst, VT x) {
*(VT*)dst = x;
}
VT max(VT a, VT b) {
return simd_max(a, b);
}
VT exp(VT x) {
return simd_fast_exp(x);
}
VT add(VT a, VT b) {
return a + b;
}
VT sub(VT a, T b) {
return a - b;
}
VT mul(VT a, VT b) {
return a * b;
}
VT mul(VT a, T b) {
return a * b;
}
T reduce_max(VT x) {
return simd_reduce_max(x);
}
T reduce_add(VT x) {
return simd_reduce_add(x);
}
};
template <typename T, typename AccT, typename VT, typename Ops, int N>
void softmax(const array& in, array& out) {
Ops ops;
@@ -362,12 +369,16 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
AccelerateSimdOps<float, simd_float16>,
16>(in, out);
} else {
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
softmax<
float16_t,
float16_t,
float16x8_t,
NeonFp16SimdOps<float16_t, float16x8_t>,
8>(in, out);
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
eval(inputs, out); // Redirect to common backend for consistency
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
}
break;
case bfloat16:

View File

@@ -1,8 +1,8 @@
// Copyright © 2023 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#pragma once
#include <vecLib/BNNS/bnns.h>
#include <Accelerate/Accelerate.h>
#include "mlx/dtype.h"
namespace mlx::core {

View File

@@ -1,5 +1,4 @@
if (${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
if(${CMAKE_SYSTEM_NAME} MATCHES "Darwin")
set(COMPILER ${CMAKE_C_COMPILER})
set(CLANG TRUE)
else()
@@ -7,67 +6,57 @@ else()
endif()
add_custom_command(
OUTPUT compiled_preamble.cpp
COMMAND /bin/bash
${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
${COMPILER}
${PROJECT_SOURCE_DIR}
${CLANG}
OUTPUT compiled_preamble.cpp
COMMAND
/bin/bash ${CMAKE_CURRENT_SOURCE_DIR}/make_compiled_preamble.sh
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp ${COMPILER}
${PROJECT_SOURCE_DIR} ${CLANG}
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h)
DEPENDS make_compiled_preamble.sh
compiled_preamble.h
${PROJECT_SOURCE_DIR}/mlx/types/half_types.h
${PROJECT_SOURCE_DIR}/mlx/types/fp16.h
${PROJECT_SOURCE_DIR}/mlx/types/bf16.h
${PROJECT_SOURCE_DIR}/mlx/types/complex.h
ops.h
)
add_custom_target(
cpu_compiled_preamble
DEPENDS compiled_preamble.cpp
)
add_custom_target(cpu_compiled_preamble DEPENDS compiled_preamble.cpp)
add_dependencies(mlx cpu_compiled_preamble)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp
)
PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/arg_reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/binary.cpp
${CMAKE_CURRENT_SOURCE_DIR}/compiled.cpp
${CMAKE_CURRENT_SOURCE_DIR}/common.cpp
${CMAKE_CURRENT_SOURCE_DIR}/conv.cpp
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
${CMAKE_CURRENT_SOURCE_DIR}/eigh.cpp
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
${CMAKE_CURRENT_SOURCE_DIR}/reduce_utils.cpp
${CMAKE_CURRENT_SOURCE_DIR}/scan.cpp
${CMAKE_CURRENT_SOURCE_DIR}/select.cpp
${CMAKE_CURRENT_SOURCE_DIR}/slicing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/softmax.cpp
${CMAKE_CURRENT_SOURCE_DIR}/sort.cpp
${CMAKE_CURRENT_SOURCE_DIR}/threefry.cpp
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
${CMAKE_CURRENT_SOURCE_DIR}/load.cpp
${CMAKE_CURRENT_SOURCE_DIR}/qrf.cpp
${CMAKE_CURRENT_SOURCE_DIR}/svd.cpp
${CMAKE_CURRENT_SOURCE_DIR}/inverse.cpp
${CMAKE_CURRENT_SOURCE_DIR}/cholesky.cpp
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
${CMAKE_CURRENT_BINARY_DIR}/compiled_preamble.cpp)
if (IOS)
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp
)
if(IOS)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_nocpu.cpp)
else()
target_sources(
mlx
PRIVATE
${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp
)
target_sources(mlx PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/compiled_cpu.cpp)
endif()

View File

@@ -196,6 +196,20 @@ void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
}
}
void LogicalAnd::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalAnd requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalAnd());
}
void LogicalOr::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2); // LogicalOr requires two input arrays
auto& in1 = inputs[0];
auto& in2 = inputs[1];
binary(in1, in2, out, detail::LogicalOr());
}
void Maximum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
@@ -293,4 +307,25 @@ void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
}
}
void ArcTan2::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
const auto& a = inputs[0];
const auto& b = inputs[1];
if (out.dtype() == float32) {
binary_op<float>(a, b, out, detail::ArcTan2());
} else if (out.dtype() == float16) {
binary_op<float16_t>(a, b, out, detail::ArcTan2());
} else if (out.dtype() == bfloat16) {
binary_op<bfloat16_t>(a, b, out, detail::ArcTan2());
} else if (issubdtype(out.dtype(), inexact)) {
std::ostringstream err;
err << "[arctan2] Does not support " << out.dtype();
throw std::invalid_argument(err.str());
} else {
throw std::invalid_argument(
"[arctan2] Cannot compute inverse tangent for arrays"
" with non floating point type.");
}
}
} // namespace mlx::core

View File

@@ -1,6 +1,8 @@
// Copyright © 2023 Apple Inc.
#pragma once
#include <cassert>
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/utils.h"
@@ -41,13 +43,15 @@ void set_binary_op_output_data(
array& out,
BinaryOpType bopt,
bool donate_with_move = false) {
bool b_donatable = is_donatable(b, out);
bool a_donatable = is_donatable(a, out);
switch (bopt) {
case BinaryOpType::ScalarScalar:
out.set_data(
allocator::malloc_or_wait(out.itemsize()), 1, a.strides(), a.flags());
break;
case BinaryOpType::ScalarVector:
if (b.is_donatable() && b.itemsize() == out.itemsize()) {
if (b_donatable) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -62,7 +66,7 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::VectorScalar:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (a_donatable) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
@@ -77,13 +81,13 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::VectorVector:
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
if (a_donatable) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
} else if (b_donatable) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -98,16 +102,14 @@ void set_binary_op_output_data(
}
break;
case BinaryOpType::General:
if (a.is_donatable() && a.flags().row_contiguous &&
a.itemsize() == out.itemsize() && a.size() == out.size()) {
if (a_donatable && a.flags().row_contiguous && a.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(a);
} else {
out.copy_shared_buffer(a);
}
} else if (
b.is_donatable() && b.flags().row_contiguous &&
b.itemsize() == out.itemsize() && b.size() == out.size()) {
b_donatable && b.flags().row_contiguous && b.size() == out.size()) {
if (donate_with_move) {
out.move_shared_buffer(b);
} else {
@@ -120,19 +122,7 @@ void set_binary_op_output_data(
}
}
struct UseDefaultBinaryOp {
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
template <typename T, typename U>
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
// Should we throw? This should normally never be called.
assert(false);
}
};
struct UseDefaultBinaryOp {};
template <typename T, typename U, typename Op>
struct DefaultVectorScalar {
@@ -148,18 +138,6 @@ struct DefaultVectorScalar {
a++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *b;
while (size-- > 0) {
auto dst = op(*a, scalar);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
}
}
};
template <typename T, typename U, typename Op>
@@ -176,18 +154,6 @@ struct DefaultScalarVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
T scalar = *a;
while (size-- > 0) {
auto dst = op(scalar, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
b++;
}
}
};
template <typename T, typename U, typename Op>
@@ -204,204 +170,110 @@ struct DefaultVectorVector {
b++;
}
}
void operator()(const T* a, const T* b, U* dst_a, U* dst_b, int size) {
while (size-- > 0) {
auto dst = op(*a, *b);
*dst_a = dst.first;
*dst_b = dst.second;
dst_a++;
dst_b++;
a++;
b++;
}
}
};
template <typename T, typename U, typename Op>
void binary_op_dims1(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out.size(); ++i) {
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out,
template <typename T, typename U, typename Op, int D, bool Strided>
void binary_op_dims(
const T* a,
const T* b,
U* out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst += stride;
}
}
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
template <typename T, typename U, typename Op>
void binary_op_dims2(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[2];
b_idx += b.strides()[2];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1, Strided>(
a, b, out, op, shape, a_strides, b_strides, out_strides, axis + 1);
} else {
if constexpr (Strided) {
op(a, b, out, stride_out);
} else {
*out = op(*a, *b);
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
out += stride_out;
a += stride_a;
b += stride_b;
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(const array& a, const array& b, array& out, Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
dst[out_idx++] = op(a_ptr[a_idx], b_ptr[b_idx]);
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op) {
switch (out.ndim()) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out, op);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out, op);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
dst[i] = op(a_ptr[a_idx], b_ptr[b_idx]);
}
}
template <typename T, typename U, typename Op>
template <typename T, typename U, bool Strided, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out,
Op op,
int dim,
int stride) {
// Number of dimensions to loop over for vectorized ops
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_ptr = out.data<U>();
switch (dim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out, op, stride);
binary_op_dims<T, U, Op, 1, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out, op, stride);
binary_op_dims<T, U, Op, 2, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 3:
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr,
b_ptr,
out_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst = out.data<U>();
for (size_t i = 0; i < out.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst, stride);
dst += stride;
ContiguousIterator<size_t> a_it(shape, a_strides, dim - 3);
ContiguousIterator<size_t> b_it(shape, b_strides, dim - 3);
size_t stride = out_strides[dim - 4];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 3, Strided>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
dim - 3);
a_it.step();
b_it.step();
}
}
@@ -448,29 +320,33 @@ void binary_op(
}
// General computation so let's try to optimize
auto [new_shape, new_strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out.strides()});
const auto& a_strides = new_strides[0];
const auto& b_strides = new_strides[1];
const auto& strides = new_strides[2];
// Get the left-most dim such that the array is row contiguous after
auto& strides = out.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
auto leftmost_rc_dim = [&strides](const std::vector<size_t>& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
auto a_rc_dim = leftmost_rc_dim(a_strides);
auto b_rc_dim = leftmost_rc_dim(b_strides);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
auto leftmost_s_dim = [](const std::vector<size_t>& arr_strides) {
int d = arr_strides.size() - 1;
for (; d >= 0 && arr_strides[d] == 0; d--) {
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto a_s_dim = leftmost_s_dim(a_strides);
auto b_s_dim = leftmost_s_dim(b_strides);
auto ndim = out.ndim();
auto ndim = new_shape.size();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
@@ -492,27 +368,27 @@ void binary_op(
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out, opvv, dim, stride);
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvv, dim, new_shape, a_strides, b_strides, strides);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out, opvs, dim, stride);
binary_op_dispatch_dims<T, U, true>(
a, b, out, opvs, dim, new_shape, a_strides, b_strides, strides);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out, opsv, dim, stride);
binary_op_dispatch_dims<T, U, true>(
a, b, out, opsv, dim, new_shape, a_strides, b_strides, strides);
break;
default:
binary_op_dispatch_dims<T, U>(a, b, out, op);
binary_op_dispatch_dims<T, U, false>(
a, b, out, op, dim, new_shape, a_strides, b_strides, strides);
break;
}
}
@@ -529,9 +405,9 @@ void binary_op(
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
@@ -552,7 +428,8 @@ void binary_op(
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
@@ -567,7 +444,8 @@ void binary_op(
binary_op<T, T>(
a, b, out, op, DefaultScalarVector<T, T, Op>(op), opvs, opvv);
}
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
} else if constexpr (std::is_same<decltype(opvs), UseDefaultBinaryOp>::
value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
@@ -583,7 +461,8 @@ void binary_op(
binary_op<T, T>(
a, b, out, op, opsv, DefaultVectorScalar<T, T, Op>(op), opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
} else if constexpr (std::is_same<decltype(opvv), UseDefaultBinaryOp>::
value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a, b, out, op, opsv, opvs, DefaultVectorVector<T, T, Op>(op));

View File

@@ -9,168 +9,43 @@ namespace mlx::core {
namespace {
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < out_a.size(); ++i) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[i] = dst.first;
dst_b[i] = dst.second;
a_idx += a.strides()[0];
b_idx += b.strides()[0];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims1(
const array& a,
const array& b,
array& out_a,
array& out_b,
template <typename T, typename U, typename Op, int D>
void binary_op_dims(
const T* a,
const T* b,
U* out_a,
U* out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; i++) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[0];
b_idx += b.strides()[0];
dst_a += stride;
dst_b += stride;
}
}
const std::vector<int>& shape,
const std::vector<size_t>& a_strides,
const std::vector<size_t>& b_strides,
const std::vector<size_t>& out_strides,
int axis) {
auto stride_a = a_strides[axis];
auto stride_b = b_strides[axis];
auto stride_out = out_strides[axis];
auto N = shape[axis];
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[1];
b_idx += b.strides()[1];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
binary_op_dims<T, U, Op, D - 1>(
a,
b,
out_a,
out_b,
op,
shape,
a_strides,
b_strides,
out_strides,
axis + 1);
} else {
std::tie(*out_a, *out_b) = op(*a, *b);
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims2(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int stride) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
a_idx += a.strides()[1];
b_idx += b.strides()[1];
dst_a += stride;
dst_b += stride;
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims3(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[2];
b_idx += b.strides()[2];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
}
}
template <typename T, typename U, typename Op>
void binary_op_dims4(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op) {
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
size_t a_idx = 0;
size_t b_idx = 0;
size_t out_idx = 0;
for (size_t i = 0; i < a.shape()[0]; ++i) {
for (size_t j = 0; j < a.shape()[1]; ++j) {
for (size_t k = 0; k < a.shape()[2]; ++k) {
for (size_t ii = 0; ii < a.shape()[3]; ++ii) {
auto dst = op(a_ptr[a_idx], b_ptr[b_idx]);
dst_a[out_idx] = dst.first;
dst_b[out_idx++] = dst.second;
a_idx += a.strides()[3];
b_idx += b.strides()[3];
}
a_idx += a.strides()[2] - a.strides()[3] * a.shape()[3];
b_idx += b.strides()[2] - b.strides()[3] * b.shape()[3];
}
a_idx += a.strides()[1] - a.strides()[2] * a.shape()[2];
b_idx += b.strides()[1] - b.strides()[2] * b.shape()[2];
}
a_idx += a.strides()[0] - a.strides()[1] * a.shape()[1];
b_idx += b.strides()[0] - b.strides()[1] * b.shape()[1];
a += stride_a;
b += stride_b;
out_a += stride_out;
out_b += stride_out;
}
}
@@ -181,352 +56,160 @@ void binary_op_dispatch_dims(
array& out_a,
array& out_b,
Op op) {
switch (out_a.ndim()) {
auto [shape, strides] = collapse_contiguous_dims(
a.shape(), {a.strides(), b.strides(), out_a.strides()});
const auto& a_strides = strides[0];
const auto& b_strides = strides[1];
const auto& out_strides = strides[2];
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* out_a_ptr = out_a.data<U>();
U* out_b_ptr = out_b.data<U>();
int ndim = shape.size();
switch (ndim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op);
binary_op_dims<T, U, Op, 1>(
a_ptr,
b_ptr,
out_a_ptr,
out_b_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op);
return;
case 3:
binary_op_dims3<T, U, Op>(a, b, out_a, out_b, op);
return;
case 4:
binary_op_dims4<T, U, Op>(a, b, out_a, out_b, op);
binary_op_dims<T, U, Op, 2>(
a_ptr,
b_ptr,
out_a_ptr,
out_b_ptr,
op,
shape,
a_strides,
b_strides,
out_strides,
0);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i++) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
std::tie(dst_a[i], dst_b[i]) = op(a_ptr[a_idx], b_ptr[b_idx]);
ContiguousIterator<size_t> a_it(shape, a_strides, ndim - 2);
ContiguousIterator<size_t> b_it(shape, b_strides, ndim - 2);
size_t stride = out_strides[ndim - 3];
for (size_t elem = 0; elem < a.size(); elem += stride) {
binary_op_dims<T, U, Op, 2>(
a_ptr + a_it.loc,
b_ptr + b_it.loc,
out_a_ptr + elem,
out_b_ptr + elem,
op,
shape,
a_strides,
b_strides,
out_strides,
ndim - 2);
a_it.step();
b_it.step();
}
}
template <typename T, typename U, typename Op>
void binary_op_dispatch_dims(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
int dim,
int stride) {
// Number of dimensions to loop over for vectorized ops
switch (dim) {
case 1:
binary_op_dims1<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
case 2:
binary_op_dims2<T, U, Op>(a, b, out_a, out_b, op, stride);
return;
}
const T* a_ptr = a.data<T>();
const T* b_ptr = b.data<T>();
U* dst_a = out_a.data<U>();
U* dst_b = out_b.data<U>();
for (size_t i = 0; i < out_a.size(); i += stride) {
int a_idx = elem_to_loc(i, a.shape(), a.strides());
int b_idx = elem_to_loc(i, b.shape(), b.strides());
op(a_ptr + a_idx, b_ptr + b_idx, dst_a, dst_b, stride);
dst_a += stride;
dst_b += stride;
}
}
template <
typename T,
typename U,
typename Op,
typename OpSV,
typename OpVS,
typename OpVV>
template <typename T, typename U = T, typename Op>
void binary_op(
const array& a,
const array& b,
array& out_a,
array& out_b,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
std::vector<array>& outputs,
Op op) {
auto bopt = get_binary_op_type(a, b);
auto& out_a = outputs[0];
auto& out_b = outputs[1];
set_binary_op_output_data(a, b, out_a, bopt);
set_binary_op_output_data(a, b, out_b, bopt);
// The full computation is scalar scalar so call the base op once
if (bopt == BinaryOpType::General) {
binary_op_dispatch_dims<T, U, Op>(a, b, out_a, out_b, op);
return;
}
auto a_ptr = a.data<T>();
auto b_ptr = b.data<T>();
auto out_a_ptr = out_a.data<U>();
auto out_b_ptr = out_b.data<U>();
if (bopt == BinaryOpType::ScalarScalar) {
std::tie(*(out_a.data<U>()), *(out_b.data<U>())) =
op(*a.data<T>(), *b.data<T>());
return;
}
// The full computation is scalar vector so delegate to the op
if (bopt == BinaryOpType::ScalarVector) {
opsv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
b.data_size());
return;
}
// The full computation is vector scalar so delegate to the op
if (bopt == BinaryOpType::VectorScalar) {
opvs(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
a.data_size());
return;
}
// The full computation is vector vector so delegate to the op
if (bopt == BinaryOpType::VectorVector) {
opvv(
a.data<T>(),
b.data<T>(),
out_a.data<U>(),
out_b.data<U>(),
out_a.size());
return;
}
// General computation so let's try to optimize
// Get the left-most dim such that the array is row contiguous after
auto& strides = out_a.strides();
auto leftmost_rc_dim = [&strides](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == strides[d]; d--) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
} else if (bopt == BinaryOpType::ScalarVector) {
for (size_t i = 0; i < b.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
b_ptr++;
}
return d + 1;
};
auto a_rc_dim = leftmost_rc_dim(a);
auto b_rc_dim = leftmost_rc_dim(b);
// Get the left-most dim such that the array is a broadcasted "scalar" after
auto leftmost_s_dim = [](const array& arr) {
int d = arr.ndim() - 1;
for (; d >= 0 && arr.strides()[d] == 0; d--) {
} else if (bopt == BinaryOpType::VectorScalar) {
for (size_t i = 0; i < a.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
a_ptr++;
}
} else { // VectorVector
for (size_t i = 0; i < a.size(); ++i) {
std::tie(*out_a_ptr, *out_b_ptr) = op(*a_ptr, *b_ptr);
out_a_ptr++;
out_b_ptr++;
a_ptr++;
b_ptr++;
}
return d + 1;
};
auto a_s_dim = leftmost_s_dim(a);
auto b_s_dim = leftmost_s_dim(b);
auto ndim = out_a.ndim();
// Case 1: LxM and FxM where L and F are broadcastable and M is row contiguous
int dim = ndim;
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::VectorVector;
dim = d;
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
bopt = BinaryOpType::VectorScalar;
dim = d;
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
// contiguous
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
bopt = BinaryOpType::ScalarVector;
dim = d;
}
// Can be sure dim > 0 since otherwise we would have used one of the fully
// contiguous methods above. Except for the case that the flags do not
// correspond to the underlying contiguity.
size_t stride;
if (dim == 0 || strides[dim - 1] < 16) {
stride = 1;
bopt = BinaryOpType::General;
dim = ndim;
} else {
stride = strides[dim - 1];
}
switch (bopt) {
case BinaryOpType::VectorVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvv, dim, stride);
break;
case BinaryOpType::VectorScalar:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opvs, dim, stride);
break;
case BinaryOpType::ScalarVector:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, opsv, dim, stride);
break;
default:
binary_op_dispatch_dims<T, U>(a, b, out_a, out_b, op);
break;
}
}
template <typename T, typename Op, typename OpSV, typename OpVS, typename OpVV>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op,
OpSV opsv,
OpVS opvs,
OpVV opvv) {
// TODO: The following mess of constexpr evaluations can probably be achieved
// with template specializations and overloading. Would it be simpler?
if (std::is_same<decltype(opsv), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// All ops are UseDefaultBinaryOp (why oh why would someone call that?)
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv and opvs were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opsv and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// opsv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
DefaultScalarVector<T, T, Op>(op),
opvs,
opvv);
}
} else if (std::is_same<decltype(opvs), UseDefaultBinaryOp>::value) {
if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvs and opvv were UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
DefaultVectorVector<T, T, Op>(op));
} else {
// opvs was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
DefaultVectorScalar<T, T, Op>(op),
opvv);
}
} else if (std::is_same<decltype(opvv), UseDefaultBinaryOp>::value) {
// opvv was UseDefaultBinaryOp
binary_op<T, T>(
a,
b,
outputs[0],
outputs[1],
op,
opsv,
opvs,
DefaultVectorVector<T, T, Op>(op));
} else {
// All ops provided
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
}
template <typename T, typename Op>
void binary_op(
const array& a,
const array& b,
std::vector<array>& outputs,
Op op) {
DefaultScalarVector<T, T, Op> opsv(op);
DefaultVectorScalar<T, T, Op> opvs(op);
DefaultVectorVector<T, T, Op> opvv(op);
binary_op<T, T>(a, b, outputs[0], outputs[1], op, opsv, opvs, opvv);
}
template <typename... Ops>
template <typename Op>
void binary(
const array& a,
const array& b,
std::vector<array>& outputs,
Ops... ops) {
Op op) {
switch (outputs[0].dtype()) {
case bool_:
binary_op<bool>(a, b, outputs, ops...);
binary_op<bool>(a, b, outputs, op);
break;
case uint8:
binary_op<uint8_t>(a, b, outputs, ops...);
binary_op<uint8_t>(a, b, outputs, op);
break;
case uint16:
binary_op<uint16_t>(a, b, outputs, ops...);
binary_op<uint16_t>(a, b, outputs, op);
break;
case uint32:
binary_op<uint32_t>(a, b, outputs, ops...);
binary_op<uint32_t>(a, b, outputs, op);
break;
case uint64:
binary_op<uint64_t>(a, b, outputs, ops...);
binary_op<uint64_t>(a, b, outputs, op);
break;
case int8:
binary_op<int8_t>(a, b, outputs, ops...);
binary_op<int8_t>(a, b, outputs, op);
break;
case int16:
binary_op<int16_t>(a, b, outputs, ops...);
binary_op<int16_t>(a, b, outputs, op);
break;
case int32:
binary_op<int32_t>(a, b, outputs, ops...);
binary_op<int32_t>(a, b, outputs, op);
break;
case int64:
binary_op<int64_t>(a, b, outputs, ops...);
binary_op<int64_t>(a, b, outputs, op);
break;
case float16:
binary_op<float16_t>(a, b, outputs, ops...);
binary_op<float16_t>(a, b, outputs, op);
break;
case float32:
binary_op<float>(a, b, outputs, ops...);
binary_op<float>(a, b, outputs, op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, outputs, ops...);
binary_op<bfloat16_t>(a, b, outputs, op);
break;
case complex64:
binary_op<complex64_t>(a, b, outputs, ops...);
binary_op<complex64_t>(a, b, outputs, op);
break;
}
}

View File

@@ -0,0 +1,74 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
namespace mlx::core {
void cholesky_impl(const array& a, array& factor, bool upper) {
// Lapack uses the column-major convention. We take advantage of the fact that
// the matrix should be symmetric:
// (A)ᵀ = A
// and that a column-major lower triangular matrix is a row-major upper
// triangular matrix, so uplo is the opposite of what we would expect from
// upper
char uplo = (upper) ? 'L' : 'U';
// The decomposition is computed in place, so just copy the input to the
// output.
copy(
a,
factor,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
const int N = a.shape(-1);
const size_t num_matrices = a.size() / (N * N);
float* matrix = factor.data<float>();
for (int i = 0; i < num_matrices; i++) {
// Compute Cholesky factorization.
int info;
MLX_LAPACK_FUNC(spotrf)
(
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
// TODO: We do nothing when the matrix is not positive semi-definite
// because throwing an error would result in a crash. If we figure out how
// to catch errors from the implementation we should throw.
if (info < 0) {
std::stringstream msg;
msg << "[cholesky] Cholesky decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
// Zero out the upper/lower triangle while advancing the pointer to the
// next matrix at the same time.
for (int row = 0; row < N; row++) {
if (upper) {
std::fill(matrix, matrix + row, 0);
} else {
std::fill(matrix + row + 1, matrix + N, 0);
}
matrix += N;
}
}
}
void Cholesky::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Cholesky::eval] only supports float32.");
}
cholesky_impl(inputs[0], output, upper_);
}
} // namespace mlx::core

View File

@@ -0,0 +1,303 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
void AsStrided::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (!in.flags().row_contiguous) {
// Just ensuring that inputs[0] came from the ops which would ensure the
// input is row contiguous.
throw std::runtime_error(
"AsStrided must be used with row contiguous arrays only.");
}
// Compute the flags given the shape and strides
bool row_contiguous = true, col_contiguous = true;
size_t r = 1, c = 1;
for (int i = strides_.size() - 1, j = 0; i >= 0; i--, j++) {
row_contiguous &= (r == strides_[i]) || (shape_[i] == 1);
col_contiguous &= (c == strides_[j]) || (shape_[j] == 1);
r *= shape_[i];
c *= shape_[j];
}
auto flags = in.flags();
// TODO: Compute the contiguous flag in a better way cause now we are
// unnecessarily strict.
flags.contiguous = row_contiguous || col_contiguous;
flags.row_contiguous = row_contiguous;
flags.col_contiguous = col_contiguous;
// There is no easy way to compute the actual data size so we use out.size().
// The contiguous flag will almost certainly not be set so no code should
// rely on data_size anyway.
size_t data_size = out.size();
return out.copy_shared_buffer(in, strides_, flags, data_size, offset_);
}
void Broadcast::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
std::vector<size_t> strides(out.ndim(), 0);
int diff = out.ndim() - in.ndim();
for (int i = in.ndim() - 1; i >= 0; --i) {
strides[i + diff] = (in.shape()[i] == 1) ? 0 : in.strides()[i];
}
auto flags = in.flags();
if (out.size() > in.size()) {
flags.row_contiguous = flags.col_contiguous = false;
}
out.copy_shared_buffer(in, strides, flags, in.data_size());
}
void Copy::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.copy_shared_buffer(inputs[0]);
}
void CustomTransforms::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() > outputs.size());
for (int i = 0, j = inputs.size() - outputs.size(); i < outputs.size();
i++, j++) {
outputs[i].copy_shared_buffer(inputs[j]);
}
}
void Depends::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() > outputs.size());
for (int i = 0; i < outputs.size(); i++) {
outputs[i].copy_shared_buffer(inputs[i]);
}
}
void NumberOfElements::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
double numel = 1;
for (auto ax : axes_) {
numel *= inputs[0].shape(ax);
}
if (inverted_) {
numel = 1.0 / numel;
}
switch (out.dtype()) {
case bool_:
*out.data<bool>() = static_cast<bool>(numel);
break;
case uint8:
*out.data<uint8_t>() = static_cast<uint8_t>(numel);
break;
case uint16:
*out.data<uint16_t>() = static_cast<uint16_t>(numel);
break;
case uint32:
*out.data<uint32_t>() = static_cast<uint32_t>(numel);
break;
case uint64:
*out.data<uint64_t>() = static_cast<uint64_t>(numel);
break;
case int8:
*out.data<int8_t>() = static_cast<int8_t>(numel);
break;
case int16:
*out.data<int16_t>() = static_cast<int16_t>(numel);
break;
case int32:
*out.data<int32_t>() = static_cast<int32_t>(numel);
break;
case int64:
*out.data<int64_t>() = static_cast<int64_t>(numel);
break;
case float16:
*out.data<float16_t>() = static_cast<float16_t>(numel);
break;
case float32:
*out.data<float>() = static_cast<float>(numel);
break;
case bfloat16:
*out.data<bfloat16_t>() = static_cast<bfloat16_t>(numel);
break;
case complex64:
*out.data<complex64_t>() = static_cast<complex64_t>(numel);
break;
}
}
std::pair<bool, std::vector<size_t>> Reshape::prepare_reshape(
const array& in,
const array& out) {
// Special case for empty arrays or row contiguous arrays
if (in.size() == 0 || in.flags().row_contiguous) {
return {false, out.strides()};
}
// Special case for scalars
if (in.ndim() == 0) {
std::vector<size_t> out_strides(out.ndim(), 0);
return {false, out_strides};
}
// Firstly let's collapse all the contiguous dimensions of the input
auto [shape, strides] = collapse_contiguous_dims(in);
// If shapes fit exactly in the contiguous dims then no copy is necessary so
// let's check.
std::vector<size_t> out_strides;
bool copy_necessary = false;
int j = 0;
for (int i = 0; i < out.ndim(); i++) {
int N = out.shape(i);
if (j < shape.size() && shape[j] % N == 0) {
shape[j] /= N;
out_strides.push_back(shape[j] * strides[j]);
j += (shape[j] == 1);
} else if (N == 1) {
// i > 0 because otherwise j < shape.size() && shape[j] % 1 == 0
out_strides.push_back(out_strides.back());
} else {
copy_necessary = true;
break;
}
}
return {copy_necessary, out_strides};
}
void Reshape::shared_buffer_reshape(
const array& in,
const std::vector<size_t>& out_strides,
array& out) {
auto flags = in.flags();
if (flags.row_contiguous) {
// For row contiguous reshapes:
// - Shallow copy the buffer
// - If reshaping into a vector (all singleton dimensions except one) it
// becomes col contiguous again.
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
}
void Split::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 1);
auto& in = inputs[0];
auto compute_new_flags = [](const auto& shape,
const auto& strides,
size_t in_data_size,
auto flags) {
size_t data_size = 1;
size_t f_stride = 1;
size_t b_stride = 1;
flags.row_contiguous = true;
flags.col_contiguous = true;
for (int i = 0, ri = shape.size() - 1; ri >= 0; i++, ri--) {
flags.col_contiguous &= strides[i] == f_stride || shape[i] == 1;
flags.row_contiguous &= strides[ri] == b_stride || shape[ri] == 1;
f_stride *= shape[i];
b_stride *= shape[ri];
if (strides[i] > 0) {
data_size *= shape[i];
}
}
if (data_size == 1) {
// Broadcasted scalar array is contiguous.
flags.contiguous = true;
} else if (data_size == in_data_size) {
// Means we sliced a broadcasted dimension so leave the "no holes" flag
// alone.
} else {
// We sliced something. So either we are row or col contiguous or we
// punched a hole.
flags.contiguous &= flags.row_contiguous || flags.col_contiguous;
}
return std::pair<decltype(flags), size_t>{flags, data_size};
};
std::vector<int> indices(1, 0);
indices.insert(indices.end(), indices_.begin(), indices_.end());
for (int i = 0; i < indices.size(); i++) {
size_t offset = indices[i] * in.strides()[axis_];
auto [new_flags, data_size] = compute_new_flags(
outputs[i].shape(), in.strides(), in.data_size(), in.flags());
outputs[i].copy_shared_buffer(
in, in.strides(), new_flags, data_size, offset);
}
}
std::tuple<int64_t, std::vector<int64_t>> SliceUpdate::prepare_slice(
const array& in) {
int64_t data_offset = 0;
std::vector<int64_t> inp_strides(in.ndim(), 0);
for (int i = 0; i < in.ndim(); ++i) {
data_offset += start_indices_[i] * in.strides()[i];
inp_strides[i] = in.strides()[i] * strides_[i];
}
return std::make_tuple(data_offset, inp_strides);
}
void StopGradient::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
out.copy_shared_buffer(inputs[0]);
}
void Transpose::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
std::vector<size_t> out_strides(out.ndim());
auto& in = inputs[0];
for (int ax = 0; ax < axes_.size(); ++ax) {
out_strides[ax] = in.strides()[axes_[ax]];
}
// Conditions for {row/col}_contiguous
// - array must be contiguous (no gaps)
// - underlying buffer size should have the same size as the array
// - cumulative product of shapes is equal to the strides (we can ignore axes
// with size == 1)
// - in the forward direction (column contiguous)
// - in the reverse direction (row contiguous)
// - vectors are both row and col contiguous (hence if both row/col are
// true, they stay true)
auto flags = in.flags();
if (flags.contiguous && in.data_size() == in.size()) {
size_t f_stride = 1;
size_t b_stride = 1;
flags.col_contiguous = true;
flags.row_contiguous = true;
for (int i = 0, ri = out.ndim() - 1; i < out.ndim(); ++i, --ri) {
flags.col_contiguous &= (out_strides[i] == f_stride || out.shape(i) == 1);
f_stride *= out.shape(i);
flags.row_contiguous &=
(out_strides[ri] == b_stride || out.shape(ri) == 1);
b_stride *= out.shape(ri);
}
}
out.copy_shared_buffer(in, out_strides, flags, in.data_size());
}
} // namespace mlx::core

View File

@@ -18,7 +18,8 @@ void print_constant(std::ostream& os, const array& x) {
case complex64:
return print_complex_constant<complex64_t>(os, x);
case int8:
return print_int_constant<int8_t>(os, x);
os << static_cast<int32_t>(x.item<int8_t>());
return;
case int16:
return print_int_constant<int16_t>(os, x);
case int32:
@@ -26,7 +27,8 @@ void print_constant(std::ostream& os, const array& x) {
case int64:
return print_int_constant<int64_t>(os, x);
case uint8:
return print_int_constant<uint8_t>(os, x);
os << static_cast<uint32_t>(x.item<uint8_t>());
return;
case uint16:
return print_int_constant<uint16_t>(os, x);
case uint32:
@@ -205,8 +207,8 @@ void compiled_allocate_outputs(
// - Donatable
// - Correct size
// - Not a constant
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
in.is_donatable() &&
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
if (move_buffers) {
outputs[o].move_shared_buffer(

View File

@@ -2,7 +2,10 @@
#include <dlfcn.h>
#include <filesystem>
#include <fstream>
#include <list>
#include <mutex>
#include <shared_mutex>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/common/compiled_preamble.h"
@@ -11,22 +14,7 @@
namespace mlx::core {
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
namespace detail {
bool compile_available_for_device(const Device& device) {
return true;
}
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::string& source_code = "") {
struct CompilerCache {
struct DLib {
DLib(const std::string& libname) {
lib = dlopen(libname.c_str(), RTLD_NOW);
@@ -43,15 +31,41 @@ void* compile(
void* lib;
};
// Statics to cache compiled libraries and functions
static std::list<DLib> libs;
static std::unordered_map<std::string, void*> kernels;
if (auto it = kernels.find(kernel_name); it != kernels.end()) {
return it->second;
}
if (source_code.empty()) {
return nullptr;
std::list<DLib> libs;
std::unordered_map<std::string, void*> kernels;
std::shared_mutex mtx;
};
static CompilerCache cache{};
// GPU compile is always available if the GPU is available and since we are in
// this file CPU compile is also available.
namespace detail {
bool compile_available_for_device(const Device& device) {
return true;
}
} // namespace detail
std::string get_temp_file(const std::string& name) {
return std::filesystem::temp_directory_path().append(name);
}
// Return a pointer to a compiled function
void* compile(
const std::string& kernel_name,
const std::function<std::string(void)>& source_builder) {
{
std::shared_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
return it->second;
}
}
std::unique_lock lock(cache.mtx);
if (auto it = cache.kernels.find(kernel_name); it != cache.kernels.end()) {
return it->second;
}
std::string source_code = source_builder();
std::string kernel_file_name;
// Deal with long kernel names. Maximum length for files on macOS is 255
@@ -89,8 +103,8 @@ void* compile(
source_file.close();
std::ostringstream build_command;
build_command << "g++ -std=c++17 -O2 -Wall -fPIC -shared "
<< source_file_path << " -o " << shared_lib_path;
build_command << "g++ -std=c++17 -O3 -Wall -fPIC -shared '"
<< source_file_path << "' -o '" << shared_lib_path << "'";
std::string build_command_str = build_command.str();
auto return_code = system(build_command_str.c_str());
if (return_code) {
@@ -102,10 +116,10 @@ void* compile(
}
// load library
libs.emplace_back(shared_lib_path);
cache.libs.emplace_back(shared_lib_path);
// Load function
void* fun = dlsym(libs.back().lib, kernel_name.c_str());
void* fun = dlsym(cache.libs.back().lib, kernel_name.c_str());
if (!fun) {
std::ostringstream msg;
msg << "[Compile::eval_cpu] Failed to load compiled function "
@@ -113,7 +127,7 @@ void* compile(
<< dlerror();
throw std::runtime_error(msg.str());
}
kernels.insert({kernel_name, fun});
cache.kernels.insert({kernel_name, fun});
return fun;
}
@@ -315,10 +329,7 @@ void Compiled::eval_cpu(
}
// Get the function
auto fn_ptr = compile(kernel_name);
// If it doesn't exist, compile it
if (fn_ptr == nullptr) {
auto fn_ptr = compile(kernel_name, [&]() {
std::ostringstream kernel;
kernel << get_kernel_preamble() << std::endl;
kernel << "extern \"C\" {" << std::endl;
@@ -333,10 +344,8 @@ void Compiled::eval_cpu(
ndim);
// Close extern "C"
kernel << "}" << std::endl;
// Compile and get function pointer
fn_ptr = compile(kernel_name, kernel.str());
}
return kernel.str();
});
compiled_allocate_outputs(
inputs, outputs, inputs_, constant_ids_, contiguous, false);

View File

@@ -3,13 +3,8 @@
#include <cassert>
#include <numeric>
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
@@ -111,13 +106,17 @@ void slow_conv_2D(
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iH = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int iW = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
const int C = in.shape(3); // In channels
const int oH = out.shape(1); // Output spatial dim
const int oW = out.shape(2); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(3); // In channels
const int wH = wt.shape(1); // Weight spatial dim
const int wW = wt.shape(2); // Weight spatial dim
const int groups = C / wt.shape(3);
const int C_per_group = wt.shape(3);
const int O_per_group = O / groups;
const size_t in_stride_N = in.strides()[0];
const size_t in_stride_H = in.strides()[1];
const size_t in_stride_W = in.strides()[2];
@@ -141,33 +140,35 @@ void slow_conv_2D(
int ih_base = oh * wt_strides[0] - padding[0];
int iw_base = ow * wt_strides[1] - padding[1];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
const T* wt_ptr_pt = wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt = in_ptr + ih * in_stride_H + iw * in_stride_W;
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt =
in_ptr + ih * in_stride_H + iw * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
static_cast<float>(wt_ptr_pt[0]);
in_ptr_pt += in_stride_C;
wt_ptr_pt += wt_stride_C;
} // c
for (int c = g * C_per_group; c < (g + 1) * C_per_group; ++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ww
} // wh
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int jump_h = flip ? -wt_dilation[0] : wt_dilation[0];
@@ -219,41 +220,43 @@ void slow_conv_2D(
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int g = 0; g < groups; ++g) {
for (int o = g * O_per_group; o < (g + 1) * O_per_group; ++o) {
float r = 0.;
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int ih = ih_base + wh_flip * wt_dilation[0];
int iw = iw_base + ww_flip * wt_dilation[1];
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
if (ih >= 0 && ih < iH && iw >= 0 && iw < iW) {
const T* wt_ptr_pt =
wt_ptr + wh * wt_stride_H + ww * wt_stride_W;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
int ih_dil = !is_idil_one ? (ih / in_dilation[0]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[1]) : iw;
const T* in_ptr_pt =
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
const T* in_ptr_pt =
in_ptr + ih_dil * in_stride_H + iw_dil * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
static_cast<float>(wt_ptr_pt[0]);
in_ptr_pt += in_stride_C;
wt_ptr_pt += wt_stride_C;
} // c
for (int c = g * C_per_group; c < (g + 1) * C_per_group;
++c) {
r += static_cast<float>(in_ptr_pt[c * in_stride_C]) *
static_cast<float>(
wt_ptr_pt[(c % C_per_group) * wt_stride_C]);
} // c
} // ih, iw check
} // ww
} // wh
} // ih, iw check
} // ww
} // wh
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
} // g
};
int oH_border_0 = 0;
@@ -310,6 +313,296 @@ void slow_conv_2D(
} // n
}
template <typename T>
void slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const T* st_wt_ptr = wt.data<T>();
const T* st_in_ptr = in.data<T>();
T* st_out_ptr = out.data<T>();
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const int iD = 1 + in_dilation[0] * (in.shape(1) - 1); // Input spatial dim
const int iH = 1 + in_dilation[1] * (in.shape(2) - 1); // Input spatial dim
const int iW = 1 + in_dilation[2] * (in.shape(3) - 1); // Input spatial dim
const int oD = out.shape(1); // Output spatial dim
const int oH = out.shape(2); // Output spatial dim
const int oW = out.shape(3); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(4); // In channels
const int wD = wt.shape(1); // Weight spatial dim
const int wH = wt.shape(2); // Weight spatial dim
const int wW = wt.shape(3); // Weight spatial dim
const size_t in_stride_N = in.strides()[0];
const size_t in_stride_D = in.strides()[1];
const size_t in_stride_H = in.strides()[2];
const size_t in_stride_W = in.strides()[3];
const size_t in_stride_C = in.strides()[4];
const size_t wt_stride_O = wt.strides()[0];
const size_t wt_stride_D = wt.strides()[1];
const size_t wt_stride_H = wt.strides()[2];
const size_t wt_stride_W = wt.strides()[3];
const size_t wt_stride_C = wt.strides()[4];
const size_t out_stride_N = out.strides()[0];
const size_t out_stride_D = out.strides()[1];
const size_t out_stride_H = out.strides()[2];
const size_t out_stride_W = out.strides()[3];
const size_t out_stride_O = out.strides()[4];
bool is_idil_one =
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1;
auto pt_conv_no_checks = [&](const T* in_ptr,
const T* wt_ptr,
T* out_ptr,
int od,
int oh,
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int wd = 0; wd < wD; ++wd) {
for (int wh = 0; wh < wH; ++wh) {
for (int ww = 0; ww < wW; ++ww) {
int wd_flip = flip ? wD - wd - 1 : wd;
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int id = id_base + wd_flip * wt_dilation[0];
int ih = ih_base + wh_flip * wt_dilation[1];
int iw = iw_base + ww_flip * wt_dilation[2];
const T* wt_ptr_pt =
wt_ptr + wd * wt_stride_D + wh * wt_stride_H + ww * wt_stride_W;
const T* in_ptr_pt =
in_ptr + id * in_stride_D + ih * in_stride_H + iw * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
static_cast<float>(wt_ptr_pt[0]);
in_ptr_pt += in_stride_C;
wt_ptr_pt += wt_stride_C;
} // c
} // ww
} // wh
} // wd
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
};
int jump_d = flip ? -wt_dilation[0] : wt_dilation[0];
int jump_h = flip ? -wt_dilation[1] : wt_dilation[1];
int jump_w = flip ? -wt_dilation[2] : wt_dilation[2];
int init_d = (flip ? (wD - 1) * wt_dilation[0] : 0);
int init_h = (flip ? (wH - 1) * wt_dilation[1] : 0);
int init_w = (flip ? (wW - 1) * wt_dilation[2] : 0);
int f_wgt_jump_d = std::lcm(in_dilation[0], wt_dilation[0]) / wt_dilation[0];
int f_wgt_jump_h = std::lcm(in_dilation[1], wt_dilation[1]) / wt_dilation[1];
int f_wgt_jump_w = std::lcm(in_dilation[2], wt_dilation[2]) / wt_dilation[2];
int f_out_jump_d = std::lcm(in_dilation[0], wt_strides[0]) / wt_strides[0];
int f_out_jump_h = std::lcm(in_dilation[1], wt_strides[1]) / wt_strides[1];
int f_out_jump_w = std::lcm(in_dilation[2], wt_strides[2]) / wt_strides[2];
std::vector<int> base_d(f_out_jump_d);
std::vector<int> base_h(f_out_jump_h);
std::vector<int> base_w(f_out_jump_w);
for (int i = 0; i < f_out_jump_d; ++i) {
int id_loop = i * wt_strides[0] - padding[0] + init_d;
int wd_base = 0;
while (wd_base < wD && id_loop % in_dilation[0] != 0) {
wd_base++;
id_loop += jump_d;
}
base_d[i] = wd_base;
}
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * wt_strides[1] - padding[1] + init_h;
int wh_base = 0;
while (wh_base < wH && ih_loop % in_dilation[1] != 0) {
wh_base++;
ih_loop += jump_h;
}
base_h[i] = wh_base;
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * wt_strides[2] - padding[2] + init_w;
int ww_base = 0;
while (ww_base < wW && iw_loop % in_dilation[2] != 0) {
ww_base++;
iw_loop += jump_w;
}
base_w[j] = ww_base;
}
auto pt_conv_all_checks = [&](const T* in_ptr,
const T* wt_ptr,
T* out_ptr,
int od,
int oh,
int ow) {
out_ptr += od * out_stride_D + oh * out_stride_H + ow * out_stride_W;
int id_base = od * wt_strides[0] - padding[0];
int ih_base = oh * wt_strides[1] - padding[1];
int iw_base = ow * wt_strides[2] - padding[2];
int wd_base = base_d[od % f_out_jump_d];
int wh_base = base_h[oh % f_out_jump_h];
int ww_base = base_w[ow % f_out_jump_w];
for (int o = 0; o < O; ++o) {
float r = 0.;
for (int wd = wd_base; wd < wD; wd += f_wgt_jump_d) {
for (int wh = wh_base; wh < wH; wh += f_wgt_jump_h) {
for (int ww = ww_base; ww < wW; ww += f_wgt_jump_w) {
int wd_flip = flip ? wD - wd - 1 : wd;
int wh_flip = flip ? wH - wh - 1 : wh;
int ww_flip = flip ? wW - ww - 1 : ww;
int id = id_base + wd_flip * wt_dilation[0];
int ih = ih_base + wh_flip * wt_dilation[1];
int iw = iw_base + ww_flip * wt_dilation[2];
if (id >= 0 && id < iD && ih >= 0 && ih < iH && iw >= 0 &&
iw < iW) {
const T* wt_ptr_pt = wt_ptr + wd * wt_stride_D +
wh * wt_stride_H + ww * wt_stride_W;
int id_dil = !is_idil_one ? (id / in_dilation[0]) : id;
int ih_dil = !is_idil_one ? (ih / in_dilation[1]) : ih;
int iw_dil = !is_idil_one ? (iw / in_dilation[2]) : iw;
const T* in_ptr_pt = in_ptr + id_dil * in_stride_D +
ih_dil * in_stride_H + iw_dil * in_stride_W;
for (int c = 0; c < C; ++c) {
r += static_cast<float>(in_ptr_pt[0]) *
static_cast<float>(wt_ptr_pt[0]);
in_ptr_pt += in_stride_C;
wt_ptr_pt += wt_stride_C;
} // c
} // iD, ih, iw check
} // ww
} // wh
} // wd
out_ptr[0] = static_cast<T>(r);
out_ptr += out_stride_O;
wt_ptr += wt_stride_O;
} // o
};
int oD_border_0 = 0;
int oD_border_1 =
is_idil_one ? ((padding[0] + wt_strides[0] - 1) / wt_strides[0]) : oD;
int oD_border_2 = std::max(
oD_border_1, (iD + padding[0] - wD * wt_dilation[0]) / wt_strides[0]);
int oD_border_3 = oD;
int oH_border_0 = 0;
int oH_border_1 =
is_idil_one ? ((padding[1] + wt_strides[1] - 1) / wt_strides[1]) : oH;
int oH_border_2 = std::max(
oH_border_1, (iH + padding[1] - wH * wt_dilation[1]) / wt_strides[1]);
int oH_border_3 = oH;
int oW_border_0 = 0;
int oW_border_1 =
is_idil_one ? ((padding[2] + wt_strides[2] - 1) / wt_strides[2]) : oW;
int oW_border_2 = std::max(
oW_border_1, (iW + padding[2] - wW * wt_dilation[2]) / wt_strides[2]);
int oW_border_3 = oW;
for (int n = 0; n < N; ++n) {
// Case 1: od might put us out of bounds
for (int od = oD_border_0; od < oD_border_1; ++od) {
for (int oh = 0; oh < oH; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
} // oh
} // od
// Case 2: od in bounds
for (int od = oD_border_1; od < oD_border_2; ++od) {
// Case 2.1: oh might put us out of bounds
for (int oh = oH_border_0; oh < oH_border_1; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
} // oh
// Case 2.2: oh in bounds
for (int oh = oH_border_1; oh < oH_border_2; ++oh) {
// Case 2.2.1: ow might put us out of bounds
for (int ow = oW_border_0; ow < oW_border_1; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
// Case 2.2.2: ow in bounds
for (int ow = oW_border_1; ow < oW_border_2; ++ow) {
pt_conv_no_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
// Case 2.2.3: ow might put us out of bounds
for (int ow = oW_border_2; ow < oW_border_3; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
} // oh
// Case 2.3: oh might put us out of bounds
for (int oh = oH_border_2; oh < oH_border_3; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
} // oh
} // od
// Case 3: od might put us out of bounds
for (int od = oD_border_2; od < oD_border_3; ++od) {
for (int oh = 0; oh < oH; ++oh) {
for (int ow = 0; ow < oW; ++ow) {
pt_conv_all_checks(st_in_ptr, st_wt_ptr, st_out_ptr, od, oh, ow);
} // ow
} // oh
} // od
st_in_ptr += in_stride_N;
st_out_ptr += out_stride_N;
} // n
}
void dispatch_slow_conv_1D(
const array& in,
const array& wt,
@@ -358,10 +651,60 @@ void dispatch_slow_conv_2D(
}
}
void dispatch_slow_conv_3D(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
if (in.dtype() == float32) {
return slow_conv_3D<float>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == float16) {
return slow_conv_3D<float16_t>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else if (in.dtype() == bfloat16) {
return slow_conv_3D<bfloat16_t>(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
} else {
throw std::invalid_argument(
"[Convolution::eval] got unsupported data type.");
}
}
///////////////////////////////////////////////////////////////////////////////
// Explicit gemm conv
///////////////////////////////////////////////////////////////////////////////
template <typename T>
void flip_spatial_dims_inplace(array& wt) {
T* x = wt.data<T>();
size_t out_channels = wt.shape(0);
size_t in_channels = wt.shape(-1);
// Calculate the total size of the spatial dimensions
int spatial_size = 1;
for (int d = 1; d < wt.ndim() - 1; ++d) {
spatial_size *= wt.shape(d);
}
for (size_t i = 0; i < out_channels; i++) {
T* top = x + i * spatial_size * in_channels;
T* bottom =
x + i * spatial_size * in_channels + (spatial_size - 1) * in_channels;
for (size_t j = 0; j < spatial_size / 2; j++) {
for (size_t k = 0; k < in_channels; k++) {
std::swap(top[k], bottom[k]);
}
top += in_channels;
bottom -= in_channels;
}
}
}
void explicit_gemm_conv_1D_cpu(
const array& in,
const array& wt,
@@ -582,6 +925,140 @@ void explicit_gemm_conv_2D_cpu(
}
}
void explicit_gemm_conv_ND_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const bool flip) {
const int N = in.shape(0); // Batch size, should be the same as out.shape(0)
const auto iDim = std::vector<int>(
in.shape().begin() + 1, in.shape().end() - 1); // Input spatial dim
const auto oDim = std::vector<int>(
out.shape().begin() + 1, out.shape().end() - 1); // Output spatial dim
const int O = wt.shape(0); // Out channels
const int C = wt.shape(-1); // In channels
const auto wDim = std::vector<int>(
wt.shape().begin() + 1, wt.shape().end() - 1); // Weight spatial dim
auto conv_dtype = float32;
// Pad input
std::vector<int> padded_shape(in.shape().size());
padded_shape.front() = N;
for (size_t i = 0; i < iDim.size(); i++) {
padded_shape[i + 1] = iDim[i] + 2 * padding[i];
}
padded_shape.back() = C;
array in_padded(padded_shape, conv_dtype, nullptr, {});
// Fill with zeros
copy(array(0, conv_dtype), in_padded, CopyType::Scalar);
// Pick input slice from padded
size_t data_offset = 0;
for (size_t i = 0; i < padding.size(); i++) {
data_offset += padding[i] * in_padded.strides()[i + 1];
}
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_inplace(in, in_padded_slice, CopyType::GeneralGeneral);
// Make strided view
std::vector<int> strided_shape(oDim.size() + wDim.size() + 2);
strided_shape.front() = N;
for (size_t i = 0; i < oDim.size(); i++) {
strided_shape[i + 1] = oDim[i];
}
for (size_t i = 0; i < wDim.size(); i++) {
strided_shape[i + 1 + oDim.size()] = wDim[i];
}
strided_shape.back() = C;
std::vector<size_t> strided_strides(in.shape().size() * 2 - 2);
strided_strides[0] = in_padded.strides()[0];
for (size_t i = 0; i < wt_strides.size(); i++) {
strided_strides[i + 1] = in_padded.strides()[i + 1] * wt_strides[i];
}
for (size_t i = 1; i < in_padded.strides().size(); i++) {
strided_strides[i + wt_strides.size()] = in_padded.strides()[i];
}
auto flags = in_padded.flags();
array in_strided_view(strided_shape, in_padded.dtype(), nullptr, {});
in_strided_view.copy_shared_buffer(
in_padded, strided_strides, flags, in_strided_view.size(), 0);
// Materialize strided view
std::vector<int> strided_reshape = {N, C};
for (const auto& o : oDim) {
strided_reshape[0] *= o;
}
for (const auto& w : wDim) {
strided_reshape[1] *= w;
}
array in_strided(strided_reshape, in_strided_view.dtype(), nullptr, {});
copy(in_strided_view, in_strided, CopyType::General);
// Check wt dtype and prepare
auto gemm_wt = wt;
auto gemm_out = out;
if (wt.dtype() != float32 || !wt.flags().row_contiguous) {
auto ctype =
wt.flags().row_contiguous ? CopyType::Vector : CopyType::General;
gemm_wt = array(wt.shape(), float32, nullptr, {});
copy(wt, gemm_wt, ctype);
}
if (flip) {
auto gemm_wt_ = array(gemm_wt.shape(), float32, nullptr, {});
copy(gemm_wt, gemm_wt_, CopyType::Vector);
flip_spatial_dims_inplace<float>(gemm_wt_);
gemm_wt = gemm_wt_;
}
if (out.dtype() != float32) {
gemm_out = array(out.shape(), float32, nullptr, {});
gemm_out.set_data(allocator::malloc_or_wait(gemm_out.nbytes()));
}
// Perform gemm
cblas_sgemm(
CblasRowMajor,
CblasNoTrans, // no trans A
CblasTrans, // transB
strided_reshape[0], // M
O, // N
strided_reshape[1], // K
1.0f, // alpha
in_strided.data<float>(),
strided_reshape[1], // lda
gemm_wt.data<float>(),
strided_reshape[1], // ldb
0.0f, // beta
gemm_out.data<float>(),
O // ldc
);
// Copy results if needed
if (out.dtype() != float32) {
copy(gemm_out, out, CopyType::Vector);
}
}
///////////////////////////////////////////////////////////////////////////////
// Conv routing
///////////////////////////////////////////////////////////////////////////////
@@ -595,10 +1072,15 @@ void conv_1D_cpu(
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && !flip) {
return explicit_gemm_conv_1D_cpu(
in, wt, out, padding, wt_strides, wt_dilation);
}
if (wt_dilation[0] == 1 && in_dilation[0] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_1D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
@@ -613,10 +1095,38 @@ void conv_2D_cpu(
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && in_dilation[0] == 1 &&
in_dilation[1] == 1 && groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_2D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
void conv_3D_cpu(
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip) {
const int groups = in.shape().back() / wt.shape().back();
if (wt_dilation[0] == 1 && wt_dilation[1] == 1 && wt_dilation[2] == 1 &&
in_dilation[0] == 1 && in_dilation[1] == 1 && in_dilation[2] == 1 &&
groups == 1) {
return explicit_gemm_conv_ND_cpu(
in, wt, out, padding, wt_strides, wt_dilation, flip);
}
return dispatch_slow_conv_3D(
in, wt, out, padding, wt_strides, wt_dilation, in_dilation, flip);
}
} // namespace
void Convolution::eval(const std::vector<array>& inputs, array& out) {
@@ -625,8 +1135,20 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
auto& in = inputs[0];
auto& wt = inputs[1];
// 3D convolution
if (in.ndim() == (3 + 2)) {
return conv_3D_cpu(
in,
wt,
out,
padding_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_);
}
// 2D convolution
if (in.ndim() == (2 + 2)) {
else if (in.ndim() == (2 + 2)) {
return conv_2D_cpu(
in,
wt,
@@ -653,7 +1175,7 @@ void Convolution::eval(const std::vector<array>& inputs, array& out) {
else {
std::ostringstream msg;
msg << "[Convolution::eval] Convolution currently only supports"
<< " 1D and 2D convolutions. Got inputs with " << in.ndim() - 2
<< " 1D, 2D and 3D convolutions. Got inputs with " << in.ndim() - 2
<< " spatial dimensions";
throw std::invalid_argument(msg.str());
}

View File

@@ -4,6 +4,7 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/utils.h"
namespace mlx::core {
@@ -25,252 +26,117 @@ void copy_vector(const array& src, array& dst) {
std::copy(src_ptr, src_ptr + src.data_size(), dst_ptr);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim1(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[0];
}
}
template <typename SrcT, typename DstT, typename StrideT, int D>
inline void copy_dims(
const SrcT* src,
DstT* dst,
const std::vector<int>& shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
int axis) {
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = shape[axis];
template <typename SrcT, typename DstT>
inline void copy_general_dim1(const array& src, array& dst) {
return copy_general_dim1<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim2(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[1];
for (int i = 0; i < N; i++) {
if constexpr (D > 1) {
copy_dims<SrcT, DstT, StrideT, D - 1>(
src, dst, shape, i_strides, o_strides, axis + 1);
} else {
*dst = static_cast<DstT>(*src);
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
src += stride_src;
dst += stride_dst;
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim2(const array& src, array& dst) {
return copy_general_dim2<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim3(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
for (int k = 0; k < data_shape[2]; ++k) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[2];
}
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim3(const array& src, array& dst) {
return copy_general_dim3<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general_dim4(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
const SrcT* src_ptr = src.data<SrcT>();
DstT* dst_ptr = dst.data<DstT>();
stride_t src_idx = i_offset;
stride_t dst_idx = 0;
for (int i = 0; i < data_shape[0]; ++i) {
for (int j = 0; j < data_shape[1]; ++j) {
for (int k = 0; k < data_shape[2]; ++k) {
for (int ii = 0; ii < data_shape[3]; ++ii) {
dst_ptr[dst_idx++] = static_cast<DstT>(src_ptr[src_idx]);
src_idx += i_strides[3];
}
src_idx += i_strides[2] - i_strides[3] * data_shape[3];
}
src_idx += i_strides[1] - i_strides[2] * data_shape[2];
}
src_idx += i_strides[0] - i_strides[1] * data_shape[1];
}
}
template <typename SrcT, typename DstT>
inline void copy_general_dim4(const array& src, array& dst) {
return copy_general_dim4<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
int64_t i_offset) {
switch (src.ndim()) {
case 1:
copy_general_dim1<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
return;
case 2:
copy_general_dim2<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
return;
case 3:
copy_general_dim3<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
return;
case 4:
copy_general_dim4<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
return;
}
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>();
for (size_t i = 0; i < dst.size(); ++i) {
stride_t src_elem = elem_to_loc(i, data_shape, i_strides);
dst_ptr[i] = static_cast<DstT>(src_ptr[src_elem]);
}
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
return copy_general<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), 0);
}
template <typename SrcT, typename DstT, typename stride_t>
inline void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
int64_t i_offset,
int64_t o_offset) {
return copy_general<SrcT, DstT, stride_t>(
src, dst, data_shape, i_strides, i_offset);
}
template <typename SrcT, typename DstT, typename stride_t, int D>
inline void copy_general_general_dims(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
stride_t i_offset,
stride_t o_offset) {
if constexpr (D > 1) {
int axis = src.ndim() - D;
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = data_shape[axis];
for (int i = 0; i < N; i++) {
copy_general_general_dims<SrcT, DstT, stride_t, D - 1>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
i_offset += stride_src;
o_offset += stride_dst;
}
} else {
int axis = src.ndim() - 1;
auto stride_src = i_strides[axis];
auto stride_dst = o_strides[axis];
auto N = data_shape[axis];
const SrcT* src_ptr = src.data<SrcT>() + i_offset;
DstT* dst_ptr = dst.data<DstT>() + o_offset;
for (int i = 0; i < N; i++) {
*dst_ptr = static_cast<DstT>(*src_ptr);
src_ptr += stride_src;
dst_ptr += stride_dst;
}
}
}
template <typename SrcT, typename DstT, typename stride_t>
template <typename SrcT, typename DstT, typename StrideT>
void copy_general_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
stride_t i_offset,
stride_t o_offset) {
switch (src.ndim()) {
case 1:
copy_general_general_dims<SrcT, DstT, stride_t, 1>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
return;
case 2:
copy_general_general_dims<SrcT, DstT, stride_t, 2>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
return;
case 3:
copy_general_general_dims<SrcT, DstT, stride_t, 3>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
return;
case 4:
copy_general_general_dims<SrcT, DstT, stride_t, 4>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
return;
case 5:
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
return;
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
int64_t i_offset,
int64_t o_offset) {
if (data_shape.empty()) {
auto val = static_cast<DstT>(*(src.data<SrcT>() + i_offset));
auto dst_ptr = dst.data<DstT>() + o_offset;
*dst_ptr = val;
return;
}
int size = std::accumulate(
data_shape.begin() - 5, data_shape.end(), 1, std::multiplies<int>());
for (int i = 0; i < src.size(); i += size) {
stride_t src_offset = i_offset + elem_to_loc(i, data_shape, i_strides);
stride_t dst_offset = o_offset + elem_to_loc(i, dst.shape(), o_strides);
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
src, dst, data_shape, i_strides, o_strides, src_offset, dst_offset);
auto [shape, strides] = collapse_contiguous_dims(
data_shape, std::vector<std::vector<StrideT>>{i_strides, o_strides});
auto src_ptr = src.data<SrcT>() + i_offset;
auto dst_ptr = dst.data<DstT>() + o_offset;
int ndim = shape.size();
if (ndim == 1) {
copy_dims<SrcT, DstT, StrideT, 1>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 2) {
copy_dims<SrcT, DstT, StrideT, 2>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
} else if (ndim == 3) {
copy_dims<SrcT, DstT, StrideT, 3>(
src_ptr, dst_ptr, shape, strides[0], strides[1], 0);
return;
}
ContiguousIterator<StrideT> in(shape, strides[0], ndim - 3);
ContiguousIterator<StrideT> out(shape, strides[1], ndim - 3);
StrideT stride = std::accumulate(
shape.end() - 3, shape.end(), 1, std::multiplies<StrideT>());
for (StrideT elem = 0; elem < src.size(); elem += stride) {
copy_dims<SrcT, DstT, StrideT, 3>(
src_ptr + in.loc,
dst_ptr + out.loc,
shape,
strides[0],
strides[1],
ndim - 3);
in.step();
out.step();
}
}
template <typename SrcT, typename DstT>
inline void copy_general_general(const array& src, array& dst) {
return copy_general_general<SrcT, DstT, size_t>(
copy_general_general<SrcT, DstT, size_t>(
src, dst, src.shape(), src.strides(), dst.strides(), 0, 0);
}
template <typename SrcT, typename DstT, typename StrideT>
void copy_general(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>&,
int64_t i_offset,
int64_t o_offset) {
copy_general_general<SrcT, DstT, StrideT>(
src,
dst,
data_shape,
i_strides,
make_contiguous_strides<StrideT>(data_shape),
i_offset,
o_offset);
}
template <typename SrcT, typename DstT>
inline void copy_general(const array& src, array& dst) {
copy_general_general<SrcT, DstT, size_t>(
src,
dst,
src.shape(),
src.strides(),
make_contiguous_strides<size_t>(src.shape()),
0,
0);
}
template <typename SrcT, typename DstT, typename... Args>
void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
switch (ctype) {
@@ -285,6 +151,7 @@ void copy(const array& src, array& dst, CopyType ctype, Args&&... args) {
return;
case CopyType::GeneralGeneral:
copy_general_general<SrcT, DstT>(src, dst, std::forward<Args>(args)...);
return;
}
}
@@ -385,7 +252,7 @@ inline void copy_inplace_dispatch(
} // namespace
void copy_inplace(const array& src, array& dst, CopyType ctype) {
return copy_inplace_dispatch(src, dst, ctype);
copy_inplace_dispatch(src, dst, ctype);
}
void copy(const array& src, array& dst, CopyType ctype) {
@@ -415,20 +282,20 @@ void copy(const array& src, array& dst, CopyType ctype) {
copy_inplace(src, dst, ctype);
}
template <typename stride_t>
template <typename StrideT>
void copy_inplace(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<stride_t>& i_strides,
const std::vector<stride_t>& o_strides,
const std::vector<StrideT>& i_strides,
const std::vector<StrideT>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype) {
switch (ctype) {
case CopyType::General:
case CopyType::GeneralGeneral:
return copy_inplace_dispatch(
copy_inplace_dispatch(
src,
dst,
ctype,
@@ -437,15 +304,24 @@ void copy_inplace(
o_strides,
i_offset,
o_offset);
break;
case CopyType::Scalar:
case CopyType::Vector:
return copy_inplace_dispatch(src, dst, ctype);
copy_inplace_dispatch(src, dst, ctype);
}
}
template <>
void copy_inplace<int64_t>(
template void copy_inplace<size_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
const std::vector<size_t>& i_strides,
const std::vector<size_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype);
template void copy_inplace<int64_t>(
const array& src,
array& dst,
const std::vector<int>& data_shape,
@@ -453,24 +329,6 @@ void copy_inplace<int64_t>(
const std::vector<int64_t>& o_strides,
int64_t i_offset,
int64_t o_offset,
CopyType ctype) {
switch (ctype) {
case CopyType::General:
case CopyType::GeneralGeneral:
return copy_inplace_dispatch(
src,
dst,
ctype,
data_shape,
i_strides,
o_strides,
i_offset,
o_offset);
case CopyType::Scalar:
case CopyType::Vector:
return copy_inplace_dispatch(src, dst, ctype);
}
}
CopyType ctype);
} // namespace mlx::core

View File

@@ -1,15 +1,10 @@
// Copyright © 2023-2024 Apple Inc.
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#endif
#include <cstring>
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/backend/common/utils.h"
#include "mlx/primitives.h"
@@ -34,6 +29,7 @@ DEFAULT(ArcCosh)
DEFAULT(ArcSin)
DEFAULT(ArcSinh)
DEFAULT(ArcTan)
DEFAULT(ArcTan2)
DEFAULT(ArcTanh)
DEFAULT(ArgPartition)
DEFAULT(ArgReduce)
@@ -42,15 +38,17 @@ DEFAULT(AsType)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(BlockMaskedMM)
DEFAULT(BlockSparseMM)
DEFAULT(GatherMM)
DEFAULT(GatherQMM)
DEFAULT_MULTI(DivMod)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Conjugate)
DEFAULT(Convolution)
DEFAULT(Copy)
DEFAULT(Cos)
DEFAULT(Cosh)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(CustomTransforms)
DEFAULT_MULTI(Depends)
DEFAULT(Divide)
DEFAULT(NumberOfElements)
@@ -66,6 +64,7 @@ DEFAULT(Full)
DEFAULT(Gather)
DEFAULT(Greater)
DEFAULT(GreaterEqual)
DEFAULT(Hadamard)
DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
@@ -110,6 +109,8 @@ DEFAULT(Tan)
DEFAULT(Tanh)
DEFAULT(Transpose)
DEFAULT(Inverse)
DEFAULT(Cholesky)
DEFAULT_MULTI(Eigh)
namespace {

117
mlx/backend/common/eigh.cpp Normal file
View File

@@ -0,0 +1,117 @@
// Copyright © 2023-2024 Apple Inc.
#include "mlx/allocator.h"
#include "mlx/array.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/linalg.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
void ssyevd(
char jobz,
char uplo,
float* a,
int N,
float* w,
float* work,
int lwork,
int* iwork,
int liwork) {
int info;
MLX_LAPACK_FUNC(ssyevd)
(
/* jobz = */ &jobz,
/* uplo = */ &uplo,
/* n = */ &N,
/* a = */ a,
/* lda = */ &N,
/* w = */ w,
/* work = */ work,
/* lwork = */ &lwork,
/* iwork = */ iwork,
/* liwork = */ &liwork,
/* info = */ &info);
if (info != 0) {
std::stringstream msg;
msg << "[Eigh::eval_cpu] Eigenvalue decomposition failed with error code "
<< info;
throw std::runtime_error(msg.str());
}
}
} // namespace
void Eigh::eval(const std::vector<array>& inputs, std::vector<array>& outputs) {
const auto& a = inputs[0];
auto& values = outputs[0];
auto vectors = compute_eigenvectors_
? outputs[1]
: array(a.shape(), a.dtype(), nullptr, {});
values.set_data(allocator::malloc_or_wait(values.nbytes()));
copy(
a,
vectors,
a.flags().row_contiguous ? CopyType::Vector : CopyType::General);
if (compute_eigenvectors_) {
// Set the strides and flags so the eigenvectors
// are in the columns of the output
auto flags = vectors.flags();
auto strides = vectors.strides();
auto ndim = a.ndim();
std::swap(strides[ndim - 1], strides[ndim - 2]);
if (a.size() > 1) {
flags.row_contiguous = false;
if (ndim > 2) {
flags.col_contiguous = false;
} else {
flags.col_contiguous = true;
}
}
vectors.move_shared_buffer(vectors, strides, flags, vectors.data_size());
}
auto vec_ptr = vectors.data<float>();
auto eig_ptr = values.data<float>();
char jobz = compute_eigenvectors_ ? 'V' : 'N';
auto N = a.shape(-1);
// Work query
int lwork;
int liwork;
{
float work;
int iwork;
ssyevd(jobz, uplo_[0], nullptr, N, nullptr, &work, -1, &iwork, -1);
lwork = static_cast<int>(work);
liwork = iwork;
}
auto work_buf = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
auto iwork_buf = array::Data{allocator::malloc_or_wait(sizeof(int) * liwork)};
for (size_t i = 0; i < a.size() / (N * N); ++i) {
ssyevd(
jobz,
uplo_[0],
vec_ptr,
N,
eig_ptr,
static_cast<float*>(work_buf.buffer.raw_ptr()),
lwork,
static_cast<int*>(iwork_buf.buffer.raw_ptr()),
liwork);
vec_ptr += N * N;
eig_ptr += N;
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,107 @@
// Copyright © 2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/hadamard.h"
#include "mlx/primitives.h"
namespace mlx::core {
// n = 2^k component
template <typename T>
void hadamard_n(array& out, int n, int m, float scale) {
for (int b = 0; b < out.size() / n; b++) {
size_t loc = b * n;
T* data_ptr = out.data<T>() + loc;
int h = 1;
int n_over_2 = n / 2;
while (h < n) {
for (int i = 0; i < n / 2; i++) {
int k = i & (h - 1);
int j = ((i - k) << 1) + k;
float x = *(data_ptr + j);
float y = *(data_ptr + j + h);
*(data_ptr + j) = x + y;
*(data_ptr + j + h) = x - y;
if (h == n_over_2) {
*(data_ptr + j) *= scale;
*(data_ptr + j + h) *= scale;
}
}
h <<= 1;
}
}
}
// m component
template <typename T>
void hadamard_m(array& out, int n, int m, float scale) {
auto h_matrices = hadamard_matrices();
auto& matrix = h_matrices[m];
auto start = 1;
auto end = matrix.find('\n', start);
std::vector<bool> hmat_vec;
while (end != std::string_view::npos) {
auto row = matrix.substr(start, end - start);
for (int i = 0; i < row.length(); i++) {
hmat_vec.push_back(row[i] == '+');
}
start = end + 1;
end = matrix.find('\n', start);
}
for (int b = 0; b < out.size() / m / n; b++) {
size_t loc = b * n * m;
T* data_ptr = out.data<T>() + loc;
for (int i = 0; i < n; i++) {
std::vector<float> out(m);
for (int j = 0; j < m; j++) {
for (int k = 0; k < m; k++) {
float x = *(data_ptr + i + k * n);
if (hmat_vec[k + j * m]) {
out[j] += x;
} else {
out[j] -= x;
}
}
}
for (int j = 0; j < m; j++) {
*(data_ptr + i + j * n) = out[j] * scale;
}
}
}
}
template <typename T>
void hadamard(array& out, int n, int m, float scale) {
float n_scale = m > 1 ? 1.0 : scale;
hadamard_n<T>(out, n, m, n_scale);
if (m > 1) {
hadamard_m<T>(out, n, m, scale);
}
}
void Hadamard::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
// Copy input to output
copy(in, out, CopyType::General);
int axis = out.ndim() - 1;
auto [n, m] = decompose_hadamard(out.shape(axis));
switch (in.dtype()) {
case float32:
return hadamard<float>(out, n, m, scale_);
case float16:
return hadamard<float16_t>(out, n, m, scale_);
case bfloat16:
return hadamard<bfloat16_t>(out, n, m, scale_);
default:
throw std::invalid_argument("[hadamard] Unsupported type.");
}
}
} // namespace mlx::core

View File

@@ -0,0 +1,105 @@
// Copyright © 2024 Apple Inc.
#pragma once
#include <map>
#include "mlx/utils.h"
namespace mlx::core {
// From http://neilsloane.com/hadamard/
constexpr std::string_view h12 = R"(
+-++++++++++
--+-+-+-+-+-
+++-++----++
+---+--+-++-
+++++-++----
+-+---+--+-+
++--+++-++--
+--++---+--+
++----+++-++
+--+-++---+-
++++----+++-
+-+--+-++---
)";
constexpr std::string_view h20 = R"(
+----+----++--++-++-
-+----+---+++---+-++
--+----+---+++-+-+-+
---+----+---+++++-+-
----+----++--++-++-+
-+++++-----+--+++--+
+-+++-+---+-+--+++--
++-++--+---+-+--+++-
+++-+---+---+-+--+++
++++-----++--+-+--++
--++-+-++-+-----++++
---++-+-++-+---+-+++
+---++-+-+--+--++-++
++---++-+----+-+++-+
-++---++-+----+++++-
-+--+--++-+----+----
+-+-----++-+----+---
-+-+-+---+--+----+--
--+-+++------+----+-
+--+--++------+----+
)";
constexpr std::string_view h28 = R"(
+------++----++-+--+-+--++--
-+-----+++-----+-+--+-+--++-
--+-----+++---+-+-+----+--++
---+-----+++---+-+-+-+--+--+
----+-----+++---+-+-+++--+--
-----+-----++++--+-+--++--+-
------++----++-+--+-+--++--+
--++++-+-------++--+++-+--+-
---++++-+-----+-++--+-+-+--+
+---+++--+----++-++--+-+-+--
++---++---+----++-++--+-+-+-
+++---+----+----++-++--+-+-+
++++--------+-+--++-++--+-+-
-++++--------+++--++--+--+-+
-+-++-++--++--+--------++++-
+-+-++--+--++--+--------++++
-+-+-++--+--++--+----+---+++
+-+-+-++--+--+---+---++---++
++-+-+-++--+------+--+++---+
-++-+-+-++--+------+-++++---
+-++-+---++--+------+-++++--
-++--++-+-++-+++----++------
+-++--++-+-++-+++-----+-----
++-++---+-+-++-+++-----+----
-++-++-+-+-+-+--+++-----+---
--++-++++-+-+----+++-----+--
+--++-+-++-+-+----+++-----+-
++--++-+-++-+-+----++------+
)";
inline const std::map<int, std::string_view> hadamard_matrices() {
return {{12, h12}, {20, h20}, {28, h28}};
}
inline std::pair<int, int> decompose_hadamard(int n) {
// n = m*2^k
int m = 1;
if (!is_power_of_2(n)) {
auto h_matrices = hadamard_matrices();
for (auto [factor, _] : h_matrices) {
if (n % factor == 0) {
m = factor;
n /= factor;
break;
}
}
if (m == 1) {
throw std::invalid_argument(
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
}
}
return {n, m};
}
} // namespace mlx::core

View File

@@ -1,5 +1,4 @@
// Copyright © 2023 Apple Inc.
#include <algorithm>
#include <cassert>
#include <cmath>
@@ -81,11 +80,18 @@ void gather(
T* dst_ptr = out.data<T>();
size_t out_idx = 0;
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> src_it;
if (!can_copy && src.ndim() > 0) {
src_it = std::move(
ContiguousIterator<size_t>(slice_sizes, src.strides(), src.ndim()));
}
for (int idx = 0; idx < ind_size; idx++) {
size_t src_idx = 0;
for (int ii = 0; ii < inds.size(); ++ii) {
auto ax = axes[ii];
auto idx_loc = elem_to_loc(idx, inds[ii]);
auto idx_loc = its[ii].loc;
its[ii].step();
auto idx_val =
offset_neg_idx(inds[ii].data<IdxT>()[idx_loc], src.shape(ax));
src_idx += (idx_val * src.strides()[ax]);
@@ -99,9 +105,10 @@ void gather(
out_idx += slice_size;
} else {
for (int jj = 0; jj < slice_size; jj++) {
auto src_offset = elem_to_loc(jj, slice_sizes, src.strides());
dst_ptr[out_idx++] = src_ptr[src_idx + src_offset];
dst_ptr[out_idx++] = src_ptr[src_idx + src_it.loc];
src_it.step();
}
src_it.reset();
}
}
}
@@ -223,21 +230,29 @@ void scatter(
update_size *= us;
}
std::vector<ContiguousIterator<size_t>> its(inds.begin(), inds.end());
ContiguousIterator<size_t> update_it(updates);
ContiguousIterator<size_t> out_it(update_shape, out.strides(), out.ndim());
for (int i = 0; i < n_updates; ++i) {
size_t out_offset = 0;
for (int j = 0; j < nind; ++j) {
auto ax = axes[j];
auto idx_loc = elem_to_loc(i, inds[j]);
auto idx_loc = its[j].loc;
its[j].step();
auto idx_val =
offset_neg_idx(inds[j].data<IdxT>()[idx_loc], out.shape(ax));
out_offset += (idx_val * out.strides()[ax]);
}
update_it.seek(i * update_size);
for (int j = 0; j < update_size; ++j) {
auto update_loc = elem_to_loc(i * update_size + j, updates);
auto out_loc = elem_to_loc(j, update_shape, out.strides());
op(updates.data<InT>()[update_loc],
out.data<InT>() + out_offset + out_loc);
op(updates.data<InT>()[update_it.loc],
out.data<InT>() + out_offset + out_it.loc);
update_it.step();
out_it.step();
}
out_it.reset();
update_it.reset();
}
}

View File

@@ -2,18 +2,94 @@
#include "mlx/allocator.h"
#include "mlx/backend/common/copy.h"
#include "mlx/linalg.h"
#include "mlx/backend/common/lapack.h"
#include "mlx/primitives.h"
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <lapack.h>
#endif
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
int info;
MLX_LAPACK_FUNC(strtri)
(
/* uplo = */ &uplo,
/* diag = */ &diag,
/* N = */ &N,
/* a = */ matrix,
/* lda = */ &N,
/* info = */ &info);
return info;
}
namespace mlx::core {
void inverse_impl(const array& a, array& inv) {
void general_inv(array& inv, int N, int i) {
int info;
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
// Compute LU factorization.
sgetrf_(
/* m = */ &N,
/* n = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU factorization failed with error code " << info;
throw std::runtime_error(ss.str());
}
static const int lwork_query = -1;
float workspace_size = 0;
// Compute workspace size.
sgetri_(
/* m = */ &N,
/* a = */ nullptr,
/* lda = */ &N,
/* ipiv = */ nullptr,
/* work = */ &workspace_size,
/* lwork = */ &lwork_query,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU workspace calculation failed with error code "
<< info;
throw std::runtime_error(ss.str());
}
const int lwork = workspace_size;
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
// Compute inverse.
sgetri_(
/* m = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: inversion failed with error code " << info;
throw std::runtime_error(ss.str());
}
}
void tri_inv(array& inv, int N, int i, bool upper) {
const char uplo = upper ? 'L' : 'U';
const char diag = 'N';
int info = strtri_wrapper(uplo, diag, inv.data<float>() + N * N * i, N);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: triangular inversion failed with error code " << info;
throw std::runtime_error(ss.str());
}
}
void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
// Lapack uses the column-major convention. We take advantage of the following
// identity to avoid transposing (see
// https://math.stackexchange.com/a/340234):
@@ -25,63 +101,11 @@ void inverse_impl(const array& a, array& inv) {
const int N = a.shape(-1);
const size_t num_matrices = a.size() / (N * N);
int info;
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
for (int i = 0; i < num_matrices; i++) {
// Compute LU factorization.
sgetrf_(
/* m = */ &N,
/* n = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU factorization failed with error code " << info;
throw std::runtime_error(ss.str());
}
static const int lwork_query = -1;
float workspace_size = 0;
// Compute workspace size.
sgetri_(
/* m = */ &N,
/* a = */ nullptr,
/* lda = */ &N,
/* ipiv = */ nullptr,
/* work = */ &workspace_size,
/* lwork = */ &lwork_query,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: LU workspace calculation failed with error code "
<< info;
throw std::runtime_error(ss.str());
}
const int lwork = workspace_size;
auto scratch =
array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
// Compute inverse.
sgetri_(
/* m = */ &N,
/* a = */ inv.data<float>() + N * N * i,
/* lda = */ &N,
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
/* lwork = */ &lwork,
/* info = */ &info);
if (info != 0) {
std::stringstream ss;
ss << "inverse_impl: inversion failed with error code " << info;
throw std::runtime_error(ss.str());
if (tri) {
tri_inv(inv, N, i, upper);
} else {
general_inv(inv, N, i);
}
}
}
@@ -90,15 +114,7 @@ void Inverse::eval(const std::vector<array>& inputs, array& output) {
if (inputs[0].dtype() != float32) {
throw std::runtime_error("[Inverse::eval] only supports float32.");
}
inverse_impl(inputs[0], output);
}
std::pair<std::vector<array>, std::vector<int>> Inverse::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
auto ax = axes[0] >= 0 ? 0 : -1;
auto a = axes[0] > 0 ? moveaxis(inputs[0], axes[0], 0, stream()) : inputs[0];
return {{linalg::inv(a, stream())}, {ax}};
inverse_impl(inputs[0], output, tri_, upper_);
}
} // namespace mlx::core

View File

@@ -1,10 +1,11 @@
// Copyright © 2024 Apple Inc.
// Copyright © 2023-2024 Apple Inc.
#pragma once
#ifdef ACCELERATE_NEW_LAPACK
#include <Accelerate/Accelerate.h>
#else
#include <cblas.h>
#include <lapack.h>
#endif

View File

@@ -5,11 +5,9 @@
#include <utility>
#include "mlx/allocator.h"
#include "mlx/io/load.h"
#include "mlx/backend/common/load.h"
#include "mlx/primitives.h"
namespace mlx::core {
namespace {
template <const uint8_t scalar_size>
@@ -29,12 +27,14 @@ void swap_endianness(uint8_t* data_bytes, size_t N) {
} // namespace
void Load::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
namespace mlx::core {
reader_->seek(offset_, std::ios_base::beg);
reader_->read(out.data<char>(), out.nbytes());
void load(
array& out,
size_t offset,
const std::shared_ptr<io::Reader>& reader,
bool swap_endianness_) {
reader->read(out.data<char>(), out.nbytes(), offset);
if (swap_endianness_) {
switch (out.itemsize()) {
@@ -51,4 +51,11 @@ void Load::eval(const std::vector<array>& inputs, array& out) {
}
}
void Load::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
load(out, offset_, reader_, swap_endianness_);
}
} // namespace mlx::core

14
mlx/backend/common/load.h Normal file
View File

@@ -0,0 +1,14 @@
// Copyright © 2024 Apple Inc.
#include "mlx/array.h"
#include "mlx/io/load.h"
namespace mlx::core {
void load(
array& out,
size_t offset,
const std::shared_ptr<io::Reader>& reader,
bool swap_endianess);
} // namespace mlx::core

View File

@@ -18,16 +18,19 @@ if [ "$CLANG" = "TRUE" ]; then
#include <cstdint>
#include <vector>
EOM
CC_FLAGS=""
else
CC_FLAGS="-std=c++17"
fi
CONTENT=$($GCC -I $SRCDIR -E $SRCDIR/mlx/backend/common/compiled_preamble.h 2>/dev/null)
CONTENT=$($GCC $CC_FLAGS -I "$SRCDIR" -E "$SRCDIR/mlx/backend/common/compiled_preamble.h" 2>/dev/null)
cat << EOF > "$OUTPUT_FILE"
const char* get_kernel_preamble() {
return R"preamble(
$INCLUDES
$CONTENT
using namespace mlx::core;
using namespace mlx::core::detail;
)preamble";
}

Some files were not shown because too many files have changed in this diff Show More