mirror of
https://github.com/ml-explore/mlx.git
synced 2025-09-12 07:14:34 +08:00
Compare commits
47 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
9231617eb3 | ||
![]() |
32668a7317 | ||
![]() |
780c197f95 | ||
![]() |
eb8819e91e | ||
![]() |
30bbea2f08 | ||
![]() |
635ccd9e25 | ||
![]() |
8c9f0278b9 | ||
![]() |
58d0e199e1 | ||
![]() |
10b5835501 | ||
![]() |
6c8dd307eb | ||
![]() |
43ffdab172 | ||
![]() |
40b6d67333 | ||
![]() |
c52d1600f0 | ||
![]() |
aa1d6cadad | ||
![]() |
6e06e3a904 | ||
![]() |
8cfb9fc0b8 | ||
![]() |
7b456fd2c0 | ||
![]() |
e9e53856d2 | ||
![]() |
5029894662 | ||
![]() |
baf9fa5f42 | ||
![]() |
7f914365fd | ||
![]() |
ebd7135b50 | ||
![]() |
50eff6a10a | ||
![]() |
c34a5ae7f7 | ||
![]() |
e2aa6ec8ae | ||
![]() |
6768c6a54a | ||
![]() |
6307d166eb | ||
![]() |
1fba87b0df | ||
![]() |
df124e018a | ||
![]() |
2f83d6e4b7 | ||
![]() |
987785d8d7 | ||
![]() |
8c01a7893b | ||
![]() |
218047c75a | ||
![]() |
d0da74209b | ||
![]() |
5c1fa64fb0 | ||
![]() |
a3c287354f | ||
![]() |
03cf033f82 | ||
![]() |
bdb36c9a63 | ||
![]() |
20bb301195 | ||
![]() |
d6383a1c6a | ||
![]() |
b05bcfd27f | ||
![]() |
2615660e62 | ||
![]() |
5b0af4cdb1 | ||
![]() |
8c2e15e6c8 | ||
![]() |
56c8a33439 | ||
![]() |
4eef1e8a3e | ||
![]() |
95d11bda06 |
@@ -10,13 +10,14 @@ MLX was developed with contributions from the following individuals:
|
||||
- Nripesh Niketan: Added `softsign`, `softmax`, `hardswish`, `logsoftmax` activation functions. Added `dropout3d` ops. Added `LogicalAnd` and `LogicalOR` ops. Added `clip_grad_norm` along with `tree_reduce`.
|
||||
- Juarez Bochi: Fixed bug in cross attention.
|
||||
- Justin Deschenaux: Sine, Cosine, arange, randint, truncated normal, bernoulli, lion optimizer, Dropout2d, linear and logistic regression python example.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream` and safetensor support.
|
||||
- Diogo Da Cruz: Added `tri`, `tril`, `triu`, `tensordot`, `inner`, `outer`, `tile`, `StreamContext`, `stream`, safetensors support, `einsum`, and `einsum_path`.
|
||||
- Gabrijel Boduljak: Added `mlx.core.linalg`, implemented `norm` method and `InstanceNorm` layer. Implemented pooling layers and ``Upsample``.
|
||||
- Hinrik Snær Guðmundsson: Added `atleast_1d`, `atleast_2d`, `atleast_3d` ops.
|
||||
- Luca Arnaboldi: Added `Ceil` and `Floor` ops; implemented pickling, copy and deepcopy for mlx arrays.
|
||||
- Brian Keene & Atila Orhon, with Argmax Inc.: Added `fast.scaled_dot_product_attention`
|
||||
- AmirHossein Razlighi: Added chaining support for some of the ops in `nn.Module`. Comparison works for non array objects in `mlx.core.array`. Exception handling for invalid operations in `mlx.core.array`.
|
||||
- Gleb Pobudzey: Added the `where` primitive, and groups in 1D and 2D convolutions.
|
||||
- Paul Paczuski: Improved stability of BCE loss calculation
|
||||
|
||||
<a href="https://github.com/ml-explore/mlx/graphs/contributors">
|
||||
<img class="dark-light" src="https://contrib.rocks/image?repo=ml-explore/mlx&anon=0&columns=20&max=100&r=true" />
|
||||
|
@@ -24,7 +24,7 @@ option(MLX_METAL_JIT "Use JIT compilation for Metal kernels" OFF)
|
||||
option(BUILD_SHARED_LIBS "Build mlx as a shared library" OFF)
|
||||
|
||||
if(NOT MLX_VERSION)
|
||||
set(MLX_VERSION 0.15.1)
|
||||
set(MLX_VERSION 0.16.2)
|
||||
endif()
|
||||
|
||||
# --------------------- Processor tests -------------------------
|
||||
@@ -83,18 +83,17 @@ elseif (MLX_BUILD_METAL)
|
||||
OUTPUT_VARIABLE MACOS_VERSION
|
||||
COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
if (${MACOS_VERSION} LESS 14.0)
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
message(STATUS "Building with SDK for macOS version ${MACOS_VERSION}")
|
||||
|
||||
set(METAL_CPP_URL https://developer.apple.com/metal/cpp/files/metal-cpp_macOS15_iOS18-beta.zip)
|
||||
if (${MACOS_VERSION} GREATER_EQUAL 15.0)
|
||||
set(MLX_METAL_VERSION METAL_3_2)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.2)
|
||||
set(MLX_METAL_VERSION METAL_3_1)
|
||||
elseif (${MACOS_VERSION} GREATER_EQUAL 14.0)
|
||||
set(MLX_METAL_VERSION METAL_3_0)
|
||||
else()
|
||||
message(FATAL_ERROR "MLX requires macOS SDK >= 14.0 to be built with MLX_BUILD_METAL=ON" )
|
||||
endif()
|
||||
# Get the metal version
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "echo \"__METAL_VERSION__\" | xcrun -sdk macosx metal -E -x metal -P - | tail -1 | tr -d '\n'"
|
||||
OUTPUT_VARIABLE MLX_METAL_VERSION
|
||||
COMMAND_ERROR_IS_FATAL ANY)
|
||||
|
||||
FetchContent_Declare(
|
||||
metal_cpp
|
||||
@@ -113,7 +112,7 @@ elseif (MLX_BUILD_METAL)
|
||||
${FOUNDATION_LIB}
|
||||
${QUARTZ_LIB})
|
||||
|
||||
add_compile_definitions(${MLX_METAL_VERSION})
|
||||
add_compile_definitions("MLX_METAL_VERSION=${MLX_METAL_VERSION}")
|
||||
endif()
|
||||
|
||||
if (MLX_BUILD_CPU)
|
||||
@@ -170,11 +169,18 @@ if (MPI_FOUND)
|
||||
execute_process(
|
||||
COMMAND zsh "-c" "mpirun --version"
|
||||
OUTPUT_VARIABLE MPI_VERSION
|
||||
COMMAND_ERROR_IS_FATAL ANY
|
||||
ERROR_QUIET
|
||||
)
|
||||
if (${MPI_VERSION} MATCHES ".*Open MPI.*")
|
||||
target_include_directories(mlx PRIVATE ${MPI_INCLUDE_PATH})
|
||||
elseif (MPI_VERSION STREQUAL "")
|
||||
set(MPI_FOUND FALSE)
|
||||
message(
|
||||
WARNING
|
||||
"MPI found but mpirun is not available. Building without MPI."
|
||||
)
|
||||
else()
|
||||
set(MPI_FOUND FALSE)
|
||||
message(
|
||||
WARNING
|
||||
"MPI which is not OpenMPI found. Building without MPI."
|
||||
|
84
benchmarks/python/einsum_bench.py
Normal file
84
benchmarks/python/einsum_bench.py
Normal file
@@ -0,0 +1,84 @@
|
||||
# Copyright © 2024 Apple Inc.
|
||||
|
||||
import time
|
||||
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
|
||||
|
||||
def timeit(fn, its=100, args=[]):
|
||||
for _ in range(5):
|
||||
fn(*args)
|
||||
tic = time.perf_counter()
|
||||
for _ in range(its):
|
||||
fn(*args)
|
||||
toc = time.perf_counter()
|
||||
return 1e3 * (toc - tic) / its
|
||||
|
||||
|
||||
def time_little_einsum_path():
|
||||
subscripts = "ik,kj->ij"
|
||||
x = mx.ones((32, 32))
|
||||
y = mx.ones((32, 32))
|
||||
mx_time = timeit(mx.einsum_path, args=(subscripts, x, y))
|
||||
|
||||
x = np.array(x)
|
||||
y = np.array(y)
|
||||
np_time = timeit(np.einsum_path, args=(subscripts, x, y))
|
||||
print("Timing little einsum path...")
|
||||
print(f"MLX ... {mx_time:.3f} ms")
|
||||
print(f"NumPy... {np_time:.3f} ms")
|
||||
|
||||
|
||||
def time_big_einsum_path():
|
||||
chars = list("abcdefgh")
|
||||
char_to_dim = {c: v for v, c in enumerate(chars)}
|
||||
|
||||
num_inputs = 10
|
||||
inputs = []
|
||||
subscripts = []
|
||||
for _ in range(num_inputs):
|
||||
subscript = np.random.choice(chars, size=5, replace=False).tolist()
|
||||
subscripts.append("".join(subscript))
|
||||
inputs.append(np.ones(list(char_to_dim[c] for c in subscript)))
|
||||
subscripts = ",".join(subscripts)
|
||||
|
||||
np_time = timeit(np.einsum_path, args=(subscripts, *inputs))
|
||||
|
||||
inputs = [mx.array(x) for x in inputs]
|
||||
mx_time = timeit(mx.einsum_path, args=(subscripts, *inputs))
|
||||
print("Timing big einsum path...")
|
||||
print(f"MLX ... {mx_time:.3f} ms")
|
||||
print(f"NumPy... {np_time:.3f} ms")
|
||||
|
||||
|
||||
def time_attention():
|
||||
def regular_attention(x):
|
||||
# shape [batch, sequence, num_heads, head_dim]
|
||||
queries, keys, values = x, x, x
|
||||
scores = queries.transpose(0, 2, 1, 3) @ keys.transpose(0, 2, 3, 1)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
output = (scores @ values.transpose(0, 2, 1, 3)).swapaxes(1, 2)
|
||||
mx.eval(output)
|
||||
|
||||
def einsum_attention(x):
|
||||
# shape [batch, sequence, num_heads, head_dim]
|
||||
queries, keys, values = x, x, x
|
||||
scores = mx.einsum("itjk,iujk->ijtu", queries, keys)
|
||||
scores = mx.softmax(scores, axis=-1)
|
||||
output = mx.einsum("ijtu,iujk->itjk", scores, values)
|
||||
mx.eval(output)
|
||||
|
||||
x = mx.random.uniform(shape=(8, 512, 32, 128))
|
||||
|
||||
regular_time = timeit(regular_attention, args=(x,))
|
||||
ein_time = timeit(einsum_attention, args=(x,))
|
||||
print("Timing einsum attention...")
|
||||
print(f"Regular ... {regular_time:.3f} ms")
|
||||
print(f"Einsum ... {ein_time:.3f} ms")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
time_little_einsum_path()
|
||||
time_big_einsum_path()
|
||||
time_attention()
|
70
benchmarks/python/hadamard_bench.py
Normal file
70
benchmarks/python/hadamard_bench.py
Normal file
@@ -0,0 +1,70 @@
|
||||
import argparse
|
||||
|
||||
import matplotlib
|
||||
import mlx.core as mx
|
||||
import numpy as np
|
||||
from time_utils import measure_runtime
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def had(x):
|
||||
y = mx.hadamard_transform(x)
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def copy(x):
|
||||
y = x + 1.0
|
||||
mx.eval(y)
|
||||
|
||||
|
||||
def run(dtype):
|
||||
system_size = 2**26
|
||||
outputs = {}
|
||||
for test_fn in (had, copy):
|
||||
for m in [1, 12, 20, 28]:
|
||||
if test_fn == copy:
|
||||
key = "copy"
|
||||
elif m == 1:
|
||||
key = "had_2^k"
|
||||
else:
|
||||
key = "had_m*2^k"
|
||||
outputs.setdefault(key, {})
|
||||
for k in range(7, 14):
|
||||
n = m * 2**k
|
||||
if n > 2**15:
|
||||
continue
|
||||
x_np = np.random.normal(size=(system_size // n, n)).astype(dtype)
|
||||
x = mx.array(x_np)
|
||||
runtime_ms = measure_runtime(test_fn, x=x)
|
||||
bytes_per_gb = 1e9
|
||||
ms_per_s = 1e3
|
||||
bytes_per_had = np.dtype(x_np.dtype).itemsize * 2
|
||||
bandwidth_gb = (
|
||||
system_size * bytes_per_had / runtime_ms * ms_per_s / bytes_per_gb
|
||||
)
|
||||
print(n, bandwidth_gb)
|
||||
outputs[key][n] = bandwidth_gb
|
||||
|
||||
colors = {
|
||||
"copy": "black",
|
||||
"had_2^k": "steelblue",
|
||||
"had_m*2^k": "skyblue",
|
||||
}
|
||||
for key, output in outputs.items():
|
||||
plt.scatter(output.keys(), output.values(), color=colors[key], label=key)
|
||||
plt.title(f"MLX Hadamard Benchmark -- {dtype.__name__}")
|
||||
plt.xlabel("N")
|
||||
plt.ylabel("Bandwidth (GB/s)")
|
||||
plt.legend()
|
||||
plt.savefig(f"bench_{dtype.__name__}.png")
|
||||
plt.clf()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--fp16", action="store_true")
|
||||
args = parser.parse_args()
|
||||
dtype = np.float16 if args.fp16 else np.float32
|
||||
run(dtype)
|
@@ -1,3 +1,4 @@
|
||||
sphinx
|
||||
breathe
|
||||
sphinx-book-theme
|
||||
mlx
|
||||
|
@@ -83,3 +83,15 @@ def setup(app):
|
||||
# -- Options for LaTeX output ------------------------------------------------
|
||||
|
||||
latex_documents = [(main_doc, "MLX.tex", "MLX Documentation", author, "manual")]
|
||||
latex_elements = {
|
||||
"preamble": r"""
|
||||
\usepackage{enumitem}
|
||||
\setlistdepth{5}
|
||||
\setlist[itemize,1]{label=$\bullet$}
|
||||
\setlist[itemize,2]{label=$\bullet$}
|
||||
\setlist[itemize,3]{label=$\bullet$}
|
||||
\setlist[itemize,4]{label=$\bullet$}
|
||||
\setlist[itemize,5]{label=$\bullet$}
|
||||
\renewlist{itemize}{itemize}{5}
|
||||
""",
|
||||
}
|
||||
|
@@ -486,9 +486,8 @@ below.
|
||||
std::ostringstream kname;
|
||||
kname << "axpby_" << "general_" << type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available and look for it
|
||||
// in the same folder as this executable if needed
|
||||
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
@@ -15,7 +15,7 @@ module to concisely define the model architecture.
|
||||
Attention layer
|
||||
^^^^^^^^^^^^^^^^
|
||||
|
||||
We will start with the llama attention layer which notably uses the RoPE
|
||||
We will start with the Llama attention layer which notably uses the RoPE
|
||||
positional encoding. [1]_ In addition, our attention layer will optionally use a
|
||||
key/value cache that will be concatenated with the provided keys and values to
|
||||
support efficient inference.
|
||||
|
@@ -64,7 +64,7 @@ set:
|
||||
Next, setup the problem parameters and load the data. To load the data, you need our
|
||||
`mnist data loader
|
||||
<https://github.com/ml-explore/mlx-examples/blob/main/mnist/mnist.py>`_, which
|
||||
we will import as `mnist`.
|
||||
we will import as ``mnist``.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
|
@@ -70,36 +70,36 @@ To build and install the MLX python library from source, first, clone MLX from
|
||||
|
||||
git clone git@github.com:ml-explore/mlx.git mlx && cd mlx
|
||||
|
||||
Install `nanobind <https://nanobind.readthedocs.io/en/latest/>`_ with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
|
||||
Then simply build and install MLX using pip:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" pip install .
|
||||
|
||||
For developing use an editable install:
|
||||
For developing, install the package with development dependencies, and use an
|
||||
editable install:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
env CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e .
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e ".[dev]"
|
||||
|
||||
To make sure the install is working run the tests with:
|
||||
Once the development dependencies are installed, you can build faster with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
CMAKE_BUILD_PARALLEL_LEVEL="" python setup.py build_ext -j --inplace
|
||||
|
||||
Run the tests with:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install ".[testing]"
|
||||
python -m unittest discover python/tests
|
||||
|
||||
Optional: Install stubs to enable auto completions and type checking from your IDE:
|
||||
Optional: Install stubs to enable auto completions and type checking from your
|
||||
IDE:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
pip install ".[dev]"
|
||||
python setup.py generate_stubs
|
||||
|
||||
C++ API
|
||||
@@ -195,7 +195,7 @@ GGUF, you can do:
|
||||
|
||||
.. code-block:: shell
|
||||
|
||||
cmake ..
|
||||
cmake .. \
|
||||
-DCMAKE_BUILD_TYPE=MinSizeRel \
|
||||
-DBUILD_SHARED_LIBS=ON \
|
||||
-DMLX_BUILD_CPU=OFF \
|
||||
|
@@ -24,6 +24,7 @@ Array
|
||||
array.any
|
||||
array.argmax
|
||||
array.argmin
|
||||
array.conj
|
||||
array.cos
|
||||
array.cummax
|
||||
array.cummin
|
||||
@@ -57,3 +58,4 @@ Array
|
||||
array.transpose
|
||||
array.T
|
||||
array.var
|
||||
array.view
|
||||
|
@@ -9,7 +9,9 @@ Linear Algebra
|
||||
:toctree: _autosummary
|
||||
|
||||
inv
|
||||
tri_inv
|
||||
norm
|
||||
cholesky
|
||||
cholesky_inv
|
||||
qr
|
||||
svd
|
||||
|
@@ -57,6 +57,8 @@ Operations
|
||||
diagonal
|
||||
divide
|
||||
divmod
|
||||
einsum
|
||||
einsum_path
|
||||
equal
|
||||
erf
|
||||
erfinv
|
||||
@@ -72,6 +74,7 @@ Operations
|
||||
gather_qmm
|
||||
greater
|
||||
greater_equal
|
||||
hadamard_transform
|
||||
identity
|
||||
inner
|
||||
isclose
|
||||
@@ -103,6 +106,7 @@ Operations
|
||||
minimum
|
||||
moveaxis
|
||||
multiply
|
||||
nan_to_num
|
||||
negative
|
||||
not_equal
|
||||
ones
|
||||
|
@@ -31,6 +31,41 @@ model's parameters and the **optimizer state**.
|
||||
# Compute the new parameters but also the optimizer state.
|
||||
mx.eval(model.parameters(), optimizer.state)
|
||||
|
||||
Saving and Loading
|
||||
------------------
|
||||
|
||||
To serialize an optimizer, save its state. To load an optimizer, load and set
|
||||
the saved state. Here's a simple example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import mlx.core as mx
|
||||
from mlx.utils import tree_flatten, tree_unflatten
|
||||
import mlx.optimizers as optim
|
||||
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
# Perform some updates with the optimizer
|
||||
model = {"w" : mx.zeros((5, 5))}
|
||||
grads = {"w" : mx.ones((5, 5))}
|
||||
optimizer.update(model, grads)
|
||||
|
||||
# Save the state
|
||||
state = tree_flatten(optimizer.state)
|
||||
mx.save_safetensors("optimizer.safetensors", dict(state))
|
||||
|
||||
# Later on, for example when loading from a checkpoint,
|
||||
# recreate the optimizer and load the state
|
||||
optimizer = optim.Adam(learning_rate=1e-2)
|
||||
|
||||
state = tree_unflatten(list(mx.load("optimizer.safetensors").items()))
|
||||
optimizer.state = state
|
||||
|
||||
Note, not every optimizer configuation parameter is saved in the state. For
|
||||
example, for Adam the learning rate is saved but the ``betas`` and ``eps``
|
||||
parameters are not. A good rule of thumb is if the parameter can be scheduled
|
||||
then it will be included in the optimizer state.
|
||||
|
||||
.. toctree::
|
||||
|
||||
optimizers/optimizer
|
||||
|
@@ -44,3 +44,4 @@ we use a splittable version of Threefry, which is a counter-based PRNG.
|
||||
split
|
||||
truncated_normal
|
||||
uniform
|
||||
laplace
|
||||
|
@@ -10,6 +10,7 @@ Transforms
|
||||
|
||||
eval
|
||||
compile
|
||||
custom_function
|
||||
disable_compile
|
||||
enable_compile
|
||||
grad
|
||||
|
@@ -249,9 +249,8 @@ void Axpby::eval_gpu(
|
||||
kname << (contiguous_kernel ? "contiguous_" : "general_");
|
||||
kname << type_to_name(out);
|
||||
|
||||
// Make sure the metal library is available and look for it
|
||||
// in the same folder as this executable if needed
|
||||
d.register_library("mlx_ext", metal::get_colocated_mtllib_path);
|
||||
// Make sure the metal library is available
|
||||
d.register_library("mlx_ext");
|
||||
|
||||
// Make a kernel from this metal library
|
||||
auto kernel = d.get_kernel(kname.str(), "mlx_ext");
|
||||
|
@@ -1,4 +1,4 @@
|
||||
setuptools>=42
|
||||
cmake>=3.24
|
||||
mlx>=0.9.0
|
||||
nanobind@git+https://github.com/wjakob/nanobind.git@2f04eac452a6d9142dedb957701bdb20125561e4
|
||||
mlx>=0.16.2
|
||||
nanobind==2.0
|
||||
|
@@ -6,6 +6,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/compile.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/dtype.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/einsum.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fast.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ops.cpp
|
||||
|
@@ -17,6 +17,10 @@ bool in_tracing() {
|
||||
return detail::InTracing::in_tracing();
|
||||
}
|
||||
|
||||
bool retain_graph() {
|
||||
return detail::RetainGraph::retain_graph();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
array::array(const std::complex<float>& val, Dtype dtype /* = complex64 */)
|
||||
@@ -102,7 +106,7 @@ void array::eval() {
|
||||
}
|
||||
|
||||
bool array::is_tracer() const {
|
||||
return array_desc_->is_tracer && in_tracing();
|
||||
return array_desc_->is_tracer && in_tracing() || retain_graph();
|
||||
}
|
||||
|
||||
void array::set_data(allocator::Buffer buffer, deleter_t d) {
|
||||
@@ -171,10 +175,11 @@ array::~array() {
|
||||
return;
|
||||
}
|
||||
|
||||
// Ignore arrays that will be detached
|
||||
if (status() != array::Status::unscheduled) {
|
||||
// Ignore arrays that might be detached during eval
|
||||
if (status() == array::Status::scheduled) {
|
||||
return;
|
||||
}
|
||||
|
||||
// Break circular reference for non-detached arrays with siblings
|
||||
if (auto n = siblings().size(); n > 0) {
|
||||
bool do_detach = true;
|
||||
|
@@ -1,9 +1,9 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
#include <vecLib/vDSP.h>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
@@ -2,8 +2,7 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <vecLib/BNNS/bnns.h>
|
||||
#include <vecLib/cblas_new.h>
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/backend/accelerate/utils.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
|
@@ -3,8 +3,7 @@
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include <vecLib/vDSP.h>
|
||||
#include <vecLib/vForce.h>
|
||||
#include <Accelerate/Accelerate.h>
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/binary.h"
|
||||
@@ -37,7 +36,7 @@ DEFAULT(Ceil)
|
||||
DEFAULT(Concatenate)
|
||||
DEFAULT(Conjugate)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(CustomTransforms)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT_MULTI(DivMod)
|
||||
DEFAULT(NumberOfElements)
|
||||
@@ -51,6 +50,7 @@ DEFAULT(GatherMM)
|
||||
DEFAULT(GatherQMM)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Hadamard)
|
||||
DEFAULT(Less)
|
||||
DEFAULT(LessEqual)
|
||||
DEFAULT(Load)
|
||||
@@ -102,7 +102,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary(
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -117,7 +117,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary(
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -132,7 +132,7 @@ void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return x + y; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -287,7 +287,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == int32) {
|
||||
binary(
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -300,7 +300,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == float32) {
|
||||
binary(
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -315,7 +315,7 @@ void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return x / y; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -326,12 +326,8 @@ void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
auto size = in.data_size();
|
||||
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::exp(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[exp] Cannot exponentiate elements in array"
|
||||
" with non floating point type.");
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -393,12 +389,8 @@ void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vvlog1pf(
|
||||
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
|
||||
} else if (issubdtype(out.dtype(), inexact)) {
|
||||
unary_fp(in, out, [](auto x) { return std::log1p(x); });
|
||||
} else {
|
||||
throw std::invalid_argument(
|
||||
"[log1p] Cannot compute log of elements in array with"
|
||||
" non floating point type.");
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -408,7 +400,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary(
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -423,7 +415,7 @@ void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return x * y; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -434,7 +426,7 @@ void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
set_unary_output_data(in, out);
|
||||
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
|
||||
} else {
|
||||
unary(in, out, [](auto x) { return -x; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -521,7 +513,7 @@ void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto size = in.data_size();
|
||||
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
|
||||
} else {
|
||||
unary(in, out, [](auto x) { return x * x; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -547,7 +539,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& b = inputs[1];
|
||||
|
||||
if (a.dtype() == float32) {
|
||||
binary(
|
||||
binary_op<float>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -565,7 +557,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
|
||||
});
|
||||
} else if (a.dtype() == int32) {
|
||||
binary(
|
||||
binary_op<int>(
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
@@ -577,7 +569,7 @@ void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
},
|
||||
UseDefaultBinaryOp());
|
||||
} else {
|
||||
binary(a, b, out, [](auto x, auto y) { return x - y; });
|
||||
eval(inputs, out);
|
||||
}
|
||||
}
|
||||
|
||||
|
@@ -2,8 +2,8 @@
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include <simd/vector.h>
|
||||
#include <vecLib/vDSP.h>
|
||||
|
||||
#include "mlx/backend/common/reduce.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
@@ -3,7 +3,10 @@
|
||||
#include <cassert>
|
||||
#include <limits>
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
#include <arm_neon.h>
|
||||
#endif
|
||||
|
||||
#include <simd/math.h>
|
||||
#include <simd/vector.h>
|
||||
|
||||
@@ -53,25 +56,26 @@ inline simd_float16 simd_fast_exp(simd_float16 x) {
|
||||
return (*(simd_float16*)&epart) * x;
|
||||
}
|
||||
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
/**
|
||||
* The ARM neon equivalent of the fast exp above.
|
||||
*/
|
||||
inline float16x8_t neon_fast_exp(float16x8_t x) {
|
||||
x = vmulq_f16(x, vdupq_n_f16(1.442695)); // multiply with log_2(e)
|
||||
x = vmaxq_f16(x, vdupq_n_f16(-14)); // clamp under with -14
|
||||
x = vminq_f16(x, vdupq_n_f16(14)); // clamp over with 14
|
||||
x = vmulq_f16(x, vdupq_n_f16(float16_t(1.442695f))); // multiply with log_2(e)
|
||||
x = vmaxq_f16(x, vdupq_n_f16(float16_t(-14.f))); // clamp under with -14
|
||||
x = vminq_f16(x, vdupq_n_f16(float16_t(14.f))); // clamp over with 14
|
||||
|
||||
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(0.5)));
|
||||
float16x8_t ipart = vrndmq_f16(vaddq_f16(x, vdupq_n_f16(float16_t(0.5f))));
|
||||
float16x8_t fpart = vsubq_f16(x, ipart);
|
||||
|
||||
x = vdupq_n_f16(1.535336188319500e-4f);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.339887440266574e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(9.618437357674640e-3f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(5.550332471162809e-2f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(2.402264791363012e-1f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(6.931472028550421e-1f), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(1.000000000000000f), x, fpart);
|
||||
x = vdupq_n_f16(float16_t(1.535336188319500e-4f));
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.339887440266574e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(9.618437357674640e-3f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(5.550332471162809e-2f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(2.402264791363012e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(6.931472028550421e-1f)), x, fpart);
|
||||
x = vfmaq_f16(vdupq_n_f16(float16_t(1.000000000000000f)), x, fpart);
|
||||
|
||||
// generate 2**ipart in the floating point representation using integer
|
||||
// bitshifting
|
||||
@@ -107,53 +111,6 @@ inline float16_t neon_reduce_add(float16x8_t x) {
|
||||
return vget_lane_f16(y, 0);
|
||||
}
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct AccelerateSimdOps {
|
||||
VT init(T a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return *(VT*)a;
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
*(VT*)dst = x;
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return simd_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return simd_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return simd_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct NeonFp16SimdOps {
|
||||
VT init(T a) {
|
||||
@@ -201,6 +158,55 @@ struct NeonFp16SimdOps {
|
||||
}
|
||||
};
|
||||
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
|
||||
template <typename T, typename VT>
|
||||
struct AccelerateSimdOps {
|
||||
VT init(T a) {
|
||||
return a;
|
||||
}
|
||||
|
||||
VT load(const T* a) {
|
||||
return *(VT*)a;
|
||||
}
|
||||
|
||||
void store(T* dst, VT x) {
|
||||
*(VT*)dst = x;
|
||||
}
|
||||
|
||||
VT max(VT a, VT b) {
|
||||
return simd_max(a, b);
|
||||
}
|
||||
|
||||
VT exp(VT x) {
|
||||
return simd_fast_exp(x);
|
||||
}
|
||||
|
||||
VT add(VT a, VT b) {
|
||||
return a + b;
|
||||
}
|
||||
|
||||
VT sub(VT a, T b) {
|
||||
return a - b;
|
||||
}
|
||||
|
||||
VT mul(VT a, VT b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
VT mul(VT a, T b) {
|
||||
return a * b;
|
||||
}
|
||||
|
||||
T reduce_max(VT x) {
|
||||
return simd_reduce_max(x);
|
||||
}
|
||||
|
||||
T reduce_add(VT x) {
|
||||
return simd_reduce_add(x);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T, typename AccT, typename VT, typename Ops, int N>
|
||||
void softmax(const array& in, array& out) {
|
||||
Ops ops;
|
||||
@@ -362,12 +368,16 @@ void Softmax::eval_cpu(const std::vector<array>& inputs, array& out) {
|
||||
AccelerateSimdOps<float, simd_float16>,
|
||||
16>(in, out);
|
||||
} else {
|
||||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
softmax<
|
||||
float16_t,
|
||||
float16_t,
|
||||
float16x8_t,
|
||||
NeonFp16SimdOps<float16_t, float16x8_t>,
|
||||
8>(in, out);
|
||||
#else // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
eval(inputs, out); // Redirect to common backend for consistency
|
||||
#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
|
||||
}
|
||||
break;
|
||||
case bfloat16:
|
||||
|
@@ -1,8 +1,8 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <vecLib/BNNS/bnns.h>
|
||||
#include <Accelerate/Accelerate.h>
|
||||
#include "mlx/dtype.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
@@ -42,6 +42,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/copy.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/erf.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/masked_mm.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/primitives.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/quantized.cpp
|
||||
|
@@ -66,7 +66,7 @@ void Copy::eval(const std::vector<array>& inputs, array& out) {
|
||||
out.copy_shared_buffer(inputs[0]);
|
||||
}
|
||||
|
||||
void CustomVJP::eval(
|
||||
void CustomTransforms::eval(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
assert(inputs.size() > outputs.size());
|
||||
|
@@ -205,8 +205,8 @@ void compiled_allocate_outputs(
|
||||
// - Donatable
|
||||
// - Correct size
|
||||
// - Not a constant
|
||||
if (in.flags().row_contiguous && in.nbytes() == outputs[o].nbytes() &&
|
||||
in.is_donatable() &&
|
||||
if (in.flags().row_contiguous && in.size() == outputs[o].size() &&
|
||||
in.itemsize() == outputs[o].itemsize() && in.is_donatable() &&
|
||||
constant_ids_.find(inputs_[i].id()) == constant_ids_.end()) {
|
||||
if (move_buffers) {
|
||||
outputs[o].move_shared_buffer(
|
||||
|
@@ -4,6 +4,7 @@
|
||||
|
||||
#include "mlx/allocator.h"
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -142,29 +143,31 @@ void copy_general(
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
int64_t i_offset) {
|
||||
switch (src.ndim()) {
|
||||
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||
data_shape, std::vector<std::vector<stride_t>>{i_strides});
|
||||
switch (new_shape.size()) {
|
||||
case 1:
|
||||
copy_general_dim1<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
src, dst, new_shape, new_strides[0], i_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_dim2<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
src, dst, new_shape, new_strides[0], i_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_dim3<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
src, dst, new_shape, new_strides[0], i_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_dim4<SrcT, DstT, stride_t>(
|
||||
src, dst, data_shape, i_strides, i_offset);
|
||||
src, dst, new_shape, new_strides[0], i_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
auto src_ptr = src.data<SrcT>() + i_offset;
|
||||
auto dst_ptr = dst.data<DstT>();
|
||||
for (size_t i = 0; i < dst.size(); ++i) {
|
||||
stride_t src_elem = elem_to_loc(i, data_shape, i_strides);
|
||||
stride_t src_elem = elem_to_loc(i, new_shape, new_strides[0]);
|
||||
dst_ptr[i] = static_cast<DstT>(src_ptr[src_elem]);
|
||||
}
|
||||
}
|
||||
@@ -195,10 +198,10 @@ inline void copy_general_general_dims(
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
if constexpr (D > 1) {
|
||||
int axis = src.ndim() - D;
|
||||
int axis = data_shape.size() - D;
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
@@ -209,7 +212,7 @@ inline void copy_general_general_dims(
|
||||
o_offset += stride_dst;
|
||||
}
|
||||
} else {
|
||||
int axis = src.ndim() - 1;
|
||||
int axis = data_shape.size() - 1;
|
||||
auto stride_src = i_strides[axis];
|
||||
auto stride_dst = o_strides[axis];
|
||||
auto N = data_shape[axis];
|
||||
@@ -230,38 +233,76 @@ void copy_general_general(
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<stride_t>& i_strides,
|
||||
const std::vector<stride_t>& o_strides,
|
||||
stride_t i_offset,
|
||||
stride_t o_offset) {
|
||||
switch (src.ndim()) {
|
||||
int64_t i_offset,
|
||||
int64_t o_offset) {
|
||||
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
||||
data_shape, std::vector<std::vector<stride_t>>{i_strides, o_strides});
|
||||
switch (new_shape.size()) {
|
||||
case 1:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 1>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
i_offset,
|
||||
o_offset);
|
||||
return;
|
||||
case 2:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 2>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
i_offset,
|
||||
o_offset);
|
||||
return;
|
||||
case 3:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 3>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
i_offset,
|
||||
o_offset);
|
||||
return;
|
||||
case 4:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 4>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
i_offset,
|
||||
o_offset);
|
||||
return;
|
||||
case 5:
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, i_offset, o_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
i_offset,
|
||||
o_offset);
|
||||
return;
|
||||
}
|
||||
|
||||
int size = std::accumulate(
|
||||
data_shape.end() - 5, data_shape.end(), 1, std::multiplies<int>());
|
||||
new_shape.end() - 5, new_shape.end(), 1, std::multiplies<int>());
|
||||
for (int i = 0; i < src.size(); i += size) {
|
||||
stride_t src_offset = i_offset + elem_to_loc(i, data_shape, i_strides);
|
||||
stride_t dst_offset = o_offset + elem_to_loc(i, dst.shape(), o_strides);
|
||||
stride_t src_offset = i_offset + elem_to_loc(i, new_shape, new_strides[0]);
|
||||
stride_t dst_offset = o_offset + elem_to_loc(i, new_shape, new_strides[1]);
|
||||
copy_general_general_dims<SrcT, DstT, stride_t, 5>(
|
||||
src, dst, data_shape, i_strides, o_strides, src_offset, dst_offset);
|
||||
src,
|
||||
dst,
|
||||
new_shape,
|
||||
new_strides[0],
|
||||
new_strides[1],
|
||||
src_offset,
|
||||
dst_offset);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -444,8 +485,17 @@ void copy_inplace(
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
void copy_inplace<int64_t>(
|
||||
template void copy_inplace<size_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
const std::vector<size_t>& i_strides,
|
||||
const std::vector<size_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype);
|
||||
|
||||
template void copy_inplace<int64_t>(
|
||||
const array& src,
|
||||
array& dst,
|
||||
const std::vector<int>& data_shape,
|
||||
@@ -453,24 +503,6 @@ void copy_inplace<int64_t>(
|
||||
const std::vector<int64_t>& o_strides,
|
||||
int64_t i_offset,
|
||||
int64_t o_offset,
|
||||
CopyType ctype) {
|
||||
switch (ctype) {
|
||||
case CopyType::General:
|
||||
case CopyType::GeneralGeneral:
|
||||
return copy_inplace_dispatch(
|
||||
src,
|
||||
dst,
|
||||
ctype,
|
||||
data_shape,
|
||||
i_strides,
|
||||
o_strides,
|
||||
i_offset,
|
||||
o_offset);
|
||||
|
||||
case CopyType::Scalar:
|
||||
case CopyType::Vector:
|
||||
return copy_inplace_dispatch(src, dst, ctype);
|
||||
}
|
||||
}
|
||||
CopyType ctype);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -52,7 +52,7 @@ DEFAULT(Convolution)
|
||||
DEFAULT(Copy)
|
||||
DEFAULT(Cos)
|
||||
DEFAULT(Cosh)
|
||||
DEFAULT_MULTI(CustomVJP)
|
||||
DEFAULT_MULTI(CustomTransforms)
|
||||
DEFAULT_MULTI(Depends)
|
||||
DEFAULT(Divide)
|
||||
DEFAULT(NumberOfElements)
|
||||
@@ -68,6 +68,7 @@ DEFAULT(Full)
|
||||
DEFAULT(Gather)
|
||||
DEFAULT(Greater)
|
||||
DEFAULT(GreaterEqual)
|
||||
DEFAULT(Hadamard)
|
||||
DEFAULT(Less)
|
||||
DEFAULT(LessEqual)
|
||||
DEFAULT(Load)
|
||||
|
107
mlx/backend/common/hadamard.cpp
Normal file
107
mlx/backend/common/hadamard.cpp
Normal file
@@ -0,0 +1,107 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <cassert>
|
||||
|
||||
#include "mlx/backend/common/copy.h"
|
||||
#include "mlx/backend/common/hadamard.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// n = 2^k component
|
||||
template <typename T>
|
||||
void hadamard_n(array& out, int n, int m, float scale) {
|
||||
for (int b = 0; b < out.size() / n; b++) {
|
||||
size_t loc = b * n;
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
int h = 1;
|
||||
int n_over_2 = n / 2;
|
||||
while (h < n) {
|
||||
for (int i = 0; i < n / 2; i++) {
|
||||
int k = i & (h - 1);
|
||||
int j = ((i - k) << 1) + k;
|
||||
float x = *(data_ptr + j);
|
||||
float y = *(data_ptr + j + h);
|
||||
*(data_ptr + j) = x + y;
|
||||
*(data_ptr + j + h) = x - y;
|
||||
if (h == n_over_2) {
|
||||
*(data_ptr + j) *= scale;
|
||||
*(data_ptr + j + h) *= scale;
|
||||
}
|
||||
}
|
||||
h <<= 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// m component
|
||||
template <typename T>
|
||||
void hadamard_m(array& out, int n, int m, float scale) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
auto start = 1;
|
||||
auto end = matrix.find('\n', start);
|
||||
std::vector<bool> hmat_vec;
|
||||
while (end != std::string_view::npos) {
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
hmat_vec.push_back(row[i] == '+');
|
||||
}
|
||||
start = end + 1;
|
||||
end = matrix.find('\n', start);
|
||||
}
|
||||
|
||||
for (int b = 0; b < out.size() / m / n; b++) {
|
||||
size_t loc = b * n * m;
|
||||
T* data_ptr = out.data<T>() + loc;
|
||||
for (int i = 0; i < n; i++) {
|
||||
std::vector<float> out(m);
|
||||
for (int j = 0; j < m; j++) {
|
||||
for (int k = 0; k < m; k++) {
|
||||
float x = *(data_ptr + i + k * n);
|
||||
if (hmat_vec[k + j * m]) {
|
||||
out[j] += x;
|
||||
} else {
|
||||
out[j] -= x;
|
||||
}
|
||||
}
|
||||
}
|
||||
for (int j = 0; j < m; j++) {
|
||||
*(data_ptr + i + j * n) = out[j] * scale;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void hadamard(array& out, int n, int m, float scale) {
|
||||
float n_scale = m > 1 ? 1.0 : scale;
|
||||
hadamard_n<T>(out, n, m, n_scale);
|
||||
if (m > 1) {
|
||||
hadamard_m<T>(out, n, m, scale);
|
||||
}
|
||||
}
|
||||
|
||||
void Hadamard::eval(const std::vector<array>& inputs, array& out) {
|
||||
assert(inputs.size() == 1);
|
||||
auto& in = inputs[0];
|
||||
|
||||
// Copy input to output
|
||||
copy(in, out, CopyType::General);
|
||||
|
||||
int axis = out.ndim() - 1;
|
||||
auto [n, m] = decompose_hadamard(out.shape(axis));
|
||||
|
||||
switch (in.dtype()) {
|
||||
case float32:
|
||||
return hadamard<float>(out, n, m, scale_);
|
||||
case float16:
|
||||
return hadamard<float16_t>(out, n, m, scale_);
|
||||
case bfloat16:
|
||||
return hadamard<bfloat16_t>(out, n, m, scale_);
|
||||
default:
|
||||
throw std::invalid_argument("[hadamard] Unsupported type.");
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
105
mlx/backend/common/hadamard.h
Normal file
105
mlx/backend/common/hadamard.h
Normal file
@@ -0,0 +1,105 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
// From http://neilsloane.com/hadamard/
|
||||
constexpr std::string_view h12 = R"(
|
||||
+-++++++++++
|
||||
--+-+-+-+-+-
|
||||
+++-++----++
|
||||
+---+--+-++-
|
||||
+++++-++----
|
||||
+-+---+--+-+
|
||||
++--+++-++--
|
||||
+--++---+--+
|
||||
++----+++-++
|
||||
+--+-++---+-
|
||||
++++----+++-
|
||||
+-+--+-++---
|
||||
)";
|
||||
|
||||
constexpr std::string_view h20 = R"(
|
||||
+----+----++--++-++-
|
||||
-+----+---+++---+-++
|
||||
--+----+---+++-+-+-+
|
||||
---+----+---+++++-+-
|
||||
----+----++--++-++-+
|
||||
-+++++-----+--+++--+
|
||||
+-+++-+---+-+--+++--
|
||||
++-++--+---+-+--+++-
|
||||
+++-+---+---+-+--+++
|
||||
++++-----++--+-+--++
|
||||
--++-+-++-+-----++++
|
||||
---++-+-++-+---+-+++
|
||||
+---++-+-+--+--++-++
|
||||
++---++-+----+-+++-+
|
||||
-++---++-+----+++++-
|
||||
-+--+--++-+----+----
|
||||
+-+-----++-+----+---
|
||||
-+-+-+---+--+----+--
|
||||
--+-+++------+----+-
|
||||
+--+--++------+----+
|
||||
)";
|
||||
|
||||
constexpr std::string_view h28 = R"(
|
||||
+------++----++-+--+-+--++--
|
||||
-+-----+++-----+-+--+-+--++-
|
||||
--+-----+++---+-+-+----+--++
|
||||
---+-----+++---+-+-+-+--+--+
|
||||
----+-----+++---+-+-+++--+--
|
||||
-----+-----++++--+-+--++--+-
|
||||
------++----++-+--+-+--++--+
|
||||
--++++-+-------++--+++-+--+-
|
||||
---++++-+-----+-++--+-+-+--+
|
||||
+---+++--+----++-++--+-+-+--
|
||||
++---++---+----++-++--+-+-+-
|
||||
+++---+----+----++-++--+-+-+
|
||||
++++--------+-+--++-++--+-+-
|
||||
-++++--------+++--++--+--+-+
|
||||
-+-++-++--++--+--------++++-
|
||||
+-+-++--+--++--+--------++++
|
||||
-+-+-++--+--++--+----+---+++
|
||||
+-+-+-++--+--+---+---++---++
|
||||
++-+-+-++--+------+--+++---+
|
||||
-++-+-+-++--+------+-++++---
|
||||
+-++-+---++--+------+-++++--
|
||||
-++--++-+-++-+++----++------
|
||||
+-++--++-+-++-+++-----+-----
|
||||
++-++---+-+-++-+++-----+----
|
||||
-++-++-+-+-+-+--+++-----+---
|
||||
--++-++++-+-+----+++-----+--
|
||||
+--++-+-++-+-+----+++-----+-
|
||||
++--++-+-++-+-+----++------+
|
||||
)";
|
||||
|
||||
inline const std::map<int, std::string_view> hadamard_matrices() {
|
||||
return {{12, h12}, {20, h20}, {28, h28}};
|
||||
}
|
||||
|
||||
inline std::pair<int, int> decompose_hadamard(int n) {
|
||||
// n = m*2^k
|
||||
int m = 1;
|
||||
if (!is_power_of_2(n)) {
|
||||
auto h_matrices = hadamard_matrices();
|
||||
for (auto [factor, _] : h_matrices) {
|
||||
if (n % factor == 0) {
|
||||
m = factor;
|
||||
n /= factor;
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (m == 1) {
|
||||
throw std::invalid_argument(
|
||||
"[hadamard] Only supports n = m*2^k where m in (1, 12, 20, 28).");
|
||||
}
|
||||
}
|
||||
return {n, m};
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -10,9 +10,106 @@
|
||||
#include <lapack.h>
|
||||
#endif
|
||||
|
||||
// Wrapper to account for differences in
|
||||
// LAPACK implementations (basically how to pass the 'uplo' string to fortran).
|
||||
int strtri_wrapper(char uplo, char diag, float* matrix, int N) {
|
||||
int info;
|
||||
|
||||
#ifdef LAPACK_FORTRAN_STRLEN_END
|
||||
strtri_(
|
||||
/* uplo = */ &uplo,
|
||||
/* diag = */ &diag,
|
||||
/* N = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info,
|
||||
/* uplo_len = */ static_cast<size_t>(1),
|
||||
/* diag_len = */ static_cast<size_t>(1));
|
||||
#else
|
||||
strtri_(
|
||||
/* uplo = */ &uplo,
|
||||
/* diag = */ &diag,
|
||||
/* N = */ &N,
|
||||
/* a = */ matrix,
|
||||
/* lda = */ &N,
|
||||
/* info = */ &info);
|
||||
#endif
|
||||
|
||||
return info;
|
||||
}
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
void inverse_impl(const array& a, array& inv) {
|
||||
void general_inv(array& inv, int N, int i) {
|
||||
int info;
|
||||
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
|
||||
// Compute LU factorization.
|
||||
sgetrf_(
|
||||
/* m = */ &N,
|
||||
/* n = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU factorization failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
static const int lwork_query = -1;
|
||||
float workspace_size = 0;
|
||||
|
||||
// Compute workspace size.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ nullptr,
|
||||
/* work = */ &workspace_size,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU workspace calculation failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_size;
|
||||
auto scratch = array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Compute inverse.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
void tri_inv(array& inv, int N, int i, bool upper) {
|
||||
const char uplo = upper ? 'L' : 'U';
|
||||
const char diag = 'N';
|
||||
int info = strtri_wrapper(uplo, diag, inv.data<float>() + N * N * i, N);
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: triangular inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
}
|
||||
|
||||
void inverse_impl(const array& a, array& inv, bool tri, bool upper) {
|
||||
// Lapack uses the column-major convention. We take advantage of the following
|
||||
// identity to avoid transposing (see
|
||||
// https://math.stackexchange.com/a/340234):
|
||||
@@ -24,63 +121,11 @@ void inverse_impl(const array& a, array& inv) {
|
||||
const int N = a.shape(-1);
|
||||
const size_t num_matrices = a.size() / (N * N);
|
||||
|
||||
int info;
|
||||
auto ipiv = array::Data{allocator::malloc_or_wait(sizeof(int) * N)};
|
||||
|
||||
for (int i = 0; i < num_matrices; i++) {
|
||||
// Compute LU factorization.
|
||||
sgetrf_(
|
||||
/* m = */ &N,
|
||||
/* n = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU factorization failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
static const int lwork_query = -1;
|
||||
float workspace_size = 0;
|
||||
|
||||
// Compute workspace size.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ nullptr,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ nullptr,
|
||||
/* work = */ &workspace_size,
|
||||
/* lwork = */ &lwork_query,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: LU workspace calculation failed with error code "
|
||||
<< info;
|
||||
throw std::runtime_error(ss.str());
|
||||
}
|
||||
|
||||
const int lwork = workspace_size;
|
||||
auto scratch =
|
||||
array::Data{allocator::malloc_or_wait(sizeof(float) * lwork)};
|
||||
|
||||
// Compute inverse.
|
||||
sgetri_(
|
||||
/* m = */ &N,
|
||||
/* a = */ inv.data<float>() + N * N * i,
|
||||
/* lda = */ &N,
|
||||
/* ipiv = */ static_cast<int*>(ipiv.buffer.raw_ptr()),
|
||||
/* work = */ static_cast<float*>(scratch.buffer.raw_ptr()),
|
||||
/* lwork = */ &lwork,
|
||||
/* info = */ &info);
|
||||
|
||||
if (info != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "inverse_impl: inversion failed with error code " << info;
|
||||
throw std::runtime_error(ss.str());
|
||||
if (tri) {
|
||||
tri_inv(inv, N, i, upper);
|
||||
} else {
|
||||
general_inv(inv, N, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -89,7 +134,7 @@ void Inverse::eval(const std::vector<array>& inputs, array& output) {
|
||||
if (inputs[0].dtype() != float32) {
|
||||
throw std::runtime_error("[Inverse::eval] only supports float32.");
|
||||
}
|
||||
inverse_impl(inputs[0], output);
|
||||
inverse_impl(inputs[0], output, tri_, upper_);
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -405,7 +405,17 @@ void Reshape::eval(const std::vector<array>& inputs, array& out) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
|
||||
if (copy_necessary) {
|
||||
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : CopyType::General);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
auto out_strides = make_contiguous_strides<size_t>(in.shape());
|
||||
copy_inplace<size_t>(
|
||||
in,
|
||||
out,
|
||||
in.shape(),
|
||||
in.strides(),
|
||||
out_strides,
|
||||
0,
|
||||
0,
|
||||
CopyType::General);
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
|
@@ -113,14 +113,14 @@ void sort(const array& in, array& out, int axis) {
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto remaining_shape = in.shape();
|
||||
auto remaining_shape = out.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
|
||||
auto remaining_strides = in.strides();
|
||||
auto remaining_strides = out.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
size_t axis_stride = out.strides()[axis];
|
||||
int axis_size = out.shape(axis);
|
||||
|
||||
// Perform sorting in place
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
@@ -143,34 +143,42 @@ void argsort(const array& in, array& out, int axis) {
|
||||
axis = axis < 0 ? axis + in.ndim() : axis;
|
||||
size_t n_rows = in.size() / in.shape(axis);
|
||||
|
||||
auto remaining_shape = in.shape();
|
||||
remaining_shape.erase(remaining_shape.begin() + axis);
|
||||
auto in_remaining_shape = in.shape();
|
||||
in_remaining_shape.erase(in_remaining_shape.begin() + axis);
|
||||
|
||||
auto remaining_strides = in.strides();
|
||||
remaining_strides.erase(remaining_strides.begin() + axis);
|
||||
auto in_remaining_strides = in.strides();
|
||||
in_remaining_strides.erase(in_remaining_strides.begin() + axis);
|
||||
|
||||
size_t axis_stride = in.strides()[axis];
|
||||
auto out_remaining_shape = out.shape();
|
||||
out_remaining_shape.erase(out_remaining_shape.begin() + axis);
|
||||
|
||||
auto out_remaining_strides = out.strides();
|
||||
out_remaining_strides.erase(out_remaining_strides.begin() + axis);
|
||||
|
||||
size_t in_stride = in.strides()[axis];
|
||||
size_t out_stride = out.strides()[axis];
|
||||
int axis_size = in.shape(axis);
|
||||
|
||||
// Perform sorting
|
||||
for (int i = 0; i < n_rows; i++) {
|
||||
size_t loc = elem_to_loc(i, remaining_shape, remaining_strides);
|
||||
const T* data_ptr = in.data<T>() + loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + loc;
|
||||
size_t in_loc = elem_to_loc(i, in_remaining_shape, in_remaining_strides);
|
||||
size_t out_loc = elem_to_loc(i, out_remaining_shape, out_remaining_strides);
|
||||
const T* data_ptr = in.data<T>() + in_loc;
|
||||
IdxT* idx_ptr = out.data<IdxT>() + out_loc;
|
||||
|
||||
StridedIterator st_(idx_ptr, axis_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, axis_stride, axis_size);
|
||||
StridedIterator st_(idx_ptr, out_stride, 0);
|
||||
StridedIterator ed_(idx_ptr, out_stride, axis_size);
|
||||
|
||||
// Initialize with iota
|
||||
std::iota(st_, ed_, IdxT(0));
|
||||
|
||||
// Sort according to vals
|
||||
StridedIterator st(idx_ptr, axis_stride, 0);
|
||||
StridedIterator ed(idx_ptr, axis_stride, axis_size);
|
||||
StridedIterator st(idx_ptr, out_stride, 0);
|
||||
StridedIterator ed(idx_ptr, out_stride, axis_size);
|
||||
|
||||
std::stable_sort(st, ed, [data_ptr, axis_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * axis_stride];
|
||||
auto v2 = data_ptr[b * axis_stride];
|
||||
std::stable_sort(st, ed, [data_ptr, in_stride](IdxT a, IdxT b) {
|
||||
auto v1 = data_ptr[a * in_stride];
|
||||
auto v2 = data_ptr[b * in_stride];
|
||||
return v1 < v2 || (v1 == v2 && a < b);
|
||||
});
|
||||
}
|
||||
|
@@ -29,6 +29,15 @@ inline size_t elem_to_loc(int elem, const array& a) {
|
||||
return elem_to_loc(elem, a.shape(), a.strides());
|
||||
}
|
||||
|
||||
template <typename stride_t>
|
||||
std::vector<stride_t> make_contiguous_strides(const std::vector<int>& shape) {
|
||||
std::vector<stride_t> strides(shape.size(), 1);
|
||||
for (int i = shape.size() - 1; i > 0; i--) {
|
||||
strides[i - 1] = strides[i] * shape[i];
|
||||
}
|
||||
return strides;
|
||||
}
|
||||
|
||||
// Collapse dims that are contiguous to possibly route to a better kernel
|
||||
// e.g. for x = transpose(array({0, 1, 2, 3, 4, 5, 6, 7}, {2, 2, 2}), {2, 0, 1})
|
||||
// should return {{2, 4}, {{1, 2}}}.
|
||||
|
@@ -18,7 +18,7 @@ function(make_jit_source SRC_FILE)
|
||||
${CMAKE_C_COMPILER}
|
||||
${PROJECT_SOURCE_DIR}
|
||||
${SRC_FILE}
|
||||
"-D${MLX_METAL_VERSION}"
|
||||
"-DMLX_METAL_VERSION=${MLX_METAL_VERSION}"
|
||||
DEPENDS make_compiled_preamble.sh
|
||||
kernels/${SRC_FILE}.h
|
||||
${ARGN}
|
||||
@@ -52,6 +52,7 @@ make_jit_source(
|
||||
)
|
||||
make_jit_source(scatter)
|
||||
make_jit_source(gather)
|
||||
make_jit_source(hadamard)
|
||||
|
||||
if (MLX_METAL_JIT)
|
||||
target_sources(
|
||||
@@ -113,6 +114,7 @@ if (MLX_METAL_JIT)
|
||||
kernels/steel/conv/loaders/loader_general.h
|
||||
)
|
||||
make_jit_source(quantized)
|
||||
make_jit_source(gemv_masked)
|
||||
else()
|
||||
target_sources(
|
||||
mlx
|
||||
@@ -132,6 +134,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/device.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/event.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/fft.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/hadamard.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/indexing.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/matmul.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/scaled_dot_product_attention.cpp
|
||||
@@ -147,6 +150,7 @@ target_sources(
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/reduce.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/ternary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/unary.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/utils.cpp
|
||||
)
|
||||
|
||||
if (NOT MLX_METAL_PATH)
|
||||
|
@@ -242,8 +242,17 @@ void MetalAllocator::free(Buffer buffer) {
|
||||
}
|
||||
|
||||
MetalAllocator& allocator() {
|
||||
static MetalAllocator allocator_;
|
||||
return allocator_;
|
||||
// By creating the |allocator_| on heap, the destructor of MetalAllocator will
|
||||
// not be called on exit and all the buffers will be leaked. This is necessary
|
||||
// because releasing buffers can take more than 30sec when the program holds a
|
||||
// lot of RAM (for example inferencing a LLM), and it would feel frozen to
|
||||
// users when exiting.
|
||||
// TODO(zcbenz): Consider using the `base::NoDestructor` class from Chromium
|
||||
// when applying this pattern to more places, or when introducing sanitizers
|
||||
// to MLX.
|
||||
// https://source.chromium.org/chromium/chromium/src/+/main:base/no_destructor.h
|
||||
static MetalAllocator* allocator_ = new MetalAllocator;
|
||||
return *allocator_;
|
||||
}
|
||||
|
||||
size_t set_cache_limit(size_t limit) {
|
||||
|
@@ -21,10 +21,43 @@ namespace mlx::core {
|
||||
|
||||
constexpr int MAX_BINARY_SPECIALIZED_DIMS = 5;
|
||||
|
||||
std::string get_kernel_name(
|
||||
BinaryOpType bopt,
|
||||
const std::string& op,
|
||||
const array& a,
|
||||
bool use_2d,
|
||||
int ndim) {
|
||||
std::ostringstream kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << (use_2d ? "sv2" : "sv");
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << (use_2d ? "vs2" : "vs");
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << (use_2d ? "vv2" : "vv");
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
if (ndim <= MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
kname << ndim;
|
||||
} else {
|
||||
kname << "n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << op << type_to_name(a);
|
||||
return kname.str();
|
||||
}
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
@@ -41,35 +74,8 @@ void binary_op_gpu_inplace(
|
||||
auto& strides_b = strides[1];
|
||||
auto& strides_out = strides[2];
|
||||
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << "sv";
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << "vs";
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << "vv";
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
if (shape.size() <= MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
} else {
|
||||
kname << "n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << op << type_to_name(a);
|
||||
kernel_name = kname.str();
|
||||
}
|
||||
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
std::string kernel_name = get_kernel_name(bopt, op, a, use_2d, shape.size());
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto kernel =
|
||||
@@ -117,9 +123,11 @@ void binary_op_gpu_inplace(
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
// Launch a 1D grid of threads
|
||||
// Launch a 1D or 2D grid of threads
|
||||
size_t nthreads = out.data_size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
MTL::Size grid_dims = use_2d
|
||||
? get_2d_grid_dims(outputs[0].shape(), outputs[0].strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
@@ -132,7 +140,7 @@ void binary_op_gpu_inplace(
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
@@ -146,7 +154,7 @@ void binary_op_gpu(
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op) {
|
||||
const std::string& op) {
|
||||
auto& s = outputs[0].primitive().stream();
|
||||
binary_op_gpu(inputs, outputs, op, s);
|
||||
}
|
||||
@@ -154,7 +162,7 @@ void binary_op_gpu(
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s) {
|
||||
auto& a = inputs[0];
|
||||
auto& b = inputs[1];
|
||||
@@ -169,35 +177,8 @@ void binary_op_gpu_inplace(
|
||||
auto& strides_b = strides[1];
|
||||
auto& strides_out = strides[2];
|
||||
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (bopt) {
|
||||
case BinaryOpType::ScalarScalar:
|
||||
kname << "ss";
|
||||
break;
|
||||
case BinaryOpType::ScalarVector:
|
||||
kname << "sv";
|
||||
break;
|
||||
case BinaryOpType::VectorScalar:
|
||||
kname << "vs";
|
||||
break;
|
||||
case BinaryOpType::VectorVector:
|
||||
kname << "vv";
|
||||
break;
|
||||
case BinaryOpType::General:
|
||||
kname << "g";
|
||||
if (shape.size() <= MAX_BINARY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
} else {
|
||||
kname << "n";
|
||||
}
|
||||
break;
|
||||
}
|
||||
kname << op << type_to_name(a);
|
||||
kernel_name = kname.str();
|
||||
}
|
||||
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
std::string kernel_name = get_kernel_name(bopt, op, a, use_2d, shape.size());
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
auto kernel = get_binary_kernel(d, kernel_name, a.dtype(), out.dtype(), op);
|
||||
@@ -237,10 +218,11 @@ void binary_op_gpu_inplace(
|
||||
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
// Launch a 1D grid of threads
|
||||
size_t nthreads =
|
||||
bopt == BinaryOpType::General ? out.size() : out.data_size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
// Launch a 1D or 2D grid of threads
|
||||
|
||||
size_t nthreads = out.data_size();
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
@@ -253,7 +235,7 @@ void binary_op_gpu_inplace(
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s) {
|
||||
assert(inputs.size() == 2);
|
||||
auto& a = inputs[0];
|
||||
@@ -266,7 +248,7 @@ void binary_op_gpu(
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op) {
|
||||
const std::string& op) {
|
||||
auto& s = out.primitive().stream();
|
||||
binary_op_gpu(inputs, out, op, s);
|
||||
}
|
||||
|
@@ -9,25 +9,25 @@ namespace mlx::core {
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s);
|
||||
|
||||
void binary_op_gpu_inplace(
|
||||
const std::vector<array>& inputs,
|
||||
array& out,
|
||||
const std::string op,
|
||||
const std::string& op,
|
||||
const Stream& s);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -64,16 +64,17 @@ void copy_gpu_inplace(
|
||||
auto& strides_in_ = strides[0];
|
||||
auto& strides_out_ = strides[1];
|
||||
|
||||
bool use_2d = out.data_size() > UINT32_MAX;
|
||||
auto& d = metal::device(s.device);
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
switch (ctype) {
|
||||
case CopyType::Scalar:
|
||||
kname << "s";
|
||||
kname << (use_2d ? "s2" : "s");
|
||||
break;
|
||||
case CopyType::Vector:
|
||||
kname << "v";
|
||||
kname << (use_2d ? "v2" : "v");
|
||||
break;
|
||||
case CopyType::General:
|
||||
kname << "g";
|
||||
@@ -139,7 +140,8 @@ void copy_gpu_inplace(
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
size_t nthreads = out.data_size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(out.shape(), out.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
|
@@ -14,7 +14,6 @@
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/metal.h"
|
||||
#include "mlx/backend/metal/metal_impl.h"
|
||||
#include "mlx/backend/metal/mps/gemm.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
@@ -30,15 +29,29 @@ constexpr int MAX_DISPATCHES_PER_ENCODER = 2;
|
||||
constexpr const char* default_mtllib_path = METAL_PATH;
|
||||
|
||||
constexpr auto get_metal_version() {
|
||||
#if defined METAL_3_2
|
||||
#if (MLX_METAL_VERSION >= 320)
|
||||
return MTL::LanguageVersion3_2;
|
||||
#elif defined METAL_3_1
|
||||
#elif (MLX_METAL_VERSION >= 310)
|
||||
return MTL::LanguageVersion3_1;
|
||||
#else
|
||||
return MTL::LanguageVersion3_0;
|
||||
#endif
|
||||
}
|
||||
|
||||
std::string get_colocated_mtllib_path(const std::string& lib_name) {
|
||||
Dl_info info;
|
||||
std::string mtllib_path;
|
||||
std::string lib_ext = lib_name + ".metallib";
|
||||
|
||||
int success = dladdr((void*)get_colocated_mtllib_path, &info);
|
||||
if (success) {
|
||||
auto mtllib = fs::path(info.dli_fname).remove_filename() / lib_ext;
|
||||
mtllib_path = mtllib.c_str();
|
||||
}
|
||||
|
||||
return mtllib_path;
|
||||
}
|
||||
|
||||
auto load_device() {
|
||||
auto devices = MTL::CopyAllDevices();
|
||||
auto device = static_cast<MTL::Device*>(devices->object(0))
|
||||
@@ -126,6 +139,49 @@ MTL::Library* load_library(
|
||||
|
||||
} // namespace
|
||||
|
||||
CommandEncoder::CommandEncoder(MTL::CommandBuffer* cbuf) : cbuf(cbuf) {
|
||||
enc = cbuf->computeCommandEncoder(MTL::DispatchTypeConcurrent);
|
||||
enc->retain();
|
||||
}
|
||||
|
||||
CommandEncoder::~CommandEncoder() {
|
||||
enc->endEncoding();
|
||||
enc->release();
|
||||
}
|
||||
|
||||
void CommandEncoder::set_input_array(
|
||||
const array& a,
|
||||
int idx,
|
||||
int64_t offset /* = 0 */) {
|
||||
auto r_buf = static_cast<MTL::Resource*>(const_cast<void*>(a.buffer().ptr()));
|
||||
if (auto it = outputs.find(r_buf); it != outputs.end()) {
|
||||
// Insert a barrier
|
||||
enc->memoryBarrier(&r_buf, 1);
|
||||
|
||||
// Remove the output
|
||||
outputs.erase(it);
|
||||
}
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto base_offset = a.data<char>() -
|
||||
static_cast<char*>(const_cast<MTL::Buffer*>(a_buf)->contents());
|
||||
base_offset += offset;
|
||||
enc->setBuffer(a_buf, base_offset, idx);
|
||||
}
|
||||
|
||||
void CommandEncoder::set_output_array(
|
||||
array& a,
|
||||
int idx,
|
||||
int64_t offset /* = 0 */) {
|
||||
// Add barriers before adding the output to the output set
|
||||
set_input_array(a, idx, offset);
|
||||
auto buf = static_cast<MTL::Resource*>(a.buffer().ptr());
|
||||
if (concurrent) {
|
||||
concurrent_outputs.insert(buf);
|
||||
} else {
|
||||
outputs.insert(buf);
|
||||
}
|
||||
}
|
||||
|
||||
void CommandEncoder::dispatchThreadgroups(
|
||||
MTL::Size grid_dims,
|
||||
MTL::Size group_dims) {
|
||||
@@ -255,13 +311,9 @@ void Device::register_library(
|
||||
}
|
||||
}
|
||||
|
||||
void Device::register_library(
|
||||
const std::string& lib_name,
|
||||
const std::function<std::string(const std::string&)>& lib_path_func) {
|
||||
void Device::register_library(const std::string& lib_name) {
|
||||
if (auto it = library_map_.find(lib_name); it == library_map_.end()) {
|
||||
std::string new_lib_path = lib_path_func(lib_name);
|
||||
auto new_lib = load_library(device_, lib_name, new_lib_path.c_str());
|
||||
library_map_.insert({lib_name, new_lib});
|
||||
register_library(lib_name, get_colocated_mtllib_path(lib_name));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -271,7 +323,7 @@ MTL::Library* Device::get_library_cache_(const std::string& lib_name) {
|
||||
if (auto it = library_map_.find(lib_name); it != library_map_.end()) {
|
||||
mtl_lib = it->second;
|
||||
} else { // Look for metallib alongside library
|
||||
register_library(lib_name);
|
||||
register_library(lib_name, get_colocated_mtllib_path(lib_name));
|
||||
mtl_lib = library_map_[lib_name];
|
||||
}
|
||||
|
||||
|
@@ -9,38 +9,16 @@
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include <dlfcn.h>
|
||||
#include <filesystem>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/device.h"
|
||||
|
||||
namespace fs = std::filesystem;
|
||||
|
||||
namespace mlx::core::metal {
|
||||
|
||||
inline std::string get_colocated_mtllib_path(const std::string& lib_name) {
|
||||
Dl_info info;
|
||||
std::string mtllib_path;
|
||||
std::string lib_ext = lib_name + ".metallib";
|
||||
|
||||
int success = dladdr((void*)get_colocated_mtllib_path, &info);
|
||||
if (success) {
|
||||
auto mtllib = fs::path(info.dli_fname).remove_filename() / lib_ext;
|
||||
mtllib_path = mtllib.c_str();
|
||||
}
|
||||
|
||||
return mtllib_path;
|
||||
}
|
||||
|
||||
using MTLFCList =
|
||||
std::vector<std::tuple<const void*, MTL::DataType, NS::UInteger>>;
|
||||
|
||||
struct CommandEncoder {
|
||||
CommandEncoder(MTL::CommandBuffer* cbuf) : cbuf(cbuf) {
|
||||
enc = cbuf->computeCommandEncoder(MTL::DispatchTypeConcurrent);
|
||||
enc->retain();
|
||||
};
|
||||
CommandEncoder(MTL::CommandBuffer* cbuf);
|
||||
CommandEncoder(const CommandEncoder&) = delete;
|
||||
CommandEncoder& operator=(const CommandEncoder&) = delete;
|
||||
|
||||
@@ -63,34 +41,8 @@ struct CommandEncoder {
|
||||
return enc;
|
||||
}
|
||||
|
||||
void set_input_array(const array& a, int idx, int64_t offset = 0) {
|
||||
auto r_buf =
|
||||
static_cast<MTL::Resource*>(const_cast<void*>(a.buffer().ptr()));
|
||||
if (auto it = outputs.find(r_buf); it != outputs.end()) {
|
||||
// Insert a barrier
|
||||
enc->memoryBarrier(&r_buf, 1);
|
||||
|
||||
// Remove the output
|
||||
outputs.erase(it);
|
||||
}
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto base_offset = a.data<char>() -
|
||||
static_cast<char*>(const_cast<MTL::Buffer*>(a_buf)->contents());
|
||||
base_offset += offset;
|
||||
enc->setBuffer(a_buf, base_offset, idx);
|
||||
}
|
||||
|
||||
void set_output_array(array& a, int idx, int64_t offset = 0) {
|
||||
// Add barriers before adding the output to the output set
|
||||
set_input_array(a, idx, offset);
|
||||
auto buf = static_cast<MTL::Resource*>(a.buffer().ptr());
|
||||
if (concurrent) {
|
||||
concurrent_outputs.insert(buf);
|
||||
} else {
|
||||
outputs.insert(buf);
|
||||
}
|
||||
}
|
||||
|
||||
void set_input_array(const array& a, int idx, int64_t offset = 0);
|
||||
void set_output_array(array& a, int idx, int64_t offset = 0);
|
||||
void dispatchThreadgroups(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
void dispatchThreads(MTL::Size grid_dims, MTL::Size group_dims);
|
||||
|
||||
@@ -98,10 +50,7 @@ struct CommandEncoder {
|
||||
return ConcurrentContext(*this);
|
||||
}
|
||||
|
||||
~CommandEncoder() {
|
||||
enc->endEncoding();
|
||||
enc->release();
|
||||
}
|
||||
~CommandEncoder();
|
||||
|
||||
private:
|
||||
void maybe_split();
|
||||
@@ -136,10 +85,8 @@ class Device {
|
||||
void register_library(
|
||||
const std::string& lib_name,
|
||||
const std::string& lib_path);
|
||||
void register_library(
|
||||
const std::string& lib_name,
|
||||
const std::function<std::string(const std::string&)>& lib_path_func =
|
||||
get_colocated_mtllib_path);
|
||||
|
||||
void register_library(const std::string& lib_name);
|
||||
|
||||
MTL::Library* get_library(const std::string& name);
|
||||
|
||||
|
@@ -1,4 +1,4 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#include <cassert>
|
||||
#include <complex>
|
||||
#include <map>
|
||||
@@ -12,8 +12,7 @@
|
||||
#include "mlx/backend/metal/slicing.h"
|
||||
#include "mlx/backend/metal/unary.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/mlx.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -785,10 +784,9 @@ void nd_fft_op(
|
||||
fft_op(in_arr, out_arr, axis, inverse, step_real, inplace, s);
|
||||
}
|
||||
|
||||
std::vector<array> copies = {temp1, temp2};
|
||||
auto& d = metal::device(s.device);
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
|
||||
[temp_arrs](MTL::CommandBuffer*) mutable { temp_arrs.clear(); });
|
||||
}
|
||||
|
||||
void FFT::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
|
203
mlx/backend/metal/hadamard.cpp
Normal file
203
mlx/backend/metal/hadamard.cpp
Normal file
@@ -0,0 +1,203 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
#include <map>
|
||||
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/common/hadamard.h"
|
||||
#include "mlx/backend/common/utils.h"
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/jit/includes.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
constexpr int MAX_HADAMARD_THREADS_PER_GROUP = 256;
|
||||
constexpr int MAX_HADAMARD_BYTES = 32768; // 32KB
|
||||
|
||||
std::string gen_hadamard_codelet(int m) {
|
||||
// Generate a O(m^2) hadamard codelet for a given M
|
||||
// using the hadamard matrices above
|
||||
//
|
||||
// e.g. m = 2
|
||||
// METAL_FUNC void hadamard_m(thread float *x) {
|
||||
// float tmp[2];
|
||||
// tmp[0] = + x[0] + x[1];
|
||||
// tmp[1] = + x[0] - x[1];
|
||||
// for (int i = 0; i < 2; i++) { x[i] = tmp[i]; }
|
||||
// }
|
||||
//
|
||||
auto h_matrices = hadamard_matrices();
|
||||
auto& matrix = h_matrices[m];
|
||||
|
||||
std::ostringstream source;
|
||||
source << "METAL_FUNC void hadamard_radix_m(thread float *x) {" << std::endl;
|
||||
if (m == 1) {
|
||||
source << "}" << std::endl;
|
||||
return source.str();
|
||||
}
|
||||
source << " float tmp[" << m << "];" << std::endl;
|
||||
auto start = 1;
|
||||
auto end = matrix.find('\n', start);
|
||||
|
||||
int index = 0;
|
||||
while (end != std::string_view::npos) {
|
||||
source << " tmp[" << index << "] = ";
|
||||
auto row = matrix.substr(start, end - start);
|
||||
for (int i = 0; i < row.length(); i++) {
|
||||
source << " " << row[i] << " x[" << i << "]";
|
||||
}
|
||||
source << ";" << std::endl;
|
||||
start = end + 1;
|
||||
end = matrix.find('\n', start);
|
||||
index++;
|
||||
}
|
||||
source << " for (int i = 0; i < " << m << "; i++) { x[i] = tmp[i]; }"
|
||||
<< std::endl;
|
||||
source << "}" << std::endl;
|
||||
return source.str();
|
||||
}
|
||||
|
||||
void launch_hadamard(
|
||||
const array& in,
|
||||
array& out,
|
||||
int batch_size,
|
||||
int threads_per,
|
||||
const std::string kernel_name,
|
||||
float scale,
|
||||
const Stream& s) {
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
const auto& lib_name = kernel_name.substr(1);
|
||||
auto lib = d.get_library(lib_name);
|
||||
auto kernel = d.get_kernel(kernel_name, lib);
|
||||
assert(threads_per <= kernel->maxTotalThreadsPerThreadgroup());
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
compute_encoder->setBytes(&scale, sizeof(float), 2);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(1, threads_per, 1);
|
||||
MTL::Size grid_dims = MTL::Size(batch_size, threads_per, 1);
|
||||
compute_encoder->dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
|
||||
void Hadamard::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto& s = stream();
|
||||
|
||||
auto& in = inputs[0];
|
||||
|
||||
std::vector<array> copies;
|
||||
// Only support the last axis for now
|
||||
int axis = in.ndim() - 1;
|
||||
auto check_input = [&copies, &s](const array& x) {
|
||||
// TODO(alexbarron) pass strides to kernel to relax this constraint
|
||||
bool no_copy = x.flags().row_contiguous;
|
||||
if (no_copy) {
|
||||
return x;
|
||||
} else {
|
||||
copies.push_back(array(x.shape(), x.dtype(), nullptr, {}));
|
||||
copy_gpu(x, copies.back(), CopyType::General, s);
|
||||
return copies.back();
|
||||
}
|
||||
};
|
||||
const array& in_contiguous = check_input(in);
|
||||
|
||||
if (in_contiguous.is_donatable()) {
|
||||
out.move_shared_buffer(in_contiguous);
|
||||
} else {
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
}
|
||||
|
||||
auto [n, m] = decompose_hadamard(in.shape(axis));
|
||||
|
||||
if (n * (int)size_of(in.dtype()) > MAX_HADAMARD_BYTES) {
|
||||
throw std::invalid_argument(
|
||||
"[hadamard] For n = m*2^k, 2^k > 8192 for FP32 or 2^k > 16384 for FP16/BF16 NYI");
|
||||
}
|
||||
|
||||
int max_radix = std::min(n, 16);
|
||||
// Use read_width 2 for m = 28 to avoid register spilling
|
||||
int read_width = (n == 2 || m == 28) ? 2 : 4;
|
||||
|
||||
std::ostringstream kname;
|
||||
kname << "hadamard_" << n * m << "_" << type_to_name(out);
|
||||
auto kernel_name = kname.str();
|
||||
auto& d = metal::device(s.device);
|
||||
const auto& lib_name = kernel_name;
|
||||
auto lib = d.get_library(lib_name);
|
||||
if (lib == nullptr) {
|
||||
std::ostringstream kernel_source;
|
||||
auto codelet = gen_hadamard_codelet(m);
|
||||
kernel_source << metal::utils() << codelet << metal::hadamard();
|
||||
kernel_source << get_template_definition(
|
||||
"n" + kernel_name,
|
||||
"hadamard_n",
|
||||
get_type_string(in.dtype()),
|
||||
n,
|
||||
max_radix,
|
||||
read_width);
|
||||
kernel_source << get_template_definition(
|
||||
"m" + kernel_name,
|
||||
"hadamard_m",
|
||||
get_type_string(in.dtype()),
|
||||
n,
|
||||
m,
|
||||
read_width);
|
||||
lib = d.get_library(lib_name, kernel_source.str());
|
||||
}
|
||||
|
||||
int batch_size = in.size() / n;
|
||||
int threads_per = n / max_radix;
|
||||
|
||||
if (m > 1) {
|
||||
// When m is greater than 1, we decompose the
|
||||
// computation into two uploads to the GPU:
|
||||
//
|
||||
// e.g. len(x) = 12*4 = 48, m = 12, n = 4
|
||||
//
|
||||
// y = h48 @ x
|
||||
//
|
||||
// Upload 1:
|
||||
// tmp = a.reshape(12, 4) @ h4
|
||||
//
|
||||
// Upload 2:
|
||||
// y = h12 @ tmp
|
||||
array temp(in.shape(), in.dtype(), nullptr, {});
|
||||
temp.set_data(allocator::malloc_or_wait(temp.nbytes()));
|
||||
copies.push_back(temp);
|
||||
|
||||
launch_hadamard(
|
||||
in_contiguous,
|
||||
temp,
|
||||
batch_size,
|
||||
threads_per,
|
||||
"n" + kernel_name,
|
||||
1.0,
|
||||
s);
|
||||
|
||||
// Metal sometimes reports 256 max threads per group for hadamard_m kernel
|
||||
threads_per = std::min(n / read_width, MAX_HADAMARD_THREADS_PER_GROUP);
|
||||
batch_size = in.size() / m / read_width / threads_per;
|
||||
launch_hadamard(
|
||||
temp, out, batch_size, threads_per, "m" + kernel_name, scale_, s);
|
||||
} else {
|
||||
launch_hadamard(
|
||||
in_contiguous,
|
||||
out,
|
||||
batch_size,
|
||||
threads_per,
|
||||
"n" + kernel_name,
|
||||
scale_,
|
||||
s);
|
||||
}
|
||||
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
25
mlx/backend/metal/jit/gemv_masked.h
Normal file
25
mlx/backend/metal/jit/gemv_masked.h
Normal file
@@ -0,0 +1,25 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
constexpr std::string_view gemv_masked_kernel = R"(
|
||||
template [[host_name("{name}")]] [[kernel]] void
|
||||
gemv_{trans}masked<{itype}, {outm_t}, {opm_t}, {bm}, {bn}, {sm}, {sn}, {tm}, {tn}, {nc}>(
|
||||
const device {itype}* mat [[buffer(0)]],
|
||||
const device {itype}* in_vec [[buffer(1)]],
|
||||
device {itype}* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device {outm_t}* out_mask [[buffer(20)]],
|
||||
const device {opm_t}* mat_mask [[buffer(21)]],
|
||||
const device {opm_t}* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
)";
|
@@ -18,6 +18,7 @@ const char* binary();
|
||||
const char* binary_two();
|
||||
const char* copy();
|
||||
const char* fft();
|
||||
const char* hadamard();
|
||||
const char* quantized();
|
||||
const char* ternary();
|
||||
const char* scan();
|
||||
@@ -32,5 +33,6 @@ const char* steel_gemm_splitk();
|
||||
const char* conv();
|
||||
const char* steel_conv();
|
||||
const char* steel_conv_general();
|
||||
const char* gemv_masked();
|
||||
|
||||
} // namespace mlx::core::metal
|
||||
|
@@ -1,81 +0,0 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
|
||||
constexpr std::string_view block_sort_kernels = R"(
|
||||
template [[host_name("carg_{0}")]] [[kernel]] void
|
||||
block_sort<{1}, {2}, true, {3}, {4}>(
|
||||
const device {1}* inp [[buffer(0)]],
|
||||
device {2}* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& stride_segment_axis [[buffer(4)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
template [[host_name("ncarg_{0}")]] [[kernel]] void
|
||||
block_sort_nc<{1}, {2}, true, {3}, {4}>(
|
||||
const device {1}* inp [[buffer(0)]],
|
||||
device {2}* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& nc_dim [[buffer(4)]],
|
||||
const device int* nc_shape [[buffer(5)]],
|
||||
const device size_t* nc_strides [[buffer(6)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
template [[host_name("c_{0}")]] [[kernel]] void
|
||||
block_sort<{1}, {2}, false, {3}, {4}>(
|
||||
const device {1}* inp [[buffer(0)]],
|
||||
device {2}* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& stride_segment_axis [[buffer(4)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
template [[host_name("nc_{0}")]] [[kernel]] void
|
||||
block_sort_nc<{1}, {2}, false, {3}, {4}>(
|
||||
const device {1}* inp [[buffer(0)]],
|
||||
device {2}* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& nc_dim [[buffer(4)]],
|
||||
const device int* nc_shape [[buffer(5)]],
|
||||
const device size_t* nc_strides [[buffer(6)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
)";
|
||||
|
||||
constexpr std::string_view multiblock_sort_kernels = R"(
|
||||
template [[host_name("sort_{0}")]] [[kernel]] void
|
||||
mb_block_sort<{1}, {2}, true, {3}, {4}>(
|
||||
const device {1}* inp [[buffer(0)]],
|
||||
device {1}* out_vals [[buffer(1)]],
|
||||
device {2}* out_idxs [[buffer(2)]],
|
||||
const constant int& size_sorted_axis [[buffer(3)]],
|
||||
const constant int& stride_sorted_axis [[buffer(4)]],
|
||||
const constant int& nc_dim [[buffer(5)]],
|
||||
const device int* nc_shape [[buffer(6)]],
|
||||
const device size_t* nc_strides [[buffer(7)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
template [[host_name("partition_{0}")]] [[kernel]] void
|
||||
mb_block_partition<{1}, {2}, true, {3}, {4}>(
|
||||
device {2}* block_partitions [[buffer(0)]],
|
||||
const device {1}* dev_vals [[buffer(1)]],
|
||||
const device {2}* dev_idxs [[buffer(2)]],
|
||||
const constant int& size_sorted_axis [[buffer(3)]],
|
||||
const constant int& merge_tiles [[buffer(4)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint3 tgp_dims [[threads_per_threadgroup]]);
|
||||
template [[host_name("merge_{0}")]] [[kernel]] void
|
||||
mb_block_merge<{1}, {2}, true, {3}, {4}>(
|
||||
const device {2}* block_partitions [[buffer(0)]],
|
||||
const device {1}* dev_vals_in [[buffer(1)]],
|
||||
const device {2}* dev_idxs_in [[buffer(2)]],
|
||||
device {1}* dev_vals_out [[buffer(3)]],
|
||||
device {2}* dev_idxs_out [[buffer(4)]],
|
||||
const constant int& size_sorted_axis [[buffer(5)]],
|
||||
const constant int& merge_tiles [[buffer(6)]],
|
||||
const constant int& num_tiles [[buffer(7)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
)";
|
@@ -4,11 +4,11 @@
|
||||
#include "mlx/backend/common/compiled.h"
|
||||
#include "mlx/backend/metal/jit/arange.h"
|
||||
#include "mlx/backend/metal/jit/copy.h"
|
||||
#include "mlx/backend/metal/jit/gemv_masked.h"
|
||||
#include "mlx/backend/metal/jit/includes.h"
|
||||
#include "mlx/backend/metal/jit/reduce.h"
|
||||
#include "mlx/backend/metal/jit/scan.h"
|
||||
#include "mlx/backend/metal/jit/softmax.h"
|
||||
#include "mlx/backend/metal/jit/sort.h"
|
||||
#include "mlx/backend/metal/jit/steel_conv.h"
|
||||
#include "mlx/backend/metal/jit/steel_gemm.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
@@ -51,10 +51,12 @@ MTL::ComputePipelineState* get_unary_kernel(
|
||||
std::ostringstream kernel_source;
|
||||
auto u_def = get_template_definition(
|
||||
"v" + lib_name, "unary_v", get_type_string(out_type), op);
|
||||
auto u2_def = get_template_definition(
|
||||
"v2" + lib_name, "unary_v2", get_type_string(out_type), op);
|
||||
auto g_def = get_template_definition(
|
||||
"g" + lib_name, "unary_g", get_type_string(out_type), op);
|
||||
kernel_source << metal::utils() << metal::unary_ops() << metal::unary()
|
||||
<< u_def << g_def;
|
||||
<< u_def << u2_def << g_def;
|
||||
lib = d.get_library(lib_name, kernel_source.str());
|
||||
}
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
@@ -71,6 +73,9 @@ void add_binary_kernels(
|
||||
{"vs", "binary_vs"},
|
||||
{"sv", "binary_sv"},
|
||||
{"vv", "binary_vv"},
|
||||
{"vs2", "binary_vs2"},
|
||||
{"sv2", "binary_sv2"},
|
||||
{"vv2", "binary_vv2"},
|
||||
{"g1", "binary_g_nd1"},
|
||||
{"g2", "binary_g_nd2"},
|
||||
{"g3", "binary_g_nd3"},
|
||||
@@ -147,6 +152,7 @@ MTL::ComputePipelineState* get_ternary_kernel(
|
||||
std::ostringstream kernel_source;
|
||||
const std::map<std::string, std::string> kernel_types = {
|
||||
{"v", "ternary_v"},
|
||||
{"v2", "ternary_v2"},
|
||||
{"g", "ternary_g"},
|
||||
{"g1", "ternary_g_nd1"},
|
||||
{"g2", "ternary_g_nd2"},
|
||||
@@ -251,14 +257,29 @@ MTL::ComputePipelineState* get_sort_kernel(
|
||||
auto lib = d.get_library(lib_name);
|
||||
if (lib == nullptr) {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::sort()
|
||||
<< fmt::format(
|
||||
block_sort_kernels,
|
||||
lib_name,
|
||||
get_type_string(in.dtype()),
|
||||
get_type_string(out.dtype()),
|
||||
bn,
|
||||
tn);
|
||||
auto in_type = get_type_string(in.dtype());
|
||||
auto out_type = get_type_string(out.dtype());
|
||||
kernel_source << metal::utils() << metal::sort();
|
||||
for (bool is_argsort : {true, false}) {
|
||||
std::string bool_string = is_argsort ? "true" : "false";
|
||||
std::string func_string = is_argsort ? "carg_" : "c_";
|
||||
kernel_source << get_template_definition(
|
||||
func_string + lib_name,
|
||||
"block_sort",
|
||||
in_type,
|
||||
out_type,
|
||||
bool_string,
|
||||
bn,
|
||||
tn);
|
||||
kernel_source << get_template_definition(
|
||||
"n" + func_string + lib_name,
|
||||
"block_sort_nc",
|
||||
in_type,
|
||||
out_type,
|
||||
bool_string,
|
||||
bn,
|
||||
tn);
|
||||
}
|
||||
lib = d.get_library(lib_name, kernel_source.str());
|
||||
}
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
@@ -275,14 +296,21 @@ MTL::ComputePipelineState* get_mb_sort_kernel(
|
||||
auto lib = d.get_library(lib_name);
|
||||
if (lib == nullptr) {
|
||||
std::ostringstream kernel_source;
|
||||
kernel_source << metal::utils() << metal::sort()
|
||||
<< fmt::format(
|
||||
multiblock_sort_kernels,
|
||||
lib_name,
|
||||
get_type_string(in.dtype()),
|
||||
get_type_string(idx.dtype()),
|
||||
bn,
|
||||
tn);
|
||||
kernel_source << metal::utils() << metal::sort();
|
||||
std::vector<std::pair<std::string, std::string>> kernel_types = {
|
||||
{"sort_", "mb_block_sort"},
|
||||
{"partition_", "mb_block_partition"},
|
||||
{"merge_", "mb_block_merge"}};
|
||||
for (auto [name, func] : kernel_types) {
|
||||
kernel_source << get_template_definition(
|
||||
name + lib_name,
|
||||
func,
|
||||
get_type_string(in.dtype()),
|
||||
get_type_string(idx.dtype()),
|
||||
"true",
|
||||
bn,
|
||||
tn);
|
||||
}
|
||||
lib = d.get_library(lib_name, kernel_source.str());
|
||||
}
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
@@ -475,6 +503,49 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const array& out,
|
||||
const std::optional<array>& mask_out,
|
||||
const std::optional<array>& mask_op,
|
||||
bool transpose_mat,
|
||||
int bm,
|
||||
int bn,
|
||||
int sm,
|
||||
int sn,
|
||||
int tm,
|
||||
int tn,
|
||||
bool contiguous) {
|
||||
const auto& lib_name = kernel_name;
|
||||
auto lib = d.get_library(lib_name);
|
||||
if (lib == nullptr) {
|
||||
std::ostringstream kernel_source;
|
||||
auto out_mask_type = mask_out.has_value()
|
||||
? get_type_string((*mask_out).dtype())
|
||||
: "nomask_t";
|
||||
auto op_mask_type =
|
||||
mask_op.has_value() ? get_type_string((*mask_op).dtype()) : "nomask_t";
|
||||
kernel_source << metal::utils() << metal::gemv_masked()
|
||||
<< fmt::format(
|
||||
gemv_masked_kernel,
|
||||
"name"_a = lib_name,
|
||||
"itype"_a = get_type_string(out.dtype()),
|
||||
"outm_t"_a = out_mask_type,
|
||||
"opm_t"_a = op_mask_type,
|
||||
"bm"_a = bm,
|
||||
"bn"_a = bn,
|
||||
"sm"_a = sm,
|
||||
"sn"_a = sn,
|
||||
"tm"_a = tm,
|
||||
"tn"_a = tn,
|
||||
"trans"_a = transpose_mat ? "t_" : "",
|
||||
"nc"_a = contiguous ? "0" : "1");
|
||||
lib = d.get_library(lib_name, kernel_source.str());
|
||||
}
|
||||
return d.get_kernel(kernel_name, lib);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_steel_conv_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
@@ -151,6 +151,21 @@ MTL::ComputePipelineState* get_steel_conv_kernel(
|
||||
int n_channel_specialization,
|
||||
bool small_filter);
|
||||
|
||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const array& out,
|
||||
const std::optional<array>& mask_out,
|
||||
const std::optional<array>& mask_op,
|
||||
bool transpose_mat,
|
||||
int bm,
|
||||
int bn,
|
||||
int sm,
|
||||
int sn,
|
||||
int tm,
|
||||
int tn,
|
||||
bool contiguous);
|
||||
|
||||
MTL::ComputePipelineState* get_steel_conv_general_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
@@ -4,11 +4,12 @@ set(
|
||||
bf16_math.h
|
||||
complex.h
|
||||
defines.h
|
||||
expm1f.h
|
||||
utils.h
|
||||
)
|
||||
|
||||
function(build_kernel_base TARGET SRCFILE DEPS)
|
||||
set(METAL_FLAGS -Wall -Wextra -fno-fast-math -D${MLX_METAL_VERSION})
|
||||
set(METAL_FLAGS -Wall -Wextra -fno-fast-math)
|
||||
if(MLX_METAL_DEBUG)
|
||||
set(METAL_FLAGS ${METAL_FLAGS}
|
||||
-gline-tables-only
|
||||
@@ -37,7 +38,6 @@ endfunction(build_kernel)
|
||||
build_kernel(arg_reduce)
|
||||
build_kernel(conv steel/conv/params.h)
|
||||
build_kernel(gemv steel/utils.h)
|
||||
build_kernel(gemv_masked steel/utils.h)
|
||||
build_kernel(layer_norm)
|
||||
build_kernel(random)
|
||||
build_kernel(rms_norm)
|
||||
@@ -120,6 +120,7 @@ build_kernel(
|
||||
steel/gemm/kernels/steel_gemm_splitk
|
||||
${STEEL_HEADERS}
|
||||
)
|
||||
build_kernel(gemv_masked steel/utils.h)
|
||||
endif()
|
||||
|
||||
|
||||
|
@@ -6,7 +6,7 @@
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#if defined METAL_3_1 || defined METAL_3_2 || (__METAL_VERSION__ >= 310)
|
||||
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
|
||||
|
||||
typedef bfloat bfloat16_t;
|
||||
|
||||
|
@@ -369,7 +369,7 @@ instantiate_metal_math_funcs(
|
||||
return static_cast<otype>(__metal_simd_xor(static_cast<ctype>(data))); \
|
||||
}
|
||||
|
||||
#if defined METAL_3_1 || defined METAL_3_2 || (__METAL_VERSION__ >= 310)
|
||||
#if (MLX_METAL_VERSION >= 310) || (__METAL_VERSION__ >= 310)
|
||||
|
||||
#define bfloat16_to_uint16(x) as_type<uint16_t>(x)
|
||||
#define uint16_to_bfloat16(x) as_type<bfloat16_t>(x)
|
||||
|
@@ -36,6 +36,39 @@ template <typename T, typename U, typename Op>
|
||||
c[index] = Op()(a[index], b[index]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_sv2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
c[offset] = Op()(a[0], b[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_vs2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
c[offset] = Op()(a[offset], b[0]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_vv2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
c[offset] = Op()(a[offset], b[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_g_nd1(
|
||||
device const T* a,
|
||||
|
@@ -14,6 +14,9 @@
|
||||
instantiate_kernel("sv" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn" #op #tname, binary_g, itype, otype, op) \
|
||||
instantiate_kernel("g1" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
|
@@ -48,6 +48,48 @@ template <typename T, typename U, typename Op>
|
||||
d[index] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_sv2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto out = Op()(a[0], b[offset]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_vs2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto out = Op()(a[offset], b[0]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_vv2(
|
||||
device const T* a,
|
||||
device const T* b,
|
||||
device U* c,
|
||||
device U* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
auto out = Op()(a[offset], b[offset]);
|
||||
c[offset] = out[0];
|
||||
d[offset] = out[1];
|
||||
}
|
||||
|
||||
template <typename T, typename U, typename Op>
|
||||
[[kernel]] void binary_g_nd1(
|
||||
device const T* a,
|
||||
|
@@ -12,6 +12,9 @@
|
||||
instantiate_kernel("sv" #op #tname, binary_sv, itype, otype, op) \
|
||||
instantiate_kernel("vs" #op #tname, binary_vs, itype, otype, op) \
|
||||
instantiate_kernel("vv" #op #tname, binary_vv, itype, otype, op) \
|
||||
instantiate_kernel("sv2" #op #tname, binary_sv2, itype, otype, op) \
|
||||
instantiate_kernel("vs2" #op #tname, binary_vs2, itype, otype, op) \
|
||||
instantiate_kernel("vv2" #op #tname, binary_vv2, itype, otype, op) \
|
||||
instantiate_kernel("gn" #op #tname, binary_g, itype, otype, op) \
|
||||
instantiate_kernel("g1" #op #tname, binary_g_nd1, itype, otype, op) \
|
||||
instantiate_kernel("g2" #op #tname, binary_g_nd2, itype, otype, op) \
|
||||
|
@@ -344,12 +344,12 @@ winograd_conv_2d_weight_transform(
|
||||
const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
|
||||
|
||||
// Initialize G matrix
|
||||
simdgroup_matrix<T, 8, 8> G;
|
||||
simdgroup_matrix<float, 8, 8> G;
|
||||
G.thread_elements()[0] = WGT::wt_transform[sm][sn];
|
||||
G.thread_elements()[1] = WGT::wt_transform[sm][sn + 1];
|
||||
|
||||
// Initialize Gt matrix
|
||||
simdgroup_matrix<T, 8, 8> Gt;
|
||||
simdgroup_matrix<float, 8, 8> Gt;
|
||||
Gt.thread_elements()[0] = WGT::wt_transform[sn][sm];
|
||||
Gt.thread_elements()[1] = WGT::wt_transform[sn + 1][sm];
|
||||
|
||||
@@ -381,15 +381,15 @@ winograd_conv_2d_weight_transform(
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
// Do transform and store the result
|
||||
for (int c = 0; c < BC; ++c) {
|
||||
simdgroup_matrix<T, 8, 8> g;
|
||||
simdgroup_matrix<float, 8, 8> g;
|
||||
g.thread_elements()[0] =
|
||||
sm < R && sn < R ? Ws[simd_group_id][sm][sn][c] : T(0);
|
||||
g.thread_elements()[1] =
|
||||
sm < R && sn + 1 < R ? Ws[simd_group_id][sm][sn + 1][c] : T(0);
|
||||
|
||||
simdgroup_matrix<T, 8, 8> g_out = (G * g) * Gt;
|
||||
wt_out_0[c * O] = g_out.thread_elements()[0];
|
||||
wt_out_1[c * O] = g_out.thread_elements()[1];
|
||||
simdgroup_matrix<float, 8, 8> g_out = (G * g) * Gt;
|
||||
wt_out_0[c * O] = static_cast<T>(g_out.thread_elements()[0]);
|
||||
wt_out_1[c * O] = static_cast<T>(g_out.thread_elements()[1]);
|
||||
}
|
||||
|
||||
wt_in += BC;
|
||||
@@ -433,12 +433,12 @@ winograd_conv_2d_input_transform(
|
||||
const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
|
||||
|
||||
// Initialize B matrix
|
||||
simdgroup_matrix<T, 8, 8> B;
|
||||
simdgroup_matrix<float, 8, 8> B;
|
||||
B.thread_elements()[0] = WGT::in_transform[sm][sn];
|
||||
B.thread_elements()[1] = WGT::in_transform[sm][sn + 1];
|
||||
|
||||
// Initialize Bt matrix
|
||||
simdgroup_matrix<T, 8, 8> Bt;
|
||||
simdgroup_matrix<float, 8, 8> Bt;
|
||||
Bt.thread_elements()[0] = WGT::in_transform[sn][sm];
|
||||
Bt.thread_elements()[1] = WGT::in_transform[sn + 1][sm];
|
||||
|
||||
@@ -493,13 +493,13 @@ winograd_conv_2d_input_transform(
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
// Do transform and store the result
|
||||
for (int c = simd_group_id; c < BC; c += N_SIMD_GROUPS) {
|
||||
simdgroup_matrix<T, 8, 8> I;
|
||||
simdgroup_matrix<float, 8, 8> I;
|
||||
I.thread_elements()[0] = Is[sm][sn][c];
|
||||
I.thread_elements()[1] = Is[sm][sn + 1][c];
|
||||
|
||||
simdgroup_matrix<T, 8, 8> I_out = (Bt * I) * B;
|
||||
inp_out_0[c] = I_out.thread_elements()[0];
|
||||
inp_out_1[c] = I_out.thread_elements()[1];
|
||||
simdgroup_matrix<float, 8, 8> I_out = (Bt * I) * B;
|
||||
inp_out_0[c] = static_cast<T>(I_out.thread_elements()[0]);
|
||||
inp_out_1[c] = static_cast<T>(I_out.thread_elements()[1]);
|
||||
}
|
||||
|
||||
inp_in += BC;
|
||||
@@ -543,12 +543,12 @@ winograd_conv_2d_output_transform(
|
||||
const short sn = (qid & 2) * 2 + (simd_lane_id % 2) * 2;
|
||||
|
||||
// Initialize A matrix
|
||||
simdgroup_matrix<T, 8, 8> B;
|
||||
simdgroup_matrix<float, 8, 8> B;
|
||||
B.thread_elements()[0] = WGT::out_transform[sm][sn];
|
||||
B.thread_elements()[1] = WGT::out_transform[sm][sn + 1];
|
||||
|
||||
// Initialize At matrix
|
||||
simdgroup_matrix<T, 8, 8> Bt;
|
||||
simdgroup_matrix<float, 8, 8> Bt;
|
||||
Bt.thread_elements()[0] = WGT::out_transform[sn][sm];
|
||||
Bt.thread_elements()[1] = WGT::out_transform[sn + 1][sm];
|
||||
|
||||
@@ -597,16 +597,16 @@ winograd_conv_2d_output_transform(
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
// Do transform and store the result
|
||||
for (int c = simd_group_id; c < BO; c += N_SIMD_GROUPS) {
|
||||
simdgroup_matrix<T, 8, 8> O_mat;
|
||||
simdgroup_matrix<float, 8, 8> O_mat;
|
||||
O_mat.thread_elements()[0] = out_in_0[c];
|
||||
O_mat.thread_elements()[1] = out_in_1[c];
|
||||
|
||||
simdgroup_matrix<T, 8, 8> O_out = (Bt * (O_mat * B));
|
||||
simdgroup_matrix<float, 8, 8> O_out = (Bt * (O_mat * B));
|
||||
if ((sm < M) && (sn < M)) {
|
||||
Os[sm][sn][c] = O_out.thread_elements()[0];
|
||||
Os[sm][sn][c] = static_cast<T>(O_out.thread_elements()[0]);
|
||||
}
|
||||
if ((sm < M) && ((sn + 1) < M)) {
|
||||
Os[sm][sn + 1][c] = O_out.thread_elements()[1];
|
||||
Os[sm][sn + 1][c] = static_cast<T>(O_out.thread_elements()[1]);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -650,4 +650,5 @@ winograd_conv_2d_output_transform(
|
||||
|
||||
// clang-format off
|
||||
instantiate_winograd_conv_2d(float32, float);
|
||||
instantiate_winograd_conv_2d(bfloat16, bfloat16_t);
|
||||
instantiate_winograd_conv_2d(float16, half); // clang-format on
|
||||
|
@@ -16,6 +16,26 @@ template <typename T, typename U>
|
||||
dst[index] = static_cast<U>(src[index]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
[[kernel]] void copy_s2(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
dst[offset] = static_cast<U>(src[0]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
[[kernel]] void copy_v2(
|
||||
device const T* src [[buffer(0)]],
|
||||
device U* dst [[buffer(1)]],
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
dst[offset] = static_cast<U>(src[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename U>
|
||||
[[kernel]] void copy_g_nd1(
|
||||
device const T* src [[buffer(0)]],
|
||||
|
@@ -5,95 +5,23 @@
|
||||
#include "mlx/backend/metal/kernels/bf16.h"
|
||||
#include "mlx/backend/metal/kernels/copy.h"
|
||||
|
||||
#define instantiate_copy(name, itype, otype, ctype) \
|
||||
template [[host_name(name)]] [[kernel]] void copy_##ctype<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
uint index [[thread_position_in_grid]]);
|
||||
|
||||
#define instantiate_copy_g_dim(name, itype, otype, dims) \
|
||||
template [[host_name("g" #dims "_" name)]] [[kernel]] void \
|
||||
copy_g_nd<itype, otype, dims>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int* src_shape [[buffer(2)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
uint3 index [[thread_position_in_grid]], \
|
||||
uint3 grid_dim [[threads_per_grid]]); \
|
||||
template [[host_name("gg" #dims "_" name)]] [[kernel]] void \
|
||||
copy_gg_nd<itype, otype, dims>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int* src_shape [[buffer(2)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
constant const int64_t* dst_strides [[buffer(4)]], \
|
||||
uint3 index [[thread_position_in_grid]]);
|
||||
|
||||
#define instantiate_copy_g_nd(name, itype, otype) \
|
||||
template [[host_name("g1_" name)]] [[kernel]] void copy_g_nd1<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t& src_stride [[buffer(3)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("g2_" name)]] [[kernel]] void copy_g_nd2<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
uint2 index [[thread_position_in_grid]], \
|
||||
uint2 grid_dim [[threads_per_grid]]); \
|
||||
template [[host_name("g3_" name)]] [[kernel]] void copy_g_nd3<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
uint3 index [[thread_position_in_grid]], \
|
||||
uint3 grid_dim [[threads_per_grid]]); \
|
||||
template [[host_name("gg1_" name )]] [[kernel]] void \
|
||||
copy_gg_nd1<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t& src_stride [[buffer(3)]], \
|
||||
constant const int64_t& dst_stride [[buffer(4)]], \
|
||||
uint index [[thread_position_in_grid]]); \
|
||||
template [[host_name("gg2_" name)]] [[kernel]] void \
|
||||
copy_gg_nd2<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
constant const int64_t* dst_strides [[buffer(4)]], \
|
||||
uint2 index [[thread_position_in_grid]]); \
|
||||
template [[host_name("gg3_" name)]] [[kernel]] void \
|
||||
copy_gg_nd3<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
constant const int64_t* dst_strides [[buffer(4)]], \
|
||||
uint3 index [[thread_position_in_grid]]); \
|
||||
instantiate_copy_g_dim(name, itype, otype, 4) \
|
||||
instantiate_copy_g_dim(name, itype, otype, 5)
|
||||
|
||||
#define instantiate_copy_g(name, itype, otype) \
|
||||
template [[host_name("g_" name)]] [[kernel]] void copy_g<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int* src_shape [[buffer(2)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
constant const int& ndim [[buffer(5)]], \
|
||||
uint3 index [[thread_position_in_grid]], \
|
||||
uint3 grid_dim [[threads_per_grid]]); \
|
||||
template [[host_name("gg_" name)]] [[kernel]] void copy_gg<itype, otype>( \
|
||||
device const itype* src [[buffer(0)]], \
|
||||
device otype* dst [[buffer(1)]], \
|
||||
constant const int* src_shape [[buffer(2)]], \
|
||||
constant const int64_t* src_strides [[buffer(3)]], \
|
||||
constant const int64_t* dst_strides [[buffer(4)]], \
|
||||
constant const int& ndim [[buffer(5)]], \
|
||||
uint3 index [[thread_position_in_grid]]);
|
||||
|
||||
#define instantiate_copy_all(tname, itype, otype) \
|
||||
instantiate_copy("s_copy" #tname, itype, otype, s) \
|
||||
instantiate_copy("v_copy" #tname, itype, otype, v) \
|
||||
instantiate_copy_g("copy" #tname, itype, otype) \
|
||||
instantiate_copy_g_nd("copy" #tname, itype, otype)
|
||||
instantiate_kernel("s_copy" #tname, copy_s, itype, otype) \
|
||||
instantiate_kernel("v_copy" #tname, copy_v, itype, otype) \
|
||||
instantiate_kernel("s2_copy" #tname, copy_s2, itype, otype) \
|
||||
instantiate_kernel("v2_copy" #tname, copy_v2, itype, otype) \
|
||||
instantiate_kernel("g1_copy" #tname, copy_g_nd1, itype, otype) \
|
||||
instantiate_kernel("g2_copy" #tname, copy_g_nd2, itype, otype) \
|
||||
instantiate_kernel("g3_copy" #tname, copy_g_nd3, itype, otype) \
|
||||
instantiate_kernel("gg1_copy" #tname, copy_gg_nd1, itype, otype) \
|
||||
instantiate_kernel("gg2_copy" #tname, copy_gg_nd2, itype, otype) \
|
||||
instantiate_kernel("gg3_copy" #tname, copy_gg_nd3, itype, otype) \
|
||||
instantiate_kernel("g4_copy" #tname, copy_g_nd, itype, otype, 4) \
|
||||
instantiate_kernel("g5_copy" #tname, copy_g_nd, itype, otype, 5) \
|
||||
instantiate_kernel("gg4_copy" #tname, copy_gg_nd, itype, otype, 4) \
|
||||
instantiate_kernel("gg5_copy" #tname, copy_gg_nd, itype, otype, 5) \
|
||||
instantiate_kernel("g_copy" #tname, copy_g, itype, otype) \
|
||||
instantiate_kernel("gg_copy" #tname, copy_gg, itype, otype)
|
||||
|
||||
#define instantiate_copy_itype(itname, itype) \
|
||||
instantiate_copy_all(itname ##bool_, itype, bool) \
|
||||
|
@@ -83,6 +83,7 @@ float expm1f(float a) {
|
||||
r = expm1f_scaled_unchecked(a, 1.0f);
|
||||
/* handle severe overflow and underflow */
|
||||
if (abs(a - 1.0f) > 88.0f) {
|
||||
r = pow(2, a);
|
||||
r = fma(r, r, -1.0f);
|
||||
}
|
||||
return r;
|
||||
|
819
mlx/backend/metal/kernels/gemv_masked.h
Normal file
819
mlx/backend/metal/kernels/gemv_masked.h
Normal file
@@ -0,0 +1,819 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
|
||||
#define MLX_MTL_CONST static constant constexpr const
|
||||
#define MLX_MTL_PRAGMA_UNROLL _Pragma("clang loop unroll(full)")
|
||||
|
||||
struct _NoMask {
|
||||
char x;
|
||||
|
||||
constexpr METAL_FUNC operator bool() {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const threadgroup {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const device {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const constant {
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
typedef struct _NoMask nomask_t;
|
||||
|
||||
template <typename OutT, typename InT = OutT>
|
||||
struct ScaleOp {
|
||||
OutT scale;
|
||||
|
||||
METAL_FUNC OutT apply(InT x) const {
|
||||
return static_cast<OutT>(x) * scale;
|
||||
}
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN> /* Thread cols (in elements) */
|
||||
struct GEMVKernel {
|
||||
MLX_MTL_CONST int threadsM = BM * SM;
|
||||
MLX_MTL_CONST int threadsN = BN * SN;
|
||||
|
||||
MLX_MTL_CONST int blockM = threadsM * TM;
|
||||
MLX_MTL_CONST int blockN = threadsN * TN;
|
||||
|
||||
static_assert(SM * SN == 32, "simdgroup can only have 32 threads");
|
||||
|
||||
static_assert(
|
||||
SN == 8 || SN == 16 || SN == 32,
|
||||
"gemv block must have a width of 8, 16, or 32");
|
||||
|
||||
static_assert(blockN >= blockM, "Masked gemv must have blockN >= blockM");
|
||||
|
||||
MLX_MTL_CONST bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
MLX_MTL_CONST bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
MLX_MTL_CONST bool has_mul_operand_mask =
|
||||
has_operand_mask && !metal::is_same_v<op_mask_t, bool>;
|
||||
MLX_MTL_CONST bool has_mul_output_mask =
|
||||
has_output_mask && !metal::is_same_v<out_mask_t, bool>;
|
||||
|
||||
// - The matrix of size (M = out_vec_size, K = in_vec_size) is divided up
|
||||
// into blocks of (blockM, blockN) divided among threadgroups
|
||||
// - Every thread works on a block of (TM, TN)
|
||||
// - We assume each threadgroup has (threadsN, threadsM, 1) threads
|
||||
//
|
||||
// 1. A thread loads TN elements each from mat along TM rows
|
||||
// and the corresponding scalar from the vector
|
||||
// 2. The thread then multiplies and adds to accumulate its local result for
|
||||
// the block
|
||||
// 3. At the end, each thread has accumulated results over all blocks across
|
||||
// the rows. These are then summed up across the threadgroup
|
||||
// 4. Each threadgroup writes its accumulated blockM outputs
|
||||
//
|
||||
// Edge case handling:
|
||||
// - The threadgroup with the largest tid has blocks that exceed the matrix
|
||||
// * The blocks that start outside the matrix are never read (thread results
|
||||
// remain zero)
|
||||
// * The last thread that partially overlaps with the matrix is shifted
|
||||
// inwards such that the thread block fits exactly in the matrix
|
||||
|
||||
MLX_MTL_CONST short tgp_mem_size = BN > 1 ? BN*(blockM + TM) : 0;
|
||||
MLX_MTL_CONST bool needs_tgp_reduction = BN > 1;
|
||||
|
||||
static METAL_FUNC void
|
||||
load_unsafe(const device T* src, thread T dst[TN], const int src_offset = 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src[src_offset + tn];
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void load_safe(
|
||||
const device T* src,
|
||||
thread T dst[TN],
|
||||
const int src_offset = 0,
|
||||
const int src_size = TN) {
|
||||
if (src_offset + TN <= src_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src[src_offset + tn];
|
||||
}
|
||||
} else { // Edgecase
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src_offset + tn < src_size ? src[src_offset + tn] : 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void run(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& matrix_ld [[buffer(6)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
threadgroup T* tgp_memory [[threadgroup(0)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
// Appease compiler
|
||||
(void)lid;
|
||||
|
||||
// Thread local accumulation results
|
||||
thread T result[TM] = {0};
|
||||
thread T inter[TN];
|
||||
thread T v_coeff[TN];
|
||||
|
||||
const int thrM = SN != 32 ? simd_lid / SN : 0;
|
||||
const int thrN = SN != 32 ? simd_lid % SN : int(simd_lid);
|
||||
|
||||
const int sgN = BN != 1 ? (simd_gid % BN) : 0;
|
||||
|
||||
const int simdM = BN != 1 ? SM * (simd_gid / BN) : int(SM * simd_gid);
|
||||
const int simdN = BN != 1 ? SN * (simd_gid % BN) : 0;
|
||||
|
||||
int bm = (simdM + thrM) * TM;
|
||||
int bn = (simdN + thrN) * TN;
|
||||
|
||||
// Block position
|
||||
int out_row = tid.x * blockM + bm;
|
||||
|
||||
// Exit simdgroup if rows out of bound
|
||||
if (out_row >= out_vec_size)
|
||||
return;
|
||||
|
||||
// Adjust tail simdgroup to ensure in bound reads
|
||||
out_row = out_row + TM <= out_vec_size ? out_row : out_vec_size - TM;
|
||||
|
||||
// Prepare mask offsets
|
||||
const constant int* out_mask_strides = mask_strides;
|
||||
const constant int* mat_mask_strides =
|
||||
mask_strides + (has_output_mask ? 2 : 0);
|
||||
const constant int* vec_mask_strides =
|
||||
mat_mask_strides + (has_operand_mask ? 2 : 0);
|
||||
|
||||
const int m_block_idx = blockN > blockM ? out_row / blockN : int(tid.x);
|
||||
|
||||
const int out_mask_offset =
|
||||
!has_output_mask ? 0 : m_block_idx * out_mask_strides[1];
|
||||
|
||||
int mat_mask_offset =
|
||||
!has_operand_mask ? 0 : m_block_idx * mat_mask_strides[1];
|
||||
int vec_mask_offset = 0;
|
||||
const int mat_mask_step = !has_operand_mask ? 0 : mat_mask_strides[0];
|
||||
const int vec_mask_step = !has_operand_mask ? 0 : vec_mask_strides[1];
|
||||
|
||||
T out_scale{1};
|
||||
|
||||
// Check output mask
|
||||
if (has_output_mask) {
|
||||
auto mask_out = out_mask[out_mask_offset];
|
||||
|
||||
// Write zeros and return if mask is 0
|
||||
if (!mask_out) {
|
||||
if (simdN == 0 && thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
out_vec[out_row + tm] = T(0.);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Store scalar if multiplicative mask
|
||||
if (has_mul_output_mask) {
|
||||
out_scale = T(mask_out);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance matrix
|
||||
mat += out_row * matrix_ld;
|
||||
|
||||
// Prepare for loop
|
||||
constexpr const uniform<int> loop_stride = make_uniform(blockN);
|
||||
const uniform<int> in_size = make_uniform(in_vec_size);
|
||||
const uniform<int> n_iter = in_size / loop_stride;
|
||||
const uniform<int> last_iter = loop_stride * n_iter;
|
||||
const uniform<int> leftover = in_size - last_iter;
|
||||
|
||||
// Loop over in_vec in blocks of blockN
|
||||
for (int i = 0; i < n_iter; ++i) {
|
||||
if (!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset]))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
load_unsafe(in_vec, v_coeff, bn);
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
v_coeff[tn] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Per thread work loop
|
||||
int mat_offset = 0;
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
// Load for the row
|
||||
load_unsafe(mat, inter, mat_offset + bn);
|
||||
|
||||
// Accumulate results
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tm] += inter[tn] * v_coeff[tn];
|
||||
}
|
||||
|
||||
mat_offset += matrix_ld;
|
||||
}
|
||||
}
|
||||
|
||||
bn += blockN;
|
||||
mat_mask_offset += mat_mask_step;
|
||||
vec_mask_offset += vec_mask_step;
|
||||
}
|
||||
|
||||
if (leftover > 0 &&
|
||||
(!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset])))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
load_safe(in_vec, v_coeff, bn, in_size);
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
v_coeff[tn] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Per thread work loop
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
// Load for the row
|
||||
load_safe(&mat[tm * matrix_ld], inter, bn, in_size);
|
||||
|
||||
// Accumulate results
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tm] += inter[tn] * v_coeff[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply out scale
|
||||
if (has_mul_output_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
result[tm] *= out_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Simdgroup accumulations
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (ushort sn = (SN / 2); sn >= 1; sn >>= 1) {
|
||||
result[tm] += simd_shuffle_down(result[tm], sn);
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation results
|
||||
if (needs_tgp_reduction) {
|
||||
threadgroup T* tgp_results = tgp_memory + sgN * (blockM + TM) + bm;
|
||||
if (thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
tgp_results[tm] = result[tm];
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (sgN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int sgn = 1; sgn < BN; sgn++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
result[tm] += tgp_results[sgn * (blockM + TM) + tm];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write outputs
|
||||
if (simdN == 0 && thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
out_vec[out_row + tm] = result[tm];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Vector matrix multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN> /* Thread cols (in elements) */
|
||||
struct GEMVTKernel {
|
||||
MLX_MTL_CONST int threadsM = BM * SM;
|
||||
MLX_MTL_CONST int threadsN = BN * SN;
|
||||
|
||||
MLX_MTL_CONST int blockM = threadsM * TM;
|
||||
MLX_MTL_CONST int blockN = threadsN * TN;
|
||||
|
||||
static_assert(SM * SN == 32, "simdgroup can only have 32 threads");
|
||||
|
||||
MLX_MTL_CONST bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
MLX_MTL_CONST bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
MLX_MTL_CONST bool has_mul_operand_mask =
|
||||
has_operand_mask && !metal::is_same_v<op_mask_t, bool>;
|
||||
MLX_MTL_CONST bool has_mul_output_mask =
|
||||
has_output_mask && !metal::is_same_v<out_mask_t, bool>;
|
||||
|
||||
// - The matrix of size (M = in_vec_size, N = out_vec_size) is divided up
|
||||
// into blocks of (blockM, blockN) divided among threadgroups
|
||||
// - Every thread works on a block of (TM, TN)
|
||||
// - We assume each threadgroup has (threadsN, threadsM, 1) threads
|
||||
//
|
||||
// 1. A thread loads TN elements each from mat along TM contiguous rows
|
||||
// and the corresponding scalar from the vector
|
||||
// 2. The thread then accumulates its local result for the block
|
||||
// 3. At the end, each thread has accumulated results over all blocks across
|
||||
// the rows. These are then summed up across the threadgroup
|
||||
// 4. Each threadgroup writes its accumulated BN * TN outputs
|
||||
//
|
||||
// Edge case handling:
|
||||
// - The threadgroup with the largest tid has blocks that exceed the matrix
|
||||
// * The blocks that start outside the matrix are never read (thread results
|
||||
// remain zero)
|
||||
// * The last thread that partially overlaps with the matrix is shifted
|
||||
// inwards such that the thread block fits exactly in the matrix
|
||||
|
||||
MLX_MTL_CONST short tgp_mem_size = BM > 1 ? BM*(blockN + TN) : 0;
|
||||
MLX_MTL_CONST bool needs_tgp_reduction = BM > 1;
|
||||
|
||||
static METAL_FUNC void run(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
threadgroup T* tgp_memory [[threadgroup(0)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
// Appease compiler
|
||||
(void)lid;
|
||||
|
||||
// Thread local accumulation results
|
||||
T result[TN] = {0};
|
||||
T inter[TN];
|
||||
T v_coeff[TM];
|
||||
|
||||
const int thrM = SN != 32 ? simd_lid / SN : 0;
|
||||
const int thrN = SN != 32 ? simd_lid % SN : int(simd_lid);
|
||||
|
||||
const int sgM = BN != 1 ? (simd_gid / BN) : int(simd_gid);
|
||||
const int sgN = BN != 1 ? (simd_gid % BN) : 0;
|
||||
|
||||
const int simdM = SM * sgM;
|
||||
const int simdN = SN * sgN;
|
||||
|
||||
int cm = (simdM + thrM);
|
||||
int cn = (simdN + thrN);
|
||||
|
||||
int bm = cm * TM;
|
||||
int bn = cn * TN;
|
||||
|
||||
int out_col = tid.x * blockN + bn;
|
||||
|
||||
// Prepare mask offsets
|
||||
const constant int* out_mask_strides = mask_strides;
|
||||
const constant int* mat_mask_strides =
|
||||
out_mask_strides + (has_output_mask ? 2 : 0);
|
||||
const constant int* vec_mask_strides =
|
||||
mat_mask_strides + (has_operand_mask ? 2 : 0);
|
||||
|
||||
const int n_block_idx = blockM > blockN ? out_col / blockM : int(tid.x);
|
||||
|
||||
const int out_mask_offset =
|
||||
!has_output_mask ? 0 : n_block_idx; // * out_mask_strides[0];
|
||||
|
||||
int mat_mask_offset =
|
||||
!has_operand_mask ? 0 : n_block_idx * mat_mask_strides[0];
|
||||
int vec_mask_offset = 0;
|
||||
const int mat_mask_step = !has_operand_mask ? 0 : mat_mask_strides[1];
|
||||
const int vec_mask_step = !has_operand_mask ? 0 : vec_mask_strides[0];
|
||||
|
||||
T out_scale{1};
|
||||
|
||||
// Check output mask
|
||||
if (has_output_mask) {
|
||||
auto mask_out = out_mask[out_mask_offset];
|
||||
|
||||
// Write zeros and return if mask is 0
|
||||
if (!mask_out) {
|
||||
if (cm == 0 && out_col < out_vec_size) {
|
||||
if (out_col + TN <= out_vec_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
out_vec[out_col + tn] = T(0.);
|
||||
}
|
||||
} else {
|
||||
for (int tn = 0; tn < TN && (out_col + tn) < out_vec_size; tn++) {
|
||||
out_vec[out_col + tn] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Store scalar if multiplicative mask
|
||||
if (has_mul_output_mask) {
|
||||
out_scale = T(mask_out);
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare for loop
|
||||
constexpr const uniform<int> loop_stride = make_uniform(blockM);
|
||||
const uniform<int> in_size = make_uniform(in_vec_size);
|
||||
const uniform<int> n_iter = in_size / loop_stride;
|
||||
const uniform<int> last_iter = loop_stride * n_iter;
|
||||
const uniform<int> leftover = in_size - last_iter;
|
||||
|
||||
// Edgecase handling
|
||||
if (out_col < out_vec_size) {
|
||||
out_col = (out_col + TN) <= out_vec_size ? out_col : out_vec_size - TN;
|
||||
|
||||
// Per thread accumulation main loop
|
||||
for (int i = 0; i < n_iter; ++i) {
|
||||
// Adding a threadgroup_barrier improves performance slightly
|
||||
// This is possibly it may help exploit cache better
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset]))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
v_coeff[tm] = in_vec[bm + tm];
|
||||
}
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
v_coeff[tm] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
inter[tn] = mat[(bm + tm) * marix_ld + out_col + tn];
|
||||
}
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += v_coeff[tm] * inter[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bm += blockM;
|
||||
mat_mask_offset += mat_mask_step;
|
||||
vec_mask_offset += vec_mask_step;
|
||||
}
|
||||
|
||||
if (leftover > 0 &&
|
||||
(!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset])))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
for (int tm = 0; tm < TM && bm + tm < in_vec_size; tm++) {
|
||||
v_coeff[tm] = in_vec[bm + tm];
|
||||
|
||||
if (has_mul_operand_mask) {
|
||||
v_coeff[tm] *= block_scale;
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
inter[tn] = mat[(bm + tm) * marix_ld + out_col + tn];
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += v_coeff[tm] * inter[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply out scale
|
||||
if (has_mul_output_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] *= out_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Simdgroup accumulations
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (ushort sm = (SM / 2); sm >= 1; sm >>= 1) {
|
||||
result[tn] += simd_shuffle_down(result[tn], SN * sm);
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation results
|
||||
if (needs_tgp_reduction) {
|
||||
threadgroup T* tgp_results = tgp_memory + sgM * (blockN + TN) + bn;
|
||||
if (thrM == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
tgp_results[tn] = result[tn];
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (sgM == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int sgm = 1; sgm < BM; sgm++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += tgp_results[sgm * (blockN + TN) + tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation and writing out results
|
||||
if (cm == 0 && out_col < out_vec_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
out_vec[out_col + j] = result[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Matrix vector multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN, /* Thread cols (in elements) */
|
||||
const bool kDoNCBatch> /* Batch ndim > 1 */
|
||||
[[kernel, max_total_threads_per_threadgroup(BM* BN * 32)]] void gemv_masked(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
using gemv_kernel =
|
||||
GEMVKernel<T, out_mask_t, op_mask_t, BM, BN, SM, SN, TM, TN>;
|
||||
threadgroup T tgp_memory
|
||||
[gemv_kernel::tgp_mem_size == 0 ? 1 : gemv_kernel::tgp_mem_size];
|
||||
|
||||
constexpr bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
constexpr bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
// Update batch offsets
|
||||
if (kDoNCBatch) {
|
||||
in_vec += elem_to_loc(tid.z, batch_shape, vector_batch_stride, batch_ndim);
|
||||
mat += elem_to_loc(tid.z, batch_shape, matrix_batch_stride, batch_ndim);
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask +=
|
||||
elem_to_loc(tid.z, batch_shape, mask_batch_strides, batch_ndim);
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
|
||||
mat_mask += batch_offsets.x;
|
||||
vec_mask += batch_offsets.y;
|
||||
}
|
||||
|
||||
} else {
|
||||
in_vec += tid.z * vector_batch_stride[0];
|
||||
mat += tid.z * matrix_batch_stride[0];
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask += tid.z * mask_batch_strides[0];
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
mat_mask += tid.z * mask_batch_strides[0];
|
||||
vec_mask += tid.z * mask_batch_strides[batch_ndim];
|
||||
}
|
||||
}
|
||||
|
||||
out_vec += tid.z * out_vec_size;
|
||||
|
||||
gemv_kernel::run(
|
||||
mat,
|
||||
in_vec,
|
||||
out_vec,
|
||||
in_vec_size,
|
||||
out_vec_size,
|
||||
marix_ld,
|
||||
out_mask,
|
||||
mat_mask,
|
||||
vec_mask,
|
||||
mask_strides,
|
||||
gemv_kernel::tgp_mem_size == 0 ? nullptr : tgp_memory,
|
||||
tid,
|
||||
lid,
|
||||
simd_gid,
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Vector matrix multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN, /* Thread cols (in elements) */
|
||||
const bool kDoNCBatch> /* Batch ndim > 1 */
|
||||
[[kernel, max_total_threads_per_threadgroup(BM* BN * 32)]] void gemv_t_masked(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
using gemv_kernel =
|
||||
GEMVTKernel<T, out_mask_t, op_mask_t, BM, BN, SM, SN, TM, TN>;
|
||||
threadgroup T tgp_memory
|
||||
[gemv_kernel::tgp_mem_size == 0 ? 1 : gemv_kernel::tgp_mem_size];
|
||||
|
||||
constexpr bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
constexpr bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
// Update batch offsets
|
||||
if (kDoNCBatch) {
|
||||
in_vec += elem_to_loc(tid.z, batch_shape, vector_batch_stride, batch_ndim);
|
||||
mat += elem_to_loc(tid.z, batch_shape, matrix_batch_stride, batch_ndim);
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask +=
|
||||
elem_to_loc(tid.z, batch_shape, mask_batch_strides, batch_ndim);
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
|
||||
mat_mask += batch_offsets.x;
|
||||
vec_mask += batch_offsets.y;
|
||||
}
|
||||
|
||||
} else {
|
||||
in_vec += tid.z * vector_batch_stride[0];
|
||||
mat += tid.z * matrix_batch_stride[0];
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask += tid.z * mask_batch_strides[0];
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
mat_mask += tid.z * mask_batch_strides[0];
|
||||
vec_mask += tid.z * mask_batch_strides[batch_ndim];
|
||||
}
|
||||
}
|
||||
|
||||
out_vec += tid.z * out_vec_size;
|
||||
|
||||
gemv_kernel::run(
|
||||
mat,
|
||||
in_vec,
|
||||
out_vec,
|
||||
in_vec_size,
|
||||
out_vec_size,
|
||||
marix_ld,
|
||||
out_mask,
|
||||
mat_mask,
|
||||
vec_mask,
|
||||
mask_strides,
|
||||
gemv_kernel::tgp_mem_size == 0 ? nullptr : tgp_memory,
|
||||
tid,
|
||||
lid,
|
||||
simd_gid,
|
||||
simd_lid);
|
||||
}
|
@@ -1,5 +1,6 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
// clang-format off
|
||||
#include <metal_simdgroup>
|
||||
#include <metal_stdlib>
|
||||
|
||||
@@ -7,726 +8,7 @@
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/utils.h"
|
||||
|
||||
using namespace metal;
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Matrix vector multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
#define MLX_MTL_CONST static constant constexpr const
|
||||
|
||||
struct _NoMask {
|
||||
char x;
|
||||
|
||||
constexpr METAL_FUNC operator bool() {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const threadgroup {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const device {
|
||||
return true;
|
||||
}
|
||||
constexpr METAL_FUNC operator bool() const constant {
|
||||
return true;
|
||||
}
|
||||
};
|
||||
|
||||
typedef struct _NoMask nomask_t;
|
||||
|
||||
template <typename OutT, typename InT = OutT>
|
||||
struct ScaleOp {
|
||||
OutT scale;
|
||||
|
||||
METAL_FUNC OutT apply(InT x) const {
|
||||
return static_cast<OutT>(x) * scale;
|
||||
}
|
||||
};
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN> /* Thread cols (in elements) */
|
||||
struct GEMVKernel {
|
||||
MLX_MTL_CONST int threadsM = BM * SM;
|
||||
MLX_MTL_CONST int threadsN = BN * SN;
|
||||
|
||||
MLX_MTL_CONST int blockM = threadsM * TM;
|
||||
MLX_MTL_CONST int blockN = threadsN * TN;
|
||||
|
||||
static_assert(SM * SN == 32, "simdgroup can only have 32 threads");
|
||||
|
||||
static_assert(
|
||||
SN == 8 || SN == 16 || SN == 32,
|
||||
"gemv block must have a width of 8, 16, or 32");
|
||||
|
||||
static_assert(blockN >= blockM, "Masked gemv must have blockN >= blockM");
|
||||
|
||||
MLX_MTL_CONST bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
MLX_MTL_CONST bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
MLX_MTL_CONST bool has_mul_operand_mask =
|
||||
has_operand_mask && !metal::is_same_v<op_mask_t, bool>;
|
||||
MLX_MTL_CONST bool has_mul_output_mask =
|
||||
has_output_mask && !metal::is_same_v<out_mask_t, bool>;
|
||||
|
||||
// - The matrix of size (M = out_vec_size, K = in_vec_size) is divided up
|
||||
// into blocks of (blockM, blockN) divided among threadgroups
|
||||
// - Every thread works on a block of (TM, TN)
|
||||
// - We assume each threadgroup has (threadsN, threadsM, 1) threads
|
||||
//
|
||||
// 1. A thread loads TN elements each from mat along TM rows
|
||||
// and the corresponding scalar from the vector
|
||||
// 2. The thread then multiplies and adds to accumulate its local result for
|
||||
// the block
|
||||
// 3. At the end, each thread has accumulated results over all blocks across
|
||||
// the rows. These are then summed up across the threadgroup
|
||||
// 4. Each threadgroup writes its accumulated blockM outputs
|
||||
//
|
||||
// Edge case handling:
|
||||
// - The threadgroup with the largest tid has blocks that exceed the matrix
|
||||
// * The blocks that start outside the matrix are never read (thread results
|
||||
// remain zero)
|
||||
// * The last thread that partially overlaps with the matrix is shifted
|
||||
// inwards such that the thread block fits exactly in the matrix
|
||||
|
||||
MLX_MTL_CONST short tgp_mem_size = BN > 1 ? BN*(blockM + TM) : 0;
|
||||
MLX_MTL_CONST bool needs_tgp_reduction = BN > 1;
|
||||
|
||||
static METAL_FUNC void
|
||||
load_unsafe(const device T* src, thread T dst[TN], const int src_offset = 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src[src_offset + tn];
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void load_safe(
|
||||
const device T* src,
|
||||
thread T dst[TN],
|
||||
const int src_offset = 0,
|
||||
const int src_size = TN) {
|
||||
if (src_offset + TN <= src_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src[src_offset + tn];
|
||||
}
|
||||
} else { // Edgecase
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
dst[tn] = src_offset + tn < src_size ? src[src_offset + tn] : 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static METAL_FUNC void run(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& matrix_ld [[buffer(6)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
threadgroup T* tgp_memory [[threadgroup(0)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
// Appease compiler
|
||||
(void)lid;
|
||||
|
||||
// Thread local accumulation results
|
||||
thread T result[TM] = {0};
|
||||
thread T inter[TN];
|
||||
thread T v_coeff[TN];
|
||||
|
||||
const int thrM = SN != 32 ? simd_lid / SN : 0;
|
||||
const int thrN = SN != 32 ? simd_lid % SN : int(simd_lid);
|
||||
|
||||
const int sgN = BN != 1 ? (simd_gid % BN) : 0;
|
||||
|
||||
const int simdM = BN != 1 ? SM * (simd_gid / BN) : int(SM * simd_gid);
|
||||
const int simdN = BN != 1 ? SN * (simd_gid % BN) : 0;
|
||||
|
||||
int bm = (simdM + thrM) * TM;
|
||||
int bn = (simdN + thrN) * TN;
|
||||
|
||||
// Block position
|
||||
int out_row = tid.x * blockM + bm;
|
||||
|
||||
// Exit simdgroup if rows out of bound
|
||||
if (out_row >= out_vec_size)
|
||||
return;
|
||||
|
||||
// Adjust tail simdgroup to ensure in bound reads
|
||||
out_row = out_row + TM <= out_vec_size ? out_row : out_vec_size - TM;
|
||||
|
||||
// Prepare mask offsets
|
||||
const constant int* out_mask_strides = mask_strides;
|
||||
const constant int* mat_mask_strides =
|
||||
mask_strides + (has_output_mask ? 2 : 0);
|
||||
const constant int* vec_mask_strides =
|
||||
mat_mask_strides + (has_operand_mask ? 2 : 0);
|
||||
|
||||
const int m_block_idx = blockN > blockM ? out_row / blockN : int(tid.x);
|
||||
|
||||
const int out_mask_offset =
|
||||
!has_output_mask ? 0 : m_block_idx * out_mask_strides[1];
|
||||
|
||||
int mat_mask_offset =
|
||||
!has_operand_mask ? 0 : m_block_idx * mat_mask_strides[1];
|
||||
int vec_mask_offset = 0;
|
||||
const int mat_mask_step = !has_operand_mask ? 0 : mat_mask_strides[0];
|
||||
const int vec_mask_step = !has_operand_mask ? 0 : vec_mask_strides[1];
|
||||
|
||||
T out_scale{1};
|
||||
|
||||
// Check output mask
|
||||
if (has_output_mask) {
|
||||
auto mask_out = out_mask[out_mask_offset];
|
||||
|
||||
// Write zeros and return if mask is 0
|
||||
if (!mask_out) {
|
||||
if (simdN == 0 && thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
out_vec[out_row + tm] = T(0.);
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Store scalar if multiplicative mask
|
||||
if (has_mul_output_mask) {
|
||||
out_scale = T(mask_out);
|
||||
}
|
||||
}
|
||||
|
||||
// Advance matrix
|
||||
mat += out_row * matrix_ld;
|
||||
|
||||
// Prepare for loop
|
||||
constexpr const uniform<int> loop_stride = make_uniform(blockN);
|
||||
const uniform<int> in_size = make_uniform(in_vec_size);
|
||||
const uniform<int> n_iter = in_size / loop_stride;
|
||||
const uniform<int> last_iter = loop_stride * n_iter;
|
||||
const uniform<int> leftover = in_size - last_iter;
|
||||
|
||||
// Loop over in_vec in blocks of blockN
|
||||
for (int i = 0; i < n_iter; ++i) {
|
||||
if (!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset]))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
load_unsafe(in_vec, v_coeff, bn);
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
v_coeff[tn] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Per thread work loop
|
||||
int mat_offset = 0;
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
// Load for the row
|
||||
load_unsafe(mat, inter, mat_offset + bn);
|
||||
|
||||
// Accumulate results
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tm] += inter[tn] * v_coeff[tn];
|
||||
}
|
||||
|
||||
mat_offset += matrix_ld;
|
||||
}
|
||||
}
|
||||
|
||||
bn += blockN;
|
||||
mat_mask_offset += mat_mask_step;
|
||||
vec_mask_offset += vec_mask_step;
|
||||
}
|
||||
|
||||
if (leftover > 0 &&
|
||||
(!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset])))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
load_safe(in_vec, v_coeff, bn, in_size);
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
v_coeff[tn] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Per thread work loop
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
// Load for the row
|
||||
load_safe(&mat[tm * matrix_ld], inter, bn, in_size);
|
||||
|
||||
// Accumulate results
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tm] += inter[tn] * v_coeff[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply out scale
|
||||
if (has_mul_output_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
result[tm] *= out_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Simdgroup accumulations
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (ushort sn = (SN / 2); sn >= 1; sn >>= 1) {
|
||||
result[tm] += simd_shuffle_down(result[tm], sn);
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation results
|
||||
if (needs_tgp_reduction) {
|
||||
threadgroup T* tgp_results = tgp_memory + sgN * (blockM + TM) + bm;
|
||||
if (thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
tgp_results[tm] = result[tm];
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (sgN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int sgn = 1; sgn < BN; sgn++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
result[tm] += tgp_results[sgn * (blockM + TM) + tm];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Write outputs
|
||||
if (simdN == 0 && thrN == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
out_vec[out_row + tm] = result[tm];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Vector matrix multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN> /* Thread cols (in elements) */
|
||||
struct GEMVTKernel {
|
||||
MLX_MTL_CONST int threadsM = BM * SM;
|
||||
MLX_MTL_CONST int threadsN = BN * SN;
|
||||
|
||||
MLX_MTL_CONST int blockM = threadsM * TM;
|
||||
MLX_MTL_CONST int blockN = threadsN * TN;
|
||||
|
||||
static_assert(SM * SN == 32, "simdgroup can only have 32 threads");
|
||||
|
||||
MLX_MTL_CONST bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
MLX_MTL_CONST bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
MLX_MTL_CONST bool has_mul_operand_mask =
|
||||
has_operand_mask && !metal::is_same_v<op_mask_t, bool>;
|
||||
MLX_MTL_CONST bool has_mul_output_mask =
|
||||
has_output_mask && !metal::is_same_v<out_mask_t, bool>;
|
||||
|
||||
// - The matrix of size (M = in_vec_size, N = out_vec_size) is divided up
|
||||
// into blocks of (blockM, blockN) divided among threadgroups
|
||||
// - Every thread works on a block of (TM, TN)
|
||||
// - We assume each threadgroup has (threadsN, threadsM, 1) threads
|
||||
//
|
||||
// 1. A thread loads TN elements each from mat along TM contiguous rows
|
||||
// and the corresponding scalar from the vector
|
||||
// 2. The thread then accumulates its local result for the block
|
||||
// 3. At the end, each thread has accumulated results over all blocks across
|
||||
// the rows. These are then summed up across the threadgroup
|
||||
// 4. Each threadgroup writes its accumulated BN * TN outputs
|
||||
//
|
||||
// Edge case handling:
|
||||
// - The threadgroup with the largest tid has blocks that exceed the matrix
|
||||
// * The blocks that start outside the matrix are never read (thread results
|
||||
// remain zero)
|
||||
// * The last thread that partially overlaps with the matrix is shifted
|
||||
// inwards such that the thread block fits exactly in the matrix
|
||||
|
||||
MLX_MTL_CONST short tgp_mem_size = BM > 1 ? BM*(blockN + TN) : 0;
|
||||
MLX_MTL_CONST bool needs_tgp_reduction = BM > 1;
|
||||
|
||||
static METAL_FUNC void run(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
threadgroup T* tgp_memory [[threadgroup(0)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
// Appease compiler
|
||||
(void)lid;
|
||||
|
||||
// Thread local accumulation results
|
||||
T result[TN] = {0};
|
||||
T inter[TN];
|
||||
T v_coeff[TM];
|
||||
|
||||
const int thrM = SN != 32 ? simd_lid / SN : 0;
|
||||
const int thrN = SN != 32 ? simd_lid % SN : int(simd_lid);
|
||||
|
||||
const int sgM = BN != 1 ? (simd_gid / BN) : int(simd_gid);
|
||||
const int sgN = BN != 1 ? (simd_gid % BN) : 0;
|
||||
|
||||
const int simdM = SM * sgM;
|
||||
const int simdN = SN * sgN;
|
||||
|
||||
int cm = (simdM + thrM);
|
||||
int cn = (simdN + thrN);
|
||||
|
||||
int bm = cm * TM;
|
||||
int bn = cn * TN;
|
||||
|
||||
int out_col = tid.x * blockN + bn;
|
||||
|
||||
// Prepare mask offsets
|
||||
const constant int* out_mask_strides = mask_strides;
|
||||
const constant int* mat_mask_strides =
|
||||
out_mask_strides + (has_output_mask ? 2 : 0);
|
||||
const constant int* vec_mask_strides =
|
||||
mat_mask_strides + (has_operand_mask ? 2 : 0);
|
||||
|
||||
const int n_block_idx = blockM > blockN ? out_col / blockM : int(tid.x);
|
||||
|
||||
const int out_mask_offset =
|
||||
!has_output_mask ? 0 : n_block_idx; // * out_mask_strides[0];
|
||||
|
||||
int mat_mask_offset =
|
||||
!has_operand_mask ? 0 : n_block_idx * mat_mask_strides[0];
|
||||
int vec_mask_offset = 0;
|
||||
const int mat_mask_step = !has_operand_mask ? 0 : mat_mask_strides[1];
|
||||
const int vec_mask_step = !has_operand_mask ? 0 : vec_mask_strides[0];
|
||||
|
||||
T out_scale{1};
|
||||
|
||||
// Check output mask
|
||||
if (has_output_mask) {
|
||||
auto mask_out = out_mask[out_mask_offset];
|
||||
|
||||
// Write zeros and return if mask is 0
|
||||
if (!mask_out) {
|
||||
if (cm == 0 && out_col < out_vec_size) {
|
||||
if (out_col + TN <= out_vec_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
out_vec[out_col + tn] = T(0.);
|
||||
}
|
||||
} else {
|
||||
for (int tn = 0; tn < TN && (out_col + tn) < out_vec_size; tn++) {
|
||||
out_vec[out_col + tn] = T(0.);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// Store scalar if multiplicative mask
|
||||
if (has_mul_output_mask) {
|
||||
out_scale = T(mask_out);
|
||||
}
|
||||
}
|
||||
|
||||
// Prepare for loop
|
||||
constexpr const uniform<int> loop_stride = make_uniform(blockM);
|
||||
const uniform<int> in_size = make_uniform(in_vec_size);
|
||||
const uniform<int> n_iter = in_size / loop_stride;
|
||||
const uniform<int> last_iter = loop_stride * n_iter;
|
||||
const uniform<int> leftover = in_size - last_iter;
|
||||
|
||||
// Edgecase handling
|
||||
if (out_col < out_vec_size) {
|
||||
out_col = (out_col + TN) <= out_vec_size ? out_col : out_vec_size - TN;
|
||||
|
||||
// Per thread accumulation main loop
|
||||
for (int i = 0; i < n_iter; ++i) {
|
||||
// Adding a threadgroup_barrier improves performance slightly
|
||||
// This is possibly it may help exploit cache better
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset]))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
v_coeff[tm] = in_vec[bm + tm];
|
||||
}
|
||||
|
||||
// Apply scale
|
||||
if (has_mul_operand_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
v_coeff[tm] *= block_scale;
|
||||
}
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tm = 0; tm < TM; tm++) {
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
inter[tn] = mat[(bm + tm) * marix_ld + out_col + tn];
|
||||
}
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += v_coeff[tm] * inter[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
bm += blockM;
|
||||
mat_mask_offset += mat_mask_step;
|
||||
vec_mask_offset += vec_mask_step;
|
||||
}
|
||||
|
||||
if (leftover > 0 &&
|
||||
(!has_operand_mask ||
|
||||
(bool(mat_mask[mat_mask_offset]) &&
|
||||
bool(vec_mask[vec_mask_offset])))) {
|
||||
T block_scale{1};
|
||||
if (has_mul_operand_mask) {
|
||||
block_scale =
|
||||
T(mat_mask[mat_mask_offset]) * T(vec_mask[vec_mask_offset]);
|
||||
}
|
||||
|
||||
for (int tm = 0; tm < TM && bm + tm < in_vec_size; tm++) {
|
||||
v_coeff[tm] = in_vec[bm + tm];
|
||||
|
||||
if (has_mul_operand_mask) {
|
||||
v_coeff[tm] *= block_scale;
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
inter[tn] = mat[(bm + tm) * marix_ld + out_col + tn];
|
||||
}
|
||||
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += v_coeff[tm] * inter[tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Apply out scale
|
||||
if (has_mul_output_mask) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] *= out_scale;
|
||||
}
|
||||
}
|
||||
|
||||
// Simdgroup accumulations
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (ushort sm = (SM / 2); sm >= 1; sm >>= 1) {
|
||||
result[tn] += simd_shuffle_down(result[tn], SN * sm);
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation results
|
||||
if (needs_tgp_reduction) {
|
||||
threadgroup T* tgp_results = tgp_memory + sgM * (blockN + TN) + bn;
|
||||
if (thrM == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
tgp_results[tn] = result[tn];
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_none);
|
||||
|
||||
if (sgM == 0) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int sgm = 1; sgm < BM; sgm++) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int tn = 0; tn < TN; tn++) {
|
||||
result[tn] += tgp_results[sgm * (blockN + TN) + tn];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Threadgroup accumulation and writing out results
|
||||
if (cm == 0 && out_col < out_vec_size) {
|
||||
MLX_MTL_PRAGMA_UNROLL
|
||||
for (int j = 0; j < TN; j++) {
|
||||
out_vec[out_col + j] = result[j];
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Matrix vector multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN, /* Thread cols (in elements) */
|
||||
const bool kDoNCBatch> /* Batch ndim > 1 */
|
||||
[[kernel, max_total_threads_per_threadgroup(BM* BN * 32)]] void gemv_masked(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
using gemv_kernel =
|
||||
GEMVKernel<T, out_mask_t, op_mask_t, BM, BN, SM, SN, TM, TN>;
|
||||
threadgroup T tgp_memory
|
||||
[gemv_kernel::tgp_mem_size == 0 ? 1 : gemv_kernel::tgp_mem_size];
|
||||
|
||||
constexpr bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
constexpr bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
// Update batch offsets
|
||||
if (kDoNCBatch) {
|
||||
in_vec += elem_to_loc(tid.z, batch_shape, vector_batch_stride, batch_ndim);
|
||||
mat += elem_to_loc(tid.z, batch_shape, matrix_batch_stride, batch_ndim);
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask +=
|
||||
elem_to_loc(tid.z, batch_shape, mask_batch_strides, batch_ndim);
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
|
||||
mat_mask += batch_offsets.x;
|
||||
vec_mask += batch_offsets.y;
|
||||
}
|
||||
|
||||
} else {
|
||||
in_vec += tid.z * vector_batch_stride[0];
|
||||
mat += tid.z * matrix_batch_stride[0];
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask += tid.z * mask_batch_strides[0];
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
mat_mask += tid.z * mask_batch_strides[0];
|
||||
vec_mask += tid.z * mask_batch_strides[batch_ndim];
|
||||
}
|
||||
}
|
||||
|
||||
out_vec += tid.z * out_vec_size;
|
||||
|
||||
gemv_kernel::run(
|
||||
mat,
|
||||
in_vec,
|
||||
out_vec,
|
||||
in_vec_size,
|
||||
out_vec_size,
|
||||
marix_ld,
|
||||
out_mask,
|
||||
mat_mask,
|
||||
vec_mask,
|
||||
mask_strides,
|
||||
gemv_kernel::tgp_mem_size == 0 ? nullptr : tgp_memory,
|
||||
tid,
|
||||
lid,
|
||||
simd_gid,
|
||||
simd_lid);
|
||||
}
|
||||
#include "mlx/backend/metal/kernels/gemv_masked.h"
|
||||
|
||||
#define instantiate_gemv_helper( \
|
||||
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
@@ -754,7 +36,6 @@ template <
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(name, itype, name, itype, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
@@ -763,125 +44,23 @@ template <
|
||||
instantiate_gemv_helper(nomask, nomask_t, name, itype, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(nomask, nomask_t, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(bool_, bool, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_helper(name, itype, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc) // clang-format on
|
||||
instantiate_gemv_helper(name, itype, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc)
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv(name, itype, bm, bn, sm, sn, tm, tn) \
|
||||
#define instantiate_gemv(name, itype, bm, bn, sm, sn, tm, tn) \
|
||||
instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, 0) \
|
||||
instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, 1) // clang-format on
|
||||
instantiate_gemv_base(name, itype, bm, bn, sm, sn, tm, tn, 1)
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_blocks(name, itype) \
|
||||
instantiate_gemv(name, itype, 2, 1, 4, 8, 1, 4) \
|
||||
instantiate_gemv(name, itype, 2, 1, 4, 8, 4, 4) \
|
||||
instantiate_gemv(name, itype, 2, 1, 2, 16, 1, 4) \
|
||||
instantiate_gemv(name, itype, 2, 1, 2, 16, 4, 4) \
|
||||
instantiate_gemv(name, itype, 4, 1, 2, 16, 4, 4) // clang-format on
|
||||
instantiate_gemv(name, itype, 4, 1, 2, 16, 4, 4)
|
||||
|
||||
instantiate_gemv_blocks(float32, float);
|
||||
instantiate_gemv_blocks(float16, half);
|
||||
instantiate_gemv_blocks(bfloat16, bfloat16_t);
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
/// Vector matrix multiplication
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
template <
|
||||
typename T,
|
||||
typename out_mask_t,
|
||||
typename op_mask_t,
|
||||
const int BM, /* Threadgroup rows (in simdgroups) */
|
||||
const int BN, /* Threadgroup cols (in simdgroups) */
|
||||
const int SM, /* Simdgroup rows (in threads) */
|
||||
const int SN, /* Simdgroup cols (in threads) */
|
||||
const int TM, /* Thread rows (in elements) */
|
||||
const int TN, /* Thread cols (in elements) */
|
||||
const bool kDoNCBatch> /* Batch ndim > 1 */
|
||||
[[kernel, max_total_threads_per_threadgroup(BM* BN * 32)]] void gemv_t_masked(
|
||||
const device T* mat [[buffer(0)]],
|
||||
const device T* in_vec [[buffer(1)]],
|
||||
device T* out_vec [[buffer(3)]],
|
||||
const constant int& in_vec_size [[buffer(4)]],
|
||||
const constant int& out_vec_size [[buffer(5)]],
|
||||
const constant int& marix_ld [[buffer(6)]],
|
||||
const constant int& batch_ndim [[buffer(9)]],
|
||||
const constant int* batch_shape [[buffer(10)]],
|
||||
const constant size_t* vector_batch_stride [[buffer(11)]],
|
||||
const constant size_t* matrix_batch_stride [[buffer(12)]],
|
||||
const device out_mask_t* out_mask [[buffer(20)]],
|
||||
const device op_mask_t* mat_mask [[buffer(21)]],
|
||||
const device op_mask_t* vec_mask [[buffer(22)]],
|
||||
const constant int* mask_strides [[buffer(23)]],
|
||||
const constant size_t* mask_batch_strides [[buffer(24)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]],
|
||||
uint simd_lid [[thread_index_in_simdgroup]]) {
|
||||
using gemv_kernel =
|
||||
GEMVTKernel<T, out_mask_t, op_mask_t, BM, BN, SM, SN, TM, TN>;
|
||||
threadgroup T tgp_memory
|
||||
[gemv_kernel::tgp_mem_size == 0 ? 1 : gemv_kernel::tgp_mem_size];
|
||||
|
||||
constexpr bool has_operand_mask = !metal::is_same_v<op_mask_t, nomask_t>;
|
||||
constexpr bool has_output_mask = !metal::is_same_v<out_mask_t, nomask_t>;
|
||||
|
||||
// Update batch offsets
|
||||
if (kDoNCBatch) {
|
||||
in_vec += elem_to_loc(tid.z, batch_shape, vector_batch_stride, batch_ndim);
|
||||
mat += elem_to_loc(tid.z, batch_shape, matrix_batch_stride, batch_ndim);
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask +=
|
||||
elem_to_loc(tid.z, batch_shape, mask_batch_strides, batch_ndim);
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
const constant size_t* mask_strides_mat = mask_batch_strides;
|
||||
const constant size_t* mask_strides_vec = mask_strides_mat + batch_ndim;
|
||||
|
||||
ulong2 batch_offsets = elem_to_loc_broadcast(
|
||||
tid.z, batch_shape, mask_strides_mat, mask_strides_vec, batch_ndim);
|
||||
|
||||
mat_mask += batch_offsets.x;
|
||||
vec_mask += batch_offsets.y;
|
||||
}
|
||||
|
||||
} else {
|
||||
in_vec += tid.z * vector_batch_stride[0];
|
||||
mat += tid.z * matrix_batch_stride[0];
|
||||
|
||||
if (has_output_mask) {
|
||||
out_mask += tid.z * mask_batch_strides[0];
|
||||
mask_batch_strides += batch_ndim;
|
||||
}
|
||||
|
||||
if (has_operand_mask) {
|
||||
mat_mask += tid.z * mask_batch_strides[0];
|
||||
vec_mask += tid.z * mask_batch_strides[batch_ndim];
|
||||
}
|
||||
}
|
||||
|
||||
out_vec += tid.z * out_vec_size;
|
||||
|
||||
gemv_kernel::run(
|
||||
mat,
|
||||
in_vec,
|
||||
out_vec,
|
||||
in_vec_size,
|
||||
out_vec_size,
|
||||
marix_ld,
|
||||
out_mask,
|
||||
mat_mask,
|
||||
vec_mask,
|
||||
mask_strides,
|
||||
gemv_kernel::tgp_mem_size == 0 ? nullptr : tgp_memory,
|
||||
tid,
|
||||
lid,
|
||||
simd_gid,
|
||||
simd_lid);
|
||||
}
|
||||
|
||||
#define instantiate_gemv_t_helper( \
|
||||
outm_n, outm_t, opm_n, opm_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
template [[host_name("gemv_t_outmask_" #outm_n "_opmask_" #opm_n "_" #name \
|
||||
@@ -908,7 +87,6 @@ template <
|
||||
uint simd_gid [[simdgroup_index_in_threadgroup]], \
|
||||
uint simd_lid [[thread_index_in_simdgroup]]);
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(bool_, bool, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(name, itype, name, itype, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
@@ -917,23 +95,20 @@ template <
|
||||
instantiate_gemv_t_helper(nomask, nomask_t, name, itype, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(nomask, nomask_t, bool_, bool, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(bool_, bool, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc) \
|
||||
instantiate_gemv_t_helper(name, itype, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc) // clang-format on
|
||||
instantiate_gemv_t_helper(name, itype, nomask, nomask_t, name, itype, bm, bn, sm, sn, tm, tn, nc)
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_t(name, itype, bm, bn, sm, sn, tm, tn) \
|
||||
instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, 0) \
|
||||
instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, 1) // clang-format on
|
||||
instantiate_gemv_t_base(name, itype, bm, bn, sm, sn, tm, tn, 1)
|
||||
|
||||
// clang-format off
|
||||
#define instantiate_gemv_t_blocks(name, itype) \
|
||||
instantiate_gemv_t(name, itype, 1, 1, 8, 4, 4, 1) \
|
||||
instantiate_gemv_t(name, itype, 1, 2, 8, 4, 4, 4) \
|
||||
instantiate_gemv_t(name, itype, 1, 1, 8, 4, 8, 1) \
|
||||
instantiate_gemv_t(name, itype, 1, 1, 8, 4, 8, 4) \
|
||||
instantiate_gemv_t(name, itype, 1, 2, 8, 4, 8, 4) \
|
||||
instantiate_gemv_t(name, itype, 1, 4, 8, 4, 8, 4) // clang-format on
|
||||
instantiate_gemv_t(name, itype, 1, 4, 8, 4, 8, 4)
|
||||
|
||||
// clang-format off
|
||||
instantiate_gemv_t_blocks(float32, float);
|
||||
instantiate_gemv_t_blocks(float16, half);
|
||||
instantiate_gemv_t_blocks(bfloat16, bfloat16_t); // clang-format on
|
||||
instantiate_gemv_t_blocks(bfloat16, bfloat16_t); // clang-format on
|
||||
|
167
mlx/backend/metal/kernels/hadamard.h
Normal file
167
mlx/backend/metal/kernels/hadamard.h
Normal file
@@ -0,0 +1,167 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#include <metal_common>
|
||||
#include <metal_compute>
|
||||
|
||||
#include "mlx/backend/metal/kernels/steel/defines.h"
|
||||
|
||||
using namespace metal;
|
||||
|
||||
// Thread local Hadamard transform for 2^R
|
||||
template <short R>
|
||||
METAL_FUNC void radix_func(thread float* x) {
|
||||
constexpr short logR = __builtin_ctz(R);
|
||||
short h = 1;
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short s = 0; s < logR; s++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short i = 0; i < R / 2; i++) {
|
||||
short k = i & (h - 1);
|
||||
short j = ((i - k) << 1) + k;
|
||||
float a = x[j];
|
||||
float b = x[j + h];
|
||||
x[j] = a + b;
|
||||
x[j + h] = a - b;
|
||||
}
|
||||
h <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int N, int max_radix, int read_width>
|
||||
[[kernel]] void hadamard_n(
|
||||
const device T* in [[buffer(0)]],
|
||||
device T* out [[buffer(1)]],
|
||||
constant const float& scale,
|
||||
uint3 elem [[thread_position_in_grid]],
|
||||
uint3 grid [[threads_per_grid]]) {
|
||||
// Compute a Hadamard transform of size N = 2^k
|
||||
//
|
||||
// Equivalent to:
|
||||
// from scipy.linalg import hadamard
|
||||
// y = hadamard(len(x)) @ x
|
||||
|
||||
constexpr short num_threads = N / max_radix;
|
||||
constexpr short logN = __builtin_ctz(N);
|
||||
constexpr short logR = __builtin_ctz(max_radix);
|
||||
constexpr short num_steps = logN / logR;
|
||||
constexpr short logFinal = logN % logR;
|
||||
constexpr short final_radix = 1 << (logFinal);
|
||||
|
||||
int batch_idx = elem.x * N;
|
||||
short i = elem.y;
|
||||
|
||||
threadgroup T buf[N];
|
||||
|
||||
// Read values from device
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < max_radix / read_width; j++) {
|
||||
short index = j * read_width * num_threads + i * read_width;
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < read_width; r++) {
|
||||
buf[index + r] = in[batch_idx + index + r];
|
||||
}
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
float x[max_radix];
|
||||
short h = 1;
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short s = 0; s < num_steps; s++) {
|
||||
short k = i & (h - 1);
|
||||
short j = ((i - k) << logR) + k;
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < max_radix; r++) {
|
||||
x[r] = buf[j + h * r];
|
||||
}
|
||||
|
||||
radix_func<max_radix>(x);
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < max_radix; r++) {
|
||||
buf[j + h * r] = T(x[r]);
|
||||
}
|
||||
|
||||
h <<= logR;
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// Do the final radix
|
||||
// e.g. max_radix = 16
|
||||
// N = 1024 = 16 * 16 * 4
|
||||
if (final_radix > 1) {
|
||||
// Each thread does multiple butterflies
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (int t = 0; t < max_radix / final_radix; t++) {
|
||||
short index = i + t * num_threads;
|
||||
short k = index & (h - 1);
|
||||
short j = ((index - k) << logFinal) + k;
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < final_radix; r++) {
|
||||
x[r] = buf[j + h * r];
|
||||
}
|
||||
|
||||
radix_func<final_radix>(x);
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < final_radix; r++) {
|
||||
buf[j + h * r] = T(x[r]);
|
||||
}
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// Write values to device
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short j = 0; j < max_radix / read_width; j++) {
|
||||
short index = j * read_width * num_threads + i * read_width;
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < read_width; r++) {
|
||||
out[batch_idx + index + r] = T(buf[index + r] * scale);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, int N, int M, int read_width>
|
||||
[[kernel]] void hadamard_m(
|
||||
const device T* in [[buffer(0)]],
|
||||
device T* out [[buffer(1)]],
|
||||
constant const float& scale,
|
||||
uint3 elem [[thread_position_in_grid]],
|
||||
uint3 grid [[threads_per_grid]]) {
|
||||
// Compute a Hadamard transform of size M
|
||||
// using a naive O(M^2) codelet.
|
||||
//
|
||||
// This kernel is the second stage in the computation
|
||||
// of a Hadamard transform of size M*N where N = 2^k.
|
||||
|
||||
int index = elem.x * grid.y + elem.y;
|
||||
short i = index % (N / read_width);
|
||||
int batch_idx = index / (N / read_width) * M * N;
|
||||
|
||||
float x[read_width][M];
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short c = 0; c < M; c++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < read_width; r++) {
|
||||
x[r][c] = in[batch_idx + c * N + i * read_width + r];
|
||||
}
|
||||
}
|
||||
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < read_width; r++) {
|
||||
// This function is JIT compiled for M
|
||||
// using the Hadamard matrix strings in `metal/hadamard.cpp`
|
||||
hadamard_radix_m(x[r]);
|
||||
}
|
||||
|
||||
// Write back to device
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short c = 0; c < M; c++) {
|
||||
STEEL_PRAGMA_UNROLL
|
||||
for (short r = 0; r < read_width; r++) {
|
||||
out[batch_idx + c * N + i * read_width + r] = T(x[r][c] * scale);
|
||||
}
|
||||
}
|
||||
}
|
@@ -34,7 +34,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
threadgroup float local_mean[1];
|
||||
threadgroup float local_normalizer[1];
|
||||
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
b += b_stride * lid * N_READS;
|
||||
|
||||
@@ -89,7 +89,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer = local_normalizer[0];
|
||||
|
||||
// Write the outputs
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
out += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
||||
@@ -131,7 +131,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
threadgroup float local_mean[1];
|
||||
threadgroup float local_normalizer[1];
|
||||
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
b += b_stride * lid * N_READS;
|
||||
|
||||
@@ -188,7 +188,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer = local_normalizer[0];
|
||||
|
||||
// Write the outputs
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
out += gid * size_t(axis_size) + lid * N_READS;
|
||||
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
||||
if (r + lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
@@ -223,8 +223,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
// Advance the input pointers
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
g += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
g += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
|
||||
// Allocate registers for the computation and accumulators
|
||||
@@ -321,8 +321,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer2 = normalizer * normalizer;
|
||||
|
||||
// Write the outputs
|
||||
gx += gid * axis_size + lid * N_READS;
|
||||
gw += gid * axis_size + lid * N_READS;
|
||||
gx += gid * size_t(axis_size) + lid * N_READS;
|
||||
gw += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
thread_x[i] = (thread_x[i] - mean) * normalizer;
|
||||
@@ -360,8 +360,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
// Advance the input pointers
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
g += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
g += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
|
||||
// Allocate registers for the accumulators
|
||||
@@ -457,8 +457,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer2 = normalizer * normalizer;
|
||||
|
||||
// Write the outputs
|
||||
gx += gid * axis_size + lid * N_READS;
|
||||
gw += gid * axis_size + lid * N_READS;
|
||||
gx += gid * size_t(axis_size) + lid * N_READS;
|
||||
gw += gid * size_t(axis_size) + lid * N_READS;
|
||||
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
||||
if (r + lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
|
@@ -690,12 +690,12 @@ METAL_FUNC void qvm_impl(
|
||||
|
||||
template <
|
||||
typename T,
|
||||
const int BM,
|
||||
const int BK,
|
||||
const int BN,
|
||||
const int group_size,
|
||||
const int bits,
|
||||
const bool aligned_N>
|
||||
const bool aligned_N,
|
||||
const int BM = 32,
|
||||
const int BK = 32,
|
||||
const int BN = 32>
|
||||
METAL_FUNC void qmm_t_impl(
|
||||
const device T* x,
|
||||
const device uint32_t* w,
|
||||
@@ -812,11 +812,11 @@ METAL_FUNC void qmm_t_impl(
|
||||
|
||||
template <
|
||||
typename T,
|
||||
const int BM,
|
||||
const int BK,
|
||||
const int BN,
|
||||
const int group_size,
|
||||
const int bits>
|
||||
const int bits,
|
||||
const int BM = 32,
|
||||
const int BK = 32,
|
||||
const int BN = 32>
|
||||
METAL_FUNC void qmm_n_impl(
|
||||
const device T* x,
|
||||
const device uint32_t* w,
|
||||
@@ -1099,7 +1099,7 @@ template <
|
||||
threadgroup T Xs[BM * BK_padded];
|
||||
threadgroup T Ws[BN * BK_padded];
|
||||
|
||||
qmm_t_impl<T, BM, BK, BN, group_size, bits, aligned_N>(
|
||||
qmm_t_impl<T, group_size, bits, aligned_N, BM, BK, BN>(
|
||||
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
|
||||
}
|
||||
|
||||
@@ -1131,7 +1131,7 @@ template <
|
||||
threadgroup T Xs[BM * BK_padded];
|
||||
threadgroup T Ws[BK * BN_padded];
|
||||
|
||||
qmm_n_impl<T, BM, BK, BN, group_size, bits>(
|
||||
qmm_n_impl<T, group_size, bits, BM, BK, BN>(
|
||||
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
|
||||
}
|
||||
|
||||
@@ -1382,7 +1382,7 @@ template <
|
||||
s_strides,
|
||||
b_strides,
|
||||
tid);
|
||||
qmm_t_impl<T, BM, BK, BN, group_size, bits, aligned_N>(
|
||||
qmm_t_impl<T, group_size, bits, aligned_N, BM, BK, BN>(
|
||||
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
|
||||
}
|
||||
|
||||
@@ -1450,6 +1450,147 @@ template <
|
||||
s_strides,
|
||||
b_strides,
|
||||
tid);
|
||||
qmm_n_impl<T, BM, BK, BN, group_size, bits>(
|
||||
qmm_n_impl<T, group_size, bits, BM, BK, BN>(
|
||||
x, w, scales, biases, y, Xs, Ws, M, N, K, tid, lid, simd_gid, simd_lid);
|
||||
}
|
||||
|
||||
template <typename T, const int group_size, const int bits>
|
||||
[[kernel]] void affine_quantize(
|
||||
const device T* w [[buffer(0)]],
|
||||
device uint8_t* out [[buffer(1)]],
|
||||
device T* scales [[buffer(2)]],
|
||||
device T* biases [[buffer(3)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
constexpr T eps = T(1e-7);
|
||||
constexpr int simd_size = 32;
|
||||
constexpr int uint8_bits = 8;
|
||||
constexpr T n_bins = (1 << bits) - 1;
|
||||
constexpr int packs_per_int = uint8_bits / bits;
|
||||
constexpr int values_per_reduce = group_size / simd_size;
|
||||
constexpr int writes_per_reduce = packs_per_int / values_per_reduce;
|
||||
constexpr int writes_per_pack =
|
||||
writes_per_reduce > 1 ? 1 : values_per_reduce / packs_per_int;
|
||||
|
||||
static_assert(
|
||||
group_size % simd_size == 0,
|
||||
"Group size must be divisible by simd size.");
|
||||
|
||||
int in_index = index * values_per_reduce;
|
||||
int out_index = index * writes_per_pack;
|
||||
|
||||
T w_thread[values_per_reduce];
|
||||
T w_min = Limits<T>::max;
|
||||
T w_max = 0;
|
||||
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < values_per_reduce; i++) {
|
||||
T val = w[in_index + i];
|
||||
w_thread[i] = val;
|
||||
w_min = min(w_min, val);
|
||||
w_max = max(w_max, val);
|
||||
}
|
||||
|
||||
w_min = simd_min(w_min);
|
||||
w_max = simd_max(w_max);
|
||||
|
||||
T scale = max((w_max - w_min) / n_bins, eps);
|
||||
bool side = abs(w_min) > abs(w_max);
|
||||
scale = side ? scale : -scale;
|
||||
T edge = side ? w_min : w_max;
|
||||
T q0 = round(edge / scale);
|
||||
bool at_zero = q0 == 0.0f;
|
||||
scale = at_zero ? scale : edge / q0;
|
||||
T bias = at_zero ? T(0) : edge;
|
||||
|
||||
// Write out the scales and biases
|
||||
int gindex = in_index / group_size;
|
||||
if (in_index % group_size == 0) {
|
||||
scales[gindex] = scale;
|
||||
biases[gindex] = bias;
|
||||
}
|
||||
|
||||
uint8_t output = 0;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < values_per_reduce; i++) {
|
||||
uint8_t val = min(round((w_thread[i] - bias) / scale), n_bins);
|
||||
if (bits == 8) {
|
||||
output = val;
|
||||
} else {
|
||||
output += val << (bits * (i % packs_per_int));
|
||||
}
|
||||
|
||||
if (packs_per_int < values_per_reduce &&
|
||||
i % packs_per_int == packs_per_int - 1) {
|
||||
out[out_index + i / packs_per_int] = output;
|
||||
output = 0;
|
||||
} else {
|
||||
#pragma clang loop unroll(full)
|
||||
for (int j = 0; j < writes_per_reduce - 1; j++) {
|
||||
uint8_t sval = simd_shuffle_down(val, j + 1);
|
||||
output += sval << (bits * (values_per_reduce + j + i));
|
||||
}
|
||||
}
|
||||
}
|
||||
if (writes_per_reduce > 0 && out_index % writes_per_reduce == 0) {
|
||||
out[out_index / writes_per_reduce] = output;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename T, const int group_size, const int bits>
|
||||
[[kernel]] void affine_quantize_scales_biases(
|
||||
const device T* w [[buffer(0)]],
|
||||
const device T* scales [[buffer(1)]],
|
||||
const device T* biases [[buffer(2)]],
|
||||
device uint8_t* out [[buffer(3)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
constexpr int uint8_bits = 8;
|
||||
constexpr int packs_per_int = uint8_bits / bits;
|
||||
constexpr T n_bins = (1 << bits) - 1;
|
||||
|
||||
int in_index = index * packs_per_int;
|
||||
int gindex = in_index / group_size;
|
||||
T scale = scales[gindex];
|
||||
T bias = biases[gindex];
|
||||
|
||||
uint8_t output = 0;
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < packs_per_int; i++) {
|
||||
uint8_t val = min(round((w[in_index + i] - bias) / scale), n_bins);
|
||||
if (bits == 8) {
|
||||
output = val;
|
||||
} else {
|
||||
output += val << (bits * i);
|
||||
}
|
||||
}
|
||||
out[index] = output;
|
||||
}
|
||||
|
||||
template <typename T, const int group_size, const int bits>
|
||||
[[kernel]] void affine_dequantize(
|
||||
const device uint8_t* w [[buffer(0)]],
|
||||
const device T* scales [[buffer(1)]],
|
||||
const device T* biases [[buffer(2)]],
|
||||
device T* out [[buffer(3)]],
|
||||
uint index [[thread_position_in_grid]]) {
|
||||
constexpr int uint8_bits = 8;
|
||||
constexpr int packs_per_int = uint8_bits / bits;
|
||||
|
||||
int oindex = index * packs_per_int;
|
||||
int gindex = oindex / group_size;
|
||||
T scale = scales[gindex];
|
||||
T bias = biases[gindex];
|
||||
uint val = w[index];
|
||||
|
||||
#pragma clang loop unroll(full)
|
||||
for (int i = 0; i < packs_per_int; i++) {
|
||||
uint8_t d;
|
||||
if (bits == 2) {
|
||||
d = (val >> (bits * i)) & 0x03;
|
||||
} else if (bits == 4) {
|
||||
d = (val >> (bits * i)) & 0x0f;
|
||||
} else if (bits == 8) {
|
||||
d = val;
|
||||
}
|
||||
out[oindex + i] = scale * d + bias;
|
||||
}
|
||||
}
|
||||
|
@@ -5,241 +5,67 @@
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/gemm.h"
|
||||
#include "mlx/backend/metal/kernels/quantized.h"
|
||||
|
||||
|
||||
#define instantiate_qmv_fast(itype, group_size, bits) \
|
||||
#define instantiate_quantized(name, type, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"qmv_" #itype "_gs_" #group_size "_b_" #bits "_fast", \
|
||||
qmv_fast, \
|
||||
itype, \
|
||||
#name "_" #type "_gs_" #group_size "_b_" #bits, \
|
||||
name, \
|
||||
type, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_qmv_fast_types(group_size, bits) \
|
||||
instantiate_qmv_fast(float, group_size, bits) \
|
||||
instantiate_qmv_fast(float16_t, group_size, bits) \
|
||||
instantiate_qmv_fast(bfloat16_t, group_size, bits)
|
||||
#define instantiate_quantized_types(name, group_size, bits) \
|
||||
instantiate_quantized(name, float, group_size, bits) \
|
||||
instantiate_quantized(name, float16_t, group_size, bits) \
|
||||
instantiate_quantized(name, bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_qmv_fast_types(128, 2)
|
||||
instantiate_qmv_fast_types(128, 4)
|
||||
instantiate_qmv_fast_types(128, 8)
|
||||
instantiate_qmv_fast_types( 64, 2)
|
||||
instantiate_qmv_fast_types( 64, 4)
|
||||
instantiate_qmv_fast_types( 64, 8)
|
||||
instantiate_qmv_fast_types( 32, 2)
|
||||
instantiate_qmv_fast_types( 32, 4)
|
||||
instantiate_qmv_fast_types( 32, 8)
|
||||
#define instantiate_quantized_groups(name, bits) \
|
||||
instantiate_quantized_types(name, 128, bits) \
|
||||
instantiate_quantized_types(name, 64, bits) \
|
||||
instantiate_quantized_types(name, 32, bits)
|
||||
|
||||
#define instantiate_qmv(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"qmv_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
qmv, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
#define instantiate_quantized_all(name) \
|
||||
instantiate_quantized_groups(name, 2) \
|
||||
instantiate_quantized_groups(name, 4) \
|
||||
instantiate_quantized_groups(name, 8)
|
||||
|
||||
#define instantiate_qmv_types(group_size, bits) \
|
||||
instantiate_qmv(float, group_size, bits) \
|
||||
instantiate_qmv(float16_t, group_size, bits) \
|
||||
instantiate_qmv(bfloat16_t, group_size, bits)
|
||||
instantiate_quantized_all(qmv_fast)
|
||||
instantiate_quantized_all(qmv)
|
||||
instantiate_quantized_all(qvm)
|
||||
instantiate_quantized_all(qmm_n)
|
||||
instantiate_quantized_all(bs_qmv_fast)
|
||||
instantiate_quantized_all(bs_qmv)
|
||||
instantiate_quantized_all(bs_qvm)
|
||||
instantiate_quantized_all(bs_qmm_n)
|
||||
instantiate_quantized_all(affine_quantize)
|
||||
instantiate_quantized_all(affine_quantize_scales_biases)
|
||||
instantiate_quantized_all(affine_dequantize)
|
||||
|
||||
instantiate_qmv_types(128, 2)
|
||||
instantiate_qmv_types(128, 4)
|
||||
instantiate_qmv_types(128, 8)
|
||||
instantiate_qmv_types( 64, 2)
|
||||
instantiate_qmv_types( 64, 4)
|
||||
instantiate_qmv_types( 64, 8)
|
||||
instantiate_qmv_types( 32, 2)
|
||||
instantiate_qmv_types( 32, 4)
|
||||
instantiate_qmv_types( 32, 8)
|
||||
#define instantiate_quantized_aligned(name, type, group_size, bits, aligned) \
|
||||
instantiate_kernel( \
|
||||
#name "_" #type "_gs_" #group_size "_b_" #bits "_alN_" #aligned, \
|
||||
name, \
|
||||
type, \
|
||||
group_size, \
|
||||
bits, \
|
||||
aligned)
|
||||
|
||||
#define instantiate_qvm(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"qvm_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
qvm, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
#define instantiate_quantized_types_aligned(name, group_size, bits) \
|
||||
instantiate_quantized_aligned(name, float, group_size, bits, true) \
|
||||
instantiate_quantized_aligned(name, float16_t, group_size, bits, true) \
|
||||
instantiate_quantized_aligned(name, bfloat16_t, group_size, bits, true) \
|
||||
instantiate_quantized_aligned(name, float, group_size, bits, false) \
|
||||
instantiate_quantized_aligned(name, float16_t, group_size, bits, false) \
|
||||
instantiate_quantized_aligned(name, bfloat16_t, group_size, bits, false)
|
||||
|
||||
#define instantiate_qvm_types(group_size, bits) \
|
||||
instantiate_qvm(float, group_size, bits) \
|
||||
instantiate_qvm(float16_t, group_size, bits) \
|
||||
instantiate_qvm(bfloat16_t, group_size, bits)
|
||||
#define instantiate_quantized_groups_aligned(name, bits) \
|
||||
instantiate_quantized_types_aligned(name, 128, bits) \
|
||||
instantiate_quantized_types_aligned(name, 64, bits) \
|
||||
instantiate_quantized_types_aligned(name, 32, bits)
|
||||
|
||||
instantiate_qvm_types(128, 2)
|
||||
instantiate_qvm_types(128, 4)
|
||||
instantiate_qvm_types(128, 8)
|
||||
instantiate_qvm_types( 64, 2)
|
||||
instantiate_qvm_types( 64, 4)
|
||||
instantiate_qvm_types( 64, 8)
|
||||
instantiate_qvm_types( 32, 2)
|
||||
instantiate_qvm_types( 32, 4)
|
||||
instantiate_qvm_types( 32, 8)
|
||||
#define instantiate_quantized_all_aligned(name) \
|
||||
instantiate_quantized_groups_aligned(name, 2) \
|
||||
instantiate_quantized_groups_aligned(name, 4) \
|
||||
instantiate_quantized_groups_aligned(name, 8) \
|
||||
|
||||
#define instantiate_qmm_t(itype, group_size, bits, aligned_N) \
|
||||
instantiate_kernel( \
|
||||
"qmm_t_" #itype "_gs_" #group_size "_b_" #bits "_alN_" #aligned_N, \
|
||||
qmm_t, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits, \
|
||||
aligned_N)
|
||||
|
||||
#define instantiate_qmm_t_types(group_size, bits) \
|
||||
instantiate_qmm_t(float, group_size, bits, false) \
|
||||
instantiate_qmm_t(float16_t, group_size, bits, false) \
|
||||
instantiate_qmm_t(bfloat16_t, group_size, bits, false) \
|
||||
instantiate_qmm_t(float, group_size, bits, true) \
|
||||
instantiate_qmm_t(float16_t, group_size, bits, true) \
|
||||
instantiate_qmm_t(bfloat16_t, group_size, bits, true)
|
||||
|
||||
instantiate_qmm_t_types(128, 2)
|
||||
instantiate_qmm_t_types(128, 4)
|
||||
instantiate_qmm_t_types(128, 8)
|
||||
instantiate_qmm_t_types( 64, 2)
|
||||
instantiate_qmm_t_types( 64, 4)
|
||||
instantiate_qmm_t_types( 64, 8)
|
||||
instantiate_qmm_t_types( 32, 2)
|
||||
instantiate_qmm_t_types( 32, 4)
|
||||
instantiate_qmm_t_types( 32, 8)
|
||||
|
||||
#define instantiate_qmm_n(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"qmm_n_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
qmm_n, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_qmm_n_types(group_size, bits) \
|
||||
instantiate_qmm_n(float, group_size, bits) \
|
||||
instantiate_qmm_n(float16_t, group_size, bits) \
|
||||
instantiate_qmm_n(bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_qmm_n_types(128, 2)
|
||||
instantiate_qmm_n_types(128, 4)
|
||||
instantiate_qmm_n_types(128, 8)
|
||||
instantiate_qmm_n_types( 64, 2)
|
||||
instantiate_qmm_n_types( 64, 4)
|
||||
instantiate_qmm_n_types( 64, 8)
|
||||
instantiate_qmm_n_types( 32, 2)
|
||||
instantiate_qmm_n_types( 32, 4)
|
||||
instantiate_qmm_n_types( 32, 8)
|
||||
|
||||
#define instantiate_bs_qmv_fast(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"bs_qmv_" #itype "_gs_" #group_size "_b_" #bits "_fast", \
|
||||
bs_qmv_fast, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_bs_qmv_fast_types(group_size, bits) \
|
||||
instantiate_bs_qmv_fast(float, group_size, bits) \
|
||||
instantiate_bs_qmv_fast(float16_t, group_size, bits) \
|
||||
instantiate_bs_qmv_fast(bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_bs_qmv_fast_types(128, 2)
|
||||
instantiate_bs_qmv_fast_types(128, 4)
|
||||
instantiate_bs_qmv_fast_types(128, 8)
|
||||
instantiate_bs_qmv_fast_types( 64, 2)
|
||||
instantiate_bs_qmv_fast_types( 64, 4)
|
||||
instantiate_bs_qmv_fast_types( 64, 8)
|
||||
instantiate_bs_qmv_fast_types( 32, 2)
|
||||
instantiate_bs_qmv_fast_types( 32, 4)
|
||||
instantiate_bs_qmv_fast_types( 32, 8)
|
||||
|
||||
#define instantiate_bs_qmv(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"bs_qmv_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
bs_qmv, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_bs_qmv_types(group_size, bits) \
|
||||
instantiate_bs_qmv(float, group_size, bits) \
|
||||
instantiate_bs_qmv(float16_t, group_size, bits) \
|
||||
instantiate_bs_qmv(bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_bs_qmv_types(128, 2)
|
||||
instantiate_bs_qmv_types(128, 4)
|
||||
instantiate_bs_qmv_types(128, 8)
|
||||
instantiate_bs_qmv_types( 64, 2)
|
||||
instantiate_bs_qmv_types( 64, 4)
|
||||
instantiate_bs_qmv_types( 64, 8)
|
||||
instantiate_bs_qmv_types( 32, 2)
|
||||
instantiate_bs_qmv_types( 32, 4)
|
||||
instantiate_bs_qmv_types( 32, 8)
|
||||
|
||||
#define instantiate_bs_qvm(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"bs_qvm_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
bs_qvm, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_bs_qvm_types(group_size, bits) \
|
||||
instantiate_bs_qvm(float, group_size, bits) \
|
||||
instantiate_bs_qvm(float16_t, group_size, bits) \
|
||||
instantiate_bs_qvm(bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_bs_qvm_types(128, 2)
|
||||
instantiate_bs_qvm_types(128, 4)
|
||||
instantiate_bs_qvm_types(128, 8)
|
||||
instantiate_bs_qvm_types( 64, 2)
|
||||
instantiate_bs_qvm_types( 64, 4)
|
||||
instantiate_bs_qvm_types( 64, 8)
|
||||
instantiate_bs_qvm_types( 32, 2)
|
||||
instantiate_bs_qvm_types( 32, 4)
|
||||
instantiate_bs_qvm_types( 32, 8)
|
||||
|
||||
#define instantiate_bs_qmm_t(itype, group_size, bits, aligned_N) \
|
||||
instantiate_kernel( \
|
||||
"bs_qmm_t_" #itype "_gs_" #group_size "_b_" #bits "_alN_" #aligned_N, \
|
||||
bs_qmm_t, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits, \
|
||||
aligned_N)
|
||||
|
||||
#define instantiate_bs_qmm_t_types(group_size, bits) \
|
||||
instantiate_bs_qmm_t(float, group_size, bits, false) \
|
||||
instantiate_bs_qmm_t(float16_t, group_size, bits, false) \
|
||||
instantiate_bs_qmm_t(bfloat16_t, group_size, bits, false) \
|
||||
instantiate_bs_qmm_t(float, group_size, bits, true) \
|
||||
instantiate_bs_qmm_t(float16_t, group_size, bits, true) \
|
||||
instantiate_bs_qmm_t(bfloat16_t, group_size, bits, true)
|
||||
|
||||
instantiate_bs_qmm_t_types(128, 2)
|
||||
instantiate_bs_qmm_t_types(128, 4)
|
||||
instantiate_bs_qmm_t_types(128, 8)
|
||||
instantiate_bs_qmm_t_types( 64, 2)
|
||||
instantiate_bs_qmm_t_types( 64, 4)
|
||||
instantiate_bs_qmm_t_types( 64, 8)
|
||||
instantiate_bs_qmm_t_types( 32, 2)
|
||||
instantiate_bs_qmm_t_types( 32, 4)
|
||||
instantiate_bs_qmm_t_types( 32, 8)
|
||||
|
||||
#define instantiate_bs_qmm_n(itype, group_size, bits) \
|
||||
instantiate_kernel( \
|
||||
"bs_qmm_n_" #itype "_gs_" #group_size "_b_" #bits, \
|
||||
bs_qmm_n, \
|
||||
itype, \
|
||||
group_size, \
|
||||
bits)
|
||||
|
||||
#define instantiate_bs_qmm_n_types(group_size, bits) \
|
||||
instantiate_bs_qmm_n(float, group_size, bits) \
|
||||
instantiate_bs_qmm_n(float16_t, group_size, bits) \
|
||||
instantiate_bs_qmm_n(bfloat16_t, group_size, bits)
|
||||
|
||||
instantiate_bs_qmm_n_types(128, 2)
|
||||
instantiate_bs_qmm_n_types(128, 4)
|
||||
instantiate_bs_qmm_n_types(128, 8)
|
||||
instantiate_bs_qmm_n_types( 64, 2)
|
||||
instantiate_bs_qmm_n_types( 64, 4)
|
||||
instantiate_bs_qmm_n_types( 64, 8)
|
||||
instantiate_bs_qmm_n_types( 32, 2)
|
||||
instantiate_bs_qmm_n_types( 32, 4)
|
||||
instantiate_bs_qmm_n_types( 32, 8) // clang-format on
|
||||
instantiate_quantized_all_aligned(qmm_t)
|
||||
instantiate_quantized_all_aligned(bs_qmm_t) // clang-format on
|
||||
|
@@ -43,20 +43,22 @@ rbits threefry2x32_hash(const thread uint2& key, uint2 count) {
|
||||
auto half_size = grid_dim.y - odd;
|
||||
out += index.x * bytes_per_key;
|
||||
bool drop_last = odd && (index.y == half_size);
|
||||
auto count = uint2(index.y, drop_last ? 0 : index.y + grid_dim.y);
|
||||
auto bits = threefry2x32_hash(key, count);
|
||||
auto bits = threefry2x32_hash(
|
||||
key, uint2(index.y, drop_last ? 0 : index.y + grid_dim.y));
|
||||
size_t idx = size_t(index.y) << 2;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
out[4 * count.x + i] = bits.bytes[0][i];
|
||||
out[idx + i] = bits.bytes[0][i];
|
||||
}
|
||||
if (!drop_last) {
|
||||
idx = (drop_last ? 0 : size_t(index.y) + grid_dim.y) << 2;
|
||||
if ((index.y + 1) == half_size && (bytes_per_key % 4) > 0) {
|
||||
int edge_bytes = (bytes_per_key % 4);
|
||||
for (int i = 0; i < edge_bytes; ++i) {
|
||||
out[4 * count.y + i] = bits.bytes[1][i];
|
||||
out[idx + i] = bits.bytes[1][i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
out[4 * count.y + i] = bits.bytes[1][i];
|
||||
out[idx + i] = bits.bytes[1][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -77,22 +79,24 @@ rbits threefry2x32_hash(const thread uint2& key, uint2 count) {
|
||||
auto k2_elem = elem_to_loc(kidx + 1, key_shape, key_strides, ndim);
|
||||
auto key = uint2(keys[k1_elem], keys[k2_elem]);
|
||||
auto half_size = grid_dim.y - odd;
|
||||
out += index.x * bytes_per_key;
|
||||
out += size_t(index.x) * bytes_per_key;
|
||||
bool drop_last = odd && (index.y == half_size);
|
||||
auto count = uint2(index.y, drop_last ? 0 : index.y + grid_dim.y);
|
||||
auto bits = threefry2x32_hash(key, count);
|
||||
auto bits = threefry2x32_hash(
|
||||
key, uint2(index.y, drop_last ? 0 : index.y + grid_dim.y));
|
||||
size_t idx = size_t(index.y) << 2;
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
out[4 * count.x + i] = bits.bytes[0][i];
|
||||
out[idx + i] = bits.bytes[0][i];
|
||||
}
|
||||
if (!drop_last) {
|
||||
idx = (drop_last ? 0 : size_t(index.y) + grid_dim.y) << 2;
|
||||
if ((index.y + 1) == half_size && (bytes_per_key % 4) > 0) {
|
||||
int edge_bytes = (bytes_per_key % 4);
|
||||
for (int i = 0; i < edge_bytes; ++i) {
|
||||
out[4 * count.y + i] = bits.bytes[1][i];
|
||||
out[idx + i] = bits.bytes[1][i];
|
||||
}
|
||||
} else {
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
out[4 * count.y + i] = bits.bytes[1][i];
|
||||
out[idx + i] = bits.bytes[1][i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -24,7 +24,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
float acc = 0;
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
@@ -62,7 +62,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Write the outputs
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
out += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
out[i] = w[w_stride * i] * static_cast<T>(x[i] * local_inv_mean[0]);
|
||||
@@ -92,7 +92,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
float acc = 0;
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
||||
if (r + lid * N_READS + N_READS <= axis_size) {
|
||||
@@ -132,7 +132,7 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
// Write the outputs
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
out += gid * size_t(axis_size) + lid * N_READS;
|
||||
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
||||
if (r + lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
@@ -165,8 +165,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
// Advance the input pointers
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
g += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
g += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
|
||||
// Allocate registers for the computation and accumulators
|
||||
@@ -233,8 +233,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer3 = normalizer * normalizer * normalizer;
|
||||
|
||||
// Write the outputs
|
||||
gx += gid * axis_size + lid * N_READS;
|
||||
gw += gid * axis_size + lid * N_READS;
|
||||
gx += gid * size_t(axis_size) + lid * N_READS;
|
||||
gw += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
gx[i] = static_cast<T>(
|
||||
@@ -270,8 +270,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
// Advance the input pointers
|
||||
x += gid * axis_size + lid * N_READS;
|
||||
g += gid * axis_size + lid * N_READS;
|
||||
x += gid * size_t(axis_size) + lid * N_READS;
|
||||
g += gid * size_t(axis_size) + lid * N_READS;
|
||||
w += w_stride * lid * N_READS;
|
||||
|
||||
// Allocate registers for the accumulators
|
||||
@@ -337,8 +337,8 @@ template <typename T, int N_READS = RMS_N_READS>
|
||||
float normalizer3 = normalizer * normalizer * normalizer;
|
||||
|
||||
// Write the outputs
|
||||
gx += gid * axis_size + lid * N_READS;
|
||||
gw += gid * axis_size + lid * N_READS;
|
||||
gx += gid * size_t(axis_size) + lid * N_READS;
|
||||
gw += gid * size_t(axis_size) + lid * N_READS;
|
||||
for (uint r = 0; r < axis_size; r += lsize * N_READS) {
|
||||
if (r + lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
|
@@ -6,36 +6,17 @@
|
||||
#include "mlx/backend/metal/kernels/utils.h"
|
||||
|
||||
template <typename T, bool traditional, bool forward>
|
||||
[[kernel]] void rope(
|
||||
[[kernel]] void rope_single(
|
||||
const device T* in [[buffer(0)]],
|
||||
device T* out [[buffer(1)]],
|
||||
constant const size_t strides[3],
|
||||
constant const size_t out_strides[3],
|
||||
constant const int& offset,
|
||||
constant const float& base,
|
||||
constant const float& scale,
|
||||
uint3 pos [[thread_position_in_grid]],
|
||||
uint3 grid [[threads_per_grid]]) {
|
||||
// Compute the input and output indices
|
||||
uint in_index_1, in_index_2;
|
||||
uint out_index_1, out_index_2;
|
||||
if (traditional) {
|
||||
out_index_1 = 2 * pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
pos.z * out_strides[0];
|
||||
out_index_2 = out_index_1 + 1;
|
||||
in_index_1 =
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + pos.z * strides[0];
|
||||
in_index_2 = in_index_1 + strides[2];
|
||||
} else {
|
||||
out_index_1 = pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
pos.z * out_strides[0];
|
||||
out_index_2 = out_index_1 + grid.x * out_strides[2];
|
||||
in_index_1 = pos.x * strides[2] + pos.y * strides[1] + pos.z * strides[0];
|
||||
in_index_2 = in_index_1 + grid.x * strides[2];
|
||||
}
|
||||
|
||||
constant const size_t& stride,
|
||||
uint2 pos [[thread_position_in_grid]],
|
||||
uint2 grid [[threads_per_grid]]) {
|
||||
// Figure out L and d.
|
||||
float L = scale * static_cast<float>(pos.y + offset);
|
||||
float L = scale * static_cast<float>(offset);
|
||||
float d = static_cast<float>(pos.x) / static_cast<float>(grid.x);
|
||||
|
||||
// Compute costheta, sintheta
|
||||
@@ -43,6 +24,21 @@ template <typename T, bool traditional, bool forward>
|
||||
float costheta = metal::fast::cos(theta);
|
||||
float sintheta = metal::fast::sin(theta);
|
||||
|
||||
// Compute the input and output indices
|
||||
uint in_index_1, in_index_2;
|
||||
uint out_index_1, out_index_2;
|
||||
if (traditional) {
|
||||
out_index_1 = 2 * pos.x + pos.y * stride;
|
||||
out_index_2 = out_index_1 + 1;
|
||||
in_index_1 = 2 * pos.x + pos.y * stride;
|
||||
in_index_2 = in_index_1 + 1;
|
||||
} else {
|
||||
out_index_1 = pos.x + pos.y * stride;
|
||||
out_index_2 = out_index_1 + grid.x;
|
||||
in_index_1 = pos.x + pos.y * stride;
|
||||
in_index_2 = in_index_1 + grid.x;
|
||||
}
|
||||
|
||||
// Read and write the output
|
||||
float x1 = static_cast<float>(in[in_index_1]);
|
||||
float x2 = static_cast<float>(in[in_index_2]);
|
||||
@@ -59,19 +55,97 @@ template <typename T, bool traditional, bool forward>
|
||||
out[out_index_2] = static_cast<T>(rx2);
|
||||
}
|
||||
|
||||
#define instantiate_rope(name, type, traditional, forward) \
|
||||
template [[host_name("rope_" #name)]] [[kernel]] void \
|
||||
rope<type, traditional, forward>( \
|
||||
const device type* in [[buffer(0)]], \
|
||||
device type* out [[buffer(1)]], \
|
||||
constant const size_t strides[3], \
|
||||
constant const size_t out_strides[3], \
|
||||
constant const int& offset, \
|
||||
constant const float& base, \
|
||||
constant const float& scale, \
|
||||
uint3 pos [[thread_position_in_grid]], \
|
||||
template <typename T, bool traditional, bool forward, int N = 4>
|
||||
[[kernel]] void rope(
|
||||
const device T* in [[buffer(0)]],
|
||||
device T* out [[buffer(1)]],
|
||||
constant const int& offset,
|
||||
constant const float& base,
|
||||
constant const float& scale,
|
||||
constant const size_t strides[3],
|
||||
constant const size_t out_strides[3],
|
||||
constant const size_t& n_batch,
|
||||
uint3 pos [[thread_position_in_grid]],
|
||||
uint3 grid [[threads_per_grid]]) {
|
||||
// Figure out L and d.
|
||||
float L = scale * static_cast<float>(pos.y + offset);
|
||||
float d = static_cast<float>(pos.x) / static_cast<float>(grid.x);
|
||||
|
||||
// Compute costheta, sintheta
|
||||
float theta = L * metal::exp2(-d * base);
|
||||
float costheta = metal::fast::cos(theta);
|
||||
float sintheta = metal::fast::sin(theta);
|
||||
|
||||
// Compute the input and output indices
|
||||
size_t in_index_1, in_index_2;
|
||||
size_t out_index_1, out_index_2;
|
||||
if (traditional) {
|
||||
out_index_1 = 2 * pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
out_index_2 = out_index_1 + 1;
|
||||
in_index_1 =
|
||||
2 * pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
in_index_2 = in_index_1 + strides[2];
|
||||
} else {
|
||||
out_index_1 = pos.x * out_strides[2] + pos.y * out_strides[1] +
|
||||
N * pos.z * out_strides[0];
|
||||
out_index_2 = out_index_1 + grid.x * out_strides[2];
|
||||
in_index_1 =
|
||||
pos.x * strides[2] + pos.y * strides[1] + N * pos.z * strides[0];
|
||||
in_index_2 = in_index_1 + grid.x * strides[2];
|
||||
}
|
||||
for (int i = 0; i < N && pos.z * N + i < n_batch; ++i) {
|
||||
// Read and write the output
|
||||
float x1 = static_cast<float>(in[in_index_1]);
|
||||
float x2 = static_cast<float>(in[in_index_2]);
|
||||
float rx1;
|
||||
float rx2;
|
||||
if (forward) {
|
||||
rx1 = x1 * costheta - x2 * sintheta;
|
||||
rx2 = x1 * sintheta + x2 * costheta;
|
||||
} else {
|
||||
rx1 = x2 * sintheta + x1 * costheta;
|
||||
rx2 = x2 * costheta - x1 * sintheta;
|
||||
}
|
||||
out[out_index_1] = static_cast<T>(rx1);
|
||||
out[out_index_2] = static_cast<T>(rx2);
|
||||
in_index_1 += strides[0];
|
||||
in_index_2 += strides[0];
|
||||
out_index_1 += out_strides[0];
|
||||
out_index_2 += out_strides[0];
|
||||
}
|
||||
}
|
||||
|
||||
#define instantiate_rope_g(name, type, traditional, forward) \
|
||||
template [[host_name("rope_" #name)]] [[kernel]] void \
|
||||
rope<type, traditional, forward>( \
|
||||
const device type* in [[buffer(0)]], \
|
||||
device type* out [[buffer(1)]], \
|
||||
constant const int& offset, \
|
||||
constant const float& base, \
|
||||
constant const float& scale, \
|
||||
constant const size_t strides[3], \
|
||||
constant const size_t out_strides[3], \
|
||||
constant const size_t& n_batch, \
|
||||
uint3 pos [[thread_position_in_grid]], \
|
||||
uint3 grid [[threads_per_grid]]);
|
||||
|
||||
#define instantiate_rope_s(name, type, traditional, forward) \
|
||||
template [[host_name("rope_single_" #name)]] [[kernel]] void \
|
||||
rope_single<type, traditional, forward>( \
|
||||
const device type* in [[buffer(0)]], \
|
||||
device type* out [[buffer(1)]], \
|
||||
constant const int& offset, \
|
||||
constant const float& base, \
|
||||
constant const float& scale, \
|
||||
constant const size_t& stride, \
|
||||
uint2 pos [[thread_position_in_grid]], \
|
||||
uint2 grid [[threads_per_grid]]);
|
||||
|
||||
#define instantiate_rope(name, type, traditional, forward) \
|
||||
instantiate_rope_s(name, type, traditional, forward) \
|
||||
instantiate_rope_g(name, type, traditional, forward)
|
||||
|
||||
// clang-format off
|
||||
instantiate_rope(traditional_float16, half, true, true)
|
||||
instantiate_rope(traditional_bfloat16, bfloat16_t, true, true)
|
||||
@@ -84,4 +158,4 @@ instantiate_rope(vjp_traditional_bfloat16, bfloat16_t, true, false)
|
||||
instantiate_rope(vjp_traditional_float32, float, true, false)
|
||||
instantiate_rope(vjp_float16, half, false, false)
|
||||
instantiate_rope(vjp_bfloat16, bfloat16_t, false, false)
|
||||
instantiate_rope(vjp_float32, float, false, false) // clang-format on
|
||||
instantiate_rope(vjp_float32, float, false, false) // clang-format on
|
||||
|
@@ -25,7 +25,7 @@ template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
|
||||
AccT ld[N_READS];
|
||||
|
||||
in += gid * axis_size + lid * N_READS;
|
||||
in += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
ld[i] = AccT(in[i]);
|
||||
@@ -83,7 +83,7 @@ template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
normalizer = 1 / local_normalizer[0];
|
||||
|
||||
// Normalize and write to the output
|
||||
out += gid * axis_size + lid * N_READS;
|
||||
out += gid * size_t(axis_size) + lid * N_READS;
|
||||
if (lid * N_READS + N_READS <= axis_size) {
|
||||
for (int i = 0; i < N_READS; i++) {
|
||||
out[i] = T(ld[i] * normalizer);
|
||||
@@ -107,7 +107,7 @@ template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
uint lsize [[threads_per_threadgroup]],
|
||||
uint simd_lane_id [[thread_index_in_simdgroup]],
|
||||
uint simd_group_id [[simdgroup_index_in_threadgroup]]) {
|
||||
in += gid * axis_size;
|
||||
in += gid * size_t(axis_size);
|
||||
|
||||
constexpr int SIMD_SIZE = 32;
|
||||
|
||||
@@ -170,7 +170,7 @@ template <typename T, typename AccT = T, int N_READS = SOFTMAX_N_READS>
|
||||
|
||||
// Finally given the normalizer and max value we can directly write the
|
||||
// softmax output
|
||||
out += gid * axis_size;
|
||||
out += gid * size_t(axis_size);
|
||||
for (int r = 0; r < static_cast<int>(ceildiv(axis_size, N_READS * lsize));
|
||||
r++) {
|
||||
int offset = r * lsize * N_READS + lid * N_READS;
|
||||
|
@@ -235,19 +235,21 @@ struct KernelMergeSort {
|
||||
const device T* inp,
|
||||
device U* out,
|
||||
const constant int& size_sorted_axis,
|
||||
const constant int& stride_sorted_axis,
|
||||
const constant int& stride_segment_axis,
|
||||
const constant int& in_stride_sorted_axis,
|
||||
const constant int& out_stride_sorted_axis,
|
||||
const constant int& in_stride_segment_axis,
|
||||
const constant int& out_stride_segment_axis,
|
||||
threadgroup val_t* tgp_vals,
|
||||
threadgroup idx_t* tgp_idxs,
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
// tid.y tells us the segment index
|
||||
inp += tid.y * stride_segment_axis;
|
||||
out += tid.y * stride_segment_axis;
|
||||
inp += tid.y * in_stride_segment_axis;
|
||||
out += tid.y * out_stride_segment_axis;
|
||||
|
||||
// Copy into threadgroup memory
|
||||
for (short i = lid.x; i < N_PER_BLOCK; i += BLOCK_THREADS) {
|
||||
tgp_vals[i] = i < size_sorted_axis ? inp[i * stride_sorted_axis]
|
||||
tgp_vals[i] = i < size_sorted_axis ? inp[i * in_stride_sorted_axis]
|
||||
: val_t(CompareOp::init);
|
||||
if (ARG_SORT) {
|
||||
tgp_idxs[i] = i;
|
||||
@@ -264,9 +266,9 @@ struct KernelMergeSort {
|
||||
// Write output
|
||||
for (int i = lid.x; i < size_sorted_axis; i += BLOCK_THREADS) {
|
||||
if (ARG_SORT) {
|
||||
out[i * stride_sorted_axis] = tgp_idxs[i];
|
||||
out[i * out_stride_sorted_axis] = tgp_idxs[i];
|
||||
} else {
|
||||
out[i * stride_sorted_axis] = tgp_vals[i];
|
||||
out[i * out_stride_sorted_axis] = tgp_vals[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -282,8 +284,10 @@ template <
|
||||
const device T* inp [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& stride_segment_axis [[buffer(4)]],
|
||||
const constant int& in_stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& out_stride_sorted_axis [[buffer(4)]],
|
||||
const constant int& in_stride_segment_axis [[buffer(5)]],
|
||||
const constant int& out_stride_segment_axis [[buffer(6)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
using sort_kernel =
|
||||
@@ -298,8 +302,10 @@ template <
|
||||
inp,
|
||||
out,
|
||||
size_sorted_axis,
|
||||
stride_sorted_axis,
|
||||
stride_segment_axis,
|
||||
in_stride_sorted_axis,
|
||||
out_stride_sorted_axis,
|
||||
in_stride_segment_axis,
|
||||
out_stride_segment_axis,
|
||||
tgp_vals,
|
||||
tgp_idxs,
|
||||
tid,
|
||||
@@ -310,8 +316,10 @@ template <
|
||||
inp,
|
||||
out,
|
||||
size_sorted_axis,
|
||||
stride_sorted_axis,
|
||||
stride_segment_axis,
|
||||
in_stride_sorted_axis,
|
||||
out_stride_sorted_axis,
|
||||
in_stride_segment_axis,
|
||||
out_stride_segment_axis,
|
||||
tgp_vals,
|
||||
nullptr,
|
||||
tid,
|
||||
@@ -331,10 +339,12 @@ template <
|
||||
const device T* inp [[buffer(0)]],
|
||||
device U* out [[buffer(1)]],
|
||||
const constant int& size_sorted_axis [[buffer(2)]],
|
||||
const constant int& stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& nc_dim [[buffer(4)]],
|
||||
const device int* nc_shape [[buffer(5)]],
|
||||
const device size_t* nc_strides [[buffer(6)]],
|
||||
const constant int& in_stride_sorted_axis [[buffer(3)]],
|
||||
const constant int& out_stride_sorted_axis [[buffer(4)]],
|
||||
const constant int& nc_dim [[buffer(5)]],
|
||||
const device int* nc_shape [[buffer(6)]],
|
||||
const device size_t* in_nc_strides [[buffer(7)]],
|
||||
const device size_t* out_nc_strides [[buffer(8)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]]) {
|
||||
using sort_kernel =
|
||||
@@ -342,9 +352,10 @@ template <
|
||||
using val_t = typename sort_kernel::val_t;
|
||||
using idx_t = typename sort_kernel::idx_t;
|
||||
|
||||
auto block_idx = elem_to_loc(tid.y, nc_shape, nc_strides, nc_dim);
|
||||
inp += block_idx;
|
||||
out += block_idx;
|
||||
auto in_block_idx = elem_to_loc(tid.y, nc_shape, in_nc_strides, nc_dim);
|
||||
auto out_block_idx = elem_to_loc(tid.y, nc_shape, out_nc_strides, nc_dim);
|
||||
inp += in_block_idx;
|
||||
out += out_block_idx;
|
||||
|
||||
if (ARG_SORT) {
|
||||
threadgroup val_t tgp_vals[sort_kernel::N_PER_BLOCK];
|
||||
@@ -353,7 +364,9 @@ template <
|
||||
inp,
|
||||
out,
|
||||
size_sorted_axis,
|
||||
stride_sorted_axis,
|
||||
in_stride_sorted_axis,
|
||||
out_stride_sorted_axis,
|
||||
zero_helper,
|
||||
zero_helper,
|
||||
tgp_vals,
|
||||
tgp_idxs,
|
||||
@@ -365,7 +378,9 @@ template <
|
||||
inp,
|
||||
out,
|
||||
size_sorted_axis,
|
||||
stride_sorted_axis,
|
||||
in_stride_sorted_axis,
|
||||
out_stride_sorted_axis,
|
||||
zero_helper,
|
||||
zero_helper,
|
||||
tgp_vals,
|
||||
nullptr,
|
||||
@@ -507,13 +522,13 @@ template <
|
||||
bool ARG_SORT,
|
||||
short BLOCK_THREADS,
|
||||
short N_PER_THREAD>
|
||||
[[kernel, max_total_threads_per_threadgroup(BLOCK_THREADS)]] void
|
||||
mb_block_partition(
|
||||
[[kernel]] void mb_block_partition(
|
||||
device idx_t* block_partitions [[buffer(0)]],
|
||||
const device val_t* dev_vals [[buffer(1)]],
|
||||
const device idx_t* dev_idxs [[buffer(2)]],
|
||||
const constant int& size_sorted_axis [[buffer(3)]],
|
||||
const constant int& merge_tiles [[buffer(4)]],
|
||||
const constant int& n_blocks [[buffer(5)]],
|
||||
uint3 tid [[threadgroup_position_in_grid]],
|
||||
uint3 lid [[thread_position_in_threadgroup]],
|
||||
uint3 tgp_dims [[threads_per_threadgroup]]) {
|
||||
@@ -528,23 +543,29 @@ mb_block_partition(
|
||||
dev_vals += tid.y * size_sorted_axis;
|
||||
dev_idxs += tid.y * size_sorted_axis;
|
||||
|
||||
// Find location in merge step
|
||||
int merge_group = lid.x / merge_tiles;
|
||||
int merge_lane = lid.x % merge_tiles;
|
||||
for (int i = lid.x; i <= n_blocks; i += tgp_dims.x) {
|
||||
// Find location in merge step
|
||||
int merge_group = i / merge_tiles;
|
||||
int merge_lane = i % merge_tiles;
|
||||
|
||||
int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
|
||||
int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
|
||||
int sort_sz = sort_kernel::N_PER_BLOCK * merge_tiles;
|
||||
int sort_st = sort_kernel::N_PER_BLOCK * merge_tiles * merge_group;
|
||||
|
||||
int A_st = min(size_sorted_axis, sort_st);
|
||||
int A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
|
||||
int B_st = A_ed;
|
||||
int B_ed = min(size_sorted_axis, B_st + sort_sz / 2);
|
||||
int A_st = min(size_sorted_axis, sort_st);
|
||||
int A_ed = min(size_sorted_axis, sort_st + sort_sz / 2);
|
||||
int B_st = A_ed;
|
||||
int B_ed = min(size_sorted_axis, B_st + sort_sz / 2);
|
||||
|
||||
int partition_at = min(B_ed - A_st, sort_kernel::N_PER_BLOCK * merge_lane);
|
||||
int partition = sort_kernel::merge_partition(
|
||||
dev_vals + A_st, dev_vals + B_st, A_ed - A_st, B_ed - B_st, partition_at);
|
||||
int partition_at = min(B_ed - A_st, sort_kernel::N_PER_BLOCK * merge_lane);
|
||||
int partition = sort_kernel::merge_partition(
|
||||
dev_vals + A_st,
|
||||
dev_vals + B_st,
|
||||
A_ed - A_st,
|
||||
B_ed - B_st,
|
||||
partition_at);
|
||||
|
||||
block_partitions[lid.x] = A_st + partition;
|
||||
block_partitions[i] = A_st + partition;
|
||||
}
|
||||
}
|
||||
|
||||
template <
|
||||
|
@@ -10,28 +10,10 @@
|
||||
|
||||
#define instantiate_block_sort( \
|
||||
name, itname, itype, otname, otype, arg_sort, bn, tn) \
|
||||
template [[host_name("c" #name "_" #itname "_" #otname "_bn" #bn \
|
||||
"_tn" #tn)]] [[kernel]] void \
|
||||
block_sort<itype, otype, arg_sort, bn, tn>( \
|
||||
const device itype* inp [[buffer(0)]], \
|
||||
device otype* out [[buffer(1)]], \
|
||||
const constant int& size_sorted_axis [[buffer(2)]], \
|
||||
const constant int& stride_sorted_axis [[buffer(3)]], \
|
||||
const constant int& stride_segment_axis [[buffer(4)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]); \
|
||||
template [[host_name("nc" #name "_" #itname "_" #otname "_bn" #bn "_tn" #tn \
|
||||
)]] [[kernel]] void \
|
||||
block_sort_nc<itype, otype, arg_sort, bn, tn>( \
|
||||
const device itype* inp [[buffer(0)]], \
|
||||
device otype* out [[buffer(1)]], \
|
||||
const constant int& size_sorted_axis [[buffer(2)]], \
|
||||
const constant int& stride_sorted_axis [[buffer(3)]], \
|
||||
const constant int& nc_dim [[buffer(4)]], \
|
||||
const device int* nc_shape [[buffer(5)]], \
|
||||
const device size_t* nc_strides [[buffer(6)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
instantiate_kernel("c" #name "_" #itname "_" #otname "_bn" #bn "_tn" #tn, \
|
||||
block_sort, itype, otype, arg_sort, bn, tn) \
|
||||
instantiate_kernel("nc" #name "_" #itname "_" #otname "_bn" #bn "_tn" #tn, \
|
||||
block_sort_nc, itype, otype, arg_sort, bn, tn)
|
||||
|
||||
#define instantiate_arg_block_sort_base(itname, itype, bn, tn) \
|
||||
instantiate_block_sort( \
|
||||
@@ -69,43 +51,12 @@ instantiate_block_sort_long(int64, int64_t)
|
||||
|
||||
#define instantiate_multi_block_sort( \
|
||||
vtname, vtype, itname, itype, arg_sort, bn, tn) \
|
||||
template [[host_name("sort_mbsort_" #vtname "_" #itname "_bn" #bn \
|
||||
"_tn" #tn)]] [[kernel]] void \
|
||||
mb_block_sort<vtype, itype, arg_sort, bn, tn>( \
|
||||
const device vtype* inp [[buffer(0)]], \
|
||||
device vtype* out_vals [[buffer(1)]], \
|
||||
device itype* out_idxs [[buffer(2)]], \
|
||||
const constant int& size_sorted_axis [[buffer(3)]], \
|
||||
const constant int& stride_sorted_axis [[buffer(4)]], \
|
||||
const constant int& nc_dim [[buffer(5)]], \
|
||||
const device int* nc_shape [[buffer(6)]], \
|
||||
const device size_t* nc_strides [[buffer(7)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]); \
|
||||
template [[host_name("partition_mbsort_" #vtname "_" #itname "_bn" #bn \
|
||||
"_tn" #tn)]] [[kernel]] void \
|
||||
mb_block_partition<vtype, itype, arg_sort, bn, tn>( \
|
||||
device itype * block_partitions [[buffer(0)]], \
|
||||
const device vtype* dev_vals [[buffer(1)]], \
|
||||
const device itype* dev_idxs [[buffer(2)]], \
|
||||
const constant int& size_sorted_axis [[buffer(3)]], \
|
||||
const constant int& merge_tiles [[buffer(4)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]], \
|
||||
uint3 tgp_dims [[threads_per_threadgroup]]); \
|
||||
template [[host_name("merge_mbsort_" #vtname "_" #itname "_bn" #bn \
|
||||
"_tn" #tn)]] [[kernel]] void \
|
||||
mb_block_merge<vtype, itype, arg_sort, bn, tn>( \
|
||||
const device itype* block_partitions [[buffer(0)]], \
|
||||
const device vtype* dev_vals_in [[buffer(1)]], \
|
||||
const device itype* dev_idxs_in [[buffer(2)]], \
|
||||
device vtype* dev_vals_out [[buffer(3)]], \
|
||||
device itype* dev_idxs_out [[buffer(4)]], \
|
||||
const constant int& size_sorted_axis [[buffer(5)]], \
|
||||
const constant int& merge_tiles [[buffer(6)]], \
|
||||
const constant int& num_tiles [[buffer(7)]], \
|
||||
uint3 tid [[threadgroup_position_in_grid]], \
|
||||
uint3 lid [[thread_position_in_threadgroup]]);
|
||||
instantiate_kernel("sort_mbsort_" #vtname "_" #itname "_bn" #bn "_tn" #tn, \
|
||||
mb_block_sort, vtype, itype, arg_sort, bn, tn) \
|
||||
instantiate_kernel("partition_mbsort_" #vtname "_" #itname "_bn" #bn "_tn" #tn, \
|
||||
mb_block_partition, vtype, itype, arg_sort, bn, tn) \
|
||||
instantiate_kernel("merge_mbsort_" #vtname "_" #itname "_bn" #bn "_tn" #tn, \
|
||||
mb_block_merge, vtype, itype, arg_sort, bn, tn)
|
||||
|
||||
#define instantiate_multi_block_sort_base(vtname, vtype) \
|
||||
instantiate_multi_block_sort(vtname, vtype, uint32, uint32_t, true, 512, 8)
|
||||
|
@@ -10,6 +10,18 @@ template <typename T, typename Op>
|
||||
d[index] = Op()(a[index], b[index], c[index]);
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
[[kernel]] void ternary_v2(
|
||||
device const bool* a,
|
||||
device const T* b,
|
||||
device const T* c,
|
||||
device T* d,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
d[offset] = Op()(a[offset], b[offset], c[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
[[kernel]] void ternary_g_nd1(
|
||||
device const bool* a,
|
||||
|
@@ -11,6 +11,7 @@
|
||||
|
||||
#define instantiate_ternary_all(op, tname, type) \
|
||||
instantiate_kernel("v_" #op #tname, ternary_v, type, op) \
|
||||
instantiate_kernel("v2_" #op #tname, ternary_v2, type, op) \
|
||||
instantiate_kernel("g_" #op #tname, ternary_g, type, op) \
|
||||
instantiate_kernel("g1_" #op #tname, ternary_g_nd1, type, op) \
|
||||
instantiate_kernel("g2_" #op #tname, ternary_g_nd2, type, op) \
|
||||
|
@@ -8,6 +8,16 @@ template <typename T, typename Op>
|
||||
out[index] = Op()(in[index]);
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
[[kernel]] void unary_v2(
|
||||
device const T* in,
|
||||
device T* out,
|
||||
uint2 index [[thread_position_in_grid]],
|
||||
uint2 grid_dim [[threads_per_grid]]) {
|
||||
size_t offset = index.x + grid_dim.x * size_t(index.y);
|
||||
out[offset] = Op()(in[offset]);
|
||||
}
|
||||
|
||||
template <typename T, typename Op>
|
||||
[[kernel]] void unary_g(
|
||||
device const T* in,
|
||||
|
@@ -5,8 +5,9 @@
|
||||
#include "mlx/backend/metal/kernels/unary_ops.h"
|
||||
#include "mlx/backend/metal/kernels/unary.h"
|
||||
|
||||
#define instantiate_unary_all(op, tname, type) \
|
||||
instantiate_kernel("v" #op #tname, unary_v, type, op) \
|
||||
#define instantiate_unary_all(op, tname, type) \
|
||||
instantiate_kernel("v" #op #tname, unary_v, type, op) \
|
||||
instantiate_kernel("v2" #op #tname, unary_v2, type, op) \
|
||||
instantiate_kernel("g" #op #tname, unary_g, type, op)
|
||||
|
||||
#define instantiate_unary_float(op) \
|
||||
|
@@ -11,187 +11,14 @@
|
||||
#include "mlx/backend/metal/kernels/defines.h"
|
||||
#include "mlx/backend/metal/kernels/steel/gemm/params.h"
|
||||
#include "mlx/backend/metal/matmul.h"
|
||||
#include "mlx/backend/metal/mps/gemm.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/primitives.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
// MPS Matmul fallback
|
||||
///////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
namespace {
|
||||
|
||||
bool use_mps() {
|
||||
auto get_val = []() {
|
||||
if (const char* buff_str = std::getenv("MLX_USE_MPS")) {
|
||||
return std::string(buff_str) != "OFF";
|
||||
} else {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
static bool use_mps_ = get_val();
|
||||
return use_mps_;
|
||||
}
|
||||
|
||||
#define MAX_OPS_PER_BUFFER max_ops_per_buffer()
|
||||
|
||||
inline void mps_matmul(
|
||||
const Stream& s,
|
||||
metal::Device& d,
|
||||
const array& a,
|
||||
const array& b,
|
||||
array& out,
|
||||
int M,
|
||||
int N,
|
||||
int K,
|
||||
int batch_size_out,
|
||||
int lda,
|
||||
int ldb,
|
||||
bool transpose_a,
|
||||
bool transpose_b,
|
||||
std::vector<array>& copies,
|
||||
float alpha = 1.0f,
|
||||
float beta = 0.0f) {
|
||||
MPS::DataType mps_dtype = MPS::DataTypeFloat32;
|
||||
|
||||
if (out.dtype() == float16) {
|
||||
mps_dtype = MPS::DataTypeFloat16;
|
||||
} else if (out.dtype() == bfloat16) {
|
||||
mps_dtype = MPS::DataTypeBFloat16;
|
||||
}
|
||||
|
||||
// Used batched MPSMatrixMultiplication if batch_size_out > 1
|
||||
// We only accept the following cases:
|
||||
// 1. Both a, b have batch_size_out matrices worth of data
|
||||
// 2. Only one of a or b has batch_size_out matrices worth of data and
|
||||
// the other has matrix worth of data
|
||||
|
||||
// The matrix dimensions of a and b are sure to be regularly strided
|
||||
if (batch_size_out > 1) {
|
||||
// No broadcasting defaults
|
||||
auto batch_size_a = a.data_size() / (M * K);
|
||||
auto batch_size_b = b.data_size() / (K * N);
|
||||
|
||||
auto matrix_stride_a = M * K;
|
||||
auto matrix_stride_b = K * N;
|
||||
auto matrix_stride_out = M * N;
|
||||
|
||||
// At this point, batch_size_a, batch_size_b show the number of matrices
|
||||
// in data, no broadcasted strides considered
|
||||
if (batch_size_out == std::max(batch_size_a, batch_size_b)) {
|
||||
// Handle simple broadcasting
|
||||
if (std::min(batch_size_a, batch_size_b) == 1) {
|
||||
matrix_stride_a = (batch_size_a == 1) ? 0 : matrix_stride_a;
|
||||
matrix_stride_b = (batch_size_b == 1) ? 0 : matrix_stride_b;
|
||||
|
||||
batch_size_a = batch_size_out;
|
||||
batch_size_b = batch_size_out;
|
||||
}
|
||||
|
||||
// Only proceed if broadcasting between a and b is simple
|
||||
// At this point, batch_size_a, batch_size_b show the number of matrices
|
||||
// after broadcasting
|
||||
if (batch_size_a == batch_size_b) {
|
||||
auto a_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
(M * K) / lda,
|
||||
lda,
|
||||
batch_size_a,
|
||||
lda * a.itemsize(),
|
||||
(matrix_stride_a * a.itemsize()),
|
||||
mps_dtype);
|
||||
|
||||
auto b_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
(K * N) / ldb,
|
||||
ldb,
|
||||
batch_size_b,
|
||||
ldb * b.itemsize(),
|
||||
(matrix_stride_b * b.itemsize()),
|
||||
mps_dtype);
|
||||
|
||||
auto out_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
M,
|
||||
N,
|
||||
batch_size_out,
|
||||
N * out.itemsize(),
|
||||
matrix_stride_out * out.itemsize(),
|
||||
mps_dtype);
|
||||
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto a_mat = MPS::Matrix::alloc()->init(a_buf, a_desc);
|
||||
|
||||
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
|
||||
auto b_mat = MPS::Matrix::alloc()->init(b_buf, b_desc);
|
||||
|
||||
auto out_buf = static_cast<MTL::Buffer*>(out.buffer().ptr());
|
||||
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
|
||||
|
||||
auto kernel = MPS::MatrixMultiplication::alloc()->init(
|
||||
d.mtl_device(), transpose_a, transpose_b, M, N, K, alpha, beta);
|
||||
|
||||
auto command_buffer = d.get_command_buffer(s.index);
|
||||
kernel->setBatchSize(batch_size_out);
|
||||
kernel->setBatchStart(0);
|
||||
kernel->encodeToCommandBuffer(command_buffer, a_mat, b_mat, out_mat);
|
||||
command_buffer->addCompletedHandler(
|
||||
[a_mat, b_mat, out_mat, kernel, copies](
|
||||
MTL::CommandBuffer*) mutable {
|
||||
a_mat->release();
|
||||
b_mat->release();
|
||||
out_mat->release();
|
||||
kernel->release();
|
||||
copies.clear();
|
||||
});
|
||||
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Schedule as many calls to MPSMatrixMultiplication as needed otherwise
|
||||
auto a_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
a.data_size() / lda, lda, lda * a.itemsize(), mps_dtype);
|
||||
|
||||
auto b_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
b.data_size() / ldb, ldb, ldb * b.itemsize(), mps_dtype);
|
||||
|
||||
auto out_desc = MPS::MatrixDescriptor::matrixDescriptor(
|
||||
batch_size_out * M, N, N * out.itemsize(), mps_dtype);
|
||||
|
||||
auto a_buf = static_cast<const MTL::Buffer*>(a.buffer().ptr());
|
||||
auto a_mat = MPS::Matrix::alloc()->init(a_buf, a_desc);
|
||||
|
||||
auto b_buf = static_cast<const MTL::Buffer*>(b.buffer().ptr());
|
||||
auto b_mat = MPS::Matrix::alloc()->init(b_buf, b_desc);
|
||||
|
||||
auto out_buf = static_cast<MTL::Buffer*>(out.buffer().ptr());
|
||||
auto out_mat = MPS::Matrix::alloc()->init(out_buf, out_desc);
|
||||
|
||||
auto kernel = MPS::MatrixMultiplication::alloc()->init(
|
||||
d.mtl_device(), transpose_a, transpose_b, M, N, K, alpha, beta);
|
||||
|
||||
auto command_buffer = d.get_command_buffer(s.index);
|
||||
for (int i = 0; i < batch_size_out; ++i) {
|
||||
auto a_row = elem_to_loc(M * K * i, a.shape(), a.strides()) / lda;
|
||||
auto b_row = elem_to_loc(K * N * i, b.shape(), b.strides()) / ldb;
|
||||
kernel->setLeftMatrixOrigin({a_row, 0, 0});
|
||||
kernel->setRightMatrixOrigin({b_row, 0, 0});
|
||||
kernel->setResultMatrixOrigin({i * static_cast<size_t>(M), 0, 0});
|
||||
kernel->encodeToCommandBuffer(command_buffer, a_mat, b_mat, out_mat);
|
||||
}
|
||||
|
||||
command_buffer->addCompletedHandler(
|
||||
[a_mat, b_mat, out_mat, kernel, copies](MTL::CommandBuffer*) mutable {
|
||||
a_mat->release();
|
||||
b_mat->release();
|
||||
out_mat->release();
|
||||
kernel->release();
|
||||
copies.clear();
|
||||
});
|
||||
}
|
||||
|
||||
inline auto collapse_batches(const array& a, const array& b) {
|
||||
// Get and check the shape for the batched dims
|
||||
std::vector<int> A_bshape{a.shape().begin(), a.shape().end() - 2};
|
||||
@@ -860,26 +687,6 @@ void Matmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
/////////////////////////////////////////////////////////////////////////////
|
||||
// Gemm specialization
|
||||
|
||||
if (use_mps()) {
|
||||
d.end_encoding(s.index);
|
||||
|
||||
return mps_matmul(
|
||||
s,
|
||||
d,
|
||||
a,
|
||||
b,
|
||||
out,
|
||||
M,
|
||||
N,
|
||||
K,
|
||||
batch_size_out,
|
||||
a_cols,
|
||||
b_cols,
|
||||
a_transposed,
|
||||
b_transposed,
|
||||
copies);
|
||||
}
|
||||
|
||||
return steel_matmul(
|
||||
/* const Stream& s = */ s,
|
||||
/* metal::Device& d = */ d,
|
||||
@@ -1529,8 +1336,22 @@ void BlockMaskedMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
kname << "_nc" << !contiguous_kernel;
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto kernel = get_gemv_masked_kernel(
|
||||
d,
|
||||
kname.str(),
|
||||
out,
|
||||
has_out_mask ? std::optional<array>{inputs[2]} : std::nullopt,
|
||||
has_op_mask ? std::optional<array>{inputs.back()} : std::nullopt,
|
||||
transpose_mat,
|
||||
bm,
|
||||
bn,
|
||||
sm,
|
||||
sn,
|
||||
tm,
|
||||
tn,
|
||||
contiguous_kernel);
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
int n_tgp = (out_vector_len + n_out_per_tgp - 1) / n_out_per_tgp;
|
||||
|
@@ -1,14 +1,6 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <sstream>
|
||||
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/mps/gemm.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -48,4 +40,4 @@ void steel_matmul(
|
||||
std::vector<size_t> A_batch_stride = {},
|
||||
std::vector<size_t> B_batch_stride = {});
|
||||
|
||||
} // namespace mlx::core
|
||||
} // namespace mlx::core
|
||||
|
@@ -75,6 +75,9 @@ std::function<void()> make_task(array arr, bool signal) {
|
||||
if (!arr.is_tracer()) {
|
||||
arr.detach();
|
||||
}
|
||||
for (auto& out : outputs) {
|
||||
out.set_status(array::Status::available);
|
||||
}
|
||||
|
||||
if (signal || d.get_command_buffer_ops(s.index) >= MAX_OPS_PER_BUFFER) {
|
||||
d.end_encoding(s.index);
|
||||
|
@@ -1,370 +0,0 @@
|
||||
// Copyright © 2023 Apple Inc.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <Metal/Metal.hpp>
|
||||
|
||||
#define _MPS_PRIVATE_CLS(symbol) (MTL::Private::Class::s_k##symbol)
|
||||
#define _MPS_PRIVATE_SEL(accessor) (MTL::Private::Selector::s_k##accessor)
|
||||
|
||||
namespace MTL::Private::Class {
|
||||
_MTL_PRIVATE_DEF_CLS(MPSMatrixDescriptor);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSMatrix);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSVectorDescriptor);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSVector);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSKernel);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSMatrixMultiplication);
|
||||
_MTL_PRIVATE_DEF_CLS(MPSMatrixVectorMultiplication);
|
||||
} // namespace MTL::Private::Class
|
||||
|
||||
namespace MTL::Private::Selector {
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
matrixDescriptorWithRows_columns_rowBytes_dataType,
|
||||
"matrixDescriptorWithRows:columns:rowBytes:dataType:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
matrixDescriptorWithRows_columns_matrices_rowBytes_matrixBytes_dataType,
|
||||
"matrixDescriptorWithRows:columns:matrices:rowBytes:matrixBytes:dataType:");
|
||||
_MTL_PRIVATE_DEF_SEL(rows, "rows");
|
||||
_MTL_PRIVATE_DEF_SEL(initWithBuffer_descriptor, "initWithBuffer:descriptor:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
initWithDevice_,
|
||||
"initWithDevice:transposeLeft:transposeRight:"
|
||||
"resultRows:resultColumns:interiorColumns:alpha:beta:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
encodeToCommandBuffer_leftMatrix_rightMatrix_resultMatrix,
|
||||
"encodeToCommandBuffer:leftMatrix:rightMatrix:resultMatrix:");
|
||||
_MTL_PRIVATE_DEF_SEL(setLeftMatrixOrigin_, "setLeftMatrixOrigin:");
|
||||
_MTL_PRIVATE_DEF_SEL(setRightMatrixOrigin_, "setRightMatrixOrigin:");
|
||||
_MTL_PRIVATE_DEF_SEL(setResultMatrixOrigin_, "setResultMatrixOrigin:");
|
||||
_MTL_PRIVATE_DEF_SEL(setBatchStart_, "setBatchStart:");
|
||||
_MTL_PRIVATE_DEF_SEL(setBatchSize_, "setBatchSize:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
vectorDescriptorWithLength_dataType,
|
||||
"vectorDescriptorWithLength:dataType:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
vectorDescriptorWithLength_vectors_vectorBytes_dataType,
|
||||
"vectorDescriptorWithLength:vectors:vectorBytes:dataType:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
initWithDevice_transpose_rows_columns_alpha_beta,
|
||||
"initWithDevice:transpose:rows:columns:alpha:beta:");
|
||||
_MTL_PRIVATE_DEF_SEL(
|
||||
encodeToCommandBuffer_inputMatrix_inputVector_resultVector,
|
||||
"encodeToCommandBuffer:inputMatrix:inputVector:resultVector:");
|
||||
} // namespace MTL::Private::Selector
|
||||
|
||||
namespace MPS {
|
||||
|
||||
typedef enum DataType : uint32_t {
|
||||
DataTypeFloatBit = 0x10000000,
|
||||
DataTypeAlternateEncodingBit = 0x80000000,
|
||||
DataTypeFloat16 = DataTypeFloatBit | 16,
|
||||
DataTypeFloat32 = DataTypeFloatBit | 32,
|
||||
DataTypeBFloat16 = DataTypeAlternateEncodingBit | DataTypeFloat16
|
||||
} DataType;
|
||||
|
||||
class MatrixDescriptor : public NS::Copying<MatrixDescriptor> {
|
||||
public:
|
||||
static class MatrixDescriptor* matrixDescriptor(
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
NS::UInteger rowBytes,
|
||||
NS::UInteger dataType);
|
||||
static class MatrixDescriptor* matrixDescriptor(
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
NS::UInteger matrices,
|
||||
NS::UInteger rowBytes,
|
||||
NS::UInteger matrixBytes,
|
||||
NS::UInteger dataType);
|
||||
NS::UInteger rows() const;
|
||||
};
|
||||
|
||||
class Matrix : public NS::Referencing<Matrix> {
|
||||
public:
|
||||
static class Matrix* alloc();
|
||||
Matrix* init(MTL::Buffer* buffer, MatrixDescriptor* descriptor);
|
||||
Matrix* init(const MTL::Buffer* buffer, MatrixDescriptor* descriptor);
|
||||
};
|
||||
|
||||
class Kernel : public NS::Referencing<Kernel> {
|
||||
public:
|
||||
NS::String* label() const;
|
||||
MTL::Device* device() const;
|
||||
};
|
||||
|
||||
class MatrixMultiplication
|
||||
: public NS::Referencing<MatrixMultiplication, Kernel> {
|
||||
public:
|
||||
static class MatrixMultiplication* alloc();
|
||||
|
||||
MatrixMultiplication* init(
|
||||
MTL::Device* device,
|
||||
bool transposeLeft,
|
||||
bool transposeRight,
|
||||
NS::UInteger resultRows,
|
||||
NS::UInteger resultColumns,
|
||||
NS::UInteger interiorColumns,
|
||||
double alpha,
|
||||
double beta);
|
||||
|
||||
void encodeToCommandBuffer(
|
||||
MTL::CommandBuffer* commandBuffer,
|
||||
Matrix* leftMatrix,
|
||||
Matrix* rightMatrix,
|
||||
Matrix* resultMatrix);
|
||||
|
||||
void setLeftMatrixOrigin(MTL::Origin origin);
|
||||
void setRightMatrixOrigin(MTL::Origin origin);
|
||||
void setResultMatrixOrigin(MTL::Origin origin);
|
||||
void setBatchStart(NS::UInteger batchStart);
|
||||
void setBatchSize(NS::UInteger batchSize);
|
||||
};
|
||||
|
||||
class VectorDescriptor : public NS::Copying<VectorDescriptor> {
|
||||
public:
|
||||
static class VectorDescriptor* vectorDescriptor(
|
||||
NS::UInteger length,
|
||||
NS::UInteger dataType);
|
||||
static class VectorDescriptor* vectorDescriptor(
|
||||
NS::UInteger length,
|
||||
NS::UInteger vectors,
|
||||
NS::UInteger vectorBytes,
|
||||
NS::UInteger dataType);
|
||||
};
|
||||
|
||||
class Vector : public NS::Referencing<Vector> {
|
||||
public:
|
||||
static class Vector* alloc();
|
||||
Vector* init(MTL::Buffer* buffer, VectorDescriptor* descriptor);
|
||||
Vector* init(const MTL::Buffer* buffer, VectorDescriptor* descriptor);
|
||||
};
|
||||
|
||||
class MatrixVectorMultiplication
|
||||
: public NS::Referencing<MatrixVectorMultiplication, Kernel> {
|
||||
public:
|
||||
static class MatrixVectorMultiplication* alloc();
|
||||
|
||||
MatrixVectorMultiplication* init(
|
||||
MTL::Device* device,
|
||||
bool transpose,
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
double alpha,
|
||||
double beta);
|
||||
|
||||
void encodeToCommandBuffer(
|
||||
MTL::CommandBuffer* commandBuffer,
|
||||
Matrix* inputMatrix,
|
||||
Vector* inputVector,
|
||||
Vector* resultVector);
|
||||
};
|
||||
|
||||
_MTL_INLINE MatrixDescriptor* MatrixDescriptor::matrixDescriptor(
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
NS::UInteger rowBytes,
|
||||
NS::UInteger dataType) {
|
||||
return Object::sendMessage<MatrixDescriptor*>(
|
||||
_MPS_PRIVATE_CLS(MPSMatrixDescriptor),
|
||||
_MPS_PRIVATE_SEL(matrixDescriptorWithRows_columns_rowBytes_dataType),
|
||||
rows,
|
||||
columns,
|
||||
rowBytes,
|
||||
dataType);
|
||||
}
|
||||
|
||||
_MTL_INLINE MatrixDescriptor* MatrixDescriptor::matrixDescriptor(
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
NS::UInteger matrices,
|
||||
NS::UInteger rowBytes,
|
||||
NS::UInteger matrixBytes,
|
||||
NS::UInteger dataType) {
|
||||
return Object::sendMessage<MatrixDescriptor*>(
|
||||
_MPS_PRIVATE_CLS(MPSMatrixDescriptor),
|
||||
_MPS_PRIVATE_SEL(
|
||||
matrixDescriptorWithRows_columns_matrices_rowBytes_matrixBytes_dataType),
|
||||
rows,
|
||||
columns,
|
||||
matrices,
|
||||
rowBytes,
|
||||
matrixBytes,
|
||||
dataType);
|
||||
}
|
||||
|
||||
_MTL_INLINE NS::UInteger MatrixDescriptor::rows() const {
|
||||
return Object::sendMessage<NS::UInteger>(this, _MPS_PRIVATE_SEL(rows));
|
||||
}
|
||||
|
||||
_MTL_INLINE Matrix* Matrix::alloc() {
|
||||
return NS::Object::alloc<Matrix>(_MPS_PRIVATE_CLS(MPSMatrix));
|
||||
}
|
||||
|
||||
_MTL_INLINE Matrix* Matrix::init(
|
||||
MTL::Buffer* buffer,
|
||||
MatrixDescriptor* descriptor) {
|
||||
return Object::sendMessage<Matrix*>(
|
||||
this, _MPS_PRIVATE_SEL(initWithBuffer_descriptor), buffer, descriptor);
|
||||
}
|
||||
|
||||
_MTL_INLINE Matrix* Matrix::init(
|
||||
const MTL::Buffer* buffer,
|
||||
MatrixDescriptor* descriptor) {
|
||||
return init(const_cast<MTL::Buffer*>(buffer), descriptor);
|
||||
}
|
||||
|
||||
_MTL_INLINE NS::String* Kernel::label() const {
|
||||
return Object::sendMessage<NS::String*>(this, _MPS_PRIVATE_SEL(label));
|
||||
}
|
||||
|
||||
_MTL_INLINE MTL::Device* Kernel::device() const {
|
||||
return Object::sendMessage<MTL::Device*>(this, _MPS_PRIVATE_SEL(device));
|
||||
}
|
||||
|
||||
_MTL_INLINE MatrixMultiplication* MatrixMultiplication::alloc() {
|
||||
return NS::Object::alloc<MatrixMultiplication>(
|
||||
_MPS_PRIVATE_CLS(MPSMatrixMultiplication));
|
||||
}
|
||||
|
||||
_MTL_INLINE MatrixMultiplication* MatrixMultiplication::init(
|
||||
MTL::Device* device,
|
||||
bool transposeLeft,
|
||||
bool transposeRight,
|
||||
NS::UInteger resultRows,
|
||||
NS::UInteger resultColumns,
|
||||
NS::UInteger interiorColumns,
|
||||
double alpha,
|
||||
double beta) {
|
||||
return Object::sendMessage<MatrixMultiplication*>(
|
||||
this,
|
||||
_MPS_PRIVATE_SEL(initWithDevice_),
|
||||
device,
|
||||
transposeLeft,
|
||||
transposeRight,
|
||||
resultRows,
|
||||
resultColumns,
|
||||
interiorColumns,
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::encodeToCommandBuffer(
|
||||
MTL::CommandBuffer* commandBuffer,
|
||||
Matrix* leftMatrix,
|
||||
Matrix* rightMatrix,
|
||||
Matrix* resultMatrix) {
|
||||
return Object::sendMessage<void>(
|
||||
this,
|
||||
_MPS_PRIVATE_SEL(
|
||||
encodeToCommandBuffer_leftMatrix_rightMatrix_resultMatrix),
|
||||
commandBuffer,
|
||||
leftMatrix,
|
||||
rightMatrix,
|
||||
resultMatrix);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::setLeftMatrixOrigin(MTL::Origin origin) {
|
||||
Object::sendMessage<void>(
|
||||
this, _MPS_PRIVATE_SEL(setLeftMatrixOrigin_), origin);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::setRightMatrixOrigin(
|
||||
MTL::Origin origin) {
|
||||
Object::sendMessage<void>(
|
||||
this, _MPS_PRIVATE_SEL(setRightMatrixOrigin_), origin);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::setResultMatrixOrigin(
|
||||
MTL::Origin origin) {
|
||||
Object::sendMessage<void>(
|
||||
this, _MPS_PRIVATE_SEL(setResultMatrixOrigin_), origin);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::setBatchStart(NS::UInteger batchStart) {
|
||||
Object::sendMessage<void>(this, _MPS_PRIVATE_SEL(setBatchStart_), batchStart);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixMultiplication::setBatchSize(NS::UInteger batchSize) {
|
||||
Object::sendMessage<void>(this, _MPS_PRIVATE_SEL(setBatchSize_), batchSize);
|
||||
}
|
||||
|
||||
_MTL_INLINE VectorDescriptor* VectorDescriptor::vectorDescriptor(
|
||||
NS::UInteger length,
|
||||
NS::UInteger dataType) {
|
||||
return Object::sendMessage<VectorDescriptor*>(
|
||||
_MPS_PRIVATE_CLS(MPSVectorDescriptor),
|
||||
_MPS_PRIVATE_SEL(vectorDescriptorWithLength_dataType),
|
||||
length,
|
||||
dataType);
|
||||
}
|
||||
|
||||
_MTL_INLINE VectorDescriptor* VectorDescriptor::vectorDescriptor(
|
||||
NS::UInteger length,
|
||||
NS::UInteger vectors,
|
||||
NS::UInteger vectorBytes,
|
||||
NS::UInteger dataType) {
|
||||
return Object::sendMessage<VectorDescriptor*>(
|
||||
_MPS_PRIVATE_CLS(MPSVectorDescriptor),
|
||||
_MPS_PRIVATE_SEL(vectorDescriptorWithLength_vectors_vectorBytes_dataType),
|
||||
length,
|
||||
vectors,
|
||||
vectorBytes,
|
||||
dataType);
|
||||
}
|
||||
|
||||
_MTL_INLINE Vector* Vector::alloc() {
|
||||
return NS::Object::alloc<Vector>(_MPS_PRIVATE_CLS(MPSVector));
|
||||
}
|
||||
|
||||
_MTL_INLINE Vector* Vector::init(
|
||||
MTL::Buffer* buffer,
|
||||
VectorDescriptor* descriptor) {
|
||||
return Object::sendMessage<Vector*>(
|
||||
this, _MPS_PRIVATE_SEL(initWithBuffer_descriptor), buffer, descriptor);
|
||||
}
|
||||
|
||||
_MTL_INLINE Vector* Vector::init(
|
||||
const MTL::Buffer* buffer,
|
||||
VectorDescriptor* descriptor) {
|
||||
return init(const_cast<MTL::Buffer*>(buffer), descriptor);
|
||||
}
|
||||
|
||||
_MTL_INLINE MatrixVectorMultiplication* MatrixVectorMultiplication::alloc() {
|
||||
return NS::Object::alloc<MatrixVectorMultiplication>(
|
||||
_MPS_PRIVATE_CLS(MPSMatrixVectorMultiplication));
|
||||
}
|
||||
|
||||
_MTL_INLINE MatrixVectorMultiplication* MatrixVectorMultiplication::init(
|
||||
MTL::Device* device,
|
||||
bool transpose,
|
||||
NS::UInteger rows,
|
||||
NS::UInteger columns,
|
||||
double alpha,
|
||||
double beta) {
|
||||
return Object::sendMessage<MatrixVectorMultiplication*>(
|
||||
this,
|
||||
_MPS_PRIVATE_SEL(initWithDevice_transpose_rows_columns_alpha_beta),
|
||||
device,
|
||||
transpose,
|
||||
rows,
|
||||
columns,
|
||||
alpha,
|
||||
beta);
|
||||
}
|
||||
|
||||
_MTL_INLINE void MatrixVectorMultiplication::encodeToCommandBuffer(
|
||||
MTL::CommandBuffer* commandBuffer,
|
||||
Matrix* inputMatrix,
|
||||
Vector* inputVector,
|
||||
Vector* resultVector) {
|
||||
return Object::sendMessage<void>(
|
||||
this,
|
||||
_MPS_PRIVATE_SEL(
|
||||
encodeToCommandBuffer_inputMatrix_inputVector_resultVector),
|
||||
commandBuffer,
|
||||
inputMatrix,
|
||||
inputVector,
|
||||
resultVector);
|
||||
}
|
||||
|
||||
} // namespace MPS
|
@@ -169,6 +169,23 @@ MTL::ComputePipelineState* get_steel_gemm_masked_kernel(
|
||||
return d.get_kernel(kernel_name);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_gemv_masked_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
const array&,
|
||||
const std::optional<array>&,
|
||||
const std::optional<array>&,
|
||||
bool,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
int,
|
||||
bool) {
|
||||
return d.get_kernel(kernel_name);
|
||||
}
|
||||
|
||||
MTL::ComputePipelineState* get_steel_conv_kernel(
|
||||
metal::Device& d,
|
||||
const std::string& kernel_name,
|
||||
|
@@ -171,7 +171,7 @@ void Copy::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
eval(inputs, out);
|
||||
}
|
||||
|
||||
void CustomVJP::eval_gpu(
|
||||
void CustomTransforms::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
eval(inputs, outputs);
|
||||
@@ -273,7 +273,18 @@ void Reshape::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
|
||||
|
||||
if (copy_necessary) {
|
||||
copy_gpu(in, out, CopyType::General);
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
auto out_strides = make_contiguous_strides<size_t>(in.shape());
|
||||
copy_gpu_inplace(
|
||||
in,
|
||||
out,
|
||||
in.shape(),
|
||||
in.strides(),
|
||||
out_strides,
|
||||
0,
|
||||
0,
|
||||
CopyType::General,
|
||||
stream());
|
||||
} else {
|
||||
shared_buffer_reshape(in, out_strides, out);
|
||||
}
|
||||
|
@@ -7,6 +7,7 @@
|
||||
#include "mlx/backend/metal/device.h"
|
||||
#include "mlx/backend/metal/kernels.h"
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
#include "mlx/fast_primitives.h"
|
||||
#include "mlx/primitives.h"
|
||||
|
||||
namespace mlx::core {
|
||||
@@ -47,8 +48,8 @@ void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (B < 6 && O % 8 == 0 && D % 512 == 0 && D >= 512) {
|
||||
std::ostringstream kname;
|
||||
auto type_string = get_type_string(x.dtype());
|
||||
kname << "qmv_" << type_string << "_gs_" << group_size_ << "_b_" << bits_
|
||||
<< "_fast";
|
||||
kname << "qmv_fast_" << type_string << "_gs_" << group_size_ << "_b_"
|
||||
<< bits_;
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
@@ -270,8 +271,8 @@ void GatherQMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
if (B < 6 && O % 8 == 0 && D % 512 == 0 && D >= 512) {
|
||||
std::ostringstream kname;
|
||||
auto type_string = get_type_string(x.dtype());
|
||||
kname << "bs_qmv_" << type_string << "_gs_" << group_size_ << "_b_"
|
||||
<< bits_ << "_fast";
|
||||
kname << "bs_qmv_fast_" << type_string << "_gs_" << group_size_ << "_b_"
|
||||
<< bits_;
|
||||
|
||||
// Encode and dispatch kernel
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
@@ -513,4 +514,82 @@ void GatherQMM::eval_gpu(const std::vector<array>& inputs, array& out) {
|
||||
}
|
||||
}
|
||||
|
||||
void fast::AffineQuantize::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
bool compute_scale_bias = inputs.size() == 1;
|
||||
|
||||
auto& w_pre = inputs[0];
|
||||
auto& out = outputs[0];
|
||||
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
||||
|
||||
auto& s = stream();
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
std::vector<array> copies;
|
||||
auto ensure_row_contiguous = [&copies, &s](const array& arr) {
|
||||
if (arr.flags().row_contiguous) {
|
||||
return arr;
|
||||
} else {
|
||||
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
|
||||
copy_gpu(arr, arr_copy, CopyType::General, s);
|
||||
copies.push_back(arr_copy);
|
||||
return arr_copy;
|
||||
}
|
||||
};
|
||||
auto w = ensure_row_contiguous(w_pre);
|
||||
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
compute_encoder.set_input_array(w, 0);
|
||||
if (!compute_scale_bias) {
|
||||
auto& scales_pre = inputs[1];
|
||||
auto& biases_pre = inputs[2];
|
||||
auto scales = ensure_row_contiguous(scales_pre);
|
||||
auto biases = ensure_row_contiguous(biases_pre);
|
||||
compute_encoder.set_input_array(scales, 1);
|
||||
compute_encoder.set_input_array(biases, 2);
|
||||
compute_encoder.set_output_array(out, 3);
|
||||
} else {
|
||||
auto& scales = outputs[1];
|
||||
auto& biases = outputs[2];
|
||||
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
|
||||
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
compute_encoder.set_output_array(scales, 2);
|
||||
compute_encoder.set_output_array(biases, 3);
|
||||
}
|
||||
|
||||
std::ostringstream kname;
|
||||
auto type_string = dequantize_ ? get_type_string(out.dtype())
|
||||
: get_type_string(w_pre.dtype());
|
||||
auto kernel_func = "affine_quantize_scales_biases";
|
||||
if (dequantize_) {
|
||||
kernel_func = "affine_dequantize";
|
||||
} else if (compute_scale_bias) {
|
||||
kernel_func = "affine_quantize";
|
||||
}
|
||||
kname << kernel_func << "_" << type_string << "_gs_" << group_size_ << "_b_"
|
||||
<< bits_;
|
||||
auto template_def = get_template_definition(
|
||||
kname.str(), kernel_func, type_string, group_size_, bits_);
|
||||
auto kernel = get_quantized_kernel(d, kname.str(), template_def);
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
|
||||
// Treat uint32 as uint8 in kernel
|
||||
constexpr int uint8_per_uint32 = 4;
|
||||
constexpr int simd_size = 32;
|
||||
int packs_per_int = 8 / bits_;
|
||||
int per_thread = compute_scale_bias ? group_size_ / simd_size : packs_per_int;
|
||||
size_t nthreads =
|
||||
dequantize_ ? w.size() * uint8_per_uint32 : w.size() / per_thread;
|
||||
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
auto group_dims = MTL::Size(thread_group_size, 1, 1);
|
||||
auto grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
|
||||
d.get_command_buffer(s.index)->addCompletedHandler(
|
||||
[copies](MTL::CommandBuffer*) mutable { copies.clear(); });
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -5,6 +5,8 @@
|
||||
|
||||
namespace mlx::core::fast {
|
||||
|
||||
constexpr int n_per_thread = 4;
|
||||
|
||||
void RoPE::eval_gpu(
|
||||
const std::vector<array>& inputs,
|
||||
std::vector<array>& outputs) {
|
||||
@@ -62,8 +64,11 @@ void RoPE::eval_gpu(
|
||||
out_strides[1] = out.strides()[ndim - 2];
|
||||
out_strides[2] = out.strides()[ndim - 1];
|
||||
|
||||
// Special case for inference (single time step and contiguous)
|
||||
bool single = in.flags().row_contiguous && (mat_size == in.shape(-1));
|
||||
|
||||
std::ostringstream kname;
|
||||
kname << "rope_" << (forward_ ? "" : "vjp_")
|
||||
kname << "rope_" << (single ? "single_" : "") << (forward_ ? "" : "vjp_")
|
||||
<< (traditional_ ? "traditional_" : "") << type_to_name(in);
|
||||
auto kernel = d.get_kernel(kname.str());
|
||||
auto& compute_encoder = d.get_command_encoder(s.index);
|
||||
@@ -72,18 +77,28 @@ void RoPE::eval_gpu(
|
||||
compute_encoder->setComputePipelineState(kernel);
|
||||
compute_encoder.set_input_array(donated ? out : in, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
compute_encoder->setBytes(&strides, 3 * sizeof(size_t), 2);
|
||||
compute_encoder->setBytes(&out_strides, 3 * sizeof(size_t), 3);
|
||||
compute_encoder->setBytes(&offset_, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&base, sizeof(float), 5);
|
||||
compute_encoder->setBytes(&scale_, sizeof(float), 6);
|
||||
compute_encoder->setBytes(&offset_, sizeof(int), 2);
|
||||
compute_encoder->setBytes(&base, sizeof(float), 3);
|
||||
compute_encoder->setBytes(&scale_, sizeof(float), 4);
|
||||
|
||||
int dim0 = dims_ / 2;
|
||||
int dim1 = in.shape(-2);
|
||||
int dim2 = in.size() / mat_size;
|
||||
auto group_dims = get_block_dims(dim0, dim1, dim2);
|
||||
auto grid_dims = MTL::Size(dim0, dim1, dim2);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
size_t n_batch = in.size() / mat_size;
|
||||
if (single) {
|
||||
compute_encoder->setBytes(&out_strides[1], sizeof(size_t), 5);
|
||||
uint32_t dim0 = dims_ / 2;
|
||||
auto group_dims = get_block_dims(dim0, n_batch, 1);
|
||||
auto grid_dims = MTL::Size(dim0, n_batch, 1);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
} else {
|
||||
compute_encoder->setBytes(&strides, 3 * sizeof(size_t), 5);
|
||||
compute_encoder->setBytes(&out_strides, 3 * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(&n_batch, sizeof(size_t), 7);
|
||||
uint32_t dim0 = dims_ / 2;
|
||||
uint32_t dim1 = in.shape(-2);
|
||||
uint32_t dim2 = (n_batch + n_per_thread - 1) / n_per_thread;
|
||||
auto group_dims = get_block_dims(dim0, dim1, dim2);
|
||||
auto grid_dims = MTL::Size(dim0, dim1, dim2);
|
||||
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace mlx::core::fast
|
||||
|
@@ -1,5 +1,4 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "mlx/backend/metal/copy.h"
|
||||
|
@@ -24,8 +24,11 @@ void single_block_sort(
|
||||
// Prepare shapes
|
||||
int n_rows = in.size() / in.shape(axis);
|
||||
|
||||
std::vector<size_t> nc_str = in.strides();
|
||||
nc_str.erase(nc_str.begin() + axis);
|
||||
std::vector<size_t> in_nc_str = in.strides();
|
||||
in_nc_str.erase(in_nc_str.begin() + axis);
|
||||
|
||||
std::vector<size_t> out_nc_str = out.strides();
|
||||
out_nc_str.erase(out_nc_str.begin() + axis);
|
||||
|
||||
std::vector<int> nc_shape = in.shape();
|
||||
nc_shape.erase(nc_shape.begin() + axis);
|
||||
@@ -33,21 +36,28 @@ void single_block_sort(
|
||||
int nc_dim = nc_shape.size();
|
||||
|
||||
int size_sorted_axis = in.shape(axis);
|
||||
int stride_sorted_axis = in.strides()[axis];
|
||||
int stride_segment_axis = *std::min_element(nc_str.begin(), nc_str.end());
|
||||
int in_stride_sorted_axis = in.strides()[axis];
|
||||
int out_stride_sorted_axis = out.strides()[axis];
|
||||
int in_stride_segment_axis =
|
||||
*std::min_element(in_nc_str.begin(), in_nc_str.end());
|
||||
int out_stride_segment_axis =
|
||||
*std::min_element(out_nc_str.begin(), out_nc_str.end());
|
||||
|
||||
// Check if remaining strides are contiguous
|
||||
bool contiguous_write = true;
|
||||
if (axis != in.ndim() - 1 && axis != 0) {
|
||||
for (int i = 0; i < nc_str.size() - 1; ++i) {
|
||||
size_t expected = nc_str[i + 1] * nc_str[i + 1];
|
||||
contiguous_write &= (nc_str[i] == expected);
|
||||
}
|
||||
}
|
||||
// We can only use the contiguous kernel if the sorted axis
|
||||
// has the largest or smallest stride.
|
||||
// We also need the input to be contiguous
|
||||
bool contiguous = in.flags().contiguous;
|
||||
auto check_strides = [](array x, int sort_stride) {
|
||||
int min_stride = *std::min_element(x.strides().begin(), x.strides().end());
|
||||
int max_stride = *std::max_element(x.strides().begin(), x.strides().end());
|
||||
return sort_stride == min_stride || sort_stride == max_stride;
|
||||
};
|
||||
contiguous &= check_strides(in, in_stride_sorted_axis);
|
||||
contiguous &= check_strides(out, out_stride_sorted_axis);
|
||||
|
||||
// Prepare kernel name
|
||||
std::ostringstream kname;
|
||||
kname << (contiguous_write ? "c" : "nc");
|
||||
kname << (contiguous ? "c" : "nc");
|
||||
if (argsort) {
|
||||
kname << "arg";
|
||||
}
|
||||
@@ -64,14 +74,17 @@ void single_block_sort(
|
||||
compute_encoder.set_input_array(in, 0);
|
||||
compute_encoder.set_output_array(out, 1);
|
||||
compute_encoder->setBytes(&size_sorted_axis, sizeof(int), 2);
|
||||
compute_encoder->setBytes(&stride_sorted_axis, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&in_stride_sorted_axis, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&out_stride_sorted_axis, sizeof(int), 4);
|
||||
|
||||
if (contiguous_write) {
|
||||
compute_encoder->setBytes(&stride_segment_axis, sizeof(int), 4);
|
||||
if (contiguous) {
|
||||
compute_encoder->setBytes(&in_stride_segment_axis, sizeof(int), 5);
|
||||
compute_encoder->setBytes(&out_stride_segment_axis, sizeof(int), 6);
|
||||
} else {
|
||||
compute_encoder->setBytes(&nc_dim, sizeof(int), 4);
|
||||
compute_encoder->setBytes(nc_shape.data(), nc_dim * sizeof(int), 5);
|
||||
compute_encoder->setBytes(nc_str.data(), nc_dim * sizeof(size_t), 6);
|
||||
compute_encoder->setBytes(&nc_dim, sizeof(int), 5);
|
||||
compute_encoder->setBytes(nc_shape.data(), nc_dim * sizeof(int), 6);
|
||||
compute_encoder->setBytes(in_nc_str.data(), nc_dim * sizeof(size_t), 7);
|
||||
compute_encoder->setBytes(out_nc_str.data(), nc_dim * sizeof(size_t), 8);
|
||||
}
|
||||
|
||||
MTL::Size group_dims = MTL::Size(bn, 1, 1);
|
||||
@@ -164,6 +177,8 @@ void multi_block_sort(
|
||||
array dev_vals_out = dev_vals_1;
|
||||
array dev_idxs_out = dev_idxs_1;
|
||||
|
||||
int n_thr_per_group = (n_blocks + 1) < 1024 ? (n_blocks + 1) : 1024;
|
||||
|
||||
for (int merge_tiles = 2; (merge_tiles / 2) < n_blocks; merge_tiles *= 2) {
|
||||
dev_vals_in = ping ? dev_vals_1 : dev_vals_0;
|
||||
dev_idxs_in = ping ? dev_idxs_1 : dev_idxs_0;
|
||||
@@ -186,8 +201,9 @@ void multi_block_sort(
|
||||
compute_encoder.set_input_array(dev_idxs_in, 2);
|
||||
compute_encoder->setBytes(&size_sorted_axis, sizeof(int), 3);
|
||||
compute_encoder->setBytes(&merge_tiles, sizeof(int), 4);
|
||||
compute_encoder->setBytes(&n_blocks, sizeof(int), 5);
|
||||
|
||||
MTL::Size group_dims = MTL::Size(n_blocks + 1, 1, 1);
|
||||
MTL::Size group_dims = MTL::Size(n_thr_per_group, 1, 1);
|
||||
MTL::Size grid_dims = MTL::Size(1, n_rows, 1);
|
||||
|
||||
compute_encoder.dispatchThreadgroups(grid_dims, group_dims);
|
||||
|
@@ -32,6 +32,7 @@ void ternary_op_gpu_inplace(
|
||||
auto& strides_c = strides[2];
|
||||
auto& strides_out = strides[3];
|
||||
|
||||
bool use_2d = out.data_size() > UINT_MAX;
|
||||
std::string kernel_name;
|
||||
{
|
||||
std::ostringstream kname;
|
||||
@@ -40,6 +41,8 @@ void ternary_op_gpu_inplace(
|
||||
if (shape.size() <= MAX_TERNARY_SPECIALIZED_DIMS) {
|
||||
kname << shape.size();
|
||||
}
|
||||
} else if (use_2d) {
|
||||
kname << "v2";
|
||||
} else {
|
||||
kname << "v";
|
||||
}
|
||||
|
@@ -25,11 +25,14 @@ void unary_op_gpu_inplace(
|
||||
|
||||
auto& d = metal::device(s.device);
|
||||
|
||||
std::string kernel_name = (contig ? "v" : "g") + op + type_to_name(out);
|
||||
size_t nthreads = contig ? in.data_size() : in.size();
|
||||
bool use_2d = nthreads > UINT32_MAX;
|
||||
std::string kernel_name =
|
||||
(contig ? (use_2d ? "v2" : "v") : "g") + op + type_to_name(out);
|
||||
auto kernel = get_unary_kernel(d, kernel_name, out.dtype(), op);
|
||||
|
||||
size_t nthreads = contig ? in.data_size() : in.size();
|
||||
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
||||
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(in.shape(), in.strides())
|
||||
: MTL::Size(nthreads, 1, 1);
|
||||
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
||||
if (thread_group_size > nthreads) {
|
||||
thread_group_size = nthreads;
|
||||
|
116
mlx/backend/metal/utils.cpp
Normal file
116
mlx/backend/metal/utils.cpp
Normal file
@@ -0,0 +1,116 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include "mlx/backend/metal/utils.h"
|
||||
|
||||
using namespace mlx;
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::string type_to_name(const array& a) {
|
||||
std::string tname;
|
||||
switch (a.dtype()) {
|
||||
case bool_:
|
||||
tname = "bool_";
|
||||
break;
|
||||
case uint8:
|
||||
tname = "uint8";
|
||||
break;
|
||||
case uint16:
|
||||
tname = "uint16";
|
||||
break;
|
||||
case uint32:
|
||||
tname = "uint32";
|
||||
break;
|
||||
case uint64:
|
||||
tname = "uint64";
|
||||
break;
|
||||
case int8:
|
||||
tname = "int8";
|
||||
break;
|
||||
case int16:
|
||||
tname = "int16";
|
||||
break;
|
||||
case int32:
|
||||
tname = "int32";
|
||||
break;
|
||||
case int64:
|
||||
tname = "int64";
|
||||
break;
|
||||
case float16:
|
||||
tname = "float16";
|
||||
break;
|
||||
case float32:
|
||||
tname = "float32";
|
||||
break;
|
||||
case bfloat16:
|
||||
tname = "bfloat16";
|
||||
break;
|
||||
case complex64:
|
||||
tname = "complex64";
|
||||
break;
|
||||
}
|
||||
return tname;
|
||||
}
|
||||
|
||||
MTL::Size get_block_dims(int dim0, int dim1, int dim2) {
|
||||
int pows[3] = {0, 0, 0};
|
||||
int sum = 0;
|
||||
while (true) {
|
||||
int presum = sum;
|
||||
// Check all the pows
|
||||
if (dim0 >= (1 << (pows[0] + 1))) {
|
||||
pows[0]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == 10) {
|
||||
break;
|
||||
}
|
||||
if (dim1 >= (1 << (pows[1] + 1))) {
|
||||
pows[1]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == 10) {
|
||||
break;
|
||||
}
|
||||
if (dim2 >= (1 << (pows[2] + 1))) {
|
||||
pows[2]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == presum || sum == 10) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return MTL::Size{1ul << pows[0], 1ul << pows[1], 1ul << pows[2]};
|
||||
}
|
||||
|
||||
MTL::Size get_2d_grid_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides) {
|
||||
// Dims with strides of 0 are ignored as they
|
||||
// correspond to broadcasted dimensions
|
||||
size_t grid_x = 1;
|
||||
size_t grid_y = 1;
|
||||
for (int i = 0; i < shape.size(); ++i) {
|
||||
if (strides[i] == 0) {
|
||||
continue;
|
||||
}
|
||||
if (grid_x * shape[i] < UINT32_MAX) {
|
||||
grid_x *= shape[i];
|
||||
} else {
|
||||
grid_y *= shape[i];
|
||||
}
|
||||
}
|
||||
if (grid_y > UINT32_MAX || grid_x > UINT32_MAX) {
|
||||
throw std::runtime_error("Unable to safely factor shape.");
|
||||
}
|
||||
return MTL::Size(
|
||||
static_cast<uint32_t>(grid_x), static_cast<uint32_t>(grid_y), 1);
|
||||
}
|
||||
|
||||
std::string get_primitive_string(Primitive* primitive) {
|
||||
std::ostringstream op_t;
|
||||
primitive->print(op_t);
|
||||
return op_t.str();
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
@@ -8,8 +8,6 @@
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
using metal::CommandEncoder;
|
||||
|
||||
template <typename T>
|
||||
@@ -27,82 +25,22 @@ set_vector_bytes(CommandEncoder& enc, const std::vector<T>& vec, int idx) {
|
||||
return set_vector_bytes(enc, vec, vec.size(), idx);
|
||||
}
|
||||
|
||||
std::string type_to_name(const array& a) {
|
||||
std::string tname;
|
||||
switch (a.dtype()) {
|
||||
case bool_:
|
||||
tname = "bool_";
|
||||
break;
|
||||
case uint8:
|
||||
tname = "uint8";
|
||||
break;
|
||||
case uint16:
|
||||
tname = "uint16";
|
||||
break;
|
||||
case uint32:
|
||||
tname = "uint32";
|
||||
break;
|
||||
case uint64:
|
||||
tname = "uint64";
|
||||
break;
|
||||
case int8:
|
||||
tname = "int8";
|
||||
break;
|
||||
case int16:
|
||||
tname = "int16";
|
||||
break;
|
||||
case int32:
|
||||
tname = "int32";
|
||||
break;
|
||||
case int64:
|
||||
tname = "int64";
|
||||
break;
|
||||
case float16:
|
||||
tname = "float16";
|
||||
break;
|
||||
case float32:
|
||||
tname = "float32";
|
||||
break;
|
||||
case bfloat16:
|
||||
tname = "bfloat16";
|
||||
break;
|
||||
case complex64:
|
||||
tname = "complex64";
|
||||
break;
|
||||
}
|
||||
return tname;
|
||||
}
|
||||
std::string type_to_name(const array& a);
|
||||
|
||||
MTL::Size get_block_dims(int dim0, int dim1, int dim2) {
|
||||
int pows[3] = {0, 0, 0};
|
||||
int sum = 0;
|
||||
while (true) {
|
||||
int presum = sum;
|
||||
// Check all the pows
|
||||
if (dim0 >= (1 << (pows[0] + 1))) {
|
||||
pows[0]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == 10) {
|
||||
break;
|
||||
}
|
||||
if (dim1 >= (1 << (pows[1] + 1))) {
|
||||
pows[1]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == 10) {
|
||||
break;
|
||||
}
|
||||
if (dim2 >= (1 << (pows[2] + 1))) {
|
||||
pows[2]++;
|
||||
sum++;
|
||||
}
|
||||
if (sum == presum || sum == 10) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return MTL::Size{1ul << pows[0], 1ul << pows[1], 1ul << pows[2]};
|
||||
}
|
||||
// Compute the thread block dimensions which fit the given
|
||||
// input dimensions.
|
||||
// - The thread block dimensions will be powers of two
|
||||
// - The thread block size will be less than 1024
|
||||
MTL::Size get_block_dims(int dim0, int dim1, int dim2);
|
||||
|
||||
// Computes a 2D grid where each element is < UINT_MAX
|
||||
// Assumes:
|
||||
// - overall size (product of non-broadcasted dimensions) is < UINT_MAX^2
|
||||
// - shape and strides correspond to a contiguous (no holes) but
|
||||
// possibly broadcasted array
|
||||
MTL::Size get_2d_grid_dims(
|
||||
const std::vector<int>& shape,
|
||||
const std::vector<size_t>& strides);
|
||||
|
||||
inline NS::String* make_string(std::ostringstream& os) {
|
||||
std::string string = os.str();
|
||||
@@ -130,23 +68,6 @@ inline void debug_set_primitive_buffer_label(
|
||||
#endif
|
||||
}
|
||||
|
||||
bool is_power_of_2(int n) {
|
||||
return ((n & (n - 1)) == 0) && n != 0;
|
||||
}
|
||||
|
||||
int next_power_of_2(int n) {
|
||||
if (is_power_of_2(n)) {
|
||||
return n;
|
||||
}
|
||||
return pow(2, std::ceil(std::log2(n)));
|
||||
}
|
||||
|
||||
std::string get_primitive_string(Primitive* primitive) {
|
||||
std::ostringstream op_t;
|
||||
primitive->print(op_t);
|
||||
return op_t.str();
|
||||
}
|
||||
|
||||
} // namespace
|
||||
std::string get_primitive_string(Primitive* primitive);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -42,7 +42,7 @@ NO_CPU(Convolution)
|
||||
NO_CPU(Copy)
|
||||
NO_CPU(Cos)
|
||||
NO_CPU(Cosh)
|
||||
NO_CPU_MULTI(CustomVJP)
|
||||
NO_CPU_MULTI(CustomTransforms)
|
||||
NO_CPU_MULTI(Depends)
|
||||
NO_CPU(Divide)
|
||||
NO_CPU_MULTI(DivMod)
|
||||
@@ -61,6 +61,7 @@ NO_CPU(GatherMM)
|
||||
NO_CPU(GatherQMM)
|
||||
NO_CPU(Greater)
|
||||
NO_CPU(GreaterEqual)
|
||||
NO_CPU(Hadamard)
|
||||
NO_CPU(Less)
|
||||
NO_CPU(LessEqual)
|
||||
NO_CPU(Load)
|
||||
|
@@ -43,7 +43,7 @@ NO_GPU(Convolution)
|
||||
NO_GPU(Copy)
|
||||
NO_GPU(Cos)
|
||||
NO_GPU(Cosh)
|
||||
NO_GPU_MULTI(CustomVJP)
|
||||
NO_GPU_MULTI(CustomTransforms)
|
||||
NO_GPU_MULTI(Depends)
|
||||
NO_GPU(Divide)
|
||||
NO_GPU_MULTI(DivMod)
|
||||
@@ -62,6 +62,7 @@ NO_GPU(GatherMM)
|
||||
NO_GPU(GatherQMM)
|
||||
NO_GPU(Greater)
|
||||
NO_GPU(GreaterEqual)
|
||||
NO_GPU(Hadamard)
|
||||
NO_GPU(Less)
|
||||
NO_GPU(LessEqual)
|
||||
NO_GPU(Load)
|
||||
@@ -117,6 +118,7 @@ NO_GPU_MULTI(RMSNorm)
|
||||
NO_GPU_MULTI(RMSNormVJP)
|
||||
NO_GPU_MULTI(RoPE)
|
||||
NO_GPU(ScaledDotProductAttention)
|
||||
NO_GPU_MULTI(AffineQuantize)
|
||||
} // namespace fast
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -266,6 +266,10 @@ class CompilerCache {
|
||||
cache_.erase(fun_id);
|
||||
}
|
||||
|
||||
void clear() {
|
||||
cache_.clear();
|
||||
}
|
||||
|
||||
private:
|
||||
CompilerCache() {
|
||||
// Make sure the allocator is fully
|
||||
@@ -859,6 +863,10 @@ void compile_erase(std::uintptr_t fun_id) {
|
||||
detail::compiler_cache().erase(fun_id);
|
||||
}
|
||||
|
||||
void compile_clear_cache() {
|
||||
detail::compiler_cache().clear();
|
||||
}
|
||||
|
||||
} // namespace detail
|
||||
|
||||
std::function<std::vector<array>(const std::vector<array>&)> compile(
|
||||
|
@@ -1,11 +1,8 @@
|
||||
// Copyright © 2023-2024 Apple Inc.
|
||||
|
||||
#include <cstdint>
|
||||
#include <sstream>
|
||||
#include <vector>
|
||||
|
||||
#include "mlx/dtype.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
@@ -178,67 +175,4 @@ bool issubdtype(const Dtype::Category& a, const Dtype::Category& b) {
|
||||
[static_cast<uint32_t>(b)];
|
||||
}
|
||||
|
||||
// Array protocol typestring for Dtype
|
||||
std::string dtype_to_array_protocol(const Dtype& t) {
|
||||
std::ostringstream r;
|
||||
if (size_of(t) > 1)
|
||||
r << (is_big_endian() ? ">" : "<");
|
||||
else
|
||||
r << "|";
|
||||
r << kindof(t) << (int)size_of(t);
|
||||
return r.str();
|
||||
}
|
||||
|
||||
// Dtype from array protocol type string
|
||||
Dtype dtype_from_array_protocol(std::string_view t) {
|
||||
if (t.length() == 2 || t.length() == 3) {
|
||||
std::string_view r = t.length() == 3 ? t.substr(1, 2) : t;
|
||||
|
||||
if (r == "V2") {
|
||||
return bfloat16;
|
||||
}
|
||||
|
||||
uint8_t size = r[1] - '0';
|
||||
|
||||
switch (r[0]) {
|
||||
case 'b': {
|
||||
if (size == 1)
|
||||
return bool_;
|
||||
}
|
||||
case 'i': {
|
||||
if (size == 1)
|
||||
return int8;
|
||||
else if (size == 2)
|
||||
return int16;
|
||||
else if (size == 4)
|
||||
return int32;
|
||||
else if (size == 8)
|
||||
return int64;
|
||||
}
|
||||
case 'u': {
|
||||
if (size == 1)
|
||||
return uint8;
|
||||
else if (size == 2)
|
||||
return uint16;
|
||||
else if (size == 4)
|
||||
return uint32;
|
||||
else if (size == 8)
|
||||
return uint64;
|
||||
}
|
||||
case 'f': {
|
||||
if (size == 2)
|
||||
return float16;
|
||||
else if (size == 4)
|
||||
return float32;
|
||||
}
|
||||
case 'c': {
|
||||
return complex64;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
throw std::invalid_argument(
|
||||
"[from_str] Invalid array protocol type-string: " + std::string(t));
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
||||
|
@@ -4,8 +4,6 @@
|
||||
|
||||
#include <complex>
|
||||
#include <cstdint>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
|
||||
#include "mlx/types/complex.h"
|
||||
#include "mlx/types/half_types.h"
|
||||
@@ -103,9 +101,4 @@ struct TypeToDtype {
|
||||
operator Dtype();
|
||||
};
|
||||
|
||||
// Array protocol typestring for Dtype
|
||||
std::string dtype_to_array_protocol(const Dtype& t);
|
||||
// Dtype from array protocol type string
|
||||
Dtype dtype_from_array_protocol(std::string_view t);
|
||||
|
||||
} // namespace mlx::core
|
||||
|
859
mlx/einsum.cpp
Normal file
859
mlx/einsum.cpp
Normal file
@@ -0,0 +1,859 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#include <numeric>
|
||||
#include <sstream>
|
||||
#include <unordered_map>
|
||||
#include <unordered_set>
|
||||
|
||||
#include "mlx/einsum.h"
|
||||
#include "mlx/ops.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
namespace {
|
||||
|
||||
// The MLX einsum implementation is based on NumPy (which is based on
|
||||
// opt_einsum):
|
||||
// https://github.com/numpy/numpy/blob/1d49c7f7ff527c696fc26ab2278ad51632a66660/numpy/_core/einsumfunc.py#L743
|
||||
// https://github.com/dgasmith/opt_einsum
|
||||
|
||||
using CharSet = std::unordered_set<char>;
|
||||
|
||||
// A helper struct to hold the string and set
|
||||
// representation of a subscript to avoid needing
|
||||
// to recompute the set
|
||||
struct Subscript {
|
||||
Subscript(std::string str, CharSet set)
|
||||
: str(std::move(str)), set(std::move(set)) {};
|
||||
std::string str;
|
||||
CharSet set;
|
||||
};
|
||||
|
||||
struct PathInfo {
|
||||
size_t naive_cost;
|
||||
size_t naive_scaling;
|
||||
size_t optimized_cost;
|
||||
size_t optimized_scaling;
|
||||
size_t largest_term;
|
||||
};
|
||||
|
||||
struct PathNode {
|
||||
PathNode(
|
||||
std::vector<Subscript> inputs,
|
||||
Subscript output,
|
||||
std::vector<int> positions)
|
||||
: inputs(std::move(inputs)),
|
||||
output(std::move(output)),
|
||||
positions(std::move(positions)) {};
|
||||
|
||||
std::vector<Subscript> inputs;
|
||||
Subscript output;
|
||||
|
||||
std::vector<int> positions;
|
||||
};
|
||||
|
||||
// Parse the comma separated subscripts into a vector of strings. If the
|
||||
// output subscripts are missing they are inferred.
|
||||
//
|
||||
// For example:
|
||||
// "ij,jk -> ik" becomes {{"ij", "jk"}, "ik"}
|
||||
// "ij,jk" becomes {{"ij", "jk"}, "ik"}
|
||||
std::pair<std::vector<std::string>, std::string> parse(std::string subscripts) {
|
||||
std::string lhs, rhs;
|
||||
|
||||
// Start by removing all white space
|
||||
subscripts.erase(
|
||||
std::remove(subscripts.begin(), subscripts.end(), ' '), subscripts.end());
|
||||
|
||||
if (auto pos = subscripts.find("->"); pos != std::string::npos) {
|
||||
// Explicit mode
|
||||
lhs = subscripts.substr(0, pos);
|
||||
rhs = subscripts.substr(pos + 2);
|
||||
} else {
|
||||
// Implicit mode:
|
||||
// - repeats are summed
|
||||
// - remaining output axes are ordered alphabetically
|
||||
lhs = subscripts;
|
||||
std::unordered_map<char, int> temp;
|
||||
for (auto& c : subscripts) {
|
||||
if (c == ',') {
|
||||
continue;
|
||||
}
|
||||
auto inserted = temp.insert({c, 0});
|
||||
inserted.first->second++;
|
||||
}
|
||||
for (auto& k : temp) {
|
||||
if (k.second == 1) {
|
||||
rhs += k.first;
|
||||
}
|
||||
}
|
||||
std::sort(rhs.begin(), rhs.end());
|
||||
}
|
||||
std::vector<std::string> input_list;
|
||||
std::stringstream ss(lhs);
|
||||
std::string token;
|
||||
while (getline(ss, token, ',')) {
|
||||
input_list.push_back(token);
|
||||
}
|
||||
return {input_list, rhs};
|
||||
}
|
||||
|
||||
// Check if two sets are disjoint
|
||||
bool disjoint(const CharSet& x, const CharSet& y) {
|
||||
for (auto& c : x) {
|
||||
if (y.find(c) != y.end()) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
size_t term_size(const T& term, std::unordered_map<char, int> dict) {
|
||||
size_t size = 1;
|
||||
for (auto c : term) {
|
||||
size *= dict[c];
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
size_t flop_count(
|
||||
const CharSet& term,
|
||||
bool inner,
|
||||
int num_terms,
|
||||
std::unordered_map<char, int> dict) {
|
||||
size_t size = term_size(term, dict);
|
||||
auto op_factor = 1;
|
||||
if ((num_terms - 1) > op_factor) {
|
||||
op_factor = num_terms - 1;
|
||||
}
|
||||
if (inner) {
|
||||
op_factor += 1;
|
||||
}
|
||||
return size * op_factor;
|
||||
}
|
||||
|
||||
std::pair<size_t, int> compute_cost_and_scaling(
|
||||
const std::vector<Subscript>& inputs,
|
||||
const Subscript& output,
|
||||
std::unordered_map<char, int> dim_map) {
|
||||
CharSet contractions;
|
||||
for (auto& in : inputs) {
|
||||
contractions.insert(in.set.begin(), in.set.end());
|
||||
}
|
||||
|
||||
bool inner = false;
|
||||
for (auto c : contractions) {
|
||||
if (output.set.find(c) == output.set.end()) {
|
||||
inner = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
auto cost = flop_count(contractions, inner, inputs.size(), dim_map);
|
||||
return {cost, contractions.size()};
|
||||
}
|
||||
|
||||
std::tuple<std::vector<PathNode>, size_t, int> greedy_path(
|
||||
std::vector<Subscript> inputs,
|
||||
const Subscript& output,
|
||||
std::unordered_map<char, int> dim_map,
|
||||
size_t cost_limit,
|
||||
size_t memory_limit) {
|
||||
// Helper struct for building the greedy path
|
||||
struct Contraction {
|
||||
Contraction(
|
||||
size_t size,
|
||||
size_t cost,
|
||||
CharSet output,
|
||||
int dims,
|
||||
int x,
|
||||
int y)
|
||||
: size(size),
|
||||
cost(cost),
|
||||
output(std::move(output)),
|
||||
dims(dims),
|
||||
x(x),
|
||||
y(y) {};
|
||||
|
||||
int64_t size; // Size difference, can be negative
|
||||
size_t cost;
|
||||
CharSet output;
|
||||
int dims; // Number of dimensions in the contraction
|
||||
int x;
|
||||
int y;
|
||||
};
|
||||
|
||||
// Start by iterating over all possible combinations
|
||||
std::vector<std::pair<int, int>> pos_pairs;
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
for (int j = i + 1; j < inputs.size(); ++j) {
|
||||
pos_pairs.emplace_back(i, j);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<PathNode> path;
|
||||
std::vector<Contraction> possible_contractions;
|
||||
size_t path_cost = 0;
|
||||
int path_scaling = 0;
|
||||
auto num_in = inputs.size();
|
||||
for (int i = 0; i < num_in - 1; ++i) {
|
||||
auto add_contraction = [&](int p1, int p2) {
|
||||
CharSet new_term;
|
||||
CharSet contractions(inputs[p1].set.begin(), inputs[p1].set.end());
|
||||
contractions.insert(inputs[p2].set.begin(), inputs[p2].set.end());
|
||||
for (int i = 0; i < inputs.size(); i++) {
|
||||
if (i == p1 || i == p2) {
|
||||
continue;
|
||||
}
|
||||
auto& in = inputs[i].set;
|
||||
for (auto c : in) {
|
||||
if (contractions.find(c) != contractions.end()) {
|
||||
new_term.insert(c);
|
||||
}
|
||||
}
|
||||
}
|
||||
for (auto c : output.set) {
|
||||
if (contractions.find(c) != contractions.end()) {
|
||||
new_term.insert(c);
|
||||
}
|
||||
}
|
||||
|
||||
// Ignore if:
|
||||
// - The size of the new result is greater than the memory limit
|
||||
// - The cost is larger than the naive cost
|
||||
auto new_size = term_size(new_term, dim_map);
|
||||
if (new_size > memory_limit) {
|
||||
return;
|
||||
}
|
||||
int64_t removed_size = term_size(inputs[p1].set, dim_map) +
|
||||
term_size(inputs[p2].set, dim_map) - new_size;
|
||||
|
||||
bool inner = contractions.size() > new_term.size();
|
||||
auto cost = flop_count(contractions, inner, 2, dim_map);
|
||||
if (path_cost + cost > cost_limit) {
|
||||
return;
|
||||
}
|
||||
possible_contractions.emplace_back(
|
||||
removed_size, cost, std::move(new_term), contractions.size(), p1, p2);
|
||||
};
|
||||
|
||||
for (auto& [p1, p2] : pos_pairs) {
|
||||
// Ignore outer products
|
||||
if (!disjoint(inputs[p1].set, inputs[p2].set)) {
|
||||
add_contraction(p1, p2);
|
||||
}
|
||||
}
|
||||
|
||||
// If there's nothing in the contraction list,
|
||||
// go over the pairs again without ignoring outer products
|
||||
if (possible_contractions.empty()) {
|
||||
for (auto& [p1, p2] : pos_pairs) {
|
||||
add_contraction(p1, p2);
|
||||
}
|
||||
}
|
||||
|
||||
if (possible_contractions.empty()) {
|
||||
// Default to naive einsum for the remaining inputs
|
||||
std::vector<int> positions(inputs.size());
|
||||
std::iota(positions.begin(), positions.end(), 0);
|
||||
auto [cost, scale] = compute_cost_and_scaling(inputs, output, dim_map);
|
||||
path.emplace_back(std::move(inputs), output, std::move(positions));
|
||||
|
||||
path_cost += cost;
|
||||
path_scaling = std::max(scale, path_scaling);
|
||||
break;
|
||||
}
|
||||
|
||||
// Find the best contraction
|
||||
auto& best = *std::min_element(
|
||||
possible_contractions.begin(),
|
||||
possible_contractions.end(),
|
||||
[](const auto& x, const auto& y) {
|
||||
return x.size > y.size || (x.size == y.size && x.cost < y.cost);
|
||||
});
|
||||
path_scaling = std::max(best.dims, path_scaling);
|
||||
|
||||
// Construct the output subscripts
|
||||
std::string out_str(best.output.begin(), best.output.end());
|
||||
// TODO, sorting by dimension size seems suboptimal?
|
||||
std::sort(out_str.begin(), out_str.end(), [&dim_map](auto x, auto y) {
|
||||
return dim_map[x] < dim_map[y];
|
||||
});
|
||||
Subscript new_output(std::move(out_str), std::move(best.output));
|
||||
|
||||
// Add the chosen contraction to the path
|
||||
{
|
||||
std::vector<Subscript> in_terms;
|
||||
in_terms.push_back(std::move(inputs[best.x]));
|
||||
in_terms.push_back(std::move(inputs[best.y]));
|
||||
path.emplace_back(
|
||||
std::move(in_terms), new_output, std::vector<int>{best.x, best.y});
|
||||
}
|
||||
// Remove used terms
|
||||
inputs.erase(inputs.begin() + best.y);
|
||||
inputs.erase(inputs.begin() + best.x);
|
||||
|
||||
// Add the new result
|
||||
inputs.push_back(std::move(new_output));
|
||||
|
||||
// Update the existing contractions based on the selected one
|
||||
std::vector<Contraction> updated_contractions;
|
||||
for (auto& contraction : possible_contractions) {
|
||||
// Drop contractions which contain either selected term
|
||||
if (contraction.x == best.x || contraction.x == best.y ||
|
||||
contraction.y == best.x || contraction.y == best.y) {
|
||||
continue;
|
||||
}
|
||||
|
||||
// Update the positions of other contractions
|
||||
int x =
|
||||
contraction.x - (contraction.x > best.x) - (contraction.x > best.y);
|
||||
int y =
|
||||
contraction.y - (contraction.y > best.x) - (contraction.y > best.y);
|
||||
contraction.x = x;
|
||||
contraction.y = y;
|
||||
updated_contractions.push_back(std::move(contraction));
|
||||
}
|
||||
|
||||
pos_pairs.clear();
|
||||
for (int i = 0; i < inputs.size() - 1; ++i) {
|
||||
pos_pairs.emplace_back(i, inputs.size() - 1);
|
||||
}
|
||||
path_cost += best.cost;
|
||||
|
||||
possible_contractions = std::move(updated_contractions);
|
||||
}
|
||||
return {path, path_cost, path_scaling};
|
||||
}
|
||||
|
||||
// Assumes inputs have already have had repeats and single axis sums collapsed
|
||||
bool can_dot(const std::vector<Subscript>& inputs, const Subscript& output) {
|
||||
if (inputs.size() != 2) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (auto c : inputs[0].set) {
|
||||
// Use batched tensordot if anything is being contracted
|
||||
if (output.set.find(c) == output.set.end()) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
array batch_tensordot(
|
||||
array a,
|
||||
array b,
|
||||
std::vector<int> a_contract,
|
||||
std::vector<int> a_batch,
|
||||
std::vector<int> a_concat,
|
||||
std::vector<int> b_contract,
|
||||
std::vector<int> b_batch,
|
||||
std::vector<int> b_concat,
|
||||
StreamOrDevice s) {
|
||||
// Broadcast contracting dimensions
|
||||
{
|
||||
auto a_shape = a.shape();
|
||||
auto b_shape = b.shape();
|
||||
for (int i = 0; i < a_contract.size(); ++i) {
|
||||
auto d = std::max(a.shape(a_contract[i]), b.shape(b_contract[i]));
|
||||
a_shape[a_contract[i]] = d;
|
||||
b_shape[b_contract[i]] = d;
|
||||
}
|
||||
a = broadcast_to(a, a_shape, s);
|
||||
b = broadcast_to(b, b_shape, s);
|
||||
}
|
||||
auto transpose_reshape = [&s](
|
||||
const array& x,
|
||||
const std::vector<int>& i,
|
||||
const std::vector<int>& j,
|
||||
const std::vector<int>& k) {
|
||||
std::vector<int> reorder(i.begin(), i.end());
|
||||
reorder.insert(reorder.end(), j.begin(), j.end());
|
||||
reorder.insert(reorder.end(), k.begin(), k.end());
|
||||
|
||||
int size1 = 1;
|
||||
for (auto s : j) {
|
||||
size1 *= x.shape(s);
|
||||
}
|
||||
|
||||
int size2 = 1;
|
||||
for (auto s : k) {
|
||||
size2 *= x.shape(s);
|
||||
}
|
||||
|
||||
std::vector<int> shape;
|
||||
for (auto ax : i) {
|
||||
shape.push_back(x.shape(ax));
|
||||
}
|
||||
shape.push_back(size1);
|
||||
shape.push_back(size2);
|
||||
|
||||
return reshape(transpose(x, reorder, s), std::move(shape), s);
|
||||
};
|
||||
|
||||
std::vector<int> out_shape;
|
||||
for (auto ax : a_batch) {
|
||||
out_shape.push_back(a.shape(ax));
|
||||
}
|
||||
for (auto ax : a_concat) {
|
||||
out_shape.push_back(a.shape(ax));
|
||||
}
|
||||
for (auto ax : b_concat) {
|
||||
out_shape.push_back(b.shape(ax));
|
||||
}
|
||||
|
||||
a = transpose_reshape(a, a_batch, a_concat, a_contract);
|
||||
b = transpose_reshape(b, b_batch, b_contract, b_concat);
|
||||
|
||||
return reshape(matmul(a, b, s), std::move(out_shape), s);
|
||||
}
|
||||
|
||||
// Collapse repeated subscripts and return the resulting array. The subscript
|
||||
// is also updated in place. For example:
|
||||
// - Given an input with shape (4, 4) and subscript "ii", returns
|
||||
// the diagonal of shape (4,) and updates the subscript to "i".
|
||||
// - Given an input with shape (4, 2, 4, 2) and subscript "ijij",
|
||||
// returns an output with shape (4, 2) and updates the subscript
|
||||
// to "ij".
|
||||
array collapse_repeats(array in, Subscript& subscript, StreamOrDevice s) {
|
||||
// Build a list of (repeat chars, num repeats)
|
||||
auto& str = subscript.str;
|
||||
std::vector<std::pair<char, int>> repeats;
|
||||
std::string new_str;
|
||||
{
|
||||
std::string repeat_str;
|
||||
std::string no_repeat_str;
|
||||
std::unordered_map<char, int> counts;
|
||||
for (int i = 0; i < str.size(); ++i) {
|
||||
auto [it, _] = counts.insert({str[i], 0});
|
||||
it->second++;
|
||||
}
|
||||
|
||||
for (auto& v : counts) {
|
||||
if (v.second > 1) {
|
||||
repeats.emplace_back(v.first, v.second);
|
||||
repeat_str += v.first;
|
||||
}
|
||||
}
|
||||
for (auto& c : str) {
|
||||
if (counts[c] == 1) {
|
||||
no_repeat_str += c;
|
||||
}
|
||||
}
|
||||
new_str = repeat_str + no_repeat_str;
|
||||
}
|
||||
|
||||
// Build the inputs for gather
|
||||
auto slice_sizes = in.shape();
|
||||
std::vector<int> axes;
|
||||
std::vector<array> indices;
|
||||
int n_expand = repeats.size();
|
||||
for (auto [c, v] : repeats) {
|
||||
for (int i = 0; i < str.size(); ++i) {
|
||||
if (str[i] == c) {
|
||||
slice_sizes[i] = 1;
|
||||
axes.push_back(i);
|
||||
}
|
||||
}
|
||||
std::vector<int> idx_shape(n_expand--, 1);
|
||||
idx_shape[0] = in.shape(axes.back());
|
||||
auto idx = reshape(arange(in.shape(axes.back()), s), idx_shape, s);
|
||||
for (int i = 0; i < v; ++i) {
|
||||
indices.push_back(idx);
|
||||
}
|
||||
}
|
||||
|
||||
in = gather(in, indices, axes, slice_sizes, s);
|
||||
|
||||
// Update subscript string with removed dups
|
||||
str = new_str;
|
||||
|
||||
// Squeeze singleton dimensions left over from the gather
|
||||
for (auto& ax : axes) {
|
||||
ax += indices[0].ndim();
|
||||
}
|
||||
|
||||
return squeeze(in, axes, s);
|
||||
}
|
||||
|
||||
// Collapse repeat indices and sum single dimensions.
|
||||
// For example:
|
||||
// - "aa" becomes "a"
|
||||
// - "ij,jk->k" becoms "j,jk->k"
|
||||
void preprocess_einsum_inputs(
|
||||
std::vector<Subscript>& inputs,
|
||||
const Subscript& output,
|
||||
const std::vector<int>& positions,
|
||||
std::vector<array>& operands,
|
||||
StreamOrDevice s) {
|
||||
// Collapse repeat indices
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
if (in.set.size() < in.str.size()) {
|
||||
operands[positions[i]] = collapse_repeats(operands[positions[i]], in, s);
|
||||
}
|
||||
}
|
||||
|
||||
// Sum indices that are only in a single input
|
||||
{
|
||||
std::unordered_map<char, int> counts;
|
||||
for (auto& in : inputs) {
|
||||
for (auto c : in.set) {
|
||||
auto inserted = counts.insert({c, 0});
|
||||
inserted.first->second++;
|
||||
}
|
||||
}
|
||||
for (auto c : output.set) {
|
||||
auto inserted = counts.insert({c, 0});
|
||||
inserted.first->second++;
|
||||
}
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
auto& in = inputs[i];
|
||||
std::vector<int> sum_axes;
|
||||
for (int ax = 0; ax < in.str.size(); ++ax) {
|
||||
if (counts[in.str[ax]] == 1) {
|
||||
sum_axes.push_back(ax);
|
||||
}
|
||||
}
|
||||
if (!sum_axes.empty()) {
|
||||
operands[positions[i]] =
|
||||
sum(operands[positions[i]], sum_axes, false, s);
|
||||
}
|
||||
for (auto it = sum_axes.rbegin(); it != sum_axes.rend(); ++it) {
|
||||
in.set.erase(in.str[*it]);
|
||||
in.str.erase(in.str.begin() + *it);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
array einsum_naive(
|
||||
std::vector<Subscript> inputs,
|
||||
const Subscript& output,
|
||||
const std::vector<int>& positions,
|
||||
std::vector<array> operands,
|
||||
StreamOrDevice s) {
|
||||
// Map each character to an axis
|
||||
std::unordered_map<char, int> char_to_ax;
|
||||
for (auto& in : inputs) {
|
||||
for (auto c : in.str) {
|
||||
char_to_ax.insert({c, char_to_ax.size()});
|
||||
}
|
||||
}
|
||||
|
||||
// Expand and transpose inputs as needed
|
||||
for (int i = 0; i < inputs.size(); ++i) {
|
||||
int pos = positions[i];
|
||||
auto& op = operands[pos];
|
||||
|
||||
// Add missing dimensions at the end
|
||||
if (op.ndim() != char_to_ax.size()) {
|
||||
auto shape = op.shape();
|
||||
shape.insert(shape.end(), char_to_ax.size() - shape.size(), 1);
|
||||
op = reshape(op, std::move(shape), s);
|
||||
}
|
||||
|
||||
// Transpose:
|
||||
// - Build a vector of (char, ax) pairs for the current input
|
||||
// - Sort the vector by the canonical axis in char_to_ax
|
||||
// - Extract the sorted axis to get transpose order
|
||||
std::vector<std::pair<char, int>> str_ax;
|
||||
for (auto c : inputs[i].str) {
|
||||
str_ax.emplace_back(c, str_ax.size());
|
||||
}
|
||||
for (auto [c, ax] : char_to_ax) {
|
||||
if (inputs[i].set.find(c) == inputs[i].set.end()) {
|
||||
str_ax.emplace_back(c, str_ax.size());
|
||||
}
|
||||
}
|
||||
std::sort(
|
||||
str_ax.begin(),
|
||||
str_ax.end(),
|
||||
[&char_to_ax](const auto& x, const auto& y) {
|
||||
return char_to_ax[x.first] < char_to_ax[y.first];
|
||||
});
|
||||
|
||||
// Skip the transpose if not needed
|
||||
if (std::is_sorted(
|
||||
str_ax.begin(), str_ax.end(), [](const auto& x, const auto& y) {
|
||||
return x.second < y.second;
|
||||
})) {
|
||||
continue;
|
||||
}
|
||||
|
||||
std::vector<int> reorder;
|
||||
for (auto [c, ax] : str_ax) {
|
||||
reorder.push_back(ax);
|
||||
}
|
||||
op = transpose(op, reorder, s);
|
||||
}
|
||||
|
||||
// Multiply and sum
|
||||
auto out = operands[positions[0]];
|
||||
for (int i = 1; i < positions.size(); ++i) {
|
||||
out = multiply(out, operands[positions[i]], s);
|
||||
}
|
||||
std::vector<int> sum_axes;
|
||||
for (auto [c, ax] : char_to_ax) {
|
||||
if (output.set.find(c) == output.set.end()) {
|
||||
sum_axes.push_back(ax);
|
||||
}
|
||||
}
|
||||
if (!sum_axes.empty()) {
|
||||
out = sum(out, sum_axes, false, s);
|
||||
}
|
||||
|
||||
// Transpose output if needed
|
||||
std::vector<int> reorder;
|
||||
for (auto c : output.str) {
|
||||
reorder.push_back(char_to_ax[c]);
|
||||
}
|
||||
for (auto& r : reorder) {
|
||||
int offset = 0;
|
||||
for (auto s : sum_axes) {
|
||||
if (r > s) {
|
||||
offset++;
|
||||
}
|
||||
}
|
||||
r -= offset;
|
||||
}
|
||||
return transpose(out, reorder, s);
|
||||
}
|
||||
|
||||
std::pair<std::vector<PathNode>, PathInfo> einsum_path_helper(
|
||||
const std::string& subscripts,
|
||||
const std::vector<array>& operands,
|
||||
const std::string& fn_name) {
|
||||
if (operands.size() == 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] At least one operand is required.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto [in_subscripts, out_subscript] = parse(subscripts);
|
||||
|
||||
if (operands.size() != in_subscripts.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Number of operands, " << operands.size()
|
||||
<< ", does not match number of input subscripts, "
|
||||
<< in_subscripts.size();
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto check_letters = [&](const auto& subscript) {
|
||||
for (auto c : subscript) {
|
||||
if (!isalpha(c)) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Subscripts must be letters, but got '" << c
|
||||
<< "'.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
}
|
||||
};
|
||||
for (auto& in : in_subscripts) {
|
||||
check_letters(in);
|
||||
}
|
||||
check_letters(out_subscript);
|
||||
|
||||
CharSet out_set(out_subscript.begin(), out_subscript.end());
|
||||
if (out_set.size() != out_subscript.size()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Repeat indices not allowed in output.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
Subscript output(out_subscript, std::move(out_set));
|
||||
|
||||
std::unordered_map<char, int> dim_map;
|
||||
std::vector<Subscript> inputs;
|
||||
for (int i = 0; i < in_subscripts.size(); ++i) {
|
||||
auto& in = in_subscripts[i];
|
||||
CharSet in_set(in.begin(), in.end());
|
||||
inputs.emplace_back(in, in_set);
|
||||
|
||||
if (in.size() != operands[i].ndim()) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Invalid number of subscripts " << in.size()
|
||||
<< " for input " << i << " with " << operands[i].ndim()
|
||||
<< " dimensions.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
// Check repeat subscripts are valid
|
||||
if (in_set.size() < in.size()) {
|
||||
std::unordered_map<char, int> local_dims;
|
||||
for (int j = 0; j < in.size(); ++j) {
|
||||
auto dim = operands[i].shape(j);
|
||||
auto inserted = local_dims.insert({in[j], dim});
|
||||
if (!inserted.second) {
|
||||
if (inserted.first->second != dim) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Dimensions of repeated subscripts "
|
||||
<< "do not have the same size (" << inserted.first->second
|
||||
<< " != " << dim << ").";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
for (int j = 0; j < in.size(); j++) {
|
||||
auto c = in[j];
|
||||
auto dim = operands[i].shape(j);
|
||||
auto inserted = dim_map.insert({c, dim});
|
||||
auto& in_dim = inserted.first->second;
|
||||
if (dim != 1 && in_dim != 1 && in_dim != dim) {
|
||||
std::ostringstream msg;
|
||||
msg << "[" << fn_name << "] Cannot broadcast dimension " << j
|
||||
<< " of input " << i << " with shape " << operands[i].shape()
|
||||
<< " to size " << in_dim << ".";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
// Ensure the broadcasted size is used
|
||||
in_dim = std::max(in_dim, dim);
|
||||
}
|
||||
}
|
||||
|
||||
size_t max_size = term_size(out_subscript, dim_map);
|
||||
for (auto& in : in_subscripts) {
|
||||
max_size = std::max(max_size, term_size(in, dim_map));
|
||||
}
|
||||
|
||||
PathInfo path_info;
|
||||
|
||||
// Get the full naive cost
|
||||
std::tie(path_info.naive_cost, path_info.naive_scaling) =
|
||||
compute_cost_and_scaling(inputs, output, dim_map);
|
||||
|
||||
// Calculate the path
|
||||
std::vector<PathNode> path;
|
||||
if (inputs.size() <= 2) {
|
||||
std::vector<int> positions(in_subscripts.size());
|
||||
std::iota(positions.begin(), positions.end(), 0);
|
||||
path.emplace_back(
|
||||
std::move(inputs), std::move(output), std::move(positions));
|
||||
} else {
|
||||
std::tie(path, path_info.optimized_cost, path_info.optimized_scaling) =
|
||||
greedy_path(inputs, output, dim_map, path_info.naive_cost, max_size);
|
||||
// Set the final output subscript to the actual output
|
||||
path.back().output = std::move(output);
|
||||
}
|
||||
return {path, path_info};
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
std::pair<std::vector<std::vector<int>>, std::string> einsum_path(
|
||||
const std::string& subscripts,
|
||||
const std::vector<array>& operands) {
|
||||
auto [path, path_info] =
|
||||
einsum_path_helper(subscripts, operands, "einsum_path");
|
||||
|
||||
std::vector<std::vector<int>> pos_path;
|
||||
for (auto& p : path) {
|
||||
pos_path.push_back(p.positions);
|
||||
}
|
||||
|
||||
std::ostringstream path_print;
|
||||
path_print << " Complete contraction: " << subscripts << "\n"
|
||||
<< " Naive scaling: " << path_info.naive_scaling << "\n"
|
||||
<< " Optimized scaling: " << path_info.optimized_scaling
|
||||
<< "\n"
|
||||
<< " Naive FLOP count: " << path_info.naive_cost << "\n"
|
||||
<< " Optimized FLOP count: " << path_info.optimized_cost << "\n";
|
||||
// TODO add more info here
|
||||
return {pos_path, path_print.str()};
|
||||
}
|
||||
|
||||
array einsum(
|
||||
const std::string& subscripts,
|
||||
const std::vector<array>& operands,
|
||||
StreamOrDevice s /* = {} */) {
|
||||
auto [path, path_info] = einsum_path_helper(subscripts, operands, "einsum");
|
||||
auto inputs = operands;
|
||||
for (auto& node : path) {
|
||||
preprocess_einsum_inputs(
|
||||
node.inputs, node.output, node.positions, inputs, s);
|
||||
|
||||
if (can_dot(node.inputs, node.output)) {
|
||||
auto& in_a = node.inputs[0];
|
||||
auto& in_b = node.inputs[1];
|
||||
auto& out = node.output;
|
||||
|
||||
std::vector<int> a_contract;
|
||||
std::vector<int> a_batch;
|
||||
std::vector<int> a_concat;
|
||||
for (int i = 0; i < in_a.str.size(); ++i) {
|
||||
auto c = in_a.str[i];
|
||||
if (out.set.find(c) == out.set.end()) {
|
||||
// Not in the output, contraction
|
||||
a_contract.push_back(i);
|
||||
} else if (in_b.set.find(c) != in_b.set.end()) {
|
||||
// Not a contraction but in both inputs, batch dim
|
||||
a_batch.push_back(i);
|
||||
} else {
|
||||
// Not a batch dim or contract dim, so concat dim
|
||||
a_concat.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
std::vector<int> b_contract;
|
||||
std::vector<int> b_batch;
|
||||
std::vector<int> b_concat;
|
||||
for (auto a_i : a_contract) {
|
||||
b_contract.push_back(in_b.str.find(in_a.str[a_i]));
|
||||
}
|
||||
for (auto a_i : a_batch) {
|
||||
b_batch.push_back(in_b.str.find(in_a.str[a_i]));
|
||||
}
|
||||
for (int i = 0; i < in_b.str.size(); ++i) {
|
||||
auto c = in_b.str[i];
|
||||
if (out.set.find(c) != out.set.end() &&
|
||||
in_a.set.find(c) == in_a.set.end()) {
|
||||
b_concat.push_back(i);
|
||||
}
|
||||
}
|
||||
|
||||
auto& a = inputs[node.positions[0]];
|
||||
auto& b = inputs[node.positions[1]];
|
||||
|
||||
std::unordered_map<char, int> char_map;
|
||||
for (auto i : a_batch) {
|
||||
char_map.insert({in_a.str[i], char_map.size()});
|
||||
}
|
||||
for (auto i : a_concat) {
|
||||
char_map.insert({in_a.str[i], char_map.size()});
|
||||
}
|
||||
for (auto i : b_concat) {
|
||||
char_map.insert({in_b.str[i], char_map.size()});
|
||||
}
|
||||
inputs.emplace_back(batch_tensordot(
|
||||
a,
|
||||
b,
|
||||
std::move(a_contract),
|
||||
std::move(a_batch),
|
||||
std::move(a_concat),
|
||||
std::move(b_contract),
|
||||
std::move(b_batch),
|
||||
std::move(b_concat),
|
||||
s));
|
||||
|
||||
std::vector<int> reorder;
|
||||
for (auto c : node.output.str) {
|
||||
reorder.push_back(char_map[c]);
|
||||
}
|
||||
inputs.back() = transpose(inputs.back(), reorder, s);
|
||||
|
||||
} else {
|
||||
inputs.emplace_back(
|
||||
einsum_naive(node.inputs, node.output, node.positions, inputs, s));
|
||||
}
|
||||
|
||||
// Positions are always sorted increasing, so start from the back
|
||||
for (auto it = node.positions.rbegin(); it != node.positions.rend(); ++it) {
|
||||
inputs.erase(inputs.begin() + *it);
|
||||
}
|
||||
}
|
||||
return inputs.front();
|
||||
}
|
||||
|
||||
} // namespace mlx::core
|
22
mlx/einsum.h
Normal file
22
mlx/einsum.h
Normal file
@@ -0,0 +1,22 @@
|
||||
// Copyright © 2024 Apple Inc.
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
#include <tuple>
|
||||
#include <vector>
|
||||
|
||||
#include "mlx/array.h"
|
||||
#include "mlx/utils.h"
|
||||
|
||||
namespace mlx::core {
|
||||
|
||||
std::pair<std::vector<std::vector<int>>, std::string> einsum_path(
|
||||
const std::string& subscripts,
|
||||
const std::vector<array>& operands);
|
||||
|
||||
array einsum(
|
||||
const std::string& subscripts,
|
||||
const std::vector<array>& operands,
|
||||
StreamOrDevice s = {});
|
||||
|
||||
} // namespace mlx::core
|
266
mlx/fast.cpp
266
mlx/fast.cpp
@@ -18,7 +18,7 @@ std::vector<array> Custom::vjp(
|
||||
auto [_, vjps] = mlx::core::vjp(fallback_, primals, cotangents);
|
||||
std::vector<array> vjp_outs;
|
||||
for (int i = 0, j = 0; i < vjps.size(); ++i) {
|
||||
if (i < argnums.size() && i == argnums[j]) {
|
||||
if (j < argnums.size() && i == argnums[j]) {
|
||||
vjp_outs.push_back(vjps[i]);
|
||||
j++;
|
||||
}
|
||||
@@ -30,15 +30,16 @@ std::vector<array> Custom::jvp(
|
||||
const std::vector<array>& primals,
|
||||
const std::vector<array>& tangents,
|
||||
const std::vector<int>& argnums) {
|
||||
auto [_, jvps] = mlx::core::jvp(fallback_, primals, tangents);
|
||||
std::vector<array> jvp_outs;
|
||||
for (int i = 0, j = 0; i < jvps.size(); ++i) {
|
||||
if (i < argnums.size() && i == argnums[j]) {
|
||||
jvp_outs.push_back(jvps[i]);
|
||||
j++;
|
||||
std::vector<array> all_tangents;
|
||||
for (int i = 0, j = 0; i < primals.size(); i++) {
|
||||
if (j < argnums.size() && i == argnums[j]) {
|
||||
all_tangents.emplace_back(tangents[j++]);
|
||||
} else {
|
||||
all_tangents.emplace_back(zeros_like(primals[i]));
|
||||
}
|
||||
}
|
||||
return jvp_outs;
|
||||
auto [_, jvps] = mlx::core::jvp(fallback_, primals, all_tangents);
|
||||
return jvps;
|
||||
}
|
||||
|
||||
std::pair<std::vector<array>, std::vector<int>> Custom::vmap(
|
||||
@@ -609,4 +610,253 @@ bool ScaledDotProductAttention::is_equivalent(const Primitive& other) const {
|
||||
return needs_mask_ == a_other.needs_mask_ && scale_ == a_other.scale_;
|
||||
}
|
||||
|
||||
array pack_and_quantize(
|
||||
array& packed_w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
int group_size,
|
||||
int bits,
|
||||
const Stream& s) {
|
||||
int el_per_int = 32 / bits;
|
||||
array zero(0, packed_w.dtype());
|
||||
array n_bins((1 << bits) - 1, packed_w.dtype()); // 2**bits - 1
|
||||
array shifts = power(array(2, uint32), arange(0, 32, bits, uint32, s), s);
|
||||
packed_w = astype(
|
||||
clip(
|
||||
round(divide(subtract(packed_w, biases, s), scales, s), s),
|
||||
zero,
|
||||
n_bins),
|
||||
uint32);
|
||||
packed_w = reshape(packed_w, {packed_w.shape(0), -1, el_per_int}, s);
|
||||
packed_w = sum(
|
||||
multiply(packed_w, shifts, s), /* axis= */ 2, /* keepdims= */ false, s);
|
||||
return packed_w;
|
||||
}
|
||||
|
||||
std::tuple<array, array, array>
|
||||
affine_quantize(const array& w, int group_size, int bits, StreamOrDevice s_) {
|
||||
auto s = to_stream(s_);
|
||||
|
||||
if (group_size != 32 && group_size != 64 && group_size != 128) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The requested group size " << group_size
|
||||
<< " is not supported. The supported group sizes are 64 and 128.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
if (bits != 2 && bits != 4 && bits != 8) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The requested number of bits " << bits
|
||||
<< " is not supported. The supported bits are 2, 4 and 8.";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
if (w.ndim() < 2) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The matrix to be quantized must have at least 2 dimension "
|
||||
<< "but it has only " << w.ndim() << ".";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
if ((w.shape(-1) % group_size) != 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The last dimension of the matrix needs to be divisible by "
|
||||
<< "the quantization group size " << group_size
|
||||
<< ". However the provided " << " matrix has shape " << w.shape();
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
int el_per_int = 32 / bits;
|
||||
|
||||
if (w.shape(-1) < 32 * el_per_int) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The feature dimension (2nd dimension of the matrix) is "
|
||||
<< "too small for quantization. We support >=512 for 2 bits, "
|
||||
<< ">= 256 for 4 bits and >= 128 for 8 bits. The provided matrix has "
|
||||
<< "shape " << w.shape() << ".";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto fallback = [group_size, bits, el_per_int, s](
|
||||
const std::vector<array>& inputs) -> std::vector<array> {
|
||||
auto& w = inputs[0];
|
||||
auto wshape = w.shape();
|
||||
wshape.back() = -1;
|
||||
|
||||
array zero(0, w.dtype());
|
||||
array n_bins((1 << bits) - 1, w.dtype()); // 2**bits - 1
|
||||
array eps(1e-7, w.dtype());
|
||||
|
||||
array packed_w = reshape(w, {-1, w.shape(-1) / group_size, group_size}, s);
|
||||
|
||||
array w_max = max(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
|
||||
array w_min = min(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
|
||||
array mask = greater(abs(w_min, s), abs(w_max, s), s);
|
||||
array scales =
|
||||
maximum(divide(subtract(w_max, w_min, s), n_bins, s), eps, s);
|
||||
scales = where(mask, scales, negative(scales), s);
|
||||
array edge = where(mask, w_min, w_max, s);
|
||||
array q0 = round(divide(edge, scales, s), s);
|
||||
scales = where(not_equal(q0, zero, s), divide(edge, q0, s), scales);
|
||||
array biases = where(equal(q0, zero, s), zero, edge);
|
||||
|
||||
packed_w = pack_and_quantize(packed_w, scales, biases, group_size, bits, s);
|
||||
return {
|
||||
reshape(packed_w, wshape, s),
|
||||
reshape(scales, wshape, s),
|
||||
reshape(biases, wshape, s),
|
||||
};
|
||||
};
|
||||
|
||||
std::vector<array> outputs;
|
||||
if (s.device == Device::gpu) {
|
||||
auto wq_shape = w.shape();
|
||||
wq_shape.back() = w.shape(-1) / el_per_int;
|
||||
auto sshape = w.shape();
|
||||
sshape.back() = w.shape(-1) / group_size;
|
||||
outputs = array::make_arrays(
|
||||
{wq_shape, sshape, sshape},
|
||||
{uint32, w.dtype(), w.dtype()},
|
||||
std::make_shared<AffineQuantize>(s, fallback, group_size, bits, false),
|
||||
{w});
|
||||
} else {
|
||||
outputs = fallback({w});
|
||||
}
|
||||
return {outputs[0], outputs[1], outputs[2]};
|
||||
}
|
||||
|
||||
array affine_quantize(
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
int group_size,
|
||||
int bits,
|
||||
StreamOrDevice s_) {
|
||||
auto s = to_stream(s_);
|
||||
|
||||
int el_per_int = 32 / bits;
|
||||
auto fallback = [group_size, bits, el_per_int, s](
|
||||
const std::vector<array>& inputs) -> std::vector<array> {
|
||||
auto& w = inputs[0];
|
||||
auto scales = expand_dims(inputs[1], -1, s);
|
||||
auto biases = expand_dims(inputs[2], -1, s);
|
||||
|
||||
auto wshape = w.shape();
|
||||
wshape.back() = -1;
|
||||
|
||||
array packed_w = reshape(w, {-1, w.shape(-1) / group_size, group_size}, s);
|
||||
packed_w = pack_and_quantize(packed_w, scales, biases, group_size, bits, s);
|
||||
return {reshape(packed_w, wshape, s)};
|
||||
};
|
||||
|
||||
if (s.device == Device::gpu) {
|
||||
auto out_shape = w.shape();
|
||||
out_shape.back() = w.shape(-1) / el_per_int;
|
||||
return array(
|
||||
out_shape,
|
||||
uint32,
|
||||
std::make_shared<AffineQuantize>(s, fallback, group_size, bits, false),
|
||||
{w, scales, biases});
|
||||
}
|
||||
return fallback({w, scales, biases})[0];
|
||||
}
|
||||
|
||||
array affine_dequantize(
|
||||
const array& w,
|
||||
const array& scales,
|
||||
const array& biases,
|
||||
int group_size,
|
||||
int bits,
|
||||
StreamOrDevice s_) {
|
||||
if (bits <= 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[dequantize] Invalid value for bits: " << bits;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (group_size <= 0) {
|
||||
std::ostringstream msg;
|
||||
msg << "[dequantize] Invalid value for group_size: " << group_size;
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
if (w.ndim() < 2 || scales.ndim() < 2 || biases.ndim() < 2) {
|
||||
std::ostringstream msg;
|
||||
msg << "[quantize] The matrix to be quantized must have at least 2 dimension "
|
||||
<< "but it has only " << w.ndim() << ".";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto wshape = w.shape();
|
||||
auto sshape = scales.shape();
|
||||
auto bshape = biases.shape();
|
||||
wshape.back() = -1;
|
||||
sshape.back() = -1;
|
||||
bshape.back() = -1;
|
||||
|
||||
if (wshape != sshape || wshape != bshape) {
|
||||
throw std::invalid_argument(
|
||||
"[dequantize] Shape of scales and biases does not match the matrix");
|
||||
}
|
||||
|
||||
if (w.dtype() != uint32) {
|
||||
throw std::invalid_argument(
|
||||
"[dequantize] The matrix should be given as a uint32");
|
||||
}
|
||||
|
||||
// Packing into uint32
|
||||
int el_per_int = 32 / bits;
|
||||
|
||||
if (w.shape(-1) * el_per_int != scales.shape(-1) * group_size) {
|
||||
std::ostringstream msg;
|
||||
msg << "[dequantize] Shape of scales and biases does not match the matrix "
|
||||
<< "given the quantization parameters. Provided matrix of shape "
|
||||
<< w.shape() << " and scales/biases of shape " << scales.shape()
|
||||
<< " with group_size=" << group_size << " and bits=" << bits << ".";
|
||||
throw std::invalid_argument(msg.str());
|
||||
}
|
||||
|
||||
auto s = to_stream(s_);
|
||||
|
||||
auto fallback =
|
||||
[&wshape, &sshape, &scales, &biases, group_size, bits, el_per_int, s](
|
||||
const std::vector<array>& inputs) -> std::vector<array> {
|
||||
auto& w = inputs[0];
|
||||
auto& scales = inputs[1];
|
||||
auto& biases = inputs[2];
|
||||
std::vector<array> parts;
|
||||
for (int start = 0; start < 32; start += bits) {
|
||||
int shift_left = 32 - (start + bits);
|
||||
int shift_right = shift_left + start;
|
||||
|
||||
parts.push_back(expand_dims(
|
||||
right_shift(
|
||||
left_shift(w, array(32 - (start + bits), uint32), s),
|
||||
array(32 - bits, uint32),
|
||||
s),
|
||||
-1,
|
||||
s));
|
||||
}
|
||||
array w_full = concatenate(parts, -1, s);
|
||||
|
||||
// Dequantize
|
||||
wshape.push_back(group_size);
|
||||
w_full = reshape(w_full, wshape, s);
|
||||
w_full = multiply(w_full, expand_dims(scales, -1, s), s);
|
||||
w_full = add(w_full, expand_dims(biases, -1, s), s);
|
||||
w_full = reshape(w_full, sshape, s);
|
||||
|
||||
return {w_full};
|
||||
};
|
||||
|
||||
if (s.device == Device::gpu) {
|
||||
auto out_shape = w.shape();
|
||||
out_shape.back() = w.shape(-1) * el_per_int;
|
||||
return array(
|
||||
out_shape,
|
||||
scales.dtype(),
|
||||
std::make_shared<AffineQuantize>(s, fallback, group_size, bits, true),
|
||||
{w, scales, biases});
|
||||
}
|
||||
return fallback({w, scales, biases})[0];
|
||||
}
|
||||
|
||||
} // namespace mlx::core::fast
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user